Science.gov

Sample records for implantable 96-channel neural

  1. A 96-channel neural stimulation system for driving AIROF microelectrodes.

    PubMed

    Hu, Z; Troyk, P; Cogan, S

    2004-01-01

    We present the design and testing of a 96-channel stimulation system to drive activated iridium oxide (AIROF) microelectrodes within safe charge-injection limits. Our system improves upon the traditional capacitively coupled, symmetric charge-balanced biphasic stimulation waveform so as to maximize charge-injection capacity without endangering the microelectrodes. It can deliver computer-controlled cathodic current pulse for to up to 96 AIROF microelectrodes and positively bias them during the inter-pulse interval. The stimulation system is comprised of (1) 12 custom-designed PCB boards each hosting an 8-channel ASIC chip, (2) a motherboard to communicate between these 12 boards and the PC, (3) the PC interface equipped with a DIO card and the corresponding software. We plan to use this system in animal experiments for intracortical neural stimulation of implanted electrodes within our visual prosthesis project. PMID:17271241

  2. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  3. Sub-meninges implantation reduces immune response to neural implants.

    PubMed

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability.

  4. Sub-meninges Implantation Reduces Immune Response to Neural Implants

    PubMed Central

    Markwardt, Neil T.; Stokol, Jodi; Rennaker, Robert L.

    2013-01-01

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. PMID:23370311

  5. Cochlear Implant Using Neural Prosthetics

    NASA Astrophysics Data System (ADS)

    Gupta, Shweta; Singh, Shashi kumar; Dubey, Pratik Kumar

    2012-10-01

    This research is based on neural prosthetic device. The oldest and most widely used of these electrical, and often computerized, devices is the cochlear implant, which has provided hearing to thousands of congenitally deaf people in this country. Recently, the use of the cochlear implant is expanding to the elderly, who frequently suffer major hearing loss. More cutting edge are artificial retinas, which are helping dozens of blind people see, and ìsmartî artificial arms and legs that amputees can maneuver by thoughts alone, and that feel more like real limbs.Research, which curiosity led to explore frog legs dancing during thunderstorms, a snail shapedorgan in the inner ear, and how various eye cells react to light, have fostered an understanding of how to ìtalkî to the nervous system. That understanding combined with the miniaturization of electronics and enhanced computer processing has enabled prosthetic devices that often can bridge the gap in nerve signaling that is caused by disease or injury.

  6. A fully implantable rodent neural stimulator

    NASA Astrophysics Data System (ADS)

    Perry, D. W. J.; Grayden, D. B.; Shepherd, R. K.; Fallon, J. B.

    2012-02-01

    The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a novel omni-directional inductive link and includes an on-board microcontroller with integrated radio link, programmable current sources and switching circuitry to generate charge-balanced biphasic stimulation. We tested the implant in vivo and were able to elicit both neural and behavioural responses. The implants continued to function for up to five months in vivo. While targeted to cochlear stimulation, with appropriate electrode arrays the stimulator is well suited to stimulating other neurons within the peripheral or central nervous systems. Moreover, it includes significant on-board data acquisition and processing capabilities, which could potentially make it a useful platform for telemetry applications, where there is a need to chronically monitor physiological variables in unrestrained animals.

  7. Implanted neural interfaces: biochallenges and engineered solutions.

    PubMed

    Grill, Warren M; Norman, Sharon E; Bellamkonda, Ravi V

    2009-01-01

    Neural interfaces are connections that enable two-way exchange of information with the nervous system. These connections can occur at multiple levels, including with peripheral nerves, with the spinal cord, or with the brain; in many instances, fundamental biophysical and biological challenges are shared across these levels. We review these challenges, including selectivity, stability, resolution versus invasiveness, implant-induced injury, and the host-interface response. Subsequently, we review the engineered solutions to these challenges, including electrode designs and geometry, stimulation waveforms, materials, and surface modifications. Finally, we consider emerging opportunities to improve neural interfaces, including cellular-level silicon to neuron connections, optical stimulation, and approaches to control inflammation. Overcoming the biophysical and biological challenges will enable effective high-density neural interfaces for stimulation and recording.

  8. Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics.

    PubMed

    George, Paul M; Lyckman, Alvin W; LaVan, David A; Hegde, Anita; Leung, Yuika; Avasare, Rupali; Testa, Chris; Alexander, Phillip M; Langer, Robert; Sur, Mriganka

    2005-06-01

    Finding a conductive substrate that promotes neural interactions is an essential step for advancing neural interfaces. The biocompatibility and conductive properties of polypyrrole (PPy) make it an attractive substrate for neural scaffolds, electrodes, and devices. Stand-alone polymer implants also provide the additional advantages of flexibility and biodegradability. To examine PPy biocompatibility, dissociated primary cerebral cortical cells were cultured on PPy samples that had been doped with polystyrene-sulfonate (PSS) or sodium dodecylbenzenesulfonate (NaDBS). Various conditions were used for electrodeposition to produce different surface properties. Neural networks grew on all of the PPy surfaces. PPy implants, consisting of the same dopants and conditions, were surgically implanted in the cerebral cortex of the rat. The results were compared to stab wounds and Teflon implants of the same size. Quantification of the intensity and extent of gliosis at 3- and 6-week time points demonstrated that all versions of PPy were at least as biocompatible as Teflon and in fact performed better in most cases. In all of the PPy implant cases, neurons and glial cells enveloped the implant. In several cases, neural tissue was present in the lumen of the implants, allowing contact of the brain parenchyma through the implants.

  9. An implantable neural stimulator for intraspinal microstimulation.

    PubMed

    Troyk, Philip R; Mushahwar, Vivian K; Stein, Richard B; Suh, Sungjae; Everaert, Dirk; Holinski, Brad; Hu, Zhe; DeMichele, Glenn; Kerns, Douglas; Kayvani, Kevin

    2012-01-01

    This paper reports on a wireless stimulator device for use in animal experiments as part of an ongoing investigation into intraspinal stimulation (ISMS) for restoration of walking in humans with spinal cord injury. The principle behind using ISMS is the activation of residual motor-control neural networks within the spinal cord ventral horn below the level of lesion following a spinal cord injury. The attractiveness to this technique is that a small number of electrodes can be used to induce bilateral walking patterns in the lower limbs. In combination with advanced feedback algorithms, ISMS has the potential to restore walking for distances that exceed that produced by other types of functional electrical stimulation. Recent acute animal experiments have demonstrated the feasibility of using ISMS to produce the coordinated walking patterns. Here we described a wireless implantable stimulation system to be used in chronic animal experiments and for providing the basis for a system suitable for use in humans. Electrical operation of the wireless system is described, including a demonstration of reverse telemetry for monitoring the stimulating electrode voltages. PMID:23366038

  10. Implantable neurotechnologies: a review of integrated circuit neural amplifiers

    PubMed Central

    Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V.

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification. PMID:26798055

  11. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    PubMed

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  12. This Neural Implant is designed to be implanted in the Human Central and Nervous System

    SciTech Connect

    2013-10-29

    A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.

  13. Feasibility study for future implantable neural-silicon interface devices.

    PubMed

    Al-Armaghany, Allann; Yu, Bo; Mak, Terrence; Tong, Kin-Fai; Sun, Yihe

    2011-01-01

    The emerging neural-silicon interface devices bridge nerve systems with artificial systems and play a key role in neuro-prostheses and neuro-rehabilitation applications. Integrating neural signal collection, processing and transmission on a single device will make clinical applications more practical and feasible. This paper focuses on the wireless antenna part and real-time neural signal analysis part of implantable brain-machine interface (BMI) devices. We propose to use millimeter-wave for wireless connections between different areas of a brain. Various antenna, including microstrip patch, monopole antenna and substrate integrated waveguide antenna are considered for the intra-cortical proximity communication. A Hebbian eigenfilter based method is proposed for multi-channel neuronal spike sorting. Folding and parallel design techniques are employed to explore various structures and make a trade-off between area and power consumption. Field programmable logic arrays (FPGAs) are used to evaluate various structures. PMID:22254974

  14. Neurobiochemical changes in the vicinity of a nanostructured neural implant

    PubMed Central

    Bérces, Zsófia; Tóth, Kinga; Márton, Gergely; Pál, Ildikó; Kováts-Megyesi, Bálint; Fekete, Zoltán; Ulbert, István; Pongrácz, Anita

    2016-01-01

    Neural interface technologies including recording and stimulation electrodes are currently in the early phase of clinical trials aiming to help patients with spinal cord injuries, degenerative disorders, strokes interrupting descending motor pathways, or limb amputations. Their lifetime is of key importance; however, it is limited by the foreign body response of the tissue causing the loss of neurons and a reactive astrogliosis around the implant surface. Improving the biocompatibility of implant surfaces, especially promoting neuronal attachment and regeneration is therefore essential. In our work, bioactive properties of implanted black polySi nanostructured surfaces (520–800 nm long nanopillars with a diameter of 150–200 nm) were investigated and compared to microstructured Si surfaces in eight-week-long in vivo experiments. Glial encapsulation and local neuronal cell loss were characterised using GFAP and NeuN immunostaining respectively, followed by systematic image analysis. Regarding the severity of gliosis, no significant difference was observed in the vicinity of the different implant surfaces, however, the number of surviving neurons close to the nanostructured surface was higher than that of the microstructured ones. Our results imply that the functionality of implanted microelectrodes covered by Si nanopillars may lead to improved long-term recordings. PMID:27775024

  15. Microchip-Embedded Capacitors for Implantable Neural Stimulators

    NASA Astrophysics Data System (ADS)

    Auciello, Orlando

    Miniaturization of microchips for implantation in the human body (e.g., microchip for the artificial retina to restore sight to people blinded by retina photoreceptors degeneration) requires the integration of high-capacitance (≥ 10 μF) energy-storage capacitors into the microchip. These capacitors would be based on high-dielectric constant layers, preferably made of materials that are bioinert (not affected by human body fluids) and are biocompatible (do not elicit adverse reactions in the human body). This chapter focuses on reviewing the work being done at Argonne National Laboratory (Materials Science Division and Center for Nanoscale Materials) to develop high-capacitance microchip-embedded capacitors based on novel high-K dielectric layers (TiAlOx or TiO2/Al2O3 superlattices). The microchip-embedded capacitor provides energy storage and electromagnetic signal coupling needed for neural stimulations. Advances in neural prostheses such as artificial retinas and cochlear implants require miniaturization of device size to minimize tissue damage and improve device/tissue interfaces in the human body. Therefore, development of microchip-embedded capacitors is critical to achieve full-implantable biomedical device miniaturization.

  16. Device for the implantation of neural electrode arrays.

    PubMed

    Bredeson, Samuel D; Troyk, Philip R

    2014-01-01

    Electrode arrays used in neural recording and stimulation applications must be implanted carefully to minimize damage to the underlying tissue. A device has been designed to improve a surgeon's control over implantation parameters including depth, insertion velocity, and insertion force. The device has been designed to operate without contacting tissue and to respond to tissue movements in real time during insertion. This device uses an electrical motor to drive electrode arrays into tissue and allows for the monitoring of and response to electrode depth during insertion. A prototype device has been constructed and tests have been performed to determine the velocity and force characteristics of the motor when inside the device housing. Future versions of the device will use a custom-designed motor with longer linear travel, which will allow the insertion device to be held farther from tissue while still ensuring proper array insertion. PMID:25569989

  17. In vitro and in vivo analysis and characterization of engineered spinal neural implants (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shor, Erez; Shoham, Shy; Levenberg, Shulamit

    2016-03-01

    Spinal cord injury is a devastating medical condition. Recent developments in pre-clinical and clinical research have started to yield neural implants inducing functional recovery after spinal cord transection injury. However, the functional performance of the transplants was assessed using histology and behavioral experiments which are unable to study cell dynamics and the therapeutic response. Here, we use neurophotonic tools and optogenetic probes to investigate cellular level morphology and activity characteristics of neural implants over time at the cellular level. These methods were used in-vitro and in-vivo, in a mouse spinal cord injury implant model. Following previous attempts to induce recovery after spinal cord injury, we engineered a pre-vascularized implant to obtain better functional performance. To image network activity of a construct implanted in a mouse spinal cord, we transfected the implant to express GCaMP6 calcium activity indicators and implanted these constructs under a spinal cord chamber enabling 2-photon chronic in vivo neural activity imaging. Activity and morphology analysis image processing software was developed to automatically quantify the behavior of the neural and vascular networks. Our experimental results and analyses demonstrate that vascularized and non-vascularized constructs exhibit very different morphologic and activity patterns at the cellular level. This work enables further optimization of neural implants and also provides valuable tools for continuous cellular level monitoring and evaluation of transplants designed for various neurodegenerative disease models.

  18. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits.

    PubMed

    Sparta, Dennis R; Stamatakis, Alice M; Phillips, Jana L; Hovelsø, Nanna; van Zessen, Ruud; Stuber, Garret D

    2012-01-01

    In vivo optogenetic strategies have redefined our ability to assay how neural circuits govern behavior. Although acutely implanted optical fibers have previously been used in such studies, long-term control over neuronal activity has been largely unachievable. Here we describe a method to construct implantable optical fibers to readily manipulate neural circuit elements with minimal tissue damage or change in light output over time (weeks to months). Implanted optical fibers readily interface with in vivo electrophysiological arrays or electrochemical detection electrodes. The procedure described here, from implant construction to the start of behavioral experimentation, can be completed in approximately 2-6 weeks. Successful use of implantable optical fibers will allow for long-term control of mammalian neural circuits in vivo, which is integral to the study of the neurobiology of behavior. PMID:22157972

  19. Improved polyimide thin-film electrodes for neural implants.

    PubMed

    Ordonez, Juan S; Boehler, Christian; Schuettler, Martin; Stieglitz, Thomas

    2012-01-01

    Thin-film electrode arrays for neural implants are necessary when large integration densities of stimulating or recording channels are required. However, delamination of the metallic layers from the polymer substrate leads to early failure of the device. Based on new adhesion studies of polyimide to SiC and diamond-like carbon (DLC) the authors successfully fabricated a 232-channel electrode array for retinal stimulation with improved adhesion. Layers of SiC and DLC were integrated into the fabrication procedure of polyimide-platinum (Pt) arrays to create fully coated metal wires, which adhere to the polyimide substrate even after 1 year of accelerated aging in saline solution. Studies on the inter-diffusion of Pt and SiC were conducted to establish an optimal thickness for a gold core of the platinum tracks, which is used for reducing the electrical track resistance. Furthermore, the electrochemical behaviour of the stimulating contacts coated with IrOx were studied in a long-term pulse tests over millions of pulses showing no deterioration of the coating.

  20. Identity and conflicts in the ethics of neural implants.

    PubMed

    Echarte, L E; García-Valdecasas, M

    2014-01-01

    The development of neuroprosthetics has given rise to significant theoretical and practical challenges concerning personal identity. The Extended Mind Theory (EMT) attempts to provide an answer to these challenges by arguing that the mind and the external world are co-extensive to the point that both can make a seamless unified entity. The EMT also proposes that physical states determine the nature of mental states. Here, we propose a non-deterministic and less locationist view of mental states that we will call iEMT. The iEMT articulates, firstly, that the co-extensivity of the mind and the world does not justify the dissolution of the mind in the objects of the external world with which the mind interacts. Consequently, the agent's mind is still part of his unique personal identity. Secondly, neural implants cannot be regarded as mere replacement parts in the context of a weak concept of personal identity. Thirdly, there are no compelling reasons to believe or to fear that neuroprosthetics can alter personal identity at the profound level.

  1. Improved polyimide thin-film electrodes for neural implants.

    PubMed

    Ordonez, Juan S; Boehler, Christian; Schuettler, Martin; Stieglitz, Thomas

    2012-01-01

    Thin-film electrode arrays for neural implants are necessary when large integration densities of stimulating or recording channels are required. However, delamination of the metallic layers from the polymer substrate leads to early failure of the device. Based on new adhesion studies of polyimide to SiC and diamond-like carbon (DLC) the authors successfully fabricated a 232-channel electrode array for retinal stimulation with improved adhesion. Layers of SiC and DLC were integrated into the fabrication procedure of polyimide-platinum (Pt) arrays to create fully coated metal wires, which adhere to the polyimide substrate even after 1 year of accelerated aging in saline solution. Studies on the inter-diffusion of Pt and SiC were conducted to establish an optimal thickness for a gold core of the platinum tracks, which is used for reducing the electrical track resistance. Furthermore, the electrochemical behaviour of the stimulating contacts coated with IrOx were studied in a long-term pulse tests over millions of pulses showing no deterioration of the coating. PMID:23367084

  2. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation

    PubMed Central

    Yip, Marcus; Jin, Rui; Nakajima, Hideko Heidi; Stankovic, Konstantina M.; Chandrakasan, Anantha P.

    2015-01-01

    A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor can detect sounds between 40 and 90 dB SPL over the speech bandwidth. A highly-reconfigurable digital sound processor enables system power scalability by reconfiguring the number of channels, and provides programmable features to enable a patient-specific fit. A mixed-signal arbitrary waveform neural stimulator enables energy-optimal stimulation pulses to be delivered to the auditory nerve. The energy-optimal waveform is validated with in-vivo measurements from four human subjects which show a 15% to 35% energy saving over the conventional rectangular waveform. Prototyped in a 0.18 μm high-voltage CMOS technology, the SoC in 8-channel mode consumes 572 μW of power including stimulation. The SoC integrates implantable acoustic sensing, sound processing, and neural stimulation on one chip to minimize the implant size, and proof-of-concept is demonstrated with measurements from a human cadaver ear. PMID:26251552

  3. A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.

    PubMed

    Rapoport, Benjamin I; Wattanapanitch, Woradorn; Penagos, Hector L; Musallam, Sam; Andersen, Richard A; Sarpeshkar, Rahul

    2009-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat.

  4. A Biomimetic Adaptive Algorithm and Low-Power Architecture for Implantable Neural Decoders

    PubMed Central

    Rapoport, Benjamin I.; Wattanapanitch, Woradorn; Penagos, Hector L.; Musallam, Sam; Andersen, Richard A.; Sarpeshkar, Rahul

    2010-01-01

    Algorithmically and energetically efficient computational architectures that operate in real time are essential for clinically useful neural prosthetic devices. Such devices decode raw neural data to obtain direct control signals for external devices. They can also perform data compression and vastly reduce the bandwidth and consequently power expended in wireless transmission of raw data from implantable brain-machine interfaces. We describe a biomimetic algorithm and micropower analog circuit architecture for decoding neural cell ensemble signals. The decoding algorithm implements a continuous-time artificial neural network, using a bank of adaptive linear filters with kernels that emulate synaptic dynamics. The filters transform neural signal inputs into control-parameter outputs, and can be tuned automatically in an on-line learning process. We provide experimental validation of our system using neural data from thalamic head-direction cells in an awake behaving rat. PMID:19964345

  5. Polymeric Packaging for Fully Implantable Wireless Neural Microsensors

    PubMed Central

    Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.

    2014-01-01

    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999

  6. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite.

    PubMed

    Zhang, Huanan; Patel, Paras R; Xie, Zhixing; Swanson, Scott D; Wang, Xueding; Kotov, Nicholas A

    2013-09-24

    Current neural prosthetic devices (NPDs) induce chronic inflammation due to complex mechanical and biological reactions related, in part, to staggering discrepancies of mechanical properties with neural tissue. Relatively large size of the implants and traumas to blood-brain barrier contribute to inflammation reactions, as well. Mitigation of these problems and the realization of long-term brain interface require a new generation of NPDs fabricated from flexible materials compliant with the brain tissue. However, such materials will need to display hard-to-combine mechanical and electrical properties which are not available in the toolbox of classical neurotechnology. Moreover, these new materials will concomitantly demand different methods of (a) device micromanufacturing and (b) surgical implantation in brains because currently used processes take advantage of high stiffness of the devices. Carbon nanotubes (CNTs) serve as a promising foundation for such materials because of their record mechanical and electrical properties, but CNT-based tissue-compliant devices have not been realized yet. In this study, we formalize the mechanical requirements to tissue-compliant implants based on critical rupture strength of brain tissue and demonstrate that miniature CNT-based devices can satisfy these requirements. We fabricated them using MEMS-like technology and miniaturized them so that at least two dimensions of the electrodes would be comparable to brain tissue cells. The nanocomposite-based flexible neural electrodes were implanted into the rat motor cortex using a surgical procedure specifically designed for soft tissue-compliant implants. The post-surgery implant localization in the motor cortex was successfully visualized with magnetic resonance and photoacoustic imaging. In vivo functionality was demonstrated by successful registration of the low-frequency neural recording in the live brain of anesthetized rats. Investigation of inflammation processes around these

  7. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite.

    PubMed

    Zhang, Huanan; Patel, Paras R; Xie, Zhixing; Swanson, Scott D; Wang, Xueding; Kotov, Nicholas A

    2013-09-24

    Current neural prosthetic devices (NPDs) induce chronic inflammation due to complex mechanical and biological reactions related, in part, to staggering discrepancies of mechanical properties with neural tissue. Relatively large size of the implants and traumas to blood-brain barrier contribute to inflammation reactions, as well. Mitigation of these problems and the realization of long-term brain interface require a new generation of NPDs fabricated from flexible materials compliant with the brain tissue. However, such materials will need to display hard-to-combine mechanical and electrical properties which are not available in the toolbox of classical neurotechnology. Moreover, these new materials will concomitantly demand different methods of (a) device micromanufacturing and (b) surgical implantation in brains because currently used processes take advantage of high stiffness of the devices. Carbon nanotubes (CNTs) serve as a promising foundation for such materials because of their record mechanical and electrical properties, but CNT-based tissue-compliant devices have not been realized yet. In this study, we formalize the mechanical requirements to tissue-compliant implants based on critical rupture strength of brain tissue and demonstrate that miniature CNT-based devices can satisfy these requirements. We fabricated them using MEMS-like technology and miniaturized them so that at least two dimensions of the electrodes would be comparable to brain tissue cells. The nanocomposite-based flexible neural electrodes were implanted into the rat motor cortex using a surgical procedure specifically designed for soft tissue-compliant implants. The post-surgery implant localization in the motor cortex was successfully visualized with magnetic resonance and photoacoustic imaging. In vivo functionality was demonstrated by successful registration of the low-frequency neural recording in the live brain of anesthetized rats. Investigation of inflammation processes around these

  8. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.

    PubMed

    Sodagar, Amir M; Wise, Kensall D; Najafi, Khalil

    2007-06-01

    A 64-channel neural processor has been developed for use in an implantable neural recording microsystem. In the Scan Mode, the processor is capable of detecting neural spikes by programmable positive, negative, or window thresholding. Spikes are tagged with their associated channel addresses and formed into 18-bit data words that are sent serially to the external host. In the Monitor Mode, two channels can be selected and viewed at high resolution for studies where the entire signal is of interest. The processor runs from a 3-V supply and a 2-MHz clock, with a channel scan rate of 64 kS/s and an output bit rate of 2 Mbps.

  9. Neural adaptation and behavioral measures of temporal processing and speech perception in cochlear implant recipients.

