Science.gov

Sample records for imperial valley california

  1. Liquefaction sites, Imperial Valley, California.

    USGS Publications Warehouse

    Youd, T.L.; Bennett, M.J.

    1983-01-01

    Sands that did and did not liquefy at two sites during the 1979 Imperial Valley, Calif., earthquake (ML = 6.6) are identified and their properties evaluated. SPT tests were used to evaluate liquefaction susceptibility. Loose fine sands in an abandoned channel liquefied and produced sand boils, ground fissures, and a lateral spread at the Heber Road sites. Evidence of liquefaction was not observed over moderately dense over-bank sand east of the channel nor over dense point-bar sand to the west. -from ASCE Publications Information

  2. Measured crustal deformation in Imperial Valley, California

    USGS Publications Warehouse

    Lofgren, B.E.

    1979-01-01

    Precise geodetic surveys since 1972 indicate that significant vertical deformation of the land surface continues in Imperial Valley, California. Measured vertical changes as great as 3-5 cm per year indicate that two types of tectonic movement are occurring: (1) a downward regional tilt of the valley surface from the Mexican border northward toward Salton Sea, and (2) a deepening of the structural trough presently occupied by Salton Sea. A comparison of 1972ndash;1977 change contours with 1927 topographic contours shows gross parallelism, suggesting that the recent deformation is a continuation of the tectonism that formed the Salton trough. Ground movement since 1972 has tended to steepen slightly the gradients of streams, canals, and drains on the valley floor and to increase the capacity of Salton Sea. A usable record of eight years of background measurements of tectonic change are available prior to the impact of geothermal production in Imperial Valley. ?? 1979.

  3. Surface Deformation in Imperial Valley, Southern California

    NASA Astrophysics Data System (ADS)

    Eneva, M.; Adams, D.; Falorni, G.; Morgan, J.

    2013-12-01

    The Imperial Valley in southern California is subjected to significant tectonic deformation resulting from the relative movement of the North American and Pacific plates. It is characterized by large earthquakes, frequent swarm activity, and aseismic events. High heat flow makes possible the operation of geothermal fields, some of which cause man-made surface displacements superimposed on the tectonic deformation. We apply radar interferometry (InSAR) to analyze Envisat ASAR data for the period 2003-2010. The SqueeSAR technique is used to obtain deformation time series and annual rates at numerous locations of permanent and distributed scatterers (PS and DS). SqueeSAR works very well in agricultural areas, where conventional differential InSAR (DinSAR) fails. We observe differential movements marking the Superstition Hills, San Andreas, and Imperial faults. The Imperial fault traverses agricultural fields, where DInSAR does not work and thus our SqueeSAR observations are the first for this fault (Fig. 1). We also observe steps in the deformation time series around the Superstition Hills fault from an October 2006 aseismic event and the April 2010 M7.2 earthquake south of the U.S.-Mexico border. Significant annual deformation rates are detected in the current geothermal fields. For example, subsidence of up to -50 mm/year is seen at the Salton Sea field (Fig. 2), and both subsidence and uplift are seen at Heber. We also determine the deformation baseline at prospective geothermal fields, thus making it possible in the future to distinguish between man-made and tectonic causes of surface deformation. Fig. 1. Line-of-sight (LOS) deformation indicates differential displacement on both sides of Imperial Fault. Movements away from the satellite are shown in yellow to red, and towards the satellite in blue. Larger deformation is associated with two geothermal fields, Heber (to the south-west) and East Mesa (to the east). Fig. 2. Subsidence in the Salton Sea geothermal

  4. Imperial Valley and Salton Sea, California

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Southern California's Salton Sea is a prominent visual for astronauts. This large lake supports the rich agricultural fields of the Imperial, Coachella and Mexicali Valleys in the California and Mexico desert. The Salton Sea formed by accident in 1905 when an irrigation canal ruptured, allowing the Colorado River to flood the Salton Basin. Today the Sea performs an important function as the sink for agricultural runoff; water levels are maintained by the runoff from the surrounding agricultural valleys. The Salton Sea salinity is high-nearly 1/4 saltier than ocean water-but it remains an important stopover point for migratory water birds, including several endangered species. The region also experiences several environmental problems. The recent increased demands for the limited Colorado River water threatens the amount of water allowed to flow into the Salton Sea. Increased salinity and decreased water levels could trigger several regional environmental crises. The agricultural flow into the Sea includes nutrients and agricultural by-products, increasing the productivity and likelihood of algae blooms. This image shows either a bloom, or suspended sediment (usually highly organic) in the water that has been stirred up by winds. Additional information: The Salton Sea A Brief Description of Its Current Conditions, and Potential Remediation Projects and Land Use Across the U.S.-Mexico Border Astronaut photograph STS111-E-5224 was taken by the STS-111 Space Shuttle crew that recently returned from the International Space Station. The image was taken June 12, 2002 using a digital camera. The image was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  5. The 1979 Imperial Valley. California, earthquake

    USGS Publications Warehouse

    Spall, Henry

    1982-01-01

    On October 15, 1979, the largest earthquake in California in the last quarter century occurred on the imperial fault near the international boundary between the United States and Mexico.  The earthquake measured 6.6 on the Richter scale and was felt from Las Vegas, Nevada, to northern Mexico.  Surface movement on four fault zones accompanied the earthquake and caused approximately $30 million in damage.

  6. Measuring ground movement in geothermal areas of Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Lofgren, B. E.

    1974-01-01

    Significant ground movement may accompany the extraction of large quantities of fluids from the subsurface. In Imperial Valley, California, one of the potential hazards of geothermal development is the threat of both subsidence and horizontal movement of the land surface. Regional and local survey nets are being monitored to detect and measure possible ground movement caused by future geothermal developments. Precise measurement of surface and subsurface changes will be required to differentiate man-induced changes from natural processes in this tectonically active region.

  7. Overview of Reclamation's geothermal program in Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Fulcher, M. K.

    1974-01-01

    The Bureau of Reclamation is presently involved in a unique Geothermal Resource Development Program in Imperial Valley, California. The main purpose of the investigations is to determine the feasibility of providing a source of fresh water through desalting geothermal fluids stored in the aquifers underlying the valley. Significant progress in this research and development stage to date includes extensive geophysical investigations and the drilling of five geothermal wells on the Mesa anomaly. Four of the wells are for production and monitoring the anomaly, and one will be used for reinjection of waste brines from the desalting units. Two desalting units, a multistage flash unit and a vertical tube evaporator unit, have been erected at the East Mesa test site. The units have been operated on shakedown and continuous runs and have produced substantial quantities of high-quality water.

  8. 78 FR 16827 - Designation of Areas for Air Quality Planning Purposes; State of California; Imperial Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... AGENCY 40 CFR Part 81 Designation of Areas for Air Quality Planning Purposes; State of California; Imperial Valley Planning Area for PM 10 Clarification of Nonattainment Area Boundary AGENCY: Environmental... Imperial Valley planning area, an area designated as nonattainment for the national ambient air...

  9. Seismic and geodetic studies of the Imperial Valley, California

    SciTech Connect

    Jackson, D.D.

    1981-05-01

    The Imperial Valley exhibits perhaps the most active current tectonism in the United States; patterns of gravitational and thermal anomalies, along with geodetic measurements, strike-slip faulting, and recent volcanism suggest that the continental crust may still be spreading (Elders et al., 1972). In recent years, the United States Geological Survey and Caltech have added new seismic stations into a dense network in the Imperial Valley to study in detail the relationship between geothermal areas and earthquakes, and to understand the tectonic processes taking place there. The purposes of this study are to: (1) examine crustal structure using recently available data on P-wave arrival times of local earthquakes; (2) examine the leveling data for evidence of tectonic subsidence or uplift; and (3) study correlations between seismicity, seismic velocity, geodetic motion, geothermal activity, and local geology to provide a more consistent picture of the tectonics of the Imperial Valley.

  10. Salton Sea and Imperial Valley, California as seen from the Apollo 7 spacecra

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Salton Sea and Imperial Valley area of southern California, including a portion of northern Baja California, Mexico, as seen from the Apollo 7 spacecraft during its 17th revolution of the earth. Photographed from an altitude of 125 nautical miles, at ground elapsed time of 27 hours.

  11. Crustal Structure in the Imperial Valley Region of California From Active-Source Seismic Investigations

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Mooney, W. D.

    2008-12-01

    New crust is being generated by rifting in the Salton Trough. As the rift opens, mafic intrusive rocks fill it from below as young sedimentary rocks fill it from above. Rifting and intrusion produce high heat flow and temperatures that metamorphose the sedimentary rocks to shallow depths, forming a metasedimentary basement in the central part of the Trough, or Imperial Valley, thus consolidating the new crust. The U.S. Geological Survey conducted an extensive seismic-refraction survey in the Imperial Valley region of California in 1979, and recorded additional data in 1992. Profile data were modeled using a combination of forward and inverse modeling techniques. First arrivals on profiles and arrays from all shots were combined in an inversion for a basement-depth model. Finally an an existing gravity profile across the Salton Trough was modeled. Results are as follows: (1) No first-order velocity discontinuity is observed between sedimentary and "basement" rocks in the Imperial Valley; whereas such a discontinuity is observed on West Mesa, west of the Imperial Valley. In the Imperial Valley, basement velocity is 5.65 km/s, and basement is as much as 6 km deep. On West Mesa, basement velocity is 5.9 km/s and is at most 2 km deep. In the Imperial Valley, basement shoals beneath known geothermal areas, and the deepest wells (approx. 4 km) have penetrated only the upper part of the known Cenozoic stratigraphic column in the Salton Trough. Based on these results, we interpret basement in the Imperial Valley to be sedimentary rocks metamorphosed to lower greenschist facies and basement on West Mesa to be crystalline rocks. (2) The Imperial fault offsets basement in a normal sense by as much as 1 km down to the northeast, and there is an irregular basement scarp as high as 3.5 km between West Mesa and the Imperial Valley, which we interpret as a rift suture between old crystalline and young metasedimentary basement. (3) "Subbasement" (Vp 6.9 km/s) is seen at depths as

  12. GPS measurements of strain accumulation across the Imperial Valley, California: 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1989-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 +/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 +/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  13. Global Positioning System measurements of strain accumulation across the Imperial Valley, California - 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1992-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 =/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 =/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  14. Earthquakes, active faults, and geothermal areas in the imperial valley, california.

    PubMed

    Hill, D P; Mowinckel, P; Peake, L G

    1975-06-27

    A dense seismograph network in the Imperial Valley recorded a series of earthquake swarms along the Imperial and Brawley faults and a diffuse pattern of earthquakes along the San Jacinto fault. Two known geothermal areas are closely associated with these earthquake swarms. This seismicity pattern demonstrates that seismic slip is occurring along both the Imperial-Brawley and San Jacinto fault systems.

  15. Local variations of seismic velocity in the Imperial Valley, California

    SciTech Connect

    Jackson, D.D.; Lee, W.B.

    1981-12-01

    The authors inverted local earthquake arrival times to estimate spatial variations of seismic velocity. Their model consisted of near-surface station corrections and local perturbations to a standard crustal velocity model. The authors found a zone of relatively high-velocity trending southeast from the Salton Sea. This zone corresponds to the region of thickest sediments. The authors compared results with those of teleseismic studies by Savino et al (1977). The agreement was excellent, suggesting that the teleseismic delays are caused primarily by crustal velocity variations. Residual delays between the teleseismic observations and predicted crustal delays imply crustal thinning of 3 or 4 km along the axis of the valley. Known geothermal resource areas at Salton Sea (or Obsidian Buttes), Brawley, and East Mesa, lie on the axis of a zone of thin crust, and they may be intimately related to the Brawley fault. Neither local earthquake nor teleseismic arrival times can discriminate between these hypotheses, but the issue might be resolved by combining both types of data. Known geothermal resource areas at Heber, Dunes, and Glamis, lie away from the projected trace of the Brawley fault. These areas are nearly aseismic, and overlie crust with apparent seismic velocities only mildly higher than the regional average. These apparent velocity anomalies could be related to crustal thinning, but because of the very mild Bouguer gravity anomalies in these areas, it seems more likely that the velocity anomalies occur entirely within the crust. 7 references, 6 figures, 3 tables.

  16. Bioindicators from Mosquitofish (Gambusia affinis) Sampled from the Imperial Valley in Southern California

    USGS Publications Warehouse

    Jenkins, Jill A.; Draugelis-Dale, Rassa O.

    2006-01-01

    The Sonny Bono Salton Sea National Wildlife Refuge (SSNWR) is located 64 km north of the Mexican border at the southern end of the Salton Sea in California's Imperial Valley. Freshwater ponds and managed habitats at the SSNWR, Calipatria, Calif. are supplied with Colorado River water that carries compounds from upstream sources. Components include municipal and industrial discharges, agricultural drainage, and sewage plant inputs. Aquatic animals in these ecosystems are continuously exposed to multiple constituents, several of which have been demonstrated to be associated with hormonal disturbances. We investigated possible endocrine impacts to fish in the Imperial Valley, Calif., by addressing the null hypothesis that aquatic species in impacted sites did not exhibit evidence of endocrine disruption as compared with those from nonimpacted sites. The results presented are intended to provide managers with science-based information and interpretations about the condition of the animals in their ecosystems for the minimization of potential adverse effects to trust fish and wildlife resources and for the maximization of available water resources.

  17. Well log interpretation of certain geothermal fields in the Imperial Valley, California

    SciTech Connect

    Ershaghi, I.; Abdassah, D.

    1984-03-01

    This study reviews the wireline log responses of some geothermal fields in the Imperial Valley, California. The fields under study include the Heber, the East Mesa, the Brawley, and the Westmoreland. The well logs used in the study did not include all the wireline surveys obtained by the operators. The selected well logs obtained under special arrangements with the operators were chosen to maintain the anonymity of specific well locations but are only representative of each area. Analysis of the well logs indicates that on an individual field basis, the well logs are excellent for correlation purposes. The presence of extremely saline fluids in some fields precludes the monitoring of Q/sub v/ (cation exchange capacity per unit volume) profile for detection of hydrothermally altered zones. The producing sections in all the fields are characterized by low porosity and high resistivity.

  18. Reclaiming agricultural drainage water with nanofiltration membranes: Imperial Valley, California, USA

    USGS Publications Warehouse

    Kharaka, Y.K.; Schroeder, R.A.; Setmire, J.G.; ,

    2003-01-01

    We conducted pilot-scale field experiments using nanofiltration membranes to lower the salinity and remove Se, As and other toxic contaminants from saline agricultural wastewater in the Imperial Valley, California, USA. Farmlands in the desert climate (rainfall - 7.4 cm/a) of Imperial Valley cover -200,000 ha that are irrigated with water (-1.7 km3 annually) imported from the Colorado River. The salinity (-850 mg/L) and concentration of Se (-2.5 ??g/L) in the Colorado River water are high and evapotranpiration further concentrates salts in irrigation drainage water, reaching salinities of 3,000-15,000 mg/L TDS and a median Se value of -30 ??g/L. Experiments were conducted with two commercially available nanofiltration membranes, using drainage water of varying composition, and with or without the addition of organic precipitation inhibitors. Results show that these membranes selectively remove more than 95% of Se, SO4, Mo, U and DOC, and -30% of As from this wastewater. Low percentages of Cl, NO3 and HCO3, with enough cations to maintain electrical neutrality also were removed. The product water treated by these membranes comprised more than 90% of the wastewater tested. Results indicate that the treated product water from the Alamo River likely will have less than 0.2 ??g/L Se, salinity of 300-500 mg/L TDS and other chemical concentrations that meet the water quality criteria for irrigation and potable use. Because acceptability is a major issue for providing treated wastewater to urban centers, it may be prudent to use the reclaimed water for irrigation and creation of lower salinity wetlands near the Salton Sea; an equivalent volume of Colorado River water can then be diverted for the use of increasing populations of San Diego and other urban centers in southern California. Nanofiltration membranes yield greater reclaimed-water output and require lower pressure and less pretreatment, and therefore are generally more cost effective than traditional reverse

  19. Age constraints for the present fault configuration in the Imperial Valley, California - Evidence for northwestward propagation of the Gulf of California rift system

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1991-01-01

    Releveling and other geophysical data for the Imperial Valley of southern California suggest the northern section of the Imperial-Brawley fault system, which includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the 4 to 5 million year age of the valley itself. A minimum age of 3000 years is calculated for the northern segment of the Imperial fault from correlations between surface topography and geodetically observed seismic/interseismic vertical movements. Calculations of a maximum age of 80,000 years is based upon displacements in the crystalline basement along the Imperial fault, inferred from seismic refraction surveys. This young age supports recent interpretations of heat flow measurements, which also suggest that the current patterns of seismicity and faults in the Imperial Valley are not long lived. The current fault geometry and basement morphology suggest northwestward growth of the Imperial fault and migration of the Brawley Seismic Zone. It is suggested that this migration is a manifestation of the propagation of the Gulf of California rift system into the North American continent.

  20. Age constraints for the present fault configuration in the Imperial Valley, California: Evidence for northwestward propagation of the Gulf of California rift system

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1990-01-01

    Releveling and other geophysical data for the Imperial Valley of southern California suggest the northern section of the Imperial-Brawley fault system, which includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the 4 to 5 million year age of the valley itself. A minimum age of 3000 years is calculated for the northern segment of the Imperial fault from correlations between surface topography and geodetically observed seismic/interseismic vertical movements. Calculations of a maximum age of 80,000 years is based upon displacements in the crystalline basement along the Imperial fault, inferred from seismic refraction surveys. This young age supports recent interpretations of heat flow measurements, which also suggest that the current patterns of seismicity and faults in the Imperial Valley are not long lived. The current fault geometry and basement morphology suggest northwestward growth of the Imperial fault and migration of the Brawley Seismic Zone. It is suggested that this migration is a manifestation of the propagation of the Gulf of California rift system into the North American continent.

  1. Heat flow and geothermal potential of the East Mesa KGRA, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Swanberg, C. A.

    1974-01-01

    The East Mesa KGRA (Known Geothermal Resource Area) is located in the southeast part of the Imperial Valley, California, and is roughly 150 kilometers square in areal extent. A new heat flow technique which utilizes temperature gradient measurements across best clays is presented and shown to be as accurate as conventional methods for the present study area. Utilizing the best clay gradient technique, over 70 heat flow determinations have been completed within and around the East Mesa KGRA. Background heat flow values range from 1.4 to 2.4 hfu (1 hfu = .000001 cal. per square centimeter-second) and are typical of those throughout the Basin and Range province. Heat flow values for the northwest lobe of the KGRA (Mesa anomaly) are as high as 7.9 hfu, with the highest values located near gravity and seismic noise maxima and electrical resistivity minima. An excellent correlation exists between heat flow contours and faults defined by remote sensing and microearthquake monitoring.

  2. Horizontal and Vertical Distribution of Longidorus africanus in a Bermudagrass Field in the Imperial Valley, California

    PubMed Central

    Ploeg, Antoon T.

    1998-01-01

    The horizontal and vertical distribution of the needle nematode Longidorus africanus was studied in a bermudagrass field in the Imperial Valley in southern California. A geostatistical method involving the use of semi-variograms was used to quantify the relationship between sampling distance and variation in L. africanus population levels. Semi-variance between nematode numbers from different samples was very low when samples were taken close together, increased with sampling distances up to ca. 15 m, and fluctuated around a sill value at distances greater than 15 m. At very large sampling distances the semi-variance increased further. It was concluded that patches with fairly similar numbers of L. africanus were elongated and up to 15 m long. Seasonal fluctuations over a 2-year period, in total numbers of L. africanus extracted from three depths, were large and highly correlated with soil temperature. Population densities were greatest during the summer months and lowest during the winter. Averaged over the 2-year period, L. africanus population densities increased with increasing depth. Chances for detecting this nematode are greatest in summer at depths of 60 to 90 cm. PMID:19274252

  3. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  4. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    SciTech Connect

    Layton, D.

    1980-07-01

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  5. Comparison of multispectral remote-sensing techniques for monitoring subsurface drain conditions. [Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.

    1983-01-01

    The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.

  6. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    NASA Astrophysics Data System (ADS)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.

    2016-11-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  7. Interseismic Strain Accumulation in the Imperial Valley and Implications for Triggering of Large Earthquakes in Southern California

    NASA Astrophysics Data System (ADS)

    Crowell, B. W.; Bock, Y.; Sandwell, D. T.

    2009-12-01

    From February, 2008 to March, 2009, we performed three rapid-static Global Positioning System (GPS) surveys of 115 geodetic monuments stretching from the United States-Mexico border into the Coachella Valley using the method of instantaneous positioning. The monuments are located in key areas near the Imperial, Superstition Hills, San Jacinto, San Andreas and Brawley Faults with nominal baselines generally less than 10 km. We perform a bicubic spline interpolation on the crustal motion vectors from the campaign measurements and 1005 continuous GPS monuments in western North America and solve for the velocity gradient tensor to look at the maximum shear strain, dilatation and rotation rates in the Imperial Valley. We then compare our computed strain field to that computed using the Southern California Earthquake Center Crustal Motion Map 3.0, which extends through 2003 and includes 840 measurements. We show that there is an interseismic strain transient that corresponds to an increase in the maximum shear strain rate of 0.7 μstrain/yr near Obsidian Buttes since 2003 along a fault referred to as the Obsidian Buttes Fault (OBF). A strong subsidence signal of 27 mm/yr and a left-lateral increase of 10 mm/yr are centered along the OBF. Changes in the dilatation and rotation rates confirm the increase in left-lateral motion, as well as infer a strong increase in spreading rate in the southern Salton Sea. The increase in spreading rate has caused an accelerated slip rate along the southern San Andreas near Durmid Hill as evidenced by continuous GPS, which has the potential for earthquake triggering.

  8. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    USGS Publications Warehouse

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  9. Evaluation of remote sensing in control of pink bollworm in cotton. [Imperial Valley, Coachella Valley, and Palo Verde Valley, California

    NASA Technical Reports Server (NTRS)

    Lewis, L. N. (Principal Investigator); Coleman, V. B.; Johnson, C. W.

    1974-01-01

    The author has identified the following significant results. This investigation is to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used for crop identification. The status of each field (crop, bare, harvested, wet, plowed) is mapped from the imagery and is then compared to ground survey information taken at the time of ERTS-1 overflights. A computer analysis has been performed to compare field and satellite data to a crop calendar. Correlation to date has been 97% for field condition. Actual crop identification varies; cotton identification is only 63% due to lack of full season coverage.

  10. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous

  11. Earthshots: Satellite images of environmental change – Imperial Valley, California, USA

    USGS Publications Warehouse

    ,

    2013-01-01

    At the bottom of the sink lies the Salton Sea, the largest lake in California. It lacks an outlet to the ocean and lies 70 m below sea level. About 85% of the sea’s inflows come from agricultural runoff, and its waters are 37% saltier than the Pacific Ocean.

  12. First report of an ipomovirus infecting cucurbits in the Imperial Valley of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the fall of 2014, pumpkin plants grown at the University of California Desert Research Extension Center (DREC) in Holtville, CA showed severe stunting, leaf yellowing, crumpling, and epinasty. These plants were also infested with high populations of B. tabaci. RT-PCR and PCR tests performed on le...

  13. Assessment of the impact on crops of effluent gases from geothermal energy development in the Imperial Valley, California

    SciTech Connect

    Kercher, J.R.

    1982-01-01

    The potential impact of regionally dispersed sources of geothermal gaseous effluents on crops in the Imperial Valley was assessed. A detailed model of the photosynthesis and growth of sugar beets fumigated by H/sub 2/S and CO/sub 2/ and generalized from the model calculations to other crops was used. Model calculations were made with estimates of time series of expected ground-level concentrations of H/sub 2/S and CO/sub 2/ calculated by the air quality assessment element of the Imperial Valley Environmental Project (IVEP) at 22 locations around the valley. The model calculations also used time series data of meteorological variables such as air temperature, solar radiation, and relative humidity, which were measured by the air quality baseline element in the field of the Imperial Valley. Results indicate that, in the absence of interactions with other ambient pollutant gases, all location would experience an increase (from slight to significant) in total growth of sugar beets. Seven locations will experience an increase of at least 10%. The emissions rate at which negative effects cancel out the benefits of H/sub 2/S fertilization was calculated; in the worst case, emission rates are expected to be no more than 1/13 of this crossover rate. The expected emission rate will be less than that necessary for negative effects on the most sensitive species (such as alfalfa) by a factor of 4. Similar results for other crops are summarized in the report. If CO/sub 2/ emissions are increased proportionately, the dominance of deleterious effects is not expected to occur, even under maximum development as set forth in IVEP scenario projections. 8 figures, 6 tables.

  14. Assessment of the impact on crops of effluent gases from geothermal energy development in the Imperial Valley, California

    SciTech Connect

    Kercher, J.R.

    1981-05-22

    We have assessed the potential impact of regionally dispersed sources of geothermal gaseous effluents on crops in the Imperial Valley. We used a detailed model of the photosynthesis and growth of sugar beets fumigated by H/sub 2/S and CO/sub 2/ and generalized from the model calculations to other crops. Model calculations were made with estimates of time series of expected ground-level concentrations of H/sub 2/S and CO/sub 2/ calculated by the Air Quality Assessment element of the Imperial Valley Environmental Project (IVEP) at 22 locations around the valley. Results indicate that in the absence of interactions with other ambient pollutant gases, all locations would experience an increase (from slight to significant) in total growth of sugar beets. Seven locations will experience an increase of at least 10%. We calculated the emissions rate at which negative effects cancel out the benefits of H/sub 2/S fertilization; in the worst case, emission rates are expected to be no more than 1/13 this crossover rate. The expected emission rate will be less than that necessary for negative effects on the most sensitive species (such as alfalfa) by a factor of 4. Similar results for other crops are summarized in the report. If CO/sub 2/ emissions are increased proportionately, the dominance of deleterious effects is not expected to occur even under maximum development as set forth in IVEP scenario projections. 23 references, 8 figures, 6 tables.

  15. Anomalous record of October 15, 1979, Imperial Valley, California, earthquake from Coachella Canal Engine House No. 4

    USGS Publications Warehouse

    Bycroft, G.N.

    1981-01-01

    A recording obtained at the Coachella Canal Engine House No. 4 of the October 15, 1979, Imperial Valley earthquake shows a dominant 2 Hz frequency. This feature is very unusual and an attempt has been made to determine if the recording is real or spurious. As the pumping station is a small heavily constructed bunker type of structure located on material of low shear wave velocity it was considered likely that soil-structure interaction might be responsible for the 2 Hz component. However, both an experimental and theoretical investigation fail to establish this. This report describes the theoretical investigation. The experimental investigation is described in a separate open-file report.

  16. Imperial Contradictions: Is the Valley a Watershed, Region, or Cyborg?

    ERIC Educational Resources Information Center

    Rudy, Alan P.

    2005-01-01

    Is California's Imperial Valley a watershed? If so, at what level and by what topographic logic? Is it a region? If so, at what level and by what geographic logic? Are its boundaries natural, political, or multivalent on different scales? In short, this essay looks at the special (re)production of environmental conditions within a cyborg world.…

  17. Frequency distribution of mineral elements in samples of alfalfa and sugar beet leaves obtained from a common field in Imperial Valley, California

    SciTech Connect

    Wallace, A.; Romney, E.M.; Kinnear, J.

    1982-07-01

    Baseline measurements were made of mineral composition of alfalfa (Medicago sativa L.) and sugar beets (Beta vulgaris L.) from one field each in the Imperial Valley of California. The fields are in a geothermal area being developed for energy production, and the purpose of the investigation was to ascertain variablility within a relatively large number of samples from a common area, so that subsequent samplings could be made to satisfactorily detect whether there were changes resulting from the geothermal activity. Means, standard deviations, frequency distribution, correlations, cluster trees, and other statistics were examined for over 20 elements at each site.Most elements were normally distributed, but there was three- to fourfold range in the concentration for each.

  18. A system of regional agricultural land use mapping tested against small scale Apollo 9 color infrared photography of the Imperial Valley (California)

    USGS Publications Warehouse

    Johnson, Claude W.; Browden, Leonard W.; Pease, Robert W.

    1969-01-01

    Interpretation results of the small scale ClR photography of the Imperial Valley (California) taken on March 12, 1969 by the Apollo 9 earth orbiting satellite have shown that world wide agricultural land use mapping can be accomplished from satellite ClR imagery if sufficient a priori information is available for the region being mapped. Correlation of results with actual data is encouraging although the accuracy of identification of specific crops from the single image is poor. The poor results can be partly attributed to only one image taken during mid-season when the three major crops were reflecting approximately the same and their ClR image appears to indicate the same crop type. However, some incapacity can be attributed to lack of understanding of the subtle variations of visual and infrared color reflectance of vegetation and surrounding environment. Analysis of integrated color variations of the vegetation and background environment recorded on ClR imagery is discussed. Problems associated with the color variations may be overcome by development of a semi-automatic processing system which considers individual field units or cells. Design criteria for semi-automatic processing system are outlined.

  19. Imperial Valley College 2+2+2 Project Handbook.

    ERIC Educational Resources Information Center

    Marquez, Ralph

    This handbook of the Imperial Valley College (IVC) 2+2+2 Project provides an overview of the development of an articulated education program for business and law enforcement careers, involving six local high schools and San Diego State University, Imperial Valley Campus. Following a brief introduction to the 2+2+2 project in section I, section II…

  20. 75 FR 44278 - Notice of Availability of the Final Environmental Impact Statement for the Imperial Valley Solar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Imperial Valley Solar, LLC Project, California and the Proposed California Desert Conservation Area Plan... Energy Systems Solar Two Project and Possible California Desert Conservation Area Plan Amendment was... proposed IVS project. The BLM will also consider amending the California Desert Conservation Area...

  1. Relation between proposed developments of water resources and seepage from the All-American Canal, eastern Imperial Valley, California

    USGS Publications Warehouse

    Loeltz, Omar J.; Leake, S.A.

    1979-01-01

    A two-layer digital model designed for this study indicated that sealing of the Coachella branch of the All-American Canal would cause an eventual increase in seepage from the All-American Canal of about 15,000 acre-feet annually. Sealing of both the Coachella Canal and the segment of the All-American Canal between Pilot Knob and Drop 1 would result in a lessening of seepage rates from the All-American Canal of 57,000 acre-feet in 1985, but of only 39,000 acre-feet in 2030. Sealing both the Coachella and the All-American Canals would reduce the outflow to Mexicali Valley from 120,000 acre-feet in 1980 to less than 9 ,000 acre-feet in 2030. The model also indicated that if only the Coachella Canal was sealed, a little less than 40% of water pumped from proposed well fields near the All-American Canal ultimately would be derived from increased seepage from the All-American Canal; between 50 and 60% of the water pumped would be water that otherwise would flow to Mexicali Valley. (USGS)

  2. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    USGS Publications Warehouse

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended

  3. Aquaculture in the Imperial Valley -- A geothermal success story

    SciTech Connect

    Rafferty, K.

    1999-03-01

    The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

  4. San Diego Gas and Electric Company Imperial Valley geothermal activities

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    San Diego Gas and Electric and its wholly owned subsidiary New Albion Resources Co. have been affiliated with Magma Power Company, Magma Energy Inc. and Chevron Oil Company for the last 2-1/2 years in carrying out geothermal research and development in the private lands of the Imperial Valley. The steps undertaken in the program are reviewed and the sequence that must be considered by companies considering geothermal research and development is emphasized. Activities at the south end of the Salton Sea and in the Heber area of Imperial Valley are leading toward development of demonstration facilities within the near future. The current status of the project is reported.

  5. Imperial Valley's proposal to develop a guide for geothermal development within its county

    NASA Technical Reports Server (NTRS)

    Pierson, D. E.

    1974-01-01

    A plan to develop the geothermal resources of the Imperial Valley of California is presented. The plan consists of development policies and includes text and graphics setting forth the objectives, principles, standards, and proposals. The plan allows developers to know the goals of the surrounding community and provides a method for decision making to be used by county representatives. A summary impact statement for the geothermal development aspects is provided.

  6. California: San Joaquin Valley

    Atmospheric Science Data Center

    2014-05-15

    article title:  Fog and Haze in California's San Joaquin Valley   ... is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected ... as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, ...

  7. Pliocene Invertebrates From the Travertine Point Outcrop of the Imperial Formation, Imperial County, California

    USGS Publications Warehouse

    Powell, Charles L.

    2008-01-01

    Forty-four invertebrate taxa, including one coral, 40 mollusks (30 bivalves and 10 gastropods), and three echinoids are recognized from a thin marine interval of the Imperial Formation near Travertine Point, Imperial County, California. The Travertine Point outcrop lies about midway between exposures of the Imperial Formation around Palm Springs, Riverside County, and exposures centered at Coyote Mountain in Imperial and San Diego Counties. Based on faunal comparisons, the Travertine Point outcrop corresponds to the Imperial and San Diego outcrops. The Travertine Point fauna is inferred to have lived in subtropical to tropical waters at littoral to inner sublittorial (<50 m) water depths. Coral and molluscan species from the Travertine Point outcrop indicate a Pliocene age. Two extant bivalve mollusks present have not previously been reported as fossils Anadara reinharti and forms questionably referred to Dosinia semiobliterata.

  8. DESOLATION VALLEY WILDERNESS, CALIFORNIA.

    USGS Publications Warehouse

    Dodge, F.C.W.; Fillo, P.V.

    1984-01-01

    The Desolation Valley Wilderness covers an area of 101 sq mi in El Dorado County, California, near the southwestern shore of Lake Tahoe. A mineral survey disclosed the presence of a small mineralized area with demonstrated gold resources. Exploratory drilling is necessary before the resource potential of gold-bearing rocks can be assessed.

  9. SOME NEW PROCESSING TECHNIQUES FOR THE IMPERIAL VALLEY 1979 AFTERSHOCKS.

    USGS Publications Warehouse

    Brady, A. Gerald; ,

    1983-01-01

    This paper describes some of the features of the latest processing improvements that the U. S. Geological Survey (USGS) is currently applying to strong-motion accelerograms from the national network of permanent stations. At the same time it introduces the application of this processing to the set of Imperial Valley aftershocks recorded following the main shock of October 15, 1979. Earlier processing of the 22 main shock recordings provided corrected accelerations, velocity and displacement, response spectra, and Fourier spectra.

  10. 77 FR 2469 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality... to the Antelope Valley Air Quality Management District (AVAQMD) and Imperial County Air Pollution.... * * * * * (G) Antelope Valley Air Quality Management District. (1) Rule 1134, ``Stationary Gas...

  11. The California Valley grassland

    USGS Publications Warehouse

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  12. Modeling Events in the Lower Imperial Valley Basin

    NASA Astrophysics Data System (ADS)

    Tian, X.; Wei, S.; Zhan, Z.; Fielding, E. J.; Helmberger, D. V.

    2010-12-01

    The Imperial Valley below the US-Mexican border has few seismic stations but many significant earthquakes. Many of these events, such as the recent El Mayor-Cucapah event, have complex mechanisms involving a mixture of strike-slip and normal slip patterns with now over 30 aftershocks with magnitude over 4.5. Unfortunately, many earthquake records from the Southern Imperial Valley display a great deal of complexity, ie., strong Rayleigh wave multipathing and extended codas. In short, regional recordings in the US are too complex to easily separate source properties from complex propagation. Fortunately, the Dec 30 foreshock (Mw=5.9) has excellent recordings teleseismically and regionally, and moreover is observed with InSAR. We use this simple strike-slip event to calibrate paths. In particular, we are finding record segments involving Pnl (including depth phases) and some surface waves (mostly Love waves) that appear well behaved, ie., can be approximated by synthetics from 1D local models and events modeled with the Cut-and-Paste (CAP) routine. Simple events can then be identified along with path calibration. Modeling the more complicated paths can be started with known mechanisms. We will report on both the aftershocks and historic events.

  13. Groundwater quality in Coachella Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  14. Death Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. The bright dots near the center of the image are corner refectors that have been set-up to calibrate the radar as the Shuttle passes overhead with the SIR-C/X-SAR system. The Jet Propulsion Laboratory alternative photo number is P-43883.

  15. Location of odor sources and the affected population in Imperial County, California

    SciTech Connect

    Hahn, J.L.

    1981-08-01

    This report is divided into four sections. The first two sections contain general background information on Imperial County. The third section is a general discussion of odor sources in Imperial County, and the fourth maps the specific odor sources, the expected areas of perception, and the affected populations. this mapping is done for the Imperial Valley and each of the four Imperial County KGRA's (Known Geothermal Resource Areas) where odor from the development of the geothermal energy may affect population.

  16. California: Diamond Valley

    Atmospheric Science Data Center

    2014-05-15

    ... water storage capacity. In addition to routine water management, Diamond Valley Lake is designed to provide protection against ... 20, 2001 (Terra orbit 7564), is a false-color view combining data from the instrument's 26-degree forward view (displayed as blue) with data ...

  17. 77 FR 13591 - Imperial Valley Solar Company (IVSC) 1, LLC; Supplemental Notice That Initial Market-Based Rate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission Imperial Valley Solar Company (IVSC) 1, LLC; Supplemental Notice That... supplemental notice in the above-referenced proceeding of Imperial Valley Solar Company (IVSC) 1, LLC's... includes a request for blanket authorization, under 18 CFR Part 34, of future issuances of securities...

  18. 78 FR 18581 - Imperial Valley Solar 1, LLC: Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... Energy Regulatory Commission Imperial Valley Solar 1, LLC: Supplemental Notice That Initial Market-Based... above-referenced proceeding, of Imperial Valley Solar 1, LLC's application for market-based rate... filings in the above-referenced proceeding(s) are accessible in the Commission's eLibrary system...

  19. Imperialism.

    ERIC Educational Resources Information Center

    Martz, Carlton

    2002-01-01

    This publication discusses issues related to imperialism. It examines the 1857 uprising against the British in India; examines how Hawaii became a U.S. territory at the turn of the 20th century; and reviews oil and U.S. energy policy, particularly the debate over drilling in the Arctic National Wildlife Refuge, an issue relevant to September 11,…

  20. 78 FR 896 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... is finalizing approval of revisions to the Imperial County Air Pollution Control District (ICAPCD...)(2)). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Imperial County...

  1. 77 FR 25109 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ...: EPA is proposing to approve revisions to the Imperial County Air Pollution Control District (ICAPCD... of Subjects in 40 CFR Part 52 Air pollution control, Environmental protection, Intergovernmental... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Imperial County...

  2. 78 FR 922 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...: EPA is proposing to approve revisions to the Imperial County Air Pollution Control District (ICAPCD... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Imperial County...

  3. 75 FR 27975 - Revisions to the California State Implementation Plan; Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ...: EPA is proposing to approve revisions to the Imperial County Air Pollution Control District (ICAPCD... of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Intergovernmental... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan; Imperial County...

  4. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  5. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  6. Integrated Modeling of Water Policy Futures in the Imperial-Mexicali Valleys

    NASA Astrophysics Data System (ADS)

    Kjelland, M. K.; Forster, C. B.; Grant, W. E.; Collins, K.

    2004-12-01

    Divided by an international border, the Imperial-Mexicali Valleys (IMVs) are linked by shared history, natural resources, culture and economy. This region is experiencing changes driven by policy makers both within and outside the IMVs. The largest external decision, the Colorado River Quantification Settlement Agreement (QSA) of 2003, opens the door to a laboratory for studying the consequences of a massive transfer of agricultural water to municipal users. Two irrigation districts, two urban water agencies and the State of California have agreed to a 75 year of more than 30 million acre-feet of Colorado River water from agricultural to urban use. Although Imperial Valley farmers will be compensated for water conservation and land fallowing, the economic, environmental and social consequences are unclear. Farmers who fallow will likely cause a greater impact on local businesses and government than those choosing on-field water conservation. Reduced agricultural water use causes reduced flow of irrigation runoff, at higher salinity than before, to the Salton Sea that, in turn, impacts the population dynamics of Ichthyan and Avian species at the Salton Sea. Municipal wastewater discharged into the New River by Mexicali, Mexico is also an important source of inflow to the Salton Sea that will be reduce by plans to reclaim the wastewater for various uses, including cooling water for two new power plants in the Mexicali. A restoration program is funded to produce a Sea with much reduced surface area. But this approach may, in turn, lead to increases in windblown dust from the dry lakebed that will contribute to an air basin already designated as a federal nonattainment area for particulate emissions. Additional water will be conserved by lining the All American and Coachella canals. But, eliminating seepage from the All American canal reduces groundwater recharge to aquifers used by Mexican farmers. A complex interplay of water-related issues must be accounted for if

  7. California's restless giant: the Long Valley Caldera

    USGS Publications Warehouse

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  8. 75 FR 39365 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ...EPA is finalizing a limited approval and limited disapproval of revisions to the Imperial County Air Pollution Control District (ICAPCD or the District) portion of the California State Implementation Plan (SIP) under the Clean Air Act as amended in 1990 (CAA or the Act). This action was proposed in the Federal Register on February 23, 2010 and concerns local rules that regulate coarse......

  9. 78 FR 37845 - Meeting of the Imperial Sand Dunes Recreation Area (ISDRA) Subgroup of the California Desert...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE INTERIOR Bureau of Land Management Meeting of the Imperial Sand Dunes Recreation Area (ISDRA) Subgroup of the... 92-463 and 94-579, that the Imperial Sand Dunes Recreation Area Subgroup of the California...

  10. Liquefaction and other ground failures in Imperial County, California, from the April 4, 2010, El Mayor-Cucapah earthquake

    USGS Publications Warehouse

    McCrink, Timothy P.; Pridmore, Cynthia L.; Tinsley, John C.; Sickler, Robert R.; Brandenberg, Scott J.; Stewart, Jonathan P.

    2011-01-01

    The Colorado River Delta region of southern Imperial Valley, California, and Mexicali Valley, Baja California, is a tectonically dynamic area characterized by numerous active faults and frequent large seismic events. Significant earthquakes that have been accompanied by surface fault rupture and/or soil liquefaction occurred in this region in 1892 (M7.1), 1915 (M6.3; M7.1), 1930 (M5.7), 1940 (M6.9), 1950 (M5.4), 1957 (M5.2), 1968 (6.5), 1979 (6.4), 1980 (M6.1), 1981 (M5.8), and 1987 (M6.2; M6.8). Following this trend, the M7.2 El Mayor-Cucapah earthquake of April 4, 2010, ruptured approximately 120 kilometers along several known faults in Baja California. Liquefaction caused by the M7.2 El Mayor-Cucapah earthquake was widespread throughout the southern Imperial Valley but concentrated in the southwest corner of the valley, southwest of the city centers of Calexico and El Centro where ground motions were highest. Although there are few strong motion recordings in the very western part of the area, the recordings that do exist indicate that ground motions were on the order of 0.3 to 0.6g where the majority of liquefaction occurrences were found. More distant liquefaction occurrences, at Fites Road southwest of Brawley and along Rosita Canal northwest of Holtville were triggered where ground motions were about 0.2 g. Damage to roads was associated mainly with liquefaction of sandy river deposits beneath bridge approach fills, and in some cases liquefaction within the fills. Liquefaction damage to canal and drain levees was not always accompanied by vented sand, but the nature of the damage leads the authors to infer that liquefaction was involved in the majority of observed cases. Liquefaction-related damage to several public facilities - Calexico Waste Water Treatment Plant, Fig Lagoon levee system, and Sunbeam Lake Dam in particular - appears to be extensive. The cost to repair these facilities to prevent future liquefaction damage will likely be prohibitive. As

  11. Provenance of alluvial fan deposits to constrain the mid-term offsets along a strike-slip active fault: the Elsinore fault in the Coyote Mountains, Imperial Valley, California.

    NASA Astrophysics Data System (ADS)

    Masana, Eulalia; Stepancikova, Petra; Rockwell, Thomas

    2013-04-01

    The lateral variation in rates along a fault and its constancy along time is a matter of discussion. To give light to this discussion, short, mid and long term offset distribution along a fault is needed. Many studies analyze the short-term offset distribution along a strike-slip fault that can be obtained by the analysis of offset features imprinted in the morphology of the near-fault area. We present an example on how to obtain the mid- to long-term offset values based on the composition of alluvial fans that are offset by the fault. The study area is on the southern tip of the Elsinore fault, which controls the mountain front of the Coyote Mountains (California). The Elsinore-Laguna Salada fault is part of the San Andreas fault (SAF) system, extending 250 km from the Los Angeles Basin southeastward into the Gulf of California, in Mexico. The slip-rate on the southern Elsinore fault is believed to be moderate based on recent InSAR observations, although a recent study near Fossil Canyon (southern Coyote Mountains) suggests a rate in the range of 1-2 mm/yr. For this study we processed the airborne LiDAR dataset (EarthScope Southern & Eastern California, SoCal) to map short to mid-term alluvial offsets. We reprocessed the point clouds to produce DEMs with 0.5m and 0.25m grids and we varied the insolation angles to illuminate the various fault strands and the offset features. We identified numerous offset features, such as rills, channel bars, channel walls, alluvial fans, beheaded channels and small erosional basins that varied in displacement from 1 to 350 m. For the mid- to long-term offsets of the alluvial fans we benefited from the diverse petrological composition of their sources. Moreover, we recognized that older alluvium, which is offset by greater amounts, is in some cases buried beneath younger alluvial fan deposits and separated by buried soils. To determine the source canyon of various alluvial elements, we quantified the clast assemblage of each source

  12. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  13. Mineral resources of the North Algodones Dunes Wilderness Study Area (CDCA-360), Imperial County, California

    SciTech Connect

    Smith, R.S.U.; Yeend, W.; Dohrenwend, J.C.; Gese, D.D.

    1984-01-01

    This report presents the results of a mineral survey of the North Algodones Dunes Wilderness Study Area (CDCA-360), California Desert Conservation Area, Imperial County, California. The potential for undiscovered base and precious metals, and sand and gravel within the North Algodones Dunes Wilderness Study Area is low. The study area has a moderate potential for geothermal energy. One small sand-free area between the Coachella Canal and the west edge of the dune field would probably be the only feasible exploration site for geothermal energy. The study area has a moderate to high potential for the occurrence of undiscovered gas/condensate within the underlying rocks. 21 refs.

  14. Source characterization of major emission sources in the imperial and Mexicali Valleys along the US/Mexico border.

    PubMed

    Watson, J G; Chow, J C

    2001-08-10

    Chemical profiles for particle emissions are needed for source apportionment studies using the chemical mass balance (CMB) receptor model. Source measurements of geological sources, motor vehicle exhaust, vegetative burning (e.g. asparagus, field burning, charbroil cooking), and industrial sources (e.g. oil-fueled glass plant, manure-fueled power plants) were acquired as part of the Imperial/Mexicali Valley Cross Border PM10 Transport Study in 1992. Six different source sampling techniques (i.e. hot- and diluted-exhaust sampling, ground-based source sampling, particle sweeping/grab sampling, vacuum sampling, and laboratory resuspension sampling) were applied to acquire filter samples of PM 2.5 and PM10 (particulate matter with aerodynamic diameters < 2.5 and 10 microm, respectively). Filter samples were analyzed for mass by gravimetry, elements (Na to U) by X-ray fluorescence, anions (Cl(-), NO3(-), SO4(=)) by ion chromatography, ammonium (NH4(+)) by automated colorimetry, soluble sodium (Na+) and potassium (K+) by atomic absorption spectrophotometry, and organic and elemental carbon (OC, EC) by thermal/optical reflectance. Concentration data were acquired for a total of approximately 50 chemical species. Elevated abundances of crustal components (Al, Si, K, Ca, Fe) from geological material, carbon (OC, EC) and trace elements (Br, Pb) from vehicle exhausts, carbon (OC, EC) and ions (K(+), Cl(-)) from vegetative burning, ions (SO4(=), NH4(+), Na(+), K(+), Cl(-)) and elements (Cl, Se) from a manure-fueled power plants, and sulfur and trace elements (Na(+), Pb, Se, Ni, V) from an oil-fueled glass plant were found in the resulting source profiles. Abundances of crustal species (e.g. Al, Si, Ca) in the Imperial/Mexicali Valley geological profiles are more than twice those found in central and southern California. Abundances of lead in motor vehicle exhausts indicate different vehicle fleets in border cities. Emission profiles from field burning and charbroil cooking

  15. Recent landscape change in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Soulard, C. E.; Wilson, T. S.

    2012-12-01

    Long term monitoring of land use and land cover in California's intensively farmed Central Valley reveals several key physical and socioeconomic factors driving landscape change. As part of the USGS Land Cover Trends Project, we analyzed modern land-use/land-cover change for the California Central Valley ecoregion between 2000 and 2010, monitoring annual change between 2005 and 2010, while creating two new change intervals (2000-2005 and 2005-2010) to update the existing 27-year, interval-based analysis. Between 2000 and 2010, agricultural lands fluctuated due to changes in water allocations and emerging drought conditions, or were lost permanently to development (240 square km). Land-use pressure from agriculture and development also led to a decline in grasslands and shrublands across the region (280 square km). Overall, 400 square km of new developed lands were added in the first decade of the 21st century. From 2007 to 2010, development only expanded by 50 square km, coinciding with defaults in the banking system, the onset of historic foreclosure crisis in California and the global economic downturn. Our annual LULC change estimates capture landscape-level change in response to regional policy changes, climate, and fluctuations (e.g., growth or decline) in the national and global economy. The resulting change data provide insights into the drivers of landscape change in the California Central Valley and the combination of two consistent mapping efforts represents the first continuous, 37-year endeavor of its kind.

  16. The hydrology of San Bernardino Valley, California

    USGS Publications Warehouse

    Mendenhall, Walter C.

    1905-01-01

    The San Bernardino basin lies near the eastern end of the valley of southern California.  Under the latter term is included that general lowland area which is definitely limited on the north by the San Gabriel and San Bernardino ranges and on the east by the latter range and the San Jacinto group, but whose southern boundary is irregular and difficult to define.  In this direction there is an interdigitation of ridges and valleys as the Sierra Madre Range of San Diego County dies out toward the north.  The more or less indefinite heights that represent its extension in this direction are separated by lowlands, which in turn are to be regarded as southwest lobes of the well-defined east-west valley that lies along the base of the San Gabriel Range.

  17. Water Transfers, Air Quality, Ecosystems and Population Growth at the US-Mexico Border: An Integrated Model of the Mexicali and Imperial Valleys

    NASA Astrophysics Data System (ADS)

    Forster, C. B.; Gonzalez, T.; Peach, J.; Kjelland, M.; Collins, K.; Grant, W. E.

    2006-12-01

    Borderland communities in the Imperial-Mexicali Valleys (IMVs) of California (U.S.A.) and Mexicali (Mexico) are experiencing socioeconomic and environmental changes driven by policy makers and environmental conditions both within and outside the IMVs. The Colorado River Quantification Settlement Agreement (QSA) of 2003 will transfer 30 million acre-feet of Colorado River water from Imperial Valley (IV) agricultural users to Southern California urban users over a 75-year period. Because the water level of the Salton Sea is supported by agricultural runoff, reduced water flows to the sea raise concerns that: 1) air quality will be degraded as dust is generated by the drying Sea-bed, and 2) declining fish populations due to increasing salinity will no longer support birds migrating along a key avian flyway. Rapid population growth in the Mexican border-city of Mexicali, combined with new power plants and plans for water reuse, raises concerns that: 1) the quantity and quality of water supplied to the Salton Sea will decline, and 2) increased vehicle use and electrical power generation will lead to declining air quality in the binational air basin. Each concern may be affected by climate change. As environmental factors change, so too may the agricultural economy of the Imperial Valley that, in turn, depends on the availability of both water and manual labor. The economy of Mexicali is dominated by the maquiladora (manufacturing) industry that depends upon the availability of power, labor and water. A system dynamics model, with annual time step, simulates this complex binational system. The model was developed by an academic team with input from local experts/decision-makers from both Mexico and the US. We are preparing to engage community stakeholders and decision-makers in exploring the model. Insights gained from model results yield better understanding of the consequences of alternative future scenarios that include: QSA water transfers and land fallowing plans

  18. Age and paleoenvironment of the imperial formation near San Gorgonio Pass, Southern California

    USGS Publications Warehouse

    McDougall, K.; Poore, R.Z.; Matti, J.

    1999-01-01

    Microfossiliferous marine sediments of the Imperial Formation exposed in the Whitewater and Cabazon areas, near San Gorgonio Pass, southern California, are late Miocene in age and were deposited at intertidal to outer neritic depths, and possibly upper bathyal depths. A late Miocene age of 7.4 to >6.04 Ma is based on the ranges of age-diagnostic benthic foraminifers (Cassidulina delicata and Uvigerina peregrina), planktic foraminifers (Globigerinoides obliquus, G. extremus, and Globigerina nepenthes; zones N17-N19), and calcareous nannoplankton (Discoaster brouweri, D. aff. D. surculus, Reticulofenestra pseudoumbilicata, Sphenolithus abies, and S. neoabies; zones CN9a-CN11) coupled with published K/Ar dates from the underlying Coachella Formation (10.1 ?? 1.2 Ma; Peterson, 1975) and overlying Painted Hill Formation (6.04 ?? 0.18 and 5.94 ?? 0.18 Ma; J. L. Morton in Matti and others, 1985 and Matti and Morton, 1993). Paleoecologic considerations (sea-level fluctuations and paleotemperature) restrict the age of the Imperial Formation to 6.5 through 6.3 Ma. Benthic foraminiferal assemblages indicate that the Imperial Formation in the Whitewater and Cabazon sections accumulated at inner neritic to outer neritic (0-152 m) and possibly upper bathyal (152-244 m) depths. Shallowing to inner neritic depths occurred as the upper part of the section was deposited. This sea-level fluctuation corresponds to a global highstand at 6.3 Ma (Haq and others, 1987). Planktic foraminifers suggest an increase in surface-water temperatures upsection. A similar increase in paleotemperatures is interpreted for the North Pacific from 6.5 to 6.3 Ma (warm interval W10 of Barron and Keller, 1983). Environmental contrasts between the Whitewater and Cabazon sections of the Imperial Formation provide evidence for right-lateral displacements on the Banning fault, a late Miocene strand of the San Andreas fault system. The Cabazon section lies south of the Banning fault, and has been displaced west

  19. Revisiting the 1872 Owens Valley, California, Earthquake

    USGS Publications Warehouse

    Hough, S.E.; Hutton, K.

    2008-01-01

    The 26 March 1872 Owens Valley earthquake is among the largest historical earthquakes in California. The felt area and maximum fault displacements have long been regarded as comparable to, if not greater than, those of the great San Andreas fault earthquakes of 1857 and 1906, but mapped surface ruptures of the latter two events were 2-3 times longer than that inferred for the 1872 rupture. The preferred magnitude estimate of the Owens Valley earthquake has thus been 7.4, based largely on the geological evidence. Reinterpreting macroseismic accounts of the Owens Valley earthquake, we infer generally lower intensity values than those estimated in earlier studies. Nonetheless, as recognized in the early twentieth century, the effects of this earthquake were still generally more dramatic at regional distances than the macroseismic effects from the 1906 earthquake, with light damage to masonry buildings at (nearest-fault) distances as large as 400 km. Macroseismic observations thus suggest a magnitude greater than that of the 1906 San Francisco earthquake, which appears to be at odds with geological observations. However, while the mapped rupture length of the Owens Valley earthquake is relatively low, the average slip was high. The surface rupture was also complex and extended over multiple fault segments. It was first mapped in detail over a century after the earthquake occurred, and recent evidence suggests it might have been longer than earlier studies indicated. Our preferred magnitude estimate is Mw 7.8-7.9, values that we show are consistent with the geological observations. The results of our study suggest that either the Owens Valley earthquake was larger than the 1906 San Francisco earthquake or that, by virtue of source properties and/or propagation effects, it produced systematically higher ground motions at regional distances. The latter possibility implies that some large earthquakes in California will generate significantly larger ground motions than San

  20. Groundwater quality in the Owens Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  1. Groundwater quality in the Antelope Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  2. The Salton Seismic Imaging Project: Tomographic characterization of a sediment-filled rift valley and adjacent ranges, southern California

    NASA Astrophysics Data System (ADS)

    Davenport, K.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Carrick, E.; Tikoff, B.