    PubMed

    Zhang, Fawen; Benson, Chelsea; Murphy, Dora; Boian, Melissa; Scott, Michael; Keith, Robert; Xiang, Jing; Abbas, Paul

    2013-01-01

    The objective was to determine if one of the neural temporal features, neural adaptation, can account for the across-subject variability in behavioral measures of temporal processing and speech perception performance in cochlear implant (CI) recipients. Neural adaptation is the phenomenon in which neural responses are the strongest at the beginning of the stimulus and decline following stimulus repetition (e.g., stimulus trains). It is unclear how this temporal property of neural responses relates to psychophysical measures of temporal processing (e.g., gap detection) or speech perception. The adaptation of the electrical compound action potential (ECAP) was obtained using 1000 pulses per second (pps) biphasic pulse trains presented directly to the electrode. The adaptation of the late auditory evoked potential (LAEP) was obtained using a sequence of 1-kHz tone bursts presented acoustically, through the cochlear implant. Behavioral temporal processing was measured using the Random Gap Detection Test at the most comfortable listening level. Consonant nucleus consonant (CNC) word and AzBio sentences were also tested. The results showed that both ECAP and LAEP display adaptive patterns, with a substantial across-subject variability in the amount of adaptation. No correlations between the amount of neural adaptation and gap detection thresholds (GDTs) or speech perception scores were found. The correlations between the degree of neural adaptation and demographic factors showed that CI users having more LAEP adaptation were likely to be those implanted at a younger age than CI users with less LAEP adaptation. The results suggested that neural adaptation, at least this feature alone, cannot account for the across-subject variability in temporal processing ability in the CI users. However, the finding that the LAEP adaptive pattern was less prominent in the CI group compared to the normal hearing group may suggest the important role of normal adaptation pattern at the

  10. Neural Adaptation and Behavioral Measures of Temporal Processing and Speech Perception in Cochlear Implant Recipients

    PubMed Central

    Zhang, Fawen; Benson, Chelsea; Murphy, Dora; Boian, Melissa; Scott, Michael; Keith, Robert; Xiang, Jing; Abbas, Paul

    2013-01-01

    The objective was to determine if one of the neural temporal features, neural adaptation, can account for the across-subject variability in behavioral measures of temporal processing and speech perception performance in cochlear implant (CI) recipients. Neural adaptation is the phenomenon in which neural responses are the strongest at the beginning of the stimulus and decline following stimulus repetition (e.g., stimulus trains). It is unclear how this temporal property of neural responses relates to psychophysical measures of temporal processing (e.g., gap detection) or speech perception. The adaptation of the electrical compound action potential (ECAP) was obtained using 1000 pulses per second (pps) biphasic pulse trains presented directly to the electrode. The adaptation of the late auditory evoked potential (LAEP) was obtained using a sequence of 1-kHz tone bursts presented acoustically, through the cochlear implant. Behavioral temporal processing was measured using the Random Gap Detection Test at the most comfortable listening level. Consonant nucleus consonant (CNC) word and AzBio sentences were also tested. The results showed that both ECAP and LAEP display adaptive patterns, with a substantial across-subject variability in the amount of adaptation. No correlations between the amount of neural adaptation and gap detection thresholds (GDTs) or speech perception scores were found. The correlations between the degree of neural adaptation and demographic factors showed that CI users having more LAEP adaptation were likely to be those implanted at a younger age than CI users with less LAEP adaptation. The results suggested that neural adaptation, at least this feature alone, cannot account for the across-subject variability in temporal processing ability in the CI users. However, the finding that the LAEP adaptive pattern was less prominent in the CI group compared to the normal hearing group may suggest the important role of normal adaptation pattern at the

  11. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons

    PubMed Central

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-01-01

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment. PMID:26634434

  12. Learning-induced synaptic potentiation in implanted neural precursor cell-derived neurons.

    PubMed

    Park, Kyungjoon; Heo, Hwon; Han, Ma Eum; Choi, Kyuhyun; Yi, Jee Hyun; Kang, Shin Jung; Kwon, Yunhee Kim; Shin, Ki Soon

    2015-12-04

    Neuronal loss caused by neurodegenerative diseases, traumatic brain injury and stroke results in cognitive dysfunctioning. Implantation of neural stem/precursor cells (NPCs) can improve the brain function by replacing lost neurons. Proper synaptic integration following neuronal differentiation of implanted cells is believed to be a prerequisite for the functional recovery. In the present study, we characterized the functional properties of immortalized neural progenitor HiB5 cells implanted into the rat hippocampus with chemically induced lesion. The implanted HiB5 cells migrated toward CA1 pyramidal layer and differentiated into vGluT1-positive glutamatergic neurons with morphological and electrophysiological properties of endogenous CA1 pyramidal cells. Functional synaptic integration of HiB5 cell-derived neurons was also evidenced by immunohistochemical and electrophysiological data. Lesion-caused memory deficit was significantly recovered after the implantation when assessed by inhibitory avoidance (IA) learning. Remarkably, IA learning preferentially produced long-term potentiation (LTP) at the synapses onto HiB5 cell-derived neurons, which occluded paring protocol-induced LTP ex vivo. We conclude that the implanted HiB5 cell-derived neurons actively participate in learning process through LTP formation, thereby counteracting lesion-mediated memory impairment.

  13. Biocompatible benzocyclobutene (BCB)-based neural implants with micro-fluidic channel.

    PubMed

    Lee, Keekeun; He, Jiping; Clement, Ryan; Massia, Stephen; Kim, Bruce

    2004-09-15

    Poly-benzocyclobutene (BCB)-based intracortical neural implant was fabricated, in which micro-fluidic channel was embedded to deliver drug solutions. BCB presents several attractive features for chronic applications: flexibility, biocompatibility, desirable chemical and electrical properties, and can be easily manufactured using existing batch micro-fabrication technology. The fabricated implants have single shank with three recording sites (20 microm x 20 microm) and two reserviors (inlet and outlet). The channel had large volume (40 microm width and 10 microm height), and hydrophobic surface to provide a high degree of chemical inertness. All the recording sites were positioned near the end of the shank in order to increase the probability of recording neural signals from a target volume of tissue. In vitro cytotoxicity tests of prototype implants revealed no adverse toxic effects on cultured cells. The implant with a silicon backbone layer of 5-10 microm was robust enough to penetrate rat's pia without buckling, a major drawback of polymer alone. The averaged impedance value at 1 KHz was approximately 1.2 MOmega. Simultaneous recordings of neural signals from barrel cortex of a rat were successfully demonstrated.

  14. An Implantable Neural Sensing Microsystem with Fiber-Optic Data Transmission and Power Delivery

    PubMed Central

    Park, Sunmee; Borton, David A.; Kang, Mingyu; Nurmikko, Arto V.; Song, Yoon-Kyu

    2013-01-01

    We have developed a prototype cortical neural sensing microsystem for brain implantable neuroengineering applications. Its key feature is that both the transmission of broadband, multichannel neural data and power required for the embedded microelectronics are provided by optical fiber access. The fiber-optic system is aimed at enabling neural recording from rodents and primates by converting cortical signals to a digital stream of infrared light pulses. In the full microsystem whose performance is summarized in this paper, an analog-to-digital converter and a low power digital controller IC have been integrated with a low threshold, semiconductor laser to extract the digitized neural signals optically from the implantable unit. The microsystem also acquires electrical power and synchronization clocks via optical fibers from an external laser by using a highly efficient photovoltaic cell on board. The implantable unit employs a flexible polymer substrate to integrate analog and digital microelectronics and on-chip optoelectronic components, while adapting to the anatomical and physiological constraints of the environment. A low power analog CMOS chip, which includes preamplifier and multiplexing circuitry, is directly flip-chip bonded to the microelectrode array to form the cortical neurosensor device. PMID:23666130

  15. Elastomeric and soft conducting microwires for implantable neural interfaces.

    PubMed

    Kolarcik, Christi L; Luebben, Silvia D; Sapp, Shawn A; Hanner, Jenna; Snyder, Noah; Kozai, Takashi D Y; Chang, Emily; Nabity, James A; Nabity, Shawn T; Lagenaur, Carl F; Cui, X Tracy

    2015-06-28

    Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young's modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young's modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications.

  16. Elastomeric and soft conducting microwires for implantable neural interfaces

    PubMed Central

    Kolarcik, Christi L.; Luebben, Silvia D.; Sapp, Shawn A.; Hanner, Jenna; Snyder, Noah; Kozai, Takashi D.Y.; Chang, Emily; Nabity, James A.; Nabity, Shawn T.; Lagenaur, Carl F.; Cui, X. Tracy

    2015-01-01

    Current designs for microelectrodes used for interfacing with the nervous system elicit a characteristic inflammatory response that leads to scar tissue encapsulation, electrical insulation of the electrode from the tissue and ultimately failure. Traditionally, relatively stiff materials like tungsten and silicon are employed which have mechanical properties several orders of magnitude different from neural tissue. This mechanical mismatch is thought to be a major cause of chronic inflammation and degeneration around the device. In an effort to minimize the disparity between neural interface devices and the brain, novel soft electrodes consisting of elastomers and intrinsically conducting polymers were fabricated. The physical, mechanical and electrochemical properties of these materials were extensively characterized to identify the formulations with the optimal combination of parameters including Young’s modulus, elongation at break, ultimate tensile strength, conductivity, impedance and surface charge injection. Our final electrode has a Young’s modulus of 974 kPa which is five orders of magnitude lower than tungsten and significantly lower than other polymer-based neural electrode materials. In vitro cell culture experiments demonstrated the favorable interaction between these soft materials and neurons, astrocytes and microglia, with higher neuronal attachment and a two-fold reduction in inflammatory microglia attachment on soft devices compared to stiff controls. Surface immobilization of neuronal adhesion proteins on these microwires further improved the cellular response. Finally, in vivo electrophysiology demonstrated the functionality of the elastomeric electrodes in recording single unit activity in the rodent visual cortex. The results presented provide initial evidence in support of the use of soft materials in neural interface applications. PMID:25993261

  17. Materials approaches for modulating neural tissue responses to implanted microelectrodes through mechanical and biochemical means

    PubMed Central

    Sommakia, Salah; Lee, Heui C.; Gaire, Janak; Otto, Kevin J.

    2014-01-01

    Implantable intracortical microelectrodes face an uphill struggle for widespread clinical use. Their potential for treating a wide range of traumatic and degenerative neural disease is hampered by their unreliability in chronic settings. A major factor in this decline in chronic performance is a reactive response of brain tissue, which aims to isolate the implanted device from the rest of the healthy tissue. In this review we present a discussion of materials approaches aimed at modulating the reactive tissue response through mechanical and biochemical means. Benefits and challenges associated with these approaches are analyzed, and the importance of multimodal solutions tested in emerging animal models are presented. PMID:25530703

  18. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    NASA Astrophysics Data System (ADS)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  19. An Implantable Wireless Neural Interface for Recording Cortical Circuit Dynamics in Moving Primates

    PubMed Central

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-01-01

    Objective Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims, and those living with severe neuromotor disease. Such systems must be chronically safe, durable, and effective. Approach We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous, and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based MEA via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1Hz to 7.8kHz, ×200 gain) and multiplexed by a custom application specific integrated circuit, digitized, and then packaged for transmission. The neural data (24 Mbps) was transmitted by a wireless data link carried on an frequency shift key modulated signal at 3.2GHz and 3.8GHz to a receiver 1 meter away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7-hour continuous operation between recharge via an inductive transcutaneous wireless power link at 2MHz. Main results Device verification and early validation was performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight on how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have

  20. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces

    NASA Astrophysics Data System (ADS)

    Yoshida Kozai, Takashi D.; Langhals, Nicholas B.; Patel, Paras R.; Deng, Xiaopei; Zhang, Huanan; Smith, Karen L.; Lahann, Joerg; Kotov, Nicholas A.; Kipke, Daryl R.

    2012-12-01

    Implantable neural microelectrodes that can record extracellular biopotentials from small, targeted groups of neurons are critical for neuroscience research and emerging clinical applications including brain-controlled prosthetic devices. The crucial material-dependent problem is developing microelectrodes that record neural activity from the same neurons for years with high fidelity and reliability. Here, we report the development of an integrated composite electrode consisting of a carbon-fibre core, a poly(p-xylylene)-based thin-film coating that acts as a dielectric barrier and that is functionalized to control intrinsic biological processes, and a poly(thiophene)-based recording pad. The resulting implants are an order of magnitude smaller than traditional recording electrodes, and more mechanically compliant with brain tissue. They were found to elicit much reduced chronic reactive tissue responses and enabled single-neuron recording in acute and early chronic experiments in rats. This technology, taking advantage of new composites, makes possible highly selective and stealthy neural interface devices towards realizing long-lasting implants.

  1. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces

    PubMed Central

    Kozai, Takashi D. Yoshida; Langhals, Nicholas B.; Patel, Paras R.; Deng, Xiaopei; Zhang, Huanan; Smith, Karen L.; Lahann, Joerg; Kotov, Nicholas A.; Kipke, Daryl R.

    2012-01-01

    Implantable neural microelectrodes that can record extracellular biopotentials from small, targeted groups of neurons are critical for neuroscience research and emerging clinical applications including brain-controlled prosthetic devices. The crucial material-dependent problem is developing microelectrodes that record neural activity from the same neurons for years with high fidelity and reliability. Here, we report the development of an integrated composite electrode consisting of a carbon-fibre core, a poly(p-xylylene)-based thin-film coating that acts as a dielectric barrier and that is functionalized to control intrinsic biological processes, and a poly(thiophene)-based recording pad. The resulting implants are an order of magnitude smaller than traditional recording electrodes, and more mechanically compliant with brain tissue. They were found to elicit much reduced chronic reactive tissue responses and enabled single-neuron recording in acute and early chronic experiments in rats. This technology, taking advantage of new composites, makes possible highly selective and stealthy neural interface devices towards realizing long-lasting implants. PMID:23142839

  2. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces.

    PubMed

    Kozai, Takashi D Yoshida; Langhals, Nicholas B; Patel, Paras R; Deng, Xiaopei; Zhang, Huanan; Smith, Karen L; Lahann, Joerg; Kotov, Nicholas A; Kipke, Daryl R

    2012-12-01

    Implantable neural microelectrodes that can record extracellular biopotentials from small, targeted groups of neurons are critical for neuroscience research and emerging clinical applications including brain-controlled prosthetic devices. The crucial material-dependent problem is developing microelectrodes that record neural activity from the same neurons for years with high fidelity and reliability. Here, we report the development of an integrated composite electrode consisting of a carbon-fibre core, a poly(p-xylylene)-based thin-film coating that acts as a dielectric barrier and that is functionalized to control intrinsic biological processes, and a poly(thiophene)-based recording pad. The resulting implants are an order of magnitude smaller than traditional recording electrodes, and more mechanically compliant with brain tissue. They were found to elicit much reduced chronic reactive tissue responses and enabled single-neuron recording in acute and early chronic experiments in rats. This technology, taking advantage of new composites, makes possible highly selective and stealthy neural interface devices towards realizing long-lasting implants. PMID:23142839

  3. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces.

    PubMed

    Kozai, Takashi D Yoshida; Langhals, Nicholas B; Patel, Paras R; Deng, Xiaopei; Zhang, Huanan; Smith, Karen L; Lahann, Joerg; Kotov, Nicholas A; Kipke, Daryl R

    2012-12-01

    Implantable neural microelectrodes that can record extracellular biopotentials from small, targeted groups of neurons are critical for neuroscience research and emerging clinical applications including brain-controlled prosthetic devices. The crucial material-dependent problem is developing microelectrodes that record neural activity from the same neurons for years with high fidelity and reliability. Here, we report the development of an integrated composite electrode consisting of a carbon-fibre core, a poly(p-xylylene)-based thin-film coating that acts as a dielectric barrier and that is functionalized to control intrinsic biological processes, and a poly(thiophene)-based recording pad. The resulting implants are an order of magnitude smaller than traditional recording electrodes, and more mechanically compliant with brain tissue. They were found to elicit much reduced chronic reactive tissue responses and enabled single-neuron recording in acute and early chronic experiments in rats. This technology, taking advantage of new composites, makes possible highly selective and stealthy neural interface devices towards realizing long-lasting implants.

  4. Novel multi-sided, microelectrode arrays for implantable neural applications

    PubMed Central

    Seymour, John P.; Langhals, Nick B.; Anderson, David J.; Kipke, Daryl R.

    2014-01-01

    A new parylene-based microfabrication process is presented for neural recording and drug delivery applications. We introduce a large design space for electrode placement and structural flexibility with a six mask process. By using chemical mechanical polishing, electrode sites may be created top-side, back-side, or on the edge of the device having three exposed sides. Added surface area was achieved on the exposed edge through electroplating. Poly(3,4-ethylenedioxythiophene) (PEDOT) modified edge electrodes having an 85-μm2 footprint resulted in an impedance of 200 kΩ at 1 kHz. Edge electrodes were able to successfully record single unit activity in acute animal studies. A finite element model of planar and edge electrodes relative to neuron position reveals that edge electrodes should be beneficial for increasing the volume of tissue being sampled in recording applications. PMID:21301965

  5. Multichannel neural recording with a 128 Mbps UWB wireless transmitter for implantable brain-machine interfaces.

    PubMed

    Ando, H; Takizawa, K; Yoshida, T; Matsushita, K; Hirata, M; Suzuki, T

    2015-01-01

    To realize a low-invasive and high accuracy BMI (Brain-machine interface) system, we have already developed a fully-implantable wireless BMI system which consists of ECoG neural electrode arrays, neural recording ASICs, a Wi-Fi based wireless data transmitter and a wireless power receiver with a rechargeable battery. For accurate estimation of movement intentions, it is important for a BMI system to have a large number of recording channels. In this paper, we report a new multi-channel BMI system which is able to record up to 4096-ch ECoG data by multiple connections of 64-ch ASICs and time division multiplexing of recorded data. This system has an ultra-wide-band (UWB) wireless unit for transmitting the recorded neural signals to outside the body. By preliminary experiments with a human body equivalent liquid phantom, we confirmed 4096-ch UWB wireless data transmission at 128 Mbps mode below 20 mm distance.

  6. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.

    PubMed

    Shaeri, Mohammad Ali; Sodagar, Amir M

    2015-05-01

    This paper proposes an efficient data compression technique dedicated to implantable intra-cortical neural recording devices. The proposed technique benefits from processing neural signals in the Discrete Haar Wavelet Transform space, a new spike extraction approach, and a novel data framing scheme to telemeter the recorded neural information to the outside world. Based on the proposed technique, a 64-channel neural signal processor was designed and prototyped as a part of a wireless implantable extra-cellular neural recording microsystem. Designed in a 0.13- μ m standard CMOS process, the 64-channel neural signal processor reported in this paper occupies ∼ 0.206 mm(2) of silicon area, and consumes 94.18 μW when operating under a 1.2-V supply voltage at a master clock frequency of 1.28 MHz. PMID:25222949

  7. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    PubMed

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  8. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    PubMed

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  9. A 96-channel FPGA-based time-to-digital converter

    SciTech Connect

    Bogdan, Mircea; Frisch, Henry; Heintz, Mary; Paramonov, Alexander; Sanders, Harold; Chappa, Steve; DeMaat, Robert; Klein, Rod; Miao, Ting; Phillips, Thomas J; Wilson, Peter

    2005-02-01

    We describe an FPGA-based, 96-channel, time-to-digital converter (TDC) intended for use with the Central Outer Tracker (COT) [1] in the CDF Experiment [2] at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGA’s. The special capabilities of this device are the availability of 840 MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns, a minimum input pulse width of 4.8 ns and a minimum separation of 4.8 ns between pulses. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5.5 μs allow deadtime-less operation in the first-level trigger; the data are multiple-buffered to diminish deadtime in the second-level trigger. The complete process of edge-detection and filling of buffers for readout takes 12 μs. The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47 Mbytes/sec. The TDC also contains a separately-programmed data path that produces prompt trigger data every Tevatron crossing. The trigger bits are clocked onto the P3 VME backplane connector with a 22-ns clock for transmission to the trigger. The full TDC design and multi-card test results are described. The physical simplicity ensures low-maintenance; the functionality being in firmware allows reprogramming for other applications.

  10. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui

    2015-08-01

    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  11. Flexible, Polarization-Diverse UWB Antennas for Implantable Neural Recording Systems.

    PubMed

    Bahrami, Hadi; Mirbozorgi, S Abdollah; Ameli, Reza; Rusch, Leslie A; Gosselin, Benoit

    2016-02-01

    Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2-11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1-10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Our miniaturized flexible antennas are 12 mm×12 mm and 10 mm×9 mm for single- and dual-polarizations, respectively. Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity.

  12. Nanofibers implant functionalized by neural growth factor as a strategy to innervate a bioengineered tooth.

    PubMed

    Eap, Sandy; Bécavin, Thibault; Keller, Laetitia; Kökten, Tunay; Fioretti, Florence; Weickert, Jean-Luc; Deveaux, Etienne; Benkirane-Jessel, Nadia; Kuchler-Bopp, Sabine

    2014-03-01

    Current strategies for jaw reconstruction require multiple procedures, to repair the bone defect, to offer sufficient support, and to place the tooth implant. The entire procedure can be painful and time-consuming, and the desired functional repair can be achieved only when both steps are successful. The ability to engineer combined tooth and bone constructs, which would grow in a coordinated fashion with the surrounding tissues, could potentially improve the clinical outcomes and also reduce patient suffering. A unique nanofibrous and active implant for bone-tooth unit regeneration and also the innervation of this bioengineered tooth are demonstrated. A nanofibrous polycaprolactone membrane is functionalized with neural growth factor, along with dental germ, and tooth innervation follows. Such innervation allows complete functionality and tissue homeostasis of the tooth, such as dentinal sensitivity, odontoblast function, masticatory forces, and blood flow. PMID:24124118

  13. Design and evaluation of carbon nanofiber and silicon materials for neural implant applications

    NASA Astrophysics Data System (ADS)

    McKenzie, Janice L.

    Reduction of glial scar tissue around central nervous system implants is necessary for improved efficacy in chronic applications. Design of materials that possess tunable properties inspired by native biological tissue and elucidation of pertinent cellular interactions with these materials was the motivation for this study. Since nanoscale carbon fibers possess the fundamental dimensional similarities to biological tissue and have attractive material properties needed for neural biomaterial implants, this present study explored cytocompatibility of these materials as well as modifications to traditionally used silicon. On silicon materials, results indicated that nanoscale surface features reduced astrocyte functions, and could be used to guide neurite extension from PC12 cells. Similarly, it was determined that astrocyte functions (key cells in glial scar tissue formation) were reduced on smaller diameter carbon fibers (125 nm or less) while PC12 neurite extension was enhanced on smaller diameter carbon fibers (100 nm or less). Further studies implicated laminin adsorption as a key mechanism in enhancing astrocyte adhesion to larger diameter fibers and at the same time encouraging neurite extension on smaller diameter fibers. Polycarbonate urethane (PCU) was then used as a matrix material for the smaller diameter carbon fibers (100 and 60 nm). These composites proved very versatile since electrical and mechanical properties as well as cell functions and directionality could be influenced by changing bulk and surface composition and features of these matrices. When these composites were modified to be smooth at the micronscale and only rough at the nanoscale, P19 cells actually submerged philopodia, extensions, or whole cells bodies beneath the PCU in order to interact with the carbon nanofibers. These carbon nanofiber composites that have been formulated are a promising material to coat neural probes and thereby enhance functionality at the tissue interface. This

  14. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  15. Residual Neural Processing of Musical Sound Features in Adult Cochlear Implant Users

    PubMed Central

    Timm, Lydia; Vuust, Peter; Brattico, Elvira; Agrawal, Deepashri; Debener, Stefan; Büchner, Andreas; Dengler, Reinhard; Wittfoth, Matthias

    2014-01-01

    Auditory processing in general and music perception in particular are hampered in adult cochlear implant (CI) users. To examine the residual music perception skills and their underlying neural correlates in CI users implanted in adolescence or adulthood, we conducted an electrophysiological and behavioral study comparing adult CI users with normal-hearing age-matched controls (NH controls). We used a newly developed musical multi-feature paradigm, which makes it possible to test automatic auditory discrimination of six different types of sound feature changes inserted within a musical enriched setting lasting only 20 min. The presentation of stimuli did not require the participants’ attention, allowing the study of the early automatic stage of feature processing in the auditory cortex. For the CI users, we obtained mismatch negativity (MMN) brain responses to five feature changes but not to changes of rhythm, whereas we obtained MMNs for all the feature changes in the NH controls. Furthermore, the MMNs to deviants of pitch of CI users were reduced in amplitude and later than those of NH controls for changes of pitch and guitar timber. No other group differences in MMN parameters were found to changes in intensity and saxophone timber. Furthermore, the MMNs in CI users reflected the behavioral scores from a respective discrimination task and were correlated with patients’ age and speech intelligibility. Our results suggest that even though CI users are not performing at the same level as NH controls in neural discrimination of pitch-based features, they do possess potential neural abilities for music processing. However, CI users showed a disrupted ability to automatically discriminate rhythmic changes compared with controls. The current behavioral and MMN findings highlight the residual neural skills for music processing even in CI users who have been implanted in adolescence or adulthood. Highlights: -Automatic brain responses to musical feature changes

  16. Implantable neural spike detection using lifting-based stationary wavelet transform.

    PubMed

    Yang, Yuning; Mason, Andrew J

    2011-01-01

    Spike detection from high data rate neural recordings is desired to ease the bandwidth bottleneck of bio-telemetry. An appropriate spike detection method should be able to detect spikes under low signal-to-noise ratio (SNR) while meeting the power and area constraints of implantation. This paper introduces a spike detection system utilizing lifting-based stationary wavelet transform (SWT) that decomposes neural signals into 2 levels using 'symmlet2' wavelet basis. This approach enables accurate spike detection down to an SNR of only 2. The lifting-based SWT architecture permits a hardware implementation consuming only 6.6 μW power and 0.07 mm(2) area for 32 channels with 3.2 MHz master clock.

  17. Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter

    PubMed Central

    Chung, Yoojin; Delgutte, Bertrand

    2012-01-01

    Poor sensitivity to the interaural time difference (ITD) constrains the ability of human bilateral cochlear implant users to listen in everyday noisy acoustic environments. ITD sensitivity to periodic pulse trains degrades sharply with increasing pulse rate but can be restored at high pulse rates by jittering the interpulse intervals in a binaurally coherent manner (Laback and Majdak. Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci USA 105: 814–817, 2008). We investigated the neural basis of the jitter effect by recording from single inferior colliculus (IC) neurons in bilaterally implanted, anesthetized cats. Neural responses to trains of biphasic pulses were measured as a function of pulse rate, jitter, and ITD. An effect of jitter on neural responses was most prominent for pulse rates above 300 pulses/s. High-rate periodic trains evoked only an onset response in most IC neurons, but introducing jitter increased ongoing firing rates in about half of these neurons. Neurons that had sustained responses to jittered high-rate pulse trains showed ITD tuning comparable with that produced by low-rate periodic pulse trains. Thus, jitter appears to improve neural ITD sensitivity by restoring sustained firing in many IC neurons. The effect of jitter on IC responses is qualitatively consistent with human psychophysics. Action potentials tended to occur reproducibly at sparse, preferred times across repeated presentations of high-rate jittered pulse trains. Spike triggered averaging of responses to jittered pulse trains revealed that firing was triggered by very short interpulse intervals. This suggests it may be possible to restore ITD sensitivity to periodic carriers by simply inserting short interpulse intervals at select times. PMID:22592306

  18. Current focussing in cochlear implants: an analysis of neural recruitment in a computational model.

    PubMed

    Kalkman, Randy K; Briaire, Jeroen J; Frijns, Johan H M

    2015-04-01

    Several multipolar current focussing strategies are examined in a computational model of the implanted human cochlea. The model includes a realistic spatial distribution of cell bodies of the auditory neurons throughout Rosenthal's canal. Simulations are performed of monopolar, (partial) tripolar and phased array stimulation. Excitation patterns, estimated thresholds, electrical dynamic range, excitation density and neural recruitment curves are determined and compared. The main findings are: (I) Current focussing requires electrical field interaction to induce spatially restricted excitation patterns. For perimodiolar electrodes the distance to the neurons is too small to have sufficient electrical field interaction, which results in neural excitation near non-centre contacts. (II) Current focussing only produces spatially restricted excitation patterns when there is little or no excitation occurring in the peripheral processes, either because of geometrical factors or due to neural degeneration. (III) The model predicts that neural recruitment with electrical stimulation is a three-dimensional process; regions of excitation not only expand in apical and basal directions, but also by penetrating deeper into the spiral ganglion. (IV) At equal loudness certain differences between the spatial excitation patterns of various multipoles cannot be simulated in a model containing linearly aligned neurons of identical morphology. Introducing a form of variability in the neurons, such as the spatial distribution of cell bodies in the spiral ganglion used in this study, is therefore essential in the modelling of spread of excitation. This article is part of a Special Issue entitled .

  19. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants

    NASA Astrophysics Data System (ADS)

    Prasad, Abhishek; Xue, Qing-Shan; Sankar, Viswanath; Nishida, Toshikazu; Shaw, Gerry; Streit, Wolfgang J.; Sanchez, Justin C.

    2012-10-01

    For nearly 55 years, tungsten microwires have been widely used in neurophysiological experiments in animal models to chronically record neuronal activity. While tungsten microwires initially provide stable recordings, their inability to reliably record high-quality neural signals for tens of years has limited their efficacy for neuroprosthetic applications in humans. Comprehensive understanding of the mechanisms of electrode performance and failure is necessary for developing next generation neural interfaces for humans. In this study, we evaluated the abiotic (electrophysiology, impedance, electrode morphology) and biotic (microglial reactivity, blood-brain barrier disruption, biochemical markers of axonal injury) effects of 16-channel, 50 µm diameter, polyimide insulated tungsten microwires array for implant durations that ranged from acute to up to 9 months in 25 rats. Daily electrode impedance spectroscopy, electrophysiological recordings, blood and cerebrospinal fluid (CSF) withdrawals, and histopathological analysis were performed to study the time-varying effects of chronic electrode implantation. Structural changes at the electrode recording site were observed as early as within 2-3 h of electrode insertion. Abiotic analysis indicated the first 2-3 weeks following surgery was the most dynamic period in the chronic electrode lifetime as there were greater variations in the electrode impedance, functional electrode performance, and the structural changes occurring at the electrode recording tips. Electrode recording site deterioration continued for the long-term chronic animals as insulation damage occurred and recording surface became more recessed over time. In general, electrode impedance and functional performance had smaller daily variations combined with reduced electrode recording site changes during the chronic phase. Histopathological studies were focused largely on characterizing microglial cell responses to electrode implantation. We found that

  20. Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies

    PubMed Central

    2015-01-01

    Implantable biosensors are valuable scientific tools for basic neuroscience research and clinical applications. Neurotechnologies provide direct readouts of neurological signal and neurochemical processes. These tools are generally most valuable when performance capacities extend over months and years to facilitate the study of memory, plasticity, and behavior or to monitor patients’ conditions. These needs have generated a variety of device designs from microelectrodes for fast scan cyclic voltammetry (FSCV) and electrophysiology to microdialysis probes for sampling and detecting various neurochemicals. Regardless of the technology used, the breaching of the blood–brain barrier (BBB) to insert devices triggers a cascade of biochemical pathways resulting in complex molecular and cellular responses to implanted devices. Molecular and cellular changes in the microenvironment surrounding an implant include the introduction of mechanical strain, activation of glial cells, loss of perfusion, secondary metabolic injury, and neuronal degeneration. Changes to the tissue microenvironment surrounding the device can dramatically impact electrochemical and electrophysiological signal sensitivity and stability over time. This review summarizes the magnitude, variability, and time course of the dynamic molecular and cellular level neural tissue responses induced by state-of-the-art implantable devices. Studies show that insertion injuries and foreign body response can impact signal quality across all implanted central nervous system (CNS) sensors to varying degrees over both acute (seconds to minutes) and chronic periods (weeks to months). Understanding the underlying biological processes behind the brain tissue response to the devices at the cellular and molecular level leads to a variety of intervention strategies for improving signal sensitivity and longevity. PMID:25546652

  1. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    PubMed Central

    Sankar, Viswanath; Patrick, Erin; Dieme, Robert; Sanchez, Justin C.; Prasad, Abhishek; Nishida, Toshikazu

    2014-01-01

    Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially. PMID:24847248

  2. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions.

    PubMed

    Sankar, Viswanath; Patrick, Erin; Dieme, Robert; Sanchez, Justin C; Prasad, Abhishek; Nishida, Toshikazu

    2014-01-01

    Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.

  3. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions.

    PubMed

    Sankar, Viswanath; Patrick, Erin; Dieme, Robert; Sanchez, Justin C; Prasad, Abhishek; Nishida, Toshikazu

    2014-01-01

    Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially. PMID:24847248

  4. Ultra-low-power and robust digital-signal-processing hardware for implantable neural interface microsystems.

    PubMed

    Narasimhan, S; Chiel, H J; Bhunia, S

    2011-04-01

    Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches. PMID:23851205

  5. Ultra-low-power and robust digital-signal-processing hardware for implantable neural interface microsystems.

    PubMed

    Narasimhan, S; Chiel, H J; Bhunia, S

    2011-04-01

    Implantable microsystems for monitoring or manipulating brain activity typically require on-chip real-time processing of multichannel neural data using ultra low-power, miniaturized electronics. In this paper, we propose an integrated-circuit/architecture-level hardware design framework for neural signal processing that exploits the nature of the signal-processing algorithm. First, we consider different power reduction techniques and compare the energy efficiency between the ultra-low frequency subthreshold and conventional superthreshold design. We show that the superthreshold design operating at a much higher frequency can achieve comparable energy dissipation by taking advantage of extensive power gating. It also provides significantly higher robustness of operation and yield under large process variations. Next, we propose an architecture level preferential design approach for further energy reduction by isolating the critical computation blocks (with respect to the quality of the output signal) and assigning them higher delay margins compared to the noncritical ones. Possible delay failures under parameter variations are confined to the noncritical components, allowing graceful degradation in quality under voltage scaling. Simulation results using prerecorded neural data from the sea-slug (Aplysia californica) show that the application of the proposed design approach can lead to significant improvement in total energy, without compromising the output signal quality under process variations, compared to conventional design approaches.

  6. Longitudinal Analysis of the Absence of Intraoperative Neural Response Telemetry in Children using Cochlear Implants.

    PubMed

    Moura, Amanda Christina Gomes de; Goffi-Gomez, Maria Valéria Schmidt; Couto, Maria Ines Vieira; Brito, Rubens; Tsuji, Robinson Koji; Befi-Lopes, Debora Maria; Matas, Carla Gentile; Bento, Ricardo Ferreira

    2014-10-01

    Introduction Currently the cochlear implant allows access to sounds in individuals with profound hearing loss. The objective methods used to verify the integrity of the cochlear device and the electrophysiologic response of users have noted these improvements. Objective To establish whether the evoked compound action potential of the auditory nerve can appear after electrical stimulation when it is absent intraoperatively. Methods The clinical records of children implanted with the Nucleus Freedom (Cochlear Ltd., Australia) (CI24RE) cochlear implant between January 2009 and January 2010 with at least 6 months of use were evaluated. The neural response telemetry (NRT) thresholds of electrodes 1, 6, 11, 16, and 22 during surgery and after at least 3 months of implant use were analyzed and correlated with etiology, length of auditory deprivation, and chronological age. These data were compared between a group of children exhibiting responses in all of the tested electrodes and a group of children who had at least one absent response. Results The sample was composed of clinical records of 51 children. From these, 21% (11) showed no NRT in at least one of the tested electrodes. After an average of 4.9 months of stimulation, the number of individuals exhibiting absent responses decreased from 21 to 11% (n = 6). Conclusion It is feasible that absent responses present after a period of electrical stimulation. In our sample, 45% (n = 5) of the patients with intraoperative absence exhibited a positive response after an average of 4.9 months of continued electrical stimulation. PMID:25992123

  7. Longitudinal Analysis of the Absence of Intraoperative Neural Response Telemetry in Children using Cochlear Implants

    PubMed Central

    Moura, Amanda Christina Gomes de; Goffi-Gomez, Maria Valéria Schmidt; Couto, Maria Ines Vieira; Brito, Rubens; Tsuji, Robinson Koji; Befi-Lopes, Debora Maria; Matas, Carla Gentile; Bento, Ricardo Ferreira

    2014-01-01

    Introduction Currently the cochlear implant allows access to sounds in individuals with profound hearing loss. The objective methods used to verify the integrity of the cochlear device and the electrophysiologic response of users have noted these improvements. Objective To establish whether the evoked compound action potential of the auditory nerve can appear after electrical stimulation when it is absent intraoperatively. Methods The clinical records of children implanted with the Nucleus Freedom (Cochlear Ltd., Australia) (CI24RE) cochlear implant between January 2009 and January 2010 with at least 6 months of use were evaluated. The neural response telemetry (NRT) thresholds of electrodes 1, 6, 11, 16, and 22 during surgery and after at least 3 months of implant use were analyzed and correlated with etiology, length of auditory deprivation, and chronological age. These data were compared between a group of children exhibiting responses in all of the tested electrodes and a group of children who had at least one absent response. Results The sample was composed of clinical records of 51 children. From these, 21% (11) showed no NRT in at least one of the tested electrodes. After an average of 4.9 months of stimulation, the number of individuals exhibiting absent responses decreased from 21 to 11% (n = 6). Conclusion It is feasible that absent responses present after a period of electrical stimulation. In our sample, 45% (n = 5) of the patients with intraoperative absence exhibited a positive response after an average of 4.9 months of continued electrical stimulation. PMID:25992123

  8. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M

    2014-04-01

    Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants.

  9. Bio-impedance characterization technique with implantable neural stimulator using biphasic current stimulus.

    PubMed

    Lo, Yi-Kai; Chang, Chih-Wei; Liu, Wentai

    2014-01-01

    Knowledge of the bio-impedance and its equivalent circuit model at the electrode-electrolyte/tissue interface is important in the application of functional electrical stimulation. Impedance can be used as a merit to evaluate the proximity between electrodes and targeted tissues. Understanding the equivalent circuit parameters of the electrode can further be leveraged to set a safe boundary for stimulus parameters in order not to exceed the water window of electrodes. In this paper, we present an impedance characterization technique and implement a proof-of-concept system using an implantable neural stimulator and an off-the-shelf microcontroller. The proposed technique yields the parameters of the equivalent circuit of an electrode through large signal analysis by injecting a single low-intensity biphasic current stimulus with deliberately inserted inter-pulse delay and by acquiring the transient electrode voltage at three well-specified timings. Using low-intensity stimulus allows the derivation of electrode double layer capacitance since capacitive charge-injection dominates when electrode overpotential is small. Insertion of the inter-pulse delay creates a controlled discharge time to estimate the Faradic resistance. The proposed method has been validated by measuring the impedance of a) an emulated Randles cells made of discrete circuit components and b) a custom-made platinum electrode array in-vitro, and comparing estimated parameters with the results derived from an impedance analyzer. The proposed technique can be integrated into implantable or commercial neural stimulator system at low extra power consumption, low extra-hardware cost, and light computation.

  10. Periprostatic implantation of neural differentiated mesenchymal stem cells restores cavernous nerve injury-mediated erectile dysfunction

    PubMed Central

    Fang, Jia-Feng; Jia, Chang-Chang; Zheng, Zong-Heng; Ye, Xiao-Long; Wei, Bo; Huang, Li-Jun; Wei, Hong-Bo

    2016-01-01

    Mesenchymal stem cells (MSCs) have been utilized to restore erectile function in animal models of cavernous nerve injury (CNI). However, transplantation of primary MSCs may lead to unpredictable therapeutic outcomes. In this study, we investigated the efficiency of neural differentiated MSCs (d-MSCs) on the restoration of erectile function in CNI rats. Rat bone marrow MSCs (r-BM-MSCs) were treated with all-trans retinoic acid to induce neural differentiation. Rats were divided into five groups: a sham operation group; a bilateral CNI group that received an intracavernous injection of r-BM-MSCs (IC group); and three groups that received periprostatic implantation of either r-BM-MSCs (IP group), d-MSCs (IP-d group), or PBS (PBS group). The data revealed that IP injection of d-MSCs ameliorated erectile function in a similar manner to an IC injection of MSCs and enhanced erectile function compared to an IP injection of MSCs. An in vivo time course of d-MSCs survival revealed that PKH26-labled d-MSCs were detectable either within or surrounding the cavernous nerve tissue. In addition, the expression of caspase-3 significantly increased in the PBS group and decreased after treatment with MSCs, especially in the IC and IP-d groups. Furthermore, the expression levels of neurotrophic factors increased significantly in d-MSCs. This study demonstrated that periprostatic implantation of d-MSCs effectively restored erectile function in CNI rats. The mechanism might be ascribed to decreases in the frequency of apoptotic cells, as well as paracrine signaling by factors derived from d-MSCs. PMID:27398139

  11. Comprehensive characterization and failure modes of tungsten microwire arrays in chronic neural implants.

    PubMed

    Prasad, Abhishek; Xue, Qing-Shan; Sankar, Viswanath; Nishida, Toshikazu; Shaw, Gerry; Streit, Wolfgang J; Sanchez, Justin C

    2012-10-01

    For nearly 55 years, tungsten microwires have been widely used in neurophysiological experiments in animal models to chronically record neuronal activity. While tungsten microwires initially provide stable recordings, their inability to reliably record high-quality neural signals for tens of years has limited their efficacy for neuroprosthetic applications in humans. Comprehensive understanding of the mechanisms of electrode performance and failure is necessary for developing next generation neural interfaces for humans. In this study, we evaluated the abiotic (electrophysiology, impedance, electrode morphology) and biotic (microglial reactivity, blood-brain barrier disruption, biochemical markers of axonal injury) effects of 16-channel, 50 µm diameter, polyimide insulated tungsten microwires array for implant durations that ranged from acute to up to 9 months in 25 rats. Daily electrode impedance spectroscopy, electrophysiological recordings, blood and cerebrospinal fluid (CSF) withdrawals, and histopathological analysis were performed to study the time-varying effects of chronic electrode implantation. Structural changes at the electrode recording site were observed as early as within 2-3 h of electrode insertion. Abiotic analysis indicated the first 2-3 weeks following surgery was the most dynamic period in the chronic electrode lifetime as there were greater variations in the electrode impedance, functional electrode performance, and the structural changes occurring at the electrode recording tips. Electrode recording site deterioration continued for the long-term chronic animals as insulation damage occurred and recording surface became more recessed over time. In general, electrode impedance and functional performance had smaller daily variations combined with reduced electrode recording site changes during the chronic phase. Histopathological studies were focused largely on characterizing microglial cell responses to electrode implantation. We found that

  12. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording.

    PubMed

    Kozai, Takashi D Y; Catt, Kasey; Li, Xia; Gugel, Zhannetta V; Olafsson, Valur T; Vazquez, Alberto L; Cui, X Tracy

    2015-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.

  13. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

    PubMed Central

    Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy

    2014-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935

  14. Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric

    2010-06-01

    We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.

  15. Implantable Graphene-based Neural Electrode Interfaces for Electrophysiology and Neurochemistry in In Vivo Hyperacute Stroke Model.

    PubMed

    Liu, Ta-Chung; Chuang, Min-Chieh; Chu, Chao-Yi; Huang, Wei-Chen; Lai, Hsin-Yi; Wang, Chao-Ting; Chu, Wei-Lin; Chen, San-Yuan; Chen, You-Yin

    2016-01-13

    Implantable microelectrode arrays have attracted considerable interest due to their high temporal and spatial resolution recording of neuronal activity in tissues. We herein presented an implantable multichannel neural probe with multiple real-time monitoring of neural-chemical and neural-electrical signals by a nonenzymatic neural-chemical interface, which was designed by creating the newly developed reduced graphene oxide-gold oxide (rGO/Au2O3) nanocomposite electrode. The modified electrode on the neural probe was prepared by a facile one-step cyclic voltammetry (CV) electrochemical method with simultaneous occurrence of gold oxidation and GOs reduction to induce the intimate attachment by electrostatic interaction using chloride ions (Cl(-)). The rGO/Au2O3-modified electrode at a low deposition scan rate of 10 mVs(-1) displayed significantly improved electrocatalytic activity due to large active areas and well-dispersive attached rGO sheets. The in vitro amperometric response to H2O2 demonstrated a fast response of less than 5 s and a very low detection limit of 0.63 μM. In in vivo hyperacute stroke model, the concentration of H2O2 was measured as 100.48 ± 4.52 μM for rGO/Au2O3 electrode within 1 h photothrombotic stroke, which was much higher than that (71.92 μM ± 2.52 μM) for noncoated electrode via in vitro calibration. Simultaneously, the somatosensory-evoked potentials (SSEPs) test provided reliable and precise validation for detecting functional changes of neuronal activities. This newly developed implantable probe with localized rGO/Au2O3 nanocomposite electrode can serve as a rapid and reliable sensing platform for practical H2O2 detection in the brain or for other neural-chemical molecules in vivo. PMID:26653098

  16. In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography

    PubMed Central

    Xie, Yijing; Martini, Nadja; Hassler, Christina; Kirch, Robert D.; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G.

    2014-01-01

    In neural prosthetics and stereotactic neurosurgery, intracortical electrodes are often utilized for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. Unfortunately, neuroinflammation impairs the neuron-electrode-interface by developing a compact glial encapsulation around the implants in long term. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities can not provide information in deep brain regions. Optical coherence tomography (OCT) is a well established imaging modality for in vivo studies, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. A fiber based spectral domain OCT was shown to be capable of minimally invasive brain imaging. In the present study, we propose to use a fiber based spectral domain OCT to monitor the progression of the tissue's immune response through scar encapsulation progress in a rat animal model. A fine fiber catheter was implanted in rat brain together with a flexible polyimide microelectrode in sight both of which acts as a foreign body and induces the brain tissue immune reaction. OCT signals were collected from animals up to 12 weeks after implantation and thus gliotic scarring in vivo monitored for that time. Preliminary data showed a significant enhancement of the OCT backscattering signal during the first 3 weeks after implantation, and increased attenuation factor of the sampled tissue due to the glial scar formation. PMID:25191264

  17. In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography.

    PubMed

    Xie, Yijing; Martini, Nadja; Hassler, Christina; Kirch, Robert D; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G

    2014-01-01

    In neural prosthetics and stereotactic neurosurgery, intracortical electrodes are often utilized for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. Unfortunately, neuroinflammation impairs the neuron-electrode-interface by developing a compact glial encapsulation around the implants in long term. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities can not provide information in deep brain regions. Optical coherence tomography (OCT) is a well established imaging modality for in vivo studies, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. A fiber based spectral domain OCT was shown to be capable of minimally invasive brain imaging. In the present study, we propose to use a fiber based spectral domain OCT to monitor the progression of the tissue's immune response through scar encapsulation progress in a rat animal model. A fine fiber catheter was implanted in rat brain together with a flexible polyimide microelectrode in sight both of which acts as a foreign body and induces the brain tissue immune reaction. OCT signals were collected from animals up to 12 weeks after implantation and thus gliotic scarring in vivo monitored for that time. Preliminary data showed a significant enhancement of the OCT backscattering signal during the first 3 weeks after implantation, and increased attenuation factor of the sampled tissue due to the glial scar formation. PMID:25191264

  18. A wireless power interface for rechargeable battery operated neural recording implants.

    PubMed

    Li, Pengfei; Principe, Jose C; Bashirullah, Rizwan

    2006-01-01

    This paper describes an integrated analog front-end for wireless powering and recharging of miniature Li-ion batteries used in implantable neural recording microsystems. DC signal extraction from a wireless carrier is accomplished using Schottky barrier contact diodes with lower forward voltage drop for improved efficiency. The battery charger employs a new control loop that relaxes comparator resolution requirements, provides simultaneous operation of constant-current and constant-voltage loops, and eliminates the external current sense resistor from the charging path. The accuracy of the end-of-charge detection is primarily determined by the voltage drop across matched resistors and current-sources and the offset voltage of the sense comparator. Experimental results in 0.6 mum bulk CMOS technology indicate that +/- 1.3% (or +/-20 microA) end-of-charge accuracy can be obtained under worst-case conditions for a comparator offset voltage of +/-5mV. The circuits occupy 1.735 mm(2) with a power dissipation of 8.4 mW when delivering a load current of 1.5 mA at 4.1 V (or 6.15 mW) for an efficiency of 73%

  19. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.

    PubMed

    Anand, Sindhu; Kumar, Swathy Sampath; Muthuswamy, Jit

    2016-08-01

    Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time).

  20. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.

    PubMed

    Anand, Sindhu; Kumar, Swathy Sampath; Muthuswamy, Jit

    2016-08-01

    Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time). PMID:27457752

  1. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters. PMID:26738106

  2. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.

  3. The effect of the resistive properties of bone on neural excitation and electric fields in cochlear implant models.

    PubMed

    Malherbe, T K; Hanekom, T; Hanekom, J J

    2015-09-01

    The resistivity of bone is the most variable of all the tissues in the human body, ranging from 312 Ω cm to 84,745 Ω cm. Volume conduction models of cochlear implants have generally used a resistivity value of 641 Ω cm for the bone surrounding the cochlea. This study investigated the effect that bone resistivity has on modelled neural thresholds and intracochlear potentials using user-specific volume conduction models of implanted cochleae applying monopolar stimulation. The complexity of the description of the head volume enveloping the cochlea was varied between a simple infinite bone volume and a detailed skull containing a brain volume, scalp and accurate return electrode position. It was found that, depending on the structure of the head model and implementation of the return electrode, different bone resistivity values are necessary to match model predictions to data from literature. Modelled forward-masked spatial tuning curve (fmSTC) widths and slopes and intracochlear electric field profile length constants were obtained for a range of bone resistivity values for the various head models. The predictions were compared to measurements found in literature. It was concluded that, depending on the head model, a bone resistivity value between 3500 Ω cm and 10,500 Ω cm allows prediction of neural and electrical responses that match measured data. A general recommendation is made to use a resistivity value of approximately 10,000 Ω cm for bone volumes in conduction models of the implanted cochlea when neural excitation is predicted and a value of approximately 6500 Ω cm when predicting electric fields inside the cochlear duct.

  4. Utilising reinforcement learning to develop strategies for driving auditory neural implants

    NASA Astrophysics Data System (ADS)

    Lee, Geoffrey W.; Zambetta, Fabio; Li, Xiaodong; Paolini, Antonio G.