    2011-12-01

    The Salton Trough in Southern California represents the northernmost rift of the Gulf of California extensional system. Relative motion between the Pacific and North American plates is accommodated by continental rifting in step-over zones between the San Andreas, Imperial, and Cerro Prieto transform faults. Rapid sedimentation from the Colorado River has isolated the trough from the southern portion of the Gulf of California, progressively filling the subsiding rift basin. Based on data from previous seismic surveys, the pre-existing continent has ruptured completely, and a new ~22 km thick crust has been created entirely by sedimentation overlying rift-related magmatism. The MARGINS, EarthScope, and USGS-funded Salton Seismic Imaging Project (SSIP) was designed to investigate the nature of this new crust, the ongoing process of continental rifting, and associated earthquake hazards. SSIP, acquired in March 2011, comprises 7 lines of onshore seismic refraction / wide-angle reflection data, 2 lines of refraction / reflection data in the Salton Sea, and a line of broadband stations. This presentation focuses on the refraction / wide-angle reflection line across the Imperial Valley, extending ~220 km across California from Otay Mesa, near Tijuana, to the Colorado River. The data from this line includes seventeen 100-160 kg explosive shots and receivers at 100 m spacing across the Imperial Valley to constrain the structure of the Salton Trough rift basin, including the Imperial Fault. Eight larger shots (600-920 kg) at 20-35 km spacing and receivers at 200-500 m spacing extend the line across the Peninsular Ranges and the Chocolate Mountains. These data will contrast the structure of the rift to that of the surrounding crust and provide constraints on whole-crust and uppermost mantle structure. Preliminary work has included tomographic inversion of first-arrival travel times across the Valley, emphasizing a minimum-structure approach to create a velocity model of the

  3. Death Valley California as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers).

  4. Space Radar Image of Owens Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Owens Valley, near the town of Bishop, California that was created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southeast along the eastern edge of Owens Valley. The White Mountains are in the center of the image, and the Inyo Mountains loom in the background. The high peaks of the White Mountains rise more than 3,000 meters (10,000 feet) above the valley floor. The runways of the Bishop airport are visible at the right edge of the image. The meandering course of the Owens River and its tributaries appear light blue on the valley floor. Blue areas in the image are smooth, yellow areas are rock outcrops, and brown areas near the mountains are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar data were taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttle Endeavour in October 1994. The digital elevation map was produced using radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is

  5. Space Radar Image of Saline Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective view of Saline Valley, about 30 km (19 miles) east of the town of Independence, California created by combining two spaceborne radar images using a technique known as interferometry. Visualizations like this one are helpful to scientists because they clarify the relationships of the different types of surfaces detected by the radar and the shapes of the topographic features such as mountains and valleys. The view is looking southwest across Saline Valley. The high peaks in the background are the Inyo Mountains, which rise more than 3,000 meters (10,000 feet) above the valley floor. The dark blue patch near the center of the image is an area of sand dunes. The brighter patches to the left of the dunes are the dry, salty lake beds of Saline Valley. The brown and orange areas are deposits of boulders, gravel and sand known as alluvial fans. The image was constructed by overlaying a color composite radar image on top of a digital elevation map. The radar image was taken by the Spaceborne Imaging Radar-C/X-bandSynthetic Aperture Radar (SIR-C/X-SAR) on board the space shuttleEndeavour in October 1994. The digital elevation map was producedusing radar interferometry, a process in which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The elevation data were derived from a 1,500-km-long (930-mile) digital topographic map processed at JPL. Radar image data are draped over the topography to provide the color with the following assignments: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vetically received; and blue is the ratio of C-band vertically transmitted, vertically received to L-band vertically transmitted, vertically received. This image is centered near 36.8 degrees north latitude and 117.7 degrees west longitude. No vertical exaggeration factor has been applied to the data. SIR-C/X-SAR, a joint

  6. ANALYSIS OF LOTIC MACROINVERTEBRATE ASSEMBLAGES IN CALIFORNIA'S CENTRAL VALLEY

    EPA Science Inventory

    Using multivariate and cluster analyses, we examined the relaitonships between chemical and physical characteristics and macroinvertebrate assemblages at sites sampled by R-EMAP in California's Central Valley. By contrasting results where community structure was summarized as met...

  7. Space Radar Image of Death Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image shows Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information can be used to study the occurrence and movement of dust storms and sand dunes. The goal of these studies is to gain a better understanding of the record of past climatic changes and the effects of those changes on a sensitive environment. This may lead to a better ability to predict future response of the land to different potential global climate-change scenarios. Death Valley is

  8. 76 FR 67369 - Revisions to the California State Implementation Plan, Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Pollution Control District and Imperial County Air Pollution Control District AGENCY: Environmental... Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) and Imperial County Air Pollution Control... U.S.C. 804(2). List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution...

  9. Data from geothermal wells near Oasis, lower Coachella Valley, California

    SciTech Connect

    Robison, J.H.

    1981-01-01

    Drillers' logs, temperature logs, and water quality analyses from geothermal tests made at 11 sites near Oasis, lower Coachella Valley, California, are presented. The wells were drilled in 1978 under contract to the US Geological Survey as part of an appraisal of geothermal resources in the lower Coachella Valley.

  10. Water supply issues of the San Joaquin Valley in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The San Joaquin Valley of California is undoubtedly one of the most productive agricultural regions of the United States, and of the world. The valley was a Miocene epicontinental sea bounded by the Sierra Nevada igneous arc in the east and the Coast Range accretionary terrane in the west. It is now...

  11. Cuyama Valley, California hydrologic study: an assessment of water availability

    USGS Publications Warehouse

    Hanson, Randall T.; Sweetkind, Donald S.

    2014-01-01

    Water resources are under pressure throughout California, particularly in agriculturally dominated valleys. Since 1949, the Cuyama Valley’s irrigated acreage has increased from 13 to 35 percent of the valley. Increased agriculture has contributed to the demand for water beyond natural recharge. The tools and information developed for this study can be used to help understand the Cuyama Valley aquifer system, an important resource of Santa Barbara County.

  12. space Radar Image of Long Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An area near Long Valley, California, was mapped by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavor on April 13, 1994, during the first flight of the radar instrument, and on October 4, 1994, during the second flight of the radar instrument. The orbital configurations of the two data sets were ideal for interferometric combination -- that is overlaying the data from one image onto a second image of the same area to create an elevation map and obtain estimates of topography. Once the topography is known, any radar-induced distortions can be removed and the radar data can be geometrically projected directly onto a standard map grid for use in a geographical information system. The 50 kilometer by 50 kilometer (31 miles by 31 miles) map shown here is entirely derived from SIR-C L-band radar (horizontally transmitted and received) results. The color shown in this image is produced from the interferometrically determined elevations, while the brightness is determined by the radar backscatter. The map is in Universal Transverse Mercator (UTM) coordinates. Elevation contour lines are shown every 50 meters (164 feet). Crowley Lake is the dark feature near the south edge of the map. The Adobe Valley in the north and the Long Valley in the south are separated by the Glass Mountain Ridge, which runs through the center of the image. The height accuracy of the interferometrically derived digital elevation model is estimated to be 20 meters (66 feet) in this image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global

  13. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false California Shenandoah... California Shenandoah Valley. (a) Name. The name of the viticultural area described in this section is “Shenandoah Valley” qualified by the word “California” in direct conjunction with the name “Shenandoah...

  14. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  15. 3D View of Death Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER

  16. Public health assessment for Stoker Company, Imperial, Imperial County, California, Region 9. Cerclis No. CAD066635442. Preliminary report

    SciTech Connect

    Not Available

    1994-01-06

    Stoker Company is a pesticide dealer and crop dusting loading facility located in the County of Imperial, approximately 25 miles from the Mexican border. The 26-acre site is barren with no vegetation. Operations at the facility, beginning in 1966, have caused the surface soil over much of the site to be contaminated with pesticides. Some of the contaminated surface soil has blown off-site and impacted nearby surface soil and surface water. This preliminary public health assessment evaluated the potential for adverse health effects to occur in five populations identified as being impacted by contaminants. The impacted populations include: (1) on-site workers; (2) the family formerly living on the neighboring D K property; (3) the D K Duck Hunting Club members; (4) individuals using untreated surface water for drinking and/or other domestic purposes; and (5) individuals living or working near crop dusting operations. Based on this assessment, Stoker Company is considered to pose a public health hazard because long-term exposure to site-related contaminants may cause adverse health effects.

  17. Perspective with Landsat Overlay: Antelope Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Antelope Valley is bounded by two of the most active faults in California: the Garlock fault, which fronts the distant mountains in this view, and the San Andreas fault, part of which is seen bounding the mountains in the left foreground. In this view, Antelope Valley is in the foreground, the Tehachapi Mountains form the left skyline, and ranges within the southernmost Sierra Nevada form the right skyline. Antelope Valley is directly north of Los Angeles and is the westernmost part of the Mojave Desert. It is a closed basin. Stream flow here ends at Rosamond and Rogers dry lakes, which appear bright white. Dry lakes like these are common where tectonic activity raises and lowers parts of the Earth's crust, and thus the topographic surface, faster than stream flow can fill depressions with water, and then overflow and cut escape channels to other basins and eventually to the sea. The Sierra Nevada, the Tehachapi, and other mountains generally to the west create a rain shadow desert here. Thus, the area definitely has the active tectonics and low rainfall combination that leads to closed basin topography.

    This perspective view was generated by draping a Landsat satellite image over a preliminary topographic map from the Shuttle Radar Topography Mission. Shading of the SRTM elevation model was added to enhance topographic appearance. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30 meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.

    The elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three

  18. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  19. Groundwater quality in the Northern Sacramento Valley, California

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern Sacramento Valley is one of the study units being evaluated.

  20. Groundwater quality in the southeast San Joaquin Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The subbasins in the southeast portion of the San Joaquin Valley constitute one of the study units being evaluated.

  1. Groundwater quality in the Southern Sacramento Valley, California

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Southern Sacramento Valley is one of the study units being evaluated.

  2. 77 FR 73391 - Approval of Air Quality Implementation Plans; California; Eastern Kern, Imperial County, Placer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ..., Air pollution control, Carbon monoxide, Greenhouse gases, Incorporation by reference... four permitting rules submitted for the Eastern Kern Air Pollution Control District (EKAPCD), Imperial County Air Pollution Control District (ICAPCD), Placer County Air Pollution Control District...

  3. 77 FR 73316 - Approval of Air Quality Implementation Plans; California; Eastern Kern, Imperial, Placer, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... pollution control, Carbon monoxide, Greenhouse gases, Incorporation by reference, Intergovernmental... rules submitted for the Eastern Kern Air Pollution Control District (EKAPCD), Imperial County Air Pollution Control District (ICAPCD), Placer County Air Pollution Control District (PCAPCD), and...

  4. Region 9: California Imperial County Adequate Letter Enclosure (5/20/2008)

    EPA Pesticide Factsheets

    This document is the enclosure to the April 16, 2008, letter from EPA provides an adequacy finding for transportation conformity purposes the motor vehicle emissions budgets in the Imperial County 8-hour Ozone Early Progress Plan.

  5. Surface displacement on the Imperial and Superstition Hills faults triggered by the Westmorland, California, earthquake of 26 April 1981

    USGS Publications Warehouse

    Sharp, R.V.; Lienkaemper, J.J.; Rymer, M.J.

    1982-01-01

    Parts of the Imperial and the Superstition Hills faults moved right-laterally at the ground surface at the time of or shortly following the ML 5.6 Westmorland earthquake of 26 April 1981. The displacements occurred prior to any significant aftershocks on either fault and thus are classed as sympathetic. Although the main shock was located in an exceptionally seismogenic part of Imperial Valley, about 20 km distant from either fault, no clear evidence of surface faulting has yet been found in the epicentral area. Horizontal displacement on the Imperial and Superstition Hills faults, southeast and southwest of the epicenter, respectively, reached maxima of 8 mm and 14 mm, and the discontinuous surface ruptures formed along approximately equal lengths of northern segments of the two structures (16.8 km and 15.7 km, respectively). The maximum vertical component of slip on the Imperial fault, 6 ram, was observed 3.4 km north of the point of largest horizontal slip. Vertical movement on the Superstition Hills fault was less than 1 mm. No new displacement was found along the traces of the Brawley fault zone, the San Andreas fault, or the part of the Coyote Creek fault that slipped during the 1968 Borrego Mountain earthquake. A careful search in the epicentral area of the main shock failed to locate any definite evidence of surface faulting. Concentrations of late aftershocks north and northeast of Calipatria near the southeastward projection of the San Andreas fault occurred mostly after our field check; this area was not investigated.

  6. Precipitation depth-duration characteristics, Antelope Valley, California

    USGS Publications Warehouse

    Blodgett, James C.; Nasseri, Iraj; ,

    1995-01-01

    To document the changes in runoff characteristics of basins subject to urbanization, streamflow and precipitation data were collected at eight small basins in Antelope Valley, California, for the period 1990-93. The data collected at U.S. Geological Survey stations were supplemented by data collected at 35 long-term precipitation stations. These data will be used to calibrate and verify rainfall-runoff models for the eight basins and for estimating basin runoff characteristics throughout Antelope Valley. Annual precipitation in Antelope Valley varies from more than 50 cm in the mountains to less than 10 cm on the valley floor. Most precipitation in the valley occurs during the winter months, December through March, but cyclonic storms in the fall and convectional storms in the summer sometimes occur.

  7. Ground water in the Cuyama Valley, California

    USGS Publications Warehouse

    Upson, J.E.; Worts, George Frank

    1951-01-01

    This is the fourth of a series of interpretive reports on the water resources of the major valleys of Santa Barbara County, Calif., prepared by the Geological Survey, United States Department of the Interior, in cooperation with Santa Barbara County. The first three reports described the other major valleys in the county: the south-coast basins, Goleta and Carpinteria, and the Santa Maria and Santa Ynez River valleys. This report deals with the Cuyama Valley in the northeastern part of the county and adjoining parts of San Luis Obispo, Kern, and Ventura Counties. It includes estimates of natural discharge, pumpage, and yield of ground water, and all data on water levels, well records, and water quality that were available up to June 1946.

  8. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  9. Student and School Indicators for Youth in California's Central Valley

    ERIC Educational Resources Information Center

    Danenberg, Anne; Jepsen, Christopher; Cerdan, Pedro

    2002-01-01

    Twenty percent of California's public-school students attend schools in the Central Valley. Many of these students are at risk of poor educational outcomes: One-quarter of the children in grades K-5 do not speak English or do not speak it well; one-half of all K-12 students participate in a subsidized lunch program. This sourcebook provides a…

  10. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas §...

  11. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas §...

  12. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas §...

  13. Status of groundwater pollution in the San Gabriel Valley, California

    SciTech Connect

    Earley, J.D.

    1987-07-01

    Contamination of groundwater in the San Gabriel Valley of California has been identified as a potential health hazard from industrial sources. Sampling has revealed the presence of trichloroethylene (TCE), perchloroethylene (PCE) and carbon tetrachloride (CTC); therefore, water purveyors are using a variety of means to alleviate the contamination and the use of contaminated water.

  14. Groundwater Availability of the Central Valley Aquifer, California

    USGS Publications Warehouse

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  15. Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California

    SciTech Connect

    Layman Energy Associates, Inc.

    2006-08-15

    With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,900–2,600 meters. Well data indicates the lower part of this

  16. The Obsidian Creep Project: Seismic Imaging in the Brawley Seismic Zone and Salton Sea Geothermal Field, Imperial County, California

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Rymer, M. J.; Goldman, M.; Lohman, R. B.; McGuire, J. J.

    2010-12-01

    In March 2010, we acquired medium- and high-resolution P- and S-wave seismic reflection and refraction data across faults in the Brawley seismic zone (BSZ) and across part of the Salton Sea Geothermal Field (SSGF), Imperial Valley, California. Our objectives were to determine the dip, possible structural complexities, and seismic velocities associated with the BSZ and SSGF. We acquired multiple seismic data sets along a north-south profile and a high-resolution P-wave profile along an east-west profile. The north-south profile included: 1) a 6.4-km-long P-wave (main) profile that was recorded on 320 Texan seismographs spaced at 20-m intervals, 2) a 1.2-km-long cabled, high-resolution profile along the northern end of the main profile, and 3) an approximately 1.2-km-long S-wave profile along the cabled profile. P-wave sources along the main profile were generated by 0.15- to 0.45-kg buried explosions spaced every 40 m, and P-wave sources along the cabled profile were generated by Betsy-Seisgun ‘shots’ spaced every 10 m. S-waves sources were generated by hammer impacts on the ends of an aluminum block. The east-west profile consisted of a 3.4-km-long high-resolution P-wave seismic profile with shots (Betsy-Seisgun) and geophones spaced every 10 m. Preliminary interpretation of shot gathers from blasts in the north-south profile suggests that the BSZ and SSGF are structurally complex, with abundant faults extending to or near the ground surface. Also, we observe relatively high-velocity material, apparent velocities of about 4.0 km/s in one direction and about 2.8 km/s in another relative to about 1.6 km/s for shallower material, that shallows beneath the SSGF. This may be due to high temperatures and resultant metamorphism of buried materials in the SSGF. From preliminary interpretation of shot gathers along the east-west profile we interpret a prominent fault that extends to the ground surface. This fault is on projection of the Kalin fault, from about 40 m to

  17. Sutter Buttes-the lone volcano in California's Great Valley

    USGS Publications Warehouse

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  18. Arc-rift transition volcanism in the Volcanic Hills, Jacumba and Coyote Mountains, San Diego and Imperial Counties, california

    NASA Astrophysics Data System (ADS)

    Fisch, Gregory Zane

    Neogene volcanism associated with the subduction of the Farallon-Pacific spreading center and the transition from a subduction zone to a rift zone has been studied extensively in Baja, California, Mexico. One of the main goals of these studies was to find a geochemical correlation with slab windows that may have formed during that complicated transition. While workers have been able to find distinct geochemical signatures in samples from Baja California, none have shown statistically significant correlation with samples from southern California that are thought to be related to the same arc-rift transition events. All of the basaltic samples from this study of southern California rocks have prominent Nb depletions typical of island-arc subduction-related volcanism, in contrast to the chemistry of Baja California volcanics that have trace element patterns typical of synrift related volcanism. The work done by previous investigators has been additionally complicated due to each investigator's choice of important ratios or patterns, which bears little, if any, correlation with work done by others working in the same area. For example, Martin-Barajas et al. (1995) use K/Rb ratios in their study of the Puertocitos Volcanic Province, while Castillo (2008) argues that Sr/Y vs. Y is a better indicator of petrogenetic processes. Little petrologic work has been done on Neogene volcanic rocks in the Imperial Valley and eastern San Diego County region of Southern California. This thesis combines new research with that of previous workers and attempts to establish a better understanding of the processes involved with the transition volcanism. Prior work documents significant differences in the geochemistry between some of these areas, especially those in close proximity to each other (e.g. the Volcanic Hills and Coyote Mountains). These differences were thought to be largely the result different magmatic sources. The potential of finding two differing magma types in close

  19. Aeromagnetic survey map of Sacramento Valley, California

    USGS Publications Warehouse

    Langenheim, Victoria E.

    2015-01-01

    Three aeromagnetic surveys were flown to improve understanding of the geology and structure in the Sacramento Valley. The resulting data serve as a basis for geophysical interpretations, and support geological mapping, water and mineral resource investigations, and other topical studies. Local spatial variations in the Earth's magnetic field (evident as anomalies on aeromagnetic maps) reflect the distribution of magnetic minerals, primarily magnetite, in the underlying rocks. In many cases the volume content of magnetic minerals can be related to rock type, and abrupt spatial changes in the amount of magnetic minerals commonly mark lithologic or structural boundaries. Bodies of serpentinite and other mafic and ultramafic rocks tend to produce the most intense positive magnetic anomalies (for example, in the northwest part of the map). These rock types are the inferred sources, concealed beneath weakly magnetic, valley-fill deposits, of the most prominent magnetic features in the map area, the magnetic highs that extend along the valley axis. Cenozoic volcanic rocks are also an important source of magnetic anomalies and coincide with short-wavelength anomalies that can be either positive (strong central positive anomaly flanked by lower-amplitude negative anomalies) or negative (strong central negative anomaly flanked by lower-amplitude positive anomalies), reflecting the contribution of remanent magnetization. Rocks with more felsic compositions or even some sedimentary units also can cause measurable magnetic anomalies. For example, the long, linear, narrow north-trending anomalies (with amplitudes of <50 nanoteslas [nT]) along the western margin of the valley coincide with exposures of the Mesozoic Great Valley sequence. Note that isolated, short-wavelength anomalies, such as those in the city of Sacramento and along some of the major roads, are caused by manmade features.

  20. Beginnings of geothermal impact on county population and leadership, Imperial County, California

    SciTech Connect

    Pick, J.B.; Butler, E.W.

    1980-09-01

    A major geothermal energy development scenario is about to begin in Imperial County. Initial energy-socioeconomic interactions in the areas of population and county leadership structure are discussed. These include immigration of energy company workers, a sewage plant dispute, conflict over union affiliation of geothermal laborers, and a transmission corridor routing dispute.

  1. 76 FR 26615 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    .... SUMMARY: EPA is finalizing approval of revisions to the Imperial County Air Pollution Control District... various air pollution sources. We are approving local rules that regulate these emission sources under the... CFR Part 52 Environmental protection, Air pollution control, Incorporation by...

  2. 76 FR 39357 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Pollution Control District, Kern County Air Pollution Control District, and Ventura County Air Pollution... proposing to approve revisions to the Imperial County Air Pollution Control District (ICAPCD), Kern County Air Pollution Control District (KCAPCD), and Ventura County Air Pollution Control District...

  3. 76 FR 39303 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ... Pollution Control District, Kern County Air Pollution Control District, and Ventura County Air Pollution... taking direct final action to approve revisions to the Imperial County Air Pollution Control District (ICAPCD), Kern County Air Pollution Control District (KCAPCD), and Ventura County Air Pollution...

  4. 78 FR 23677 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... is finalizing approval of revisions to the Imperial County Air Pollution Control District (ICAPCD... Air Pollution Control District (SJVAPCD). Response #4--The comment does not identify and we are not... submittal and review process such as contained in SJVAPCD Rule 4550 and Great Basin Unified Air...

  5. Magmatic unrest at Long Valley Caldera, California, 1980-1990

    USGS Publications Warehouse

    Bailey, R.A.; Hill, D.P.

    1990-01-01

    On May 25, 1980, the resort town of Mammoth Lakes, California, was shaken by a remarkable 48-hour-long earthquake sequence that included four M=6, two M=5 and 300 M=3 quakes. The nature of the precursory seismicity plus the unusual character of the May 25-27 sequence itself suggested that it was not typical of tectonic earthquakes in the region. Discovery of 25 cm of domical uplift centred on the resurgent dome within Long Valley caldera strongly implied that this activity was accompanied, if not caused, by influex of magma into the Long Valley magma chamber. -Authors

  6. 27 CFR 9.219 - Antelope Valley of the California High Desert.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Antelope Valley of the... Viticultural Areas § 9.219 Antelope Valley of the California High Desert. (a) Name. The name of the viticultural area described in this section is “Antelope Valley of the California High Desert”. For purposes...

  7. 27 CFR 9.219 - Antelope Valley of the California High Desert.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Antelope Valley of the... Viticultural Areas § 9.219 Antelope Valley of the California High Desert. (a) Name. The name of the viticultural area described in this section is “Antelope Valley of the California High Desert”. For purposes...

  8. 27 CFR 9.219 - Antelope Valley of the California High Desert.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Antelope Valley of the... Viticultural Areas § 9.219 Antelope Valley of the California High Desert. (a) Name. The name of the viticultural area described in this section is “Antelope Valley of the California High Desert”. For purposes...

  9. Geology and water resources of Owens Valley, California

    USGS Publications Warehouse

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.

    1991-01-01

    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  10. Climate controls on valley fever incidence in Kern County, California

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.; Talamantes, Jorge

    2006-01-01

    Coccidiodomycosis (valley fever) is a systemic infection caused by inhalation of airborne spores from Coccidioides immitis, a soil-dwelling fungus found in the southwestern United States, parts of Mexico, and Central and South America. Dust storms help disperse C. immitis so risk factors for valley fever include conditions favorable for fungal growth (moist, warm soil) and for aeolian soil erosion (dry soil and strong winds). Here, we analyze and inter-compare the seasonal and inter-annual behavior of valley fever incidence and climate risk factors for the period 1980-2002 in Kern County, California, the US county with highest reported incidence. We find weak but statistically significant links between disease incidence and antecedent climate conditions. Precipitation anomalies 8 and 20 months antecedent explain only up to 4% of monthly variability in subsequent valley fever incidence during the 23 year period tested. This is consistent with previous studies suggesting that C. immitis tolerates hot, dry periods better than competing soil organisms and, as a result, thrives during wet periods following droughts. Furthermore, the relatively small correlation with climate suggests that the causes of valley fever in Kern County could be largely anthropogenic. Seasonal climate predictors of valley fever in Kern County are similar to, but much weaker than, those in Arizona, where previous studies find precipitation explains up to 75% of incidence. Causes for this discrepancy are not yet understood. Higher resolution temporal and spatial monitoring of soil conditions could improve our understanding of climatic antecedents of severe epidemics.

  11. Water Supply of Indian Wells Valley, California.

    DTIC Science & Technology

    1986-04-01

    finite. Water pumipage and consuniptive water use exceeds (he natura rehre to the idale ’s griund-water supplN. In 1984 28.000 acre feet of’ water was...XEROPHY’TES ARTEMISiA PHREATOPHYTES SALTBRUSH PICKLEWEED WATER TABLE 𔃻A 60 ~50 SALTGRASS, ALKALI SACATONE, SAITBAUSH ~40 C-. z cc PASTURE ...limit on the amount of useful water stored in the Valley (Photo 12). MAIN GATE NWC B ONTI 2500 / MODERN ALLUVIUM "-, ~GOO’’- -0.S.5 -300 PPM _ Lu 2000

  12. Ground water in the San Joaquin Valley, California

    USGS Publications Warehouse

    Kunkel, Fred; Hofman, Walter

    1966-01-01

    Ladies and gentlemen, it is a pleasure to be invited to attend this Irrigation Institute conference and to describe the Geological Survey's program of ground-water studies in the San Joaquin Valley. The U.S. Geological Survey has been making water-resources studies in cooperation with the State of California and other agencies in California for more than 70 years. Three of the earliest Geological Survey Water-Supply Papers--numbers 17, 18, and 19--published in 1898 and 1899, describe "Irrigation near Bakersfield," "Irrigation near Fresno," and "Irrigation near Merced." However, the first Survey report on ground-water occurrence in the San Joaquin Valley was "Ground Water in the San Joaquin Valley," by Mendenhall and others. The fieldwork was done from 1905 to 1910, and the report was published in 1916 as U.S. Geological Survey Water-Supply Paper 398.The current series of ground-water studies in the San Joaquin Valley was begun in 1952 as part of the California Department of Water Resources-U.S. Geological Survey cooperative water-resources program. The first report of this series is Geological Survey Water-Supply Paper 1469, "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley." Other reports are Water-Supply Paper 1618, "Use of Ground-Water Reservoirs for Storage of Surface Water in the San Joaquin Valley;" Water-Supply Paper 1656, "Geology and Ground-Water Features of the Edison-Maricopa Area;" Water-Supply Paper 1360-G, "Ground- Water Conditions in the Mendota-Huron Area;" Water-Supply Paper 1457, "Ground-Water Conditions in the Avenal-McKittrick Area;" and an open-file report, "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area."In addition to the preceding published reports, ground-water studies currently are being made of the Kern Fan area, the Hanford- Visalia area, the Fresno area, the Merced area, and of the clays of Tulare Lake. Also, detailed studies of both shallow and deep subsidence in the southern part of

  13. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    USGS Publications Warehouse

    Jurgens, Bryant C.; Fram, Miranda S.; Belitz, Kenneth; Burow, Karen R.; Landon, Matthew K.

    2009-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential longterm effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.

  14. Effects of groundwater development on uranium: Central Valley, California, USA.

    PubMed

    Jurgens, Bryant C; Fram, Miranda S; Belitz, Kenneth; Burow, Karen R; Landon, Matthew K

    2010-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco(2) concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.

  15. Increased body mass of ducks wintering in California's Central Valley

    USGS Publications Warehouse

    Fleskes, Joseph P.; Yee, Julie L.; Yarris, Gregory S.; Loughman, Daniel L.

    2016-01-01

    Waterfowl managers lack the information needed to fully evaluate the biological effects of their habitat conservation programs. We studied body condition of dabbling ducks shot by hunters at public hunting areas throughout the Central Valley of California during 2006–2008 compared with condition of ducks from 1979 to 1993. These time periods coincide with habitat increases due to Central Valley Joint Venture conservation programs and changing agricultural practices; we modeled to ascertain whether body condition differed among waterfowl during these periods. Three dataset comparisons indicate that dabbling duck body mass was greater in 2006–2008 than earlier years and the increase was greater in the Sacramento Valley and Suisun Marsh than in the San Joaquin Valley, differed among species (mallard [Anas platyrhynchos], northern pintail [Anas acuta], America wigeon [Anas americana], green-winged teal [Anas crecca], and northern shoveler [Anas clypeata]), and was greater in ducks harvested late in the season. Change in body mass also varied by age–sex cohort and month for all 5 species and by September–January rainfall for all except green-winged teal. The random effect of year nested in period, and sometimes interacting with other factors, improved models in many cases. Results indicate that improved habitat conditions in the Central Valley have resulted in increased winter body mass of dabbling ducks, especially those that feed primarily on seeds, and this increase was greater in regions where area of post-harvest flooding of rice and other crops, and wetland area, has increased. Conservation programs that continue to promote post-harvest flooding and other agricultural practices that benefit wintering waterfowl and continue to restore and conserve wetlands would likely help maintain body condition of wintering dabbling ducks in the Central Valley of California.

  16. Preliminary subsidence investigation of Sacramento Valley, California

    USGS Publications Warehouse

    Lofgren, B.E.; Ireland, R.L.

    1973-01-01

    Although a number of agencies have made leveling surveys in Sacramento Valley and a valleywide network of first- and second-order control exists, few areas have sufficient control for determining whether land subsidence has occurred and if so, how much, within the time span of vertical control. Available data suggest that 0.2 to 0.9 foot (0.06 to 0.3 m) of subsidence probably has occurred from 1935-42 to 1964 in an extensive agricultural area of heavy ground-water pumping between Zamora and Davis, and that as much as 2 feet (0.6 m) of subsidence has occurred in at least two areas of pumping overdraft--east of Zamora, and west of Arbuckle. A comparison of maps showing long-term water-level decline and average annual ground-water pumpage indicates several other areas of probable subsidence. In six general areas--northwest of Sacramento; northeast of Sacramento; southeast of Yuba City; 10 miles (16 km) north of Willows; 20 miles (32 km) north of Willows; and especially in the Arbuckle area,ground-water declines have quite probably produced significant subsidence. In two areas of most intensive pumping, no long-term water-level declines have occurred, and no subsidence is indicated. If problems of land subsidence are of concern in Sacramento Valley, and if estimates of historic subsidence or subsidence potential are needed, serious consideration should be given to a field program of basic-data collection. Second-order leveling along a few carefully selected lines of existing control, and the installation and operation of two or three compaction recorders in areas of continuing water-level decline, would provide helpful data for estimating .past and future subsidence.

  17. 77 FR 12491 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality... revisions to the Antelope Valley Air Quality Management District (AVAQMD) and San Joaquin Valley Unified Air..., 2011, the submittal for Antelope Valley AQMD and SJVUAPCD Negative Declarations submitted on June...

  18. Observations of coastal sediment dynamics of the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project, Imperial Beach, California

    USGS Publications Warehouse

    Warrick, Jonathan A.; Rosenberger, Kurt J.; Lam, Angela; Ferreiera, Joanne; Miller, Ian M.; Rippy, Meg; Svejkovsky, Jan; Mustain, Neomi

    2012-01-01

    Coastal restoration and management must address the presence, use, and transportation of fine sediment, yet little information exists on the patterns and/or processes of fine-sediment transport and deposition for these systems. To fill this information gap, a number of State of California, Federal, and private industry partners developed the Tijuana Estuary Fine Sediment Fate and Transport Demonstration Project ("Demonstration Project") with the purpose of monitoring the transport, fate, and impacts of fine sediment from beach-sediment nourishments in 2008 and 2009 near the Tijuana River estuary, Imperial Beach, California. The primary purpose of the Demonstration Project was to collect and provide information about the directions, rates, and processes of fine-sediment transport along and across a California beach and nearshore setting. To achieve these goals, the U.S. Geological Survey monitored water, beach, and seafloor properties during the 2008–2009 Demonstration Project. The project utilized sediment with ~40 percent fine sediment by mass so that the dispersal and transport of fine sediment would be easily recognizable. The purpose of this report is to present and disseminate the data collected during the physical monitoring of the Demonstration Project. These data are available online at the links noted in the "Additional Digital Information" section. Synthesis of these data and results will be provided in subsequent publications.

  19. 76 FR 41745 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... Valley Unified Air Pollution Control District portion of the California State Implementation Plan (SIP... Valley Unified Air Pollution Control District (SJVUAPCD) Rule 4682, Polystyrene, Polyethylene,...

  20. 77 FR 26475 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality... the Antelope Valley Air Quality Management District (AVAQMD), Eastern Kern Air Pollution...

  1. 78 FR 21581 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality... the Antelope Valley Air Quality Management District (AVAQMD), Monterey Bay Unified Air...

  2. 77 FR 32493 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley Unified Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... AGENCY 40 CFR Part 52 Approval of Air Quality Implementation Plans; California; San Joaquin Valley Unified Air Pollution Control District; Prevention of Significant Deterioration AGENCY: Environmental... submitted for the San Joaquin Valley Unified Air Pollution Control District (District) portion of...

  3. Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California.

    PubMed

    Schubert, Brian A; Lowenstein, Tim K; Timofeeff, Michael N

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 microm diameter cocci, <2.5 microm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  4. Secret World of the Forbidden City: Splendors from Imperial China, 1644-1911 and Change and Continuity: Chinese Americans in California. Exhibition Information and Curriculum Guide for Teachers Grades 2-11.

    ERIC Educational Resources Information Center

    2000

    The materials in this curriculum guide were designed to prepare teachers and students in grades 2-11 for the "Secret World of the Forbidden City: Splendors from China's Imperial Palace 1644-1911" exhibition at the Oakland Museum of California Education Department, to inform teachers and students about Imperial China, and to illuminate…

  5. Land use and water use in the Antelope Valley, California

    USGS Publications Warehouse

    Templin, W.E.; Phillips, S.P.; Cherry, D.E.; DeBortoli, M.L.; Haltom, T.C.; McPherson, K.R.; Mrozek, C.A.

    1995-01-01

    Urban land use and water use in the Antelope Valley, California, have increased greatly since the devel- opment of the valley began in the late 1800's. Ground water always has been a major source of supply in this area because of limited local surface-water resources. Ground-water pumpage reportedly increased from about 29,000 acre-feet in 1919 to about 400,000 acre-feet in the 1950's. Declines in ground-water levels and increased costs of electrical power in the 1970's resulted in a reduction in the quantity of ground-water pumped annually for irrigation uses. Ground-water pumpage was further reduced in the 1970's following the completion of the California Aqueduct, which conveys water from northern California. Total annual reported ground-water pumpage decreased to a low of about 53,200 acre-feet in 1983 and increased again to about 91,700 acre-feet in 1991. Rapid urban development and the 1987-92 drought renewed concern about a possible return to extensive ground-water- storage depletion and increased land subsidence. Water-demand forecasts in 1980 for the Antelope Valley indicated that total annual demand by the year 2020 was expected to be about 250,000 acre- feet per year, with agricultural uses to be about 65 percent of this total demand. In 1990, total demand. In 1993, preliminary forecasts for total demand for 2010 ranged from about 127,000 to 329,000 acre-feet with urban water uses accounting for all but a few percent of the total anticipated demand. This history of forecasts indicates that expectations change with time. Factors that affect water demand change and different forecasting methods are used. Water-conservation options may be adopted to employ best-management practices that would further influence future water demands in the Antelope Valley.

  6. 77 FR 58352 - Revisions to the California State Implementation Plan, San Diego County, Antelope Valley and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, San Diego County, Antelope... Antelope Valley Air Quality Management District (AVAQMD) portions of the California State...

  7. Fog and Haze in California's San Joaquin Valley

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This illustration features images of southern California and southwestern Nevada acquired on January 3, 2001 (Terra orbit 5569), and includes data from three of MISR's nine cameras. The San Joaquin Valley, which comprises the southern extent of California's Central Valley, covers much of the viewed area. Also visible are several of the Channel Islands near the bottom, and Mono and Walker Lakes, which stand out as darker patches near the top center, especially in the vertical and backward oblique images. Near the lower right of each image is the Los Angeles Basin, with the distinctive chevron shape of the Mojave Desert to its north.

    The Central Valley is a well-irrigated and richly productive agricultural area situated between the Coast Range and the snow-capped Sierra Nevadas. During the winter, the region is noted for its hazy overcasts and a low, thick ground fog known as the Tule. Owing to the effects of the atmosphere on reflected sunlight, dramatic differences in the MISR images are apparent as the angle of view changes. An area of thick, white fog in the San Joaquin Valley is visible in all three of the images. However, the pervasive haze that fills most of the valley is only slightly visible in the vertical view. At the oblique angles, the haze is highly distinguishable against the land surface background, particularly in the forward-viewing direction. Just above image center, the forward view also reveals bluish-tinged plumes near Lava Butte in Sequoia National Forest, where the National Interagency Coordination Center reported an active forest fire.

    The changing surface visibility in the multi-angle data allows us to derive the amount of atmospheric haze. In the lower right quadrant is a map of haze amount determined from automated processing of the MISR imagery. Low amounts of haze are shown in blue, and a variation in hue through shades of green, yellow, and red indicates progressively larger amounts of airborne particulates. Due to the

  8. Mapping Evapotranspiration over Agricultural Land in the California Central Valley

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Huntington, J. L.; Guzman, A.; Johnson, L.; Morton, C.; Nemani, R. R.; Post, K. M.; Rosevelt, C.; Shupe, J. W.; Spellenberg, R.; Vitale, A.

    2015-12-01

    Recent advances in satellite mapping of evapotranspiration (ET) have made it possible to largely automate the process of mapping ET over large areas at the field-scale. This development coincides with recent drought events across the western U.S. which have intensified interest in mapping of ET and consumptive use to address a range of water management challenges, including resolving disputes over water rights, improving irrigation management, and developing sustainable management plans for groundwater resources. We present a case study for California that leverages two automated ET mapping capabilities to estimate ET at the field scale over agricultural areas in the California Central Valley. We utilized the NASA Earth Exchange and applied a python-based implementation of the METRIC surface energy balance model and the Satellite Irrigation Management Support (SIMS) system, which uses a surface reflectance-based approach, to map ET over agricultural areas in the Central Valley. We present estimates from 2014 from both approaches and results from a comparison of the estimates. Though theoretically and computationally quite different from each other, initial results from both approaches show good agreement overall on seasonal ET totals for 2014. We also present results from comparisons against ET measurements collected on commercial farms in the Central Valley and discuss implications for accuracy of the two different approaches. The objective of this analysis is to provide data that can inform planning for the development of sustainable groundwater management plans, and assist water managers and growers in evaluating irrigation demand during drought events.

  9. Landslide oil field, San Joaquin Valley, California

    SciTech Connect

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  10. Serological evidence of California group and Cache Valley virus infection in Minnesota white-tailed deer.

    PubMed

    Neitzel, D F; Grimstad, P R

    1991-04-01

    Blood samples were obtained from 138 white-tailed deer (Odocoileus virginianus) harvested at three sites surrounding the greater Minneapolis-St. Paul, Minnesota, metropolitan area (USA) and tested for neutralizing antibody to Cache Valley virus and three California serogroup (Jamestown Canyon, La Crosse, trivittatus) viruses (Bunyaviridae). Deer at each site had neutralizing antibody to one or more California serogroup viruses and/or Cache Valley virus. The majority of adult deer (85%) had antibody to both a California serogroup virus and Cache Valley virus. Antibody prevalence varied significantly with age of the deer. Fawns had a significantly lower prevalence of antibody to either a California serogroup (17%) or Cache Valley virus (39%) than did older (greater than 1-yr-old) deer (89% for a California serogroup virus and 91% for Cache Valley virus). The geometric mean titers of antibody in fawns to California serogroup (1:6) and Cache Valley viruses (1:17) were also less than that seen in older animals (1:11 and 1:28 for California serogroup and Cache Valley viruses, respectively). Of 76 older deer with antibody to the California serogroup, 91% had antibody specific for Jamestown Canyon virus. Jamestown Canyon is the primary California serogroup virus circulating in the suburban/rural Minneapolis-St. Paul area. Transmission occurs in an enzootic pattern similar to that documented in Indiana and Michigan. Cache Valley virus also appears to be enzootically transmitted in this area. However, the impact on domestic or wild animal populations is unknown.

  11. Faulting history of the Long Valley caldera, eastern California

    SciTech Connect

    Foster, J.G. . School of Natural Science)

    1993-03-01

    The faulting history that produced the Sierra Nevada Range can be seen, in part, on the eastern contact of the Sierra Nevada Block with the Owens Valley Block. By surveying a series of remnant lake shore lines in the Long Valley Caldera of eastern California, the deformation and faulting history of the area can be inferred. These beaches are ideal for studying the faulting history of the area as their location is so near the contact of the two plates. The caldera sits on the Owens Valley Block just east of the major fault which separates it from the Sierra Nevada Block. It encompasses a ten mile by twenty mile area, which was filled with a lake after its creation some 730,000 years ago. Over time, the lake slowly lowered due to erosion of its sill, successive upward tilting of the Sierra Nevada Block, and consequent downward tilting of the Owens Valley Block. These changes in the attitude of the caldera floor and the beaches of the lake left the successive, non-parallel shore lines that have now been surveyed, mapped, and dated relative to each other. Together with the regional structures and history of the area, the remnant deformed shore lines can be used to develop a picture of the faulting history of the area and its relation to the rising of the Sierra Nevada Mountains.

  12. Impact of Air Pollution on California Central Valley Fog Frequency

    NASA Astrophysics Data System (ADS)

    Gray, E.; Baldocchi, D. D.; Goldstein, A. H.

    2015-12-01

    Throughout the 20th century, trends in California Central Valley fog frequency have changed dramatically without explanation. While episodes of dense radiation fog, known regionally as Tule Fog, increased steadily from 1930-1970, analysis from both ground and remote sensing measurements confirm a 46-50% reduction in fog days in the last 30 years (Baldocchi and Waller, 2014, Herkes et al., 2014). The dominant hypotheses suggest that the recent decline in radiation fog can be explained by the rising temperatures associated with climate change or urban heat island effect. This assertion fails to explain the significant increase in Central Valley fog midcentury. Here we instead assert that changes in air pollution, rather than climate, better support this upward then downward temporal trend. Automobile use greatly increased emissions of nitrogen oxide (NOx) midcentury, followed by a large decrease in vehicle emissions due to statewide regulation from 1980 to present. In the Central Valley, NOx from automobile emissions contributes to the formation ammonium nitrate (NH4NO3), the dominant hygroscopic aerosol in the valley's wintertime boundary layer that can act as cloud condensation nuclei (CCN) necessary for fog droplet formation. Thus, changes in air pollution not only affect the number of CCN, but may also impact the density and persistence of fog episodes. Using NOAA meteorological records throughout the twentieth century, we will show the correlation between fog frequency, air pollution, and climatic drivers. We conclude that fog trends are closely correlated with changes in air pollution, rather than solely climate change.

  13. Rock-fall potential in the Yosemite Valley, California

    USGS Publications Warehouse

    Wieczorek, G.F.; Morrissey, M.M.; Iovine, Giulio; Godt, Jonathan

    1999-01-01

    We used two methods of estimating rock-fall potential in the Yosemite Valley, California based on (1) physical evidence of previous rock-fall travel, in which the potential extends to the base of the talus, and (2) theoretical potential energy considerations, in which the potential can extend beyond the base of the talus, herein referred to as the rock-fall shadow. Rock falls in the valley commonly range in size from individual boulders of less than 1 m3 to moderate-sized falls with volumes of about 100,000 m3. Larger rock falls exceeding 100,000 m3, referred to as rock avalanches, are considered to be much less likely to occur based on the relatively few prehistoric rock-fall avalanche deposits in the Yosemite Valley. Because the valley has steep walls and is relatively narrow, there are no areas that are absolutely safe from large rock avalanches. The map shows areas of rock-fall potential, but does not predict when or how frequently a rock fall will occur. Consequently, neither the hazard in terms of probability of a rock fall at any specific location, nor the risk to people or facilities to such events can be assessed from this map.

  14. Geological literature on the San Joaquin Valley of California

    USGS Publications Warehouse

    Maher, J.C.; Trollman, W.M.; Denman, J.M.

    1973-01-01

    The following list of references includes most of the geological literature on the San Joaquin Valley and vicinity in central California (see figure 1) published prior to January 1, 1973. The San Joaquin Valley comprises all or parts of 11 counties -- Alameda, Calaveras, Contra Costa, Fresno, Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare (figure 2). As a matter of convenient geographical classification the boundaries of the report area have been drawn along county lines, and to include San Benito and Santa Clara Counties on the west and Mariposa and Tuolumne Counties on the east. Therefore, this list of geological literature includes some publications on the Diablo and Temblor Ranges on the west, the Tehachapi Mountains and Mojave Desert on the south, and the Sierra Nevada Foothills and Mountains on the east.

  15. Ground Watering of the Death Valley Region, Nevada and California

    SciTech Connect

    USGS

    2006-10-12

    Water is a precious commodity, especially in the arid southwest region of the US, where there is a limited supply of both surface water and ground water. Ground water has a variety of uses (such as agricultural, commercial, and domestic) in the Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California. The DVRFS, an area of about 100,000 square kilometers, contains very complex geology and hydrology. Using a computer model to represent this complex system the US Geological Survey (USGS) simulated ground-water flow in the Death Valley region for use with US Department of Energy (DOE) projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the Nation's proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  16. Effects of Groundwater Development on Uranium: Central Valley, California, USA

    USGS Publications Warehouse

    Jurgens, B.C.; Fram, M.S.; Belitz, K.; Burow, K.R.; Landon, M.K.

    2010-01-01

    Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco2 concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world. Journal compilation ?? 2009 National Ground Water Association. No claim to original US government works.

  17. Groundwater quality in the Indian Wells Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  18. SRTM Perspective View with Landsat Overlay: San Joaquin Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    San Joaquin, the name given to the southern portion of California's vast Central Valley, has been called the world's richest agricultural valley. In this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image, we are looking toward the southwest over a checkerboard pattern of agricultural fields. Mt. Pinos, a popular location for stargazing at 2,692 meters (8,831 feet) looms above the valley floor and is visible on the left side of the image. The productive southern San Joaquin is in reality a desert, averaging less than 12.7 cm (5 inches) of rain per year. Through canals and irrigation, the region nurtures some two hundred crops including grapes, figs, apricots, oranges, and more than 4,047 square-km (1,000,000 acres) of cotton. The California Aqueduct, transporting water from the Sacramento River Delta through the San Joaquin, runs along the base of the low-lying Wheeler Ridge on the left side of the image. The valley is not all agriculture though. Kern County, near the valley's southern end, is the United States' number one oil producing county, and actually produces more crude oil than Oklahoma. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U

  19. Visitor center at the Antelope Valley California Poppy Reserve, Lancaster, California

    SciTech Connect

    Colyer, R.D.; Freeman, S.P.

    1981-01-01

    The Antelope Valley California Poppy Reserve contains the largest remaining stand of the California Poppy (Eschschozia Californica), the state flower of California. To welcome the thousands of people viewing the desert wildflowers each spring, the State of California decided to build a visitor/interpretive center. This building deals primarily with the question of fit; a building's fit aesthetically with its site and the fit of a building's design response to the climate of the site. In this case, both aspects of this question led the client and architects to seek an earth sheltered solution using materials at least metaphorically indigenous to the region. On both a technical and formal level, this building seeks to fit the unique climate and historical heritage of its site.

  20. Mapping Drought Impacts on Agricultural Production in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Guzman, A.; Johnson, L.; Rosevelt, C.; Verdin, J. P.; Dwyer, J. L.; Mueller, R.; Zakzeski, A.; Thenkabail, P. S.; Wallace, C.; Jones, J.; Windell, S.; Urness, J.; Teaby, A.; Hamblin, D.; Post, K. M.; Nemani, R. R.

    2014-12-01

    The ongoing drought in California has substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to requests for local water transfers, county drought disaster designations, and allocation of emergency funds to mitigate drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in idle acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of data from Landsat TM, ETM+, OLI, and MODIS. Our effort has been focused on development of indicators of drought impacts in the March - August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 640 fields from March - September, 2014. We present the algorithm along with updated results from the accuracy assessment, and discuss potential applications to other regions.

  1. Students, Teachers, and Schools in California's Central Valley. Research Brief. Issue #62

    ERIC Educational Resources Information Center

    Public Policy Institute of California, 2002

    2002-01-01

    This research brief provides an overview of the statistics presented in a report by Anne Danenberg, Christopher Jepsen, and Pedro Cerdan, "Student and School Indicators for Youth in California's Central Valley" (2002) [ED497305]. Twenty percent of California's public-school students attend schools in the Central Valley. Many of these…

  2. 77 FR 73005 - Revisions to the California State Implementation Plan, Imperial County, Placer County, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ... County, and Ventura County Air Pollution Control Districts AGENCY: Environmental Protection Agency (EPA... Pollution Control District (ICAPCD), Placer County Air Pollution Control District (PCAPCD) and Ventura County Air Pollution Control District (PCAPCD) portions of the California State Implementation Plan...

  3. 75 FR 8008 - Revisions to the California State Implementation Plan, Imperial County Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... Pollution Control District (ICAPCD) portion of the California State Implementation Plan (SIP). These... construction sites, unpaved roads, and disturbed soils in open and agricultural areas. We are proposing...

  4. 78 FR 59840 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... of plan. * * * * * (c) * * * (428) * * * (i) * * * (B) Antelope Valley Air Quality Management...) * * * (i) * * * (B) Antelope Valley Air Quality Management District. (1) Rule 431.1, ``Sulfur Content of... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air...

  5. 75 FR 2079 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... facilities. Also, please see our response to CPF comment 3. B. San Joaquin Valley Air Pollution Control...) San Joaquin Valley Unified Air Pollution Control District. (1) Rule 4570, ``Confined Animal Facilities... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, San Joaquin Valley...

  6. 77 FR 12527 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality... Antelope Valley Air Quality Management District (AVAQMD) and San Joaquin Valley Unified Air...

  7. 78 FR 21545 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-11

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality... approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) and Monterey Bay Unified... developed as part of the local agency's program to control these pollutants. Antelope Valley AQMD Rule...

  8. Overview of water resources in Owens Valley, California

    USGS Publications Warehouse

    Rogers, L.S.

    1987-01-01

    In 1982-84, a water resources appraisal of Owens Valley was made by using available hydrologic information. Results of the appraisal provided an overview of water resources in Owens Valley; a better understanding of the groundwater system; and a framework for additional studies. Owens Valley is in east-central California and is the major source of water supply for the city of Los Angeles, located 233 mi to the south. Since 1913, with the completion of the first aqueduct, surface water has been diverted from the Owens River to Los Angeles. In 1970, a second Aqueduct was completed. Groundwater pumping was increased to supplement the water needed for the increasing population in Los Angeles. Most of the outflow of water from Owens Valley is from exports via the aqueduct system and by evapotranspiration loss; principal sources of water are runoff, inflow from Pleasant Valley Reservoir, and precipitation. Streamflow from the Sierra Nevada is a source of tremendous quantities of water to the valley. Pumping from more than 90 pump-equipped wells averaged about 98,000 acre-ft/yr from 1971 to 1983, but it was generally < 10,000 acre-ft/yr from 1932 to 1970, except during dry years. Groundwater pumping is primarily from deep wells adjacent to the volcanic rocks near Big Pine. Wells completed in the volcanic rocks yield large quantities of groundwater. Water level fluctuations in deep wells indicate a direct correlation with groundwater pumpage. Fluctuations in shallow wells are affected not only by pumping, but also by evapotranspiration and precipitation. The cause-and-effect relation of water level fluctuations in deep and shallow wells is not well understood and is partly the subject of a 5-yr study currently being conducted by Inyo County, the city of Los Angeles, and the U.S. Geological Survey, which emphasizes: (1) vegetation, (2) plant survivability, and (3) groundwater. It is hoped that this study will better define the quantity and availability of groundwater in the

  9. Winter habitat associations of diurnal raptors in Californias Central Valley

    USGS Publications Warehouse

    Pandolrno, E.R.; Herzog, M.P.; Hooper, S.L.; Smith, Z.

    2011-01-01

    The wintering raptors of California's Central Valley are abundant and diverse. Despite this, little information exists on the habitats used by these birds in winter. We recorded diurnal raptors along 19 roadside survey routes throughout the Central Valley for three consecutive winters between 2007 and 2010. We obtained data sufficient to determine significant positive and negative habitat associations for the White-tailed Kite (Elanus leucurus), Bald Eagle {Haliaeetus leucocephalus), Northern Harrier (Circus cyaneus), Red-tailed Hawk (Buteo jamaicensis), Ferruginous Hawk (Buteo regalis), Rough-legged Hawk (Buteo lagopus), American Kestrel (Falco sparverius), and Prairie Falcon (Falco mexicanus). The Prairie Falcon and Ferruginous and Rough-legged hawks showed expected strong positive associations with grasslands. The Bald Eagle and Northern Harrier were positively associated not only with wetlands but also with rice. The strongest positive association for the White-tailed Kite was with wetlands. The Red-tailed Hawk was positively associated with a variety of habitat types but most strongly with wetlands and rice. The American Kestrel, Northern Harrier, and White-tailed Kite were positively associated with alfalfa. Nearly all species were negatively associated with urbanized landscapes, orchards, and other intensive forms of agriculture. The White-tailed Kite, Northern Harrier, Redtailed Hawk, Ferruginous Hawk, and American Kestrel showed significant negative associations with oak savanna. Given the rapid conversion of the Central Valley to urban and intensive agricultural uses over the past few decades, these results have important implications for conservation of these wintering raptors in this region.

  10. Statistical modeling of valley fever data in Kern County, California

    NASA Astrophysics Data System (ADS)

    Talamantes, Jorge; Behseta, Sam; Zender, Charles S.

    2007-03-01

    Coccidioidomycosis (valley fever) is a fungal infection found in the southwestern US, northern Mexico, and some places in Central and South America. The fungus that causes it ( Coccidioides immitis) is normally soil-dwelling but, if disturbed, becomes air-borne and infects the host when its spores are inhaled. It is thus natural to surmise that weather conditions that foster the growth and dispersal of the fungus must have an effect on the number of cases in the endemic areas. We present here an attempt at the modeling of valley fever incidence in Kern County, California, by the implementation of a generalized auto regressive moving average (GARMA) model. We show that the number of valley fever cases can be predicted mainly by considering only the previous history of incidence rates in the county. The inclusion of weather-related time sequences improves the model only to a relatively minor extent. This suggests that fluctuations of incidence rates (about a seasonally varying background value) are related to biological and/or anthropogenic reasons, and not so much to weather anomalies.

  11. Evapotranspiration of applied water, Central Valley, California, 1957-78

    USGS Publications Warehouse

    Williamson, Alex K.