    2016-08-01

    Objective. In this paper we propose a novel application of reinforcement learning to the area of auditory neural stimulation. We aim to develop a simulation environment which is based off real neurological responses to auditory and electrical stimulation in the cochlear nucleus (CN) and inferior colliculus (IC) of an animal model. Using this simulator we implement closed loop reinforcement learning algorithms to determine which methods are most effective at learning effective acoustic neural stimulation strategies. Approach. By recording a comprehensive set of acoustic frequency presentations and neural responses from a set of animals we created a large database of neural responses to acoustic stimulation. Extensive electrical stimulation in the CN and the recording of neural responses in the IC provides a mapping of how the auditory system responds to electrical stimuli. The combined dataset is used as the foundation for the simulator, which is used to implement and test learning algorithms. Main results. Reinforcement learning, utilising a modified n-Armed Bandit solution, is implemented to demonstrate the model’s function. We show the ability to effectively learn stimulation patterns which mimic the cochlea’s ability to covert acoustic frequencies to neural activity. Time taken to learn effective replication using neural stimulation takes less than 20 min under continuous testing. Significance. These results show the utility of reinforcement learning in the field of neural stimulation. These results can be coupled with existing sound processing technologies to develop new auditory prosthetics that are adaptable to the recipients current auditory pathway. The same process can theoretically be abstracted to other sensory and motor systems to develop similar electrical replication of neural signals.

  5. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K. Scott; Isayeva, Irada S.; Krauthamer, Victor; Welle, Cristin G.

    2015-04-01

    Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create

  6. Lab-on-a-brain: Implantable micro-optical fluidic devices for neural cell analysis in vivo

    NASA Astrophysics Data System (ADS)

    Takehara, Hiroaki; Nagaoka, Akira; Noguchi, Jun; Akagi, Takanori; Kasai, Haruo; Ichiki, Takanori

    2014-10-01

    The high-resolution imaging of neural cells in vivo has brought about great progress in neuroscience research. Here, we report a novel experimental platform, where the intact brain of a living mouse can be studied with the aid of a surgically implanted micro-optical fluidic device; acting as an interface between neurons and the outer world. The newly developed device provides the functions required for the long-term and high-resolution observation of the fine structures of neurons by two-photon laser scanning microscopy and the microfluidic delivery of chemicals or drugs directly into the brain. A proof-of-concept experiment of single-synapse stimulation by two-photon uncaging of caged glutamate and observation of dendritic spine shrinkage over subsequent days demonstrated a promising use for the present technology.

  7. Lab-on-a-brain: Implantable micro-optical fluidic devices for neural cell analysis in vivo

    PubMed Central

    Takehara, Hiroaki; Nagaoka, Akira; Noguchi, Jun; Akagi, Takanori; Kasai, Haruo; Ichiki, Takanori

    2014-01-01

    The high-resolution imaging of neural cells in vivo has brought about great progress in neuroscience research. Here, we report a novel experimental platform, where the intact brain of a living mouse can be studied with the aid of a surgically implanted micro-optical fluidic device; acting as an interface between neurons and the outer world. The newly developed device provides the functions required for the long-term and high-resolution observation of the fine structures of neurons by two-photon laser scanning microscopy and the microfluidic delivery of chemicals or drugs directly into the brain. A proof-of-concept experiment of single-synapse stimulation by two-photon uncaging of caged glutamate and observation of dendritic spine shrinkage over subsequent days demonstrated a promising use for the present technology. PMID:25335545

  8. Neural adaptation and perceptual learning using a portable real-time cochlear implant simulator in natural environments.

    PubMed

    Smalt, Christopher J; Talavage, Thomas M; Pisoni, David B; Svirsky, Mario A

    2011-01-01

    A portable real-time speech processor that implements an acoustic simulation model of a cochlear implant (CI) has been developed on the Apple iPhone / iPod Touch to permit testing and experimentation under extended exposure in real-world environments. This simulator allows for both a variable number of noise band channels and electrode insertion depth. Utilizing this portable CI simulator, we tested perceptual learning in normal hearing listeners by measuring word and sentence comprehension behaviorally before and after 2 weeks of exposure. To evaluate changes in neural activation related to adaptation to transformed speech, fMRI was also conducted. Differences in brain activation after training occurred in the inferior frontal gyrus and areas related to language processing. A 15-20% improvement in word and sentence comprehension of cochlear implant simulated speech was also observed. These results demonstrate the effectiveness of a portable CI simulator as a research tool and provide new information about the physiological changes that accompany perceptual learning of degraded auditory input. PMID:22254517

  9. A highly compliant serpentine shaped polyimide interconnect for front-end strain relief in chronic neural implants.

    PubMed

    Sankar, Viswanath; Sanchez, Justin C; McCumiskey, Edward; Brown, Nagid; Taylor, Curtis R; Ehlert, Gregory J; Sodano, Henry A; Nishida, Toshikazu

    2013-01-01

    While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1-4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material.

  10. A Highly Compliant Serpentine Shaped Polyimide Interconnect for Front-End Strain Relief in Chronic Neural Implants

    PubMed Central

    Sankar, Viswanath; Sanchez, Justin C.; McCumiskey, Edward; Brown, Nagid; Taylor, Curtis R.; Ehlert, Gregory J.; Sodano, Henry A.; Nishida, Toshikazu

    2013-01-01

    While the signal quality of recording neural electrodes is observed to degrade over time, the degradation mechanisms are complex and less easily observable. Recording microelectrodes failures are attributed to different biological factors such as tissue encapsulation, immune response, and disruption of blood-brain barrier (BBB) and non-biological factors such as strain due to micromotion, insulation delamination, corrosion, and surface roughness on the recording site (1–4). Strain due to brain micromotion is considered to be one of the important abiotic factors contributing to the failure of the neural implants. To reduce the forces exerted by the electrode on the brain, a high compliance 2D serpentine shaped electrode cable was designed, simulated, and measured using polyimide as the substrate material. Serpentine electrode cables were fabricated using MEMS microfabrication techniques, and the prototypes were subjected to load tests to experimentally measure the compliance. The compliance of the serpentine cable was numerically modeled and quantitatively measured to be up to 10 times higher than the compliance of a straight cable of same dimensions and material. PMID:24062716

  11. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes

    PubMed Central

    Abidian, Mohammad Reza; Martin, David C.

    2009-01-01

    Neural prostheses transduce bioelectric signals to electronic signals at the interface between neural tissue and neural microelectrodes. A low impedance electrode-tissue interface is important for the quality of signal during recording as well as quantity of applied charge density during stimulation. However, neural microelectrode sites exhibit high impedance because of their small geometric surface area. Here we analyze nanostructured-conducting polymers that can be used to significantly decrease the impedance of microelectrode typically by about two orders of magnitude and increase the charge transfer capacity of microelectrodes by three orders of magnitude. In this study poly(pyrrole) (PPy) and poly(3, 4- ethylenedioxythiophene) (PEDOT) nanotubes were electrochemically polymerized on the surface of neural microelectrode sites (1250 μm2). An equivalent circuit model comprising a coating capacitance in parallel with a pore resistance and interface impedance in series was developed and fitted to experimental results to characterize the physical and electrical properties of the interface. To confirm that the fitting parameters correlate with physical quantities of interface, theoretical equations were used to calculate the parameter values thereby validating the proposed model. Finally, an apparent diffusion coefficient was calculated for PPy film (29.2 ± 1.1 cm2/s), PPy nanotubes (72.4 ± 3.3 cm2/s), PEDOT film (7.4 ± 2.1 cm2/s), and PEDOT nanotubes (13.0 ± 1.8 cm2/s). The apparent diffusion coefficient of conducting polymer nanotubes was larger than the corresponding conducting polymer films. PMID:18093644

  12. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration

    NASA Astrophysics Data System (ADS)

    McConnell, George C.; Rees, Howard D.; Levey, Allan I.; Gutekunst, Claire-Anne; Gross, Robert E.; Bellamkonda, Ravi V.

    2009-10-01

    Prosthetic devices that are controlled by intracortical electrodes recording one's 'thoughts' are a reality today, and no longer merely in the realm of science fiction. However, widespread clinical use of implanted electrodes is hampered by a lack of reliability in chronic recordings, independent of the type of electrodes used. One major hypothesis has been that astroglial scar electrically impedes the electrodes. However, there is a temporal discrepancy between stabilization of scar's electrical properties and recording failure with recording failure lagging by 1 month. In this study, we test a possible explanation for this discrepancy: the hypothesis that chronic inflammation, due to the persistent presence of the electrode, causes a local neurodegenerative state in the immediate vicinity of the electrode. Through modulation of chronic inflammation via stab wound, electrode geometry and age-matched control, we found that after 16 weeks, animals with an increased level of chronic inflammation were associated with increased neuronal and dendritic, but not axonal, loss. We observed increased neuronal and dendritic loss 16 weeks after implantation compared to 8 weeks after implantation, suggesting that the local neurodegenerative state is progressive. After 16 weeks, we observed axonal pathology in the form of hyperphosphorylation of the protein tau in the immediate vicinity of the microelectrodes (as observed in Alzheimer's disease and other tauopathies). The results of this study suggest that a local, late onset neurodegenerative disease-like state surrounds the chronic electrodes and is a potential cause for chronic recording failure. These results also inform strategies to enhance our capability to attain reliable long-term recordings from implantable electrodes in the CNS.

  13. An implantable 64-channel neural interface with reconfigurable recording and stimulation.

    PubMed

    Wheeler, Jesse J; Baldwin, Keith; Kindle, Alex; Guyon, Daniel; Nugent, Brian; Segura, Carlos; Rodriguez, John; Czarnecki, Andrew; Dispirito, Hailey J; Lachapelle, John; Parks, Philip D; Moran, James; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    Next generation implantable medical devices will have the potential to provide more precise and effective therapies through adaptive closed-loop controllers that combine sensing and stimulation across larger numbers of electrode channels. A major challenge in the design of such devices is balancing increased functionality and channel counts with the miniaturization required for implantation within small anatomical spaces. Customized therapies will require adaptive systems capable of tuning which channels are sensed and stimulated to overcome variability in patient-specific needs, surgical placement of electrodes, and chronic physiological responses. In order to address these challenges, we have designed a miniaturized implantable fully-reconfigurable front-end system that is integrated into the distal end of an 8-wire lead, enabling up to 64 electrodes to be dynamically configured for sensing and stimulation. Full reconfigurability is enabled by two custom 32×2 cross-point switch (CPS) matrix ASICs which can route any electrode to either an amplifier with reprogrammable bandwidth and integrated ADC or to one of two independent stimulation channels that can be driven through the lead. The 8-wire circuit includes a digital interface for robust communication as well as a charge-balanced powering scheme for enhanced safety. The system is encased in a hermetic package designed to fit within a 14 mm bur-hole in the skull for neuromodulation of the brain, but could easily be adapted to enhance therapies across a broad spectrum of applications. PMID:26738108

  14. A polymer-metal two step sealing concept for hermetic neural implant packages.

    PubMed

    Kohler, Fabian; Kiele, Patrick; Ordonez, Juan S; Stieglitz, Thomas; Schuettler, Martin

    2014-01-01

    In this paper, we introduce a technique for double-sealed ceramic packages for the long-term protection of implanted electronics against body fluids. A sequential sealing procedure consisting of a first step, during which the package is sealed with epoxy, protecting the implant electronics from aggressive flux fumes. These result from the application of the actual moisture barrier which is a metal seal applied in a second step by soft soldering. Epoxy sealing is carried out in helium atmosphere for later fine leak testing. The solder seal is applied on the laboratory bench. After the first sealing step, a satisfactory barrier for moisture is already achieved with values for helium leakage of usually LHe = 6·10(-8) mbar 1 s(-1). After solder sealing, a very low leakage rate of LHe ≤ 1·10(-12) mbar 1 s(-1) was found, which was the lower detection limit of the measurement setup, suggesting excellent hermeticity and hence moisture barrier. Presuming an implant package volume of V ≥ 0.5 cm(3), the time to reach a critical humidity of p = 5000 ppm H2O inside the package will be longer than any anticipated average life of human patients. PMID:25570864

  15. Effects of Neonatal Neural Progenitor Cell Implantation on Adult Neuroanatomy and Cognition in the Ts65Dn Model of Down Syndrome

    PubMed Central

    Rachubinski, Angela L.; Crowley, Shannon K.; Sladek, John R.; Maclean, Kenneth N.; Bjugstad, Kimberly B.

    2012-01-01

    As much of the aberrant neural development in Down syndrome (DS) occurs postnatally, an early opportunity exists to intervene and influence life-long cognitive development. Recent success using neural progenitor cells (NPC) in models of adult neurodegeneration indicate such therapy may be a viable option in diseases such as DS. Murine NPC (mNPC, C17.2 cell line) or saline were implanted bilaterally into the dorsal hippocampus of postnatal day 2 (PND 2) Ts65Dn pups to explore the feasibility of early postnatal treatment in this mouse model of DS. Disomic littermates provided karyotype controls for trisomic pups. Pups were monitored for developmental milestone achievement, and then underwent adult behavior testing at 14 weeks of age. We found that implanted mNPC survived into adulthood and migrated beyond the implant site in both karyotypes. The implantation of mNPC resulted in a significant increase in the density of dentate granule cells. However, mNPC implantation did not elicit cognitive changes in trisomic mice either neonatally or in adulthood. To the best of our knowledge, these results constitute the first assessment of mNPC as an early intervention on cognitive ability in a DS model. PMID:22558337

  16. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    NASA Astrophysics Data System (ADS)

    Simeral, J. D.; Kim, S.-P.; Black, M. J.; Donoghue, J. P.; Hochberg, L. R.

    2011-04-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point

  17. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

    PubMed Central

    Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R

    2013-01-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point

  18. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array.

    PubMed

    Simeral, J D; Kim, S-P; Black, M J; Donoghue, J P; Hochberg, L R

    2011-04-01

    The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point

  19. Manufacturing, assembling and packaging of miniaturized implants for neural prostheses and brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas

    2009-05-01

    Implantable medical devices to interface with muscles, peripheral nerves, and the brain have been developed for many applications over the last decades. They have been applied in fundamental neuroscientific studies as well as in diagnosis, therapy and rehabilitation in clinical practice. Success stories of these implants have been written with help of precision mechanics manufacturing techniques. Latest cutting edge research approaches to restore vision in blind persons and to develop an interface with the human brain as motor control interface, however, need more complex systems and larger scales of integration and higher degrees of miniaturization. Microsystems engineering offers adequate tools, methods, and materials but so far, no MEMS based active medical device has been transferred into clinical practice. Silicone rubber, polyimide, parylene as flexible materials and silicon and alumina (aluminum dioxide ceramics) as substrates and insulation or packaging materials, respectively, and precious metals as electrodes have to be combined to systems that do not harm the biological target structure and have to work reliably in a wet environment with ions and proteins. Here, different design, manufacturing and packaging paradigms will be presented and strengths and drawbacks will be discussed in close relation to the envisioned biological and medical applications.

  20. A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants.

    PubMed

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Rusch, Leslie A; Gosselin, Benoit

    2016-06-01

    We present a novel, fully-integrated, low-power full-duplex transceiver (FDT) to support high-density and bidirectional neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size and complexity. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (>20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18- μm CMOS within a total size of 0.8 mm(2). The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Additionally, a 3-coil inductive link along with on-chip power management circuits allows to powering up the implantable transceiver wirelessly by delivering 25 mW extracted from a 13.56-MHz carrier signal, at a total efficiency of 41.6%. PMID:26469635

  1. Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants.

    PubMed

    Hancock, Kenneth E; Chung, Yoojin; Delgutte, Bertrand

    2013-06-01

    Bilateral cochlear implant (CI) users perform poorly on tasks involving interaural time differences (ITD), which are critical for sound localization and speech reception in noise by normal-hearing listeners. ITD perception with bilateral CI is influenced by age at onset of deafness and duration of deafness. We previously showed that ITD coding in the auditory midbrain is degraded in congenitally deaf white cats (DWC) compared to acutely deafened cats (ADC) with normal auditory development (Hancock et al., J. Neurosci, 30:14068). To determine the relative importance of early onset of deafness and prolonged duration of deafness for abnormal ITD coding in DWC, we recorded from single units in the inferior colliculus of cats deafened as adults 6 months prior to experimentation (long-term deafened cats, LTDC) and compared neural ITD coding between the three deafness models. The incidence of ITD-sensitive neurons was similar in both groups with normal auditory development (LTDC and ADC), but significantly diminished in DWC. In contrast, both groups that experienced prolonged deafness (LTDC and DWC) had broad distributions of best ITDs around the midline, unlike the more focused distributions biased toward contralateral-leading ITDs present in both ADC and normal-hearing animals. The lack of contralateral bias in LTDC and DWC results in reduced sensitivity to changes in ITD within the natural range. The finding that early onset of deafness more severely degrades neural ITD coding than prolonged duration of deafness argues for the importance of fitting deaf children with sound processors that provide reliable ITD cues at an early age.

  2. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Stark, Eran; Im, Maesoon; Cho, Il-Joo; Yoon, Eui-Sung; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik

    2013-10-01

    Objective. Optogenetics promises exciting neuroscience research by offering optical stimulation of neurons with unprecedented temporal resolution, cell-type specificity and the ability to excite as well as to silence neurons. This work provides the technical solution to deliver light to local neurons and record neural potentials, facilitating local circuit analysis and bridging the gap between optogenetics and neurophysiology research. Approach. We have designed and obtained the first in vivo validation of a neural probe with monolithically integrated electrodes and waveguide. High spatial precision enables optical excitation of targeted neurons with minimal power and recording of single-units in dense cortical and subcortical regions. Main results. The total coupling and transmission loss through the dielectric waveguide at 473 nm was 10.5 ± 1.9 dB, corresponding to an average output intensity of 9400 mW mm-2 when coupled to a 7 mW optical fiber. Spontaneous field potentials and spiking activities of multiple Channelrhodopsin-2 expressing neurons were recorded in the hippocampus CA1 region of an anesthetized rat. Blue light stimulation at intensity of 51 mW mm-2 induced robust spiking activities in the physiologically identified local populations. Significance. This minimally invasive, complete monolithic integration provides unmatched spatial precision and scalability for future optogenetics studies at deep brain regions with high neuronal density.

  3. A Wireless and Batteryless Microsystem with Implantable Grid Electrode/3-Dimensional Probe Array for ECoG and Extracellular Neural Recording in Rats

    PubMed Central

    Chang, Chih-Wei; Chiou, Jin-Chern

    2013-01-01

    This paper presents the design and implementation of an integrated wireless microsystem platform that provides the possibility to support versatile implantable neural sensing devices in free laboratory rats. Inductive coupled coils with low dropout regulator design allows true long-term recording without limitation of battery capacity. A 16-channel analog front end chip located on the headstage is designed for high channel account neural signal conditioning with low current consumption and noise. Two types of implantable electrodes including grid electrode and 3D probe array are also presented for brain surface recording and 3D biopotential acquisition in the implanted target volume of tissue. The overall system consumes less than 20 mA with small form factor, 3.9 × 3.9 cm2 mainboard and 1.8 × 3.4 cm2 headstage, is packaged into a backpack for rats. Practical in vivo recordings including auditory response, brain resection tissue and PZT-induced seizures recording demonstrate the correct function of the proposed microsystem. Presented achievements addressed the aforementioned properties by combining MEMS neural sensors, low-power circuit designs and commercial chips into system-level integration. PMID:23567528

  4. A wireless transmission neural interface system for unconstrained non-human primates

    NASA Astrophysics Data System (ADS)

    Fernandez-Leon, Jose A.; Parajuli, Arun; Franklin, Robert; Sorenson, Michael; Felleman, Daniel J.; Hansen, Bryan J.; Hu, Ming; Dragoi, Valentin

    2015-10-01

    Objective. Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. Approach. To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. Main results. We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. Significance. We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.

  5. A CMOS frontend chip for implantable neural recording with wide voltage supply range

    NASA Astrophysics Data System (ADS)

    Jialin, Liu; Xu, Zhang; Xiaohui, Hu; Yatao, Guo; Peng, Li; Ming, Liu; Bin, Li; Hongda, Chen

    2015-10-01

    A design for a CMOS frontend integrated circuit (chip) for neural signal acquisition working at wide voltage supply range is presented in this paper. The chip consists of a preamplifier, a serial instrumental amplifier (IA) and a cyclic analog-to-digital converter (CADC). The capacitive-coupled and capacitive-feedback topology combined with MOS-bipolar pseudo-resistor element is adopted in the preamplifier to create a -3 dB upper cut-off frequency less than 1 Hz without using a ponderous discrete device. A dual-amplifier instrumental amplifier is used to provide a low output impedance interface for ADC as well as to boost the gain. The preamplifier and the serial instrumental amplifier together provide a midband gain of 45.8 dB and have an input-referred noise of 6.7 μVrms integrated from 1 Hz to 5 kHz. The ADC digitizes the amplified signal at 12-bits precision with a highest sampling rate of 130 kS/s. The measured effective number of bits (ENOB) of the ADC is 8.7 bits. The entire circuit draws 165 to 216 μA current from the supply voltage varied from 1.34 to 3.3 V. The prototype chip is fabricated in the 0.18-μm CMOS process and occupies an area of 1.23 mm2 (including pads). In-vitro recording was successfully carried out by the proposed frontend chip. Project supported by the National Natural Science Foundation of China (Nos. 61474107, 61372060, 61335010, 61275200, 61178051) and the Key Program of the Chinese Academy of Sciences (No. KJZD-EW-L11-01).

  6. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems.

    PubMed

    Musa, Silke; Rand, Danielle R; Cott, Daire J; Loo, Josine; Bartic, Carmen; Eberle, Wolfgang; Nuttin, Bart; Borghs, Gustaaf

    2012-06-26

    The reliable integration of carbon nanotube (CNT) electrodes in future neural probes requires a proper embedding of the CNTs to prevent damage and toxic contamination during fabrication and also to preserve their mechanical integrity during implantation. Here we describe a novel bottom-up embedding approach where the CNT microelectrodes are encased in SiO(2) and Parylene C with lithographically defined electrode openings. Vertically aligned CNTs are grown on microelectrode arrays using low-temperature plasma-enhanced chemical vapor deposition compatible with wafer-scale CMOS processing. Electrodes with 5, 10, and 25 μm diameter are realized. The CNT electrodes are characterized by electrochemical impedance spectroscopy and cyclic voltammetry and compared against cofabricated Pt and TiN electrodes. The superior performance of the CNTs in terms of impedance (≤4.8 ± 0.3 kΩ at 1 kHz) and charge-storage capacity (≥513.9 ± 61.6 mC/cm(2)) is attributed to an increased wettability caused by the removal of the SiO(2) embedding in buffered hydrofluoric acid. Infrared spectroscopy reveals an unaltered chemical fingerprint of the CNTs after fabrication. Impedance monitoring during biphasic current pulsing with increasing amplitudes provides clear evidence of the onset of gas evolution at CNT electrodes. Stimulation is accordingly considered safe for charge densities ≤40.7 mC/cm(2). In addition, prolonged stimulation with 5000 biphasic current pulses at 8.1, 40.7, and 81.5 mC/cm(2) increases the CNT electrode impedance at 1 kHz only by 5.5, 1.2, and 12.1%, respectively. Finally, insertion of CNT electrodes with and without embedding into rat brains demonstrates that embedded CNTs are mechanically more stable than non-embedded CNTs. PMID:22551016

  7. Intravenous implanted neural stem cells migrate to injury site, reduce infarct volume, and improve behavior after cerebral ischemia.

    PubMed

    Shen, Chiung-Chyi; Lin, Chen-Huan; Yang, Yi-Chin; Chiao, Ming-Tsang; Cheng, Wen-Yu; Ko, Jiunn-Liang

    2010-08-01

    Stroke represents one of the leading causes of death and disability in humans, but despite intense research, only a few options exist for the treatment of stroke-related infarction of brain tissue. Thus far, in experimental strokes, cell therapy appears to partly reverse some behavioral deficits. However, the mechanisms of action remain uncertain as most studies reveal only little, if any, evidence for neuronal replacement and observed behavioral improvements. This present study was performed to test rodent fetus forebrain derived neural stem cells (NSCs) implantation into rats subjected to suture-induced middle cerebral artery occlusion (MCAO). Efficacy of cell therapy was studied regarding behavior recovery, infarct volume, and protection possibility of related molecular mechanisms. Here, we show that grafted cells can home in on damaged regions by MCAO and significantly improve behavior of ischemic rats. Infarct volumes and brain atrophy were diminished after grafted NSCs treatment. Furthermore, we detected inflammation related molecules such as COX-2 and IL-1beta and found that grafted NSCs treatment after ischemic stroke could repress expression of inflammation molecular protein levels. We also detected protein levels of heat shock protein 27 (HSP27) as a protective protein against apoptosis. The results showed that grafted NSCs treatment induced the protein level of HSP27 and down-regulated activity of caspase-3 compared with the vehicle control. Our results demonstrate that transplanted NSCs provide benefits in behavioral function recovery after MCAO and increase neuroprotection whilst repressing inflammatory destruction. These data reveal another essential explanation of cellular transplantation therapy in damage recovery from ischemic stroke and offer new therapeutic possibilities. PMID:20560882

  8. Peri-anal implantation of bioengineered human internal anal sphincter constructs intrinsically innervated with human neural progenitor cells

    PubMed Central

    Raghavan, Shreya; Miyasaka, Eiichi A.; Gilmont, Robert R.; Somara, Sita; Teitelbaum, Daniel H.; Bitar, Khalil N.

    2014-01-01

    Background The internal anal sphincter (IAS) is a major contributing factor to anal canal pressure and is required for maintenance of rectoanal continence. IAS damage or weakening results in fecal incontinence. We have demonstrated that bioengineered intrinsically innervated human IAS tissue replacements possess key aspects of IAS physiology, like generation of spontaneous basal tone and contraction/relaxation in response to neurotransmitters. The objective of this study is to demonstrate the feasibility of implantation of bioengineered IAS constructs in the peri-anal region of athymic rodents. Methods Human IAS tissue constructs were bioengineered from isolated human IAS circular smooth muscle cells and human enteric neuronal progenitor cells. Upon maturation of the bioengineered constructs in culture, they were implanted surgically into the perianal region of athymic rats. Growth factor was delivered to the implanted constructs through a microosmotic pump. Implanted constructs were retrieved from the animals 4 weeks post-implantation. Results Animals tolerated the implantation well, and there were no early postoperative complications. Normal stooling was observed during the implantation period. Upon harvest, implanted constructs were adherent to the perirectal rat tissue, and appeared healthy and pink. Immunohistochemical analysis revealed neovascularization. Implanted smooth muscle cells maintained contractile phenotype. Bioengineered constructs responded to neuronally evoked relaxation in response to electrical field stimulation and vasoactive intestinal peptide, indicating the preservation of neuronal networks. Conclusions Our results indicate that bioengineered innervated IAS constructs can be used to augment IAS function in an animal model. This is a regenerative medicine based therapy for fecal incontinence that would directly address the dysfunction of the IAS muscle. PMID:24582493

  9. A 96-channel FPGA-based Time-to-Digital Converter (TDC) and fast trigger processor module with multi-hit capability and pipeline

    NASA Astrophysics Data System (ADS)

    Bogdan, Mircea; Frisch, Henry; Heintz, Mary; Paramonov, Alexander; Sanders, Harold; Chappa, Steve; DeMaat, Robert; Klein, Rod; Miao, Ting; Wilson, Peter; Phillips, Thomas J.

    2005-12-01

    We describe an field-programmable gate arrays based (FPGA), 96-channel, Time-to-Digital converter (TDC) and trigger logic board intended for use with the Central Outer Tracker (COT) [T. Affolder et al., Nucl. Instr. and Meth. A 526 (2004) 249] in the CDF Experiment [The CDF-II detector is described in the CDF Technical Design Report (TDR), FERMILAB-Pub-96/390-E. The TDC described here is intended as a further upgrade beyond that described in the TDR] at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGAs. The special capabilities of this device are the availability of 840 MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns, a minimum input pulse width of 4.8 ns and a minimum separation of 4.8 ns between pulses. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5.5 μs allow deadtime-less operation in the first-level trigger; the data are multiple-buffered to diminish deadtime in the second-level trigger. The complete process of edge-detection and filling of buffers for readout takes 12 μs. The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47 Mbytes/s. The TDC module also produces prompt trigger data every Tevatron crossing via a deadtimeless fast logic path that can be easily reprogrammed. The trigger bits are clocked onto the P3 VME backplane connector with a 22-ns clock for transmission to the trigger. The full TDC

  10. Parietal Neural Prosthetic Control of a Computer Cursor in a Graphical-User-Interface Task

    PubMed Central

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-01-01

    Objective To date, the majority of Brain Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in Area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like “Face in a Crowd” task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the “Crowd”) using a neurally controlled cursor. We assessed whether the Crowd affected decodes of intended cursor movements by comparing it to a “Crowd Off” condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main Results Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the Crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  11. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    NASA Astrophysics Data System (ADS)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  12. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses.

    PubMed

    Resendez, Shanna L; Jennings, Josh H; Ung, Randall L; Namboodiri, Vijay Mohan K; Zhou, Zhe Charles; Otis, James M; Nomura, Hiroshi; McHenry, Jenna A; Kosyk, Oksana; Stuber, Garret D

    2016-03-01

    Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, owing to the light-scattering properties of the brain, as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head-fixed behavioral tasks. These limitations can now be circumvented by using miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here we describe steps to conduct such imaging studies using mice. However, we anticipate that the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state and other aspects of complex behavioral tasks. This protocol takes 6-11 weeks to complete.

  13. Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation

    NASA Astrophysics Data System (ADS)

    Xie, Xianzong; Rieth, Loren; Williams, Layne; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian

    2014-04-01

    Objective. We focus on improving the long-term stability and functionality of neural interfaces for chronic implantation by using bilayer encapsulation. Approach. We evaluated the long-term reliability of Utah electrode array (UEA) based neural interfaces encapsulated by 52 nm of atomic layer deposited Al2O3 and 6 µm of Parylene C bilayer, and compared these to devices with the baseline Parylene-only encapsulation. Three variants of arrays including wired, wireless, and active UEAs were used to evaluate this bilayer encapsulation scheme, and were immersed in phosphate buffered saline (PBS) at 57 °C for accelerated lifetime testing. Main results. The median tip impedance of the bilayer encapsulated wired UEAs increased from 60 to 160 kΩ during the 960 days of equivalent soak testing at 37 °C, the opposite trend to that typically observed for Parylene encapsulated devices. The loss of the iridium oxide tip metallization and etching of the silicon tip in PBS solution contributed to the increase of impedance. The lifetime of fully integrated wireless UEAs was also tested using accelerated lifetime measurement techniques. The bilayer coated devices had stable power-up frequencies at ˜910 MHz and constant radio-frequency signal strength of -50 dBm during up to 1044 days (still under testing) of equivalent soaking time at 37 °C. This is a significant improvement over the lifetime of ˜100 days achieved with Parylene-only encapsulation at 37 °C. The preliminary samples of bilayer coated active UEAs with a flip-chip bonded ASIC chip had a steady current draw of ˜3 mA during 228 days of soak testing at 37 °C. An increase in the current draw has been consistently correlated to device failures, so is a sensitive metric for their lifetime. Significance. The trends of increasing electrode impedance of wired devices and performance stability of wireless and active devices support the significantly greater encapsulation performance of this bilayer encapsulation compared

  14. LONG-TERM RELIABILITY OF AL2O3 AND PARYLENE C BILAYER ENCAPSULATED UTAH ELECTRODE ARRAY BASED NEURAL INTERFACES FOR CHRONIC IMPLANTATION

    PubMed Central

    Xie, Xianzong; Rieth, Loren; Williams, Layne; Negi, Sandeep; Bhandari, Rajmohan; Caldwell, Ryan; Sharma, Rohit; Tathireddy, Prashant; Solzbacher, Florian

    2014-01-01

    Objective We focus on improving the long-term stability and functionality of neural interfaces for chronic implantation by using bilayer encapsulation. Approach We evaluated the long-term reliability of Utah electrode array (UEA) based neural interfaces encapsulated by 52 nm of atomic layer deposited (ALD) Al2O3 and 6 μm of Parylene C bilayer, and compared these to devices with the baseline Parylene-only encapsulation. Three variants of arrays including wired, wireless, and active UEAs were used to evaluate this bilayer encapsulation scheme, and were immersed in phosphate buffered saline (PBS) at 57 °C for accelerated lifetime testing. Main results The median tip impedance of the bilayer encapsulated wired UEAs increased from 60 kΩ to 160 kΩ during the 960 days of equivalent soak testing at 37 °C, the opposite trend as typically observed for Parylene encapsulated devices. The loss of the iridium oxide tip metallization and etching of the silicon tip in PBS solution contributed to the increase of impedance. The lifetime of fully integrated wireless UEAs was also tested using accelerated lifetime measurement techniques. The bilayer coated devices had stable power-up frequencies at ~910 MHz and constant RF signal strength of -50 dBm during up to 1044 days (still under testing) of equivalent soaking time at 37 °C. This is a significant improvement over the lifetime of ~ 100 days achieved with Parylene-only encapsulation at 37 °C. The preliminary samples of bilayer coated active UEAs with a flip-chip bonded ASIC chip had a steady current draw of ~ 3 mA during 228 days of soak testing at 37 °C. An increase in current draw has been consistently correlated to device failures, so is a sensitive metric for their lifetime. Significance The trends of increasing electrode impedance of wired devices and performance stability of wireless and active devices support the significantly greater encapsulation performance of this bilayer encapsulation compared with Parylene

  15. A neural network approach for determining gait modifications to reduce the contact force in knee joint implant.

    PubMed

    Ardestani, Marzieh Mostafavizadeh; Chen, Zhenxian; Wang, Ling; Lian, Qin; Liu, Yaxiong; He, Jiankang; Li, Dichen; Jin, Zhongmin

    2014-10-01

    There is a growing interest in non-surgical gait rehabilitation treatments to reduce the loading in the knee joint. In particular, synergetic kinematic changes required for joint offloading should be determined individually for each subject. Previous studies for gait rehabilitation designs are typically relied on a "trial-and-error" approach, using multi-body dynamic (MBD) analysis. However MBD is fairly time demanding which prevents it to be used iteratively for each subject. This study employed an artificial neural network to develop a cost-effective computational framework for designing gait rehabilitation patterns. A feed forward artificial neural network (FFANN) was trained based on a number of experimental gait trials obtained from literature. The trained network was then hired to calculate the appropriate kinematic waveforms (output) needed to achieve desired knee joint loading patterns (input). An auxiliary neural network was also developed to update the ground reaction force and moment profiles with respect to the predicted kinematic waveforms. The feasibility and efficiency of the predicted kinematic patterns were then evaluated through MBD analysis. Results showed that FFANN-based predicted kinematics could effectively decrease the total knee joint reaction forces. Peak values of the resultant knee joint forces, with respect to the bodyweight (BW), were reduced by 20% BW and 25% BW in the midstance and the terminal stance phases. Impulse values of the knee joint loading patterns were also decreased by 17% BW*s and 24%BW*s in the corresponding phases. The FFANN-based framework suggested a cost-effective forward solution which directly calculated the kinematic variations needed to implement a given desired knee joint loading pattern. It is therefore expected that this approach provides potential advantages and further insights into knee rehabilitation designs.

  16. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast

    PubMed Central

    Zheng, Bo; Vazin, Tandis; Goodwill, Patrick W.; Conway, Anthony; Verma, Aradhana; Ulku Saritas, Emine; Schaffer, David; Conolly, Steven M.

    2015-01-01

    We demonstrate that Magnetic Particle Imaging (MPI) enables monitoring of cellular grafts with high contrast, sensitivity, and quantitativeness. MPI directly detects the intense magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI is safe, noninvasive and offers superb sensitivity, with great promise for clinical translation and quantitative single-cell tracking. Here we report the first MPI cell tracking study, showing 200-cell detection in vitro and in vivo monitoring of human neural graft clearance over 87 days in rat brain. PMID:26358296

  17. Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles

    PubMed Central

    Bible, Ellen; Qutachi, Omar; Chau, David Y.S.; Alexander, Morgan R.; Shakesheff, Kevin M.; Modo, Michel

    2012-01-01

    Replacing the tissue lost after a stroke potentially provides a new neural substrate to promote recovery. However, significant neurobiological and biotechnological challenges need to be overcome to make this possibility into a reality. Human neural stem cells (hNSCs) can differentiate into mature brain cells, but require a structural support that retains them within the cavity and affords the formation of a de novo tissue. Nevertheless, in our previous work, even after a week, this primitive tissue is void of a vasculature that could sustain its long-term viability. Therefore, tissue engineering strategies are required to develop a vasculature. Vascular endothelial growth factor (VEGF) is known to promote the proliferation and migration of endothelial cells during angio- and arteriogenesis. VEGF by itself here did not affect viability or differentiation of hNSCs, whereas growing cells on poly(D,L-lactic acid-co-glycolic acid) (PLGA) microparticles, with or without VEGF, doubled astrocytic and neuronal differentiation. Secretion of a burst and a sustained delivery of VEGF from the microparticles in vivo attracted endothelial cells from the host into this primate tissue and in parts established a neovasculature, whereas in other parts endothelial cells were merely interspersed with hNSCs. There was also evidence of a hypervascularization indicating that further work will be required to establish an adequate level of vascularization. It is therefore possible to develop a putative neovasculature within de novo tissue that is forming inside a tissue cavity caused by a stroke. PMID:22818980

  18. In vitro evaluation of the long-term stability of polyimide as a material for neural implants.

    PubMed

    Rubehn, Birthe; Stieglitz, Thomas

    2010-05-01

    In order to be used as a material for neural prostheses, polyimide has to withstand the body environment over years. To obtain more information about the long-term stability of this material, we tested three commercially available polyimides (PI2611 - HD-Microsystems (type: BPDA-PPD), U-Varnish-S - UBE (type: BPDA-PPD), Durimide 7510 - Fujifilm (type: information not provided)). Specimens were stored in phosphate buffered saline (PBS) at 37 degrees C to simulate body temperature and at elevated temperatures of 60 degrees C and 85 degrees C to accelerate aging. During the course of 20 months, stress-strain curves were measured monthly by tensile testing. From these curves the Young's modulus, the stress and strain at break, the stress at 10% strain as well as the fracture energy were extracted and used to characterize and to statistically evaluate the mechanical material properties. Mass loss was determined by weighing polyimide foils (Upilex25S - UBE) and optical measurements were conducted to examine changes in chemical structure and crystallinity. At 37 degrees C and 60 degrees C no change in material behavior could be observed, except for an increase of the Young's modulus of the BPDA-PPD type stored at 60 degrees C. This demonstrates the long-term stability of all tested polyimides with respect to PBS. All extracted quantities mentioned above, as well as the mass, decreased in specimens stored in PBS at 85 degrees C. As a comparison, BPDA-PPD type specimens stored at 85 degrees C in deionized water showed no change in any property but behaved similarly to the reference material.

  19. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm

    PubMed Central

    Hochberg, Leigh R.; Bacher, Daniel; Jarosiewicz, Beata; Masse, Nicolas Y.; Simeral, John D.; Vogel, Joern; Haddadin, Sami; Liu, Jie; Cash, Sydney S.; van der Smagt, Patrick; Donoghue, John P.

    2012-01-01

    Paralysis following spinal cord injury (SCI), brainstem stroke, amyotrophic lateral sclerosis (ALS) and other disorders can disconnect the brain from the body, eliminating the ability to carry out volitional movements. A neural interface system (NIS)1–5 could restore mobility and independence for people with paralysis by translating neuronal activity directly into control signals for assistive devices. We have previously shown that people with longstanding tetraplegia can use an NIS to move and click a computer cursor and to control physical devices6–8. Able-bodied monkeys have used an NIS to control a robotic arm9, but it is unknown whether people with profound upper extremity paralysis or limb loss could use cortical neuronal ensemble signals to direct useful arm actions. Here, we demonstrate the ability of two people with long-standing tetraplegia to use NIS-based control of a robotic arm to perform three-dimensional reach and grasp movements. Participants controlled the arm over a broad space without explicit training, using signals decoded from a small, local population of motor cortex (MI) neurons recorded from a 96-channel microelectrode array. One of the study participants, implanted with the sensor five years earlier, also used a robotic arm to drink coffee from a bottle. While robotic reach and grasp actions were not as fast or accurate as those of an able-bodied person, our results demonstrate the feasibility for people with tetraplegia, years after CNS injury, to recreate useful multidimensional control of complex devices directly from a small sample of neural signals. PMID:22596161

  20. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  1. Dental Implants

    MedlinePlus

    ... Procedures Dental Implants Dentures Direct Bonding Implants versus Bridges Orthodontics and Aligners Periodontal Plastic Surgery Porcelain Crowns Porcelain Fixed Bridges Porcelain Veneers Repairing Chipped Teeth Teeth Whitening Tooth- ...

  2. IMPORTANCE OF COCHLEAR HEALTH FOR IMPLANT FUNCTION

    PubMed Central

    Pfingst, Bryan E.; Zhou, Ning; Colesa, Deborah J.; Watts, Melissa M.; Strahl, Stefan B.; Garadat, Soha N.; Schvartz-Leyzac, Kara C.; Budenz, Cameron L.; Raphael, Yehoash; Zwolan, Teresa A.

    2014-01-01

    Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. PMID:25261772

  3. Diffusion Tensor Imaging of the Auditory Neural Pathway for Clinical Outcome of Cochlear Implantation in Pediatric Congenital Sensorineural Hearing Loss Patients

    PubMed Central

    Huang, Lexing; Zheng, Wenbin; Wu, Chunxiao; Wei, Xiaoqin; Wu, Xianguang; Wang, Yanting; Zheng, Hongyi

    2015-01-01

    Although conventional structural MRI provides vital information in the evaluation of congenital sensorineural hearing loss (SNHL), it is relatively insensitive to white matter microstructure. Our objective was to evaluate possible changes in microstructure of the auditory pathway in children with congenital sensorineural hearing loss (SNHL), and the possible distinction between good and poor outcome of cochlear implantation (CI) patients by using diffusion tensor imaging (DTI). Twenty-four patients with congenital SNHL and 20 healthy controls underwent conventional MRI and DTI examination using a 1.5T MR scanner. The DTI metrics of fractional anisotropy (FA) and mean diffusivity (MD) of six regions of interest (ROIs) positioned along the auditory pathway—the trapezoid body, superior olivary nucleus, inferior colliculus, medial geniculate body, auditory radiation and white matter of Heschl's gyrus—was measured in all subjects. Among the 24 patients, 8 patients with a categorie of auditory performance (CAP) score over 6 were classified into the good outcome group, and 16 patients with a CAP score below 6 were classified into the poor outcome group. A significant decrease was observed in FA values while MD values remained unchanged at the six ROIs of SNHL patients compared with healthy controls. Compared to good outcome subjects, poor outcome subjects displayed decreased FA values at all of the ROIs. No changes were observed in MD values. Correlation analyses only revealed strong correlations between FA values and CAP scores, and strong correlations between CAP scores and age at implant were also found. No correlations of FA values with age at implant were observed. Our results show that preoperative DTI can be used to evaluate microstructural alterations in the auditory pathway that are not detectable by conventional MR imaging, and may play an important role in evaluating the outcome of CI. Early cochlear implantation might be more effectively to restore hearing

  4. Cochlear Implants

    MedlinePlus

    ... electrodes are inserted. The electronic device at the base of the electrode array is then placed under ... FDA approval for implants The Food and Drug Administration (FDA) regulates cochlear implant devices for both adults ...

  5. Dental Implants.

    PubMed

    Zohrabian, Vahe M; Sonick, Michael; Hwang, Debby; Abrahams, James J

    2015-10-01

    Dental implants restore function to near normal in partially or completely edentulous patients. A root-form implant is the most frequently used type of dental implant today. The basis for dental implants is osseointegration, in which osteoblasts grow and directly integrate with the surface of titanium posts surgically embedded into the jaw. Radiologic assessment is critical in the preoperative evaluation of the dental implant patient, as the exact height, width, and contour of the alveolar ridge must be determined. Moreover, the precise locations of the maxillary sinuses and mandibular canals, as well as their relationships to the site of implant surgery must be ascertained. As such, radiologists must be familiar with implant design and surgical placement, as well as augmentation procedures utilized in those patients with insufficient bone in the maxilla and mandible to support dental implants.

  6. Implantable neurotechnologies: electrical stimulation and applications.

    PubMed

    Nag, Sudip; Thakor, Nitish V

    2016-01-01

    Neural stimulation using injected electrical charge is widely used both in functional therapies and as an experimental tool for neuroscience applications. Electrical pulses can induce excitation of targeted neural pathways that aid in the treatment of neural disorders or dysfunction of the central and peripheral nervous system. In this review, we summarize the recent trends in the field of electrical stimulation for therapeutic interventions of nervous system disorders, such as for the restoration of brain, eye, ear, spinal cord, nerve and muscle function. Neural prosthetic applications are discussed, and functional electrical stimulation parameters for treating such disorders are reviewed. Important considerations for implantable packaging and enhancing device reliability are also discussed. Neural stimulators are expected to play a profound role in implantable neural devices that treat disorders and help restore functions in injured or disabled nervous system. PMID:26753775

  7. [Hearing implants].

    PubMed

    Stokroos, Robert J; George, Erwin L J

    2013-01-01

    In the Netherlands, more than 1.5 million people suffer from sensorineural hearing loss or deafness. However, fitting conventional hearing aids does not provide a solution for everyone. In recent decades, developments in medical technology have produced implantable and other devices that restore both sensorineural and conductive hearing losses. These hearing devices can be categorized into bone conductive devices, implantable middle ear prostheses, cochlear implants and auditory brainstem implants. Furthermore, new implants aimed at treating tinnitus and loss of vestibular function have recently been developed.

  8. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications.

  9. Recent refinements to cranial implants for rhesus macaques (Macaca mulatta).

    PubMed

    Johnston, Jessica M; Cohen, Yale E; Shirley, Harry; Tsunada, Joji; Bennur, Sharath; Christison-Lagay, Kate; Veeder, Christin L

    2016-05-01

    The advent of cranial implants revolutionized primate neurophysiological research because they allow researchers to stably record neural activity from monkeys during active behavior. Cranial implants have improved over the years since their introduction, but chronic implants still increase the risk for medical complications including bacterial contamination and resultant infection, chronic inflammation, bone and tissue loss and complications related to the use of dental acrylic. These complications can lead to implant failure and early termination of study protocols. In an effort to reduce complications, we describe several refinements that have helped us improve cranial implants and the wellbeing of implanted primates. PMID:27096188

  10. A 13µW 87dB dynamic range implantable ΔΣ modulator for full-spectrum neural recording.

    PubMed

    Xu, Jian; Islam, Md Kafiul; Wang, Shuo; Yang, Zhi

    2013-01-01

    Experiment analysis on in-vivo data sequences suggests a wide system dynamic range (DR) is required to simultaneously record local field potentials (LFPs), extra-cellular spikes, and artifacts/interferences. In this paper, we present a 13 µW 87 dB DR ΔΣ modulator for full-spectrum neural recording. To achieve a wide DR and low power consumption, a fully-differential topology is used with multi-bit (MB) quantization scheme and switched-opamp (SO) technique. By adopting a novel fully-clocked scheme, a power-efficient current-mirror SO is developed with 50% power saving, which doubles the figure-of-merit (FOM) over its counterpart. A new static power-less multi-bit quantizer with 96% power and 69% area reduction is also introduced. Besides, instead of metal-insulator-metal (MIM) capacitor, three high-density MOS capacitor (MOSCAP) structures are employed to reduce circuit area. Measurement results show a peak signal-to-noise and distortion ratio (SNDR) of 85 dB with 10 kHz bandwidth at 1.0 V supply, corresponding to an FOM of 45 fJ/conv.-step. which is implemented in a 0.18 µm CMOS. PMID:24110300

  11. Electronic dura mater for long-term multimodal neural interfaces

    NASA Astrophysics Data System (ADS)

    Minev, Ivan R.; Musienko, Pavel; Hirsch, Arthur; Barraud, Quentin; Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jérôme; Capogrosso, Marco; Milekovic, Tomislav; Asboth, Léonie; Torres, Rafael Fajardo; Vachicouras, Nicolas; Liu, Qihan; Pavlova, Natalia; Duis, Simone; Larmagnac, Alexandre; Vörös, Janos; Micera, Silvestro; Suo, Zhigang; Courtine, Grégoire; Lacour, Stéphanie P.

    2015-01-01

    The mechanical mismatch between soft neural tissues and stiff neural implants hinders the long-term performance of implantable neuroprostheses. Here, we designed and fabricated soft neural implants with the shape and elasticity of dura mater, the protective membrane of the brain and spinal cord. The electronic dura mater, which we call e-dura, embeds interconnects, electrodes, and chemotrodes that sustain millions of mechanical stretch cycles, electrical stimulation pulses, and chemical injections. These integrated modalities enable multiple neuroprosthetic applications. The soft implants extracted cortical states in freely behaving animals for brain-machine interface and delivered electrochemical spinal neuromodulation that restored locomotion after paralyzing spinal cord injury.

  12. Histrelin Implant

    MedlinePlus

    ... response to histrelin implant. Your blood sugar and glycosylated hemoglobin (HbA1c) should be checked regularly.Ask your pharmacist any questions you have about histrelin implant.It is important for you to keep a written list of all of the prescription and ...

  13. Materials and technologies for soft implantable neuroprostheses

    NASA Astrophysics Data System (ADS)

    Lacour, Stéphanie P.; Courtine, Grégoire; Guck, Jochen

    2016-10-01

    Implantable neuroprostheses are engineered systems designed to restore or substitute function for individuals with neurological deficits or disabilities. These systems involve at least one uni- or bidirectional interface between a living neural tissue and a synthetic structure, through which information in the form of electrons, ions or photons flows. Despite a few notable exceptions, the clinical dissemination of implantable neuroprostheses remains limited, because many implants display inconsistent long-term stability and performance, and are ultimately rejected by the body. Intensive research is currently being conducted to untangle the complex interplay of failure mechanisms. In this Review, we emphasize the importance of minimizing the physical and mechanical mismatch between neural tissues and implantable interfaces. We explore possible materials solutions to design and manufacture neurointegrated prostheses, and outline their immense therapeutic potential.