    1982-01-01

    In the Central Valley, Calif., where 57% of the 20,000 square miles of land is irrigated, ground-water recharge from agricultural lands is an important input to digital simulation models of ground-water flow. Several methods of calculating recharge were explored for the Central Valley Aquifer Project and a simplified water budget was designed where net recharge (recharge minus pumpage) equals net surface water diverted minus evapotranspiration of applied water (ETAW). This equation eliminates the need to determine pumpage from the water-table aquifer, assuming that the time lag for infiltration is not longer than the time intervals of interest for modeling. This study evaluates only the evapotranspiration of applied water. Future reports will describe the other components of the water budget. ETAW was calculated by summing the products of ETAW coefficients and respective crop areas for each 7 1/2-minute quadrangle area in the valley, for each of three land-use surveys between 1957 and 1978. In 1975 total ETAW was 15.2 million acre-feet, a 43% increase since 1959. The largest increases were in the south, especially Kern County, which had a sixfold increase, which was caused by the import of surface water in the California Aqueduct. (USGS)

  12. Statistical modeling of valley fever data in Kern County, California.

    PubMed

    Talamantes, Jorge; Behseta, Sam; Zender, Charles S

    2007-03-01

    Coccidioidomycosis (valley fever) is a fungal infection found in the southwestern US, northern Mexico, and some places in Central and South America. The fungus that causes it (Coccidioides immitis) is normally soil-dwelling but, if disturbed, becomes air-borne and infects the host when its spores are inhaled. It is thus natural to surmise that weather conditions that foster the growth and dispersal of the fungus must have an effect on the number of cases in the endemic areas. We present here an attempt at the modeling of valley fever incidence in Kern County, California, by the implementation of a generalized auto regressive moving average (GARMA) model. We show that the number of valley fever cases can be predicted mainly by considering only the previous history of incidence rates in the county. The inclusion of weather-related time sequences improves the model only to a relatively minor extent. This suggests that fluctuations of incidence rates (about a seasonally varying background value) are related to biological and/or anthropogenic reasons, and not so much to weather anomalies.

  13. Preliminary evaluation of the hydrogeologic system in Owens Valley, California

    USGS Publications Warehouse

    Danskin, W.R.

    1988-01-01

    A preliminary, two-layer, steady-state, groundwater flow model was used to evaluate present data and hydrologic concepts of Owens Valley, California. Simulations of the groundwater system indicate that areas where water levels are most affected by changes in recharge and discharge are near toes of alluvial fans and along the edge of permeable volcanic deposits. Sensitivity analysis for each model parameter shows that steady state simulations are most sensitive to uncertainties in evapotranspiration rates. Tungsten Hills, Poverty Hills, and Alabama Hills were found to act as virtually impermeable barriers to groundwater flow. Accurate simulation of the groundwater system between Bishop and Lone Pine appears to be possible without simulating the groundwater system in Round Valley, near Owens Lake, or in aquifer materials more than 1,000 ft below land surface. Although vast amounts of geologic and hydrologic data have been collected for Owens Valley, many parts of the hydrogeologic system have not been defined with sufficient detail to answer present water management questions. Location and extent of geologic materials that impede the vertical movement of water are poorly documented. The likely range of aquifer characteristics, except vertical hydraulic conductivity, is well known, but spatial distribution of these characteristics is not well documented. A set of consistent water budgets is needed, including one for surface water, groundwater, and the entire valley. The largest component of previous water budgets (evapotranspiration) is largely unverified. More definitive estimates of local gains and losses for Owens River are needed. Although groundwater pumpage from each well is measured, the quantity of withdrawal from different zones of permeable material has not been defined. (USGS)

  14. Hydrogeologic framework of the Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, Randall T.

    2015-01-01

    The hydrologic framework of the Santa Clara Valley in northern California was redefined on the basis of new data and a new hydrologic model. The regional groundwater flow systems can be subdivided into upper-aquifer and lower-aquifer systems that form a convergent flow system within a basin bounded by mountains and hills on three sides and discharge to pumping wells and the southern San Francisco Bay. Faults also control the flow of groundwater within the Santa Clara Valley and subdivide the aquifer system into three subregions.After decades of development and groundwater depletion that resulted in substantial land subsidence, Santa Clara Valley Water District (SCVWD) and the local water purveyors have refilled the basin through conservation and importation of water for direct use and artificial recharge. The natural flow system has been altered by extensive development with flow paths toward major well fields. Climate has not only affected the cycles of sedimentation during the glacial periods over the past million years, but interannual to interdecadal climate cycles also have affected the supply and demand components of the natural and anthropogenic inflows and outflows of water in the valley. Streamflow has been affected by development of the aquifer system and regulated flow from reservoirs, as well as conjunctive use of groundwater and surface water. Interaquifer flow through water-supply wells screened across multiple aquifers is an important component to the flow of groundwater and recapture of artificial recharge in the Santa Clara Valley. Wellbore flow and depth-dependent chemical and isotopic data indicate that flow into wells from multiple aquifers, as well as capture of artificial recharge by pumping of water-supply wells, predominantly is occurring in the upper 500 ft (152 m) of the aquifer system. Artificial recharge represents about one-half of the inflow of water into the valley for the period 1970–1999. Most subsidence is occurring below 250 ft

  15. Late Cenozoic sedimentation in Pilot Knob Valley, California

    NASA Astrophysics Data System (ADS)

    Rittase, W. M.; Walker, J. D.; Kirby, E.; Andrew, J.; Wan, E.

    2012-12-01

    In Pilot Knob Valley (PKV), active inversion of a Pliocene-mid Pleistocene basin presents the opportunity to understand the spatial and temporal development of an enigmatic basin astride a major transform boundary in California. Here, a ~1000-m-thick package of exposed Late Cenozoic strata has been uplifted and tilted to the northeast. Based on new age and provenance data, we adopt the name Pilot Knob formation (PKfm) to describe much of these exposed rocks north of the Garlock fault (GF) and east of Christmas Canyon gate. Post-Miocene development of PKV is strongly influenced by the sinistral GF, the newly identified Marine Gate fault (MGF) and dextral Eastern California shear zone. The PKfm consists of three lithofacies members, from base to top: (1) rocks derived from Eagle Crags to the south; (2) Randsburg Wash lacustrine rocks; and (3) an upper member derived from the Slate Range. Tephrochronologic data from four PKfm ash samples brackets deposition of lacustrine Randsburg Wash Member rocks between 3.7-3.1 Ma and lacustrine rocks of the Slate Range Member between 1.2-0.6 Ma. A fifth tephrochronologic sample from lacustrine-distal alluvial sediments south of the GF near Christmas Canyon brackets deposition of a possible PKfm facies at ~3.1 Ma. A 3-stage tectonic model for northern PKV explains changing provenance patterns. Prior to ~3.1 Ma, the western PKV paleo-low lay north of the current GF adjacent to the southern Slate Range and connected to Searles Valley. The MGF cuts adjacent to the southern face of the Slate Range and southern Searles Valley with up to 7.5 km of sinistral oblique-normal slip between ~5-2.5 Ma. Eagle Crags fanglomerate deposition may continue after 3.7 Ma west of the Randsburg Wash-Searles Valley spillway, but these rocks have been eroded away. By ~3.7 Ma, northward progradation of Eagle Crags fanglomerate waned and lacustrine sediments were deposited north of the GF and east of the Randsburg Wash-Searles Valley spillway. At ~3.1 Ma

  16. Sustainability of irrigated agriculture in the San Joaquin Valley, California.

    PubMed

    Schoups, Gerrit; Hopmans, Jan W; Young, Chuck A; Vrugt, Jasper A; Wallender, Wesley W; Tanji, Ken K; Panday, Sorab

    2005-10-25

    The sustainability of irrigated agriculture in many arid and semiarid areas of the world is at risk because of a combination of several interrelated factors, including lack of fresh water, lack of drainage, the presence of high water tables, and salinization of soil and groundwater resources. Nowhere in the United States are these issues more apparent than in the San Joaquin Valley of California. A solid understanding of salinization processes at regional spatial and decadal time scales is required to evaluate the sustainability of irrigated agriculture. A hydro-salinity model was developed to integrate subsurface hydrology with reactive salt transport for a 1,400-km(2) study area in the San Joaquin Valley. The model was used to reconstruct historical changes in salt storage by irrigated agriculture over the past 60 years. We show that patterns in soil and groundwater salinity were caused by spatial variations in soil hydrology, the change from local groundwater to snowmelt water as the main irrigation water supply, and by occasional droughts. Gypsum dissolution was a critical component of the regional salt balance. Although results show that the total salt input and output were about equal for the past 20 years, the model also predicts salinization of the deeper aquifers, thereby questioning the sustainability of irrigated agriculture.

  17. Reservoir properties of submarine- fan facies: Great Valley sequence, California.

    USGS Publications Warehouse

    McLean, H.

    1981-01-01

    Submarine-fan sandstones of the Great Valley sequence west of the Sacramento Valley, California, have low porosities and permeabilities. However, petrography and scanning electron microscope studies indicate that most sands in almost all submarine-fan environments are originally porous and permeable. Thin turbidite sandstones deposited in areas dominated by shale in the outer-fan and basin-plain are cemented mainly by calcite; shale dewatering is inferred to contribute to rapid cementation early in the burial process. Sands deposited in inner- and middle-fan channels with only thin shale beds have small percentrages of intergranular cement. The original porosity is reduced mechanically at shallow depths and by pressure solution at deeperlevels. Permeability decreases with increasing age of the rocks, as a result of increasing burial depths. Computer-run stepwise regression analyses show that the porosity is inversely related to the percentage of calcite cement. The results reported here indicate original porosity and permeability can be high in deep-water submarine fans and that fan environments dominated by sand (with high sand/shale ratios) are more likely to retain higher porosity and permeability to greater depths than sand interbedded with thick shale sequences.-from Author

  18. Unrest in Long Valley Caldera, California, 1978-2004

    USGS Publications Warehouse

    Hill, David P.; ,

    2006-01-01

    Long Valley Caldera and the Mono-Inyo Domes volcanic field in eastern California lie in a left-stepping offset along the eastern escarpment of the Sierra Nevada, at the northern end of the Owens Valley and the western margin of the Basin and Range Province. Over the last 4 Ma, this volcanic field has produced multiple volcanic eruptions, including the caldera-forming eruption at 760 000 a BP and the recent Mono-Inyo Domes eruptions 500–660 a BP and 250 a BP. Beginning in the late 1970s, the caldera entered a sustained period of unrest that persisted through the end of the century without culminating in an eruption. The unrest has included recurring earthquake swarms; tumescence of the resurgent dome by nearly 80 cm; the onset of diffuse magmatic carbon dioxide emissions around the flanks of Mammoth Mountain on the southwest margin of the caldera; and other indicators of magma transport at mid- to upper-crustal depths. Although we have made substantial progress in understanding the processes driving this unrest, many key questions remain, including the distribution, size, and relation between magma bodies within the mid-to-upper crust beneath the caldera, Mammoth Mountain, and the Inyo Mono volcanic chain, and how these magma bodies are connected to the roots of the magmatic system in the lower crust or upper mantle.

  19. Geothermal fluids to irrigate energy crops on Imperial East Mesa Desert, California

    SciTech Connect

    Robinson, F.E.; Thomas, T.R.; Singh, K.

    1981-10-01

    Geothermal fluid at 2200 parts per million(ppM) total dissolved solids from the East Mesa, California was compared to 1400 ppM ground water from a 100 m well as irrigation sources for Beta vulgaris (L.) USH-11 sugar beet and Tamarix aphylla (L.) athel, a biomass and windbreak tree. In 1980 there was no significant difference between the yields from the two waters. In 1981, there was no significant difference between biomass production from the waters on the athel. The geothermal water produced a larger yield of sucrose than the ground water. The data suggest that raising sugar beets with either water is feasible on the East Mesa.

  20. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  1. Chemistry and Geothermometry of Brine Produced From the Salton Sea Scientific Drill Hole, Imperial Valley, California

    NASA Astrophysics Data System (ADS)

    Thompson, J. M.; Fournier, R. O.

    1988-11-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305° ± 5°C. Another flow test at a depth of 3170 m produced brine contaminated by drilling fluid and diesel oil. Therefore we focus on the first flow test. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25°C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. The composition of the preflashed reservoir fluid was calculated using enthalpy-chloride relations applied to the normalized and charge-balanced brines. The calculated total dissolved solids in the preflashed reservoir fluid ranges from about 24.8 wt %, assuming insignificant thermal losses from the erupting fluid before sampling, to 26.0 wt %, assuming a 10% enthalpy loss by conduction of thermal energy through casing and surface piping. The preferred total dissolved solids of the reservoir fluid is 25.05 wt %. The calculated specific density of the preflashed reservoir fluid at 305°C and 1870 m depth ranges from 0.9980 (no thermal loss prior to sampling) to 1.0107 ± 0.0023 g cm-3 (10% thermal loss). Of the various cation geothermometers that are now in common use, the Na-K-Ca method gives a temperature (310°C) closest to the measured temperature (305°C) in the production horizon. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326° to 364°C. The Mg/K2 method gives a temperature of about 350°C, Mg/Li2 about 282°, and Na/Li 395°-418°C.

  2. 78 FR 16792 - Designation of Areas for Air Quality Planning Purposes; State of California; Imperial Valley...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ... crestline of the Chocolate Mountains. For the purposes of this action, EPA reviewed the Federal Register... portion east of the Chocolate Mountain Range'' and includes a figure that illustrates the...

  3. Initial characterization of the groundwater system near the Lower Colorado Water Supply Project, Imperial Valley, California

    USGS Publications Warehouse

    Coes, Alissa L.; Land, Michael; Densmore, Jill N.; Landrum, Michael T.; Beisner, Kimberly R.; Kennedy, Jeffrey R.; Macy, Jamie P.; Tillman, Fred D

    2015-01-01

    During and after lining the All-American Canal (2007–11), groundwater elevations in the Lower Colorado Water Supply Project area declined, while total dissolved solids concentrations remained relatively constant. The total dissolved solids concentrations in well LCWSP-2 ranged from 650 to 800 milligrams per liter during this study. Depth-specific water-quality and isotope sampling at well LCWSP-2 indicated the groundwater pumped from the deeper part of the screened interval (240–280 feet below land surface) contained a greater proportion of historical groundwater than the groundwater pumped from the shallower part of the screened interval (350–385 feet below land surface). Age-tracer data at well LCWSP-2 indicated that all depths of the screened interval had received recent recharge from seepage of Colorado River water from the All-American Canal.

  4. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California

    USGS Publications Warehouse

    Thompson, J.M.; Fournier, R.O.

    1988-01-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  5. Preliminary results of geothermal desalting operations at the East Mesa test site Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Suemoto, S. H.; Mathias, K. E.

    1974-01-01

    The Bureau of Reclamation has erected at its Geothermal Resource Development site two experimental test vehicles for the purpose of desalting hot fluids of geothermal origin. Both plants have as a feed source geothermal well Mesa 6-1 drilled to a total depth of 8,030 feet and having a bottom hole temperature of 400 F. Formation fluid collected at the surface contained 24,800 mg/1 total dissolved solids. The dissolved solids consist mainly of sodium chloride. A multistage distillation (3-stage) plant has been operated intermittently for one year with no operational problems. Functioning at steady-state conditions with a liquid feed rate of 70 g/m and a temperature of 221 F, the final brine blowdown temperature was 169 F. Product water was produced at a rate of about 2 g/m; average total dissolved solids content of the product was 170 mg/1. A product quality of 27.5 mg/1 at a pH of 9.5 was produced from the first stage.

  6. Salton Sea Geothermal Field, Imperial Valley, California as a site for continental scientific drilling. [Abstract only

    SciTech Connect

    Elders, W.A.; Cohen, L.H.

    1983-03-01

    The Salton Trough, where seafloor spreading systems of the East Pacific Rise transition into the San Andreas transform fault system, is the site of such continental rifting and basin formation today. The largest thermal anomaly in the trough, the Salton Sea Geothermal Field (SSGF), is of interest to both thermal regimes and mineral resources investigators. At this site, temperatures >350/sup 0/C and metal-rich brines with 250,000 mg/L TDS have been encountered at <2 km depth. Republic Geothermal Inc. will drill a new well to 3.7 km in the SSGF early in 1983; we propose add-on experiments in it. If funded, we will obtain selective water and core samples and a large-diameter casing installed to 3.7 km will permit later deepening. In Phase 2, the well would be continuously cored to 5.5 km and be available for scientific studies until July 1985. The deepened well would encounter hydrothermal regimes of temperature and pressure never before sampled.

  7. Color Image of Death Valley, California from SIR-C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This radar image shows the area of Death Valley, California and the different surface types in the area. Radar is sensitive to surface roughness with rough areas showing up brighter than smooth areas, which appear dark. This is seen in the contrast between the bright mountains that surround the dark, smooth basins and valleys of Death Valley. The image shows Furnace Creek alluvial fan (green crescent feature) at the far right, and the sand dunes near Stove Pipe Wells at the center. Alluvial fans are gravel deposits that wash down from the mountains over time. Several other alluvial fans (semicircular features) can be seen along the mountain fronts in this image. The dark wrench-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. Elevations in the valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using these radar data to help answer a number of different questions about Earth's geology including how alluvial fans form and change through time in response to climatic changes and earthquakes. The image is centered at 36.629 degrees north latitude, 117.069 degrees west longitude. Colors in the image represent different radar channels as follows: red =L-band horizontally polarized transmitted, horizontally polarized received (LHH); green =L-band horizontally transmitted, vertically received (LHV) and blue = CHV.

    SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground

  8. ANALYSIS OF MACROINVERTEBRATE ASSEMBLAGES IN RELATION TO ENVIRONMENTAL GRADIENTS AMONG LOTIC HABITATS OF CALIFORNIA'S CENTRAL VALLEY

    EPA Science Inventory

    We analyzed relationships between environmental characteristics and macroinvertebrate assemblages in lotic habitats of California's Central Valley with community metric and multivariate statistical approaches. Using canonical ordination analyses, we contrasted results when asse...

  9. RELATIONSHIPS BETWEEN ENVIRONMENTAL VARIABLES AND BENTHIC DIATOM ASSEMBLAGES IN CALIFORNIA CENTRAL VALLEY STREAMS (USA)

    EPA Science Inventory

    Streams and rivers in the California Central Valley Ecoregion have been substantially modified by human activities. This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers of this region. Benthic...

  10. Nitrate Contamination of Deep Aquifers in the Salinas Valley, California

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Esser, B. K.; Hillegonds, D. J.; Holtz, M.; Roberts, S. K.; Singleton, M. J.; Visser, A.; Kulongoski, J. T.; Belitz, K.

    2011-12-01

    The Salinas Valley, known as 'the salad bowl of the world', has been an agricultural center for more than 100 years. Irrigated row crops such as lettuce and strawberries dominate both land use and water use. Groundwater is the exclusive supply for both irrigation and drinking water. Some irrigation wells and most public water supply wells in the Salinas Valley are constructed to draw water from deep portions of the aquifer system, where contamination by nitrate is less likely than in the shallow portions of the aquifer system. However, a number of wells with top perforations greater than 75 m deep, screened below confining or semi-confining units, have nitrate concentrations greater than the Maximum Contaminant Limit (MCL) of 45 mg/L as NO3-. This study uses nitrate concentrations from several hundred irrigation, drinking water, and monitoring wells (Monterey County Water Resources Agency, 1997), along with tritium-helium groundwater ages acquired at Lawrence Livermore National Laboratory through the State of California Groundwater Monitoring and Assessment (GAMA) program (reported in Kulongoski et al., 2007 and in Moran et al., in press), to identify nitrate 'hot spots' in the deep aquifer and to examine possible modes of nitrate transport to the deep aquifer. In addition, observed apparent groundwater ages are compared with the results of transport simulations that use particle tracking and a stochastic-geostatistical framework to incorporate aquifer heterogeneity to determine the distribution of travel times from the water table to each well (Fogg et al., 1999). The combined evidence from nitrate, tritium, tritiogenic 3He, and radiogenic 4He concentrations, reveals complex recharge and flow to the capture zone of the deep drinking water wells. Widespread groundwater pumping for irrigation accelerates vertical groundwater flow such that high nitrate groundwater reaches some deep drinking water wells. Deeper portions of the wells often draw in water that recharged

  11. 77 FR 12495 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency... the Antelope Valley Air Quality Management District (AVAQMD) and Mojave Desert Air Quality...

  12. 78 FR 49925 - Revisions to California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... the Antelope Valley Air Quality Air Management District (AVAQMD) and Ventura County Air Pollution... AGENCY 40 CFR Part 52 Revisions to California State Implementation Plan, Antelope Valley Air Quality Management District and Ventura County Air Pollution Control District AGENCY: Environmental Protection...

  13. 76 FR 298 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation......... 12/17/92 08/24/07 On September 17, 2007, the submittal for San Joaquin Valley Unified Air Pollution... require that fixed covers be equipped with a 95% efficient Air Pollution Control (APC) device. c....

  14. 77 FR 7536 - Revisions to the California State Implementation Plan, Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control District... 40 CFR Part 52 Environmental protection, Air pollution control, Incorporation by reference, Reporting... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Joaquin Valley Unified...

  15. 76 FR 68103 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... Unified Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing approval of revisions to the San Joaquin Valley Unified Air Pollution Control... Rulemaking For the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

  16. 77 FR 26448 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality... approve revisions to the Antelope Valley Air Quality Management District (AVAQMD), Eastern Kern Air... rules were developed as part of the local agency's program to control these pollutants. Antelope...

  17. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.

    1988-01-01

    Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)

  18. Geologic map of the Lockwood Valley Quadrangle, Ventura County, California

    USGS Publications Warehouse

    Kellogg, Karl S.

    2001-01-01

    The Lockwood Valley quadrangle is located in the western Transverse Ranges of California, about 10 km southwest of Frazier Park. It includes the western flank of Frazier Mountain, southern Lockwood Valley, and a region of the Los Padres National Forest near northern Piru Creek. The oldest rocks are mostly biotite augen gneiss, in the hanging wall of the Frazier Mountain thrust and in a large body south of the thrust. A U-Pb zircon age for the gneiss is 1690+5 Ma (W. Premo, unpublished data). Two Cretaceous intrusive rocks are named the quartz monzonite of Sheep Creek and the coarse-grained granodiorite of Lockwood Peak. A U-Pb zircon age on the latter is 76.05+0.22 Ma (W. Premo, unpublished data). The northeastern edge of a large Eocene marine basin, comprising the sandstones, shales, and conglomerates of the Juncal Formation, occupies the southwestern 25 percent of the quadrangle. Miocene fluvial rocks, including coarse boulder conglomerates, sandstones, and shale, of the Caliente Formation crop out mostly in the northwestern part of the quadrangle. Commercially exploitable Lockwood Clay unconformably overlies the Caliente, which, in turn, is overlain by the mostly fluvial Pliocene Quatal Formation. Two major south-directed thrusts, the Frazier Mountain thrust and the South Frazier Mountain thrust, place crystalline rocks over Miocene and Pliocene sedimentary rocks. The South Frazier Mountain thrust is transected by the newly recognized, north-directed Lockwood Peak reverse fault. In addition, the newly recognized south-directed Yellowjacket thrust displaces rocks of the Pliocene Quatal Formation.

  19. Climate Impacts on Irrigated Agriculture in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Mehta, V. K.; Davitt, A. W. D.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2015-12-01

    Irrigated farms account for 80%-90% of consumptive water use in the United States and $118.5 billion of US agricultural production. Despite the vast water use and high yields of irrigated croplands, agriculture is typically the lowest value sector in a water resources system, and thus the first to face reductions when water becomes scarce. A major challenge for hydrologic and agricultural communities is assessing the effects of climate change on the sustainability of regional water resources and irrigated agriculture. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the service area of Yolo County Flood Control and Water Conservation District, and forced using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. Thirty year historical (1980-2009) simulations of WEAP-DSSAT for corn, wheat, and rice were run using a spatially interpolated observational dataset, and contrasted with future simulations using climate scenarios developed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. On average corn yields decrease, wheat yields increase, and rice yields remain unchanged. Potential adaptations, as well as implications for groundwater pumping, irrigation extent and method, and land use change including fallowing and switching crops, are examined.

  20. The Cenozoic evolution of the San Joaquin Valley, California

    USGS Publications Warehouse

    Bartow, J. Alan

    1991-01-01

    The San Joaquin Valley, which is the southern part of the 700-km-long Great Valley of California, is an asymmetric structural trough that is filled with a prism of upper Mesozoic and Cenozoic sediments up to 9 km thick; these sediments rest on crystalline basement rocks of the southwestward-tilted Sierran block. The San Joaquin sedimentary basin is separated from the Sacramento basin to the north by the buried Stockton arch and associated Stockton fault. The buried Bakersfield arch near the south end of the valley separates the small Maricopa-Tejon subbasin at the south end of the San Joaquin basin from the remainder of the basin. Cenozoic strata in the San Joaquin basin thicken southeastward from about 800 m in the north to over 9,000 m in the south. The San Joaquin Valley can be subdivided into five regions on the basis of differing structural style. They are the northern Sierran block, the southern Sierran block, the northern Diablo homocline, the westside fold belt, and the combined Maricopa-Tejon subbasin and southmargin deformed belt. Considerable facies variation existed within the sedimentary basin, particularly in the Neogene when a thick section of marine sediment accumulated in the southern part of the basin, while a relatively thin and entirely nonmarine section was deposited in the northern part. The northern Sierran block, the stable east limb of the valley syncline between the Stockton fault and the San Joaquin River, is the least deformed region of the valley. Deformation consists mostly of a southwest tilt and only minor late Cenozoic normal faulting. The southern Sierran block, the stable east limb of the valley syncline between the San Joaquin River and the Bakersfield arch, is similar in style to the northern part of the block, but it has a higher degree of deformation. Miocene or older normal faults trend mostly north to northwest and have a net down-to-the-west displacement with individual offsets of as much as 600 m. The northern Diablo

  1. 77 FR 58313 - Revisions to the California State Implementation Plan, San Diego County, Antelope Valley and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, San Diego County, Antelope... District (MBUAPCD) and Antelope Valley Air Quality Management District (AVAQMD) portions of the California..., ``Graphic Arts Operations,'' adopted on November 9, 2011 and effective on May 9, 2012. (D) Antelope...

  2. Groundwater Quality in the Central Eastside San Joaquin Valley, California

    USGS Publications Warehouse

    Belitz, Kenneth; Landon, Matthew K.

    2010-01-01

    The Central Eastside study unit is located in California's San Joaquin Valley. The 1,695 square mile study unit includes three groundwater subbasins: Modesto, Turlock, and Merced (California Department of Water Resources, 2003). The primary water-bearing units consist of discontinuous lenses of gravel, sand, silt, and clay, which are derived largely from the Sierra Nevada Mountains to the east. Public-supply wells provide most of the drinking water supply in the Central Eastside. Consequently, the primary aquifer in the Central Eastside study unit is defined as that part of the aquifer corresponding to the perforated interval of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 350 feet, consist of solid casing from the land surface to a depth of about 100 to 200 feet, and they are perforated below the solid casing. Water quality in the shallower and deeper parts of the aquifer system may differ from that in the primary aquifer. The Central Eastside study unit has hot and dry summers and cool, moist, winters. Average annual rainfall ranges from 11 to 15 inches. The Stanislaus, Tuolumne, and Merced Rivers, with headwaters in the Sierra Nevada Mountains, are the primary streams traversing the study unit. Land use in the study unit is approximately 59 percent (%) agricultural, 34% natural (primarily grassland), and 7% urban. The primary crops are almonds, walnuts, peaches, grapes, grain, corn, and alfalfa. The largest urban areas (2003 population in parentheses) are the cities of Modesto (206,872), Turlock (63,467), and Merced (69,512). Municipal water use accounts for about 5% of the total water use in the Central Eastside study unit, with the remainder used for irrigated agriculture. Groundwater accounts for about 75% of the municipal supply, and surface water accounts for about 25%. Recharge to the groundwater flow system is primarily from percolation of irrigation return

  3. Emission rates of organics from vegetation in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Winer, Arthur M.; Arey, Janet; Atkinson, Roger; Aschmann, Sara M.; Long, William D.; Morrison, C. Lynn; Olszyk, David M.

    Rates of emission of speciated hydrocarbons have been determined for more than 30 of the most dominant (based on acreage) agricultural and natural plant types found in California's Central Valley. These measurements employed flow-through Teflon chambers, sample collection on solid adsorbent and thermal desorption gas chromatography (GC) and GC-mass spectrometry analysis to identify more than 40 individual organic compounds. In addition to isoprene and the monoterpenes, we observed sesquiterpenes, alcohols, acetates, aldehydes, ketones, ethers, esters, alkanes, alkenes and aromatics as emissions from these plant species. Mean emission rates for total monoterpenes ranged from none detected in the case of beans, grapes, rice and wheat, to as high as 12-30 μg h -1 g -1 for pistachio and tomato (normalized to dry leaf and total biomass, respectively). Other agricultural species exhibiting substantial rates of emission of monoterpenes included carrot, cotton, lemon, orange and walnut. All of the plant species studied showed total assigned compound emission rates in the range between 0.1 and 36 νg h -1 g -1.

  4. Halophilic Archaea cultured from ancient halite, Death Valley, California.

    PubMed

    Schubert, Brian A; Lowenstein, Tim K; Timofeeff, Michael N; Parker, Matthew A

    2010-02-01

    Halophilic Archaea cultured from ancient fluid inclusions in a 90-m-long (0- to 100,000-year-old) salt core from Death Valley, California, demonstrate survival of bacterial cells in subsurface halite for up to 34,000 years. Five enrichment cultures, representing three genera of halophilic Archaea (Halorubrum, Natronomonas and Haloterrigena), were obtained from five surface-sterilized halite crystals exclusively in one section of the core (13.0-17.8 m; 22,000-34,000 years old) containing perennial saline lake deposits. Prokaryote cells were observed microscopically in situ within fluid inclusions from every layer that produced culturable cells. Another 876 crystals analysed from depths of 8.1-86.7 m (10,000-100,000 years old) failed to yield live halophilic Archaea. Considering the number of halite crystals tested (culturing success of 0.6%), microbial survival in fluid inclusions in halite is rare and related to the paleoenvironment, which controls the distribution and abundance of trapped microorganisms. Two cultures from two crystals at 17.8 m that yielded identical 16S rRNA sequences (genus: Haloterrigena) demonstrate intra-laboratory reproducibility. Inter-laboratory reproducibility is shown by two halophilic Archaea (genus: Natronomonas), with 99.3% similarity of 16S rRNA sequences, cultured from the same core interval, but at separate laboratories.

  5. Survival of adult female northern pintails in Sacramento Valley, California

    USGS Publications Warehouse

    Miller, Michael R.; Fleskes, Joseph P.; Orthmeyer, Dennis L.; Newton, Wesley E.; Gilmer, David S.

    1995-01-01

    North American populations of northern pintails (Anas acuta) declined between 1979 and the early 1990s. To determine if low survival during winter contributed to declines, we estimated winter (last week of Aug-Feb 1987-90) survival for 190 adult (after hatching yr [AHY]) female radio-tagged pintails in late summer in Sacramento Valley (SACV), California. Survival rates did not vary by winter (P = 0.808), among preseason, hunting season, or postseason intervals (P = 0.579), or by body mass at time of capture (P = 0.127). Premolt (wing) pintails (n = 10) tended to survive at a lower rate (0.622, SE = 0.178) than pintails that had already replaced flight feathers (0.887, SE = 0.030) (P = 0.091). The pooled survival (all years) estimate for the 180-day winter was 0.874 (SE = 0.031). Hunting mortality rate (0.041-0.087) and nonhunting mortality rate (0.013-0.076) did not differ among years (P = 0.332) or within years (all P > 0.149). Legal hunting (n = 7), predation (n = 4), cholera (n = 2), illegal shooting (n = 2), botulism (n = 1), and unknown cause (n = 1) accounted for all mortality. Nonwintering survival (annu. survival/winter survival = 0.748) was lower than winter survival; thus, if gains in annual survival are desired for this population, managers should first examine the breeding-migration period for opportunities to achieve increases.

  6. Induced dynamic nonlinear ground response at Gamer Valley, California

    USGS Publications Warehouse

    Lawrence, Z.; Bodin, P.; Langston, C.A.; Pearce, F.; Gomberg, J.; Johnson, P.A.; Menq, F.-Y.; Brackman, T.

    2008-01-01

    We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.

  7. Space Radar Image of Long Valley, California in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This three-dimensional perspective view of Long Valley, California was created from data taken by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. This image was constructed by overlaying a color composite SIR-C radar image on a digital elevation map. The digital elevation map was produced using radar interferometry, a process by which radar data are acquired on different passes of the space shuttle. The two data passes are compared to obtain elevation information. The interferometry data were acquired on April 13,1994 and on October 3, 1994, during the first and second flights of the SIR-C/X-SAR instrument. The color composite radar image was taken in October and was produced by assigning red to the C-band (horizontally transmitted and vertically received) polarization; green to the C-band (vertically transmitted and received) polarization; and blue to the ratio of the two data sets. Blue areas in the image are smooth and yellow areas are rock outcrops with varying amounts of snow and vegetation. The view is looking north along the northeastern edge of the Long Valley caldera, a volcanic collapse feature created 750,000 years ago and the site of continued subsurface activity. Crowley Lake is the large dark feature in the foreground. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are

  8. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.

    1989-01-01

    Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the

  9. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  10. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    of the largest earthquakes in the 2012 Brawley swarm, Imperial Valley, California: Geophysical Research Letters, v. 40, no. 5, p. 847-852.

  11. Final Report: Baseline Selenium Monitoring of Agricultural Drains Operated by the Imperial Irrigation District in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2010-01-01

    This report summarizes comprehensive findings from a 4-year-long field investigation to document baseline environmental conditions in 29 agricultural drains and ponds operated by the Imperial Irrigation District along the southern border of the Salton Sea. Routine water-quality collections and fish community assessments were conducted on as many as 16 sampling dates at roughly quarterly intervals from July 2005 to April 2009. The water-quality measurements included total suspended solids and total (particulate plus dissolved) selenium. With one exception, fish were surveyed with baited minnow traps at quarterly intervals during the same time period. However, in July 2007, fish surveys were not conducted because we lacked permission from the California Department of Fish and Game for incidental take of desert pupfish (Cyprinodon macularius), an endangered species. During April and October 2006-08, water samples also were collected from seven intensively monitored drains (which were selected from the 29 total drains) for measurement of particulate and dissolved selenium, including inorganic and organic fractions. In addition, sediment, aquatic food chain matrices [particulate organic detritus, filamentous algae, net plankton, and midge (chironomid) larvae], and two fish species (western mosquitofish, Gambusia affinis; and sailfin molly, Poecilia latipinna) were sampled from the seven drains for measurement of total selenium concentrations. The mosquitofish and mollies were intended to serve as surrogates for pupfish, which we were not permitted to sacrifice for selenium determinations. Water quality (temperature, dissolved oxygen, pH, specific conductance, and turbidity) values were typical of surface waters in a hot, arid climate. A few drains exhibited brackish, near-anoxic conditions, especially during summer and fall when water temperatures occasionally exceeded 30 degrees Celsius. Total selenium concentrations in water were directly correlated with salinity and

  12. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    SciTech Connect

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  13. Rare earth element content of thermal fluids from Surprise Valley, California

    DOE Data Explorer

    Andrew Fowler

    2015-09-23

    Rare earth element measurements for thermal fluids from Surprise Valley, California. Samples were collected in acid washed HDPE bottles and acidified with concentrated trace element clean (Fisher Scientific) nitric acid. Samples were pre-concentratated by a factor of approximately 10 using chelating resin with and IDA functional group and measured on magnetic sector ICP-MS. Samples include Seyferth Hot Springs, Surprise Valley Resort Mineral Well, Leonard's Hot Spring, and Lake City Mud Volcano Boiling Spring.

  14. Irrigation in California's Central Valley Strengthens the Southwestern U. S. Monsoon

    NASA Astrophysics Data System (ADS)

    Lo, M.; Famiglietti, J. S.

    2011-12-01

    Agricultural irrigation in the Central Valley of California has always depended on surface water reservoirs and groundwater pumping. This anthropogenic redistribution of water modifies the land hydrological cycle significantly, especially by increasing evapotranspiration. In this study we establish the importance of California's Central Valley irrigation in the local and regional hydrological cycles, including its role in land surface-atmosphere interactions. We use the global, NCAR Community Atmosphere Model, with realistic estimates of irrigation applied to the NCAR Community Land Model. Consistent with previous studies, we find that irrigation modifies the surface radiation budget by generally increasing latent heat, decreasing sensible heat and decreasing land surface temperature. Although atmospheric water vapor increases due to enhanced evapotranspiration, during the summer, the Central Valley underlies the descending branch of the large-scale circulation, which inhibits the occurrence of convection. Consequently, Central Valley irrigation has negligible effects on local precipitation. However, precipitation in the downwind region of California, i.e., in the southwestern U. S., increases, enhancing the North American Monsoon, while forming a regional, anthropogenic recycling loop in the hydrologic cycle which returns water to California. This study has implications for the importance of human-driven impacts on the hydrological cycle and local and regional climate, and for water resources management in California and the Western United States.

  15. Quantitative rock-fall hazard and risk assessment for Yosemite Valley, Yosemite National Park, California

    USGS Publications Warehouse

    Stock, Greg M.; Luco, Nicolas; Collins, Brian D.; Harp, Edwin L.; Reichenbach, Paola; Frankel, Kurt L.

    2014-01-01

    Rock falls are common in Yosemite Valley, California, posing substantial hazard and risk to the approximately four million annual visitors to Yosemite National Park. Rock falls in Yosemite Valley over the past few decades have damaged structures and caused injuries within developed regions located on or adjacent to talus slopes highlighting the need for additional investigations into rock-fall hazard and risk. This assessment builds upon previous investigations of rock-fall hazard and risk in Yosemite Valley and focuses on hazard and risk to structures posed by relatively frequent fragmental-type rock falls as large as approximately 100,000 (cubic meters) in volume.

  16. Water-level changes (1975-1998) in the Antelope Valley ground-water basin, California

    USGS Publications Warehouse

    Carlson, Carl S.; Phillips, Steven P.

    1998-01-01

    Antelope Valley is in the western part of the Mojave Desert in southern California, about 50 mi northeast of Los Angeles. Between 1975 and 1998, water levels in the valley have changed in response to a shift in ground-water use from agricultural to urban, declining in some areas and rising in others. A study to document these changes was conducted by the U.S. Geological Survey in cooperation with the Antelope Valley Water Group. This report presents the water-level data and the changes that occurred during this study period.

  17. Kirschenmann Road multi-well monitoring site, Cuyama Valley, Santa Barbara County, California

    USGS Publications Warehouse

    Everett, R.R.; Hanson, R.T.; Sweetkind, D.S.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works, is evaluating the geohydrology and water availability of the Cuyama Valley, California (fig. 1). As part of this evaluation, the USGS installed the Cuyama Valley Kirschenmann Road multiple-well monitoring site (CVKR) in the South-Main subregion of the Cuyama Valley (fig. 1). The CVKR well site is designed to allow for the collection of depth-specific water-level and water-quality data. Data collected at this site provides information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus, enhancing the understanding of the geohydrologic framework of the Cuyama Valley. This report presents the construction information and initial geohydrologic data collected from the CVKR monitoring site, along with a brief comparison to selected supply and irrigation wells from the major subregions of the Cuyama Valley (fig. 1).

  18. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Empirical observations on the ground and examination of aerial color IR photographs indicate that in grassland terrain, the vegetation overlying sandstone tends to become less vigorous sooner in the late spring season than does the area overlain by an adjacent shale unit. The reverse relationship obtains in the fall. These relationships are thought to be a reflection of the relative porosity of each of the units and hence of their ability to retain or lose soil moisture. A comparison of the optically enlarged day and nite IR imagery of the Late Mesozoic interbedded sandstone and shale units along the western margin of the Sacramento Valley, California, taken at seasonally critical times of the year (late spring/early summer and late fall/early winter) reveals subtle seasonal variations of graytone which tend to support the empirical observations after consideration of Sun angle and azimuth, and the internal consistency of the data on each set of satellite imagery.

  19. Late Cenozoic tectonism of the Sacramento Valley, California

    SciTech Connect

    Harwood, D.S.; Helley, E.J.

    1987-01-01

    Structure contours drawn on top of the Cretaceous rocks in the Sacramento Valley define a large number of diversely oriented folds and faults that are expressed in topographic, hydrologic, and geologic features at the land surface. Although many of the structures in the valley have a protracted history of movement, some dating back to the late Mesozoic, a remarkable number of these structures show late Cenozoic deformation that can be accurately determined from folding and faulting of widespread, dated Pliocene and Pleistocene volcanic units. These time-stratigraphic units are used to define structural domains of essentially contemporaneous late Cenozoic deformation that was characterized by east-west compressive stress. The oldest structural domain is located in the southeastern part of the valley, where east-side-up reverse movement on the Willows fault ceased prior to deposition of continentally derived sediments of late Miocene and early Pliocene age. In the middle Pliocene to early Pleistocene, east-west compressive deformation progressed northward through the valley so that the youngest late Cenozoic deformation is recorded in east-northeast-trending folds and faults in the Battle Creek domain, at the northern-most part of the valley. The northward progression of east-west compressive deformation appears to be related to the northward eclipse of eastward subduction of the Juan de Fuca plate before the northwestward migration of the Mendocino triple junction along the continental margin west of the valley.

  20. Isotopic evidence for climatic influence on alluvial-fan development in Death Valley, California

    SciTech Connect

    Dorn, R.I.; DeNiro, M.J.; Ajie, H.O.

    1987-02-01

    At least three semiarid to arid cycles are recorded by ..delta../sup 13/C values of organic matter in layers of rock varnishes on surfaces of Hanaupah Canyon and Johnson Canyon alluvial fans, Death Valley, California. These isotopic paleoenvironmental signals are interpreted as indicating major periods of fan aggradation during relatively more humid periods and fan entrenchment during subsequent lengthy arid periods.

  1. Pesticide Risk Communication, Risk Perception, and Self-Protective Behaviors among Farmworkers in California's Salinas Valley

    ERIC Educational Resources Information Center

    Cabrera, Nolan L.; Leckie, James O.

    2009-01-01

    Agricultural pesticide use is the highest of any industry, yet there is little research evaluating farmworkers' understandings of the health risks chemical exposure poses. This study examines pesticide education, risk perception, and self-protective behaviors among farmworkers in California's Salinas Valley. Fifty current and former farmworkers…

  2. Data from geothermal gradient wells near Oasis, lower Coachella Valley, California

    USGS Publications Warehouse

    Robison, J.H.

    1981-01-01

    This report includes drillers ' logs, temperature logs, and water quality analyses from geothermal tests made at 11 sites near Oasis, lower Coachella Valley, California. A map shows the locations of the wells and also included is the location-numbering system for wells. (USGS)

  3. Isostatic gravity map of the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.

    2001-01-01

    An isostatic gravity map of the Death Valley groundwater model area was prepared from over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  4. Epidemiology of xylellae diseases in the San Joaquin Valley of California: the role of alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease of grape and almond leaf scorch disease are both caused by various stains of the bacterial pathogen Xylella fastidiosa. The pathogen is vectored by xylem feeding insects. Within the San Joaquin Valley of California, the green sharpshooter (Draeculacephala Minerva) is one of the mos...

  5. 78 FR 58459 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District, Santa Barbara County Air Pollution Control District, South Coast Air Quality Management... Quality Management District (SCAQMD) and Ventura County Air Pollution Control District (VCAPCD)...

  6. 78 FR 25011 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District, Santa Barbara County Air Pollution Control District, South Coast Air Quality Management... Quality Management District (SCAQMD) and Ventura County Air Pollution Control District (VCAPCD)...

  7. 77 FR 12526 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Mojave Desert Quality Management District AGENCY: Environmental Protection Agency... Quality Management District (AVAQMD) and Mojave Desert Air Quality Management District (MDAQMD) portion...

  8. 78 FR 49992 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... Quality Management District (AVAQMD) and Ventura County Air Pollution Control District (VCAPCD) portions... AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District and Ventura County Air Pollution Control District AGENCY: Environmental Protection...

  9. 75 FR 60623 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule... Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation... Ventura County Air Pollution Control District (VCAPCD) Rule 74.15 (as amended November 8, 1994)....

  10. 75 FR 1716 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule... Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State Implementation... authority to regulate sources of air pollution. The fee provision of CAA section 185 acts as an...

  11. 77 FR 745 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) Correction In rule document 2011-33660 appearing on...

  12. 76 FR 39777 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollutions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... Air Pollutions Control District (SJVUAPCD) AGENCY: Environmental Protection Agency (EPA). ACTION... San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the California State... Rule 344 D.2.b.2 require that fixed covers be equipped with a 95% efficient Air Pollution Control...

  13. 77 FR 2496 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Revisions to the California State Implementation Plan, Antelope Valley Air Quality... Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve revisions to the...

  14. Communication/Culture Study for Victor Valley College, Victorville, California, November 1991-April 1992.

    ERIC Educational Resources Information Center

    Caldwell, Patricia F.

    In November 1991, a study was conducted to assess the corporate culture and state of communication at Victor Valley College (VVC), in Victorville, California. The study was designed to determine the extent to which "trust" or "distrust" existed at VVC, and whether the lack of communication on campus was real or perceived. Study…

  15. Water-resources of the Antelope Valley-East Kern Water Agency area, California

    USGS Publications Warehouse

    Bloyd, R.M.

    1967-01-01

    The Antelope Valley-East Kern Water Agency (AVEK) area, most of which is within the Mojave Desert region of southern California, lacks adequate water resources to sustain the existing rate of ground-water pumpage for irrigation, industrial, and domestic use. However, by 1972 the California Aqueduct, a part of the California Water Plan, will be completed and will begin to convey water from northern California into the area. The chief economic pursuits in the area are irrigated agriculture and poultry production. At present, the major industries are related to national defense and mining. In the future, industry will increase and probably become the major economic activity. The Mojave Desert region, part of which lies within the AVEK area, is characterized by fault-block mountains and fault-block basins. The Tehachapi and San Gabriel Mountains are the major bordering fault blocks. The adjacent lowland areas of Antelope and Fremont Valleys have been depressed by movements along major faults. There are two major ground-water basins in the AVEK area: Antelope Valley and Fremont Valley basins. Each large basin is divided by faults or bodies of consolidated rock into several groundwater subunits.

  16. Temperature data from wells in Long Valley Caldera, California

    USGS Publications Warehouse

    Farrar, Christopher; DeAngelo, Jacob; Williams, Colin; Grubb, Frederick; Hurwitz, Shaul

    2010-01-01

    The 30-by-20-km Long Valley Caldera (LVC) in eastern California (fig.1) formed at 0.76 Ma in a cataclysmic eruption that resulted in the deposition of 600 km? of Bishop Tuff outside the caldera rim (Bailey, 1989). By approximately 0.6 Ma, uplift of the central part of the caldera floor and eruption of rhyolitic lava formed the resurgent dome. The most recent eruptive activity in the area occurred approximately 600 yr ago along the Mono-Inyo craters volcanic chain (Bailey, 2004; Hildreth, 2004). LVC hosts an active hydrothermal system that includes hot springs, fumaroles, mineral deposits, and an active geothermal well field and power plant at Casa Diablo along the southwestern boundary of the resurgent dome (Sorey and Lewis, 1976; Sorey and others, 1978; Sorey and others, 1991). Electric power generation began in 1985 with about 10 Mwe net capacity and was expanded to about 40 Mwe (net) in 1991 (Campbell, 2000; Suemnicht and others, 2007). Plans for further expansion are focused mainly on targets in the caldera?s western moat (Sass and Priest, 2002) where the most recent volcanic activity has occurred (Hildreth, 2004). LVC has been the site of extensive research on geothermal resources and volcanic hazards (Bailey and others, 1976; Muffler and Williams, 1976; Miller and others, 1982; Hill and others 2002). The first geothermal exploratory drilling was done in the shallow (< 200 m deep) hydrothermal system at Casa Diablo in the 1960?s (McNitt, 1963). Many more boreholes were drilled throughout the caldera in the 1970?s and 1980?s by private industry for geothermal exploration and by the U.S. Geological Survey (USGS) and Sandia National Laboratory for volcanic and geothermal research and exploration. Temperature logs were obtained in some of these wells during or immediately following drilling, before thermal equilibration was complete. Most of the temperature logs, however, were obtained weeks, months, or years after well completion and are representative of dynamic

  17. Comparison of inversion models using AIRSAR data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1993-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in September 1989. AIRSAR is a four-look, quid-polarizaiton, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The scene used in this study is in Death Valley, California and is located over Trail Canyon alluvial fan, the valley floor, and Artists Drive alluvial fan. The fans are very different in mineralogic makeup, size, and surface roughness. Trail Canyon fan is located on the west side of the valley at the base of the Panamint Range and is a large fan with older areas of desert pavement and younger active channels. The source for the material on southern part of the fan is mostly quartzites and there is an area of carbonate source on the northern part of the fan. Artists Drive fan is located at the base of the Black Mountains on the east side of the valley and is a smaller, young fan with its source mostly from volcanic rocks. The valley floor contains playa and salt deposits that range from smooth to Devil's Golf course type salt pinnacles.

  18. Groundwater quality in the Northern San Joaquin Valley, California

    USGS Publications Warehouse

    Bennett, George L.; Belitz, Kenneth

    2010-01-01

    Groundwater provides more than 40 percent of California's drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State's groundwater quality and increases public access to groundwater-quality information. The Northern San Joaquin constitutes one of the study units being evaluated.

  19. Water availability and subsidence in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    California’s Central Valley covers about 52,000 square kilometers (km2) and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the broad alluvial filled structural trough, with an estimated value exceeding $20 billion per year (Faunt 2009) (Figure 1). Central Valley agriculture depends on state and federal water systems that divert surface water, predominantly originating from Sierra Nevada snowmelt, to agricultural fields. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture, as it grew, developed a reliance on groundwater for irrigation.

  20. Provenance, Offset Equivalent and Palinspastic Reconstruction of the Miocene Cajon Valley Formation, Southern California

    NASA Astrophysics Data System (ADS)

    Stang, Dallon Michael

    Petrographic, conglomerate and detrital-zircon analyses of formations in southern California can determine consanguineous petrofacies and lithofacies that help constrain paleotectonic and paleogeographic reconstructions of the southwestern United States. Arkosic sandstone of the lower Middle Miocene Cajon Valley formation is exposed on the southwest edge of the Mojave block and juxtaposed against Mesozoic and Paleozoic rocks by the San Andreas fault (SAf). Early work in Cajon Valley referred to the formation as Punchbowl, due to its similar appearance to the Punchbowl Formation at Devil's Punchbowl (northwest along the SAf). However, paleontological work placed Cajon Valley strata in the Hemingfordian-Barstovian (18-14 Ma), as opposed to the Clarendonian-Hemphillian (13-9 Ma) Punchbowl Formation. Since the Cajon Valley formation was deposited prior to being truncated by the San Andreas fault, the 2400m-thick, laterally extensive subaerial deposits likely were deposited across what is now the fault trace. Restoring 310 km of dextral slip on the SAf system should indicate the location of offset equivalent sandstone. Restoration of slip on the SAf system places Cajon Valley adjacent to the Caliente and La Panza Ranges, east of San Luis Obispo. Although analysis of detrital zircon from Cenozoic sandstone throughout southern California has been crucial in establishing paleodrainage areas, detrital zircon from the Cajon Valley and equivalent formations had not been analyzed prior to this study. Paleocurrents measured throughout the Cajon Valley formation indicate a source to the NE, in the Mojave Desert. Sandstone samples analyzed in thin section using the Gazzi-Dickinson method of point-counting are homogeneously arkosic, with slight compositional variability, making differentiation of the Cajon Valley formation and potential offset equivalents problematic. However, Branch Canyon Sandstone and Santa Margarita Formation samples are compositionally the best match for the

  1. Urban hydrology in the desert, Antelope Valley, California

    USGS Publications Warehouse

    Blodgett, James C.; Nasseri, Iraj; Elliott, Ann L.; ,

    1990-01-01

    A study of urban hydrology in Antelope Valley includes data collection, analysis of rainfall and runoff frequencies, and comparison of results from various rainfall-runoff models. This paper discusses only parts of the project that include data collection and frequency analyses.

  2. Geophysical Investigations of Structures within Southern Fish Lake Valley, California

    NASA Astrophysics Data System (ADS)

    McBride, K.; Ferguson, J. F.; Oldow, J. S.

    2015-12-01

    The 80km Fish Lake Valley Fault Zone makes up the northern portion of the Furnace Creek - Death Valley Fault Zone, a 250km right lateral oblique strike slip system that accounts for up to 25% of the relative motion between the Pacific and North American Plates. The Cucomongo Canyon Restraining bend lies to the south of Fish Lake Valley, and causes localized uplift. The developmental history of the Cucomongo Canyon restraining bend and the resultant uplift, deformation, and displacement is the focus of an integrated study by the Miles Geoscience Center at the University of Texas at Dallas. This specific part of the study focuses on the southernmost section of Fish Lake Valley, where Paleozoic sedimentary rocks are juxtaposed with Cenozoic sediments on multiple faulted boundaries. Structural constraints are not very well known as the faults are locally obscured by Quaternary alluvial deposits of various ages. Analysis of high resolution topography, produced from LiDAR scanning performed by the Miles team, and imagery shows subtle geomorphic expressions related to faulting. A near surface geophysical survey utilizing high resolution seismic refraction and microGal gravity measurements was done to explore the subsurface beneath the alluvium. Forward models were created to identify faults and ascertain vertical offsets and orientations. The geophysical models indicate a zone of extensional deformation north of the restraining bend

  3. Hydrology of modern and late Holocene lakes, Death Valley, California

    SciTech Connect

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  4. Thirty Years of Cloud Cover Patterns from Satellite Data: Fog in California's Central Valley and Coast

    NASA Astrophysics Data System (ADS)

    Waller, E.; Baldocchi, D. D.

    2012-12-01

    In an effort to assess long term trends in winter fog in the Central Valley of California, custom maps of daily cloud cover from an approximately 30 year record of AVHRR (1981-1999) and MODIS (2000-2012) satellite data were generated. Spatial rules were then used to differentiate between fog and general cloud cover. Differences among the sensors (e.g., spectral content, spatial resolution, overpass time) presented problems of consistency, but concurrent climate station data were used to resolve systematic differences in products, and to confirm long term trends. The frequency and extent of Central Valley ("Tule") fog appear to have some periodic oscillation, but also appear to be on the decline, especially in the Sacramento Valley and in the "shoulder" months of November and February. These results may have strong implications for growers of fruit and nut trees in the Central Valley dependent on winter chill hours that are augmented by the foggy daytime conditions. Conclusions about long term trends in fog are limited to daytime patterns, as results are primarily derived from reflectance-based products. Similar analyses of daytime cloud cover are performed on other areas of concern, such as the coastal fog belt of California. Large area and long term patterns here appear to have periodic oscillation similar to that for the Central Valley. However, the relatively coarse spatial resolution of the AVHRR LTDR (Long Term Data Record) data (~5-km) may be limiting for fine-scale analysis of trends.

  5. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... California” 7.5 minute series and “Amador City Quadrangle California-Amador Co.” 7.5 minute series. (c... meets Big Indian Creek. (2) Then south, following Big Indian Creek, until Big Indian Creek meets the... boundary between Sections 6 and 5 of Township 7 North Range 11 East. (5) Then following that boundary...

  6. Tectonic tilting of the northern Owens Valley, California

    SciTech Connect

    Pinter, N.; Keller, E.A. . Dept. of Geological Sciences)

    1992-01-01

    Tectonic rotation is characteristic of active deformation in many of the structural basins of the Basin and Range. The Owens Valley (OV) is the most western basin of the province. The structure, stratigraphy, and geomorphology of the northern OV suggest that there has been active eastward tilting of the valley throughout at least the late Quaternary. A series of analytical techniques are developed here which quantify the age, rate, and character of deformation. The geomorphic clock'' of the northern OV was reset 738,000 years ago by the unroofing of Long Valley Caldera, just to the north, and the emplacement of the Bishop Tuff ignimbrite sheet. Since that time, cooling joints in the tuff and channels cut into the surface of the sheet have been reoriented, and fluvial terraces and alluvial fans have been tilted. Each of these analyses have the same solution--a net down-to-the-east rotation of the valley block at a mean rate of 0.8--1.0[degree]/Ma. Other indicators of tilt support this solution: fluvial and lacustrine strata at the type-locality of the Glass Mountain ashes dip approximately 1[degree] to the east; and gravity measurements of basement geometry demonstrate a dip of 11.0--13.7[degree] eastward. Extrapolating a uniform rate of tilt, the dip of the basement suggest that sedimentation in the OV began in the late Miocene. The character of deformation across the study area is consistent with motion on the Coyote warp anticlinal trend, near the base of the Sierra Nevada. The author propose that the Coyote warp has acted as a tectonic hinge, accommodating westward rotation of the Sierra Nevada and eastward rotation of the northern OV.

  7. Sedimentary facies of alluvial fan deposits, Death Valley, California

    SciTech Connect

    Middleton, G.V. )

    1992-01-01

    Fans in Death Valley include both diamicts and bedded gravels. Seven facies may be recognized. The diamicts include: (1) matrix-rich, coarse wackestones; (2) thin, matrix-rich, fine wackestones, that may show grading; (3) matrix-poor, coarse packstones, transitional to wackestones. The bedded facies include: (4) weakly bedded, poorly sorted packstones or grainstones, that show patchy imbrication, and cut-and-fill structures; (5) packed, imbricated cobble lenses, generally interbedded in facies 4; (6) distinctly bedded gravels, that are better bedded, finer and better sorted, and show better imbrication than facies 4, but still do not show clear separation of sand and gravel beds; (7) backfill cross-bedded gravels. Sand beds are not seen in fan deposits. Sand is present in eolian deposits, as plane-laminated, back-eddy deposits in Death Valley Wash, and as laminated or rippled sand in the Amargosa River. The most remarkable features of the fan deposits are the very weak segregation of sand and gravel, and the complete absence of any lower flow-regime structures produced by ripples or dunes. During floods, the slope of fan and even large wash surfaces is steep enough to produce upper flow regimes. There are also very few trends in facies abundance down fans: most fans in Death Valley itself are not strongly dominated by debris flow deposits (diamicts). The facies characteristics of a given fan vary little from proximal to distal regions, but may differ strongly from the facies seen in adjacent fans. Ancient deposits that show clear segregation of gravel from cross-bedded sand beds, or strong proximal to distal facies transitions, must have been deposited in environments quite different from Death Valley.

  8. Mapping playa evaporite minerals with AVIRIS data - A first report from Death Valley, California

    NASA Technical Reports Server (NTRS)

    Crowley, James K.

    1993-01-01

    The feasibility of using imaging spectrometry in studies of playa evaporites is demonstrated by mapping efflorescent salt crusts in Death Valley (California), using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and a recently developed least-squares spectral band-fitting algorithm. It is shown that it was possible to remotely identify eight different saline minerals, including three borates that have not been previously reported for the Death Valley efflorescent crusts: hydroboracite, pinnoite, and rivadavite. The three borates are locally important phases in the crusts; at least one of them, rivadavite, appears to be forming directly from brine.

  9. Owens Valley Serious Area Plan for the 1987 24-Hour PM10; Final Approval of California Air Plan

    EPA Pesticide Factsheets

    EPA is taking final action to approve a state implementation plan (SIP) revision submitted by the State of California to meet Clean Air Act equirements applicable to the Owens Valley PM10 nonattainment area.

  10. Intensive early season adulticide applications decrease arbovirus transmission throughout the Coachella Valley, Riverside County, California.

    PubMed

    Lothrop, Hugh D; Lothrop, Branka B; Gomsi, Donald E; Reisen, William K

    2008-08-01

    In the Coachella Valley of California the seasonal onset of St. Louis encephalitis virus (SLEV), western equine encephalomyelitis virus (WEEV), and West Nile virus (WNV) has been detected consistently at the shoreline of the Salton Sea near the community of North Shore. The timing and intensity of initial amplification in the Culex tarsalis Coquillett/wild bird cycle at this focus seemed closely linked to the subsequent dispersal of virus to the rest of the Coachella Valley and perhaps southern California. In 2004, an attempt was made to interrupt the amplification and dispersal of WNV using ground ultra-low volume (ULV) applications of Pyrenone 25-5. Although these localized treatments were started 1 month after the initial detection in April, surveillance indicated no dispersal from this focus at this time. However, these treatments appeared to have little effect, and WNV eventually was detected throughout the valley, with seven human cases reported in the urbanized upper valley near Palm Springs. In 2005, the initial detection of WNV at North Shore at the end of May was followed rapidly by dispersal throughout the valley precluding efforts at containment. Evaluation of ground and aerial applications at North Shore during May and June 2005, respectively, indicated variable kill of sentinel mosquitoes (overall mortality: ground, 43%; air, 34%) and limited control of the target Cx. tarsalis population. In 2006, aerial ULV applications with the same chemical were begun immediately following the first detection of virus in mid-April, resulting in an apparent reduction of Cx. tarsalis abundance and delay of WNV activity in the rural lower valley and a marked decline in transmission by Culex quinquefasciatus Say populations in the densely populated upper northwestern valley with no human cases reported.

  11. Hydro-economic analysis of groundwater pumping for irrigated agriculture in California's Central Valley, USA

    NASA Astrophysics Data System (ADS)

    Medellín-Azuara, Josué; MacEwan, Duncan; Howitt, Richard E.; Koruakos, George; Dogrul, Emin C.; Brush, Charles F.; Kadir, Tariq N.; Harter, Thomas; Melton, Forrest; Lund, Jay R.

    2015-09-01

    As in many places, groundwater in California (USA) is the major alternative water source for agriculture during drought, so groundwater's availability will drive some inevitable changes in the state's water management. Currently, agricultural, environmental, and urban uses compete for groundwater, resulting in substantial overdraft in dry years with lowering of water tables, which in turn increases pumping costs and reduces groundwater pumping capacity. In this study, SWAP (an economic model of agricultural production and water use in California) and C2VISim (the California Department of Water Resources groundwater model for California's Central Valley) are connected. This paper examines the economic costs of pumping replacement groundwater during drought and the potential loss of pumping capacity as groundwater levels drop. A scenario of three additional drought years continuing from 2014 show lower water tables in California's Central Valley and loss of pumping capacity. Places without access to groundwater and with uncertain surface-water deliveries during drought are the most economically vulnerable in terms of crop revenues, employment and household income. This is particularly true for Tulare Lake Basin, which relies heavily on water imported from the Sacramento-San Joaquin Delta. Remote-sensing estimates of idle agricultural land between 2012 and 2014 confirm this finding. Results also point to the potential of a portfolio approach for agriculture, in which crop mixing and conservation practices have substantial roles.

  12. Structural evolution of the east Sierra Valley system (Owens Valley and vicinity), California: a geologic and geophysical synthesis

    USGS Publications Warehouse

    Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.

    2013-01-01

    The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  13. Rockfall failure mechanisms in Yosemite Valley, California (USA)

    NASA Astrophysics Data System (ADS)

    Matasci, Battista; Guerin, Antoine; Carrea, Dario; Stock, Greg M.; Jaboyedoff, Michel; Collins, Brian

    2014-05-01

    Rockfall hazard is especially high in Yosemite Valley, with tens of rockfalls inventoried every year. A rockfall on 5 October 2013 from Ahwiyah Point consisted of a volume of 740 cubic meters and occurred within the perimeter of a larger event on 28 March 2009 that released 25'400 cubic meters of rock (Zimmer et al., 2012). In both events (2009 and 2013), the initial rockfall volumes dislodged a second one approximately equivalent in size by impacting the cliff below the source area during the fall. Rock fragments of up to several cubic meters were deposited on the talus slope, damaging a heavily used and recently reconstructed hiking path. We performed extensive mapping of structural features for several cliffs of Yosemite Valley to improve the assessment of the most susceptible rockfall areas. In particular we mapped and characterized the main brittle structures, the exfoliation joints and the failure mechanisms of the past rockfalls. Several failure mechanisms exist in Yosemite including the propagation of brittle structures that may lead to tensile, planar sliding, wedge sliding or toppling failures. Frequently, topographically-parallel exfoliation joints and topographically-oblique discontinuities coexist, resulting in complex failures. We also developed a methodology to examine how the distribution of joints within the cliff faces of Yosemite Valley affects overall stability with respect to the identified failure mechanisms. For these analyses, we used terrestrial laser scanning (TLS) to collect high resolution point clouds of the vertical and overhanging rock faces throughout the Valley. This provided the necessary 3D data to identify the main joint sets, perform spacing and trace length measurements, and calculate volumes of previous and potential rockfalls. We integrated this information with stability calculations to identify the likely failure mechanisms for each area of cliff and to obtain the number of potential failures per square meter of cliff face

  14. 77 FR 12651 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley; Attainment Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ...EPA is approving state implementation plan (SIP) revisions submitted by California to provide for attainment of the 1997 8-hour ozone national ambient air quality standards in the San Joaquin Valley (SJV). These SIP revisions are the 2007 Ozone Plan (revised 2008 and 2011) and SJV-related portions of the 2007 State Strategy (revised 2009 and 2011). EPA is approving the base year emissions......

  15. Water budgets for major streams in the Central Valley, California, 1961-77

    USGS Publications Warehouse

    Mullen, J.R.; Nady, Paul

    1985-01-01

    A compilation of annual streamflow data for 20 major stream systems in the central Valley of California, for water years 1961-77, is presented. The water-budget tables list gaged and ungaged inflow from tributaries and canals, diversions, and gaged outflow. Theoretical outflow and gain or loss in a reach are computed. A schematic diagram and explanation of the data are provided for each water-budget table. (USGS)

  16. Mapping cumulative environmental effects, social vulnerability, and health in the San Joaquin Valley, California.

    PubMed

    Huang, Ganlin; London, Jonathan

    2012-05-01

    To understand the social distribution of environmental hazards, methods to assess cumulative effects and their health implications are needed. We developed a cumulative environmental hazard index integrating environmental data on pollution sites, air quality, and pesticide use; a social vulnerability index to measure residents' resources to prevent or mitigate health effects; and a health index. We found that communities in California's San Joaquin Valley with high social vulnerability face more environmental burdens and have worse health conditions.

  17. Origin of Hot Creek Canyon, Long Valley caldera, California

    SciTech Connect

    Maloney, N.J. . Dept. of Geological Sciences)

    1993-04-01

    Hot Creek has eroded a canyon some thirty meters deep across the Hot Creek rhyolite flows located in the southeastern moat of Long Valley Caldera. Maloney (1987) showed that the canyon formed by headward erosion resulting from spring sapping along hydrothermally altered fractures in the rhyolite, and the capture of Mammoth Creek. This analysis ignored the continuing uplift of the central resurgent dome. Reid (1992) concluded that the downward erosion of the canyon must have kept pace with the uplift. Long Valley Lake occupied the caldera until 100,000 to 50,000 years before present. The elevation of the shoreline, determined by trigonometric leveling, is 2,166 m where the creek enters the canyon and 2,148 m on the downstream side of the rhyolite. The slope of the strand line is about equal to the stream gradient. The hill was lower and the stream gradient less at the time of stream capture. Rotational uplift increased the stream gradient which increased the rate of downward erosion and formed the V-shaped canyon

  18. Historical Channel Changes in Cache Creek, Capay Valley, California

    NASA Astrophysics Data System (ADS)

    Higgins, S. A.; Kamman, G. R.

    2009-12-01

    Historical channel changes were assessed for the 21-mile segment of Cache Creek through Capay Valley in order to evaluate temporal changes in stream channel morphology. The Capay Valley segment of Cache Creek is primarily a low-gradient channel with a gravel/cobble substrate. Hydrologic conditions have been affected by dam operations that store runoff during the wet season and deliver water during the dry season for downstream irrigation uses. Widespread distribution of invasive plant species has altered the condition of the riparian corridor. The assessment evaluated a hypothesis that historical changes in hydrology and vegetation cover have triggered changes in geomorphic conditions. Historic channel alignments were digitized to assess planform channel adjustments. Results illustrate a dynamic system with frequent channel movements throughout the historic period. Evaluation of longitudinal channel adjustments revealed a relatively stable bed surface elevation since the 1930’s. Comparisons of cross-sectional channel geometry for topographic profiles surveyed in 1984 were compared to equivalent features in a LiDAR survey from 2008. The comparisons show a relatively consistent channel geometry that has maintained a similar form despite rather large planform adjustments with areas of bank retreat in excess of 500 feet. Results suggest that the study reach has maintained a relatively stable morphology through a series of dynamic planform adjustments during the historic period.

  19. Optimal pumping strategies for managing shallow, poorquality groundwater, western San Joaquin Valley, California

    USGS Publications Warehouse

    Barlow, P.; Wagner, B.; Belitz, K.

    1995-01-01

    Continued agricultural productivity in the western San Joaquin Valley, California, is threatened by the presence of shallow, poor-quality groundwater that can cause soil salinization. We evaluate the management alternative of using groundwater pumping to control the altitude of the water table and provide irrigation water requirements. A transient, three-dimensional, groundwater flow model was linked with nonlinear optimization to simulate management alternatives for the groundwater flow system. Optimal pumping strategies have been determined that substantially reduce the area subject to a shallow water table and bare-soil evaporation (that is, areas with a water table within 2.1 m of land surface) and the rate of drainflow to on-farm drainage systems. Optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  20. Late quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    SciTech Connect

    Brogan, G.E.; Kellogg, K.S.; Terhune, C.L.; Slemmons, D.B.

    1991-12-31

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest- trending pull-apart basin.

  1. Chemical and isotopic prediction of aquifer temperatures in the geothermal system at Long Valley, California

    USGS Publications Warehouse

    Fournier, R.O.; Sorey, M.L.; Mariner, R.H.; Truesdell, A.H.

    1979-01-01

    Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220??C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ?? 10??C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to ??? 220??C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282??C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 ?? 107 cal/s. ?? 1979.

  2. Winter fog is decreasing in the fruit growing region of the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Baldocchi, Dennis; Waller, Eric

    2014-05-01

    The Central Valley of California is home to a variety of fruit and nut trees. These trees account for 95% of the U.S. production, but they need a sufficient amount of winter chill to achieve rest and quiescence for the next season's buds and flowers. In prior work, we reported that the accumulation of winter chill is declining in the Central Valley. We hypothesize that a reduction in winter fog is cooccurring and is contributing to the reduction in winter chill. We examined a 33 year record of satellite remote sensing to develop a fog climatology for the Central Valley. We find that the number of winter fog events, integrated spatially, decreased 46%, on average, over 32 winters, with much year to year variability. Less fog means warmer air and an increase in the energy balance on buds, which amplifies their warming, reducing their chill accumulation more.

  3. Global positioning system surveying to monitor land subsidence in Sacramento Valley, California, USA

    USGS Publications Warehouse

    Ikehara, M.E.

    1994-01-01

    A subsidence research program began in 1985 to document the extent and magnitude of land subsidence in Sacramento Valley, California, an area of about 15 600 km2m, using Global Positioning System (GPS) surveying. In addition to periodic conventional spirit levelling, an examination was made of the changes in GPS-derived ellipsoidal height differences (summary differences) between pairs of adjacent bench marks in central Sacramento Valley from 1986 to 1989. The average rates of land subsidence in the southern Sacramento Valley for the past several decades were determined by comparing GPS-derived orthometric heights with historic published elevations. A maximum average rate of 0.053 m year-1 (0.90 m in 17 years) of subsidence has been measured. -Author

  4. Potential effects of drought on carrying capacity for wintering waterfowl in the Central Valley of California

    USGS Publications Warehouse

    Petrie, Mark J.; Fleskes, Joseph P.; Wolder, Mike A.; Isola, Craig R.; Yarris, Gregory S.; Skalos, Daniel A.

    2016-01-01

    We used the bioenergetics model TRUEMET to evaluate potential effects of California's recent drought on food supplies for waterfowl wintering in the Central Valley under a range of habitat and waterfowl population scenarios. In nondrought years in the current Central Valley landscape, food supplies are projected to be adequate for waterfowl from fall through early spring (except late March) even if waterfowl populations reach North American Waterfowl Management Plan goals. However, in all drought scenarios that we evaluated, food supplies were projected to be exhausted for ducks by mid- to late winter and by late winter or early spring for geese. For ducks, these results were strongly related to projected declines in winter-flooded rice fields that provide 45% of all the food energy available to ducks in the Central Valley in nondrought water years. Delayed flooding of some managed wetlands may help alleviate food shortages by providing wetland food resources better timed with waterfowl migration and abundance patterns in the Central Valley, as well as reducing the amount of water needed to manage these habitats. However, future research is needed to evaluate the impacts of delayed flooding on waterfowl hunting, and whether California's existing water delivery system would make delayed flooding feasible. Securing adequate water supplies for waterfowl and other wetland-dependent birds is among the greatest challenges facing resource managers in coming years, especially in the increasingly arid western United States.

  5. Relating seismic swarms and deformation in Long Valley Caldera, California

    NASA Astrophysics Data System (ADS)

    Montgomery-Brown, E. K.; Ellsworth, W. L.; Hill, D. P.; Shelly, D. R.; Langbein, J. O.; Lisowski, M.; Llenos, A. L.

    2013-12-01

    Earthquake swarm activity in the South Moat Seismic Zone (SMSZ) in Long Valley caldera began increasing following the onset of slow inflation of the resurgent dome in 2011. From 1980 through 1999 the caldera produced recurring earthquake swarms in the SMSZ accompanied by an 80-cm uplift of the resurgent dome. Since 2000, the caldera has been quieter than from 1980 to 1999, but it experienced a gradual 7-cm uplift episode in 2002-2003 and currently the caldera has been gradually uplifting since 2011 at less than half of the peak uplift velocity observed in the late 1990's. Two of the recent swarms in October/November of 2012 and March 2013 have been accompanied by small deformation transients during which caldera uplift paused for about a week despite otherwise steady inflation. To better understand this recent activity, we cross correlate seismic velocity waveforms from individual events recorded by the Long Valley seismic network to identify similar clusters (families) of earthquakes and analyze their temporal recurrence. Then, we use representative waveforms from each family as templates to search the continuous waveforms from the deep borehole seismometers in the Long Valley Exploratory Well (MDH1) for repeating, yet smaller, earthquakes. MDH1 consists of two three-component instruments, located 2592 m and 2263 m below ground level, that provide 6 channels with very low background noise relative to surface seismometers. The cross correlations identify about 25 times more earthquakes with most magnitudes ranging from -1 to +0.5, determined from an empirical relationship between catalog magnitude and observed amplitude on MDH1. We apply an ETAS model to the augmented catalog to detect subtle changes in background earthquake rates that might suggest a change in stressing rate. For comparison with the change in seismicity rates, a geodetically determined stress change is estimated from a simple model of the continuous GPS data. We model the uplift from 2011 to

  6. Late Quaternary denudation, Death and Panamint Valleys, eastern California

    USGS Publications Warehouse

    Jayko, A.S.

    2005-01-01

    Late Quaternary denudation rates are constrained from alluvial fans and tributary watersheds in central Death and Panamint Valleys. Preliminary results suggest that the denudation rate is in part a function of the mean watershed elevation. Rainfall increases semi-logarithmically with higher elevation to about 2500 m where it becomes limited by the regional average maximum moisture content of the air mass. The fan volumes show a power-law relation to the watershed areas. The fan volumes ranged from about 250,000 to 4000 km3 and the watershed areas range from about 60,000 to 2000 km2. The upper limit of the denudation rates estimated from small Death Valley fans restricted to the east side of the basin along the Black Mountain frontal scarp range between about 0.03 to 0.18 mm/yr. The maximum is made by assuming most of the clastic accumulation in these fans followed the last highstand of Lake Manly around 24,000 yr which is the least conservative condition. The upper limit of the denudation rates from the Panamint fans range from 0.04 to 0.20 mm/yr assuming the accumulation mainly postdates OIS-4 ???60,000 yr or OIS-2 ???20,000 yr based on the presence or absence of inset shorelines from the last glacial-pluvial maximum. The greater denudation rate associated with the higher mean watershed elevations can mainly be attributed to the greater rainfall at higher elevation. Denudation rates are about a third or less of the Neogene dip-slip rates reported from nearby active faults consistent with relief increasing during dryer periods. ?? 2005 Elsevier B.V. All rights reserved.

  7. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  8. Salton Seismic Imaging Project Line 6: San Andreas Fault and Northern Coachella Valley Structure, Riverside and San Bernardino Counties, California

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone

  9. View of the Salinas River Valley area south of Monterey Bay, California

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A vertical view of the Salinas River Valley area south of Monterey Bay, California area is seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The valley is an irrigated agricultural area, as indicated by the dark-green and light-gray rectangular patterns in the center of the picture. The city of Salinas is barely visible under the cloud cover at the top (north) end of the valley. The dark mass on the left (west) side of the valley is the Santa Lucia mountain range. The Big Sur area is on the left and partly covered by clouds. The Diablo Range forms the dark mass in the lower right (southeast) corner of the photograph. The town of Hillister is the grey area in the dark-green rectangular farm tracts which occupy the floor of the San Benito Valley in the upper right (northeast) corner of the photograph. The Salinas River flows northwestward toward Monterey Bay. The towns of Soleda

  10. Habitat suitability and conservation of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley of California

    USGS Publications Warehouse

    Halstead, Brian J.; Wylie, Glenn D.; Casazza, Michael L.

    2010-01-01

    Resource managers often have little information regarding the habitat requirements and distribution of rare species. Factor analysis-based habitat suitability models describe the ecological niche of a species and identify locations where these conditions occur on the landscape using existing occurrence data.We used factor analyses to assess the suitability of habitats for Thamnophis gigas (Giant Gartersnake), a rare, threatened species endemic to the Central Valley of California, USA, and to map the locations of habitat suitable for T. gigas in the Sacramento Valley. Factor analyses indicated that the niche of T. gigas is composed of sites near rice agriculture with low stream densities. Sites with high canal densities and near wetlands also appeared suitable, but results for these variables were sensitive to potential sampling bias. In the Sacramento Valley, suitable habitats occur primarily in the central portion of the valley floor. Based upon the results of the factor analyses, recovery planning for T. gigas will require an on-the-ground assessment of the current distribution and abundance of T. gigas, maintaining the few remaining natural wetlands and the practice of rice agriculture in the Sacramento Valley, and studying the effects of agricultural practices and land use changes on populations of T. gigas.

  11. Habitat suitability and conservation of the Giant Gartersnake (Thamnophis gigas) in the Sacramento Valley of California

    USGS Publications Warehouse

    Halstead, B.J.; Wylie, G.D.; Casazza, M.L.

    2010-01-01

    Resource managers often have little information regarding the habitat requirements and distribution of rare species. Factor analysis-based habitat suitability models describe the ecological niche of a species and identify locations where these conditions occur on the landscape using existing occurrence data. We used factor analyses to assess the suitability of habitats for Thamnophis gigas (Giant Gartersnake), a rare, threatened species endemic to the Central Valley of California, USA, and to map the locations of habitat suitable for T. gigas in the Sacramento Valley. Factor analyses indicated that the niche of T. gigas is composed of sites near rice agriculture with low stream densities. Sites with high canal densities and near wetlands also appeared suitable, but results for these variables were sensitive to potential sampling bias. In the Sacramento Valley, suitable habitats occur primarily in the central portion of the valley floor. Based upon the results of the factor analyses, recovery planning for T. gigas will require an on-the-ground assessment of the current distribution and abundance of T. gigas, maintaining the few remaining natural wetlands and the practice of rice agriculture in the Sacramento Valley, and studying the effects of agricultural practices and land use changes on populations of T. gigas. ?? 2010 by the American Society of Ichthyologists and Herpetologists.

  12. Hydrogeologic characterization of the Modesto Area, San Joaquin Valley, California

    USGS Publications Warehouse

    Burow, Karen R.; Shelton, Jennifer L.; Hevesi, Joseph A.; Weissmann, Gary S.

    2004-01-01

    Hydrogeologic characterization was done to develop an understanding of the hydrogeologic setting near Modesto by maximizing the use of existing data and building on previous work in the region. A substantial amount of new lithologic and hydrologic data are available that allow a more complete and updated characterization of the aquifer system. In this report, geologic units are described, a database of well characteristics and lithology is developed and used to update the regional stratigraphy, a water budget is estimated for water year 2000, a three-dimensional spatial correlation map of aquifer texture is created, and recommendations for future data collection are summarized. The general physiography of the study area is reflected in the soils. The oldest soils, which have low permeability, exist in terrace deposits, in the interfan areas between the Stanislaus, Tuolumne, and Merced Rivers, at the distal end of the fans, and along the San Joaquin River floodplain. The youngest soils have high permeability and generally have been forming on the recently deposited alluvium along the major stream channels. Geologic materials exposed or penetrated by wells in the Modesto area range from pre-Cretaceous rocks to recent alluvium; however, water-bearing materials are mostly Late Tertiary and Quaternary in age. A database containing information from more than 3,500 drillers'logs was constructed to organize information on well characteristics and subsurface lithology in the study area. The database was used in conjunction with a limited number of geophysical logs and county soil maps to define the stratigraphic framework of the study area. Sequences of red paleosols were identified in the database and used as stratigraphic boundaries. Associated with these paleosols are very coarse grained incised valley-fill deposits. Some geophysical well logs and other sparse well information suggest the presence of one of these incised valley-fill deposits along and adjacent to the

  13. Surface-water hydrology of Honey Lake Valley, Lassen County, California and Washoe County, Nevada

    USGS Publications Warehouse

    Rockwell, Gerald L.

    1993-01-01

    Honey Lake Valley straddles the State line of California and Nevada; it is about 35 mi north of Reno and about three-fourths of the area is in California. In this report, Honey Lake Valley (also referred to as “the basin") includes the entire area within the hydrographic boundary shown in figure 1. Susanville, Calif., in the northwestern part of the basin, is the largest town. Population is increasing rapidly in the Susanville area and in the Reno area of adjacent Washoe County, Nev. Lassen and Washoe Counties have identified water resources in Honey Lake Valley as a possible source to meet their needs for future development. An important component of an assessment of the availability of additional long-term supply is an appraisal of surface-water resources.The U.S. Geological Survey, in cooperation with the California Department of Water Resources and the Nevada Division of Water Resources, began a hydrologic assessment of the area in 1987. The study was primarily an appraisal of ground-water resources, but it also included an assessment of surface-water resources. The purpose of this map report is to present the results of the surface-water assessment, including (1) a broad overview of surface-water conditions in the basin, (2) an estimate of mean annual streamflow to the valley floor, and (3) an evaluation of the characteristics of Honey lake. Results of the study related to ground-water resources of the basin are discussed in a separate report by Handman and others (1990) and are summarized in a short “Water Fact Sheet” by Handman (1990).

  14. Renewed inflation of Long Valley Caldera, California (2011 to 2014)

    USGS Publications Warehouse

    Montgomery-Brown, Emily; Wicks, Chuck; Cervelli, Peter F.; Langbein, John O.; Svarc, Jerry L.; Shelly, David R.; Hill, David P.; Lisowski, Michael

    2015-01-01

    Slow inflation began at Long Valley Caldera in late 2011, coinciding with renewed swarm seismicity. Ongoing deformation is concentrated within the caldera. We analyze this deformation using a combination of GPS and InSAR (TerraSAR-X) data processed with a persistent scatterer technique. The extension rate of the dome-crossing baseline during this episode (CA99 to KRAC) is 1 cm/yr, similar to past inflation episodes (1990–1995 and 2002–2003), and about a tenth of the peak rate observed during the 1997 unrest. The current deformation is well modeled by the inflation of a prolate spheroidal magma reservoir ∼7 km beneath the resurgent dome, with a volume change of ∼6 × 106 m3/yr from 2011.7 through the end of 2014. The current data cannot resolve a second source, which was required to model the 1997 episode. This source appears to be in the same region as previous inflation episodes, suggesting a persistent reservoir.

  15. Gravity and fault structures, Long Valley caldera, California

    SciTech Connect

    Carle, S.F.; Goldstein, N.E.

    1987-07-01

    The main and catastrophic phase of eruption in Long Valley occurred 0.73 m.y. ago with the eruption of over 600 km/sup 3/ of rhyolitic magma. Subsequent collapse of the roof rocks produced a caldera which is now elliptical in shape, 32 km east-west by 17 km north-south. The caldera, like other large Quarternary silicic ash-flow volcanoes that have been studied by various workers, has a nearly coincident Bouguer gravity low. Earlier interpretations of the gravity anomaly have attributed the entire anomaly to lower density rocks filling the collapsed structure. However, on the basis of many additional gravity stations and supporting subsurface data from several new holes, a much more complex and accurate picture has emerged of caldera structure. From a three-dimensional inversion of the residual Bouguer gravity data we can resolve discontinuities that seem to correlate with extensions of pre-caldera faults into the caldera and faults associated with the ring fracture. Some of these faults are believed related to the present-day hydrothermal upflow zone and the zone of youngest volcanic activity within the caldera.

  16. Radon in groundwater of the Long Valley Caldera, California

    SciTech Connect

    Flexser, S.; Wollenberg, H.A.; Smith, A.R.

    1987-04-01

    In the Long Valley caldera, an area of recently (approx.550 y) active volcanism and current seismic activity, /sup 222/Rn concentrations in hot, warm, and cold spring waters have been measured since 1982. Rn contents of the waters correlate inversely with temperature and specific conductance, with high concentrations (1500 to 2500 pCi/l) occurring in dilute cold springs on the margins of the caldera, and low concentrations (12 to 25 pCi/l) in hot to boiling springs. Rn correlates only slightly with the uranium contents of the wide range of rocks which host the hydrological system feeding the springs. These environmental effects on the radon record may mask responses to small or distant seismic, volcanic, or crustal deformation events. To date, anomalous changes in water-borne Rn have been observed in connection with at least one earthquake, which occurred close to the monitoring site. This continuing study points out that an understanding of the geological setting, its associated hydrological system, and environmental influences is necessary to properly evaluate concentrations and changes in groundwater radioactivity.

  17. Scenario liquefaction hazard maps of Santa Clara Valley, Northern California

    USGS Publications Warehouse

    Holzer, T.L.; Noce, T.E.; Bennett, M.J.

    2009-01-01

    Maps showing the probability of surface manifestations of liquefaction in the northern Santa Clara Valley were prepared with liquefaction probability curves. These curves were based on complementary cumulative frequency distributions of the liquefaction potential index (LPI) for surficial geologic units in the study area. LPI values were computed with extensive cone penetration test soundings. Maps were developed for three earthquake scenarios, an M 7.8 event on the San Andreas fault comparable to the 1906 event, an M 6.7 event on the Hayward fault comparable to the 1868 event, and an M 6.9 event on the Calaveras fault. Ground motions were estimated with the Boore and Atkinson (2008) attenuation relation. Liquefaction is predicted for all three events in young Holocene levee deposits along the major creeks. Liquefaction probabilities are highest for the M 7.8 earthquake, ranging from 0.33 to 0.37 if a 1.5 m deep water table is assumed, and from 0.10 to 0.14, if a 5 m deep water table is assumed. Liquefaction probabilities of the other surficial geologic units are less than 0.05. Probabilities for the scenario earthquakes are generally consistent with observations during historical earthquakes.

  18. Summary of recent research in Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; McConnell, V.S.; Roeloffs, E.

    2003-01-01

    Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 1989-1990, and 1997-1998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and those in which brittle failure is driven by active intrusion. They also indicate that in addition to a relatively shallow (7-10-km) source beneath the resurgent dome, there exists a deeper (???15-km) source beneath the south moat. Analysis of microgravimety and deformation data indicates that the composition of the shallower source may involve a combination of silicic magma and hydrothermal fluid. Pressure and temperature fluctuations in wells have accompanied periods of crustal unrest, and additional pressure and temperature changes accompanying ongoing geothermal power production have resulted in land subsidence. The completion in 1998 of a 3000-m-deep drill hole on the resurgent dome has provided useful information on present and past periods of circulation of water at temperatures of 100-200??C within the crystalline basement rocks that underlie the post-caldera volcanics. The well is now being converted to a permanent geophysical monitoring station. ?? 2003 Elsevier B.V. All rights reserved.

  19. Drought Impacts on Agricultural Production and Land Fallowing in California's Central Valley in 2015

    NASA Astrophysics Data System (ADS)

    Rosevelt, C.; Melton, F. S.; Johnson, L.; Guzman, A.; Verdin, J. P.; Thenkabail, P. S.; Mueller, R.; Jones, J.; Willis, P.

    2015-12-01

    The ongoing drought in California substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to mitigation of drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in fallow acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to timeseries of data from Landsat TM, ETM+, OLI, and MODIS. Our effort has been focused on development of indicators of drought impacts in the March - August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 650 fields from March - September in 2014 and 2015. We present the algorithm along with updated results from the accuracy assessment, and data and maps of land fallowing in the Central Valley in 2015.

  20. Drought Impacts on Agricultural Production and Land Fallowing in California's Central Valley in 2015

    NASA Technical Reports Server (NTRS)

    Rosevelt, Carolyn; Melton, Forrest S.; Johnson, Lee; Guzman, Alberto; Verdin, James P.; Thenkabail, Prasad S.; Mueller, Rick; Jones, Jeanine; Willis, Patrick

    2016-01-01

    The ongoing drought in California substantially reduced surface water supplies for millions of acres of irrigated farmland in California's Central Valley. Rapid assessment of drought impacts on agricultural production can aid water managers in assessing mitigation options, and guide decision making with respect to mitigation of drought impacts. Satellite remote sensing offers an efficient way to provide quantitative assessments of drought impacts on agricultural production and increases in fallow acreage associated with reductions in water supply. A key advantage of satellite-based assessments is that they can provide a measure of land fallowing that is consistent across both space and time. We describe an approach for monthly and seasonal mapping of uncultivated agricultural acreage developed as part of a joint effort by USGS, USDA, NASA, and the California Department of Water Resources to provide timely assessments of land fallowing during drought events. This effort has used the Central Valley of California as a pilot region for development and testing of an operational approach. To provide quantitative measures of uncultivated agricultural acreage from satellite data early in the season, we developed a decision tree algorithm and applied it to time-series data from Landsat TM (Thematic Mapper), ETM+ (Enhanced Thematic Mapper Plus), OLI (Operational Land Imager), and MODIS (Moderate Resolution Imaging Spectroradiometer). Our effort has been focused on development of indicators of drought impacts in the March-August timeframe based on measures of crop development patterns relative to a reference period with average or above average rainfall. To assess the accuracy of the algorithms, monthly ground validation surveys were conducted across 650 fields from March-September in 2014 and 2015. We present the algorithm along with updated results from the accuracy assessment, and data and maps of land fallowing in the Central Valley in 2015.

  1. Nutrient Flux from Mediterranean Coastal Streams: Carpinteria Valley, California

    NASA Astrophysics Data System (ADS)

    Robinson, T. H.; Leydecker, A.; Melack, J. M.; Keller, A. A.

    2003-12-01

    Along the southern California coast, near Santa Barbara, California, we are measuring nutrient export from specific land uses and developing a model to predict nutrient export at a watershed scale. The area is characterized by a Mediterranean-like climate and short steep catchments producing flashy runoff. The six land uses include chaparral, avocado orchards, greenhouse agriculture, open-field nurseries, and residential and commercial development. Sampling sites are located on defined drainages or storm drains that collect runoff from relatively homogeneous areas representing each land use. Stream water samples are taken once a week during the rainy season, every two weeks during the dry season and every one to four hours during storms. Samples are analyzed for ammonium, nitrate, phosphate, total dissolved nitrogen and particulate nitrogen and phosphorus. Intensive sampling at the thirteen sites of the study was conducted throughout Water Year (WY) 2002 and 2003. We determine discharge from measurements of stage derived from pressure transducers at all sampling sites. This information is then converted to flux at a high temporal resolution. Wet and dry season sampling has shown that nitrate baseflow concentrations vary over three orders of magnitude, from a few micromoles per liter in undeveloped catchments, to a few 100 æmol/L in agricultural and urban watersheds, to 1000 æmol/L where intensive "greenhouse" agriculture dominates. Nitrate loading ranged from a few moles per hectare per storm at undeveloped and residential sites to hundreds at the greenhouse site. Phosphate concentrations show a similar, but smaller, variation from 1 to 100 æmol/L, although the loading is comparable at 1-100 moles/ha-storm. Stormflow concentrations fluctuate with the storm hydrograph: phosphate increases with flow, while nitrate typically decreases due to dilution from runoff probably from impervious surfaces. Nitrate export patterns indicate a marked difference between land use

  2. Precipitation depth-duration and frequency characteristics for Antelope Valley, Mojave Desert, California

    USGS Publications Warehouse

    Blodgett, J.C.

    1995-01-01

    Methods to evaluate changes in the volume of storm runoff from drainage basins that are likely to be urbanized are needed by land-use planning agencies to establish criteria for the design of flood-control systems. To document the changes in runoff volume of basins that may be urbanized, nine small basins that are considered representative of varying hydrologic conditions in Antelope Valley, California, were selected for detailed study. Precipitation and stream-gaging stations were established and data were collected for the period 1990-93. The data collected at these U.S. Geological Survey stations were supplemented by data collected at 35 Long-term precipitation stations operated by the National Oceanic and Atmospheric Administration and the Los Angeles County Department of Public Works. These data will be used to calibrate and verify rainfall-runoff models for the nine basins. Results of the model runs will then be used as a guide for estimating basin runoff characteristics throughout Antelope Valley. Annual precipitation in Antelope Valley ranges from more than 20 inches in the mountains to less than 4 inches on the valley floor. Most precipitation in the valley falls during the months of December through March, but cyclonic storms in the fall and convectional storms in the summer sometimes occur. The duration of most storms ranges from 1 to 8 days, but most of the precipitation usually occurs within the first 2 days. Many parts of the valley have been affected by storms with precipitation depths that equal or exceed 0.60 inch per hour. The storms of January 1943 and March 1983 were the most intense storms of record, with recurrence intervals greater than 100 years in some parts of the valley. Depth-duration ratios were calculated by disaggregating daily total precipitation data for intervals of 1, 2, 3, 4, 6, 12, and 18 hours for storms that occurred during 1990-93. The hourly total precipitation data were then disaggregated at 5-minute intervals. A comparison

  3. Geologic features and ground-water storage capacity of the Sacramento Valley, California

    USGS Publications Warehouse

    Olmsted, F.H.; Davis, G.H.

    1961-01-01

    The Sacramento Valley constitutes the northern and smaller arm of the Central Valley of California. It is about 150 miles long by about 30 miles wide; and its area is about 5,000 square miles. The Sacramento Valley is drained by the Sacramento River, the largest in California, which rises west of Mount Shasta and flows southward to join the San Joaquin River near Suisun Bay and discharges through San Francisco Bay to the Pacific. Most of the valley floor is suitable for growing crops, and under irrigation the land is highly productive. The Sacramento Valley is underlain by sediments transported from the surrounding mountains by the Sacramento River and its tributaries. The floor of the valley slopes southward from about 300 feet above sea level at the north end near Red Bluff to sea level at Suisun Bay. The Sutter Buttes, which are erosional remnants of an old volcano rise to 2,132 feet above sea level near the center of the valley. The valley floor is not a featureless plain but is characterized by various types of topography, which have been assigned to four principal groups: 1, low hills and dissected alluvial uplands; 2, low alluvial plains and fans; 3, flood plains and natural levees; and 4, flood basins; a fifth and relatively minor group consists of the tidal Islands of the Sacramento-San Joaquin Delta, which are south of the principal area of investigation. The rocks that underlie the Sacramento Valley and the bordering mountains range from crystalline rocks of Paleozoic and Mesozoic age to unconsolidated alluvium of Recent age. These rocks have been subdivided into 20 geologic units which may be assigned to 2 broad categories: rocks that yield little water and rocks that yield water freely. The rocks of the first category are chiefly marine sedimentary rocks of Late Jurassic, Cretaceous, and Early Tertiary age and a basement complex of pre-Tertiary crystalline rocks. The rocks of the second category consist predominantly of nonmarine valley

  4. Selenium and human health implications in California's San Joaquin Valley.

    PubMed

    Fan, A M; Book, S A; Neutra, R R; Epstein, D M

    1988-01-01

    An evaluation was conducted on the human health impacts of elevated levels of selenium in the Kesterson National Wildlife Refuge and its surroundings in Merced County, California. Investigative activities of various agencies were summarized and assessed. Agricultural waste water not intended for human use showed elevated selenium concentrations of up to 1400 ppb. Levels of selenium in fish (up to 96 ppm, wet weight), aquatic birds (up to 130 ppm in liver, dry weight), and waterfowl (up to 5.3 ppm flesh, wet weight) were unsafe for unrestricted human consumption. Data on selenium in drinking water (less than 10 ppb), animals (mean values: beef liver 0.3-0.35 ppm, wet weight; milk, 0.01-0.02 ppm), and air (particulate, 14.8 ng/m3; gaseous, less than 1080 ng/m3) did not suggest a high level of exposure. Selenium concentrations in soil were highly variable and suggested a potential source of high exposure. Selenium values in blood and urine of workers were within normal range. A community health survey did not show any trend of adverse health effects in the local population.

  5. Using Imaging Spectrometry to Identify Crops in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Shivers, S.; Roberts, D. A.

    2015-12-01

    With a growing global population, limited resources and a changing climate, understanding and monitoring the distribution of our food and water resources is essential to their sustainability. Regional food yield estimates and water resource accounting are dependent upon accurate agricultural records. Crop mapping provides farmers, managers, and policymakers the information necessary to anticipate annual food supplies and water demands by better understanding the distribution of species. While on the ground crop accounting usually happens yearly at the county level and requires significant time and labor inputs, remote sensing has the potential to map crops and monitor their health over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometers have the capability to produce imagery at high spectral and spatial resolutions, which may allow for differentiation of crops at the field-level scale. In this research 14 crop species and soil were classified in Kern County, California using canonical discriminant analysis (CDA) and Multiple Endmember Spectral Mixture Analysis (MESMA) on airborne visible/infrared imaging spectrometer (AVIRIS) imagery from June 2013. Imagery was then degraded to Landsat spectral resolution and reclassified for comparison. Results with the AVIRIS imagery show an overall accuracy of 69.0% using MESMA and 89.4% using CDA with nine out of fourteen crop species showing user and producer errors under ten percent. Lower accuracy was found for OLI data. This research illustrates great potential for field-level crop mapping with imaging spectrometry.

  6. SRTM Perspective View with Landsat Overlay: Santa Paula, and Santa Clara River Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Rectangular fields of the agriculturally rich Santa Clara River Valley are visible in this perspective view generated using data from the Shuttle Radar Topography Mission and an enhanced Landsat image. The Santa Clara River, which lends its name to this valley, flows from headwaters near Acton, California, 160 km (100 miles) to the Pacific Ocean, and is one of only two natural river systems remaining in southern California. In the foreground of this image, the largely dry riverbed can be seen as a bright feature as it winds its way along the base of South Mountain. The bright region at the right end of this portion of the valley is the city of Santa Paula, California. Founded in 1902, this small, picturesque town at the geographic center of Ventura County is referred to as the 'Citrus Capital of the World.' The city is surrounded by orange, lemon, and avocado groves and is a major distribution point for citrus fruits in the United States. The bright, linear feature in the center of the valley is State Highway 126, the valley's 'main drag.' For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors, from Landsat data, approximate natural color.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of Earth's land surface. To collect the 3-D SRTM data, engineers added a mast 60 meters (about 200 feet)long, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  7. Structural and lithologic study of Northern Coast Range and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Preliminary analysis of the data received has disclosed two potentially important northwest-trending systems of linear features within the Northern California Coast Ranges. A third system, which trends northeast, can be traced with great uncertainty across the alluviated part of the Sacramento Valley and into the foothills of the Sierra Nevada. These linear features may represent fault systems or zones of shearing. Of interest, although not yet verified, is the observation that some of the mercury concentrations and some of the geothermally active areas of California may be located at the intersection of the Central and the Valley Systems. One, perhaps two, stratigraphic unconformities within the Late Mesozoic sedimentary rocks were detected during preliminary examination of the imagery; however, more analysis is necessary in order to verify this preliminary interpretation. A heretofore unrecognized, large circular depression, about 15 km in diameter, was detected within the alluviated part of the Sacramento Valley. The depression is adjacent to a large laccolithic intrusion and may be geologically related to it. Changes in the photogeologic characteristics of this feature will continue to be monitored.

  8. New observations of VOC emissions and concentrations in, above, and around the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; Fares, S.; Gentner, D. R.; Park, J.; Weber, R.; Ormeno, E.; Holzinger, R.; Misztal, P. K.; Karl, T. R.; Guenther, A. B.; Fischer, M. L.; Harley, R. A.; Karlik, J. F.

    2011-12-01

    Large portions of the Central Valley of California are out of compliance with current state and federal air quality standards for ozone and particulate matter, and the relative importance of biogenic and anthropogenic VOC emissions to their photochemical production in this region remains uncertain. In 2009-2011 multiple measurement campaigns were completed investigating the VOC emission inventory and concentration distributions. In 2009 BVOC emissions from more than 20 species of major agricultural crops in California were measured in a greenhouse using branch enclosures by both PTRMS and in-situ GC. Overall, crops were found to emit low amounts of BVOC compared to the natural forests surrounding the valley. Crops mainly emitted methanol and terpenes, with a broad array of other species emitted at lower levels, and all the measured crops showed negligible emissions of isoprene. Navel oranges were the largest crop BVOC emitters measured so a full year of flux measurements were made in an orange grove near Visalia in 2010 by eddy covariance(EC)-PTRMS with two multi-week periods of concentration measurements by hourly in-situ GC, and one month of high mass resolution flux measurements by EC-PTR-TOF-MS. The dominant BVOC emissions from the orange grove were methanol and terpenes, followed by acetone, acetaldehyde, and a low level of emissions for many other species. In 2011 aircraft eddy covariance measurements of BVOC fluxes were made by EC-PTRMS covering a large area of California as part of the California Airborne Bvoc Emission Research in Natural Ecosystem Transects (CABERNET) campaign aimed at improving BVOC emission models on regional scales, mainly profiling BVOC emissions from oak woodlands surrounding the Central Valley. In 2010, hourly in-situ VOC measurements were made via in-situ GC in Bakersfield, CA as part of the CalNex experiment. Additionally, in-situ measurements of fresh motor vehicle exhaust were made in Oakland's Caldecott tunnel. Measurements by

  9. West Nile Virus in California

    PubMed Central

    Lothrop, Hugh; Chiles, Robert; Madon, Minoo; Cossen, Cynthia; Woods, Leslie; Husted, Stan; Kramer, Vicki; Edman, John

    2004-01-01

    West Nile virus (WNV) was first isolated in California during July 2003 from a pool of Culex tarsalis collected near El Centro, Imperial County. WNV transmission then increased and spread in Imperial and Coachella Valleys, where it was tracked by isolation from pools of Cx. tarsalis, seroconversions in sentinel chickens, and seroprevalence in free-ranging birds. WNV then dispersed to the city of Riverside, Riverside County, and to the Whittier Dam area of Los Angeles County, where it was detected in dead birds and pools of Cx. pipiens quinquefasciatus. By October, WNV was detected in dead birds collected from riparian corridors in Los Angeles, west to Long Beach, and through inland valleys south from Riverside to San Diego County. WNV was reported concurrently from Arizona in mid-August and from Baja, Mexico, in mid-November. Possible mechanisms for virus introduction, amplification, and dispersal are discussed. PMID:15496236

  10. Subsidence in the Central Valley, California 2007 - present measured by InSAR

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Liu, Z.; Jones, C. E.

    2015-12-01

    Subsidence caused by groundwater pumping in the rich agricultural area of California's Central Valley has been a problem for decades. Over the last few years, interferometric synthetic aperture radar (InSAR) observations from satellite and aircraft platforms have been used to produce maps of subsidence with ~cm accuracy. For this study, we have obtained and analyzed Japanese PALSAR data for 2006 - 2011, Canadian Radarsat-1 data for 2011 - 2013, Radarsat-2 data for 2012 - 2015, and ESA's Sentinel-1A for 2015 and produced maps of subsidence for those periods. High resolution InSAR data were also acquired along the California Aqueduct by the NASA UAVSAR from 2013 - 2015. Using multiple scenes acquired by these systems, we were able to produce the time histories of subsidence at selected locations and transects showing how subsidence varies both spatially and temporally. The maps show that subsidence is continuing in areas with a history of subsidence and that the rates and areas affected have increased due to increased groundwater extraction during the extended western US drought. The high resolution maps from UAVSAR were used to identify and quantify new, highly localized areas of accelerated subsidence along the California Aqueduct that occurred in 2014. The California Department of Water Resources (DWR) funded this work to provide the background and an update on subsidence in the Central Valley to support future policy. Geographic Information System (GIS) files are being furnished to DWR for further analysis of the 4 dimensional subsidence time-series maps. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA.

  11. Monitoring avian productivity and survivorship (MAPS) 5-year summary, Naval Outlying Landing Field, Imperial Beach, southwestern San Diego County, California, 2009-13

    USGS Publications Warehouse

    Lynn, Suellen; Madden, Melanie C.; Houston, Alexandra; Kus, Barbara E.

    2015-01-01

    During 2009–13, a Monitoring Avian Productivity and Survivorship (MAPS) banding station was operated at the Naval Outlying Landing Field (NOLF), Imperial Beach, in southwestern San Diego County, California. The station was established as part of a long-term monitoring program of Neotropical migratory bird populations on NOLF and helps Naval Base Coronado (NOLF is a component) meet the goals and objectives of Department of Defense Partners in Flight program and the Birds and Migratory Birds Management Strategies of the Naval Base Coronado Integrated Natural Resources Management Plan. During 2009–13, captures averaged 644 ±155 per year. Fifty-seven species were captured, of which 44 are Neotropical migratory species and 33 breed at the MAPS station. Twenty-two sensitive species were detected, including Least Bell’s Vireo (Vireo bellii pusillus), Willow Flycatcher (Empidonax traillii), Yellow-breasted Chat (Icteria virens) and Yellow Warbler (Setophaga petechia). Local population trends varied among species and years, as did annual productivity (number of young per adult). We found no significant relationship between productivity and the observed population size in the subsequent year for any species, nor did we find an association between productivity and precipitation for the current bio-year. Similarly, survivorship varied across species and years, and there was no obvious relationship between adult survivorship and observed population size for any species except Wrentit (Chamaea fasciata), for which the relationship was positive. Adult survivorship was unrelated to precipitation at the MAPS station. Additional years of data will be required to generate sample sizes adequate for more rigorous analyses of survivorship and productivity as predictors of population growth.

  12. Eruptive history of the Ubehebe Crater cluster, Death Valley, California

    NASA Astrophysics Data System (ADS)

    Fierstein, Judy; Hildreth, Wes

    2017-04-01

    A sequence of late Holocene eruptions from the Ubehebe Crater cluster in Death Valley was short-lived, emplacing several phreatomagmatic and magmatic deposits. Seven craters form the main group, which erupted along a north-south alignment 1.5 km long. At least five more make a 500-m east-west alignment west of the main crater group. One more is an isolated shallow crater 400 m south of that alignment. All erupted through Miocene fanglomerate and sandstone, which are now distributed as comminuted matrix and lithic clasts in all Ubehebe deposits. Stratigraphic evidence showing that all Ubehebe strata were emplaced within a short time interval includes: (1) deposits from the many Ubehebe vents make a multi-package sequence that conformably drapes paleo-basement topography with no erosive gullying between emplacement units; (2) several crater rims that formed early in the eruptive sequence are draped smoothly by subsequent deposits; and (3) tack-welded to agglutinated spatter and bombs that erupted at various times through the sequence remained hot enough to oxidize the overlying youngest emplacement package. In addition, all deposits sufficiently consolidated to be drilled yield reliable paleomagnetic directions, with site mean directions showing no evidence of geomagnetic secular variation. Chemical analyses of juvenile components representing every eruptive package yield a narrow range in major elements [SiO2 (48.65-50.11); MgO (4.98-6.23); K2O (2.24-2.39)] and trace elements [Rb (28-33); Sr (1513-1588); Zr (373-404)]. Despite lithologic similarities, individual fall units can be traced outward from vent by recording layer thicknesses, maximum scoria and lithic sizes, and juvenile clast textural variations. This permits reconstruction of the eruptive sequence, which produced a variety of eruptive styles. The largest and northernmost of the craters, Ubehebe Crater, is the youngest of the group. Its largely phreatomagmatic deposits drape all of the others, thicken in

  13. Hydrology of the Valley-fill and carbonate-rock reservoirs, Pahrump Valley, Nevada-California

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1967-01-01

    This is the second appraisal of the water supply of Pahrump Valley, made 15 years after the first cooperative study. In the first report the average recharge was estimated to be 23,000 acre-feet per year, only 1,000 acre-feet more than the estimate made in this report. All this recharge was considered to be available for development. Because of the difficulty in salvaging the subsurface outflow from the deep carbonate-rock reservoir, this report concludes that the perennial yield may be only 25,000 acre-feet. In 1875, Bennetts and Manse Springs reportedly discharged a total of nearly 10,000 acre-feet of water from the valley-fill reservoir. After the construction of several flowing wells in 1910, the spring discharge began to decline. In the mid-1940's many irrigation wells were drilled, and large-capacity pumps were installed. During the 4-year period of this study (1959-62), the net pumping draft averaged about 25,000 acre-feet per year, or about twice the estimated yield. In 1962 Bennetts Spring was dry, and the discharge from Marse Spring was only 1,400 acre-feet. During the period February 1959-February 1962, pumping caused an estimated storage depletion of 45,000 acre-feet, or 15,000 acre-feet per year. If the overdraft is maintained, depletion of stored water will continue and pumping costs will increase. Water levels in the vicinity of the Pahrump, Manse, and Fowler Ranches declined more than ]0 feet in response to the pumping during this period, and they can be expected to continue to decline at ,the projected rate of more than 3 feet per year. The chemical quality of the pumped water has been satisfactory for irrigation and domestic use. Recycling of water pumped or irrigation, however, could result in deterioration of the water quality with time.

  14. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California

    USGS Publications Warehouse

    Presser, Theresa S.; Schwarzbach, Steven E.

    2008-01-01

    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed

  15. Synoptic-Dynamics of Extreme Cold Air Outbreaks Over the California Central Valley

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Grotjahn, R.

    2015-12-01

    Cold air outbreaks (CAOs) have created multi-billion dollar losses in the state of California. Especially hard hit have been agricultural operations in the California Central Valley. Criteria based on duration and extreme values of daily minimum surface temperature at 17 stations over California Central Valley and 700hPa temperature at the Oakland radiosonde station are used to identify CAOs during the period of 1950-2013. 32 strong CAO events in total are obtained with our criterion. 10 stronger CAOs are selected for detailed study. Composite analyses and bootstrap statistical tests are applied to these 10 strong CAOs and find a similar large scale meteorological pattern (LSMP) in each event. This LSMP has a ridge-trough-ridge pattern in the mass field extending from Alaska across North America to the Southeastern part of the US as the LSMP in Grotjahn & Faure (2008). A challenging problem arises in the analyses caused by the different phase speeds of waves prior to different CAO events. We use dynamical analysis methods, such as wave activity flux, three-dimensional trajectories, and temperature tendency equation terms, to reveal the synoptic-dynamical mechanisms of how the LSMP and cold air formation/migration lead to these CAOs.

  16. Recent land-use/land-cover change in the Central California Valley

    USGS Publications Warehouse

    Soulard, Christopher E.; Wilson, Tamara S.

    2013-01-01

    Open access to Landsat satellite data has enabled annual analyses of modern land-use and land-cover change (LULCC) for the Central California Valley ecoregion between 2005 and 2010. Our annual LULCC estimates capture landscape-level responses to water policy changes, climate, and economic instability. From 2005 to 2010, agriculture in the region fluctuated along with regulatory-driven changes in water allocation as well as persistent drought conditions. Grasslands and shrublands declined, while developed lands increased in former agricultural and grassland/shrublands. Development rates stagnated in 2007, coinciding with the onset of the historic foreclosure crisis in California and the global economic downturn. We utilized annual LULCC estimates to generate interval-based LULCC estimates (2000–2005 and 2005–2010) and extend existing 27 year interval-based land change monitoring through 2010. Resulting change data provides insights into the drivers of landscape change in the Central California Valley ecoregion and represents the first, continuous, 37 year mapping effort of its kind.