  14. Cochlear implant

    MedlinePlus

    ... implant. These specialists may include: Audiologists Speech therapists Ear, nose, and throat doctors (otolaryngologists) This is a very important part of the process. You will need to work closely with your team of specialists to get ...

  15. Cochlear Implants

    MedlinePlus

    ... additional visits are needed for activating, adjusting, and programming the various electrodes that have been implanted. Also, ... to the center for checkups once the final programming is made to the speech processor. Both children ...

  16. Contraceptive implants.

    PubMed

    McDonald-Mosley, Raegan; Burke, Anne E

    2010-03-01

    Implantable contraception has been extensively used worldwide. Implants are one of the most effective and reversible methods of contraception available. These devices may be particularly appropriate for certain populations of women, including women who cannot use estrogen-containing contraception. Implants are safe for use by women with many chronic medical problems. The newest implant, Implanon (Organon International, Oss, The Netherlands), is the only device currently available in the United States and was approved in 2006. It is registered for 3 years of pregnancy prevention. Contraceptive implants have failure rates similar to tubal ligation, and yet they are readily reversible with a return to fertility within days of removal. Moreover, these contraceptive devices can be safely placed in the immediate postpartum period, ensuring good contraceptive coverage for women who may be at risk for an unintended pregnancy. Irregular bleeding is a common side effect for all progestin-only contraceptive implants. Preinsertion counseling should address possible side effects, and treatment may be offered to women who experience prolonged or frequent bleeding.

  17. Cochlear Implants

    MedlinePlus

    ... outside of the body, behind the ear. A second part is surgically placed under the skin. An implant does not restore normal hearing. It can help a person understand speech. Children and adults can benefit from them. National Institute on Deafness and Other Communication Disorders

  18. Facial implants.

    PubMed

    Arcuri, M R; Rubenstein, J T

    1998-01-01

    The application of endosseous dental implants for the retention and stabilization of extraoral prostheses and hearing aids has been shown to be effective functionally and aesthetically. Implants have reduced the need for adhesive use, simplifying cleaning procedures and thus extending the life of the prosthesis. Implant-retained prostheses have provided patients the opportunity to participate in routine activities such as work, shopping, swimming, and jogging with less fear of losing their prosthesis. The implants' impact on patients has resulted in their ability to function in society with confidence that their defects will be less noticeable and their ability to respond to the environment enhanced. The culmination of these effects have without doubt improved the overall quality of life for patients. As with any new technology, its application will encounter unanticipated problems and some limitations in use. As the art and science of this technique evolve, however, it is anticipated that it will result in the ability to provide improved health care for patients.

  19. Clinical translation of a high performance neural prosthesis

    PubMed Central

    Gilja, Vikash; Pandarinath, Chethan; Blabe, Christine H.; Nuyujukian, Paul; Simeral, John D.; Sarma, Anish A.; Sorice, Brittany L.; Perge, János A.; Jarosiewicz, Beata; Hochberg, Leigh R.; Shenoy, Krishna V.; Henderson, Jaimie M.

    2016-01-01

    Neural prostheses have the potential to improve the quality of life of individuals with paralysis by directly mapping neural activity to limb and computer control signals. We translated a neural prosthetic system previously developed in animal model studies for use by two individuals with amyotrophic lateral sclerosis (ALS) implanted with intracortical microelectrode arrays. Measured more than a year post-implantation, the demonstrated neural cursor control has the highest published performance achieved by a person to date, more than double that of previous pilot clinical trial participants. PMID:26413781

  20. Active microelectronic neurosensor arrays for implantable brain communication interfaces.

    PubMed

    Song, Y-K; Borton, D A; Park, S; Patterson, W R; Bull, C W; Laiwalla, F; Mislow, J; Simeral, J D; Donoghue, J P; Nurmikko, A V

    2009-08-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a cortical microelectrode array to an external computer for neural control applications. Our implantable microsystem enables 16-channel broadband neural recording in a nonhuman primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including radio frequency by induction, or infrared light via photovoltaic conversion. As of the time of this report, the implant has been tested as a subchronic unit in nonhuman primates ( approximately 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  1. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  2. Developing Implantable Neuroprosthetics: a New Model in Pig

    PubMed Central

    Yin, Ming; Aceros, Juan; Agha, Naubahar; Minxha, Juri; Komar, Jacob; Patterson, William; Bull, Christopher; Nurmikko, Arto

    2014-01-01

    A new model has been established in the domestic pig for neural prosthetic device development and testing. To this end, we report on a complete neural prosthetic developmental system using a wireless sensor as the implant, a pig as the animal model, and a novel data acquisition paradigm for actuator control. A new type of stereotactic frame with clinically-inspired fixations pins that place the pig brain in standard surgical plane was developed and tested with success during the implantation of the microsystem. The microsystem implanted was an ultralow power (12.5mW) 16-channel intracortical/epicranial device transmitting broadband (40kS/s) data over a wireless infrared telemetric link. Pigs were implanted and neural data was collected over a period of 5 weeks, clearly showing single unit spiking activity. PMID:22254977

  3. Cochlear implants: our experience and literature review

    PubMed Central

    Martins, Mariane Barreto Brandão; de Lima, Francis Vinicius Fontes; Santos, Ronaldo Carvalho; Santos, Arlete Cristina Granizo; Barreto, Valéria Maria Prado; de Jesus, Eduardo Passos Fiel

    2012-01-01

    Summary Introduction: Cochlear Implants are important for individuals with severe to profound bilateral sensorineural hearing loss. Objective: Evaluate the experience of cochlear implant center of Otorhinolaryngology through the analysis of records of 9 patients who underwent cochlear implant surgery. Methods: This is a retrospective study performed with the patients records. Number 0191.0.107.000-11 ethics committee approval. We evaluated gender, etiology, age at surgery, duration of deafness, classification of deafness, unilateral or bilateral surgery, intraoperative and postoperative neural response and impedance of the electrodes in intraoperative and preoperative tests and found those that counter-indicated surgery. Results: There were 6 pediatric and 3 adult patients. Four male and 5 female. Etiologies: maternal rubella, cytomegalovirus, ototoxicity, meningitis, and sudden deafness. The age at surgery and duration of deafness ranged from 2–46 years and 2–18 years, respectively. Seven patients were pre-lingual. All had profound bilateral PA. There were 7 bilateral implants. Intraoperative complications: hemorrhage. Complications after surgery: vertigo and internal device failure. In 7 patients the electrodes were implanted through. Telemetry showed satisfactory neural response and impedance. CT and MRI was performed in all patients. We found enlargement of the vestibular aqueduct in a patient and incudomalleolar malformation. Conclusion: The cochlear implant as a form of auditory rehabilitation is well established and spreading to different centers specialized in otoaudiology. Thus, the need for structured services and trained professionals in this type of procedure is clear. PMID:25991976

  4. Short Implants: New Horizon in Implant Dentistry

    PubMed Central

    Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-01-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598

  5. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design

    PubMed Central

    Prodanov, Dimiter; Delbeke, Jean

    2016-01-01

    Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it. PMID:26903786

  6. Performance sustaining intracortical neural prostheses

    NASA Astrophysics Data System (ADS)

    Nuyujukian, Paul; Kao, Jonathan C.; Fan, Joline M.; Stavisky, Sergey D.; Ryu, Stephen I.; Shenoy, Krishna V.

    2014-12-01

    Objective. Neural prostheses, or brain-machine interfaces, aim to restore efficient communication and movement ability to those suffering from paralysis. A major challenge these systems face is robust performance, particularly with aging signal sources. The aim in this study was to develop a neural prosthesis that could sustain high performance in spite of signal instability while still minimizing retraining time. Approach. We trained two rhesus macaques implanted with intracortical microelectrode arrays 1-4 years prior to this study to acquire targets with a neurally-controlled cursor. We measured their performance via achieved bitrate (bits per second, bps). This task was repeated over contiguous days to evaluate the sustained performance across time. Main results. We found that in the monkey with a younger (i.e., two year old) implant and better signal quality, a fixed decoder could sustain performance for a month at a rate of 4 bps, the highest achieved communication rate reported to date. This fixed decoder was evaluated across 22 months and experienced a performance decline at a rate of 0.24 bps yr-1. In the monkey with the older (i.e., 3.5 year old) implant and poorer signal quality, a fixed decoder could not sustain performance for more than a few days. Nevertheless, performance in this monkey was maintained for two weeks without requiring additional online retraining time by utilizing prior days’ experimental data. Upon analysis of the changes in channel tuning, we found that this stability appeared partially attributable to the cancelling-out of neural tuning fluctuations when projected to two-dimensional cursor movements. Significance. The findings in this study (1) document the highest-performing communication neural prosthesis in monkeys, (2) confirm and extend prior reports of the stability of fixed decoders, and (3) demonstrate a protocol for system stability under conditions where fixed decoders would otherwise fail. These improvements to decoder

  7. Biomaterials. Electronic dura mater for long-term multimodal neural interfaces.

    PubMed

    Minev, Ivan R; Musienko, Pavel; Hirsch, Arthur; Barraud, Quentin; Wenger, Nikolaus; Moraud, Eduardo Martin; Gandar, Jérôme; Capogrosso, Marco; Milekovic, Tomislav; Asboth, Léonie; Torres, Rafael Fajardo; Vachicouras, Nicolas; Liu, Qihan; Pavlova, Natalia; Duis, Simone; Larmagnac, Alexandre; Vörös, Janos; Micera, Silvestro; Suo, Zhigang; Courtine, Grégoire; Lacour, Stéphanie P

    2015-01-01

    The mechanical mismatch between soft neural tissues and stiff neural implants hinders the long-term performance of implantable neuroprostheses. Here, we designed and fabricated soft neural implants with the shape and elasticity of dura mater, the protective membrane of the brain and spinal cord. The electronic dura mater, which we call e-dura, embeds interconnects, electrodes, and chemotrodes that sustain millions of mechanical stretch cycles, electrical stimulation pulses, and chemical injections. These integrated modalities enable multiple neuroprosthetic applications. The soft implants extracted cortical states in freely behaving animals for brain-machine interface and delivered electrochemical spinal neuromodulation that restored locomotion after paralyzing spinal cord injury. PMID:25574019

  8. Cochlear Implants:System Design, Integration and Evaluation

    PubMed Central

    Rebscher, Stephen; Harrison, William V.; Sun, Xiaoan; Feng, Haihong

    2009-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120,000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues from design and specifications to integration and evaluation. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants. PMID:19946565

  9. Workshop on neural networks

    SciTech Connect

    Uhrig, R.E.; Emrich, M.L.

    1990-01-01

    The topics covered in this report are: Learning, Memory, and Artificial Neural Systems; Emerging Neural Network Technology; Neural Networks; Digital Signal Processing and Neural Networks; Application of Neural Networks to In-Core Fuel Management; Neural Networks in Process Control; Neural Network Applications in Image Processing; Neural Networks for Multi-Sensor Information Fusion; Neural Network Research in Instruments Controls Division; Neural Networks Research in the ORNL Engineering Physics and Mathematics Division; Neural Network Applications for Linear Programming; Neural Network Applications to Signal Processing and Diagnostics; Neural Networks in Filtering and Control; Neural Network Research at Tennessee Technological University; and Global Minima within the Hopfield Hypercube.

  10. Magnetic insertion system for flexible electrode implantation.

    PubMed

    Jaroch, David B; Ward, Matthew P; Chow, Eric Y; Rickus, Jenna L; Irazoqui, Pedro P

    2009-10-15

    Chronic recording electrodes are a vital tool for brain research and neural prostheses. Despite decades of advances in recording technology, probe structures and implantation methods have changed little over time. Then as now, compressive insertion methods require probes to be constructed from hard, stiff materials, such as silicon, and contain a large diameter shank to penetrate the brain, particularly for deeper structures. The chronic presence of these probes results in an electrically isolating glial scar, degrading signal quality over time. This work demonstrates a new magnetic tension-based insertion mechanism that allows for the use of soft, flexible, and thinner probe materials, overcoming the materials limitations of modern electrodes. Probes are constructed from a sharp magnetic tip attached to a flexible tether. A pulsed magnetic field is generated in a coil surrounding a glass pipette containing the electrode. The applied field pulls the electrode tip forward, accelerating the probe into the neural tissue with a penetration depth that is calibrated against the charge voltage. Mathematical modeling and agar gel insertion testing demonstrate that the electrode can be implanted to a predictable depth given system specific parameters. Trial rodent implantations resulted in discernible single-unit activity on one of the probes. The current prototype demonstrates the feasibility of a tension based, magnetically driven implantation system and opens the door to a wide variety of new minimally invasive probe materials and configurations.

  11. Noise from implantable Cooper cable.

    PubMed

    Carrington, V; Zhou, L; Donaldson, N

    2005-09-01

    Cooper cable is made for implanted devices, usually for connection to stimulating electrodes. An experiment has been performed to see whether these cables would be satisfactory for recording electroneurogram (ENG) signals from cuffs. Four cables were subjected to continuous flexion at 2 Hz while submerged in saline. The cables were connected to a low-noise amplifier, and the noise was measured using a spectrum analyser. These cables had not fractured after 184 million flexions, and the noise in the neural band (500-5000 Hz) had not increased owing to age. Noise in the ENG band increased by less than 3 dB owing to the motion. A fifth, worn cable did fail during the experiment, the conductors becoming exposed to the saline, but this was only apparent by extra noise when the cable was in motion. After 184 million flexions, the four cables were given a more severe test: instead of being connected to the amplifier reference node, two of the four cores of each cable were connected to 18V batteries. Two of the cables were then noisier, but only when in motion, presumably because of leakage between cores. Cooper cables are excellent for transmitting neural signals alone; transmission in one cable of neural signals and power supplies should be avoided if possible. PMID:16411634

  12. Implant success!!!.....simplified.

    PubMed

    Luthra, Kaushal K

    2009-01-01

    The endeavor towards life-like restoration has helped nurture new vistas in the art and science of implant dentistry. The protocol of "restoration-driven implant placement" ensures that the implant is an apical extension of the ideal future restoration and not the opposite. Meticulous pre-implant evaluation of soft and hard tissues, diagnostic cast and use of aesthetic wax-up and radiographic template combined with surgical template can simplify the intricate roadmap for appropriate implant treatment.By applying the harmony of artistic skill, scientific knowledge and clinical expertise, we can simply master the outstanding implant success in requisites of aesthetics, phonetics and function.

  13. Audio-vocal responses elicited in adult cochlear implant users

    PubMed Central

    Loucks, Torrey M.; Suneel, Deepa; Aronoff, Justin M.

    2015-01-01

    Auditory deprivation experienced prior to receiving a cochlear implant could compromise neural connections that allow for modulation of vocalization using auditory feedback. In this report, pitch-shift stimuli were presented to adult cochlear implant users to test whether compensatory motor changes in vocal F0 could be elicited. In five of six participants, rapid adjustments in vocal F0 were detected following the stimuli, which resemble the cortically mediated pitch-shift responses observed in typical hearing individuals. These findings suggest that cochlear implants can convey vocal F0 shifts to the auditory pathway that might benefit audio-vocal monitoring. PMID:26520350

  14. [Biomaterials in cochlear implants].

    PubMed

    Stöver, T; Lenarz, T

    2009-05-01

    Cochlear implants (CI) represent the "gold standard" for the treatment of congenitally deaf children and postlingually deafened adults. Thus, cochlear implantation is a success story of new bionic prosthesis development. Owing to routine application of cochlear implants in adults but also in very young children (below the age of one), high demands are placed on the implants. This is especially true for biocompatibility aspects of surface materials of implant parts which are in contact with the human body. In addition, there are various mechanical requirements which certain components of the implants must fulfil, such as flexibility of the electrode array and mechanical resistance of the implant housing. Due to the close contact of the implant to the middle ear mucosa and because the electrode array is positioned in the perilymphatic space via cochleostomy, there is a potential risk of bacterial transferral along the electrode array into the cochlea. Various requirements that have to be fulfilled by cochlear implants, such as biocompatibility, electrode micromechanics, and although a very high level of technical standards has been carried out there is still demand for the improvement of implants as well as of the materials used for manufacturing, ultimately leading to increased implant performance. General considerations of material aspects related to cochlear implants as well as potential future perspectives of implant development will be discussed.

  15. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  16. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  17. Breast reconstruction - implants

    MedlinePlus

    ... visits, your surgeon injects a small amount of saline (salt water) through the valve into the expander. ... breast implants. Implants may be filled with either saline or a silicone gel. You may have another ...

  18. Wireless Microstimulators for Neural Prosthetics

    PubMed Central

    Sahin, Mesut; Pikov, Victor

    2016-01-01

    One of the roadblocks in the field of neural prosthetics is the lack of microelectronic devices for neural stimulation that can last a lifetime in the central nervous system. Wireless multi-electrode arrays are being developed to improve the longevity of implants by eliminating the wire interconnects as well as the chronic tissue reactions due to the tethering forces generated by these wires. An area of research that has not been sufficiently investigated is a simple single-channel passive microstimulator that can collect the stimulus energy that is transmitted wirelessly through the tissue and immediately convert it into the stimulus pulse. For example, many neural prosthetic approaches to intraspinal microstimulation require only a few channels of stimulation. Wired spinal cord implants are not practical for human subjects because of the extensive flexions and rotations that the spinal cord experiences. Thus, intraspinal microstimulation may be a pioneering application that can benefit from submillimetersize floating stimulators. Possible means of energizing such a floating microstimulator, such as optical, acoustic, and electromagnetic waves, are discussed. PMID:21488815

  19. Wireless microstimulators for neural prosthetics.

    PubMed

    Sahin, Mesut; Pikov, Victor

    2011-01-01

    One of the roadblocks in the field of neural prosthetics is the lack of microelectronic devices for neural stimulation that can last a lifetime in the central nervous system. Wireless multi-electrode arrays are being developed to improve the longevity of implants by eliminating the wire interconnects as well as the chronic tissue reactions due to the tethering forces generated by these wires. An area of research that has not been sufficiently investigated is a simple single-channel passive microstimulator that can collect the stimulus energy that is transmitted wirelessly through the tissue and immediately convert it into the stimulus pulse. For example, many neural prosthetic approaches to intraspinal microstimulation require only a few channels of stimulation. Wired spinal cord implants are not practical for human subjects because of the extensive flexions and rotations that the spinal cord experiences. Thus, intraspinal microstimulation may be a pioneering application that can benefit from submillimeter-size floating stimulators. Possible means of energizing such a floating microstimulator, such as optical, acoustic, and electromagnetic waves, are discussed. PMID:21488815

  20. CHAPTER: In-Situ Characterization of Stimulating Microelectrode Arrays: Study of an Idealized Structure Based on Argus II Retinal implantsBOOK TITLE: Implantable Neural Prostheses 2: Techniques and Engineering Approaches, D.M. Zhou and E. Greenbaum, Eds., Springer, NY 2009

    SciTech Connect

    Greenbaum, Elias; Sanders, Charlene A; Kandagor, Vincent

    2010-01-01

    The development of a retinal prosthesis for artificial sight includes a study of the factors affecting the structural and functional stability of chronically implanted microelectrode arrays. Although neuron depolarization and propagation of electrical signals have been studied for nearly a century, the use of multielectrode stimulation as a proposed therapy to treat blindness is a frontier area of modern ophthalmology research. Mapping and characterizing the topographic information contained in the electric field potentials and understanding how this information is transmitted and interpreted in the visual cortex is still very much a work in progress. In order to characterize the electrical field patterns generated by the device, an in vitro prototype that mimics several of the physical and chemical parameters of the in vivo visual implant device was fabricated. We carried out multiple electrical measurements in a model 'eye,' beginning with a single electrode, followed by a 9-electrode array structure, both idealized components based on the Argus II retinal implants. Correlating the information contained in the topographic features of the electric fields with psychophysical testing in patients may help reduce the time required for patients to convert the electrical patterns into graphic signals.

  1. [Pathology of implants].

    PubMed

    Mittermayer, C; Eblenkamp, M; Richter, H A; Zwadlo-Klarwasser, G; Bhardwaj, R S; Klosterhalfen, B

    2002-01-01

    Progress in the surgery of implants and biomaterials can be accomplished by: 1. Painstakingly analysing and registering of defaulting implants after explantation within a "National Registry of Implant Pathology". 2. Development of a DNA-microarray named "Implantat/Chronic Wound" in order to discover the differential transcriptional activities of cells brought into contact with different foreign surfaces. 3. Predictive cell-engineering combined with custom-made implant surfaces with the aim of optimal patient care.

  2. Wireless, High-Bandwidth Recordings from Non-Human Primate Motor Cortex using a Scalable 16-Ch Implantable Microsystem

    PubMed Central

    Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.

    2013-01-01

    A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128

  3. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  4. EDITORIAL: Focus on the neural interface Focus on the neural interface

    NASA Astrophysics Data System (ADS)

    Durand, Dominique M.

    2009-10-01

    The possibility of an effective connection between neural tissue and computers has inspired scientists and engineers to develop new ways of controlling and obtaining information from the nervous system. These applications range from `brain hacking' to neural control of artificial limbs with brain signals. Notwithstanding the significant advances in neural prosthetics in the last few decades and the success of some stimulation devices such as cochlear prosthesis, neurotechnology remains below its potential for restoring neural function in patients with nervous system disorders. One of the reasons for this limited impact can be found at the neural interface and close attention to the integration between electrodes and tissue should improve the possibility of successful outcomes. The neural interfaces research community consists of investigators working in areas such as deep brain stimulation, functional neuromuscular/electrical stimulation, auditory prostheses, cortical prostheses, neuromodulation, microelectrode array technology, brain-computer/machine interfaces. Following the success of previous neuroprostheses and neural interfaces workshops, funding (from NIH) was obtained to establish a biennial conference in the area of neural interfaces. The first Neural Interfaces Conference took place in Cleveland, OH in 2008 and several topics from this conference have been selected for publication in this special section of the Journal of Neural Engineering. Three `perspectives' review the areas of neural regeneration (Corredor and Goldberg), cochlear implants (O'Leary et al) and neural prostheses (Anderson). Seven articles focus on various aspects of neural interfacing. One of the most popular of these areas is the field of brain-computer interfaces. Fraser et al, report on a method to generate robust control with simple signal processing algorithms of signals obtained with electrodes implanted in the brain. One problem with implanted electrode arrays, however, is that

  5. Implantation in IVF.

    PubMed

    Busso, Cristiano E; Melo, Marco A B; Fernandez, Manuel; Pellicer, Antonio; Simon, Carlos

    2006-01-01

    The recent advances in assisted reproduction have made it possible to study and interfere in almost every step of the human reproductive process except for implantation. The most complex and important step remains in great part unknown. Implantation in human has proven to be less efficient compared with other species. However, in in vitro fertilization (IVF) patients, it has been evaluated to be even poorer. This paper highlights the factors related to infertile patients and IVF treatments that can affect implantation and implantation's clinical aspects related to these treatments: implantation failure and early pregnancy loss.

  6. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  7. Breast implants. A review.

    PubMed

    Van Zele, D; Heymans, O

    2004-04-01

    Breast implants have been used for about four decades for both reconstructive and aesthetic purposes. In 1963, the quality of the artificial implants was revolutionized by the introduction of the silicone gel-filled implant. Since, this modern prosthesis has gone through an evolution of change and improvement with several types of devices with many variations and styles within each class. Actually, for the last three decades, approximately one million women have received silicone breast implants in the USA. But, in 1992, the American FDA banned silicone from the market, leaving saline implants as the only product generally available as an alternative until now. Other filler materials were introduced, but have never progressed beyond the experimental stage in the USA (in contrast with Europe). The evolution of the different implants through time, with their advantages and disadvantages will be discussed, but also the controversy on silicone implants in the USA and their suspected association with systemic diseases. PMID:15154572

  8. Wireless microsensor network solutions for neurological implantable devices

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  9. A wirelessly powered microspectrometer for neural probe-pin device

    NASA Astrophysics Data System (ADS)

    Choi, Sang H.; Kim, Min H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn

    2015-12-01

    Treatment of neurological anomalies, whether done invasively or not, places stringent demands on device functionality and size. We have developed a micro-spectrometer for use as an implantable neural probe to monitor neuro-chemistry in synapses. The micro-spectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) to enable operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, enable real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.