  17. Evapotranspiration estimates using remote-sensing data, Parker and Palo Verde valleys, Arizona and California

    USGS Publications Warehouse

    Raymond, Lee H.; Rezin, Kelly V.

    1989-01-01

    In 1981 the U.S. Geological Survey established an experimental project to assess the possible and practical use of remote-sensing data to estimate evapotranspiration as an approximation of consumptive use of water in the lower Colorado River flood plain. The project area was in Parker Valley, Arizona. The approach selected was to measure the areas covered by each type of vegetation, using remote-sensing data in various types of analyses, and to multiply each area by a predetermined water-use rate. Two calibration and six remote-sensing methods of classifying crop types were compared for cost, accuracy, consistency, and labor requirements. Included were one method each for field reconnaissance using 1982 data, low-altitude (less than 5,000 feet) aerial photography using 1982 data, and visual photointerpretation of Landsat satellite images using 1981 and 1982 data; two methods for medium-altitude (15,000-18,000 feet) aerial photography using 1982 data; and three methods for digital Landsat satellite images using 1981 data. A test of the most promising digital-processing method, which used three image dates, was made in part of Palo Verde Valley, California, where 1981 crop data were more complete than in Parker Valley. Of the eight methods studied, the two-date digital-processing method was the most consistent and least labor intensive for identifying two or three major crops; visual photointerpretation of Landsat images was the least expensive. Evapotranspiration estimates from crop classifications by all methods differed by a maximum of 6 percent. Total evapotranspiration calculated from crop data and phreatophyte maps in 1981 ranged from 11 percent lower in Palo Verde Valley to 17 percent lower in Parker Valley than consumptive use calculated by water budgets. The difference was greater in Parker Valley because the winter crop data were not included.

  18. Evapotranspiration estimates using remote-sensing data, Parker and Palo Verde valleys, Arizona and California

    USGS Publications Warehouse

    Raymond, L.H.; Rezin, K.V.

    1986-01-01

    In 1981 the U.S. Geological Survey established an experimental project to assess the possible and practical use of remote sensing data to estimate evapotranspiration as an approximation of consumptive use in the lower Colorado River flood plain. The project area was in Parker Valley, Arizona. The approach selected was to measure the areas covered by each type of vegetation using remote sensing data in various types of analyses and to multiply each area by a predetermined water use rate. Two calibration and six remote sensing methods of classifying crop types were compared for cost, accuracy, consistency, and labor requirements. Included were one method each for field reconnaissance using 1982 data, low altitude (< than 5,000 ft) aerial photography using 1982 data, and visual photointerpretation of Landsat satellite images using 1981 and 1982 data; two methods for medium-altitude (15,000-18,000 ft) aerial photography using 1982 data; and three methods for digital Landsat satellite images using 1981 data. A test of the most promising digital processing method, which used three image dates, was made in part of Palo Verde Valley, California, where 1981 crop data were more complete than in Parker Valley. Of the eight methods studied, the three-date digital processing method was the most consistent and least labor-intensive; visual photointerpretation of Landsat images was the least expensive. Evapotranspiration estimates from crop classifications by all methods differed by a maximum of 6%. Total evapotranspiration calculated from crop data and phreatophyte maps in 1981 ranged from 12% lower in Palo Verde Valley to 17% lower in Parker Valley than consumptive use calculated by water budgets. The difference was greater in Parker Valley because the winter crop data were not included. (Author 's abstract)

  19. Water availability and land subsidence in the Central Valley, California, USA

    USGS Publications Warehouse

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  20. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  1. Integrated model of the shallow and deep hydrothermal systems in the East Mesa area, Imperial Valley, California

    USGS Publications Warehouse

    Riney, T. David; Pritchett, J.W.; Rice, L.F.

    1982-01-01

    Geological, geophysical, thermal, petrophysical and hydrological data available for the East Mesa hydrothermal system that are pertinent to the construction of a computer model of the natural flow of heat and fluid mass within the system are assembled and correlated. A conceptual model of the full system is developed and a subregion selected for quantitative modeling. By invoking the .Boussinesq approximation, valid for describing the natural flow of heat and mass in a liquid hydrothermal system, it is found practical to carry computer simulations far enough in time to ensure that steady-state conditions are obtained. Initial calculations for an axisymmetric model approximating the system demonstrate that the vertical formation permeability of the deep East Mesa system must be very low (kv ~ 0.25 to 0.5 md). Since subsurface temperature and surface heat flow data exhibit major deviations from the axisymmetric approximation, exploratory three-dimensional calculations are performed to assess the effects of various mechanisms which might operate to produce such observed asymmetries. A three-dimensional model evolves from this iterative data synthesis and computer analysis which includes a hot fluid convective source distributed along a leaky fault radiating northward from the center of the hot spot and realistic variations in the reservoir formation properties.

  2. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake

    USGS Publications Warehouse

    Joyner, William B.; Boore, David M.

    1981-01-01

    We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relations for peak horizontal acceleration and velocity. This new analysis uses a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. An innovation in technique is introduced that decouples the determination of the distance dependence of the data from the magnitude dependence.

  3. Integrated model of the shallow and deep hydrothermal systems in the East Mesa area, Imperial Valley, California

    SciTech Connect

    Riney, T.D.; Pritchett, J.W.; Rice, L.F.

    1982-01-01

    Geological, geophysical, thermal, petrophysical and hydrological data available for the East Mesa hydrothermal system that are pertinent to the construction of a computer model of the natural flow of heat and fluid mass within the system are assembled and correlated. A conceptual model of the full system is developed and a subregion selected for quantitative modeling. By invoking the Boussinesq approximation, valid for describing the natural flow of heat and mass in a liquid hydrothermal system, it is found practical to carry computer simulations far enough in time to ensure that steady-state conditions are obtained. Initial calculations for an axisymmetric model approximating the system demonstrate that the vertical formation permeability of the deep East Mesa system must be very low (k/sub v/ approx. 0.25 to 0.5 md). Since subsurface temperature and surface heat flow data exhibit major deviations from the axisymmetric approximation, exploratory three-dimensional calculations are performed to assess the effects of various mechanisms which might operate to produce such observed asymmetries. A three-dimensional model evolves from this iterative data synthesis and computer analysis which includes a hot fluid convective source distributed along a leaky fault radiating northward from the center of the hot spot and realistic variations in the reservoir formation properties.

  4. SRTM Perspective View with Landsat Overlay: San Fernando Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The San Fernando Valley (lower right of center) is part of Los Angeles and includes well over one million people. Two major disasters have occurred here in the last few decades: the 1971 Sylmar earthquake and the 1994 Northridge earthquake. Both quakes caused major damage to homes, freeways, and other structures and included major injuries and fatalities. The Northridge earthquake was the one of the costliest natural disasters in United States history. Understanding earthquake risks requires understanding a location's geophysical setting, and topographic data are of substantial benefit in that regard. Landforms are often characteristic of specific tectonic processes, such as ground movement along faults. Elevation models, such as those produced by the Shuttle Radar Topography Mission (SRTM), are particularly useful in visualizing regional scale landforms that are too large to be seen directly on-site. They can also be used to model the propagation of damaging seismic waves, which helps in urban planning. In recent years, elevation models have also been a critical input to radar interferometric studies, which reveal detailed patterns of ground deformation from earthquakes that had never before been seen.

    This perspective view was generated by draping a Landsat satellite image over a preliminary topographic map from SRTM. Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect

  5. Investigation of a Complex Nocturnal Flow in Owens Valley, California Using Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Choukulkar, Aditya; Calhoun, Ronald; Billings, Brian; Doyle, James

    2012-09-01

    A study of an interesting meteorological episode over the Owens Valley, California, USA during the Terrain-Induced Rotor EXperiment was conducted using a recently adapted statistical interpolation method to retrieve wind-velocity vectors from Doppler lidar data. This vector retrieval method has been adapted from radar data assimilation techniques. Results show that the method allows better preservation of local variations in the flow field than other techniques. In addition, a high resolution Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) run is used to understand the large-scale flow within the valley and compared with lidar retrievals. Observations from 1030 UTC to 1230 UTC (0230 local time to 0430 local time) on March 27, 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from COAMPS and other in-situ instrumentation are used to corroborate and complement these observations. The optimal interpolation technique for Doppler lidar data vector retrieval appears well suited for scenarios with complex spatial variations in the flow field.

  6. Shear wave anisotropy and stress direction in and near Long Valley caldera, California, 1979-1988

    SciTech Connect

    Savage, M.K.; Peppin, W.A.; Vetter, U.R. )

    1990-07-10

    The authors observed shear wave splitting (birefringence) for two temporary surface deployments of three-component, digital seismographs, that were in place before and after M=6+ earthquakes near the Long Valley caldera, California. In one of these deployments, the data sample precedes the large events of the May 1980 Mammoth Lakes earthquake sequence by 6 months and cover the two most active months of the May 1980 aftershock sequence; one of the stations (WIT) from this deployment was reoccupied with identical instrumentation in 1988. Another deployment preceded the 1986 Chalfant Valley mainshock by 2 days and recorded events for 6 days. The polarization of the faster shear wave changes from N30{degree}W at Mammoth to due north at Chalfant Valley and in both cases is parallel to the strike of nearby surface faults and to the mean direction of P axes determined from focal mechanism groupings. Observations from nearby stations yield fast directions nearly at 23{degree} from each other, and time separations of fast and slow shear waves show considerable station-to-station variation, showing no correlation with earthquake-station distance or earthquake depth. These observations suggest that the observed anisotropy results primarily from near-station (presumably shallow) effects rather than from widespread aligned microcracks. The records at Long Valley station WIT show a slight variation of average fast shear wave polarization from 1979 to 1980, but with the limited amount of data available, this difference is not statistically significant.

  7. Subsurface and petroleum geology of the southwestern Santa Clara Valley ("Silicon Valley"), California

    USGS Publications Warehouse

    Stanley, Richard G.; Jachens, Robert C.; Lillis, Paul G.; McLaughlin, Robert J.; Kvenvolden, Keith A.; Hostettler, Frances D.; McDougall, Kristin A.; Magoon, Leslie B.

    2002-01-01

    Gravity anomalies, historical records of exploratory oil wells and oil seeps, new organic-geochemical results, and new stratigraphic and structural data indicate the presence of a concealed, oil-bearing sedimentary basin beneath a highly urbanized part of the Santa Clara Valley, Calif. A conspicuous isostatic-gravity low that extends about 35 km from Palo Alto southeastward to near Los Gatos reflects an asymmetric, northwest-trending sedimentary basin comprising low-density strata, principally of Miocene age, that rest on higher-density rocks of Mesozoic and Paleogene(?) age. Both gravity and well data show that the low-density rocks thin gradually to the northeast over a distance of about 10 km. The thickest (approx 4 km thick) accumulation of low-density material occurs along the basin's steep southwestern margin, which may be controlled by buried, northeast-dipping normal faults that were active during the Miocene. Movement along these hypothetical normal faults may been contemporaneous (approx 17–14 Ma) with sedimentation and local dacitic and basaltic volcanism, possibly in response to crustal extension related to passage of the northwestward-migrating Mendocino triple junction. During the Pliocene and Quaternary, the normal faults and Miocene strata were overridden by Mesozoic rocks, including the Franciscan Complex, along northeastward-vergent reverse and thrust faults of the Berrocal, Shannon, and Monte Vista Fault zones. Movement along these fault zones was accompanied by folding and tilting of strata as young as Quaternary and by uplift of the modern Santa Cruz Mountains; the fault zones remain seismically active. We attribute the Pliocene and Quaternary reverse and thrust faulting, folding, and uplift to compression caused by local San Andreas Fault tectonics and regional transpression along the Pacific-North American Plate boundary. Near the southwestern margin of the Santa Clara Valley, as many as 20 exploratory oil wells were drilled between 1891

  8. Ground-Water Modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  9. Miocene rapakivi granites in the southern Death Valley region, California, USA

    USGS Publications Warehouse

    Calzia, James P.; Ramo, O.T.

    2005-01-01

    Rapakivi granites in the southern Death Valley region, California, include the 12.4-Ma granite of Kingston Peak, the ca. 10.6-Ma Little Chief stock, and the 9.8-Ma Shoshone pluton. All of these granitic rocks are texturally zoned from a porphyritic rim facies, characterized by rapakivi textures and miarolitic cavities, to an equigranular aplite core. These granites crystallized from anhydrous and peraluminous to metaluminous magmas that were more oxidized and less alkalic than type rapakivi granites from southern Finland. Chemical and isotope (Nd–Sr–Pb) data suggest that rapakivi granites of the southern Death Valley region were derived by partial melting of lower crustal rocks (possibly including Mesozoic plutonic component) with some mantle input as well; they were emplaced at shallow crustal levels (4 km) in an actively extending orogen.

  10. Miocene rapakivi granites in the southern Death Valley region, California, USA

    USGS Publications Warehouse

    Calzia, J.P.; Ramo, O.T.

    2005-01-01

    Rapakivi granites in the southern Death Valley region, California, include the 12.4-Ma granite of Kingston Peak, the ca. 10.6-Ma Little Chief stock, and the 9.8-Ma Shoshone pluton. All of these granitic rocks are texturally zoned from a porphyritic rim facies, characterized by rapakivi textures and miarolitic cavities, to an equigranular aplite core. These granites crystallized from anhydrous and peraluminous to metaluminous magmas that were more oxidized and less alkalic than type rapakivi granites from southern Finland. Chemical and isotope (Nd-Sr-Pb) data suggest that rapakivi granites of the southern Death Valley region were derived by partial melting of lower crustal rocks (possibly including Mesozoic plutonic component) with some mantle input as well; they were emplaced at shallow crustal levels (4 km) in an actively extending orogen.

  11. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California. [Yucca Mountain Project

    SciTech Connect

    Hoffard, J.L. )

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma.

  12. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California

    SciTech Connect

    Hoffard, J.L.

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma.

  13. Tilt measurements at Long Valley Caldera, California, May-August 1982

    SciTech Connect

    Dzurisin, D.; Cashman, K.; Sylvester, A.G.

    1982-01-01

    The Mammoth Lakes area in east-central California has experienced unusual seismicity and ground deformation since 1978, highlighted by four M > 6 earthquakes in May 1980 and by the discovery soon thereafter of a broad uplift within Long Valley caldera. Recurrent seismic swarms during June 1980-May 1982 raised concern over the possibility of renewed volcanic activity in the foreseeable future, prompting a USGS Notice of Potential Volcanic Hazard on 28 May 1982. As part of an intensified Long Valley monitoring effort sponsored by the USGS Volcanic Hazards program, a network of nine tilt sites was established near mammoth lakes in May and July 1982. This report describes those stations and presents results from three tilt resurveys during July-August 1982. 8 references, 10 figures, 8 tables.

  14. Descriptions and chemical analyses for selected wells in the Central Sacramento Valley, California

    USGS Publications Warehouse

    Fogelman, Ronald P.

    1976-01-01

    The Sacramento Valley occupies the northern one-third of the Great Central Valley of California. The study area of this report includes about 1,200 square miles (3,100 square kilometers) adjacent to the Sacramento River from Knights Landing to Los Molinos, in parts of Yolo, Sutter, Colusa, Glenn, Butte, and Tehama Counties. Between April and August 1975, 559 wells were canvassed, and during September and October 1975, water samples were collected for chemical analysis from 209 of these wells. Field determinations of alkalinity, conductance, pH , and temperature were made on the site at the time of sampling. Samples were prepared in the field for shipment and analysis for individual constituents at the Geological Survey Central Laboratory, Salt Lake City, Utah. Descriptive data for water wells are listed, chemical data are tabulated, and the location of wells is shown on maps. (Woodard-USGS)

  15. Construction of 3-D geologic framework and textural models for Cuyama Valley groundwater basin, California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Faunt, Claudia C.; Hanson, Randall T.

    2013-01-01

    Groundwater is the sole source of water supply in Cuyama Valley, a rural agricultural area in Santa Barbara County, California, in the southeasternmost part of the Coast Ranges of California. Continued groundwater withdrawals and associated water-resource management concerns have prompted an evaluation of the hydrogeology and water availability for the Cuyama Valley groundwater basin by the U.S. Geological Survey, in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works. As a part of the overall groundwater evaluation, this report documents the construction of a digital three-dimensional geologic framework model of the groundwater basin suitable for use within a numerical hydrologic-flow model. The report also includes an analysis of the spatial variability of lithology and grain size, which forms the geologic basis for estimating aquifer hydraulic properties. The geologic framework was constructed as a digital representation of the interpreted geometry and thickness of the principal stratigraphic units within the Cuyama Valley groundwater basin, which include younger alluvium, older alluvium, and the Morales Formation, and underlying consolidated bedrock. The framework model was constructed by creating gridded surfaces representing the altitude of the top of each stratigraphic unit from various input data, including lithologic and electric logs from oil and gas wells and water wells, cross sections, and geologic maps. Sediment grain-size data were analyzed in both two and three dimensions to help define textural variations in the Cuyama Valley groundwater basin and identify areas with similar geologic materials that potentially have fairly uniform hydraulic properties. Sediment grain size was used to construct three-dimensional textural models that employed simple interpolation between drill holes and two-dimensional textural models for each stratigraphic unit that incorporated spatial structure of the textural data.

  16. The surface of crystalline basement, Great Valley and Sierra Nevada, California: A digital map database

    USGS Publications Warehouse

    Wentworth, Carl M.; Fisher, G. Reid; Levine, Paia; Jachens, Robert C.

    1995-01-01

    Crystalline basement in central California extends westward from the exposed Sierra Nevada beneath the sedimentary fill of the Great Valley and under the eastern edge of the Coast Ranges at mid-crustal depth. The surface of this basement is defined from three types of control: in the Sierra Nevada from the topography itself, beneath the eastern two thirds of the Great Valley in considerable detail from numerous wells drilled for oil and gas, and beneath the western San Joaquin Valley in less detail from seismic reflection and refraction profiles. Together, these data demonstrate that the surface of crystalline rock is continuous from the exposed rock in the mountains to the top of high-velocity rock buried deep beneath the eastern front of the southern Coast Ranges. This report presents a compilation of data through 1985 that define the surface of this crystalline basement, a contour map of the surface, and the lithology of the basement rock sampled by many of the wells. The compilation was begun as part of the investigation of the 1983 Coalinga earthquake, and was subsequently converted to digital form and extended to the whole of the Great Valley and Sierra Nevada. The main purpose was to explore and document the shape and continuity of the basement surface and to determine the relation of the surface to the tectonic wedge hypothesis (Wentworth and others, 1984; Wentworth and Zoback, 1989). Available basement samples from wells - principally the thin-section collection of May and Hewitt (1948) preserved by the California Academy of Sciences - were also reexamined by cooperating petrologists in an effort to distinguish wells that bottomed in ophiolitic rocks.

  17. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2014-05-01

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. It is essential to understand the emissions and air quality impacts of these relatively understudied sources, especially for oil/gas operations in light of increasing US production. Ground site measurements in Bakersfield and regional aircraft measurements of reactive gas-phase organic compounds and methane were part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions, and provide average source profiles. To examine the spatial distribution of emissions in the San Joaquin Valley, we developed a statistical modeling method using ground-based data and the FLEXPART-WRF transport and meteorological model. We present evidence for large sources of paraffinic hydrocarbons from petroleum operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes, most of which have limited previous in situ measurements or characterization in petroleum operation emissions. Observed dairy emissions were dominated by ethanol, methanol, acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The petroleum operations source profile was developed using the composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil. The observed source profile is

  18. Stable sulfur isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA

    SciTech Connect

    Yang, Wenbo; Spencer, R.J.; Krouse, H.R.

    1996-08-01

    The {delta}{sup 34}S values of two dominant xerophytes, Atriplex hymenehytra and Larrea tridentata, in Death Valley, California, vary similarly from +7 to +18{per_thousand}, corresponding isotopically to sulfate in the water supplies at a given location. Going radially outwards, tree ring data from a phreatophyte tree, Tamarix aphylla, show a distinct time dependence, with {delta}{sup 34}S values increasing from +13.5 to +18{per_thousand} for soluble sulfate and from +12 to +17% for total sulfur. These data are interpreted in terms of sulfur sources, water sources and flow paths, and tree root growth. 32 refs., 3 figs., 3 tabs.

  19. Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.; Kahle, A. B.; Pallluconi, F. D.

    1984-01-01

    Alluvial fans have been mapped in Death Valley, California using NASA's 8-12 micron six-channel airborne Thermal Infrared Multispectral Scanner (TIMS). Both composition and relative age differences were recognized. Age unit boundries are generally consistent with those obtained by conventional mapping. Composition was verified by field investigation and comparison with existing geologic maps. Bedrock and its young derived fan gravels have similar emissivities. The original composition of the fans is modified by differential erosion and weathering, permitting relative age mapping with TIMS.

  20. Produced water chemistry data for samples from four petroleum wells, Southern San Joaquin Valley, California, 2014

    USGS Publications Warehouse

    Davis, Tracy A.; Kulongoski, Justin; McMahon, Peter B.

    2016-01-01

    The U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board collected produced water samples from four petroleum wells in the southern San Joaquin Valley on November 5, 2014. This digital dataset contains the site information, analyzing laboratories and methods, and water chemistry and quality control results for these samples. Water chemistry results include concentrations of dissolved hydrocarbon gases and their isotopic composition; concentrations of inorganic constituents including salinity, major ions, and nutrients; dissolved organic carbon; and stable isotopes of water and strontium dissolved in water. Samples were analyzed by 5 laboratories operated or contracted by the USGS.

  1. Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California

    USGS Publications Warehouse

    Danskin, Wesley R.

    1998-01-01

    The Owens Valley, a long, narrow valley along the east side of the Sierra Nevada in eastcentral California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River?Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river? aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local residents have expressed concerns that the increased pumping may have a detrimental effect on the environment and the native vegetation (indigenous alkaline scrub and meadow plant communities) in the valley. Native vegetation on the valley floor depends on soil moisture derived from precipitation and from the unconfined part of a multilayered ground-water system. This report, which describes the evaluation of the hydrologic system and selected water-management alternatives, is one in a series designed to identify the effects that ground-water pumping has on native vegetation and evaluate alternative strategies to mitigate any adverse effects caused by pumping. The hydrologic system of the Owens Valley can be conceptualized as having three parts: (1) an unsaturated zone affected by precipitation and evapotranspiration; (2) a surface-water system composed of the Owens River, the Los Angeles Aqueduct, tributary streams, canals, ditches, and ponds; and (3) a saturated ground-water system contained in the valley fill. Analysis of the hydrologic system was aided by development of a ground-water flow model of the ?aquifer system,? which is defined as the most active part of the ground-water system and which includes nearly all of the Owens Valley except for the area surrounding the Owens Lake. The model was calibrated and verified for water years 1963?88 and

  2. California GAMA Program: Groundwater Ambient Monitoring and Assessment Results for the Sacramento Valley and Volcanic Provinces of Northern California

    SciTech Connect

    Moran, J E; Hudson, G B; Eaton, G F; Leif, R

    2005-01-20

    In response to concerns expressed by the California Legislature and the citizenry of the State of California, the State Water Resources Control Board (SWRCB), implemented a program to assess groundwater quality, and provide a predictive capability for identifying areas that are vulnerable to contamination. The program was initiated in response to concern over public supply well closures due to contamination by chemicals such as methyl tert butyl ether (MTBE) from gasoline, and solvents from industrial operations. As a result of this increased awareness regarding groundwater quality, the Supplemental Report of the 1999 Budget Act mandated the SWRCB to develop a comprehensive ambient groundwater monitoring plan, and led to the initiation of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The primary objective of the California Aquifer Susceptibility (CAS) project (under the GAMA Program) is to assess water quality and to predict the relative susceptibility to contamination of groundwater resources throughout the state of California. Under the GAMA program, scientists from Lawrence Livermore National Laboratory (LLNL) collaborate with the SWRCB, the U.S. Geological Survey, the California Department of Health Services (DHS), and the California Department of Water Resources (DWR) to implement this groundwater assessment program. In 2003, LLNL carried out this vulnerability study in the Sacramento Valley and Volcanic Provinces. The goal of the study is to provide a probabilistic assessment of the relative vulnerability of groundwater used for the public water supply to contamination from surface sources. This assessment of relative contamination vulnerability is made based on the results of two types of analyses that are not routinely carried out at public water supply wells: ultra low-level measurement of volatile organic compounds (VOCs), and groundwater age dating (using the tritium-helium-3 method). In addition, stable oxygen isotope measurements

  3. Our Choice/Nuestra Opción: The Imperial County, California, Childhood Obesity Research Demonstration Study (CA-CORD)

    PubMed Central

    Ibarra, Leticia; Binggeli-Vallarta, Amy; Moody, Jamie; McKenzie, Thomas L.; Angulo, Janette; Hoyt, Helina; Chuang, Emmeline; Ganiats, Theodore G.; Gahagan, Sheila; Ji, Ming; Zive, Michelle; Schmied, Emily; Arredondo, Elva M.; Elder, John P.

    2015-01-01

    Abstract Background: Despite recent declines among young children, obesity remains a public health burden in the United States, including among Latino/Hispanic children. The determining factors are many and are too complex to fully address with interventions that focus on single factors, such as parenting behaviors or school policies. In this article, we describe a multisector, multilevel intervention to prevent and control childhood obesity in predominantly Mexican-origin communities in Southern California, one of three sites of the CDC-funded Childhood Obesity Research Demonstration (CA-CORD) study. Methods: CA-CORD is a partnership between a university-affiliated research institute, a federally qualified health center, and a county public health department. We used formative research, advisory committee members' recommendations, and previous research to inform the development of the CA-CORD project. Our theory-informed multisector, multilevel intervention targets improvements in four health behaviors: fruit, vegetable, and water consumption; physical activity; and quality sleep. Intervention partners include 1200 families, a federally qualified health center (including three clinics), 26 early care and education centers, two elementary school districts (and 20 elementary schools), three community recreation centers, and three restaurants. Intervention components in these sectors target changes in behaviors, policies, systems, and the social and physical environment. Evaluation activities include assessment of the primary outcome, BMI z-score, at baseline, 12-, and 18-months post-baseline, and sector evaluations at baseline, 12, and 24 months. Conclusions: Identifying feasible and effective strategies to prevent and control childhood obesity has the potential to effect real changes in children's current and future health status. PMID:25584664

  4. Identification of carotenoids in ancient salt from Death Valley, Saline Valley, and Searles Lake, California, using laser Raman spectroscopy.

    PubMed

    Winters, Y D; Lowenstein, T K; Timofeeff, M N

    2013-11-01

    Carotenoids are common components of many photosynthetic organisms and are well known from the red waters of hypersaline ecosystems where they are produced by halophilic algae and prokaryotes. They are also of great interest as biomarkers in extraterrestrial samples. Few laser Raman spectroscopy studies have examined ancient field samples, where pigments and microscopic life are less defined. Here, we have identified carotenoids in ancient halite brine inclusions, 9 ka to 1.44 Ma in age, from borehole cores taken from Death Valley, Saline Valley, and Searles Lake, California, for the first time with laser Raman spectroscopy. Carotenoids occurred in fluid inclusions as colorless to red-brown amorphous and crystalline masses associated with spheroidal algal cells similar in appearance to the common halophilic alga Dunaliella. Spectra from carotenoid standards, including β-carotene, lycopene, and lutein, were compared to microscopically targeted carotenoids in fluid inclusions. Carotenoids produced characteristic bands in the Raman spectrum, 1000-1020 cm⁻¹ (v₃), 1150-1170 cm⁻¹ (v₂), and 1500-1550 cm⁻¹ (v₁), when exposed to visible laser excitation. Laser Raman analyses confirmed the presence of carotenoids with these characteristic peaks in ancient halite. A number of band sets were repeated at various depths (ages), which suggests the stability of this class of organic molecules. Carotenoids appear well preserved in ancient salt, which supports other observations, for example, preserved DNA and live cells, that fluid inclusions in buried halite deposits preserve intact halophilic microbial ecosystems. This work demonstrates the value of laser Raman spectroscopy and carotenoids in extraterrestrial exploration for remnants of microbial life.

  5. Predicted pH at the domestic and public supply drinking water depths, Central Valley, California

    USGS Publications Warehouse

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, Jo Ann M.

    2017-03-08

    This scientific investigations map is a product of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project modeling and mapping team. The prediction grids depicted in this map are of continuous pH and are intended to provide an understanding of groundwater-quality conditions at the domestic and public supply drinking water zones in the groundwater of the Central Valley of California. The chemical quality of groundwater and the fate of many contaminants is often influenced by pH in all aquifers. These grids are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to pH. In this work, the median well depth categorized as domestic supply was 30 meters below land surface, and the median well depth categorized as public supply is 100 meters below land surface. Prediction grids were created using prediction modeling methods, specifically boosted regression trees (BRT) with a Gaussian error distribution within a statistical learning framework within the computing framework of R (http://www.r-project.org/). The statistical learning framework seeks to maximize the predictive performance of machine learning methods through model tuning by cross validation. The response variable was measured pH from 1,337 wells and was compiled from two sources: USGS National Water Information System (NWIS) database (all data are publicly available from the USGS: http://waterdata.usgs.gov/ca/nwis/nwis) and the California State Water Resources Control Board Division of Drinking Water (SWRCB-DDW) database (water quality data are publicly available from the SWRCB: http://www.waterboards.ca.gov/gama/geotracker_gama.shtml). Only wells with measured pH and well depth data were selected, and for wells with multiple records, only the most recent sample in the period 1993–2014 was used. A total of 1,003 wells (training dataset) were used to train the BRT

  6. Commission Review of a Proposal by California State University Bakersfield to Establish the CSUB Antelope Valley Educational Center. Commission Report 03-07

    ERIC Educational Resources Information Center

    California Postsecondary Education Commission, 2003

    2003-01-01

    This report reviews a proposal by the California State University Board of Trustees and California State University, Bakersfield, to establish a permanent Stated-approved education center in Antelope Valley. The proposed center would be named the CSU Bakersfield Antelope Valley Education Center, and it would serve the growing populations of…

  7. Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada Mountains

    USGS Publications Warehouse

    Zabik, John M.; Seiber, James N.

    1993-01-01

    Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada mountains was assessed by collecting air- and wet-deposition samples during December, January, February, and March, 1990 to 1991. Large-scale spraying of these pesticides occurs during December and January to control insect infestations in valley orchards. Sampling sites were placed at 114- (base of the foothills), 533-, and 1920-m elevations. Samples acquired at these sites contained chlorpyrifos [phosphorothioic acid; 0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl) ester], parathion [phosphorothioic acid, 0-0-diethylo-(4-nitrophenyl) ester], diazinon {phosphorothioic acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester} diazinonoxon {phosphoric acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester}, and paraoxon [phosphoric acid, 0,0-diethyl 0-(4-nitrophenyl) ester] in both air and wet deposition samples. Air concentrations of chloropyrifos, diazinon and parathion ranged from 13 to 13 000 pg/m3 at the base of the foothills. At 533-m air concentrations were below the limit of quantification (1.4 pg/m3) to 83 pg/m3 and at 1920 m concentrations were below the limit of quantification. Concentrations in wet deposition varied with distance and elevation from the Central Valley. Rainwater concentrations at the base of the foot hills ranged from 16 to 7600 pg/mL. At 533-m rain and snow water concentrations ranged from below the limit of quantification (1.3 pg/mL) to 140 pg/mL and at 1920 m concentrations ranged from below the limit of quantification to 48 pg/mL. These findings indicate that atmospheric transport of pesticides applied in the valley to the Sierra Nevada mountains is occurring, but the levels decrease as distance and elevation increase from the valley floor.

  8. Pesticide residues in ground water of the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Domagalski, Joseph L.; Dubrovsky, Neil M.

    1992-01-01

    A regional assessment of non-point-source contamination of pesticide residues in ground water was made of the San Joaquin Valley, an intensively farmed and irrigated structural trough in central California. About 10% of the total pesticide use in the USA is in the San Joaquin Valley. Pesticides detected include atrazine, bromacil, 2.4-DP, diazinon, dibromochloropropane, 1,2-dibromoethane, dicamba, 1,2-dichloropropane, diuron, prometon, prometryn, propazine and simazine. All are soil applied except diazinon. Pesticide leaching is dependent on use patterns, soil texture, total organic carbon in soil, pesticide half-life and depth to water table. Leaching is enhanced by flood-irrigation methods except where the pesticide is foliar applied such as diazinon. Soils in the western San Joaquin Valley are fine grained and are derived primarily from marine shales of the Coast Ranges. Although shallow ground water is present, the fewest number of pesticides were detected in this region. The fine-grained soil inhibits pesticide leaching because of either low vertical permeability or high surface area; both enhance adsorption on to solid phases. Soils of the valley floor tend to be fine grained and have low vertical permeability. Soils in the eastern part of the valley are coarse grained with low total organic carbon and are derived from Sierra Nevada granites. Most pesticide leaching is in these alluvial soils, particularly in areas where depth to ground water is less than 30m. The areas currently most susceptible to pesticide leaching are eastern Fresno and Tulare Counties. Tritium in water molecules is an indicator of aquifer recharge with water of recent origin. Pesticide residues transported as dissolved species were not detected in non-tritiated water. Although pesticides were not detected in all samples containing high tritium, these samples are indicative of the presence of recharge water that interacted with agricultural soils.

  9. Structure of the San Fernando Valley region, California: implications for seismic hazard and tectonic history

    USGS Publications Warehouse

    Langenheim, V.E.; Wright, T.L.; Okaya, D.A.; Yeats, R.S.; Fuis, G.S.; Thygesen, K.; Thybo, H.

    2011-01-01

    Industry seismic reflection data, oil test well data, interpretation of gravity and magnetic data, and seismic refraction deep-crustal profiles provide new perspectives on the subsurface geology of San Fernando Valley, home of two of the most recent damaging earthquakes in southern California. Seismic reflection data provide depths to Miocene–Quaternary horizons; beneath the base of the Late Miocene Modelo Formation are largely nonreflective rocks of the Middle Miocene Topanga and older formations. Gravity and seismic reflection data reveal the North Leadwell fault zone, a set of down-to-the-north faults that does not offset the top of the Modelo Formation; the zone strikes northwest across the valley, and may be part of the Oak Ridge fault system to the west. In the southeast part of the valley, the fault zone bounds a concealed basement high that influenced deposition of the Late Miocene Tarzana fan and may have localized damage from the 1994 Northridge earthquake. Gravity and seismic refraction data indicate that the basin underlying San Fernando Valley is asymmetric, the north part of the basin (Sylmar subbasin) reaching depths of 5–8 km. Magnetic data suggest a major boundary at or near the Verdugo fault, which likely started as a Miocene transtensional fault, and show a change in the dip sense of the fault along strike. The northwest projection of the Verdugo fault separates the Sylmar subbasin from the main San Fernando Valley and coincides with the abrupt change in structural style from the Santa Susana fault to the Sierra Madre fault. The Simi Hills bound the basin on the west and, as defined by gravity data, the boundary is linear and strikes ~N45°E. That northeast-trending gravity gradient follows both the part of the 1971 San Fernando aftershock distribution called the Chatsworth trend and the aftershock trends of the 1994 Northridge earthquake. These data suggest that the 1971 San Fernando and 1994 Northridge earthquakes reactivated portions of

  10. Pesticide residues in ground water of the San Joaquin Valley, California

    USGS Publications Warehouse

    Domagalski, J.L.; Dubrovsky, N.M.

    1992-01-01

    A regional assessment of non-point-source contamination of pesticide residues in ground water was made of the San Joaquin Valley, an intensively farmed and irrigated structural trough in central California. About 10% of the total pesticide use in the USA is in the San Joaquin Valley. Pesticides detected include atrazine, bromacil, 2.4-DP, diazinon, dibromochloropropane, 1,2-dibromoethane, dicamba, 1,2-dichloropropane, diuron, prometon, prometryn, propazine and simazine. All are soil applied except diazinon. Pesticide leaching is dependent on use patterns, soil texture, total organic carbon in soil, pesticide half-life and depth to water table. Leaching is enhanced by flood-irrigation methods except where the pesticide is foliar applied such as diazinon. Soils in the western San Joaquin Valley are fine grained and are derived primarily from marine shales of the Coast Ranges. Although shallow ground water is present, the fewest number of pesticides were detected in this region. The fine-grained soil inhibits pesticide leaching because of either low vertical permeability or high surface area; both enhance adsorption on to solid phases. Soils of the valley floor tend to be fine grained and have low vertical permeability. Soils in the eastern part of the valley are coarse grained with low total organic carbon and are derived from Sierra Nevada granites. Most pesticide leaching is in these alluvial soils, particularly in areas where depth to ground water is less than 30m. The areas currently most susceptible to pesticide leaching are eastern Fresno and Tulare Counties. Tritium in water molecules is an indicator of aquifer recharge with water of recent origin. Pesticide residues transported as dissolved species were not detected in non-tritiated water. Although pesticides were not detected in all samples containing high tritium, these samples are indicative of the presence of recharge water that interacted with agricultural soils. ?? 1992.

  11. Geochemical studies in the Indian Pass and Picacho Peak Bureau of Land Management Wilderness study areas, imperial county, Southern California

    USGS Publications Warehouse

    Smith, D.B.; Berger, B.R.; Tosdal, R.M.

    1987-01-01

    The U.S. Geological Survey has conducted geochemical studies in the Indian Pass (CDCA-355), 124 km2, and Picacho Peak (CDCA-355A), 23 km2, Wilderness Study Areas (WSA's) as part of a program to evaluate the mineral resource potential of designated areas in the California Desert Conservation Area. These two WSA's are of particular interest because they lie within a region which has intermittently produced significant quantities of Au since the mid-1800's, and is currently the site of much exploration activity for additional Au resources. Within a 15-km radius of the WSA's, there is one actively producing gold mine, a major deposit which began production in 1986, and one recently announced discovery. In the reconnaissance geochemical surveys of the two WSA's - 177 ??m (-80 mesh) stream sediments, heavy-mineral concentrates from stream sediments, and rocks were prepared and analyzed. Four areas of possible exploration interest were identified within the WSA's. The first area is characterized by anomalous W and Bi in nonmagnetic heavy-mineral concentrates, and is underlain primarily by the Mesozoic Orocopia Schist which has been intruded by monzogranite of Oligocene age. Alteration and mineralization appear to be localized near the intrusive contact. The mineralized rock at the surface contains secondary Cu and Fe minerals where the monzogranite intrudes the metabasite horizons of the Orocopia Schist and scheelite where the monzogranite intrudes marble within the Orocopia Schist. The second area is characterized by anomalous As, Sb, Ba, B, and Sr in nonmagnetic heavy-mineral concentrates and by anomalous As in - 177 ??m stream sediments. Geologically, this area is underlain by metasedimentary and metavolcanic rocks of Jurassic(?) age; a biotite monzogranite of Jurassic(?) age; and Tertiary volcanic and hypabyssal rocks composed of flows, domes, and tuffs of intermediate to silicic composition. All these rock types are cut by a set of north-south-striking normal faults

  12. A Comparison of Groundwater Storage Using GRACE Data, Groundwater Levels, and a Hydrological Model in Californias Central Valley

    NASA Technical Reports Server (NTRS)

    Kuss, Amber; Brandt, William; Randall, Joshua; Floyd, Bridget; Bourai, Abdelwahab; Newcomer, Michelle; Skiles, Joseph; Schmidt, Cindy

    2011-01-01

    The Gravity Recovery and Climate Experiment (GRACE) measures changes in total water storage (TWS) remotely, and may provide additional insight to the use of well-based data in California's agriculturally productive Central Valley region. Under current California law, well owners are not required to report groundwater extraction rates, making estimation of total groundwater extraction difficult. As a result, other groundwater change detection techniques may prove useful. From October 2002 to September 2009, GRACE was used to map changes in TWS for the three hydrological regions (the Sacramento River Basin, the San Joaquin River Basin, and the Tulare Lake Basin) encompassing the Central Valley aquifer. Net groundwater storage changes were calculated from the changes in TWS for each of the three hydrological regions and by incorporating estimates for additional components of the hydrological budget including precipitation, evapotranspiration, soil moisture, snow pack, and surface water storage. The calculated changes in groundwater storage were then compared to simulated values from the California Department of Water Resource's Central Valley Groundwater- Surface Water Simulation Model (C2VSIM) and their Water Data Library (WDL) Geographic Information System (GIS) change in storage tool. The results from the three methods were compared. Downscaling GRACE data into the 21 smaller Central Valley sub-regions included in C2VSIM was also evaluated. This work has the potential to improve California's groundwater resource management and use of existing hydrological models for the Central Valley.

  13. Structural and lithologic study of northern California Coast Range and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator); Steele, W. C.

    1973-01-01

    The author has identified the following significant results. Photgeologic examination of repetitive multispectral ERTS-1 imagery of Northern California has disclosed several systems of linear features which may be important for the interpretation of the structural history of California. They are separated from an orthogonal system of linears in the Klamath Mts. by a set of discontinuous southeast-trending linear features (the Mendocino system) which is traceable from the Pacific Coast, at Cape Mendocino, into the eastern foothills of the Sierra Nevada. Within the Sierra Nevada, the Mendocino system separates the north-trending Sierran system from a set of linears characteristic of the Modoc Plateau. With minor exception, little overlap exists among the systems which suggests a decipherable chronology and evolutionary history for the region. The San Andres system of linears appears to truncate or co-exist with most of the other systems in the northern Coast Ranges. The Mendocino system truncates the Klamath, Sierran, and Modoc systems. The Sierran system may represent fundamental and long-persisting pre-late Paleozoic zones of crustal weakness which have been reactivated from time to time. The Mendocino system was possibly developed in early Mesozoic and is important to the structural framework of Northern California.

  14. Aseismic Slip Observed on the Faults in Mexicali Valley, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Glowacka, E.; Sarychikhina, O.; Suarez, F.; Nava, F.; Farfan, F.; Cossio Battani, G. D.; Guzman, M.

    2007-05-01

    The Mexicali Valley, which is part of the Salton Trough, is located within an active tectonic region, in the boundary between the Pacific and North American plates; a region featuring a wide zone of transform faults associated with San Andreas fault system, and a zone of distributed deformation in the pull-apart center of Cerro Prieto. Since 1996, geotechnical instruments have operated in the Valley, for continuous recording of deformation phenomena. To date, the network includes three crackmeters, eight tiltmeters, and seven piezometers installed in the shallow aquifer; all instruments have sampling intervals in the 1 to 20 minutes range. The mainly vertical displacement at Saltillo fault (known before as southernmost part of Imperial fault) has been measured on a continuous basis since February 1996 by a crackmeter installed in Ejido Saltillo (Glowacka 1996; Nava and Glowacka, 1999). In 1998 a tiltmeter was installed on the fault and a second crackmeter , in a horizontal direction, about 60° from the fault strike, was installed about 1 km south of ES. Another crackmeter in the vertical plane crossing Morelia fault and a 3D Witness on the Cerro Prieto fault were installed in 2004. In 2003 seven digital water level meters were installed at depths up to 500 meters in the local piezometric wells, with the purpose of recording aquifer level changes. The observed deformation rates measured on the Saltillo fault are 6 cm/yr and 2 cm/yr for the vertical and horizontal components, respectively and occurs in steps (creep events), separated by months of quiescence, and large events account for 70 percent of the vertical displacement. Aseismic creep events have amplitudes of 1-3 cm and durations of 1-3 days. Much less precise measurements from the Cerro Prieto fault show vertical deformation on the fault with velocity around 3.1 cm/yr , and the rate does not depend on the local seismicity. Horizontal rates change slightly with the presence of seismicity when very small

  15. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    SciTech Connect

    Reynolds, Jesse L.

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and treatment

  16. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2013-10-01

    Petroleum and dairy operations are prominent sources of gas-phase organic compounds in California's San Joaquin Valley. Ground site measurements in Bakersfield and aircraft measurements of reactive gas-phase organic compounds were made in this region as part of the CalNex (California Research at the Nexus of Air Quality and Climate Change) project to determine the sources contributing to regional gas-phase organic carbon emissions. Using a combination of near-source and downwind data, we assess the composition and magnitude of emissions from these prominent sources that are relatively understudied compared to motor vehicles We also developed a statistical modeling method with the FLEXPART-WRF transport and meteorological model using ground-based data to assess the spatial distribution of emissions in the San Joaquin Valley. We present evidence for large sources of paraffinic hydrocarbons from petroleum extraction/processing operations and oxygenated compounds from dairy (and other cattle) operations. In addition to the small straight-chain alkanes typically associated with petroleum operations, we observed a wide range of branched and cyclic alkanes that have limited previous in situ measurements or characterization in emissions from petroleum operations. Observed dairy emissions were dominated by ethanol, methanol, and acetic acid, and methane. Dairy operations were responsible for the vast majority of methane emissions in the San Joaquin Valley; observations of methane were well-correlated with non-vehicular ethanol, and multiple assessments of the spatial distribution of emissions in the San Joaquin Valley highlight the dominance of dairy operations for methane emissions. The good agreement of the observed petroleum operations source profile with the measured composition of non-methane hydrocarbons in unrefined natural gas associated with crude oil suggests a fugitive emissions pathway during petroleum extraction, storage, or processing with negligible

  17. Aeromagnetic map of the Death Valley ground-water model area, Nevada and California

    SciTech Connect

    Ponce, D.A.; Blakely, R.J.

    2002-03-12

    This aeromagnetic map of the Death Valley ground-water model area was prepared from numerous separate aeromagnetic surveys that were gridded, merged, and described by Hildenbrand and Kucks (1988) and by McCafferty and Grauch (1997). These data are available in grid format from the EROS Data Center, U.S. Geological Survey, Sioux Falls, South Dakota, 57198, and from the National Geophysical Data Center, 325 Broadway, E/GC4, Boulder, Colo., 80303. Magnetic investigations of the Death Valley ground-water basin are part of an interagency effort by the U.S. Geological Survey (USGS) and the U.S. Department of Energy (Interagency Agreement DE-AI08-96NV11967) to help characterize the geology and hydrology of southwest Nevada and adjacent parts of California (Blakely and others, 2000b). The Death Valley ground-water model is located between lat 35 degrees 00' and 38 degrees 15' N., and long 115 degrees and 118 degrees W.

  18. Integration of AIRSAR and AVIRIS data for Trail Canyon alluvial fan, Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1995-01-01

    Combining quantitative geophysical information extracted from the optical and microwave wavelengths provides complementary information about both the surface mineralogy and morphology. This study combines inversion results from two remote sensing instruments, a polarimetric synthetic aperture radar, AIRSAR, and an imaging spectrometer, AVIRIS, for Trail Canyon alluvial fan in Death Valley, California. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) is a quad-polarization, three frequency instrument. AIRSAR collects data at C-band = 5.66 cm, L-band = 23.98 cm, and P-band = 68.13 cm. The data are processed to four-looks and have a spatial resolution of 10 m and a swath width of 12 km. The AIRSAR data used in this study were collected as part of the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley on 9/14/89. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is a NASA/JPL instrument that flies in an ER-2 aircraft at an altitude of 20 km. AVIRIS uses four spectrometers to collect data in 224 spectral channels from 0.4 micrometer to 2.45 micrometer. The width of each spectral band is approximately 10 nm. AVIRIS collects data with a swath width of 11 km and a pixel size of 20 m. The AVIRIS data used in this study were collected over Death Valley on 5/31/92.

  19. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    SciTech Connect

    Faunt, C.C.; D`Agnese, F.A.; Turner, A.K.

    1997-12-31

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km{sup 2} along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing.

  20. Land subsidence in the San Joaquin Valley, California, as of 1980

    USGS Publications Warehouse

    Ireland, R.L.; Poland, J.F.; Riley, F.S.

    1982-01-01

    Land subsidence due to ground-water overdraft in the San Joaquin Valley began in the mid-1920 's and continued at alarming rates until surface was imported through major canals and aqueducts in the 1950 's and late 1960's. In areas where surface water replaced withdrawal of ground-water, water levels in the confined system rose sharply and subsidence slowed. In the late 1960 's and early 1970 's water levels in wells recovered to levels of the 1940 's and 1950 's throughout most of the western and southern parts of the Valley, in response to the importation of surface water through the California aqueduct. During the 1976-77 drought data collected at water-level and extensometer sites showed the effect of heavy demand on the ground-water resevoir. With the ' water of compaction ' gone, artesian head declined 10 to 20 times as fast as during the first cycle of long-term drawdown that ended in the late 1960's. In the 1978-79 water levels recovered to or above the 1976 pre-drought levels. The report suggests continued monitoring of land subsidence in the San Joaquin Valley. (USGS)

  1. Stormflow chemistry in the Santa Ana River below Prado Dam and at the diversion downstream from Imperial Highway, southern California, 1995-98

    USGS Publications Warehouse

    Izbicki, John A.; Mendez, Gregory O.; Burton, Carmen A.

    2000-01-01

    The Santa Ana River drains about 2,670 square miles of the densely populated coastal area of southern California, near Los Angeles. Almost all the flow in the river, more than 200,000 acre-feet annually, is diverted into ponds where it infiltrates and recharges underlying aquifers. About 2 million people are dependent on these aquifers for water supply. Stormflow in the Santa Ana River is considered a source of 'high-quality' water suitable for use as a source of ground-water recharge. To test this assumption, stormflow samples were collected at two locations--below Prado Dam and at the diversion point downstream from Imperial Highway--for 12 winter storms between 1995 and 1998. Nitrate concentrations decreased during stormflow from a median concentration of 7.8 milligrams per liter in base flow to concentrations less than 1 milligram per liter in some large storms. Concentrations of chemically reduced forms of nitrogen (nitrite, ammonia, and organic nitrogen) increased during stormflow and are the predominant forms of nitrogen in large stormflows. Dissolved organic carbon (DOC) concentrations increased from a median concentration of 4.6 milligrams per liter in base flow to more than 20 milligrams per liter in some stormflows. Concentrations of DOC were especially high during the first storm of the rainy season, and large increases in DOC concentrations were measured even as a result of small early season storms that did not cause large increases in streamflow. DOC present during early season stormflow had less ultraviolet absorbance at 254 nanometers (UV254 ) per unit of carbon than did DOC from late season stormflows. DOC in water held in storage behind Prado Dam had the highest UV254 absorbance per unit of carbon. Maximum pesticide concentrations in stormflow did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels. Most pesticide concentrations were less than 1 microgram per liter and less than the detection limits obtained using standard

  2. Analytical results and sample locality map for rock, stream-sediment, and soil samples, Northern and Eastern Coloado Desert BLM Resource Area, Imperial, Riverside, and San Bernardino Counties, California

    USGS Publications Warehouse

    King, Harley D.; Chaffee, Maurice A.

    2000-01-01

    INTRODUCTION In 1996-1998 the U.S. Geological Survey (USGS) conducted a geochemical study of the Bureau of Land Management's (BLM) 5.5 million-acre Northern and Eastern Colorado Desert Resource Area (usually referred to as the NECD in this report), Imperial, Riverside, and San Bernardino Counties, southeastern California (figure 1). This study was done in support of the BLM's Coordinated Management Plan for the area. This report presents analytical data from this study. To provide comprehensive coverage of the NECD, we compiled and examined all available geochemical data, in digital form, from previous studies in the area, and made sample-site plots to aid in determining where sample-site coverage and analyses were sufficient, which samples should be re-analyzed, and where additional sampling was needed. Previous investigations conducted in parts of the current study area included the National Uranium Resource Evaluation (NURE) program studies of the Needles and Salton Sea 1? x 2? quadrangles; USGS studies of 12 BLM Wilderness Study Areas (WSAs) (Big Maria Mountains, Chemehuevi Mountains, Chuckwalla Mountains, Coxcomb Mountains, Mecca Hills, Orocopia Mountains, Palen-McCoy, Picacho Peak, Riverside Mountains, Sheephole Valley (also known as Sheep Hole/Cadiz), Turtle Mountains, and Whipple Mountains); and USGS studies in the Needles and El Centro 1? x 2? quadrangles done during the early 1990s as part of a project to identify the regional geochemistry of southern California. Areas where we did new sampling of rocks and stream sediments are mainly in the Chocolate Mountain Aerial Gunnery Range and in Joshua Tree National Park, which extends into the west-central part of the NECD, as shown in figure 1 and figure 2. This report contains analytical data for 132 rock samples and 1,245 stream-sediment samples collected by the USGS, and 362 stream-sediment samples and 189 soil samples collected during the NURE program. All samples are from the Northern and Eastern Colorado

  3. Integrated Economic Modeling of Water Supply-Quality Tradeoffs: An Application to the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Bair, L.; MacEwan, D.

    2015-12-01

    Sustainable water management in the San Joaquin Valley, California involves the complex interaction of agricultural, municipal and industrial, and environmental water use. California's Sustainable Groundwater Management Act (SGMA) of 2014 requires groundwater basins historically in a state of overdraft to bring the basin into a sustainable balance over the next 20 years. In addition to limiting groundwater availability, implementation of the SGMA has implications for surface and groundwater quality. Availability of groundwater influences agricultural production decisions, resulting in variation in agricultural runoff and changes to surface and groundwater quality. Changes in water quality have economic impacts on agricultural production and urban water use. These impacts range from reductions in crop productivity to costs of alternative water supplies to amend declining water quality. We model the impact of agricultural and urban groundwater availability on surface water quality within the San Joaquin and Kings River watersheds in the Central Valley, downriver to the Mendota Pool by linking SWAT (Soil and Water Assessment Tool), an integrated water supply-quality model, with SWAP (Statewide Agricultural Production Model), a regional agricultural economics model. The integrated model specifies the relationship between changes in groundwater availability, groundwater elevation, agricultural production, and surface water quality. We link the SWAT-SWAP model output to urban and agricultural economic loss calculations that are a function of water quality. Model results demonstrate the economic tradeoffs between groundwater availability and water quality. The results of the integrated economic water supply-quality model are applicable to other regions in California and elsewhere that contain complex water supply-quality interactions.

  4. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    USGS Publications Warehouse

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through

  5. Drought resilience of the California Central Valley surface-groundwater-conveyance system

    SciTech Connect

    Miller, N.L.; Dale, L.L.; Brush, C.; Vicuna, S.; Kadir, T.N.; Dogrul, E.C.; Chung, F.I.

    2009-05-15

    A series of drought simulations were performed for the California Central Valley using computer applications developed by the California Department of Water Resources and historical datasets representing a range of droughts from mild to severe for time periods lasting up to 60 years. Land use, agricultural cropping patterns, and water demand were held fixed at the 2003 level and water supply was decreased by amounts ranging between 25 and 50%, representing light to severe drought types. Impacts were examined for four hydrologic subbasins, the Sacramento Basin, the San Joaquin Basin, the Tulare Basin, and the Eastside Drainage. Results suggest the greatest impacts are in the San Joaquin and Tulare Basins, regions that are heavily irrigated and are presently overdrafted in most years. Regional surface water diversions decrease by as much as 70%. Stream-to-aquifer flows and aquifer storage declines were proportional to drought severity. Most significant was the decline in ground water head for the severe drought cases, where results suggest that under these scenarios the water table is unlikely to recover within the 30-year model-simulated future. However, the overall response to such droughts is not as severe as anticipated and the Sacramento Basin may act as ground-water insurance to sustain California during extended dry periods.