  10. Recent advances in micro/nanoscale biomedical implants.

    PubMed

    Arsiwala, Ammar; Desai, Preshita; Patravale, Vandana

    2014-09-10

    The medical device industry is growing at a very fast pace and has recorded great research activity over the past decade. The interdisciplinary nature of this field has made it possible for researchers to incorporate principles from various allied areas like pharmaceutics, bioengineering, biotechnology, chemistry, electronics, biophysics etc. to develop superior medical solutions, offering better prospects to the patient. Moreover, micro and nanotechnology have made it possible to positively affect at the sub-micron scales, the cellular processes initiated upon implantation. Literature is rife with findings on various implants and this review comprehensively summarizes the recent advances in micro/nanoscale implantable medical devices - particularly cardiovascular implants, neural implants, orthopedic and dental implants and other miscellaneous implants. Over the years, medical implants have metamorphosed from mere support providing devices to smart interventions participating positively in the healing process. We have highlighted the current research in each area emphasizing on the value addition provided by micro/nanoscale features, its course through the past and the future perspectives focusing on the unmet needs.

  11. Nanotechnology and dental implants.

    PubMed

    Lavenus, Sandrine; Louarn, Guy; Layrolle, Pierre

    2010-01-01

    The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate.

  12. Nanotechnology and Dental Implants

    PubMed Central

    Lavenus, Sandrine; Louarn, Guy; Layrolle, Pierre

    2010-01-01

    The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate. PMID:21253543

  13. Anechoic aquarium for ultrasonic neural telemetry.

    PubMed Central

    Mensinger, A F; Deffenbaugh, M

    2000-01-01

    An acoustic neural telemetry tag has been developed for recording from free-swimming aquatic animals. Microwire electrodes were implanted into the VIIIth nerve of the toadfish, Opsanus tau, and interfaced to the subdermally implanted tag. The telemetry tag frequency modulates the neural signal, converting it into a varying frequency, which is amplified and transmitted acoustically (centre frequency of 90 kHz and a 20 kHz bandwidth). This acoustic signal is detected by a receiver hydrophone, and the receiver reconstructs the full neural waveform from the acoustic signal. However, due to the multipath environment in the experimental aquarium, the acoustic signal is quickly degraded as the hydrophone is moved away from the source. In order to receive the signal independent of fish position, an anechoic aquarium was designed. Streams of microbubbles (ca. 70 microm diameter) were generated to produce a curtain of sound-absorptive material along the walls and water surface of the aquarium. Microbubble generation significantly reduced the multipath artefacts, and allowed signal discrimination independent of fish and hydrophone position. The anechoic aquarium will allow the recording of neural activity from free-swimming fishes in quasi-natural habitats, thus allowing better understanding of the neural mechanisms of behaviour. PMID:11079420

  14. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation

    PubMed Central

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P.

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time. PMID:27013949

  15. Boron-Doped Nanocrystalline Diamond Electrodes for Neural Interfaces: In vivo Biocompatibility Evaluation.

    PubMed

    Alcaide, María; Taylor, Andrew; Fjorback, Morten; Zachar, Vladimir; Pennisi, Cristian P

    2016-01-01

    Boron-doped nanocrystalline diamond (BDD) electrodes have recently attracted attention as materials for neural electrodes due to their superior physical and electrochemical properties, however their biocompatibility remains largely unexplored. In this work, we aim to investigate the in vivo biocompatibility of BDD electrodes in relation to conventional titanium nitride (TiN) electrodes using a rat subcutaneous implantation model. High quality BDD films were synthesized on electrodes intended for use as an implantable neurostimulation device. After implantation for 2 and 4 weeks, tissue sections adjacent to the electrodes were obtained for histological analysis. Both types of implants were contained in a thin fibrous encapsulation layer, the thickness of which decreased with time. Although the level of neovascularization around the implants was similar, BDD electrodes elicited significantly thinner fibrous capsules and a milder inflammatory reaction at both time points. These results suggest that BDD films may constitute an appropriate material to support stable performance of implantable neural electrodes over time. PMID:27013949

  16. New Criteria of Indication and Selection of Patients to Cochlear Implant

    PubMed Central

    Sampaio, André L. L.; Araújo, Mercêdes F. S.; Oliveira, Carlos A. C. P.

    2011-01-01

    Numerous changes continue to occur in cochlear implant candidacy. In general, these have been accompanied by concomitant and satisfactory changes in surgical techniques. Together, this has advanced the utility and safety of cochlear implantation. Most devices are now approved for use in patients with severe to profound unilateral hearing loss rather then the prior requirement of a bilateral profound loss. Furthermore, studies have begun utilizing short electrode arrays for shallow insertion in patients with considerable low-frequency residual hearing. This technique will allow the recipient to continue to use acoustically amplified hearing for the low frequencies simultaneously with a cochlear implant for the high frequencies. The advances in design of, and indications for, cochlear implants have been matched by improvements in surgical techniques and decrease in complications. The resulting improvements in safety and efficacy have further encouraged the use of these devices. This paper will review the new concepts in the candidacy of cochlear implant. Medline data base was used to search articles dealing with the following topics: cochlear implant in younger children, cochlear implant and hearing preservation, cochlear implant for unilateral deafness and tinnitus, genetic hearing loss and cochlear implant, bilateral cochlear implant, neuropathy and cochlear implant and neural plasticity, and the selection of patients for cochlear implant. PMID:22013448

  17. Implants in adolescents

    PubMed Central

    Shah, Rohit A.; Mitra, Dipika K.; Rodrigues, Silvia V.; Pathare, Pragalbha N.; Podar, Rajesh S.; Vijayakar, Harshad N.

    2013-01-01

    Implants have gained tremendous popularity as a treatment modality for replacement of missing teeth in adults. There is extensive research present on the use of implants in adults, but there is a dearth of data available on the same in adolescents. The treatment planning and execution of implant placement in adolescents is still in its infancy. This review article is an attempt to bring together available literature. PMID:24174743

  18. Implantable cardioverter defibrillator - discharge

    MedlinePlus

    Baddour LM, Epstein AE, Erickson CC, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation . ...

  19. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  20. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes

    NASA Astrophysics Data System (ADS)

    McConnell, G. C.; Butera, R. J.; Bellamkonda, R. V.

    2009-10-01

    The widespread adoption of neural prosthetic devices is currently hindered by our inability to reliably record neural signals from chronically implanted electrodes. The extent to which the local tissue response to implanted electrodes influences recording failure is not well understood. To investigate this phenomenon, impedance spectroscopy has shown promise for use as a non-invasive tool to estimate the local tissue response to microelectrodes. Here, we model impedance spectra from chronically implanted rats using the well-established Cole model, and perform a correlation analysis of modeled parameters with histological markers of astroglial scar, including glial fibrillary acid protein (GFAP) and 4',6-diamidino-2- phenylindole (DAPI). Correlations between modeled parameters and GFAP were significant for three parameters studied: Py value, Ro and |Z|1 kHz, and in all cases were confined to the first 100 µm from the interface. Py value was the only parameter also correlated with DAPI in the first 100 µm. Our experimental results, along with computer simulations, suggest that astrocytes are a predominant cellular player affecting electrical impedance spectra. The results also suggest that the largest contribution from reactive astrocytes on impedance spectra occurs in the first 100 µm from the interface, where electrodes are most likely to record electrical signals. These results form the basis for future approaches where impedance spectroscopy can be used to evaluate neural implants, evaluate strategies to minimize scar and potentially develop closed-loop prosthetic devices.

  1. Exploiting the 1/f structure of neural signals for the design of integrated neural amplifiers.

    PubMed

    Venkatraman, Subramaniam; Patten, Craig; Carmena, Jose M

    2009-01-01

    Neural amplifiers require a large time-constant high-pass filter at approximately 1Hz to reject large DC offsets while amplifying low frequency neural signals. This high pass filter is typically realized using large area capacitors and teraohm resistances which makes integration difficult. In this paper, we present a novel topology for a neural amplifier which exploits the (1/f)(n) power spectra of local field potentials (LFP). Using a high-pass filter at approximately 100Hz, we pre-filter the LFP before amplification. Post digitization, we can recover the LFP signal by building the inverse of the high pass filter in software. We built an array of neural amplifiers based on this principle and tested it on rats chronically implanted with microelectrode arrays. We found that we could recover the initial LFP signal and the power spectral information over time with correlation coefficient greater than 0.94.

  2. Spatial Channel Interactions in Cochlear Implants

    PubMed Central

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-01-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis for its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same 5 modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured voltage distribution as a function of electrode position in the cochlea in response to stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of electrode position in response to stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or lower in all measures. Several quantitative channel interaction indexes were developed to define and compare the width, slope, and symmetry of the spatial excitation patterns derived from these physical, physiological, and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing wider half-width and shallower slope than the basal side. On the contrary, the evoked

  3. Spatial channel interactions in cochlear implants.

    PubMed

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  4. Spatial channel interactions in cochlear implants

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  5. Batteryless implanted echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.

    1977-01-01

    Miniature ultrasonic echosonometer implanted within laboratory animals obtains energy from RF power oscillator that is electronically transduced via induction loop to power receiving loop located just under animal's skin. Method of powering device offers significant advantages over those in which battery is part of implanted package.

  6. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  7. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  8. CUSTOM-FIT RADIOLUCENT CRANIAL IMPLANTS FOR NEUROPHYSIOLOGICAL RECORDING AND STIMULATION

    PubMed Central

    Mulliken, Grant H; Bichot, Narcisse P; Ghadooshahy, Azriel; Sharma, Jitendra; Kornblith, Simon; Philcock, Michael; Desimone, Robert

    2015-01-01

    Background Recording and manipulating neural activity in awake behaving animal models requires long-term implantation of cranial implants that must address a variety of design considerations, which include preventing infection, minimizing tissue damage, mechanical strength of the implant, and MRI compatibility. New Method Here we address these issues by designing legless, custom-fit cranial implants using structural MRI-based reconstruction of the skull and that are made from carbon-reinforced PEEK. Results We report several novel custom-fit radiolucent implant designs, which include a legless recording chamber, a legless stimulation chamber, a multi-channel microdrive and a head post. The fit to the skull was excellent in all cases, with no visible gaps between the base of the implants and the skull. The wound margin was minimal in size and showed no sign of infection or skin recession. Comparison with Existing Methods Cranial implants used for neurophysiological investigation in awake behaving animals often employ methyl methacrylate (MMA) to serve as a bonding agent to secure the implant to the skull. Other designs rely on radially extending legs to secure the implant. Both of these methods have significant drawbacks. MMA is toxic to bone and frequently leads to infection while radially extending legs cause the skin to recede away from the implant, ultimately exposing bone and proliferating granulation tissue. Conclusions These radiolucent implants constitute a set of technologies suitable for reliable long-term recording, which minimize infection and tissue damage. PMID:25542350

  9. A physiological and behavioral system for hearing restoration with cochlear implants.

    PubMed

    King, Julia; Shehu, Ina; Roland, J Thomas; Svirsky, Mario A; Froemke, Robert C

    2016-08-01

    Cochlear implants are neuroprosthetic devices that provide hearing to deaf patients, although outcomes are highly variable even with prolonged training and use. The central auditory system must process cochlear implant signals, but it is unclear how neural circuits adapt-or fail to adapt-to such inputs. The knowledge of these mechanisms is required for development of next-generation neuroprosthetics that interface with existing neural circuits and enable synaptic plasticity to improve perceptual outcomes. Here, we describe a new system for cochlear implant insertion, stimulation, and behavioral training in rats. Animals were first ensured to have significant hearing loss via physiological and behavioral criteria. We developed a surgical approach for multichannel (2- or 8-channel) array insertion, comparable with implantation procedures and depth in humans. Peripheral and cortical responses to stimulation were used to program the implant objectively. Animals fitted with implants learned to use them for an auditory-dependent task that assesses frequency detection and recognition in a background of environmentally and self-generated noise and ceased responding appropriately to sounds when the implant was temporarily inactivated. This physiologically calibrated and behaviorally validated system provides a powerful opportunity to study the neural basis of neuroprosthetic device use and plasticity. PMID:27281743

  10. [Cochlear implant in children: rational, indications and cost/efficacy].

    PubMed

    Martini, A; Bovo, R; Trevisi, P; Forli, F; Berrettini, S

    2013-06-01

    A cochlear implant (CI) is a partially implanted electronic device that can help to provide a sense of sound and support speech to severely to profoundly hearing impaired patients. It is constituted by an external portion, that usually sits behind the ear and an internal portion surgically placed under the skin. The external components include a microphone connected to a speech processor that selects and arranges sounds pucked up by the microphone. This is connected to a transmitter coil, worn on the side of the head, which transmits data to an internal receiver coil placed under the skin. The received data are delivered to an array of electrodes that are surgically implanted within the cochlea. The primary neural targets of the electrodes are the spiral ganglion cells which innervate fibers of the auditory nerve. When the electrodes are activated by the signal, they send a current along the auditory nerve and auditory pathways to the auditory cortex. Children and adults who are profoundly or severely hearing impaired can be fitted with cochlear implants. According to the Food and Drug Administration, approximately 188,000 people worldwide have received implants. In Italy it is extimated that there are about 6-7000 implanted patients, with an average of 700 CI surgeries per year. Cochlear implantation, followed by intensive postimplantation speech therapy, can help young children to acquire speech, language, and social skills. Early implantation provides exposure to sounds that can be helpful during the critical period when children learn speech and language skills. In 2000, the Food and Drug Administration lowered the age of eligibility to 12 months for one type of CI. With regard to the results after cochlear implantation in relation to early implantation, better linguistic results are reported in children implanted before 12 months of life, even if no sufficient data exist regarding the relation between this advantage and the duration of implant use and how long

  11. Dental Implant Systems

    PubMed Central

    Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036

  12. Mobility implants: a review.

    PubMed

    Danz, W

    1990-01-01

    We present a brief review of mobility implants, their contribution, and the experiences derived after almost 40 years since the new concepts of full mobility implants were introduced. In early 1940, experiments with a new material for the making of plastic artificial eyes was also being considered for the making of orbital implants. Methyl-methacrylate (MMA) had proven inert and satisfactory for dental products. The Surgeon Generals office of the Armed Services encouraged further research and experimental work in the development of plastic eyes. The success of the new material sponsored the beginning of great expansion with new concepts for orbital implants. Through a period of more than a decade, the design and types of implants went through three stages. First, the buried implant was introduced, then the exposed integrated followed, and the buried integrated subsequently followed. The path of progress was not smooth. Theoretically correct designs and surgical procedures met unexpected practical difficulties for the ophthalmic surgeon, the patient, and the eye maker. Surgical and technical efforts were carefully reviewed to eliminate the problems encountered, only to have further unforeseen complications arise. Infections, extrusions, and migration of the implant were not uncommon. The exposed integrated implant was eventually abandoned. However, there were some extraordinary successes of mobility. A new era introduced fully buried mobility implants that were more successful. However, this procedure also produced some problems, causing infection (or allergy), extrusion, and migration. Tantalum mesh and gauze gave great promise with the inception of their use. Orbital tissue grew into the material in an astonishing way, making it possible to secure the extraocular muscles and tenons.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Nanotechnology for dental implants.

    PubMed

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  14. Suppression of scarring in peripheral nerve implants by drug elution

    NASA Astrophysics Data System (ADS)

    FitzGerald, James J.

    2016-04-01

    Objective. Medical implants made of non-biological materials provoke a chronic inflammatory response, resulting in the deposition of a collagenous scar tissue (ST) layer on their surface, that gradually thickens over time. This is a critical problem for neural interfaces. Scar build-up on electrodes results in a progressive decline in signal level because the scar tissue gradually separates axons away from the recording contacts. In regenerative sieves and microchannel electrodes, progressive scar deposition will constrict and may eventually choke off the sieve hole or channel lumen. Interface designs need to address this issue if they are to be fit for long term use. This study examines a novel method of inhibiting the formation and thickening of the fibrous scar. Approach. Research to date has mainly focused on methods of preventing stimulation of the foreign body response by implant surface modification. In this paper a pharmacological approach using drug elution to suppress chronic inflammation is introduced. Microchannel implants made of silicone doped with the steroid drug dexamethasone were implanted in the rat sciatic nerve for periods of up to a year. Tissue from within the microchannels was compared to that from control devices that did not release any drug. Main results. In the drug eluting implants the scar layer was significantly thinner at all timepoints, and unlike the controls it did not continue to thicken after 6 months. Control implants supported axon regeneration well initially, but axon counts fell rapidly at later timepoints as scar thickened. Axon counts in drug eluting devices were initially much lower, but increased rather than declined and by one year were significantly higher than in controls. Significance. Drug elution offers a potential long term solution to the problem of performance degradation due to scarring around neural implants.

  15. Reflections on Rodent Implantation.

    PubMed

    Cha, Jeeyeon M; Dey, Sudhansu K

    2015-01-01

    Embryo implantation is a complex process involving endocrine, paracrine, autocrine, and juxtacrine modulators that span cell-cell and cell-matrix interactions. The quality of implantation is predictive for pregnancy success. Earlier observational studies formed the basis for genetic and molecular approaches that ensued with emerging technological advances. However, the precise sequence and details of the molecular interactions involved have yet to be defined. This review reflects briefly on aspects of our current understanding of rodent implantation as a tribute to Roger Short's lifelong contributions to the field of reproductive physiology. PMID:26450495

  16. Spectroscopy of implants

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.

    1994-01-01

    The spectral criteria of selection of soft intraocular lens (IOL) implants of long service in an organism have been defined for ophthalmology. The analysis of Fourier Transform Infrared (FTIR) spectra provides the required and sufficient level of material polymerization for manufacturing non-toxic lenses for the eye. The spectral limits for determining the biocompatibility of samples can be related to the intensity ratio of two bands only in the FTIR spectra of siloxane. Siloxane-poly(urethane) block copolymers and other materials for implants have been studied. Passivated surfaces of implants have been obtained and registered by methods of Fourier Transform Spectroscopy.

  17. Smart polymers for implantable electronics

    NASA Astrophysics Data System (ADS)

    Ware, Taylor H.

    Neural interfaces have been heavily investigated due to their unique ability to tap into the communication system of the body. Substrates compatible with microelectronics processing are planar and 5-7 orders of magnitude stiffer than the tissue with which they interact. This work enables fabrication of devices by photolithography that are stiff enough to penetrate soft tissue, change in stiffness to more closely match the modulus of tissue after implantation and adopt shapes to conform to tissue. Several classes of physiologically-responsive, amorphous polymer networks with the onset of the glass transition above 37 °C are synthesized and thermomechanically characterized. These glassy networks exhibit an isothermal reduction in modulus due to plasticization in the presence of aqueous fluids. Modulus after plasticization can be tuned by the dry glass transition temperature, degree of plasticization and crosslink density. Acrylic shape memory polymer based intracortical probes, which can change in modulus from above 1 GPa to less than 1 MPa, are fabricated through a transfer process that shields the substrate from processing and enhances adhesion to the microelectronics. Substrates capable of withstanding the conditions of photolithography are fabricated "thiol-ene" and "thiol-epoxy" substrates. These materials provide processing windows that rival engineering thermoplastics, swell less than 6% in water, and exhibit a controllable reduction in modulus from above 1 GPa to between 5 and 150 MPa. Substrates, planar for processing, that subsequently recover 3D shapes are synthesized by the formation of post-gelation crosslinks either covalent or supramolecular in nature. Acrylics with varied supramolecular, based on ureidopyrimidone moieties, and covalent crosslink density demonstrate triple-shape memory behavior. Post-gelation covalent crosslinks are established to permanently fix 3D shapes in thiol-ene networks. Devices fabricated include intracortical and nerve cuff

  18. The evolution of embryo implantation.

    PubMed

    McGowen, Michael R; Erez, Offer; Romero, Roberto; Wildman, Derek E

    2014-01-01

    Embryo implantation varies widely in placental mammals. We review this variation in mammals with a special focus on two features: the depth of implantation and embryonic diapause. We discuss the two major types of implantation depth, superficial and interstitial, and map this character on a well-resolved molecular phylogenetic tree of placental mammals. We infer that relatively deep interstitial implantation has independently evolved at least eight times within placental mammals. Moreover, the superficial type of implantation represents the ancestral state for placental mammals. In addition, we review the genes involved in various phases of implantation, and suggest a future direction in investigating the molecular evolution of implantation-related genes. PMID:25023681

  19. Peri-Implant Diseases

    MedlinePlus

    ... and flossing and regular check-ups from a dental professional. Other risks factors for developing peri-implant disease include previous periodontal disease diagnosis, poor plaque control, smoking , and diabetes . It is essential to routinely ...

  20. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  1. Risks of Breast Implants

    MedlinePlus

    ... larger and longer than these conducted so far. Breastfeeding Some women who undergo breast augmentation can successfully ... breast implant silicone shell into breast milk during breastfeeding. Although there are currently no established methods for ...

  2. Ion implantation at elevated temperatures

    SciTech Connect

    Lam, N.Q.; Leaf, G.K.

    1985-11-01

    A kinetic model has been developed to investigate the synergistic effects of radiation-enhanced diffusion, radiation-induced segregation and preferential sputtering on the spatial redistribution of implanted solutes during implantation at elevated temperatures. Sample calculations were performed for Al and Si ions implanted into Ni. With the present model, the influence of various implantation parameters on the evolution of implant concentration profiles could be examined in detail.

  3. Implant treatment planning: endodontic considerations.

    PubMed

    Simonian, Krikor; Frydman, Alon; Verdugo, Fernando; Roges, Rafael; Kar, Kian

    2014-12-01

    Implants are a predictable and effective method for replacing missing teeth. Some clinicians have advocated extraction and replacement of compromised but treatable teeth on the assumption that implants will outperform endodontically and/or periodontally treated teeth. However, evidence shows that conventional therapy is as effective as implant treatment. With data on implants developing complications long term and a lack of predictable treatment for peri-implantitis, retaining and restoring the natural dentition should be the first choice when possible. PMID:25928961

  4. Efficient Universal Computing Architectures for Decoding Neural Activity

    PubMed Central

    Rapoport, Benjamin I.; Turicchia, Lorenzo; Wattanapanitch, Woradorn; Davidson, Thomas J.; Sarpeshkar, Rahul

    2012-01-01

    The ability to decode neural activity into meaningful control signals for prosthetic devices is critical to the development of clinically useful brain– machine interfaces (BMIs). Such systems require input from tens to hundreds of brain-implanted recording electrodes in order to deliver robust and accurate performance; in serving that primary function they should also minimize power dissipation in order to avoid damaging neural tissue; and they should transmit data wirelessly in order to minimize the risk of infection associated with chronic, transcutaneous implants. Electronic architectures for brain– machine interfaces must therefore minimize size and power consumption, while maximizing the ability to compress data to be transmitted over limited-bandwidth wireless channels. Here we present a system of extremely low computational complexity, designed for real-time decoding of neural signals, and suited for highly scalable implantable systems. Our programmable architecture is an explicit implementation of a universal computing machine emulating the dynamics of a network of integrate-and-fire neurons; it requires no arithmetic operations except for counting, and decodes neural signals using only computationally inexpensive logic operations. The simplicity of this architecture does not compromise its ability to compress raw neural data by factors greater than . We describe a set of decoding algorithms based on this computational architecture, one designed to operate within an implanted system, minimizing its power consumption and data transmission bandwidth; and a complementary set of algorithms for learning, programming the decoder, and postprocessing the decoded output, designed to operate in an external, nonimplanted unit. The implementation of the implantable portion is estimated to require fewer than 5000 operations per second. A proof-of-concept, 32-channel field-programmable gate array (FPGA) implementation of this portion is consequently energy efficient

  5. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  6. Simple Implant Augmentation Rhinoplasty.

    PubMed

    Nguyen, Anh H; Bartlett, Erica L; Kania, Katarzyna; Bae, Sang Mo

    2015-11-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  7. Dexamethasone: intravitreal implant.

    PubMed

    2011-01-01

    Macular oedema is one of the complications of retinal vein occlusion. About half of the patients recover spontaneously within 3 to 6 months. There is currently no drug that improves outcome. An intravitreal implant delivering 0.7 mg of dexamethasone has been authorised for the treatment of macular oedema in this setting. Clinical assessment is based on two double-blind randomised trials including a total of 1267 patients, comparing treatment with intravitreal implants delivering about 0.7 mg or 0.35 mg of dexamethasone, versus a sham procedure. Despite a more rapid initial improvement with dexamethasone, the number of patients whose reading ability improved at 6 months did not significantly differ between the groups. A retrospective subgroup analysis raised the possibility that dexamethasone implants may be beneficial in patients with central retinal vein occlusion. The adverse effects of dexamethasone intravitreal implants are the same as those of intraocular steroid injections, including elevated intraocular pressure (25% of patients), cataracts (27%), conjunctival haemorrhage (20%), and ocular pain. In practice, dexamethasone intravitreal implants do not have a positive harm-benefit balance in most patients with macular oedema following retinal vein occlusion. More rapid recovery after central vein occlusion remains to be confirmed. Pending such studies, it is better to avoid using dexamethasone implants. Patients should instead receive ophthalmologic monitoring to detect and manage possible complications, and any risk factors should be treated.