  6. Thin-skinned tectonics of the Upper Ojai Valley and Sulphur Mountain area, Ventura basin, California

    SciTech Connect

    Huftile, G.J. )

    1991-08-01

    By integrating surface mapping with subsurface well data and drawing cross sections and subsurface maps, the geometry of shallow structures and their geologic history of the Upper Ojai Valley of California can be reconstructed. The geometry of shallow structures, the geologic history, and the location of earthquake foci then offer constraints on the deep structure of this complex area. The Upper Ojai Valley is a tectonic depression between opposing reverse faults. Its northern border is formed by the active, north-dipping San Cayetano fault, which has 6.0 km of stratigraphic separation in the Silverthread area of the Ojai oil field and 2.6 km of stratigraphic separation west of Sisar Creek. The fault dies out farther west in Ojai Valley, where the south-vergent shortening is transferred to a blind thrust. The southern border of the Upper Ojai Valley is formed by the Quaternary Lion fault set, which dips south and merges into the Sisar decollement within the south-dipping, ductile, lower Miocene Rincon formation. By the middle Pleistocene, the Sulphur Mountain anticlinorium and the Big Canyon syncline began forming as a fault-propagation fold; the fault-propagation fold is rooted in the Sisar decollement, a passive backthrust rising from a blind thrust at depth. The formation of the Sulphur Mountain anticlinorium was followed closely by the ramping of the south-dipping Lion fault set to the surface over the nonmarine upper Pleistocene Saugus Formation. To the east, the San Cayetano fault overrides and folds the Lion Fault set near the surface. Area-balancing of the deformation shows shortening of 15.5 km, and suggests a 17 km depth to the brittle-ductile transition.

  7. Paleontologic investigations of the uppermost Santa Susana Formation, south side of Simi Valley, southern California

    SciTech Connect

    Squires, R.L. )

    1991-02-01

    Strata assignable to the provincial macroinvertebrate Meganos stage, equivalent to the calcareous nannofossil CP8 zone (late Paleocene) to CP9 zone (early Eocene), are uncommon on the Pacific coast of North America. This stage has been recognized in southern California only in the uppermost Santa Susana Formation, north side of Simi Valley. Although early workers reported meganos stage strata from the south side of Simi Valley, most of these deposits have since been assigned to younger or older stages. Intensive collecting by the author now proves that Meganos stage fossils are present in the upper 100 m of the Santa Susana Formation on the south side of the Simi Valley, east of the Runkle Canyon fault. This 100-m-thick interval consists of gray, very fine-grained sandstone that has a gradational lithology from the underlying gray mudstone. Calcareous nannofossils were found only near the bottom of the 100-m-thick interval, and they are suggestive of the late Paleocene Discoaster multiradiatus (CP8) zone. Rare, macrofossil-bearing lenses near the bottom of the 100-m-thick interval contain the solitary coral Trochocyathus zitteli, the gastropods Turritella subuvasana and the Velates californicus( ), and the bivalve Fimbria susanensis. Sparsely occurring, macrofossil-bearing lenses in the upper 20 m of the 100-m-thick- interval contain the colonial coral Archohelia clarki and the gastropod Turritella andersoni susanae (= T. andersoni n. subsp. of authors). Turritella andersoni susanae indicates the early Eocene part of the Meganoz stage because it is found just above the earliest Eocene Discoaster diastypus (CP9) zone in the upper Santa Susana Formation on the north side of Simi Valley.

  8. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    USGS Publications Warehouse

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  9. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    USGS Publications Warehouse

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G.F.

    2003-01-01

    Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857-2002) 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM), the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 ?? 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60??, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of

  10. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    NASA Astrophysics Data System (ADS)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  11. Evidence for Groundwater Contamination Vulnerability in California?s Central Valley

    SciTech Connect

    Moran, J E; Leif, R; Esser, B K; Singleton, M J

    2005-12-13

    The California Water Resources Control Board, in collaboration with the US Geological Survey and Lawrence Livermore National Laboratory, has implemented a program to assess the susceptibility of groundwater resources. Advanced techniques such as groundwater age dating using the tritium-helium method, extensive use of oxygen isotopes of the water molecule ({delta}{sup 18}O) for recharge water provenance, and analysis of common volatile organic compounds (VOCs) at ultra-low levels are applied with the goal of assessing the contamination vulnerability of deep aquifers, which are frequently used for public drinking water supply. Over 1200 public drinking water wells have been tested to date, resulting in a very large, tightly spaced collection of groundwater ages in some of the heavily exploited groundwater basins of California. Smaller scale field studies that include shallow monitoring wells are aimed at assessing the probability that nitrate will be transported to deep drinking water aquifers. When employed on a basin-scale, groundwater ages are an effective tool for identifying recharge areas, defining flowpaths, and determining the rate of transport of water and entrained contaminants. De-convolution of mixed ages, using ancillary dissolved noble gas data, gives insight into the water age distribution drawn at a well, and into the effective dilution of contaminants such as nitrate at long-screened production wells. In combination with groundwater ages, low-level VOCs are used to assess the impact of vertical transport. Special studies are focused on the fate and transport of nitrate with respect to vulnerability of aquifers in agricultural and formerly agricultural areas.

  12. Map showing depth to pre-Cenozoic basement in the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Blakely, R.J.; Ponce, D.A.

    2001-01-01

    A depth to basement map of the Death Valley groundwater model area was prepared using over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  13. Assessment of the importance of alfalfa to the epidemiology of xylellae diseases in the San Joaquin Valley of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of alfalfa in the epidemiology of xylellae diseases in the San Joaquin Valley of California was assessed. Alfalfa was investigated as it is a known host of Xylella fastidiosa and often harbors large populations of a native vector, Draeculacephala minerva. Laboratory inoculation of fourtee...

  14. Kinematics of the Eastern California shear zone: Evidence for slip transfer from Owens and Saline Valley fault zones to Fish Lake Valley fault zone

    USGS Publications Warehouse

    Reheis, M.C.; Dixon, T.H.

    1996-01-01

    Late Quaternary slip rates and satellite-based geodetic data for the western Great Basin constrain regional fault-slip distribution and evolution. The geologic slip rate on the Fish Lake Valley fault zone (the northwest extension of the Furnace Creek fault zone) increases northward from about 3 to 5 mm/yr, in agreement with modeled geodetic data. The increase coincides with the intersections of the Deep Springs fault, connected to the Owens Valley fault zone, and of other faults connected to the Saline Valley fault. The combined geologic and geodetic data suggest that (1) the northwest-striking faults of the Eastern California shear zone north of the Garlock fault are connected by north- to northeast-striking normal faults that transfer slip in a series of right steps, and (2) the amount and distribution of slip among the many faults of this broad, complex plate boundary have changed through time.

  15. Geologic Map of the Death Valley Ground-water Model Area, Nevada and California

    SciTech Connect

    J.B. Workman; C.M. Menges; W.R. Page; E.M. Taylor; E.B. Ekren; P.D. Rowley; G.L. Dixon; R.A. Thompson; L.A. Wright

    2003-04-21

    The purpose of this map is to provide the surface expression of the geology in the Death Valley ground-water model area to be incorporated initially into a 3-D geologic framework model and eventually into a transient ground-water flow model by the U.S. Geological Survey (D'Agnese, 2000; D'Agnese and Faunt, 1999; Faunt and others, 1999; and O'Brien and others, 1999). This work has been conducted in collaboration with the U.S. Department of Energy in order to assess regional ground water flow near the Nevada Test Site (NTS) and the potential radioactive waste repository at Yucca Mountain. The map is centered on the NTS and its perimeter encircles the entire boundary of the numerical flow model area, covering a total area of 57,000 km2. The physiography, geology, and tectonics of the model area are extremely complex (Hunt and Mabey, 1966; Stewart, 1980; Jennings, 1994; Slate and others, 2000; Wright and others, 1999b). The northern and eastern part of the area includes typical Basin and Range topography consisting of north-trending block-faulted ranges and intervening valleys. The central part contains diverse ranges, plateaus, basins, and alluvial flats (for example, the NTS volcanic highlands and Amargosa Valley). The rugged ranges and deep basins of the Death Valley region in eastern California are characteristic of the topography of the southern and western parts of the map area. The map spans numerous tectonic subdivisions of the Great Basin. Deformation includes several generations of upper Paleozoic to Mesozoic thrust faulting that have been dismembered by extensive regional Tertiary to Quaternary normal and strike-slip faults. Much of this extensional and translational deformation is active today, with rates and amounts that vary from low to moderate in the central, eastern, and northern parts of the study area in southern Nevada, to very high in the southwestern and western parts in eastern California. For detailed discussion of the tectonic framework of the

  16. Subsidence due to Excessive Groundwater Withdrawal in the San Joaquin Valley, California

    NASA Astrophysics Data System (ADS)

    Corbett, F.; Harter, T.; Sneed, M.

    2011-12-01

    Francis Corbett1, Thomas Harter1 and Michelle Sneed2 1Department of Land Air and Water Resources, University of California, Davis. 2U.S. Geological Survey Western Remote Sensing and Visualization Center, Sacramento. Abstract: Groundwater development within the Central Valley of California began approximately a century ago. Water was needed to supplement limited surface water supplies for the burgeoning population and agricultural industries, especially within the arid but fertile San Joaquin Valley. Groundwater levels have recovered only partially during wet years from drought-induced lows creating long-term groundwater storage overdraft. Surface water deliveries from Federal and State sources led to a partial alleviation of these pressure head declines from the late 1960s. However, in recent decades, surface water deliveries have declined owing to increasing environmental pressures, whilst water demands have remained steady. Today, a large portion of the San Joaquin Valley population, and especially agriculture, rely upon groundwater. Groundwater levels are again rapidly declining except in wet years. There is significant concern that subsidence due to groundwater withdrawal, first observed at a large scale in the middle 20th century, will resume as groundwater resources continue to be depleted. Previous subsidence has led to problems such as infrastructure damage and flooding. To provide a support tool for groundwater management on a naval air station in the southern San Joaquin Valley (Tulare Lake Basin), a one-dimensional MODFLOW subsidence model covering the period 1925 to 2010 was developed incorporating extensive reconstruction of historical subsidence and water level data from various sources. The stratigraphy used for model input was interpreted from geophysical logs and well completion reports. Gaining good quality data proved problematic, and often values needed to be estimated. In part, this was due to the historical lack of awareness/understanding of

  17. SRTM Perspective View with Landsat Overlay: Caliente Range and Cuyama Valley, California

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Before the arrival of Europeans, California's Cuyama Valley was inhabited by Native Americans who were culturally and politically tied to the Chumash tribes of coastal Santa Barbara County. Centuries later, the area remains the site of noted Native American rock art paintings. In the 1800s, when Europeans established large cattle and horse-breeding ranches in the valley, the early settlers reported the presence of small villages along the Cuyama River. This perspective view looks upstream toward the southeast through the Cuyama Valley. The Caliente Range, with maximum elevations of 1,550 meters (5,085 feet), borders the valley on the left. The Cuyama River, seen as a bright meandering line on the valley floor, enters the valley from headwaters more than 2,438 meters (8,000 feet) above sea level near Mount Abel and flows 154 kilometers (96 miles) before emptying into the Pacific Ocean. The river's course has been determined in large part by displacement along numerous faults.

    Today, the Cuyama Valley is the home of large ranches and small farms. The area has a population of 1,120 and is more than an hour and a half drive from the nearest city in the county.

    This image was generated by draping an enhanced Landsat satellite image over elevation data from the Shuttle Radar Topography Mission (SRTM). Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large and growing Landsat image archive. For visualization purposes, topographic heights displayed in this image are exaggerated two times. Colors approximate natural colors.

    The elevation data used in this image was acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on Endeavour in 1994. SRTM

  18. Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated. The Madera-Chowchilla study unit is about 860 square miles and consists of the Madera and Chowchilla groundwater subbasins of the San Joaquin Valley Basin (California Department of Water Resources, 2003; Shelton and others, 2009). The study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 11 to 15 inches, most of which occurs between November and February. The main surface-water features in the study unit are the San Joaquin, Fresno, and Chowchilla Rivers, and the Madera and Chowchilla canals. Land use in the study unit is about 69 percent (%) agricultural, 28% natural (mainly grasslands), and 3% urban. The primary crops are orchards and vineyards. The largest urban area is the city of Madera. The primary aquifer system is defined as those parts of the aquifer corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. In the Madera-Chowchilla study unit, these wells typically are drilled to depths between 200 and 800 feet, consist of a solid casing from land surface to a depth of about 140 to 400 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer system. The primary aquifer system in the study unit consists of Quaternary-age alluvial-fan and fluvial deposits that were formed by the rivers draining the Sierra Nevada. Sediments consist of gravels, sands

  19. An S to P Converted Phase Recorded Near Long Valley/Mono Craters Region, California

    SciTech Connect

    Ammon, C. J.; Zucca, J.; Kasameyer, P.

    1989-01-01

    We examine and model the arrival time of a large secondary seismic arrival recorded in the Long Valley/Mono Craters region of east-central California. Zucca et. al. (1987) and Peppin (1987) both previously reported on different features of this same arrival. Using both arrays of sources and receivers we demonstrate that the arrival is an S to P converted phase as first suggested by Lewis and Peppin (1988). Backprojection of the observed travel times allows us to constrain the location of the converting material to a southeast dipping zone between 7 and 16 km depth, and {+-} 5 km on either side of the topographic margin of the caldera. The analysis demonstrates the power of source and receiver array combinations when analyzing seismic arrivals in complicated environments.

  20. Biogeochemical cycling of selenium in the San Joaquin Valley, California, USA

    USGS Publications Warehouse

    Presser, T.S.; Ohlendorf, H.M.

    1987-01-01

    Subsurface agricultural drainage waters from western San Joaquin Valley, California, were found to contain elevated concentrations of the element selenium in the form of selenate. In 1978, these drainage waters began to replace previous input to Kesterson Reservoir, a pond system within Kesterson National Wildlife Refuge; this substitution was completed by 1982. In the 1983 nesting season, unusual rates of deformity and death in embryos and hatchlings of wild aquatic birds (up to 64% of eared grebe and American coot nests) occurred at the refuge and were attributed to selenium toxicosis. Features necessary for contamination to have taken place included geologic setting, climate, soil type, availability of imported irrigation water, type of irrigation, and the unique chemical properties of selenium. The mechanisms of biogeochemical cycling raise questions about other ecosystems and human exposure.

  1. Land use investigations in the central valley and central coastal test sites, California

    NASA Technical Reports Server (NTRS)

    Estes, J. E.

    1973-01-01

    The Geography Remote Sensing Unit (GRSU) at the University of California, Santa Barbara is responsible for investigations with ERTS-1 data in the Central Coastal Zone and West Side of the San Joaquin Valley. The nature of investigative effort involves the inventory, monitoring, and assessment of the natural and cultural resources of the two areas. Land use, agriculture, vegetation, landforms, geology, and hydrology are the principal subjects for attention. These parameters are the key indicators of the dynamically changing character of the areas. Monitoring of these parameters with ERTS-1 data will provide the techniques and methodologies required to generate the information needed by federal, state, county, and local agencies to assess change-related phenomena and plan for management and development.

  2. Potential hazards from floodflows in Wildrose Canyon, Death Valley National Monument, California-Nevada

    USGS Publications Warehouse

    Crippen, John R.

    1981-01-01

    Wildrose Canyon, in the western slopes of the Panamint Mountains , is a well-traveled route in Death Valley National Monument and is a scenic area often visited for its own sake. It is an arid region that is subject to flash flooding. Although such flooding is infrequent, when it occurs in the steep, narrow canyon within which the road lies, the flow of water and accompanying debris may be hazardous to life and to any obstacle in its path. Historical records of amounts of rainfall and floodflow in the area are sparse, but data from the basin and from similar areas in the desert mountains of southern California are sufficient to provide a basis for estimates of the degree of hazard. Potential hazards from floodflows are defined for Wildrose Canyon and its nearby approach routes. (USGS)

  3. Comparison of Summer and Winter California Central Valley Aerosol Distributions from Lidar and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R., Jr.; DeYoung, Russell J.; Chu, D. Allen

    2010-01-01

    Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2008. While the PM2.5 concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Measurements of the boundary layer height from lidar instruments are necessary to incorporate satellite measurements with air quality measurements.

  4. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  5. Impacts of changing irrigation practices on waterfowl habitat use in the southern San Joaquin Valley, California

    USGS Publications Warehouse

    Barnum, D.A.; Euliss, N. H .

    1991-01-01

    We used diurnal aerial census data to examine habitat use patterns of ducks wintering in the southern San Joaquin Valley, California from 1980-87. We calculated densities (birds/ha) for the northern pintail (Anas acuta), mallard (A. platyrhynchos), green-winged teal (A. crecca), cinnamon teal (A. cyanoptera), shoveler (A. clypeata), ruddy duck (Oxyura jamaicensis), and total ducks in each of 5 habitats. Densities of pintail and total ducks were greater in September than in other months. From October through January, density of teal and total ducks was greatest on Kern National Wildlife Refuge (NWR). Densities of ruddy duck and pintail were greatest on agricultural drainwater evaporation ponds and preirrigated cropland, respectively.

  6. Chronology, sedimentology, and microfauna of groundwater discharge deposits in the central Mojave Desert, Valley Wells, California

    USGS Publications Warehouse

    Pigati, J.S.; Miller, D.M.; Bright, J.E.; Mahan, S.A.; Nekola, J.C.; Paces, J.B.

    2011-01-01

    groundwater supported persistent and long-lived desert wetlands in many broad valleys and basins in the American Southwest. When active, these systems provided important food and water sources for local fauna, supported hydrophilic and phreatophytic vegetation, and acted as catchments for eolian and alluvial sediments. Desert wetlands are represented in the geologic record by groundwater discharge deposits, which are also called spring or wetland deposits. Groundwater discharge deposits contain information on the timing and magnitude of past changes in water-table levels and, thus, are a source of paleohydrologic and paleoclimatic information. Here, we present the results of an investigation of extensive groundwater discharge deposits in the central Mojave Desert at Valley Wells, California. We used geologic mapping and stratigraphic relations to identify two distinct wetland sequences at Valley Wells, which we dated using radiocarbon, luminescence, and uranium-series techniques. We also analyzed the sediments and microfauna (ostracodes and gastropods) to reconstruct the specific environments in which they formed. Our results suggest that the earliest episode of high water-table conditions at Valley Wells began ca. 60 ka (thousands of calendar yr B.P.), and culminated in peak discharge between ca. 40 and 35 ka. During this time, cold (4-12 ??C) emergent groundwater supported extensive wetlands that likely were composed of a wet, sedge-rush-tussock meadow mixed with mesic riparian forest. After ca. 35 ka, the water table dropped below the ground surface but was still shallow enough to support dense stands of phreatophytes through the Last Glacial Maximum (LGM). The water table dropped further after the LGM, and xeric conditions prevailed until modest wetlands returned briefly during the Younger Dryas cold event (13.0-11.6 ka). We did not observe any evidence of wet conditions during the Holocene at Valley Wells. The timing of these fluctuations is consistent with

  7. Chronology, sedimentology, and microfauna of groundwater discharge deposits in the central Mojave Desert, Valley Wells, California

    USGS Publications Warehouse

    Pigati, Jeffrey S.; Miller, David M.; Bright, Jordon E.; Mahan, Shannon; Nekola, Jeffrey C.; Paces, James B.

    2011-01-01

    During the late Pleistocene, emergent groundwater supported persistent and long-lived desert wetlands in many broad valleys and basins in the American Southwest. When active, these systems provided important food and water sources for local fauna, supported hydrophilic and phreatophytic vegetation, and acted as catchments for eolian and alluvial sediments. Desert wetlands are represented in the geologic record by groundwater discharge deposits, which are also called spring or wetland deposits. Groundwater discharge deposits contain information on the timing and magnitude of past changes in water-table levels and, thus, are a source of paleohydrologic and paleoclimatic information. Here, we present the results of an investigation of extensive groundwater discharge deposits in the central Mojave Desert at Valley Wells, California. We used geologic mapping and stratigraphic relations to identify two distinct wetland sequences at Valley Wells, which we dated using radiocarbon, luminescence, and uranium-series techniques. We also analyzed the sediments and microfauna (ostracodes and gastropods) to reconstruct the specific environments in which they formed. Our results suggest that the earliest episode of high water-table conditions at Valley Wells began ca. 60 ka (thousands of calendar yr B.P.), and culminated in peak discharge between ca. 40 and 35 ka. During this time, cold (4–12 °C) emergent groundwater supported extensive wetlands that likely were composed of a wet, sedge-rush-tussock meadow mixed with mesic riparian forest. After ca. 35 ka, the water table dropped below the ground surface but was still shallow enough to support dense stands of phreatophytes through the Last Glacial Maximum (LGM). The water table dropped further after the LGM, and xeric conditions prevailed until modest wetlands returned briefly during the Younger Dryas cold event (13.0–11.6 ka). We did not observe any evidence of wet conditions during the Holocene at Valley Wells. The timing

  8. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    USGS Publications Warehouse

    Dileanis, Peter D.; Groeneveld, David P.

    1989-01-01

    A substantial quantity of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by ground-water withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depends on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near Bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume technique was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus verm iculatus , and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 MPa (megapascal) lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that Atriplex torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 MPa) than C. nauseosus or Artemisia tridentata (about -2.5 MPa), which allows them to function in drier soil environments.

  9. Osmotic potential and projected drought tolerance of four phreatophytic shrub species in Owens Valley, California

    USGS Publications Warehouse

    Dileanis, P.D.; Groeneveld, D.P.

    1988-01-01

    A large part of the water used by plant communities growing on the floor of Owens Valley, California, is derived from a shallow unconfined aquifer. Fluctuations in the water table caused by groundwater withdrawal may result in periods when this water supply is not accessible to plants. The capacity of the plants to adapt to these periods of water loss depend on the availability of water stored in the soil and on physiological characteristics related to the ability of the plants to resist dehydration and wilting. Osmotic adjustment occurred in four phreatophytic shrub species at sites near bishop, California, where the water table had been lowered by a system of pump-equipped wells installed in the vicinity of vegetation transects. The pressure-volume techniques was used to determine osmotic potential and cell-wall elasticity between March 1985 and September 1986 for Atriplex torreyi, Chrysothamnus nauseosus , Sarcobatus vermiculatus, and Artemisia tridentata. Although not usually classified as a phreatophyte, Artemisia tridentata, where it grows on the valley floor, is apparently dependent on the depth to the water table. During late summer, osmotic potentials were 0.37 to 0.41 megapascal lower in plants growing on the site where the water table had been lowered compared to an adjacent site where the water table remained at its natural levels. Measurements of soil matric potential at the two sites indicated that osmotic adjustment occurred in response to stress caused by lowering the water table. A theoretical lower limit of osmotic adjustment was determined by comparing initial cell osmotic potentials with initial xylem water potentials. These experimentally derived limits indicated that A. torreyi and S. vermiculatus may maintain leaf cell turgor at significantly lower cell water potentials (about -4.5 megapascals) than C. nauseosus or A. tridentata (about -2.5 megapascals) and allows them to function in dryer soil environments. (Author 's abstract)

  10. Seismic velocity structure and earthquake relocation for the magmatic system beneath Long Valley Caldera, eastern California

    NASA Astrophysics Data System (ADS)

    Lin, Guoqing

    2015-04-01

    A new three-dimensional (3-D) seismic velocity model and high-precision location catalog for earthquakes between 1984 and 2014 are presented for Long Valley Caldera and its adjacent fault zones in eastern California. The simul2000 tomography algorithm is applied to derive the 3-D Vp and Vp/Vs models using first-arrivals of 1004 composite earthquakes obtained from the original seismic data at the Northern California Earthquake Data Center. The resulting Vp model reflects geological structures and agrees with previous local tomographic studies. The simultaneously resolved Vp/Vs model is a major contribution of this study providing an important complement to the Vp model for the interpretation of structural heterogeneities and physical properties in the study area. The caldera is dominated by low Vp anomalies at shallow depths due to postcaldera fill. High Vp and low Vp/Vs values are resolved from the surface to ~ 3.4 km depth beneath the center of the caldera, corresponding to the structural uplift of the Resurgent Dome. An aseismic body with low Vp and high Vp/Vs anomalies at 4.2-6.2 km depth below the surface is consistent with the location of partial melt suggested by previous studies based on Vp models only and the inflation source locations based on geodetic modeling. The Sierran crystalline rocks outside the caldera are generally characterized with high Vp and low Vp/Vs values. The newly resolved velocity model improves absolute location accuracy for the seismicity in the study area and ultimately provides the basis for a high-precision earthquake catalog based on similar-event cluster analysis and waveform cross-correlation data. The fine-scale velocity structure and precise earthquake relocations are useful for investigating magma sources, seismicity and stress interaction and other seismological studies in Long Valley.

  11. Late Cenozoic stratigraphy and structure of the western margin of the central San Joaquin Valley, California

    USGS Publications Warehouse

    Lettis, William R.

    1982-01-01

    Late Cenozoic Stratigraphy Late Cenozoic deposits in the west-central San Joaquin Valley and adjacent foothills of the Diablo Range consist mainly of unconsolidated, poorly-sorted to well-sorted gravel, sand, silt and clay derived primarily from the Diablo Range and secondarily from the Sierra Nevada. Sedimentary structures, such as channeled contacts, laminated bedding, cross-stratification and clast-imbrication indicate that most of the deposits were transported and laid down by running water. These deposits are described and their facies relationships are illustrated in the 'Late Cenozoic Stratigraphy' section of this report (see Figures 17, and 26, and Table 9). Sediment shed from the Diablo Range accumulated primarily as a complex of coalescing alluvial fans on the piedmont slope of a San Joaquin Valley that at one time extended across the foothill belt to the present margin of the central Diablo Range; and as local fills within stream valleys of the Diablo Range foothills tributary to the San Joaquin Valley. These deposits are well exposed in Interstate-5 roadcuts, California Aqueduct and Delta-Mendota canal cuts, and stream banks along the many ephemeral and intermittent streams draining the Diablo Range. Sediment derived from the Sierra Nevada is confined primarily to the floodbasin of the San Joaquin Valley. It includes arkosic riverine and floodbasin deposits from the San Joaquin River and associated sloughs, as well as local ephemeral and perennial pond, swamp, oxbow-lake and lake deposits. These deposits are well-exposed in stream banks of the San Joaquin River and a few of the larger sloughs such as Salt Slough, Mud Slough and Kings Slough. Well-sorted, fine- and medium-grained, quartzose, cross-bedded sand, presumably derived from the Sierra Nevada, locally interfinger with or underlie fine-grained Coast Range alluvial-fan deposits. The sand probably originated by eolian reworking of Sierran alluvium from the floodbasin of the lower San Joaquin River

  12. Field Scale Groundwater Nitrate Loading Model for the Central Valley, California, 1945-Current

    NASA Astrophysics Data System (ADS)

    Harter, T.; Dzurella, K.; Bell, A.; Kourakos, G.

    2015-12-01

    Anthropogenic groundwater nitrate contamination in the Central Valley aquifer system, California, is widespread, with over 40% of domestic wells in some counties exceeding drinking water standards. Sources of groundwater nitrate include leaky municipal wastewater systems, municipal wastewater recharge, onsite wastewater treatment (septic) systems, atmospheric nitrogen deposition, animal farming, application of organic waste materials (sludge, biosolids, animal manure) to agricultural lands, and synthetic fertilizer. At the site or field scale, nitrogen inputs to the landscape are balanced by plant nitrogen uptake and harvest, atmospheric nitrogen losses, surface runoff of nitrogen, soil nitrogen storage changes, and leaching to groundwater. Irrigated agriculture is a dominant player in the Central Valley nitrogen cycle: The largest nitrogen fluxes are synthetic fertilizer and animal manure applications to cropland, crop nitrogen uptake, and groundwater nitrogen losses. We construct a historic field/parcel scale groundwater nitrogen loading model distinguishing urban and residential areas, individual animal farming areas, leaky wastewater lagoons, and approximately 50 different categories of agricultural crops. For non-agricultural landuses, groundwater nitrate loading is based on reported leaching values, animal population, and human population. For cropland, groundwater nitrate loading is computed from mass balance, taking into account diverse and historically changing management practices between different crops. Groundwater nitrate loading is estimated for 1945 to current. Significant increases in groundwater nitrate loading are associated with the expansion of synthetic fertilizer use in the 1950s to 1970s. Nitrate loading from synthetic fertilizer use has stagnated over the past 20 years due to improvements in nutrient use efficiency. However, an unbroken 60 year exponential increase in dairy production until the late 2000s has significantly impacted the

  13. Observations of earthquake source parameters at 2 km depth in the Long Valley Caldera, eastern California

    USGS Publications Warehouse

    Prejean, Stephanie G.; Ellsworth, William L.

    2001-01-01

    To investigate seismic source parameter scaling and seismic efficiency in the Long Valley caldera, California, we measured source parameters for 41 earthquakes (M 0.5 to M 5) recorded at 2 km depth in the Long Valley Exploratory Well. Borehole recordings provide a wide frequency bandwidth, typically 1 to 200–300 Hz, and greatly reduce seismic noise and path effects compared to surface recordings. We calculated source parameters in both the time and frequency domains for P and S waves. At frequencies above the corner frequency, spectra decay faster than ω3, indicating that attenuation plays an important role in shaping the spectra (path averaged Qp = 100–400, Qs = 200–800). Source parameters are corrected for attenuation and radiation pattern. Both static stress drops and apparent stresses range from approximately 0.01 to 30 MPa. Although static stress drops do not vary with seismic moment for these data, our analyses are consistent with apparent stress increasing with increasing moment. To estimate tectonic driving stress and seismic efficiencies in the region, we combined source parameter measurements with knowledge of the stress field and a Coulomb failure criterion to infer a driving stress of 40–70 MPa. Subsequent seismic efficiencies are consistent with McGarr's (1999) hypothesis of a maximum seismic efficiency of 6%.

  14. Possible record of the Laschamp Excursion in lacustrine sediments in the Searles Valley, California

    NASA Astrophysics Data System (ADS)

    Liddicoat, J.; Coe, R.; Knott, J.

    2009-04-01

    The Pleistocene history of Searles Lake, California, is known in detail from field work and cores recovered during industrial exploration of Searles Valley, in which the lake formed (Smith et al., 1979; Liddicoat et al., 1980). Exposed siltstone assigned the age about 34,000 to 46,000 calendar years B.P. (eight AMS 14-Carbon dates on gastropods and mollusks from fine- to medium-grain sand units that bracket the siltstone) records reverse palaeomagnetic polarity following thermal demagnetization to 600˚ C at two localities 3 km apart. For 12 samples (six pairs from six horizons, three pairs from each locality), the mean palaeomagnetic directions are Incl = - 37.5˚, Decl = 180.2˚, alpha 95 = 19.5˚ and the mean Virtual Geomagnetic Pole (VGP) is 73.6˚ S, 231.8˚ E, Alpha 95 = 20.6˚. The reverse polarity is not part of the Mono Lake Excursion (Denham and Cox, 1971) that never has a VGP in the Southern Hemisphere (Liddicoat and Coe, 1979). Other samples from the two Searles Valley localities do not reach a definite reverse direction but contain a component of magnetization that approaches reverse polarity above 400˚ C. The reverse polarity in Searles Lake sediments offers an opportunity to model the geomagnetic field for two excursions (Laschamp and Mono Lake) in western North America at localities separated by about 300 km.

  15. Lithology, mineralogy, and paleontology of Quaternary lake deposits in Long Valley Caldera, California

    USGS Publications Warehouse

    Fournier, R.B.

    1989-01-01

    Drill cores and cuttings from two drill holes, about 3 km apart, in Long Valley caldera, Mono County, California, were studied using x-ray diffraction and optical methods. A thick sequence of tuffs and lake sediments was encountered in LVCH-1 (1,000 ft deep) and Republic well 66-29 (6,920 ft deep), drilled in the southeast part of the Long Valley caldera. Ostracods, diatoms, and isotopic data indicate that the sediments and tuffs were deposited in a shallow caldera lake which changed in salinity over time. Conditions ranged from very saline in the older lake to fresh in the youngest. The sequence of secondary minerals from top to bottom is: clinoptilolite, mordenite, analcime, K-feldspar (and albite). In some geothermal systems, this sequence of secondary minerals is a function of temperature; however, the paleontological and isotopic data indicate that the change in secondary minerals with increasing depth is due to the older strata being deposited in a more saline environment. No mineralogical evidence of hydrothermal alteration is present, although the high lithium content of some clays and feldspars and the isotopic composition of some sulfate (gypsum) seems to require a hydrothermal source. (Lantz-PTT)

  16. Ground-water resources of Lanfair and Fenner Valleys and vicinity, San Bernardino County, California

    USGS Publications Warehouse

    Freiwald, D.A.

    1984-01-01

    Lanfair and Fenner Valleys and vicinity cover about 1,300 square miles in eastern San Bernardino County, California. Average annual precipitation ranges from 3 to 10 inches over the area. Ground water is utilized primarily for stock and domestic purposes, and occurs in the unconsolidated deposits as well as in the highly fractured consolidated rock. Ground-water levels in wells range from 5 to 600 feet below land surface, and well yields range from 3 to 1,200 gallons per minute throughout the study area. Records indicate that water levels are at or near their predevelopment levels. Springs occur along faults and formational contacts and generally discharge less than 5 gallons per minute. Measured ground-water outflow from Lanfair Valley at Piute Spring ranged from 100 to 630 acre-feet per year. Most of the water is of good quality for domestic and stock use. However , water from two wells indicates a concentration of sulfate that is above the recommended limit for drinking water. Water supplies are adequate for present needs. However, large-scale pumping would result in the lowering of the water table and a reduction of the ground water in storage. (USGS)

  17. Predicting Arsenic in Drinking Water Wells of the Central Valley, California.

    PubMed

    Ayotte, Joseph D; Nolan, Bernard T; Gronberg, Jo Ann

    2016-07-19

    Probabilities of arsenic in groundwater at depths used for domestic and public supply in the Central Valley of California are predicted using weak-learner ensemble models (boosted regression trees, BRT) and more traditional linear models (logistic regression, LR). Both methods captured major processes that affect arsenic concentrations, such as the chemical evolution of groundwater, redox differences, and the influence of aquifer geochemistry. Inferred flow-path length was the most important variable but near-surface-aquifer geochemical data also were significant. A unique feature of this study was that previously predicted nitrate concentrations in three dimensions were themselves predictive of arsenic and indicated an important redox effect at >10 μg/L, indicating low arsenic where nitrate was high. Additionally, a variable representing three-dimensional aquifer texture from the Central Valley Hydrologic Model was an important predictor, indicating high arsenic associated with fine-grained aquifer sediment. BRT outperformed LR at the 5 μg/L threshold in all five predictive performance measures and at 10 μg/L in four out of five measures. BRT yielded higher prediction sensitivity (39%) than LR (18%) at the 10 μg/L threshold-a useful outcome because a major objective of the modeling was to improve our ability to predict high arsenic areas.

  18. A plan to study the aquifer system of the Central Valley of California

    USGS Publications Warehouse

    Bertoldi, Gilbert L.

    1979-01-01

    Unconsolidated Quaternary alluvial deposits comprise a large complex aquifer system in the Central Valley of California. Millions of acre-feet of water is pumped from the system annually to support a large and expanding agribusiness industry. Since the 1950's, water levels have been steadily declining in many areas of the valley and concern has been expressed about the ability of the entire ground-water system to support agribusiness at current levels, not to mention its ability to function at projected expansion levels. At current levels of ground-water use, an estimated 1.5 to 2 million acre-feet is withdrawn from storage each year; that is, 1.5 to 2 million acre-feet of water is pumped annually in excess of annual replenishment. The U.S. Geological Survey has initiated a 4-year study to develop geologic, hydrologic, and hydraulic information and to establish a valleywide ground-water data base that will be used to build computer models of the ground-water flow system. Subsequently, these models may be used to evaluate the system response to various ground-water management alternatives. This report describes current problems, objectives of the study, and outlines the general work to be accomplished in the study area. A bibliography of about 600 references is included. (Kosco-USGS)

  19. A summary of ground-water pumpage in the Central Valley, California, 1961-77

    USGS Publications Warehouse

    Diamond, Jonathan; Williamson, A.K.

    1983-01-01

    In the Central Valley of California, a great agricultural economy has been developed in a semiarid environment. This economy is supported by imported surface water and 9 to 15 million acre-feet per year of ground water. Estimates of ground-water pumpage computed from power consumption have been compiled and summarized. Under ideal conditions, the accuracy of the methods used is about 3 percent. This level of accuracy is not sustained over the entire study area. When pumpage for the entire area is mapped, the estimates seem to be consistent areally and through time. A multiple linear-regression model was used to synthesize data for the years 1961 through 1977, when power data were not available. The model used a relation between ground-water pumpage and climatic indexes to develop a full suite of pumpage data to be used as input to a digital ground-water model, one of the products of the Central Valley Aquifer Project. Statistical analysis of well-perforation data from drillers ' logs and water-temperature data was used to determine the percentage of pumpage that was withdrawn from each of two horizontal layers. (USGS)

  20. Effects of hydrologic infrastructure on flow regimes of California's Central Valley rivers: Implications for fish populations

    USGS Publications Warehouse

    Brown, Larry R.; Bauer, Marissa L.

    2010-01-01

    Alteration of natural flow regimes is generally acknowledged to have negative effects on native biota; however, methods for defining ecologically appropriate flow regimes in managed river systems are only beginning to be developed. Understanding how past and present water management has affected rivers is an important part of developing such tools. In this paper, we evaluate how existing hydrologic infrastructure and management affect streamflow characteristics of rivers in the Central Valley, California and discuss those characteristics in the context of habitat requirements of native and alien fishes. We evaluated the effects of water management by comparing observed discharges with estimated discharges assuming no water management ("full natural runoff"). Rivers in the Sacramento River drainage were characterized by reduced winter–spring discharges and augmented discharges in other months. Rivers in the San Joaquin River drainage were characterized by reduced discharges in all months but particularly in winter and spring. Two largely unaltered streams had hydrographs similar to those based on full natural runoff of the regulated rivers. The reduced discharges in the San Joaquin River drainage streams are favourable for spawning of many alien species, which is consistent with observed patterns of fish distribution and abundance in the Central Valley. However, other factors, such as water temperature, are also important to the relative success of native and alien resident fishes. As water management changes in response to climate change and societal demands, interdisciplinary programs of research and monitoring will be essential for anticipating effects on fishes and to avoid unanticipated ecological outcomes.

  1. Ground-water resources of Honey Lake valley, Lassen County, California, and Washoe County, Nevada

    USGS Publications Warehouse

    Handman, E.H.; Londquist, C.J.; Maurer, D.K.

    1990-01-01

    Honey Lake Valley is a 2,200 sq-mi, topographically closed basin about 35 miles northwest of Reno, Nevada. Unconsolidated basin-fill deposits on the valley floor and fractured volcanic rocks in northern and eastern uplands are the principal aquifers. In the study area, about 130,000 acre- ft of water recharges the aquifer system annually, about 40% by direct infiltration of precipitation and about 60% by infiltration of streamflow and irrigation water. Balancing this is an equal amount of groundwater discharge, of which about 65% evaporates from the water table or is transpired by phreatophytes, about 30 % is withdrawn from wells, and about 5% leaves the basin as subsurface outflow to the east. Results of a groundwater flow model of the eastern part of the basin, where withdrawals for public supply have been proposed, indicate that if 15,000 acre-ft of water were withdrawn annually, a new equilibrium would eventually be established by a reduction of about 60% in both evapotranspiration and subsurface outflow to the east. Hydrologic effects would be minimal at the western boundary of the flow-model area. Within the modeled area, the increased withdrawals cause an increase in the simulated net flow of groundwater eastward across the California-Nevada State line from about 670 acre-ft/yr to about 2,300 acre-ft/yr. (USGS)

  2. Predicting arsenic in drinking water wells of the Central Valley, California

    USGS Publications Warehouse

    Ayotte, Joseph; Nolan, Bernard T.; Gronberg, JoAnn M.

    2016-01-01

    Probabilities of arsenic in groundwater at depths used for domestic and public supply in the Central Valley of California are predicted using weak-learner ensemble models (boosted regression trees, BRT) and more traditional linear models (logistic regression, LR). Both methods captured major processes that affect arsenic concentrations, such as the chemical evolution of groundwater, redox differences, and the influence of aquifer geochemistry. Inferred flow-path length was the most important variable but near-surface-aquifer geochemical data also were significant. A unique feature of this study was that previously predicted nitrate concentrations in three dimensions were themselves predictive of arsenic and indicated an important redox effect at >10 μg/L, indicating low arsenic where nitrate was high. Additionally, a variable representing three-dimensional aquifer texture from the Central Valley Hydrologic Model was an important predictor, indicating high arsenic associated with fine-grained aquifer sediment. BRT outperformed LR at the 5 μg/L threshold in all five predictive performance measures and at 10 μg/L in four out of five measures. BRT yielded higher prediction sensitivity (39%) than LR (18%) at the 10 μg/L threshold–a useful outcome because a major objective of the modeling was to improve our ability to predict high arsenic areas.

  3. Textural and mineralogical biosignatures in an unusual microbialite from Death Valley, California

    NASA Astrophysics Data System (ADS)

    Douglas, Susanne; Abbey, William; Mielke, Randall; Conrad, Pamela; Kanik, Isik

    2008-02-01

    For in situ astrobiological studies of Mars or other planets, we must employ strategies that will enable us to verify whether our approach and prototype instruments are actually capable of distinguishing life from non-life. This must be done against a background of rigorously conducted scientific characterization of the environment or sample types being considered for measurement by the instruments under development. In this study we show how a combination of mineralogical and textural features can be considered a biosignature in an early Mars analogue environment, Death Valley, California. We propose that it is a combination of features in context of the geologic matrix which allows determination of biogenicity to be made. Polymineralic microbialites (organosedimentary formations constructed by microorganisms) from a spring pool at Badwater, within Death Valley National Park, are composed of alternating biogenic and abiogenic minerals in a distinct triplet sequence related to wet and dry seasons. A microbial community, occurring as a black biofilm, produced paired layers of two different mineral types: manganese oxyhydroxides and calcite. These biogenic layers are separated from the next pair by a gypsum layer and appear to be laid down in the wet season, with the gypsum (a mineral positively identified on Mars) precipitating in the dry part of the year, abiogenically (i.e., not dependent on microbial metabolic activity for its deposition). In addition, textural features (smaller grain size and less geometric morphology) unique to the biogenic vs the abiogenic layers, were consistently observed so that texture served as a biosignature in this environment.

  4. Reanalysis of S-to-P amplitude ratios for gross attenuation structure, Long Valley caldera, California

    SciTech Connect

    Sanders, C.O.

    1993-12-01

    Because of the strong interest in the magmatism and volcanism at Long Valley caldera, eastern California, and because of recent sifnigicant improvements in our knowledge of the caldera velocity structure and earthquake locations, I have reanalyzed the local-earthquake S-to-P amplitude-ratio data of Sanders (1984) for the gross three-dimensional attenuation structure of the upper 10 km of Long Valley caldera. The primary goals of the analysis are to provide more accurate constraints on the depths of the attenuation anomalies using improved knowledge of the ray locations and an objective inversion procedure. The new image of the high S wave attenuation anomaly in the west-central cadlera suggests that the top of the principal anomaly is at 7-km depth, which is 2 km deeper than previously determined. Because of poor resolution in much of the region, some of the data remain unsatisfied by the final attenuation model. This unmodeled data may imply unresolved attenuation anomalies, perhaps small anomalies in the kilometer or two just above the central-caldera anomaly and perhaps a larger anomaly at about 7-km depth in the northwest caldera or somewhere beneath the Mono Craters. The central-caldera S wave attenuation anomaly has a location similar to mapped regions of low teleseismic P wave velocity, crustal inflation, reduced density, and aseismicity, strongly suggesting magmatic association.

  5. Climate Change Impacts on Water Resources and Irrigated Agriculture in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Winter, J.; Young, C. A.; Azarderakhsh, M.; Ruane, A. C.; Rosenzweig, C.

    2013-12-01

    Agricultural productivity is strongly dependent on the availability of water, necessitating accurate projections of water resources, the allocation of water resources across competing sectors, and the effects of insufficient water resources on crops to assess the impacts of climate change on agricultural productivity. To explore the interface of water and agriculture in California's Central Valley, the Decision Support System for Agrotechnology Transfer (DSSAT) crop model was coupled to the Water Evaluation and Planning System (WEAP) water resources model, deployed over the region, and run using both historical and future climate scenarios. This coupling brings water supply constraints to DSSAT and sophisticated agricultural water use, management, and diagnostics to WEAP. A 30-year simulation of WEAP-DSSAT forced using a spatially interpolated observational dataset was run from 1980-2009. Moderate Resolution Imaging Spectroradiometer Surface Resistance and Evapotranspiration (MOD16) and Terrestrial Observation and Prediction System (TOPS) data were used to evaluate WEAP-DSSAT evapotranspiration calculations. Overall WEAP-DSSAT reasonably captures the seasonal cycle of observed evapotranspiration, but some catchments contain significant biases. Future climate scenarios were constructed by adjusting the spatially interpolated observational dataset with North American Regional Climate Change Assessment Program differences between future (2050-2069) and historical (1980-1999) regional climate model simulations of precipitation and temperature. Generally, within the Central Valley temperatures warm by approximately 2°C, precipitation remains constant, and crop water use efficiency increases. The overall impacts of future climate on irrigated agricultural yields varies across the Central Valley and is highly dependent on crop, water resources demand assumptions, and agricultural management.

  6. Isostatic gravity map of the Death Valley ground-water model area, Nevada and California

    SciTech Connect

    Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.

    2002-03-12

    Gravity investigations of the Death Valley ground-water model area are part of an interagency effort by the U.S. Geological Survey (USGS) and the U.S. Department of Energy (Interagency agreement DE-AI08-96NV11967) to help characterize the geology and hydrology of southwestern Nevada and parts of California. The Death Valley ground-water model is located between lat 35 degrees 00' and 38 degrees 15' N., and long 115 degrees and 118 degrees W. An isostatic gravity map of the Death Valley ground-water model was prepared from over 40,000 gravity stations, most of which are publicly available on a CD-ROM of gravity data of Nevada (Ponce, 1997). The map also includes gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1998; Morin and Blakely, 1999). A subset of these gravity data in the Nevada Test Site and vicinity were described in detail by Harris and others (1989) who included information on gravity meters used, dates of collection, sources, descriptions of base stations, plots of data, and digital and paper lists of principal facts. For display purposes only, gravity data within Yucca Flat were thinned by a factor of 10. The digital gravity data set was gridded at an interval of 400 m using a computer program (Webring, 1981) based on a minimum curvature algorithm by Briggs (1974). The resulting grid was then interpolated to a 200-m grid to minimize pixel size, and then it was color contoured.

  7. Postcrystalline deformation of the Pelona Schist bordering Leona Valley, southern California

    USGS Publications Warehouse

    Evans, James George

    1978-01-01

    Detailed structural investigations in part of the Leona Valley segment of the San Andreas fault zone, 5-16 km west of Palm dale, focused on the postcrystalline deformation of the block of Mesozoic(?) Pelona Schist underlying Portal and Ritter Ridges. The early fabric of the schist is modified and in places obliterated by cataclasis along shear zones near the San Andreas fault and the Hitchbrook fault, a major west-striking branch of the San Andreas fault system. Anastomosing shear foliations, fabric elements of the postcrystalline deformation, intersect at small angles to one another and are generally vertical or steeply dipping to the north-northeast; they are subparallel to the Hitchbrook fault. Many of these shear foliations are nearly parallel to the compositional layering and schistosity, which commonly dip at moderately steep angles to the northwest. Folds in the shear foliation, commonly intrafolial, generally plunge at moderately steep angles to the north-northeast or are nearly vertical. Other folds, various in form, have axes parallel to the intersections of the early schistosity and the shear foliations and plunge in many other directions. Faults, roughly similar in orientation to the shear foliations, have orientations subparallel to large-scale structures and structural features in the Leona Valley area and in southern California: the San Andreas fault zone in Leona Valley, the Hitchbrook fault, the Garlock fault zone, steep northward-striking faults, the San Andreas fault zone north and south of the Transverse Ranges, and the generally northwest-dipping early compositional layering of the schist. Slickensides on some of the minor faults indicate that the latest movements on the steep faults are predominantly strike slip with indications of less common episodes of predominantly dip slip. The low-angle faults have oblique slip with a large dip component.

  8. Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images

    USGS Publications Warehouse

    Crowley, J.K.; Hook, S.J.

    1996-01-01

    Efflorescent salt crusts and associated sediments in Death Valley, California, were studied with remote-sensing data acquired by the NASA thermal infrared multispectral scanner (TIMS). Nine spectral classes that represent a variety of surface materials were distinguished, including several classes that reflect important aspects of the playa groundwater chemistry and hydrology. Evaporite crusts containing abundant thenardite (sodium sulfate) were mapped along the northern and eastern margins of the Cottonball Basin, areas where the inflow waters are rich in sodium. Gypsum (calcium sulfate) crusts were more common in the Badwater Basin, particularly near springs associated with calcic groundwaters along the western basin margin. Evaporite-rich crusts generally marked areas where groundwater is periodically near the surface and thus able to replenish the crusts though capillary evaporation. Detrital silicate minerals were prevalent in other parts of the salt pan where shallow groundwater does not affect the surface composition. The surface features in Death Valley change in response to climatic variations on several different timescales. For example, salt crusts on low-lying mudflats form and redissolve during seasonal-to-interannual cycles of wetting and desiccation. In contrast, recent flooding and erosion of rough-salt surfaces in Death Valley probably reflect increased regional precipitation spanning several decades. Remote-sensing observations of playas can provide a means for monitoring changes in evaporite facies and for better understanding the associated climatic processes. At present, such studies are limited by the availability of suitable airborne scanner data. However, with the launch of the Earth Observing System (EOS) AM-1 Platform in 1998, multispectral visible/near-infrared and thermal infrared remote-sensing data will become globally available. Copyright 1996 by the American Geophysical Union.

  9. Mapping playa evaporite minerals with AVIRIS data: A first report from death valley, California

    USGS Publications Warehouse

    Crowley, J.K.

    1993-01-01

    Efflorescent salt crusts in Death Valley, California, were mapped by using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and a recently developed least-squares spectral band-fitting algorithm. Eight different saline minerals were remotely identified, including three borates, hydroboracite, pinnoite, and rivadavite, that have not been previously reported from the Death Valley efflorescent crusts. The three borates are locally important phases in the crusts, and at least one of the minerals, rivadavite, appears to be forming directly from brine. Borates and other evaporite minerals provide a basis for making remote chemical measurements of desert hydrologic systems. For example, in the Eagle Borax Spring area, the AVIRIS mineral maps pointed to elevated magnesium and boron levels in the ground waters, and to the action of chemical divides causing subsurface fractionation of calcium. Many other chemical aspects of playa brines should have an expression in the associated evaporite assemblages. Certain anhydrous evaporites, including anhydrite, glauberite, and thenardite, lack absorption bands in the visible and near-infrared wavelength range, and crusts composed of these minerals could not be characterized by using AVIRIS. In these situations, thermal-infrared remote sensing data may complement visible and near-infrared data for mapping evaporites. Another problem occurred in wet areas of Death Valley, where water absorption caused low signal levels in the 2.0-2.5 ??m wavelength region that obscured any spectral features of evaporite minerals. Despite these difficulties, the results of this study demonstrate the potential for using AVIRIS and other imaging spectrometer data to study playa chemistry. Such data can be useful for understanding chemical linkages between evaporites and ground waters, and will facilitate studies of how desert ground-water regimes change through time in response to climatic and other variables. ?? 1993.

  10. Emplacement Mechanisms and Evolution of the Long-runout Quaternary Eureka Valley Landslide in Eastern California

    NASA Astrophysics Data System (ADS)

    Watkins, J. A.; Scully, J. E. C.; Lawson, M. J.; Rhodes, E. J.; Yin, A.

    2015-12-01

    Debate over characterization of the transport mechanism(s) of long-runout landslide deposits, specifically the role of water or fluids in their initiation and transport, has occurred over the past several decades. Using the Elm, Blackhawk, Sherman, and Martian landslides as examples, turbulent grain flow, air-layer lubrication, mechanical fluidization, basal lubrication, and acoustic fluidization have been proposed as emplacement mechanisms. A key component missing from this body of work is an in-depth geological analysis of a well-preserved and well-exposed long-runout landslide deposit. Here, we analyze in detail the geomorphology and structure of a long-runout landslide in southeastern Eureka Valley, California in order to constrain the previously proposed hypotheses for mechanisms of long-runout landslide emplacement. Based on integrated field, photogeologic, spectral, and luminescence dating investigations of the extremely well-preserved Eureka Valley landslide deposit, we interpret its initiation to be the result of normal-fault-generated fracture in the Upper Cambrian strata of the bounding Last Chance Range western margin. The long-distance transport of the Eureka Valley landslide is proposed to be translational and likely due to lubrication of the fluidized landslide mass through the presence of basal clays, which resulted in 3D simple shear internal deformation within the landslide sheet. Post-emplacement, the landslide deposit is interpreted to have undergone fluvial modification and rotation. We determine the minimum landslide emplacement age and the maximum age of post-emplacement rotation to be early to mid Holocene (8275 +/- 300 yr BP to 9465 +/- 380 yr BP). Our analysis of features related to long-distance transport may be applied to other long-runout landslides with similar morphologies, including those on other planetary surfaces, providing continued insight into these prominent yet enigmatic natural hazards.

  11. Imaging the magmatic and hydrothermal systems of Long Valley Caldera, California with magnetotellurics

    NASA Astrophysics Data System (ADS)

    Peacock, J.; Mangan, M.; McPhee, D.; Ponce, D. A.

    2015-12-01

    Long Valley Caldera (LVC) in Eastern California contains active hydrothermal systems, areas of episodic seismicity, and areas of elevated gas emissions, all of which are related to a deeper magmatic system that is not well characterized. To better image the Long Valley magmatic system, 60 full-tensor broadband magnetotelluric (MT) stations were collected in LVC and modeled in three-dimensions to constrain the subsurface electrical resistivity structure down to 30 km. Three conductive zones are imaged in the preferred resistivity model. The most prominent conductive zone (<7 Ohm-m) is located 5 km beneath the resurgent dome (near the center of Long Valley Caldera), where it elongates in a north-south direction, and has westward connection to the surface close to well 44-16 near Deer Mountan. This conductive zone is interpreted to be an accumulation zone of hydrothermal fluids originating from a deeper magmatic source. The shape of the conductive body suggests that the fluids pool under the resurgent dome and migrate westward, upwelling just south of well 44-16 to feed the near surface geothermal system. A second conductive zone (<10 Ohm-m) is 4 km southeast of the resurgent dome and 5 km deep and coincident with the seismic swarm of 2014. This is another zone of fluid accumulation, where the source could be the fluid accumulation zone to the west or an independent deeper source. The third conductive anomaly (<10 Ohm-m) is a few kilometers south of the resurgent dome below a depth of 15 km, and collocated with a low p- and s-wave velocity zone, and directly beneath a GPS inflation area, all of which advocate for a magma mush zone of as much as 30% interstitial melt. The preferred resistivity model suggests an accumulation of hydrothermal fluids 5 km below the resurgent dome that originates from a deeper magmatic source at 15 km depth.

  12. Microbial and Dissolved Organic Carbon Characterization of Stormflow in the Santa Ana River at Imperial Highway, Southern California, 1999-2002

    USGS Publications Warehouse

    Izbicki, John A.; Pimentel, M. Isabel; Leddy, Menu; Bergamaschi, Brian A.

    2004-01-01

    The Santa Ana River drains about 2,670 square miles of densely populated coastal southern California, near Los Angeles. Almost all the flow in the river, more than 200,000 acre-feet annually, is diverted to ponds where it infiltrates and recharges underlying aquifers pumped to supply water for more than 2 million people. Base flow in the river is almost entirely treated municipal wastewater discharged from upstream treatment plants and, in the past, stormflow was considered a source of high-quality water suitable for use as a source of ground-water recharge that would dilute poorer quality water recharged during base flow. Stormflow in the Santa Ana River at the Imperial Highway diversion contains total coliform bacteria concentrations as high as 3,400,000 colonies per 100 mL (milliliters). Fecal indicator bacteria concentrations, including fecal coliforms, Escherichia coli, and enterococci, were as high as 310,000, 84,000, and 102,000 colonies per 100 mL, respectively. Although concentrations were high owing to urban runoff during the first stormflow of the rainy season, the highest concentrations occurred during the recessional flows of the first stormflow of the rainy season after streamflow returned to pre-storm conditions. Molecular indicators of microbiological organisms in stormflow, including phospholipid fatty acid (PLFA) and genetic data, show that the diversity of the total microbial population decreases during stormflow while fecal indicator bacteria concentrations increase. This suggests that the source of the bacteria must be poorly diverse and dominated by only a few types of bacteria. Although direct runoff of fecal indicator bacteria from urban areas occurs, this process cannot explain the very high concentrations of fecal indicator bacteria in runoff from upstream parts of the basin characterized by urban, agricultural (including more than 300,000 head of dairy cattle), and other land uses. Although other explanations are possible, fecal indicator

  13. In Situ Aerosol Properties Measured over the California Central Valley and the Sierra Nevada Mountain Range

    NASA Astrophysics Data System (ADS)

    Tomlinson, J. M.; Comstock, J. M.; Hubbe, J.; Kluzek, C.; Schmid, B.; Jonsson, H.; Woods, R.

    2011-12-01

    Anthropogenic aerosols are hypothesized to influence the formation of clouds and precipitation amounts within the Sierra Nevada Mountains. This could have a profound effect on the California water supply. To study this phenomena, an Ultra High Sensitivity Aerosol Spectrometer (UHSAS), Passive Cavity Aerosol Spectrometer (PCASP), and Cloud Aerosol Spectrometer (CAS) were operated aboard the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Gulfstream-1 aircraft from February 2 to March 6, 2011 during the CalWater field campaign. The combined aerosol size distribution from the three instruments characterizes the size-resolved concentration of the submicron and supermicron aerosol over the California Central Valley and Sierra Nevada Mountain Range. The measured aerosol size distributions from CalWater are compared with the size distributions measured during the DOE Carbonaceous Aerosol and Radiative Effects Study (CARES) in June 2010 to determine the changes in the aerosol size distributions during different seasons, atmospheric river events, and long-range transport events from Asia. These changes are used to estimate the resulting aerosol effect on cloud condensation nuclei concentrations and the potential impact on cloud formation and precipitation.

  14. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  15. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    SciTech Connect

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-10-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35{degree}N; Long. 115{degree}W and lat. 38{degree}N, long. 118{degree}W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. The procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute`s ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado.

  16. Simi Valley, California, Perspective View of Shaded Relief, color as height

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This topographic perspective view shows an area of Ventura County, California, including Simi Valley in the center of the image. The view is toward the East. At the lower left is the Santa Clara River Valley. The mountains along the left of the image are Oak Ridge, known to be an active zone of seismic uplift. San Fernando Valley is smooth area at top. Hazards from earthquakes, floods and fires are intimately related to the topography in this area. Topographic data and other remote sensing images provide valuable information for assessing and mitigating the natural hazards in regions such as Southern California.

    This shaded relief perspective view was generated using topographic data from the Shuttle Radar Topography Mission. A computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. On flatter surfaces, the pattern of light and shadows can reveal subtle features in the terrain. Colors show the elevation as measured by SRTM. Colors range from blue at the lowest elevations to red at the highest elevations. This image contains about 750 meters (2500 feet) of total relief. To emphasize subtle differences in topography, the relief is exaggerated by a factor of 5.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German (DLR) and

  17. Map of the Rinconada and Reliz Fault Zones, Salinas River Valley, California

    USGS Publications Warehouse

    Rosenberg, Lewis I.; Clark, Joseph C.

    2009-01-01

    The Rinconada Fault and its related faults constitute a major structural element of the Salinas River valley, which is known regionally, and referred to herein, as the 'Salinas Valley'. The Rinconada Fault extends 230 km from King City in the north to the Big Pine Fault in the south. At the south end of the map area near Santa Margarita, the Rinconada Fault separates granitic and metamorphic crystalline rocks of the Salinian Block to the northeast from the subduction-zone assemblage of the Franciscan Complex to the southwest. Northwestward, the Rinconada Fault lies entirely within the Salinian Block and generally divides this region into two physiographically and structurally distinct areas, the Santa Lucia Range to the west and the Salinas Valley to the east. The Reliz Fault, which continues as a right stepover from the Rinconada Fault, trends northwestward along the northeastern base of the Sierra de Salinas of the Santa Lucia Range and beyond for 60 km to the vicinity of Spreckels, where it is largely concealed. Aeromagnetic data suggest that the Reliz Fault continues northwestward another 25 km into Monterey Bay, where it aligns with a high-definition magnetic boundary. Geomorphic evidence of late Quaternary movement along the Rinconada and Reliz Fault Zones has been documented by Tinsley (1975), Dibblee (1976, 1979), Hart (1976, 1985), and Klaus (1999). Although definitive geologic evidence of Holocene surface rupture has not been found on these faults, they were regarded as an earthquake source for the California Geological Survey [formerly, California Division of Mines and Geology]/U.S. Geological Survey (CGS/USGS) Probabilistic Seismic Hazards Assessment because of their postulated slip rate of 1+-1 mm/yr and their calculated maximum magnitude of 7.3. Except for published reports by Durham (1965, 1974), Dibblee (1976), and Hart (1976), most information on these faults is unpublished or is contained in theses, field trip guides, and other types of reports

  18. Social Disparities in Drinking Water Quality in California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Ray, I.; Balazs, C.; Hubbard, A.; Morello-Frosch, R.

    2011-12-01

    Social Disparities in Drinking Water Quality in California's San Joaquin Valley Carolina Balazs, Rachel Morello-Frosch, Alan Hubbard and Isha Ray Little attention has been given to research on social disparities and environmental justice in access to safe drinking water in the USA. We examine the relationship between nitrate and arsenic concentrations in community water systems (CWS) and the ethnic and socioeconomic characteristics of their customers. We hypothesized that systems in the San Joaquin Valley that serve a higher proportion of minority (especially Latino) residents, and/or lower socioeconomic status (proxied by rates of home ownership) residents, have higher nitrate levels and higher arsenic levels. We used water quality monitoring datasets (1999-2001) to estimate nitrate as well as arsenic levels in CWS, and source location and Census block group data to estimate customer demographics. We found that percent Latino was associated with a .04 mg NO3/L increase in a CWS' estimated nitrate ion concentration (95% CI, -.08, .16) and rate of home ownership was associated with a .16 mg NO3/L decrease (95% CI, -.32, .002). We also found that each percent increase in home ownership rate was associated with a .30 ug As/L decrease in arsenic concentrations (p<.05), but our data showed no significant correlation between arsenic concentration and percent Latino. These results show that exposure disparities and compliance burdens in accordance with EPA standards fell most heavily on socio-economically disadvantaged communities. Selected References Cory DC, Rahman T. 2009. Environmental justice and enforcement of the safe drinking water act: The arizona arsenic experience. Ecological Economics 68: 1825-1837. Krieger N, Williams DR, Moss NE. 1997. Measuring social class in us public health research: Concepts, methodologies, and guidelines. Annual Review of Public Health 18(341-378). Moore E, Matalon E, Balazs C, Clary J, Firestone L, De Anda S, Guzman, M. 2011. The

  19. Keeping the History in Historical Seismology: The 1872 Owens Valley, California Earthquake

    NASA Astrophysics Data System (ADS)

    Hough, Susan E.

    2008-07-01

    The importance of historical earthquakes is being increasingly recognized. Careful investigations of key pre-instrumental earthquakes can provide critical information and insights for not only seismic hazard assessment but also for earthquake science. In recent years, with the explosive growth in computational sophistication in Earth sciences, researchers have developed increasingly sophisticated methods to analyze macroseismic data quantitatively. These methodological developments can be extremely useful to exploit fully the temporally and spatially rich information source that seismic intensities often represent. For example, the exhaustive and painstaking investigations done by Ambraseys and his colleagues of early Himalayan earthquakes provides information that can be used to map out site response in the Ganges basin. In any investigation of macroseismic data, however, one must stay mindful that intensity values are not data but rather interpretations. The results of any subsequent analysis, regardless of the degree of sophistication of the methodology, will be only as reliable as the interpretations of available accounts—and only as complete as the research done to ferret out, and in many cases translate, these accounts. When intensities are assigned without an appreciation of historical setting and context, seemingly careful subsequent analysis can yield grossly inaccurate results. As a case study, I report here on the results of a recent investigation of the 1872 Owen's Valley, California earthquake. Careful consideration of macroseismic observations reveals that this event was probably larger than the great San Francisco earthquake of 1906, and possibly the largest historical earthquake in California. The results suggest that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude.

  20. Keeping the History in Historical Seismology: The 1872 Owens Valley, California Earthquake

    SciTech Connect

    Hough, Susan E.

    2008-07-08

    The importance of historical earthquakes is being increasingly recognized. Careful investigations of key pre-instrumental earthquakes can provide critical information and insights for not only seismic hazard assessment but also for earthquake science. In recent years, with the explosive growth in computational sophistication in Earth sciences, researchers have developed increasingly sophisticated methods to analyze macroseismic data quantitatively. These methodological developments can be extremely useful to exploit fully the temporally and spatially rich information source that seismic intensities often represent. For example, the exhaustive and painstaking investigations done by Ambraseys and his colleagues of early Himalayan earthquakes provides information that can be used to map out site response in the Ganges basin. In any investigation of macroseismic data, however, one must stay mindful that intensity values are not data but rather interpretations. The results of any subsequent analysis, regardless of the degree of sophistication of the methodology, will be only as reliable as the interpretations of available accounts - and only as complete as the research done to ferret out, and in many cases translate, these accounts. When intensities are assigned without an appreciation of historical setting and context, seemingly careful subsequent analysis can yield grossly inaccurate results. As a case study, I report here on the results of a recent investigation of the 1872 Owen's Valley, California earthquake. Careful consideration of macroseismic observations reveals that this event was probably larger than the great San Francisco earthquake of 1906, and possibly the largest historical earthquake in California. The results suggest that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude.

  1. Air Pollution, Neighbourhood Socioeconomic Factors and Neural Tube Defects in the San Joaquin Valley of California

    PubMed Central

    Padula, Amy M.; Yang, Wei; Carmichael, Suzan L.; Tager, Ira B.; Lurmann, Frederick; Hammond, S. Katharine; Shaw, Gary M.

    2015-01-01

    Background Environmental pollutants and neighbourhood socioeconomic factors have been associated with neural tube defects, but the potential impact of interaction between ambient air pollution and neighbourhood socioeconomic factors on the risks of neural tube defects is not well understood. Methods We used data from the California Center of the National Birth Defects Study and the Children’s Health and Air Pollution Study to investigate whether associations between air pollutant exposure in early gestation and neural tube defects were modified by neighbourhood socioeconomic factors in the San Joaquin Valley of California, 1997–2006. Five pollutant exposures, three outcomes and 9 neighbourhood socioeconomic factors were included for a total of 135 investigated associations. Estimates were adjusted for maternal race-ethnicity, education and multivitamin use. Results We present below odds ratios that exclude 1 and a chi-square test of homogeneity p-value of <0.05. We observed increased odds of spina bifida comparing the highest to lowest quartile of particulate matter <10 micrometres (PM10) among those living in a neighbourhood with: a) median household income of less than $30,000 per year (OR 5.1, 95% CI 1.7, 15.3); b) more than 20% living below the federal poverty level (OR 2.6, 95% CI 1.1, 6.0); and c) more than 30% with less than or equal to a high school education (OR 3.2, 95% CI 1.4, 7.4). The ORs were not statistically significant among those higher SES neighbourhoods. Conclusions Our results demonstrate effect modification by neighbourhood socioeconomic factors in the association of particulate matter and neural tube defects in California. PMID:26443985

  2. September-March survival of female northern pintails radiotagged in San Joaquin Valley, California

    USGS Publications Warehouse

    Fleskes, J.P.; Jarvis, R.L.; Gilmer, D.S.

    2002-01-01

    To improve understanding of pintail ecology, we radiotagged 191 hatch-year (HY) and 228 after-hatch-year (AHY) female northern pintails (Anas acuta) in the San Joaquin Valley (SJV), and studied their survival throughout central California, USA, during September-March, 1991-1994. We used adjusted Akaike Information Criterion (AICc) values to contrast known-fate models and examine variation in survival rates relative to year, interval, wintering region (AJV, other central California), pintail age, body mass at capture, capture date, capture area, and radio type. The best-fitting model included only interval x year and age x body mass; the next 2 best-fitting models also included wintering region and capture date. Hunting caused 83% of the mortalities we observed, and survival was consistently lower during hunting than nonhunting intervals. Nonhunting and hunting mortality during early winter was highest during the 1991-1992 drought year. Early-winter survival improved during the study along with habitat conditions in the Grassland Ecological Area (EA), where most radiotagged pintails spent early winter. Survival was more closely related to body mass at capture for HY than AHY pintails, even after accounting for the later arrival (based on capture date) of HY pintails, suggesting HY pintails are less adept at improving their condition. Thus, productivity estimates based on harvest age ratios may be biased if relative vulnerability of HY and AHY pintails is assumed to be constant because fall body condition of pintails may vary greatly among years. Cumulative winter survival was 75.6% (95% CI = 68.3% to 81.7%) for AHY and 65.4% (56.7% to 73.1%) for HY female pintails. Daily odds of survival in the cotton-agriculture landscape of the SJV were -21.3% (-40.3% to +3.7%) lower than in the rice-agriculture landscape of the Sacramento Valley (SACV) and other central California areas. Higher hunting mortality may be 1 reason pintails have declined more in SJV than in SACV.

  3. Conservation Effects Assessment Project-Wetlands assessment in California's Central Valley and Upper Klamath River Basin

    USGS Publications Warehouse

    Duffy, Walter G.; Kahara, Sharon N.; Records, Rosemary M.

    2011-01-01

    Executive Summary-Ecosystem Services Derived from Wetlands Reserve Program Conservation Practices in California's Central Valley and Oregon's Upper Klamath River Basin. The Wetlands Reserve Program (WRP) is one of several programs implemented by the U.S. Department of Agriculture (USDA). Since the WRP's inception in 1990, it has resulted in the restoration of approximately 29,000 hectares in California's Central Valley (CCV) and roughly 12,300 hectares in Oregon's Upper Klamath River Basin (UKRB). Both the CCV and UKRB are agricultural dominated landscapes that have experienced extensive wetland losses and hydrological alteration. Restored habitats in the CCV and UKRB are thought to provide a variety of ecosystem services, but little is known about the actual benefits afforded. The U.S. Geological Survey (USGS) California Cooperative Fish and Wildlife Unit in collaboration with the USDA Natural Resources Conservation Service surveyed 70 WRP sites and 12 National Wildlife Refuge sites in the CCV, and 11 sites in the UKRB to estimate ecosystem services provided. In the CCV, sites were selected along three primary gradients; (1) restoration age, (2) management intensity, and (3) latitude (climate). Sites in the UKRB were assessed along restoration age and management intensity gradients where possible. The management intensity gradient included information about the type and frequency of conservation practices applied at each site, which was then ranked into three categories that differentiated sites primarily along a hydrological gradient. Information collected was used to estimate the following ecosystem services: Soil and vegetation nutrient content, soil loss reduction, floodwater storage as well as avian, amphibian, fish, and pollinator use and habitat availability. Prior to this study, very little was known about WRP habitat morphology in the CCV and UKRB. Therefore in this study, we described these habitats and related them to ecosystem services provided. Our

  4. Results of a shallow seismic-refraction survey in the Little Valley area near Hemet, Riverside County, California

    USGS Publications Warehouse

    Duell, L.F.

    1995-01-01

    Little Valley, a small locally named valley southeast of the city of Hemet in Riverside County, California, is being evaluated for development of a constructed wetland and infiltration area as part of a water-resources management program in the area. The valley is a granitic basin filled with unconsolidated material. In August 1993 and June and July 1994, the U.S. Geological Survey conducted a seismic-refraction survey consisting of four lines northwest of the valley, eight lines in the valley, and six lines northeast of the valley. Two interpretations were made for the lines: a two-layer model yielded an estimate of the minimum depths to bedrock and a three-layer model yielded the most likely depths to bedrock. Results of the interpretation of the three-layer model indicate that the unsaturated unconsolidated surface layer ranges in thickness from 12 to 83 feet in the valley and 24 to 131 feet northeast of the valley. The mean compressional velocity for this layer was about 1,660 feet per second. A saturated middle layer was detected in some parts of the study area, but not in others--probably because of insufficient thickness in some places; however, in order to determine the "most likely" depths to bedrock, it was assumed that the layer was present throughout the valley. Depths to this layer were verified on three seismic lines using the water level from the only well in the valley. Data for additional verification were not available for wells near Little Valley. The bedrock slope from most of Little Valley is down toward the northeast. Bedrock profiles show that the bedrock surface is very uneven in the study area. The interpreted most likely depth to bedrock in the valley ranged from land surface (exposed) to a depth of 176 feet below land surface, and northeast of the valley it ranged from 118 to 331 feet below land surface. Bedrock depths were verified using lithologic logs from test holes drilled previously in the area. On the basis of a measured mean

  5. Late Quaternary MIS 6-8 shoreline features of pluvial Owens Lake, Owens Valley, eastern California

    USGS Publications Warehouse

    Jayko, A.S.; Bacon, S.N.

    2008-01-01

    The chronologic history of pluvial Owens Lake along the eastern Sierra Nevada in Owens Valley, California, has previously been reported for the interval of time from ca. 25 calibrated ka to the present. However, the age, distribution, and paleoclimatic context of higher-elevation shoreline features have not been formally documented. We describe the location and characteristics of wave-formed erosional and depositional features, as well as fluvial strath terraces that grade into an older shoreline of pluvial Owens Lake. These pluvial-lacustrine features are described between the Olancha area to the south and Poverty Hills area to the north, and they appear to be vertically deformed -20 ?? 4 m across the active oblique-dextral Owens Valley fault zone. They occur at elevations from 1176 to 1182 m along the lower flanks of the Inyo Mountains and Coso Range east of the fault zone to as high as -1204 m west of the fault zone. This relict shoreline, referred to as the 1180 m shoreline, lies -20-40 m higher than the previously documented Last Glacial Maximum shoreline at -1160 m, which occupied the valley during marine isotope stage 2 (MIS 2). Crosscutting relations of wave-formed platforms, notches, and sandy beach deposits, as well as strath terraces on lava flows of the Big Pine volcanic field, bracket the age of the 1180 m shoreline to the time interval between ca. 340 ?? 60 ka and ca. 130 ?? 50 ka. This interval includes marine oxygen isotope stages 8-6 (MIS 8-6), corresponding to 260-240 ka and 185-130 ka, respectively. An additional age estimate for this shoreline is provided by a cosmogenic 36Cl model age of ca. 160 ?? 32 ka on reefal tufa at ???1170 m elevation from the southeastern margin of the valley. This 36Cl model age corroborates the constraining ages based on dated lava flows and refines the lake age to the MIS 6 interval. Documentation of this larger pluvial Owens Lake offers insight to the hydrologic balance along the east side of the southern Sierra

  6. 75 FR 45653 - Notice of Re-Opening of Comment Period for the Draft Imperial Sand Dunes Recreation Area...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... Bureau of Land Management Notice of Re-Opening of Comment Period for the Draft Imperial Sand Dunes... of the comment period on the Draft Imperial Sand Dunes Recreation Area Management Plan (RAMP) and... So. 4th St., El Centro, California 92243. Copies of the Draft Imperial Sand Dunes RAMP/EIS...

  7. Water-level changes induced by local and distant earthquakes at Long Valley caldera, California

    USGS Publications Warehouse

    Roeloffs, E.; Sneed, M.; Galloway, D.L.; Sorey, M.L.; Farrar, C.D.; Howle, J.F.; Hughes, J.

    2003-01-01

    Distant as well as local earthquakes have induced groundwater-level changes persisting for days to weeks at Long Valley caldera, California. Four wells open to formations as deep as 300 m have responded to 16 earthquakes, and responses to two earthquakes in the 3-km-deep Long Valley Exploratory Well (LVEW) show that these changes are not limited to weathered or unconsolidated near-surface rocks. All five wells exhibit water-level variations in response to earth tides, indicating they can be used as low-resolution strainmeters. Earthquakes induce gradual water-level changes that increase in amplitude for as long as 30 days, then return more slowly to pre-earthquake levels. The gradual water-level changes are always drops at wells LKT, LVEW, and CH-10B, and always rises at well CW-3. At a dilatometer just outside the caldera, earthquake-induced strain responses consist of either a step followed by a contractional strain-rate increase, or a transient contractional signal that reaches a maximum in about seven days and then returns toward the pre-earthquake value. The sizes of the gradual water-level changes generally increase with earthquake magnitude and decrease with hypocentral distance. Local earthquakes in Long Valley produce coseismic water-level steps; otherwise the responses to local earthquakes and distant earthquakes are indistinguishable. In particular, water-level and strain changes in Long Valley following the 1992 M7.3 Landers earthquake, 450 km distant, closely resemble those initiated by a M4.9 local earthquake on November 22, 1997, during a seismic swarm with features indicative of fluid involvement. At the LKT well, many of the response time histories are identical for 20 days after each earthquake, and can be matched by a theoretical solution giving the pore pressure as a function of time due to diffusion of a nearby, instantaneous, pressure drop. Such pressure drops could be produced by accelerated inflation of the resurgent dome by amounts too

  8. Geohydrology and water-chemistry of the Alexander Valley, Sonoma County, California

    USGS Publications Warehouse

    Metzger, Loren F.; Farrar, Christopher D.; Koczot, Kathryn M.; Reichard, Eric G.

    2006-01-01

    This study of the geohydrology and water chemistry of the Alexander Valley, California, was done to provide an improved scientific basis for addressing emerging water-management issues, including potential increases in water demand and changes in flows in the Russian River. The study tasks included (1) evaluation of existing geohydrological, geophysical, and geochemical data; (2) collection and analysis of new geohydrologic data, including subsurface lithologic data, ground-water levels, and streamflow records; and (3) collection and analysis of new water-chemistry data. The estimated total water use for the Alexander Valley for 1999 was approximately 15,800 acre-feet. About 13,500 acre-feet of this amount was for agricultural use, primarily vineyards, and about 2,300 acre-feet was for municipal/industrial use. Ground water is the main source of water supply for this area. The main sources of ground water in the Alexander Valley are the Quaternary alluvial deposits, the Glen Ellen Formation, and the Sonoma Volcanics. The alluvial units, where sufficiently thick and saturated, comprise the best aquifer in the study area. Average recharge to the Alexander Valley is estimated from a simple, basinwide water budget. On the basis of an estimated annual average of 298,000 acre-feet of precipitation, 160,000 acre-feet of runoff, and 113,000 to 133,000 acre-feet of evapotranspiration, about 5,000 to 25,000 acre-feet per year is available for ground-water recharge. Because this estimate is based on differences between large numbers, there is significant uncertainty in this recharge estimate. Long-term changes in ground-water levels are evident in parts of the study area, but because of the sparse network and lack of data on well construction and lithology, it is uncertain if any significant changes have occurred in the northern part of the study area since 1980. In the southern half of the study area, ground-water levels generally were lower at the end of the 2002 irrigation

  9. Hydrogeological characterization of Gold Valley: an investigation of precipitation recharge in an intermountain basin in the Death Valley region, California, USA

    NASA Astrophysics Data System (ADS)

    Abdulaziz, Abdulaziz M.; Hurtado, José M.; Faid, Abdalla

    2012-06-01

    Gold Valley is typical of intermountain basins in Death Valley National Park (DVNP), California (USA). Using water-balance calculations, a GIS-based analytical model has been developed to estimate precipitational infiltration rates from catchment-scale topographic data (elevation and slope). The calculations indicate that groundwater recharge mainly takes place at high elevations (>1,100 m) during winter (average 1.78 mm/yr). A resistivity survey suggests that groundwater accumulates in upstream compartmentalized reservoirs and that the groundwater flows through basin fill and fractured bedrock. This explains the relationship between the upstream precipitational infiltration in Gold Valley and the downstream spring flow in Willow Creek. To verify the ability of local recharge to support high-flux springs in DVNP, a GIS-based model was also applied to the Furnace Creek catchment. The results produced insufficient total volume of precipitational infiltration to support flow from the main high-flux springs in DVNP under current climatic conditions. This study introduces a GIS-based infiltration model that can be integrated into the Death Valley regional groundwater flow model to estimate precipitational infiltration recharge. In addition, the GIS-based model can efficiently estimate local precipitational infiltration in similar intermountain basins in arid regions provided that the validity of the model is verified.

  10. Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.

    2011-12-01

    Dairy farming in California's Central Valley is a significant source of nitrate to underlying aquifers. One approach to mitigation is to implement farm-scale management plans that reduce nutrient loading to groundwater while sustaining crop yield. While the effect of different management practices on crop yield is easily measured, their effect on groundwater quality has only infrequently been evaluated. Documenting and predicting the impact of management on water quality requires a quantitative assessment of transport (including timescale and mixing) through the vadose and saturated zones. In this study, we measured tritium, helium isotopic composition, and noble gas concentrations in groundwater drawn from monitor wells on several dairies in the Lower San Joaquin Valley and Tulare Lake Basin of California's Central Valley in order to predict the timescales on which changes in management may produce observable changes in groundwater quality. These dairies differ in age (from <10 to >100 years old), thickness of the vadose zone (from <10 to 60 m), hydrogeologic setting, and primary source of irrigation water (surface or groundwater). All of the dairies use manure wastewater for irrigation and fertilization. Three of the dairies have implemented management changes designed to reduce nutrient loading and/or water usage. Monitor wells in the southern Tulare Lake Basin dairies were installed by UC-Davis as multi-level nested wells allowing depth profiling of tritium and noble gases at these sites. Tritium/helium-3 groundwater ages, calculated using a simple piston-flow model, range from <2 to >50 years. Initial tritium (the sum of measured tritium and tritiogenic helium-3) is close to or slightly above precipitation in the calculated recharge year for young samples; and significantly above the precipitation curve for older samples. This pattern is consistent with the use of 20-30 year old groundwater recharged before 1980 for irrigation, and illustrates how irrigation

  11. Mountain-Block Recharge in the Santo Tomas Valley, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Thomas, W. M.; Kretzschmar, T.

    2009-12-01

    Mountain block recharge (MBR) to adjacent basin aquifers can be a significant source of groundwater in arid and semi-arid regions. Unfortunately, geologic complexities within the mountain block often limit our understanding of this indirect form of recharge. Secondary permeability, resulting from faults and fractures, allows rainwater to infiltrate crystalline mountain rock, ultimately recharging the basin aquifer. Therefore, it is essential to consider mountain block geological features, especially faults, in recharge studies. We attempt to better understand MBR by creating a detailed fracture-trace map and by sampling springs and groundwater throughout the Santo Tomas valley, located in Northern Baja California, Mexico. Bounded by active faults, the valley is heavily fractured. These fractures enable fluid flow within the mountain block. Stable isotope (δ18O and δ2H) data show two distinct types of spring water within the watershed, possibly representing local and regional flow paths. Thermal springs, believed to be regional flow, display a -1.9‰ δ18O depletion when compared to all other spring water, indicative of recharge from higher elevations or older waters; both of the latter would be less affected under local drought conditions. This distinct isotopic signal was found 15 km downstream in the alluvial aquifer, indicating a significant amount of water is recharging the basin aquifer via the mountain block along this flow regime. A quantitative permeability value for the faults and fracture zones is difficult to attain due to their heterogeneous nature. However, the thermal system and most cold-water springs surface along active faults, which appear to transmit more water than undifferentiated fractures. Stable isotope (O and H) data. An isotopic distinction can be seen between the hot and cold springs within the watershed. Note that all the spring samples are taken between 400 - 550 m elevation, which includes the hot springs.

  12. Calibration of numerical models for small debris flows in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Bertolo, P.; Wieczorek, G.F.

    2005-01-01

    This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  13. Efficacy of constructed wetlands in pesticide removal from tailwaters in the Central Valley, California.

    PubMed

    Budd, Robert; O'Geen, Anthony; Goh, Kean S; Bondarenko, Svetlana; Gan, Jay

    2009-04-15

    Pollutants in agricultural irrigation return flow (tailwater) constitute a significant nonpoint source of pollution in intensive agricultural regions such as the Central Valley of California. Constructed wetlands (CWs) represent a feasible mitigation option to remove pollutants including pesticides in the tailwater. In this study, we evaluated two CWs in the Central Valley for their performance in removing pyrethroid and organophosphate insecticides under field-scale production conditions. Both CWs were found to be highly effective in reducing pyrethroid concentrations in the tailwater, with season-average concentration reductions ranging from 52 to 94%. The wetlands also reduced the flow volume by 68-87%, through percolation and evapotranspiration. When both concentration and volume reductions were considered, the season-average removal of pyrethroids ranged from 95 to 100%. The primary mechanism for pyrethroid removal was through sedimentation of pesticide-laden particles, which was influenced by hydraulic residence time and vegetation density. Temporal analysis indicates a potential efficiency threshold during high flow periods. The season-average removal of chlorpyrifos ranged 52-61%. The wetlands, however, were less effective at removing diazinon, likely due to its limited sorption to sediment particles. Analysis of pesticide partitioning showed that pyrethroids were enriched on suspended particles in the tailwater. Monitoring of pesticide association with suspended solids and bed sediments suggested an increased affinity of pyrethroids for lighter particles with the potential to move further downstream before subject to sedimentation. Results from this study show that flow-through CWs, when properly designed, are an effective practice for mitigating hydrophobic pesticides in the irrigation tailwater.

  14. Petrology of a Jurassic cold seep carbonate mound, Great Valley Group, northern California

    SciTech Connect

    Campbell, K.A.; Bottjer, D.J. . Dept. of Geological Sciences)

    1992-01-01

    Ancient sites of chemosynthetic marine invertebrate communities have been increasingly described from the stratigraphic record. Fossil cold seeps are best identified by the stratigraphically restricted co-occurrence of anomalous carbonates and fossils of organisms that in modern environments are chemosymbiotic. A Late Jurassic (Tithonian) age fossil seep site is preserved in deep-water turbidites of the Stony Creek Formation (Great Valley Group). Two low-relief carbonate mounds contain an abundant and diverse fossil macrofauna including taxa whose modern counterparts are chemosymbiotic, as well as several associate taxa. Two broad carbonate fabric types are present: a bioturbated, peloidal, fossiliferous micrite with abundant flecks of organic matter and several wavy laminated marine cements. The micrite and cements are either irregularly interlayered on distinctly separated by corrosion surfaces coated with iron oxides that may mark pulses of H[sub 2]S-rich fluids to the seep. Petrographic observations indicate the following idealized paragenetic sequence: deposition of micrite, with contemporaneous biotic activity; corrosion event, with preferential preservation of some peloids; precipitation of pyrite on some corrosion surfaces and concentration of insoluble siltstone linings where corrosion has opened vugs; precipitation of blocky yellow calcite cement with organic-rich inclusions in void spaces and around peloids; growth of clear to gray, botryoidal to fibrous cement; and precipitation of late, clear calcite spar. Similar fabrics and abundant tube-like structures are present in another Great Valley carbonate lens of Early Cretaceous (Albian-Aptian) age exposed on the Cold Fork of Cottonwood Creek near Red Bluff, California. Detailed integration of petrological studies of these fabrics with stable isotope studies and fossil faunal distributions provide a powerful approach for understanding the history of development and individual fossil seeps.

  15. Tectonic map of the Death Valley ground-water model area, Nevada and California

    SciTech Connect

    J.B. Workman; C.M. Menges; W.R. Page; E.B. Ekren; P.D. Rowley; G.L. Dixon

    2002-10-17

    The purpose of this map is to provide tectonic interpretations in the Death Valley ground-water model area to be incorporated into a transient ground-water flow model by the U.S. Geological Survey (D'Agnese, 2000; D'Agnese and Faunt, 1999; Faunt and others, 1999; and O'Brien and others, 1999). This work has been conducted in collaboration with the U.S. Department of Energy in order to assess regional ground-water flow near the Nevada Test Site (NTS) and the potential radioactive waste repository at Yucca Mountain. The map is centered on the NTS and its perimeter encircles the entire boundary of the numerical flow model area, covering a total area of 57,000 square kilometers. This tectonic map is a derivative map of the geologic map of the Death Valley ground-water model, Nevada and California (Workman and others, 2002). Structures portrayed on the tectonic map were selected from the geologic map based upon several criteria including amount of offset on faults, regional significance of structures, fault juxtaposition of rocks with significantly different hydrologic properties, and the hydrologic properties of the structures themselves. Inferred buried structures in the basins were included on the map (blue and light blue dotted lines) based on interpretation of geophysical data (Ponce and others, 2001; Ponce and Blakely, 2001; Blakely and Ponce, 2001). In addition, various regional trends of fault zones have been delineated which are composed of multiple smaller scale features. In some cases, these structures are deeply buried and their location is based primarily on geophysical evidence. In all cases, these zones (shown as broad red and blue stippled bands on the map) are significant structures in the region. Finally, surface exposures of Precambrian crystalline rocks and igneous intrusions of various ages are highlighted (red and blue patterns) on the map; these rocks generally act as barriers to groundwater flow unless significantly fractured.

  16. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California

    USGS Publications Warehouse

    Hoffmann, J.; Galloway, D.L.; Zebker, H.A.

    2003-01-01

    We use land-subsidence observations from repeatedly surveyed benchmarks and interferometric synthetic aperture radar (InSAR) in Antelope Valley, California, to estimate spatially varying compaction time constants, ??, and inelastic specific skeletal storage coefficients, Skv*, in a previously calibrated regional groundwater flow and subsidence model. The observed subsidence patterns reflect both the spatial distribution of head declines and the spatially variable inelastic skeletal storage coefficient. Using the nonlinear parameter estimation program UCODE we estimate compaction time constants between 3.8 and 285 years. The Skv* values are estimated by linear estimation and range from 0 to almost 0.09. We find that subsidence observations over long time periods are necessary to constrain estimates of the large compaction time constants in Antelope Valley. The InSAR data used in this study cover only a three-year period, limiting their usefulness in constraining these time constants. This problem will be alleviated as more SAR data become available in the future or where time constants are small. By incorporating the resulting parameter estimates in the previously calibrated regional model of groundwater flow and land subsidence we can significantly improve the agreement between simulated and observed land subsidence both in terms of magnitude and spatial extent. The sum of weighted squared subsidence residuals, a common measure of model fit, was reduced by 73% with respect to the original model. However, the ability of the model to adequately reproduce the subsidence observed over only a few years is impaired by the fact that the simulated hydraulic heads over small time periods are often not representative of the actual aquifer hydraulic heads. Errors in the simulated hydraulic aquifer heads constitute the primary limitation of the approach presented here.

  17. Geologic map of the Fifteenmile Valley 7.5' quadrangle, San Bernardino County, California

    USGS Publications Warehouse

    Miller, F.K.; Matti, J.C.

    2001-01-01

    Open-File Report OF 01-132 contains a digital geologic map database of the Fifteenmile Valley 7.5’ quadrangle, San Bernardino County, California that includes: 1. ARC/INFO (Environmental Systems Research Institute, http://www.esri.com) version 7.2.1 coverages of the various elements of the geologic map. 2. A PostScript file to plot the geologic map on a topographic base, and containing a Correlation of Map Units diagram, a Description of Map Units, an index map, and a regional structure map. 3. Portable Document Format (.pdf) files of: a. This Readme; includes in Appendix I, data contained in fif_met.txt b. The same graphic as plotted in 2 above. (Test plots have not produced 1:24,000-scale map sheets. Adobe Acrobat pagesize setting influences map scale.) The Correlation of Map Units (CMU) and Description of Map Units (DMU) is in the editorial format of USGS Miscellaneous Investigations Series (I-series) maps. Within the geologic map data package, map units are identified by standard geologic map criteria such as formation-name, age, and lithology. Even though this is an author-prepared report, every attempt has been made to closely adhere to the stratigraphic nomenclature of the U. S. Geological Survey. Descriptions of units can be obtained by viewing or plotting the .pdf file (3b above) or plotting the postscript file (2 above). If roads in some areas, especially forest roads that parallel topographic contours, do not show well on plots of the geologic map, we recommend use of the USGS Fifteenmile Valley 7.5’ topographic quadrangle in conjunction with the geologic map.

  18. Comparison of estimates of evapotranspiration and consumptive use in Palo Verde Valley, California

    USGS Publications Warehouse

    Raymond, Lee H.; Owen-Joyce, Sandra J.

    1987-01-01

    Estimates of evapotranspiration and consumptive use by vegetation in Palo Verde Valley, California, were compared for calendar years 1981 to 1984. Vegetation types were classified, and the areas covered by each type were computed from Landsat satellite digital-image analysis. Evapotranspiration was calculated by multiplying the area of each vegetation type by a corresponding water use rate adjusted for year-to-year variations in climate. The vegetation classification slightly underestimates the total vegetated area when compared to crop reports, because not all multiple cropping could be identified. The accuracy of evapotranspiration calculated from vegetation classification depends primarily on the correct classification of alfalfa and cotton because alfalfa and cotton have larger acreages and use more water/acre than the other crops in the valley. Consumptive use was calculated using a water budget for each of the 4 years. Estimates of evapotranspiration and consumptive use by vegetation, respectively, were: (1) 439,400 and 483,500 acre-ft in 1981, (2) 430,700 and 452,700 acre-ft in 1982, (3) 402,000 and 364,400 acre-ft in 1983, and (4) 406,700 and 373,800 acre-ft in 1984. Evapotranspiration estimates were lower than consumptive use estimates in 1981 and 1982 and higher in 1983 and 1984. Both estimates were lower in 1983 and 1984 than in 1981 and 1982. Yearly differences in estimates correspond most closely to significant changes in stage of the lower Colorado River caused by flood control releases in 1983 and 1984 and to changes in cropping practices. (Author 's abstract)

  19. Preliminary Hot Dry Rock geothermal evaluation of Long Valley Caldera, California

    SciTech Connect

    Gambill, D.T.

    1981-03-01

    Long Valley Caldera, formed during the catastrophic eruption of the Bishop Tuff 0.7 Myr ago, straddles the border between the Sierra Nevada and the Basin and Range tectonic provinces in eastern California. The caldera contains rhyolitic to basaltic flows, tuffs, and domes from 3.2 Myr to 450 yr old. Sierra Nevada frontal faults intersect the northwest and southeast parts of the caldera. The dominant feature within the caldera is a resurgent dome in the west-central section, which formed between about 0.7 and 0.5 Myr b.p. Teleseismic data indicate a low P-wave velocity zone below the western part of the caldera, indicating a magma chamber between 7 and 25 km depth. This conclusion is supported by gravity data. Heat flow just west of the caldera is 3.75 HFU. Just east of the caldera, measured heat flow is about 2 HFU. However, a deep well on the eastern edge of the resurgent dome has a gradient of 38/sup 0/C/km from 0.66 to 1.2 km suggesting that the magma chamber, which produced Long Valley, is largely crystallized below the resurgent dome. The high heat flow beneath the western caldera may be a manifestation of shallow silicic magma associated with the recent Inyo Craters. These data indicate a smaller magma source may lie below the western caldera. The resurgent dome and the area just west of the caldera are cited for additional Hot Dry Rock prospection. The higher temperature gradient and lack of caldera fill beyond the west margin of the caldera combine to make this area promising for future HDR evaluation.

  20. Geologic application of thermal inertia imaging using HCMM data. [Death Valley and Pisgah Crater, California and Goldfield, Nevada

    NASA Technical Reports Server (NTRS)

    Paley, H. N.; Kahle, A. B. (Principal Investigator)

    1980-01-01

    During the July to September 1980 quarter the final tapes were received completing the order and preliminary processing was done. Thermal Inertia images for each of the three test sites, Death Valley and Pisgah Crater, California and Goldfield, Nevada were created using registered HCMM day/night pairs and the JPL model. A comprehensive study and analysis of the geologic application of all acquired HCMM data is in progress.

  1. Estimation of Evapotranspiration of Almond orchards using Remote Sensing based SEBAL model in Central Valley, California

    NASA Astrophysics Data System (ADS)

    Roy, S.; Ustin, S.; Kefauver, S. C.

    2009-12-01

    Evapotranspiration is one of the main components of the hydrologic cycle and its impact to hydrology, agriculture,forestry and environmental studies is very crucial. SEBAL (Surface Energy Balance Algorithm for Land) is an image-processing model comprised of twenty-five computational sub-models that computes actual evapotranspiration (ETa) and other energy exchanges as a component of energy balance which is used to derive the surface radiation balance equation for the net surface radiation flux (Rn) on a pixel-by-pixel basis. For this study, SEBAL method is applied to Level 1B dataset of visible, near-infrared and thermal infrared radiation channels of MASTER instrument on-board NASA-DC 8 flight. This paper uses the SEBAL method to (1) investigate the spatial distribution property of land surface temperature (Ls), NDVI, and ETa over the San Joaquin valley. (2) Estimate actual evapotranspiration of almond class on pixel-by-pixel basis in the Central valley, California. (3) Comparison of actual Evapotranspiration obtained from SEBAL model with reference evapotranspiration (Eto) using Penman Monteiths method based on the procedures and available data from California Irrigation Management Information System (CIMIS) stations. The results of the regression between extracted land surface temperature, NDVI and, evapotranspiration show negative (-) correlation. On the other hand Ls possessed a slightly stronger negative correlation with the ETa than with NDVI for Almond class. The correlation coefficient of actual ETa estimates from remote sensing with Reference ETo from Penmann Monteith are 0.8571. ETa estimated for almond crop from SEBAL were found to be almost same with the CIMIS_Penman Monteith method with bias of 0.77 mm and mean percentage difference is 0.10%. These results indicate that combination of MASTER data with surface meteorological data could provide an efficient tool for the estimation of regional actual ET used for water resources and irrigation scheduling

  2. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    USGS Publications Warehouse

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  3. Estimation of Seismic and Aseismic Deformation in Mexicali Valley, Baja California, Mexico, in the 2006-2009 Period, Using Precise Leveling, DInSAR, Geotechnical Instruments Data, and Modeling

    NASA Astrophysics Data System (ADS)

    Sarychikhina, Olga; Glowacka, Ewa; Robles, Braulio; Nava, F. Alejandro; Guzmán, Miguel

    2015-11-01

    Ground deformation and seismicity in Mexicali Valley, Baja California, Mexico, the southern part of the Mexicali-Imperial valley, are influenced by active tectonics and human activity. In this study, data from two successive leveling surveys in 2006 and 2009/2010 are used to estimate the total deformation occurred in Mexicali Valley during 2006-2009. The leveling data span more than 3.5 years and include deformation from several natural and anthropogenic sources that acted at different temporal and spatial scales during the analyzed period. Because of its large magnitude, the aseismic anthropogenic deformation caused by fluid extraction in the Cerro Prieto geothermal field obscures the deformation caused by other mechanisms and sources. The method of differential interferograms stacking was used to estimate the aseismic (interseismic tectonic and anthropogenic) components of the observed displacement, using SAR images, taken in 2007 during a period when no significant seismicity occurred in the study area. After removing the estimated aseismic signal from the leveling data, residual vertical displacement remained, and to identify possible sources and mechanisms of this displacement, a detailed analysis of records from tiltmeters and creepmeters was performed. The results of this analysis suggest that the residual displacement is mainly caused by moderate-sized seismicity in the area of study. Modeling of the vertical ground deformation caused by the coseismic slip on source fault (primary mechanism) of the two most important earthquakes, May 24, 2006 (Mw = 5.4) and December 30, 2009 (Mw = 5.8), was performed. The modeling results, together with the analysis of geotechnical instruments data, suggests that this moderate-sized seismicity influences the deformation in the study area by coseismic slip on the source fault, triggered slip on secondary faults, and soft sediments deformation.

  4. Map showing depth to pre-Cenozoic basement in the Death Valley ground-water model area, Nevada and California

    SciTech Connect

    Blakely, R.J.; Ponce, D.A.

    2002-03-12

    This map shows the depth to pre-Cenozoic basement in the Death Valley ground-water model area. It was prepared utilizing gravity (Ponce and others, 2001), geologic (Jennings and others, 1977; Stewart and Carlson, 1978), and drill-hole information. Geophysical investigations of the Death Valley ground-water model area are part of an interagency effort by the U.S. Geological Survey (USGS) and the U.S. Department of Energy (Interagency Agreement DE-AI08-96NV11967) to help characterize the geology and hydrology of southwestern Nevada and parts of California. The Death Valley ground-water model is located between lat 35 degrees 00' and 38 degrees 15' N., and long 115 degrees and 118 degrees W.

  5. Assessment of Computer-based Geologic Mapping of Rock Units in the LANDSAT-4 Scene of Northern Death Valley, California

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1984-01-01

    Results from a series of geologic classifications conducted on a thematic mapper subscene of the northern Death Valley, California are reported. Measurements of accuracy are made through comparison with the 1977 edition of the Death Valley geologic sheet. This employs a simplified map version which is registered by computer to the image data base, allowing a pixel by pixel match with the classified scene. The results show accuracy ranges from 36 to 79% depending on the type of classifier used and the statistical adjustments made to the data. Accuracy values in identifying geologic units were 2 to 3 times higher for those in the relatively flat valleys than for units in the rugged mountainous terrain. Improvements in accuracy will be sought by correcting for slope/aspect variations in mountainous terrain using topographic data recorded in Defense Mapping Agency (DMA) tapes. The above classification results will also be compared with ratio and principal component image classifications made from the same scene.

  6. Fish communities of the Sacramento River Basin: Implications for conservation of native fishes in the Central Valley, California

    USGS Publications Warehouse

    May, J.T.; Brown, L.R.

    2002-01-01

    The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.

  7. Education and the New Imperialism

    ERIC Educational Resources Information Center

    Tikly, Leon

    2004-01-01

    The aim of the article is to discuss the role of education in relation to the new imperialism. The article begins by explaining what is meant by the term the "new imperialism" and how it differs from older forms of European imperialism characterized by colonial rule. The new imperialism is presented as having material and discursive aspects…

  8. Metals and trace elements in giant garter snakes (Thamnophis gigas) from the Sacramento Valley, California, USA

    USGS Publications Warehouse

    Wylie, G.D.; Hothem, R.L.; Bergen, D.R.; Martin, L.L.; Taylor, R.J.; Brussee, B.E.

    2009-01-01

    The giant garter snake (GGS; Thamnophis gigas) is a federally listed threatened species endemic to wetlands of the Central Valley of California. Habitat destruction has been the main factor in the decline of GGS populations, but the effects of contaminants on this species are unknown. To contribute to the recovery of these snakes, the U.S. Geological Survey (USGS) began studies of the life history and habitat use of GGSs in 1995. During a series of investigations conducted from 1995 to the present, specimens of dead GGSs were opportunistically collected from the Colusa National Wildlife Refuge (CNWR), the Natomas Basin, and other sites in northern California. Whole snakes were stored frozen for potential future analysis. As funding became available, we analyzed tissues of 23 GGSs to determine the concentrations of total mercury (Hg) and other trace elements in livers and concentrations of Hg in brains and tail clips. Mercury concentrations (??g/g, wet weight) ranged from 0.08 to 1.64 in livers, 0.01 to 0.18 in brains, and 0.02 to 0.32 in tail clips. In livers, geometric mean concentrations (??g/g, dry weight) of arsenic (25.7) and chromium (1.02) were higher than most values from studies of other snakes. Mercury concentrations in tail clips were positively correlated with concentrations in livers and brains, with the most significant correlations occurring at the Natomas Basin and when Natomas and CNWR were combined. Results indicate the value of using tail clips as a nonlethal bioindicator of contaminant concentrations. ?? 2008 US Government.

  9. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    NASA Astrophysics Data System (ADS)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  10. Cenozoic tectonic reorganizations of the Death Valley region, southeast California and southwest Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.

    2011-01-01

    The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly

  11. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA

    USGS Publications Warehouse

    Manning, Andrew H.; Mills, Christopher; Morrison, Jean M.; Ball, Lyndsay B.

    2015-01-01

    Environmental tracers are useful for determining groundwater age and recharge source, yet their application in studies of geogenic Cr(VI) in groundwater has been limited. Environmental tracer data from 166 wells located in the Sacramento Valley, northern California, were interpreted and compared to Cr concentrations to determine the origin and age of groundwater with elevated Cr(VI), and better understand where Cr(VI) becomes mobilized and how it evolves along flowpaths. In addition to major ion and trace element concentrations, the dataset includes δ18O, δ2H, 3H concentration, 14C activity (of dissolved inorganic C), δ13C, 3He/4He ratio, and noble gas concentrations (He, Ne, Ar, Kr, Xe). Noble gas recharge temperatures (NGTs) were computed, and age-related tracers were interpreted in combination to constrain the age distribution in samples and sort them into six different age categories spanning from <60 yr old to >10,000 yr old. Nearly all measured Cr is in the form of Cr(IV). Concentrations range from <1 to 46 μg L−1, with 10% exceeding the state of California’s Cr(VI) maximum contaminant level of 10 μg L−1. Two groups with elevated Cr(VI) (⩾5 μg L−1) were identified. Group 1 samples are from the southern part of the valley and contain modern (<60 yr old) water, have elevated NO3− concentrations (>3 mg L−1), and commonly have δ18O values enriched relative to local precipitation. These samples likely contain irrigation water and are elevated due to accelerated mobilization of Cr(VI) in the unsaturated zone (UZ) in irrigated areas. Group 2 samples are from throughout the valley and typically contain water 1000–10,000 yr old, have δ18O values consistent with local precipitation, and have unexpectedly warm NGTs. Chromium(VI) concentrations in Group 2 samples may be elevated for multiple reasons, but the hypothesis most consistent with all available data (notably, the warm NGTs) is a relatively long UZ residence time due to

  12. A preliminary investigation of the variables affecting the distribution of giant gartersnakes (Thamnophis gigas) in the Sacramento Valley, California

    USGS Publications Warehouse

    Halstead, Brian J.; Skalos, Shannon M.; Casazza, Michael L.; Wylie, Glenn D.

    2015-09-30

    Giant gartersnakes (Thamnophis gigas) comprise a species of rare, semi-aquatic snake precinctive to the Central Valley of California. Because of the loss of more than 90% of their natural habitat, giant gartersnakes are listed as Threatened by the United States and California endangered species acts. Little is known, however, about the distribution of giant gartersnakes in the Sacramento Valley, which is where most extant populations occur. We conducted detection-nondetection surveys for giant gartersnakes throughout the rice-growing regions of the Sacramento Valley, and used occupancy models to examine evidence for the effects of landscape-scale GIS-derived variables, local habitat and vegetation composition, and prey communities on patterns of giant gartersnake occurrence. Although our results are based on a relatively small sample of sites, we found that distance to historic marsh, relative fish count, and an interaction of distance to historic marsh with proportion of habitat composed of submerged vegetation were important variables for explaining occupancy of giant gartersnakes. In particular, giant gartersnakes were more likely to occur closer to historic marsh and where relatively fewer fish were captured in traps. At locations in or near historic marsh, giant gartersnakes were more likely to occur in areas with less submerged vegetation, but this relationship was reversed (and more uncertain) at sites distant from historic marsh. Additional research with a larger sample of sites would further elucidate the distribution of giant gartersnakes in the Sacramento Valley.

  13. An apparent shear zone trending north-northwest across the Mojave Desert into Owens Valley, eastern California

    NASA Astrophysics Data System (ADS)

    Savage, J. C.; Lisowski, M.; Prescott, W. H.

    1990-11-01

    Strain rates measured at four geodetic networks in eastern California situated between northern Owens Valley and the Transverse Ranges along a small circle drawn about the Pacific-North America pole of rotation are remarkably consistent. Each exhibits 0.14 μrad/yr simple right-lateral engineering-shear-strain accumulation across the local vertical plane tangent to the small circle. Local faults (e.g., Owens Valley, Garlock, Helendale) traversing these networks are not as closely aligned with the vertical planes of maximum shear-strain accumulation as is the local tangent to the small circle. A fifth network slightly east of the small circle shows no significant strain accumulation. Thus, a shear zone trending N35° W from near the eastern end of the big bend of the San Andreas fault to northern Owens Valley is indicated by these data. This corresponds to the Eastern California shear zone proposed on geological evidence by Dokka and Travis. The shear zone carries ˜8 mm/yr of the Pacific-North America relative plate motion from the San Andreas fault north-northwest across the Mojave Desert into Owens Valley and the northern Basin and Range province. The shear zone observed at the surface may be a manifestation of a through-going subcrustal fault.

  14. A public health issue related to collateral seismic hazards: The valley fever outbreak triggered by the 1994 Northridge, California earthquake

    USGS Publications Warehouse

    Jibson, R.W.

    2002-01-01

    Following the 17 January 1994 Northridge. California earthquake (M = 6.7), Ventura County, California, experienced a major outbreak of coccidioidomycosis (CM), commonly known as valley fever, a respiratory disease contracted by inhaling airborne fungal spores. In the 8 weeks following the earthquake (24 January through 15 March), 203 outbreak-associated cases were reported, which is about an order of magnitude more than the expected number of cases, and three of these cases were fatal. Simi Valley, in easternmost Ventura County, had the highest attack rate in the county, and the attack rate decreased westward across the county. The temporal and spatial distribution of CM cases indicates that the outbreak resulted from inhalation of spore-contaminated dust generated by earthquake-triggered landslides. Canyons North East of Simi Valley produced many highly disrupted, dust-generating landslides during the earthquake and its aftershocks. Winds after the earthquake were from the North East, which transported dust into Simi Valley and beyond to communities to the West. The three fatalities from the CM epidemic accounted for 4 percent of the total earthquake-related fatalities.

  15. A western thalweg of the Princeton Valley submarine canyon system as a reservoir and a trap near Willows, California

    SciTech Connect

    Blake, R.G. ); Bainer, R.W.

    1990-05-01

    The Princeton Valley submarine canyon system has long been an important reservoir and trapping mechanism in the northern Sacramento Valley, California. Recently a western thalweg of the system, identified north of Willows, California, has proven to be a significant trapping mechanism for gas in truncated Kione Formation sandstones. Both Upper Cretaceous Kione Formation and Paleocene Princeton Valley sandstones are exploratory objectives in the area and are productive in existing wells. The Kione Formation, a sand-rich deltaic sequence approximately 2,000 ft thick, has been truncated to the west by the Princeton Valley submarine canyon system. The canyon (gorge) has been subsequently filed with primarily impermeable shales, providing a trap for migrating gases in the truncated sands. The trend was discovered in 1977 by Shell Oil Company based on seismic and was the first substantiated evidence of a western thalweg of the Princeton Gorge in the Willows area. To date, four wells have been completed along the trend and current exploratory efforts are attempting to follow the gorge trend.

  16. Abundance and sexual size dimorphism of the giant gartersnake (Thamnophis gigas) in the Sacramento valley of California

    USGS Publications Warehouse

    Wylie, G.D.; Casazza, M.L.; Gregory, C.J.; Halstead, B.J.

    2010-01-01

    The Giant Gartersnake (Thamnophis gigas) is restricted to wetlands of the Central Valley of California. Because of wetland loss in this region, the Giant Gartersnake is both federally and state listed as threatened. We conducted markrecapture studies of four populations of the Giant Gartersnake in the Sacramento Valley (northern Central Valley), California, to obtain baseline data on abundance and density to assist in recovery planning for this species. We sampled habitats that ranged from natural, unmanaged marsh to constructed managed marshes and habitats associated with rice agriculture. Giant Gartersnake density in a natural wetland (1.90 individuals/ha) was an order of magnitude greater than in a managed wetland subject to active season drying (0.17 individuals/ha). Sex ratios at all sites were not different from 1 1, and females were longer and heavier than males. Females had greater body condition than males, and individuals at the least disturbed sites had significantly greater body condition than individuals at the managed wetland. The few remaining natural wetlands in the Central Valley are important, productive habitat for the Giant Gartersnake, and should be conserved and protected. Wetlands constructed and restored for the Giant Gartersnake should be modeled after the permanent, shallow wetlands representative of historic Giant Gartersnake habitat. ?? 2010 Society for the Study of Amphibians and Reptiles.

  17. Efficient crop type mapping based on remote sensing in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Zhong, Liheng

    Most agricultural systems in California's Central Valley are purposely flexible and intentionally designed to meet the demands of dynamic markets. Agricultural land use is also impacted by climate change and urban development. As a result, crops change annually and semiannually, which makes estimating agricultural water use difficult, especially given the existing method by which agricultural land use is identified and mapped. A minor portion of agricultural land is surveyed annually for land-use type, and every 5 to 8 years the entire valley is completely evaluated. So far no effort has been made to effectively and efficiently identify specific crop types on an annual basis in this area. The potential of satellite imagery to map agricultural land cover and estimate water usage in the Central Valley is explored. Efforts are made to minimize the cost and reduce the time of production during the mapping process. The land use change analysis shows that a remote sensing based mapping method is the only means to map the frequent change of major crop types. The traditional maximum likelihood classification approach is first utilized to map crop types to test the classification capacity of existing algorithms. High accuracy is achieved with sufficient ground truth data for training, and crop maps of moderate quality can be timely produced to facilitate a near-real-time water use estimate. However, the large set of ground truth data required by this method results in high costs in data collection. It is difficult to reduce the cost because a trained classification algorithm is not transferable between different years or different regions. A phenology based classification (PBC) approach is developed which extracts phenological metrics from annual vegetation index profiles and identifies crop types based on these metrics using decision trees. According to the comparison with traditional maximum likelihood classification, this phenology-based approach shows great advantages

  18. The crustal structure of the axis of the Great Valley, California, from seismic refraction measurements

    USGS Publications Warehouse

    Holbrook, W.S.; Mooney, W.D.

    1987-01-01

    In 1982 the U.S. Geological Survey collected six seismic refraction profiles in the Great Valley of California: three axial profiles with a maximum shot-to-receiver offset of 160 km, and three shorter profiles perpendicular to the valley axis. This paper presents the results of two-dimensional raytracing and synthetic seismogram modeling of the central axial profile. The crust of the central Great Valley is laterally heterogeneous along its axis, but generally consists of a sedimentary section overlying distinct upper, middle, and lower crustal units. The sedimentary rocks are 3-5 km thick along the profile, with velocities increasing with depth from 1.6 to 4.0 km/s. The basement (upper crust) consists of four units: 1. (1) a 1.0-1.5 km thick layer of velocity 5.4-5.8 km/s, 2. (2) a 3-4 km thick layer of velocity 6.0-6.3 km/s, 3. (3) a 1.5-3.0 km thick layer of velocity 6.5-6.6 km/s, and 4. (4) a laterally discontinuous, 1.5 km thick layer of velocity 6.8-7.0 km/s. The mid-crust lies at 11-14 km depth, is 5-8 km thick, and has a velocity of 6.6-6.7 km/s. On the northwest side of our profile the mid-crust is a low-velocity zone beneath the 6.8-7.0 km/s lid. The lower crust lies at 16-19 km depth, is 7-13 km thick, and has a velocity of 6.9-7.2 km/s. Crustal thickness increases from 26 to 29 km from NW to SE in the model. Although an unequivocal determination of crustal composition is not possible from P-wave velocities alone, our model has several geological and tectonic implications. We interpret the upper 7 km of basement on the northwest side of the profile as an ophiolitic fragment, since its thickness and velocity structure are consistent with that of oceanic crust. This fragment, which is not present 10-15 km to the west of the refraction profile, is probably at least partially responsible for the Great Valley gravity and magnetic anomalies, whose peaks lie about 10 km east of our profile. The middle and lower crust are probably gabbroic and the product of

  19. Mineral resources and mineral resource potential of the Saline Valley and Lower Saline Wilderness Study Areas, Inyo County, California

    SciTech Connect

    Wrucke, C.T.; Marsh, S.P.; Raines, G.L.; Werschky, R.S.; Blakely, R.J.; Hoover, D.B.; McHugh, E.L.; Rumsey, C.M.; Gaps, R.S.; Causey, J.D.

    1984-01-01

    This report presents the results of a mineral survey of the Saline Valley Wilderness Study Area and the Lower Saline Wilderness Study Area, California Desert Conservation Area, Inyo County, California. The Saline Valley Wilderness Study Area and the Lower Saline Wilderness Study Area were studied in 1981-83 using geologic, geochemical, remote sensing, and geophysical surveys and the examination of mines and prospects to evaluate mineral resources and the potential for mineral resources. The Saline Valley Wilderness Study Area has a high potential for the occurrence of gold resources in two areas. One area, largely outside the study area, is in the vicinity of the Crater mine in the Last Chance Range, and it has potential for the occurrence of gold in a disseminated deposit in an epithermal environment. The other area is in Marble Canyon in the western part of the study area, and it has high potential for the occurrence of gold placer deposits. Marble Canyon also has a moderate potential for gold in placer deposits downstream from the area of high potential. Seven areas, scattered from the Inyo Mountains to the Last Chance Range, have a low potential for the occurrence of gold in disseminated deposits, and one area that lies astride the border of Death Valley National Monument has a low potential for the occurrence of gold in vein deposits. The southern end of Eureka Valley has a low potential for the occurrence of lithium and uranium resources in buried sedimentary deposits for the occurrence of lithium and uranium resources in buried sedimentary deposits beneath the valley floor. Demonstrated resources of native sulfur exist at the Crater mine but no resource potential was identified nearby in adtacent parts of the study area. 3 figs. (ACR)

  20. Long-term sand supply to Coachella Valley Fringe-toed Lizard Habitat in the Northern Coachella Valley, California

    USGS Publications Warehouse

    Griffiths, Peter G.; Webb, Robert H.; Lancaster, Nicholas; Kaehler, Charles A.; Lundstrom, Scott C.

    2002-01-01

    The Coachella Valley fringe-toed lizard (Uma inornata) is a federally listed threatened species that inhabits active sand dunes in the vicinity of Palm Springs, California. The Whitewater Floodplain and Willow Hole Reserves provide some of the primary remaining habitat for this species. The sediment-delivery system that creates these active sand dunes consists of fluvial depositional areas fed episodically by ephemeral streams. Finer fluvial sediments (typically sand size and finer) are mobilized in a largely unidirectional wind field associated with strong westerly winds through San Gorgonio Pass. The fluvial depositional areas are primarily associated with floodplains of the Whitewater?San Gorgonio Rivers and Mission Creek?Morongo Wash; other small drainages also contribute fluvial sediment to the eolian system. The eolian dunes are transitory as a result of unidirectional sand movement from the depositional areas, which are recharged with fine-grained sediment only during episodic floods that typically occur during El Ni?o years. Eolian sand moves primarily from west to east through the study area; the period of maximum eolian activity is April through June. Wind speed varies diurnally, with maximum velocities typically occurring during the afternoon. Development of alluvial fans, alteration of stream channels by channelization, in-stream gravel mining, and construction of infiltration galleries were thought to reduce the amount of fluvial sediment reaching the depositional areas upwind of Uma habitat. Also, the presence of roadways, railroads, and housing developments was thought to disrupt or redirect eolian sand movement. Most of the sediment yield to the fluvial system is generated in higher elevation areas with little or no development, and sediment yield is affected primarily by climatic fluctuations and rural land use, particularly livestock grazing and wildfire. Channelization benefits sediment delivery to the depositional plains upwind of the reserves

  1. Central California Valley Ecoregion: Chapter 17 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Sleeter, Benjamin M.

    2012-01-01

    The Central California Valley Ecoregion, which covers approximately 45,983 km2 (17,754 mi2), is an elongated basin extending approximately 650 km north to south through central California (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is surrounded entirely by the Southern and Central California Chaparral and Oak Woodlands Ecoregion, which includes parts of the Coast Ranges to the west and which is bounded by the Sierra Nevada to the east. The Central California Valley Ecoregion accounts for more than half of California’s agricultural production value and is one of the most important agricultural regions in the country, with flat terrain, fertile soils, a favorable climate, and nearly 70 percent of its land in cultivation (Kuminoff and others, 2000; Sumner and others, 2003). Commodities produced in the region include milk and dairy, cattle and calves, cotton, almonds, citrus, and grapes, among others (U.S. Department of Agriculture, 2004; Johnston and McCalla, 2004; Kuminoff and others, 2000) (figs. 2A,B,C). Six of the top eight agricultural-producing counties in California are located at least partly within the Central California Valley Ecoregion (Kuminoff and others, 2000) (table 1). The Central California Valley Ecoregion is also home to nearly 5 million people spread throughout the region, including the major cities of Sacramento (state capital), Fresno, Bakersfield, and Stockton, California (U.S. Census Bureau, 2000) (fig. 1).

  2. Scenario earthquake hazards for the Long Valley Caldera-Mono Lake area, east-central California

    USGS Publications Warehouse

    Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.

    2014-01-01

    As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and in preparing emergency response plans. The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group of California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping (NSHM) Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault to the east of the study area. Earthquake scenarios are intended to depict the potential consequences of significant earthquakes. They are not necessarily the largest or most damaging earthquakes possible. Earthquake scenarios are both large enough and likely enough that emergency planners should consider them in regional emergency response plans. Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM).For the Hilton Creek Fault, two alternative scenarios were developed in addition to the NSHM scenario to account for different opinions in how far north the fault extends into the Long Valley Caldera. For each scenario, ground motions were calculated using the current standard practice

  3. Latino and Non-Latino Perceptions of the Air Quality in California's San Joaquin Valley.

    PubMed

    Brown, Paul; Cameron, Linda; Cisneros, Ricardo; Cox, Rachel; Gaab, Erin; Gonzalez, Mariaelena; Ramondt, Steven; Song, Anna

    2016-12-15

    The San Joaquin Valley (SJV) of California has poor air quality, high rates of asthma, and high rates of obesity. Informational campaigns aimed at increasing awareness of the health impacts of poor air quality and promoting behavior change need to be tailored to the specific target audiences. The study examined perceptions of air quality, perceived health impacts, and methods of accessing information about air quality between Latinos and other groups in the SJV. Residents of the SJV (n = 744) where surveyed via one of three methods: community organizations (256), public locations (251), and an internet panel (237). The results suggest that people perceive the air quality in their region to be generally unhealthy, particularly for sensitive groups. The air quality is more likely to be reported as being unhealthy by people with health problems and less unhealthy by Latinos and people who report regularly exercising. Latinos are more likely to report working outdoors regularly, but also more likely to report being able to reduce their exposure if the air quality is unhealthy. The results report differences in informational sources about air quality, suggesting that informational campaigns should target high risk groups using a variety of media.

  4. Hydrostructural maps of the Death Valley regional flow system, Nevada and California

    SciTech Connect

    Potter, C.J.; Sweetkind, D.S.; Dickerson, R.P.; Killgore, M.L.

    2002-03-15

    The locations of principal faults and structural zones that may influence ground-water flow were compiled in support of a three-dimensional ground-water model for the Death Valley regional flow system, which covers 80,000 km2 in southwestern Nevada and southeastern California. Faults include Neogene extensional and strike-slip faults and pre-Tertiary thrust faults. Emphasis was given to characteristics of faults and deformed zones that may have a high potential for influencing hydraulic conductivity. These include: (1) faulting that results in the juxtaposition of stratigraphic units with contrasting hydrologic properties, which may cause ground-water discharge and other perturbations in the flow system; (2) special physical characteristics of the fault zones, such as brecciation and fracturing, that may cause specific parts of the zone to act either as conduits or as barriers to fluid flow; (3) the presence of a variety of lithologies whose physical and deformational characteristics m ay serve to impede or enhance flow in fault zones; (4) orientation of a fault with respect to the present-day stress field, possibly influencing hydraulic conductivity along the fault zone; and (5) faults that have been active in late Pleistocene or Holocene time and areas of contemporary seismicity, which may be associated with enhanced permeabilities.

  5. Height changes along selected lines through the Death Valley region, California and Nevada, 1905-1984

    USGS Publications Warehouse

    Castle, Robert O.; Gilmore, Thomas D.; Walker, James P.; Castle, Susan A.

    2005-01-01

    Comparisons among repeated levelings along selected lines through the Death Valley region of California and adjacent parts of Nevada have disclosed surprisingly large vertical displacements. The vertical control data in this lightly populated area is sparse; moreover, as much as a third of the recovered data is so thoroughly contaminated by systematic error and survey blunders that no attempt was made to correct these data and they were simply discarded. In spite of these limitations, generally episodic, commonly large vertical displacements are disclosed along a number of lines. Displacements in excess of 0.4 m, with respect to our selected control point at Beatty, Nevada, and differential displacements of about 0.7 m apparently occurred during the earlier years of the 20th century and continued episodically through at least 1943. While this area contains abundant evidence of continuing tectonic activity through latest Quaternary time, it is virtually devoid of historic seismicity. We have detected no clear connection between the described vertical displacements and fault zones reportedly active during Holocene time, although we sense some association with several more broadly defined tectonic features.

  6. Northern pintail body condition during wet and dry winters in the Sacramento Valley, California

    USGS Publications Warehouse

    Miller, M.R.

    1986-01-01

    Body weights and carcass composition of male and female adult northern pintails (Anas acuta) were investigated in the Sacramento Valley, California, from August to March 1979-82. Pintails were lightweight, lean, and had reduced breast, leg, and heart muscles during August-September. Ducks steadily gained weight after arrival; and body, carcass (body wt minus feathers and gastrointestinal content), fat protein, and muscle weights peaked in October-November. Fat-free dry weight remained high but variable the rest of the winter, whereas body and carcass weight and fat content declined to lows in December or January, then increased again in February or March. Gizzard weights declined from early fall to March. Males were always heavier than females, but females were fatter (percentage) than males during mid-winter. Mid-winter body weight, carcass fat, and protein content were significantly (P < 0.01) lower in the dry winter of 1980-81 than in 2 wet winters (1979-80 and 1981-82). Changes in pintail body weight and composition during winter are probably adaptations to mild climate, predictable food supplies, and requirements for pair formation and molt.

  7. Determinants of field edge habitat restoration on farms in California's Sacramento Valley.

    PubMed

    Garbach, Kelly; Long, Rachael Freeman

    2017-03-15

    Degradation and loss of biodiversity and ecosystem services pose major challenges in simplified agricultural landscapes. Consequently, best management practices to create or restore habitat areas on field edges and other marginal areas have received a great deal of recent attention and policy support. Despite this, remarkably little is known about how landholders (farmers and landowners) learn about field edge management practices and which factors facilitate, or hinder, adoption of field edge plantings. We surveyed 109 landholders in California's Sacramento Valley to determine drivers of adoption of field edge plantings. The results show the important influence of landholders' communication networks, which included two key roles: agencies that provide technical support and fellow landholders. The networks of landholders that adopted field edge plantings included both fellow landholders and agencies, whereas networks of non-adopters included either landholders or agencies. This pattern documents that social learning through peer-to-peer information exchange can serve as a complementary and reinforcing pathway with technical learning that is stimulated by traditional outreach and extension programs. Landholder experience with benefits and concerns associated with field edge plantings were also significant predictors of adoption. Our results suggest that technical learning, stimulated by outreach and extension, may provide critical and necessary support for broad-scale adoption of field-edge plantings, but that this alone may not be sufficient. Instead, outreach and extension efforts may need to be strategically expanded to incorporate peer-to-peer communication, which can provide critical information on benefits and concerns.

  8. Evidence for dyke intrusion earthquake mechanisms near long valley caldera, California

    USGS Publications Warehouse

    Julian, B.R.

    1983-01-01

    A re-analysis of the magnitude 6 earthquakes that occurred near Long Valley caldera in eastern California on 25 and 27 May 1980, suggests that at least two of them, including the largest, were probably caused by fluid injection along nearly vertical surfaces and not by slip on faults. Several investigators 1,2 have reported difficulty in explaining both the long-period surface-wave amplitudes and phases and the locally recorded short-period body-wave first motions from these events, using conventional double-couple (shear fault) source models. They attributed this difficulty to: (1) complex sources, not representable by single-fault models; (2) artefacts of the analysis methods used; or (3) effects of wave propagation through hypothetical structures beneath the caldera. We show here that the data agree well with the predictions for a compensated linear-vector dipole (CLVD) equivalent-force system3 with its principal extensional axis horizontal and trending N 55-65?? E. Such a mechanism is what would be expected for fluid injection into dykes striking N 25-35?? W, which is the approximate strike of numerous normal faults in the area. ?? 1983 Nature Publishing Group.

  9. Conjunctive management of groundwater and surface water resources in the San Joaquin Valley of California

    SciTech Connect

    Quinn, N.W.T.

    1992-01-01

    The San Joaquin-Tulare Conjunctive Use Model (SANTUCM) was developed to evaluate possible long-term scenarios for long term management of drainage and drainage related problems in the western San Joaquin Valley of California. The unique aspect of the conjunctive use model is its coupling of a surface water delivery operations model with a regional groundwater model. A salinity model has been added to utilize surface water model output and allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. The results of scenario runs, performed to data, using the SANTUCM model show table lowering and consequent drainage reduction can be achieved through a combination of source control, land retirement and regional groundwater pumping. The model also shows that water transfers within the existing distribution system are technically feasible and might allow additional releases to be made from Friant Dam for water quality maintenance in the San Joaquin River. However, upstream of Mendota Pool, considerable stream losses to the aquifer are anticipated, amounting to as much as 70% of in-stream flow.

  10. Comparison of Two Parametric Methods to Estimate Pesticide Mass Loads in California's Central Valley

    USGS Publications Warehouse

    Saleh, D.K.; Lorenz, D.L.; Domagalski, J.L.

    2011-01-01

    Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first-order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations. ?? 2010 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.

  11. Comparison of two parametric methods to estimate pesticide mass loads in California's Central Valley

    USGS Publications Warehouse

    Saleh, Dina K.; Lorenz, David L.; Domagalski, Joseph L.

    2011-01-01

    Mass loadings were calculated for four pesticides in two watersheds with different land uses in the Central Valley, California, by using two parametric models: (1) the Seasonal Wave model (SeaWave), in which a pulse signal is used to describe the annual cycle of pesticide occurrence in a stream, and (2) the Sine Wave model, in which first-order Fourier series sine and cosine terms are used to simulate seasonal mass loading patterns. The models were applied to data collected during water years 1997 through 2005. The pesticides modeled were carbaryl, diazinon, metolachlor, and molinate. Results from the two models show that the ability to capture seasonal variations in pesticide concentrations was affected by pesticide use patterns and the methods by which pesticides are transported to streams. Estimated seasonal loads compared well with results from previous studies for both models. Loads estimated by the two models did not differ significantly from each other, with the exceptions of carbaryl and molinate during the precipitation season, where loads were affected by application patterns and rainfall. However, in watersheds with variable and intermittent pesticide applications, the SeaWave model is more suitable for use on the basis of its robust capability of describing seasonal variation of pesticide concentrations.

  12. Geohydrology and mathematical simulation of the Pajaro Valley aquifer system, Santa Cruz and Monterey counties, California

    USGS Publications Warehouse

    Johnson, M.J.; Londquist, C.J.; Laudon, Julie; Mitten, H.T.

    1988-01-01

    Groundwater development has resulted in lowered water levels and seawater intrusion in the Pajaro Valley, California. An investigation was undertaken to describe the geohydrology of the groundwater flow system and to evaluate the response of the system to pumping stresses by using a mathematical model. The aquifer system consists of three aquifers. The lower aquifer is in fluvial sequences of Quaternary Aromas Sand below interbedded clay layers. The middle aquifer is in upper fluvial and lower eolian sequence of Aromas Sand, and in overlying basal gravels in terrace deposits and alluvium. Weathered soil zones in the Aromas Sand, and clay layers in the terrace deposits and alluvium overlie the middle aquifer. The upper aquifer is actually many discontinuous water bearing zones in the Aromas Sand, terrace deposits, alluvium, and dune sand. The three aquifers are represented in the mathematical model by three model layers separated by two confining layers. Model-generated water budgets for the 11-year simulation period show that storage decreased by 23,000 acre-ft, mostly during the 1976-77 drought. The calibrated model can simulate, with acceptable accuracy, both semiannual and long-term trends of potentiometric heads in parts of the lower and middle layers. (USGS)

  13. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California

    USGS Publications Warehouse

    Nolan, Bernard T.; Gronberg, JoAnn M.; Faunt, Claudia C.; Eberts, Sandra M.; Belitz, Ken

    2014-01-01

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69–82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.

  14. Analysis of alluvial hydrostratigraphy using indicator geostatistics, with examples from Santa Clara Valley, California

    SciTech Connect

    1995-03-01

    Current trends in hydrogeology seek to enlist sedimentary concepts in the interpretation of permeability structures. However, existing conceptual models of alluvial deposition tend to inadequately account for the heterogeneity caused by complex sedimentological and external factors. This dissertation presents three analyses of alluvial hydrostratigraphy using indicator geostatistics. This approach empirically acknowledges both the random and structured qualities of alluvial structures at scales relevant to site investigations. The first analysis introduces the indicator approach, whereby binary values are assigned to borehole-log intervals on the basis of inferred relative permeability; it presents a case study of indicator variography at a well-documented ground-water contamination site, and uses indicator kriging to interpolate an aquifer-aquitard sequence in three dimensions. The second analysis develops an alluvial-architecture context for interpreting semivariograms, and performs comparative variography for a suite of alluvial sites in Santa Clara Valley, California. The third analysis investigates the use of a water well perforation indicator for assessing large-scale hydrostratigraphic structures within relatively deep production zones.

  15. Extraction of quantitative surface characteristics from AIRSAR data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.

    1992-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in Sep. 1989. AIRSAR is a four-look, quad-polarization, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The AIRSAR data were calibrated using in-scene trihedral corner reflectors to remove cross-talk; and to calibrate the phase, amplitude, and co-channel gain imbalance. The calibration allows for the extraction of accurate values of rms surface roughness, dielectric constants, sigma(sub 0) backscatter, and polarization information. The radar data sets allow quantitative characterization of small scale surface structure of geologic units, providing information about the physical and chemical processes that control the surface morphology. Combining the quantitative information extracted from the radar data with other remotely sensed data sets allows discrimination, identification and mapping of geologic units that may be difficult to discern using conventional techniques.

  16. Mortality following cotton defoliation: San Joaquin Valley, California, 1970-1990.

    PubMed

    Ames, R G; Gregson, J

    1995-07-01

    A proportional mortality study comparing the cotton-growing areas of the San Joaquin Valley with the rest of the State of California was performed by the Office of Environmental Health Hazard Assessment as a continuation of earlier studies related to mercaptan-releasing pesticides. This mortality study found a pattern of increased proportion of "respiratory causes" mortality (ICD codes 460-519), statistically significant at less than the .05 probability level, for 15 of 21 years between 1970 and 1990, for the time period during and immediately following cotton defoliation. Defoliants which have the potential to produce acute symptoms include DEF and Folex, both of which release odorous butyl mercaptan gas as a degradation product. This paper tests the hypothesis that exposure to cotton defoliant breakdown products may be associated with a disproportionate increase in mortality. Prediction of the mortality proportions by pounds of DEF and Folex used was not statistically significant in the unadjusted models or in models adjusted for air pollution variables. One air pollution adjustment factor, total suspended particulates, was a statistically significant independent mortality proportion predictor. This finding suggests that total suspended particulates, not defoliants, may be related to mortality differentials during defoliation season. Possible confounding by demographic variation of the counties was not controlled in the analysis.

  17. Fall and winter foods of northern pintails in the Sacramento Valley, California

    USGS Publications Warehouse

    Miller, Michael R.

    1987-01-01

    Food habits of northern pintails (Anas acuta) were investigated on 3 national wildlife refuges in the western portion of the Sacramento Valley, California, from August to March 1979-82. Pintails consumed 97% (aggregate % dry wt) plant food during diurnal foraging on national wildlife refuge rice, summer-irrigated, and summer-dry habitats from August through January. Invertebrate use increased to 28.9-65.6% of the diet in these habitats during February and March. Rice, swamp timothy (Heleochloa schoenoides), flatsedges (Cyperus spp.), common barnyardgrass (Echinochloa crusgalli), southern naiad (Najas guadalupensis), and smartweed (Polygonum spp.) seeds, miscellaneous vegetation, snails (Gastropoda), and midge (Diptera) and water beetle (Coleoptera) larvae were most important. These foods usually were taken proportional to or greater than availability. Rice was the most important food of pintails feeding nocturnally off the refuges in harvested rice fields from October through January (99.7%) and February and March (63%; barnyardgrass formed 31% of the diet). In August and October, some pintails consumed invertebrates or bulrush (Scirpus spp. ) seedlings in marshes soon after feeding in refuge rice (Aug) or harvested commercial rice fields (Oct), thereby increasing dietary protein. In late winter, females and males obtained similar (P > 0.05) percentages of invertebrates from refuge habitats. Important dietary seeds and invertebrates contained high protein or metabolizable energy content. Management should maintain adequate seed production in fall and mid-winter and invertebrate biomass in late winter.

  18. Modeling nitrate at domestic and public-supply well depths in the Central Valley, California.

    PubMed

    Nolan, Bernard T; Gronberg, JoAnn M; Faunt, Claudia C; Eberts, Sandra M; Belitz, Ken

    2014-05-20

    Aquifer vulnerability models were developed to map groundwater nitrate concentration at domestic and public-supply well depths in the Central Valley, California. We compared three modeling methods for ability to predict nitrate concentration >4 mg/L: logistic regression (LR), random forest classification (RFC), and random forest regression (RFR). All three models indicated processes of nitrogen fertilizer input at the land surface, transmission through coarse-textured, well-drained soils, and transport in the aquifer to the well screen. The total percent correct predictions were similar among the three models (69-82%), but RFR had greater sensitivity (84% for shallow wells and 51% for deep wells). The results suggest that RFR can better identify areas with high nitrate concentration but that LR and RFC may better describe bulk conditions in the aquifer. A unique aspect of the modeling approach was inclusion of outputs from previous, physically based hydrologic and textural models as predictor variables, which were important to the models. Vertical water fluxes in the aquifer and percent coarse material above the well screen were ranked moderately high-to-high in the RFR models, and the average vertical water flux during the irrigation season was highly significant (p < 0.0001) in logistic regression.

  19. Comparison of Summer and Winter California Central Valley Aerosol Distributions from Lidar and MODIS Measurements

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper; DeYoung, Russell; Ferrare, Richard; Chu, D. Allen

    2010-01-01

    Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM(sub 2.5) concentration is highest in the winter, the aerosol optical depth measured from MODIS is highest in the summer. A seasonal comparison shows that PM(sub 2.5) in the winter can exceed summer PM(sub 2.5) by 55%, while summer AOD exceeds winter AOD by 43%. Higher temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM(sub 2.5) measurements at the surface. Measurements of the boundary layer height from lidar instruments provide valuable information need to understand the relationship between satellite measurements of optical depth and in-situ measurements of PM(sub 2.5).

  20. Ecosystem Services Mapping for Sustainable Agricultural Water Management in California's Central Valley.

    PubMed

    Matios, Edward; Burney, Jennifer

    2017-02-24

    Accurate information on agricultural water needs and withdrawals at appropriate spatial and temporal scales remains a key limitation to joint water and land management decision-making. We use InVEST ecosystem service mapping to estimate water yield and water consumption as functions of land use in Fresno County, a key farming region in California's Central Valley. Our calculations show that in recent years (2010-2015), the total annual water yield for the county has varied dramatically from ∼0.97 to 5.37 km(3) (all ±17%; 1 MAF ≈ 1.233 km(3)), while total annual water consumption has changed over a smaller range, from ∼3.37 to ∼3.98 km(3) (±20%). Almost all of the county's water consumption (∼96% of total use) takes place in Fresno's croplands, with discrepancy between local annual surface water yields and crop needs met by surface water allocations from outside the county and, to a much greater extent, private groundwater irrigation. Our estimates thus bound the amount of groundwater needed to supplement consumption each year (∼1.76 km(3) on average). These results, combined with trends away from field crops and toward orchards and vineyards, suggest that Fresno's land and water management have become increasingly disconnected in recent years, with the harvested area being less available as an adaptive margin to hydrological stress.

  1. Sex-related differences in habitat associations of wintering American Kestrels in California's Central Valley

    USGS Publications Warehouse

    Pandolfino, E.R.; Herzog, M.P.; Smith, Z.

    2011-01-01

    We used roadside survey data collected from 19 routes over three consecutive winters from 200708 to 200910 to compare habitat associations of male and female American Kestrels (Falco sparverius) in the Central Valley of California to determine if segregation by sex was evident across this region. As a species, American Kestrels showed positive associations with alfalfa and other forage crops like hay and winter wheat, as well as grassland, irrigated pasture, and rice. Habitat associations of females were similar, with female densities in all these habitats except rice significantly higher than average. Male American Kestrels showed a positive association only with grassland and were present at densities well below those of females in alfalfa, other forage crops, and grassland. Males were present in higher densities than females in most habitats with negative associations for the species, such as orchards, urbanized areas, and oak savannah. The ratio of females to males for each route was positively correlated with the overall density of American Kestrels on that route. Our findings that females seem to occupy higher quality habitats in winter are consistent with observations from elsewhere in North America. ?? 2011 The Raptor Research Foundation, Inc.

  2. Selenium speciation methods and application to soil saturation extracts from San Joaquin Valley, California

    USGS Publications Warehouse

    Fio, John L.; Fujii, Roger

    1990-01-01

    Methods to determine soluble concentrations of selenite, selenate, and organic Se were evaluated on saturation extracts of soil samples collected from three sites on the Panoche Creek alluvial fan in the western San Joaquin Valley, California. The methods were used in combination with hydride-generation atomic-absorption spectrometry for detection of Se, and included a selective chemical-digestion method and three chromatographic methods using XAD-8 resin, Sep-Pak C18 cartridge, and a combination of XAD-8 resin and activated charcoal. The chromatography methods isolate dissolved organic matter that can inhibit Se detection by hydride-generation atomic-absorption spectrometry. Isolation of hydrophobic organic matter with XAD-8 did not affect concentrations of selenite and selenate, and the isolated organic matter represents a minimal estimation of organic Se. Ninety-eight percent of the Se in the extracts was selenate and about 100% of the isolated organic Se was associated with the humic acid fraction of dissolved organic matter. The depth distribution of Se species in the soil saturation extracts support a hypothesis that the distribution of soluble Se and salinity in these soils is the result of evaporation from a shallow water table and leaching by irrigation water low in Se and salinity.

  3. Origins of seawater intrusion in a coastal aquifer - A case study of the Pajaro Valley, California

    USGS Publications Warehouse

    Bond, L.D.; Bredehoeft, J.D.

    1987-01-01

    Seawater may enter and contaminate stratified coastal aquifers through a number of different pathways. These pathways and their relative contribution are examined in the Pajaro Valley, California, a coastal area with extensive groundwater development. This study considers three pathways of possible intrusion of the primary confined aquifer: (1) onshore leakage from brackish sources, the estuary and sloughs, through the confining layer; (2) near-shore leakage from the ocean through the confining layer; and (3) offshore flow from the ocean through the submarine canyon outcrop of the aquifer. Groundwater flow and seawater intrusion are simulated using an areal, two-dimensional solute-transport computer model. This analysis indicates that leakage through confining layers is the principal mechanism of recharge to the aquifer. Although lateral flow through the offshore outcrop contaminates the aquifer, as a whole, at a higher rate, vertical leakage through the sea floor initially is the main pathway of seawater intrusion to the onshore portion of the aquifer. It is likely that leakage generally is the dominant mechanism of recharge and initial cause of seawater intrusion for poorly-confined, stratified coastal aquifers. This analysis suggests that a significant time interval follows the initial observation of seawater intrusion, during which remedial action can be taken to control lateral flow through the offshore outcrop, which ultimately will be the largest component of future intrusion in these aquifers. ?? 1987.

  4. Data for ground-water test hole near Butte City, Central Valley aquifer project, California

    USGS Publications Warehouse

    French, James J.; Page, R.W.; Bertoldi, G.L.

    1983-01-01

    This report provides preliminary data for the third of seven test holes drilled as part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 32, T. 19 N., R. 1 W., Glenn County, California, about one-half mile south of the town of Butte City. Drilled to a depth of 1,432 feet below land surface, the hole is cased to a depth of 82 feet and equipped with three piezometer tubes to depths of 592 feet, 968 feet, and 1,330 feet. A 5-foot well screen is at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer , and the well bore is filled between the plugs with sediment. Nine cores and 49 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, and chemical quality of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  5. Data for ground-water test hole near Zamora, Central Valley Aquifer Project, California

    USGS Publications Warehouse

    French, J.J.; Page, R.W.; Bertoldi, G.L.

    1982-01-01

    Preliminary data are presented for the first of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 SE 1/4 sec. 34, T. 12 N. , R. 1 E., Yolo County, California, about 3 miles northeast of the town of Zamora. Drilled to a depth of 2,500 feet below land surface, the hole is cased to a depth of 190 feet and equipped with three piezometer tubes to depths of 947, 1,401, and 2,125 feet. A 5-foot well screen is at the bottom of each piezometer. Eighteen cores and 68 sidewall cores were recovered. Laboratory tests were made for mineralogy, hydraulic conductivity, porosity , consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, diatom identification, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis and measured for water level in the three tapped zones. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  6. Data for ground-water test hole near Nicolaus, Central Valley aquifer project, California

    USGS Publications Warehouse

    French, James J.; Page, R.W.; Bertoldi, Gilbert L.

    1983-01-01

    Preliminary data are provided for the third of seven test holes drilled as a part of the Central Valley Aquifer Project which is part of the National Regional Aquifer Systems Analysis Program. The test hole was drilled in the SW 1/4 NE 1/4 sec. 2, T.12N., R.3E., Sutter County, California, about 1 1/2 miles northwest of the town of Nicolaus. Drilled to a depth of 1,150 feet below land surface, the hole is cased to a depth of 100 feet and equipped with three piezometer tubes to depths of 311, 711, and 1,071 feet. A 5-foot well screen is set in sand at the bottom of each piezometer. Each screened interval has a cement plug above and below it to isolate it from other parts of the aquifer, and the well bore is filled between the plugs with sediment. Thirty-one cores and 34 sidewall cores were recovered. Laboratory tests were made for minerology, consolidation, grain-size distribution, Atterberg limits, X-ray diffraction, thermal conductivity, and chemical analysis of water. Geophysical and thermal gradient logs were made. The hole is sampled periodically for chemical analysis of the three tapped zones and measured for water level. This report presents methods used to obtain field samples, laboratory procedures, and the data obtained. (USGS)

  7. Imaging the subsurface stratigraphy in the Ubehebe hydrovolcanic field (Death Valley, California) using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Cagnoli, B.; Russell, J. K.

    2000-02-01

    Ground penetrating radar (GPR) surveys were carried out to collect subsurface images of the basaltic base surge deposits in the Ubehebe hydrovolcanic field, Death Valley National Park, California. Antennae with frequencies of 50, 100 and 200 MHz were used. This technique allowed the collection of useful geologic data, for example, the lower stratigraphic boundary of the pyroclastic deposits can be imaged and their thickness can be estimated. Different radar responses were also obtained from base surge deposits and underlying sedimentary rocks, which enable their recognition where no outcrops are available. Furthermore, GPR data confirmed the presence of small, eroded craters, which are partially filled by alluvium. In this case, an unconformity between the overlying, horizontally bedded alluvium and the underlying bowl-shaped base surge deposits can be recognized within the crater and the thickness of the alluvium estimated. Common mid-point (CMP) surveys suggested subsurface velocities of the electromagnetic waves in the upper part of these deposits between 0.095-0.1 m/ns.

  8. Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1982-1984

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.; Janik, C.J.; Mariner, R.H.; Winnett, T.L.; Clark, M.D.

    1985-01-01

    The Long Valley caldera is a potentially active volcanic area on the eastern side of the Sierra Nevada in east-central California. Hydrologic and geochemical monitoring of surface and subsurface features began in July 1982 to determine if changes were occurring in response to processes causing earthquakes and crustal deformation. Differences since 1982 in fluid chemistry of springs has been minor except at Casa Diablo, where rapid fluctuations in chemistry result from near surface boiling and mixing. Ratios of 3-He/4-He and 13-C/12-C in hot springs and fumaroles are consistent with a magnetic source for some of the carbon and helium discharged in thermal areas, and observed changes in 3-He/4-He between 1978 and 1984 suggest changes in the magmatic component. Significant fluctuations in hot spring discharge recorded at several sites since 1982 closely followed earthquake activity. Water levels in wells have been used as strain meters to detect rock deformation associated with magmatic and tectonic activity and to construct a water table contour map. Coseismic water level fluctuations of as much as 0.6 ft have been observed but no clear evidence of deformation caused by magmatic intrusions can be seen in the well records through 1984. Temperature profiles in wells, which can be used to delineate regionally continuous zones of lateral flow of hot water across parts of the caldera, have remained constant at all but two sites. (Author 's abstract)

  9. Structure and stratigraphy beneath a young phreatic vent: South Inyo Crater, Long Valley caldera, California

    SciTech Connect

    Eichelberger, J.C.; Vogel, T.A.; Younker, L.W.; Dan Miller, C.; Heiken, G.H.; Wohletz, K.H.

    1988-11-10

    An 861-m-long hole has been cored on a slanted trajectory that passed directly beneath South Inyo Crater in the west moat of Long valley Caldera, California. The purpose of the hole was to investigate the magmatic behavior that led to surface deformation and phreatic activity during the 600-year-old eruption of the Inyo vent chain. The hole was sited 216 m southwest of the crater, passed beneath its center at a depth of 566 m, and terminated 79 m northeast of the crater center at a depth of 810 m. Metamorphic basement was encountered at a depth of 779 m. The volcanic and sedimentary sequence consists solely of post-Bishop Tuff caldera fill, including 319 m of moat basalt and 342 m of early rhyolite, and is nearly 900 m thinner than in a Unocal Corporation well 900 m to the southeast. Apparently, a major fault lies between the two holes and forms part of the western structural boundary of the caldera, 3--4 km inboard of its topographic boundary. Breccia zones that intrude the caldera fill were intersected at 12.0--9.3 m and 1.2--0.8 m SW and 8.5--25.1 m NE of the crater center.

  10. Water-Quality Data for Selected Stream Sites in Bridgeport Valley, Mono County, California, April 2000 to June 2003

    USGS Publications Warehouse

    Rockwell, Gerald L.; Honeywell, Paul D.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the California Regional Water Quality Control Board, Lahonton Region, carried out a water-quality data collection program of selected streams in and near Bridgeport Valley, California, during April 2000 to June 2003. These data were collected to provide information used by the California Regional Water Quality Control Board to develop total maximum daily load standards. Field measurements of streamflow, barometric pressure, dissolved oxygen, pH, specific conductance, and water temperature were made at 15 sites located on 6 streams. Water samples were analyzed for nutrients, major ions, turbidity, fecal coliform, fecal streptococci, and suspended sediment. Field data, turbidity, nutrient, major ion, and sediment concentrations and fecal coliform and fecal streptococci densities are given in tables for each site. Field blank data are also presented in a table.

  11. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    NASA Astrophysics Data System (ADS)

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-03-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions. Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of

  12. Prediction and visualization of redox conditions in the groundwater of Central Valley, California

    USGS Publications Warehouse

    Rosecrans, Celia Z.; Nolan, Bernard T.; Gronberg, JoAnn M.

    2017-01-01

    Regional-scale, three-dimensional continuous probability models, were constructed for aspects of redox conditions in the groundwater system of the Central Valley, California. These models yield grids depicting the probability that groundwater in a particular location will have dissolved oxygen (DO) concentrations less than selected threshold values representing anoxic groundwater conditions, or will have dissolved manganese (Mn) concentrations greater than selected threshold values representing secondary drinking water-quality contaminant levels (SMCL) and health-based screening levels (HBSL). The probability models were constrained by the alluvial boundary of the Central Valley to a depth of approximately 300 m. Probability distribution grids can be extracted from the 3-D models at any desired depth, and are of interest to water-resource managers, water-quality researchers, and groundwater modelers concerned with the occurrence of natural and anthropogenic contaminants related to anoxic conditions.Models were constructed using a Boosted Regression Trees (BRT) machine learning technique that produces many trees as part of an additive model and has the ability to handle many variables, automatically incorporate interactions, and is resistant to collinearity. Machine learning methods for statistical prediction are becoming increasing popular in that they do not require assumptions associated with traditional hypothesis testing. Models were constructed using measured dissolved oxygen and manganese concentrations sampled from 2767 wells within the alluvial boundary of the Central Valley, and over 60 explanatory variables representing regional-scale soil properties, soil chemistry, land use, aquifer textures, and aquifer hydrologic properties. Models were trained on a USGS dataset of 932 wells, and evaluated on an independent hold-out dataset of 1835 wells from the California Division of Drinking Water. We used cross-validation to assess the predictive performance of

  13. Geomorphology and Tectonics at the Intersection of Silurian and Death Valleys, Southern California - 2005 Guidebook Pacific Cell Friends of the Pleistocene

    USGS Publications Warehouse

    Miller, David M.; Valin, Zenon C.

    2007-01-01

    This publication describes results from new regional and detailed surficial geologic mapping, combined with geomorphologic, geochronologic, and tectonic studies, in Silurian Valley and Death Valley, California. The studies address a long-standing problem, the tectonic and geomorphic evolution of the intersection between three regional tectonic provinces: the eastern California shear zone, the Basin and Range region of southern Nevada and adjacent California, and the eastern Mojave Desert region. The chapters represent work presented on the 2005 Friends of the Pleistocene field trip and meeting as well as the field trip road log.

  14. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for

  15. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  16. Geologic evaluation of remote sensing data, site 157, Awza-Borrego Desert, California

    NASA Technical Reports Server (NTRS)

    Wolfe, E. W.

    1969-01-01

    Remote sensing data were obtained at site 157 in May 1968 under mission 73 of the NASA aircraft program. The site is located in an area of high temperatures and extreme aridity immediately west of the Imperial Valley, Southern California. Site 157 is partially surrounded by pre-Cenozoic crystalline rocks exposed in the Fish Creek, Vallecito, and Tierra Blanca Mountains. The study area itself is underlain by more than 20,000 feet of sedimentary strata of late Cenozoic age.

  17. 77 FR 66548 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... Air Pollution Control District AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is approving revisions to the San Joaquin Valley Unified Air Pollution Control District... State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District's Rule 4352,...

  18. Comparison of Oxygenate Mixing Ratios Observed in the San Joaquin Valley, California, as a Consequence of Dairy Farming

    NASA Astrophysics Data System (ADS)

    Yang, M. M.; Blake, D. R.

    2009-12-01

    The San Joaquin Valley Air Basin in Central California is plagued with air quality problems, and is classified by the U.S. Environmental Protection Agency (EPA) as a serious non-attainment area for health-based eight-hour federal ozone (smog) standard (1). One of the main sources of Volatile Organic Compounds (VOCs), and indirect sources of ozone in the Valley, has been identified as dairy farming (2). Among these compounds, we have found that several OVOCs such as ethanol, methanol, acetone and acetaldehyde are produced in major quantities throughout the San Joaquin valley as by-products of yeast fermentation of silage and photochemical oxidation. These oxygenates, especially ethanol, play an important role in ozone (O3) formation within the valley. Since 2008, several different types of sampling protocols have been employed by our group in order to determine the degree of enhancement of the four oxygenates in the valley air shed, as well as to determine their sources, emission profiles and emission rates (2). In 2008 and 2009, samples were in early summer, allowing us to compare the difference in concentration levels between both years.The photochemical production of ozone was calculated for each of the four oxygenates and approximately one hundred other quantified VOCs. Based on the Maximum Incremental Reactivity (MIR) scale and concentrations of each oxygenate in the atmosphere, for both 2008 and 2009, as much as 15% of O3 production in the valley is from ethanol and its photochemical by-product acetaldehyde. Our findings suggest that the data observed in 2008 is consistent with that observed in 2009, with a slight decrease in concentrations overall for 2009. 1. Lindberg, J. Analysis of the San Joaquin Valley 2007 Ozone Plan. State of California Air Resources Board. Final Draft Staff Report. 5/30/2007. 2. M. Yang, S. Meinardi, C. Krauter, D.R. Blake. Characterization of VOC Emissions from Various Components of Dairy Farming and their effect on San Joaquin

  19. Prevalence of hepatitis B infection among young and unsuspecting Hmong blood donors in the Central California Valley.

    PubMed

    Sheikh, Muhammad Y; Atla, Pradeep R; Raoufi, Rahim; Sadiq, Humaira; Sadler, Patrick C

    2012-02-01

    Chronic hepatitis B virus (HBV) infection may result in cirrhosis and/or hepatocellular carcinoma and is one of the leading causes of mortality in Asian Americans including Hmong Americans. The Central California Valley is home to a huge Hmong population. To date, the true prevalence of HBV among Hmong is largely unknown. The aim of this study was to contribute to the limited data on HBV prevalence and its trends in Hmong population in the Central California Valley. Between fiscal years 2006 and 2010, a total of 219, 450 voluntary donors were identified at Central California Blood Center in Fresno. Of these, 821 (399 males and 422 females) were Hmong donors. A cross-sectional review of the HBV (hepatitis B surface antigen) positivity among all donors was carried out. Prevalence estimates with 95% confidence intervals (CI) were calculated. Ninety-two percent of Hmong donors were between age groups 16 and 35 years, and only 8% were ≥36 years. The overall prevalence in Hmong was noted at 3.41% (95%CI 2.3-4.9) compared to 0.06% (95%CI 0.05-0.07) in donors of all ethnicities. The calculated prevalence could be an underestimate of the true HBV prevalence in Hmong as the study enrolled only healthy blood donors with predominant younger age (≤35 years) population. These results underscore the persistent burden of HBV infection and potentially increased risk of premature death even in the second generation Hmong community of the Central California Valley. This study reemphasizes the unequivocal need to develop robust preventive and treatment strategies for HBV in Hmong community.

  20. Late Cenozoic geology and lacustrine history of Searles Valley, Inyo and San Bernardino Counties, California

    USGS Publications Warehouse

    Smith, George I.

    2009-01-01

    Searles Valley is an arid, closed basin lying 70 km east of the south end of the Sierra Nevada, California. It is bounded on the east and northeast by the Slate Range, on the west by the Argus Range and Spangler Hills, and on the south by the Lava Mountains; Searles (dry) Lake occupies the north-central part of the valley. During those parts of late Pliocene and Pleistocene time when precipitation and runoff from the east side of the Sierra Nevada into the Owens River were much greater than at present, a chain of as many as five large lakes was created, of which Searles Lake was third. The stratigraphic record left in Searles Valley when that lake expanded, contracted, or desiccated, is fully revealed by cores from beneath the surface of Searles (dry) Lake and partly recorded by sediments cropping out around the edge of the valley. The subsurface record is described elsewhere. This volume includes six geologic maps (scales: 1:50,000 and 1:10,000) and a text that describes the outcrop record, most of which represents sedimentation since 150 ka. Although this outcrop record is discontinuous, it provides evidence indicating the lake's water depths during each expansion, which the subsurface record does not. Maximum-depth lakes rose to the 2,280-ft (695 m) contour, the level of the spillway that led overflowing waters to Panamint Valley; that spillway is about 660 ft (200 m) above the present dry-lake surface. Several rock units of Tertiary and early Quaternary ages crop out in Searles Valley. Siltstone and sandstone of Tertiary age, mostly lacustrine in nature and locally deformed to near-vertical dips, are exposed in the southern part of the valley, as is the younger(?) upper Miocene Bedrock Spring Formation. Unnamed, mostly mafic volcanic rocks of probable Miocene or Pliocene age are exposed along the north and south edges of the basin. Slightly deformed lacustrine sandstones are mapped in the central-southwestern and southern parts of the study area. The Christmas

  1. Land subsidence, groundwater levels, and geology in the Coachella Valley, California, 1993-2010

    USGS Publications Warehouse

    Sneed, Michelle; Brandt, Justin T.; Solt, Mike

    2014-01-01

    Land subsidence associated with groundwater-level declines has been investigated by the U.S. Geological Survey in the Coachella Valley, California, since 1996. Groundwater has been a major source of agricultural, municipal, and domestic supply in the valley since the early 1920s. Pumping of groundwater resulted in water-level declines as much as 15 meters (50 feet) through the late 1940s. In 1949, the importation of Colorado River water to the southern Coachella Valley began, resulting in a reduction in groundwater pumping and a recovery of water levels during the 1950s through the 1970s. Since the late 1970s, demand for water in the valley has exceeded deliveries of imported surface water, resulting in increased pumping and associated groundwater-level declines and, consequently, an increase in the potential for land subsidence caused by aquifer-system compaction. Global Positioning System (GPS) surveying and Interferometric Synthetic Aperture Radar (InSAR) methods were used to determine the location, extent, and magnitude of the vertical land-surface changes in the southern Coachella Valley during 1993–2010. The GPS measurements taken at 11 geodetic monuments in 1996 and in 2010 in the southern Coachella Valley indicated that the elevation of the land surface changed –136 to –23 millimeters (mm) ±54 mm (–0.45 to –0.08 feet (ft) ±0.18 ft) during the 14-year period. Changes at 6 of the 11 monuments exceeded the maximum expected uncertainty of ±54 mm (±0.18 ft) at the 95-percent confidence level, indicating that subsidence occurred at these monuments between June 1996 and August 2010. GPS measurements taken at 17 geodetic monuments in 2005 and 2010 indicated that the elevation of the land surface changed –256 to +16 mm ±28 mm (–0.84 to +0.05 ft ±0.09 ft) during the 5-year period. Changes at 5 of the 17 monuments exceeded the maximum expected uncertainty of ±28 mm (±0.09 ft) at the 95-percent confidence level, indicating that subsidence occurred

  2. 78 FR 45114 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... proposing to approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) portion of... Rule 431.1 was actually for the South Coast Air Quality Management District (SCAQMD). The Antelope... Antelope Valley amended or rescinded the rule. On January 1, 2002, Antelope Valley Air Quality...

  3. 75 FR 3996 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... Planning, San Joaquin Valley Air Pollution Control District; letter dated and received August 17, 2009... Sadredin, Executive Director/Air Pollution Control Officer of San Joaquin Valley Air Pollution Control...: EPA's Analysis of San Joaquin Valley Unified Air Pollution Control District's Rule 4684,...

  4. Continuous monitoring of surface deformation at Long Valley Caldera, California, with GPS

    USGS Publications Warehouse

    Dixon, T.H.; Mao, A.; Bursik, M.; Heflin, M.; Langbein, J.; Stein, R.; Webb, F.

    1997-01-01

    Continuous Global Positioning System (GPS) measurements at Long Valley Caldera, an active volcanic region in east central California, have been made on the south side of the resurgent dome since early 1993. A site on the north side of the dome was added in late 1994. Special adaptations for autonomous operation in remote regions and enhanced vertical precision were made. The data record ongoing volcanic deformation consistent with uplift and expansion of the surface above a shallow magma chamber. Measurement precisions (1 standard error) for "absolute" position coordinates, i.e., relative to a global reference frame, are 3-4 mm (north), 5-6 mm (east), and 10-12 mm (vertical) using 24 hour solutions. Corresponding velocity uncertainties for a 12 month period are about 2 mm/yr in the horizontal components and 3-4 mm/yr in the vertical component. High precision can also be achieved for relative position coordinates on short (<10 km) baselines using broadcast ephemerides and observing times as short as 3 hours, even when data are processed rapidly on site. Comparison of baseline length changes across the resurgent dome between the two GPS sites and corresponding two-color electronic distance measurements indicates similar extension rates within error (???2 mm/yr) once we account for a random walk noise component in both systems that may reflect spurious monument motion. Both data sets suggest a pause in deformation for a 3.5 month period in mid-1995, when the extension rate across the dome decreased essentially to zero. Three dimensional positioning data from the two GPS stations suggest a depth (5.8??1.6 km) and location (west side of the resurgent dome) of a major inflation center, in agreement with other geodetic techniques, near the top of a magma chamber inferred from seismic data. GPS systems similar to those installed at Long Valley can provide a practical method for near real-time monitoring and hazard assessment on many active volcanoes.

  5. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA

    USGS Publications Warehouse

    Nolan, Bernard T.; Fienen, Michael N.; Lorenz, David L.

    2015-01-01

    We used a statistical learning framework to evaluate the ability of three machine-learning methods to predict nitrate concentration in shallow groundwater of the Central Valley, California: boosted regression trees (BRT), artificial neural networks (ANN), and Bayesian networks (BN). Machine learning methods can learn complex patterns in the data but because of overfitting may not generalize well to new data. The statistical learning framework involves cross-validation (CV) training and testing data and a separate hold-out data set for model evaluation, with the goal of optimizing predictive performance by controlling for model overfit. The order of prediction performance according to both CV testing R2 and that for the hold-out data set was BRT > BN > ANN. For each method we identified two models based on CV testing results: that with maximum testing R2 and a version with R2 within one standard error of the maximum (the 1SE model). The former yielded CV training R2 values of 0.94–1.0. Cross-validation testing R2 values indicate predictive performance, and these were 0.22–0.39 for the maximum R2 models and 0.19–0.36 for the 1SE models. Evaluation with hold-out data suggested that the 1SE BRT and ANN models predicted better for an independent data set compared with the maximum R2 versions, which is relevant to extrapolation by mapping. Scatterplots of predicted vs. observed hold-out data obtained for final models helped identify prediction bias, which was fairly pronounced for ANN and BN. Lastly, the models were compared with multiple linear regression (MLR) and a previous random forest regression (RFR) model. Whereas BRT results were comparable to RFR, MLR had low hold-out R2 (0.07) and explained less than half the variation in the training data. Spatial patterns of predictions by the final, 1SE BRT model agreed reasonably well with previously observed patterns of nitrate occurrence in groundwater of the Central Valley.

  6. Radon Outgassing in the Casa Diablo Region, Long Valley Caldera, California

    NASA Astrophysics Data System (ADS)

    Adarkwah, N.; Cuff, K.

    2003-12-01

    A radon outgassing survey has been conducted in the Casa Diablo region of the Long Valley Caldera. The Long Valley Caldera (LVC) is an active volcanic system situated along the eastern front of the Sierra Nevada mountain range in east-central California. The survey was centered in an area .4 km northwest of the Casa Diablo geothermal power plant, located along the southwestern-most rim of the caldera?s resurgent dome. Results from previous radon emission studies in LVC indicate that high degrees of outgassing occur in association with relatively narrow networks of unsealed fractures (Cuff, et al., 2000 and Hoyos, et al., 2001). These fracture networks act as pathways for radon and other gases generated at depth as they migrate toward the surface. The purpose of the present study was to determine whether or not a relationship exists between radon emissions in the current survey area and that in a previously surveyed area approximately .8 km west of the geothermal plant. To accomplish this, we measured radon concentration in soil-gas at 35 separate sites. These sites were located within a 140 by 100 meter grid, with 20 meter spacing between each sample site. A radon outgassing map was then created using measured concentration values along with longitude and latitude values for each sample location. Geologic maps of the area were also analyzed and compared with radon outgassing maps. Analysis of these maps indicates that radon outgassing occurs through a set of crisscrossing fractures, trending southwest-northeast and northwest-southeast respectively. The northwest trending fractures are related to mapped normal faults in the area, while those with a southwest-northeast orientation are associated with an unmapped zone of faulting that is roughly perpendicular to the other faults. The latter set of fractures has a trend similar to that discovered in the previously surveyed area to the west. In both areas the highest readings were in excess of three times background

  7. A Public Health Issue Related To Collateral Seismic Hazards: The Valley Fever Outbreak Triggered By The 1994 Northridge, California Earthquake

    NASA Astrophysics Data System (ADS)

    Jibson, Randall W.

    Following the 17 January 1994 Northridge, California earthquake (M = 6.7), Ventura County, California, experienced a major outbreak ofcoccidioidomycosis (CM), commonly known as valley fever, a respiratory disease contracted byinhaling airborne fungal spores. In the 8 weeks following the earthquake (24 Januarythrough 15 March), 203 outbreak-associated cases were reported, which is about an order of magnitude more than the expected number of cases, and three of these cases were fatal.Simi