  8. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  9. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Thakoor, Anil

    1990-01-01

    Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.

  10. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear.

    PubMed

    Pinyon, Jeremy L; Tadros, Sherif F; Froud, Kristina E; Y Wong, Ann C; Tompson, Isabella T; Crawford, Edward N; Ko, Myungseo; Morris, Renée; Klugmann, Matthias; Housley, Gary D

    2014-04-23

    The cochlear implant is the most successful bionic prosthesis and has transformed the lives of people with profound hearing loss. However, the performance of the "bionic ear" is still largely constrained by the neural interface itself. Current spread inherent to broad monopolar stimulation of the spiral ganglion neuron somata obviates the intrinsic tonotopic mapping of the cochlear nerve. We show in the guinea pig that neurotrophin gene therapy integrated into the cochlear implant improves its performance by stimulating spiral ganglion neurite regeneration. We used the cochlear implant electrode array for novel "close-field" electroporation to transduce mesenchymal cells lining the cochlear perilymphatic canals with a naked complementary DNA gene construct driving expression of brain-derived neurotrophic factor (BDNF) and a green fluorescent protein (GFP) reporter. The focusing of electric fields by particular cochlear implant electrode configurations led to surprisingly efficient gene delivery to adjacent mesenchymal cells. The resulting BDNF expression stimulated regeneration of spiral ganglion neurites, which had atrophied 2 weeks after ototoxic treatment, in a bilateral sensorineural deafness model. In this model, delivery of a control GFP-only vector failed to restore neuron structure, with atrophied neurons indistinguishable from unimplanted cochleae. With BDNF therapy, the regenerated spiral ganglion neurites extended close to the cochlear implant electrodes, with localized ectopic branching. This neural remodeling enabled bipolar stimulation via the cochlear implant array, with low stimulus thresholds and expanded dynamic range of the cochlear nerve, determined via electrically evoked auditory brainstem responses. This development may broadly improve neural interfaces and extend molecular medicine applications.

  11. The acceleration of implant osseointegration by liposomal Wnt3a.

    PubMed

    Popelut, Antoine; Rooker, Scott M; Leucht, Philipp; Medio, Marie; Brunski, John B; Helms, Jill A

    2010-12-01

    The strength of a Wnt-based strategy for tissue regeneration lies in the central role that Wnts play in healing. Tissue injury triggers local Wnt activation at the site of damage, and this Wnt signal is required for the repair and/or regeneration of almost all tissues including bone, neural tissues, myocardium, and epidermis. We developed a biologically based approach to create a transient elevation in Wnt signaling in peri-implant tissues, and in doing so, accelerated bone formation around the implant. Our subsequent molecular and cellular analyses provide mechanistic insights into the basis for this pro-osteogenic effect. Given the essential role of Wnt signaling in bone formation, this protein-based approach may have widespread application in implant osseointegration.

  12. Implantable radio frequency identification sensors: wireless power and communication.

    PubMed

    Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2011-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm. PMID:22254944

  13. Implantable Radio Frequency Identification Sensors: Wireless Power and Communication

    PubMed Central

    Hutchens, Chriswell; Rennaker, Robert L.; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2013-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700mV, 30 to 40uA load attained at −2dBm. PMID:22254944

  14. Volitional control of neural activity: implications for brain–computer interfaces

    PubMed Central

    Fetz, Eberhard E

    2007-01-01

    Successful operation of brain–computer interfaces (BCI) and brain–machine interfaces (BMI) depends significantly on the degree to which neural activity can be volitionally controlled. This paper reviews evidence for such volitional control in a variety of neural signals, with particular emphasis on the activity of cortical neurons. Some evidence comes from conventional experiments that reveal volitional modulation in neural activity related to behaviours, including real and imagined movements, cognitive imagery and shifts of attention. More direct evidence comes from studies on operant conditioning of neural activity using biofeedback, and from BCI/BMI studies in which neural activity controls cursors or peripheral devices. Limits in the degree of accuracy of control in the latter studies can be attributed to several possible factors. Some of these factors, particularly limited practice time, can be addressed with long-term implanted BCIs. Preliminary observations with implanted circuits implementing recurrent BCIs are summarized. PMID:17234689

  15. Implant interactions with orthodontics.

    PubMed

    Celenza, Frank

    2012-09-01

    Many situations arise in which orthodontic therapy in conjunction with implant modalities is beneficial, relevant or necessary. These situations might entail orthodontic treatment preparatory to the placement of an implant, such as in the site preparation for implant placement. Traditionally, this has been somewhat well understood, but there are certain guidelines that must be adhered to as well as diagnostic steps that must be followed. Provision of adequate space for implant placement is of paramount importance, but there is also the consideration of tissue manipulation and remodeling which orthodontic therapy can achieve very predictably and orthodontists should be well versed in harnessing and employing this modality of site preparation. In this way, hopeless teeth that are slated for extraction can still be utilized by orthodontic extraction to augment tissues, both hard and soft, thereby facilitating site development. On the corollary, and representing a significant shift in treatment sequencing, there are many situations in which orthodontic mechanotherapy can be simplified, expedited, and facilitated by the placement of an implant and utilization as an integral part of the mechanotherapy. Implants have proven to provide excellent anchorage, and have resulted in a new class of anchorage known as "absolute anchorage". Implants can be harnessed as anchors both in a direct and indirect sense, depending upon the dictates of the case. Further, this has led to the development of orthodontic miniscrew systems and techniques, which can have added features such as flexibility in location and placement, as well as ease of use and removal. As orthodontic appliances evolve, the advent of aligner therapy has become mainstream and well accepted, and many of the aforementioned combined treatment modalities can and should be incorporated into this relatively new treatment modality as well. PMID:23040348

  16. Peripheral neural activity recording and stimulation system.

    PubMed

    Loi, D; Carboni, C; Angius, G; Angotzi, G N; Barbaro, M; Raffo, L; Raspopovic, S; Navarro, X

    2011-08-01

    This paper presents a portable, embedded, microcontroller-based system for bidirectional communication (recording and stimulation) between an electrode, implanted in the peripheral nervous system, and a host computer. The device is able to record and digitize spontaneous and/or evoked neural activities and store them in data files on a PC. In addition, the system has the capability of providing electrical stimulation of peripheral nerves, injecting biphasic current pulses with programmable duration, intensity, and frequency. The recording system provides a highly selective band-pass filter from 800 Hz to 3 kHz, with a gain of 56 dB. The amplification range can be further extended to 96 dB with a variable gain amplifier. The proposed acquisition/stimulation circuitry has been successfully tested through in vivo measurements, implanting a tf-LIFE electrode in the sciatic nerve of a rat. Once implanted, the device showed an input referred noise of 0.83 μVrms, was capable of recording signals below 10 μ V, and generated muscle responses to injected stimuli. The results demonstrate the capability of processing and transmitting neural signals with very low distortion and with a power consumption lower than 1 W. A graphic, user-friendly interface has been developed to facilitate the configuration of the entire system, providing the possibility to activate stimulation and monitor recordings in real time.

  17. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    PubMed Central

    Venail, Frederic; Mura, Thibault; Akkari, Mohamed; Mathiolon, Caroline; Menjot de Champfleur, Sophie; Piron, Jean Pierre; Sicard, Marielle; Sterkers-Artieres, Françoise; Mondain, Michel; Uziel, Alain

    2015-01-01

    The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement), electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device). The electrical response, measured using auto-NRT (neural responses telemetry) algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P < 0.01), the scalar placement of the electrodes (β = −8.50 ± 1.97, P < 0.01), and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF). Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas. PMID:26236725

  18. Scuba diving with cochlear implants.

    PubMed

    Kompis, Martin; Vibert, Dominique; Senn, Pascal; Vischer, Mattheus W; Häusler, Rudolf

    2003-05-01

    We report on a patient with bilateral cochlear implants (a Med-El Combi40 and a Med-El Combi40+), as well as considerable experience in scuba diving with both of his implants. After having been exposed to 68 and 89 dives, respectively, in depths of up to 43 m, both cochlear implants are in working order and the patient continues to receive excellent speech recognition scores with both cochlear implant systems. The presented data show that scuba diving after cochlear implantation is possible over a considerable number of dives without any major negative impact on the implants.

  19. [Subretinal visual implants].

    PubMed

    Stingl, K; Greppmaier, U; Wilhelm, B; Zrenner, E

    2010-12-01

    Visual implants are medical technologies that replace parts of the visual neuronal pathway. The subretinal implant developed by our group is being used in a human trials since 2005 and replaces the function of degenerated photoreceptors by an electronic device in blind patients. The subretinal implant consists of a 70-µm thin microchip with 1500 microphotodiodes each with an amplifier and an electrode with area of 3 mm × 3 mm. The power supply is provided by a subdermal power supply cable. The microchip is implanted under the macula and transforms the light signal into an electrical one, which is referred directly to the bipolar cells. Requirements for a good function of the implant are a preserved function of the inner retina, as well as clear optic media and a good visual acuity in the earlier life. The current technology can mediate a visual field of 10 - 12° and a computed resolution of up to 0.25° visual angle (corresponding to a visual acuity of 63 / 1000 - 80 / 1000) in blind patients. The so far best results from our studies reached a visual acuity of 21 / 1000 in blind retinitis pigmentosa patients. This overview is intended to inform the ophthalmologist about the current state of the technology and help him/her to advise interested patients.

  20. Bringing Hearing to the Deaf--Cochlear Implants: a Technical and Personal Account

    NASA Astrophysics Data System (ADS)

    Shipsey, Ian

    2006-04-01

    Cochlear implants are the first device to successfully restore neural function. They have instigated a popular but controversial revolution in the treatment of deafness, and they serve as a model for research in neuroscience and biomedical engineering. In this talk the physiology of natural hearing will be reviewed from the perspective of a physicist, and the function of cochlear implants will be described in the context of historical treatments, electrical engineering, psychophysics, clinical evaluation of efficacy and personal experience. The social implications of cochlear implantation and the future outlook for auditory prostheses will also be discussed.

  1. Bringing Hearing to the Deaf - Cochlear Implants: A Technical and Personal Account

    SciTech Connect

    Shipsey, Ian

    2003-12-17

    Cochlear implants are the first device to successfully restore neural function. They have instigated a popular but controversial revolution in the treatment of deafness and they serve as a model for research in neuroscience and biomedical engineering. In this talk the physiology of natural hearing will be reviewed from the perspective of a physicist, and the function of cochlear implants will be described in the context of historical treatments, electrical engineering, psychophysics, clinical evaluation of efficacy and personal experience. The social implications of cochlear implantation and the future outlook for auditory prostheses will also be discussed.

  2. Immunological aspects of implantation and implantation failure.

    PubMed

    Johnson, P M; Christmas, S E; Vince, G S

    1999-12-01

    The human endometrium contains a significant proportion of leukocytes (8-35% of all cells), the absolute numbers and proportions varying during both the menstrual cycle and early in pregnancy. T cells, macrophages and a population of phenotypically unusual large granular lymphocytes (LGL) are commonly present, although B cells are absent. Relative T cell numbers decrease significantly in first trimester decidua, and hence are unlikely to play an important role in maintenance of human pregnancy, but T cells could be important in implantation where their relative numbers are greater. In addition to producing cytokines, local tissue macrophages may provide an immediate antigen non-specific host defence to infection. Most attention has, nevertheless, focused on a role for LGL in implantation and maintenance of pregnancy since, at the time of implantation, LGL comprise 70-80% of the total endometrial leukocyte population. Although endometrial LGL have been shown to express natural killer (NK) cell-type cytotoxicity against classical NK cell targets, such cytotoxicity against trophoblast is induced only after activation by interleukin (IL)-2. Selective expression of the unusual class I human leukocyte antigen (HLA) molecule, HLA-G, by extravillous cytotrophoblast may assist in protecting invasive cytotrophoblast from potential maternal NK cell attack, probably via interactions with killer inhibitory receptor molecules on LGL. Many cytokines have been demonstrated to be expressed at the maternal-fetal interface although, currently, in mice only two (IL-11 and leukaemia inhibitory factor) appear to be absolutely essential for successful pregnancy outcome. Immune effector cells and cytokines may also play a role in human pregnancy pathologies, such as recurrent early pregnancy loss.

  3. Dental Implant Complications.

    PubMed

    Liaw, Kevin; Delfini, Ronald H; Abrahams, James J

    2015-10-01

    Dental implants have increased in the last few decades thus increasing the number of complications. Since many of these complications are easily diagnosed on postsurgical images, it is important for radiologists to be familiar with them and to be able to recognize and diagnose them. Radiologists should also have a basic understanding of their treatment. In a pictorial fashion, this article will present the basic complications of dental implants which we have divided into three general categories: biomechanical overload, infection or inflammation, and other causes. Examples of implant fracture, loosening, infection, inflammation from subgingival cement, failure of bone and soft tissue preservation, injury to surround structures, and other complications will be discussed as well as their common imaging appearances and treatment. Lastly, we will review pertinent dental anatomy and important structures that are vital for radiologists to evaluate in postoperative oral cavity imaging.

  4. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.

    2014-08-01

    Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  5. COMMUNICATION: Minocycline increases quality and longevity of chronic neural recordings

    NASA Astrophysics Data System (ADS)

    Rennaker, R. L.; Miller, J.; Tang, H.; Wilson, D. A.

    2007-06-01

    Brain/machine interfaces could potentially be used in the treatment of a host of neurological disorders ranging from paralysis to sensory deficits. Insertion of chronic micro-electrode arrays into neural tissue initiates a host of immunological responses, which typically leads to the formation of a cellular sheath around the implant, resulting in the loss of useful signals. Minocycline has been shown to have neuroprotective and neurorestorative effects in certain neural injury and neurodegenerative disease models. This study examined the effects of minocycline administration on the quality and longevity of chronic multi-channel microwire neural implants 1 week and 1 month post-implantation in auditory cortex. The mean signal-to-noise ratio for the minocycline group stabilized at the end of week 1 and remained above 4.6 throughout the following 3 weeks. The control group signal-to-noise ratio dropped throughout the duration of the study and at the end of 4 weeks was 2.6. Furthermore, 68% of electrodes from the minocycline group showed significant stimulus-driven activity at week 4 compared to 12.5% of electrodes in the control group. There was a significant reduction in the number of activated astrocytes around the implant in minocycline subjects, as well as a reduction in total area occupied by activated astrocytes at 1 and 4 weeks.

  6. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.

  7. Hydroxylapatite Otologic Implants

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Beale, B.; Johnson, R.

    2000-01-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (LMER) and Smith and Nephew Richards Inc. of Bartlett, TN, was initiated in March 1997. The original completion date for the Agreement was March 25, 1998. The purpose of this work is to develop and commercialize net shape forming methods for directly creating dense hydroxylapatite (HA) ceramic otologic implants. The project includes three tasks: (1) modification of existing gelcasting formulations to accommodate HA slurries; (2) demonstration of gelcasting to fabricate green HA ceramic components of a size and shape appropriate to otologic implants: and (3) sintering and evaluation of the HA components.

  8. Multichannel extracochlear implant.

    PubMed

    Pulec, J L; Smith, J C; Lewis, M L; Hortmann, G

    1989-03-01

    The transcutaneous eight-channel extracochlear implant has undergone continuous revision to simplify the surgical technique, to minimize patient morbidity, and to improve performance. The extracochlear electrode array has been miniaturized so that it can be inserted through the facial recess without disturbing the external auditory canal, tympanic membrane, or malleus. The use of the remote antenna placed around the external auditory canal has greatly increased battery life and patient comfort. With its simplified incisions, the surgical procedure can be performed as out-patient surgery. Preoperative cochlear nerve testing and use of evoked response cochlear nerve testing allow preadjustment of the speech processor. Current features and performance of the implant are discussed.

  9. Current trends in dental implants

    PubMed Central

    Gaviria, Laura; Salcido, John Paul; Guda, Teja

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants. PMID:24868501

  10. Current trends in dental implants.

    PubMed

    Gaviria, Laura; Salcido, John Paul; Guda, Teja; Ong, Joo L

    2014-04-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants.

  11. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  12. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  13. Parallel architectures and neural networks

    SciTech Connect

    Calianiello, E.R. )

    1989-01-01

    This book covers parallel computer architectures and neural networks. Topics include: neural modeling, use of ADA to simulate neural networks, VLSI technology, implementation of Boltzmann machines, and analysis of neural nets.

  14. FGF signaling transforms non-neural ectoderm into neural crest.

    PubMed

    Yardley, Nathan; García-Castro, Martín I

    2012-12-15

    The neural crest arises at the border between the neural plate and the adjacent non-neural ectoderm. It has been suggested that both neural and non-neural ectoderm can contribute to the neural crest. Several studies have examined the molecular mechanisms that regulate neural crest induction in neuralized tissues or the neural plate border. Here, using the chick as a model system, we address the molecular mechanisms by which non-neural ectoderm generates neural crest. We report that in response to FGF the non-neural ectoderm can ectopically express several early neural crest markers (Pax7, Msx1, Dlx5, Sox9, FoxD3, Snail2, and Sox10). Importantly this response to FGF signaling can occur without inducing ectopic mesodermal tissues. Furthermore, the non-neural ectoderm responds to FGF by expressing the prospective neural marker Sox3, but it does not express definitive markers of neural or anterior neural (Sox2 and Otx2) tissues. These results suggest that the non-neural ectoderm can launch the neural crest program in the absence of mesoderm, without acquiring definitive neural character. Finally, we report that prior to the upregulation of these neural crest markers, the non-neural ectoderm upregulates both BMP and Wnt molecules in response to FGF. Our results provide the first effort to understand the molecular events leading to neural crest development via the non-neural ectoderm in amniotes and present a distinct response to FGF signaling. PMID:23000357

  15. The ruptured PIP breast implant.

    PubMed

    Helyar, V; Burke, C; McWilliams, S

    2013-08-01

    Public concern erupted about the safety of Poly Implant Prothèse (PIP) breast implants when it was revealed in 2011 that they contained an inferior, unlicensed industrial-grade silicone associated with a high rate of rupture. There followed national guidance for UK clinicians, which led to a considerable increase in referrals of asymptomatic women for breast implant assessment. In this review we discuss possible approaches to screening the PIP cohort and the salient characteristics of a ruptured implant. PMID:23622796

  16. Parallel Consensual Neural Networks

    NASA Technical Reports Server (NTRS)

    Benediktsson, J. A.; Sveinsson, J. R.; Ersoy, O. K.; Swain, P. H.

    1993-01-01

    A new neural network architecture is proposed and applied in classification of remote sensing/geographic data from multiple sources. The new architecture is called the parallel consensual neural network and its relation to hierarchical and ensemble neural networks is discussed. The parallel consensual neural network architecture is based on statistical consensus theory. The input data are transformed several times and the different transformed data are applied as if they were independent inputs and are classified using stage neural networks. Finally, the outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote sensing data and geographic data are given. The performance of the consensual neural network architecture is compared to that of a two-layer (one hidden layer) conjugate-gradient backpropagation neural network. The results with the proposed neural network architecture compare favorably in terms of classification accuracy to the backpropagation method.

  17. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  18. Fiber-optic bending sensor for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Yao, Jianquan

    2006-09-01

    Cochlear implantation has been proved as a great success in treating profound sensorineural deafness in both children and adults. Cochlear electrode array implantation is a complex and delicate surgical process. Surgically induced damage to the inner wall of the scala tympani could happen if the insertion angle of the electrode is incorrect and an excessive insertion force is applied to the electrode. This damage could lead to severe degeneration of the remaining neural elements. It is therefore of vital importance to monitor the shape and position of the electrode during the implantation surgery. In this paper, we report a fiber-optic bending sensor which can be integrated with the electrode and used to guide the implantation process. The sensor consists of a piece of optical fiber. The end of the fiber is coated with aluminum layer to form a mirror. Bending the fiber with the electrode introduces loss to the light transmitting in the fiber. By detecting the power of the reflected light, we can detennine the bending happened to the fiber, and consequently measure the curved shape of the electrode. Experimental results show that the proposed fiber sensor is a promising technique to make in-situ monitoring of the shape and position of the electrode during the implantation process.

  19. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  20. Elementary Implantable Force Sensor

    PubMed Central

    Wachs, Rebecca A.; Ellstein, David; Drazan, John; Healey, Colleen P.; Uhl, Richard L.; Connor, Kenneth A.

    2014-01-01

    Implementing implantable sensors which are robust enough to maintain long term functionality inside the body remains a significant challenge. The ideal implantable sensing system is one which is simple and robust; free from batteries, telemetry, and complex electronics. We have developed an elementary implantable sensor for orthopaedic smart implants. The sensor requires no telemetry and no batteries to communicate wirelessly. It has no on-board signal conditioning electronics. The sensor itself has no electrical connections and thus does not require a hermetic package. The sensor is an elementary L-C resonator which can function as a simple force transducer by using a solid dielectric material of known stiffness between two parallel Archimedean coils. The operating characteristics of the sensors are predicted using a simplified, lumped circuit model. We have demonstrated sensor functionality both in air and in saline. Our preliminary data indicate that the sensor can be reasonably well modeled as a lumped circuit to predict its response to loading. PMID:24883335

  1. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  2. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  3. Ion implantation in polymers

    NASA Astrophysics Data System (ADS)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  4. Peritoneal trophoblastic implant.

    PubMed

    Rachagan, S P; Kutty, K; Govindan, K S

    1997-09-01

    A case of persistent trophoblastic tissue on the pelvic peritoneum is presented. While most cases are secondary to conservative surgery for tubal ectopic pregnancy, primary implantation can also occur as highlighted by this case. A brief pathophysiology of the condition is presented. The importance of monitoring the serum for beta subunit human chorionic gonadotrophin (HCG) is emphasised.

  5. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  6. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  7. Implantable electrical device

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D. (Inventor)

    1982-01-01

    A fully implantable and self contained device is disclosed composed of a flexible electrode array for surrounding damaged nerves and a signal generator for driving the electrode array with periodic electrical impulses of nanoampere magnitude to induce regeneration of the damaged nerves.

  8. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  9. The reverse zygomatic implant: a new implant for maxillofacial reconstruction.

    PubMed

    Dawood, Andrew; Collier, Jonathan; Darwood, Alastair; Tanner, Susan

    2015-01-01

    This case report describes the rehabilitation of a patient who had been treated with a hemimaxillectomy, reconstruction with a latissimus dorsi vascularized free flap, and radiotherapy for carcinoma of the sinus some years previously. Limited jaw opening, difficult access through the flap to the bony site, and the very small amount of bone available in which to anchor the implant inspired the development and use of a new "reverse zygomatic" implant. For this treatment, site preparation and implant insertion were accomplished using an extraoral approach. The implant was used along with two other conventional zygomatic implants to provide support for a milled titanium bar and overdenture to rehabilitate the maxilla. Two years later, the patient continues to enjoy a healthy reconstruction. The reverse zygomatic implant appears to show promise as a useful addition to the implant armamentarium for the treatment of the patient undergoing maxillectomy. PMID:26574864

  10. A Wirelessly Powered Micro-Spectrometer for Neural Probe-Pin Device

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn

    2015-01-01

    Treatment of neurological anomalies, places stringent demands on device functionality and size. A micro-spectrometer has been developed for use as an implantable neural probe to monitor neuro-chemistry in synapses. The microspectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) enabling operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, allow real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.

  11. Nested Neural Networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1992-01-01

    Report presents analysis of nested neural networks, consisting of interconnected subnetworks. Analysis based on simplified mathematical models more appropriate for artificial electronic neural networks, partly applicable to biological neural networks. Nested structure allows for retrieval of individual subpatterns. Requires fewer wires and connection devices than fully connected networks, and allows for local reconstruction of damaged subnetworks without rewiring entire network.

  12. Electronic neural networks

    SciTech Connect

    Howard, R.E.; Jackel, L.D.; Graf, H.P.

    1988-02-01

    The use of electronic neural networks to handle some complex computing problems is discussed. A simple neural model is shown and discussed in terms of its computational aspects. The use of electronic neural networks in machine pattern recognition and classification and in machine learning is examined. CMOS programmable networks are discussed. 15 references.

  13. Physiological basis for cochlear and auditory brainstem implants.

    PubMed

    Møller, Aage R

    2006-01-01

    Cochlear implants bypass functions of the cochlea that have been regarded to be fundamental for discrimination of the frequency (or spectrum). Frequency discrimination is essential for discrimination of sounds, including speech sounds, and the normal auditory system is assumed to make use of both (power) spectral and temporal information for frequency discrimination. Spectral information is represented by the place on the basilar membrane that generates the largest amplitude of vibration on the basilar membrane. Evidence has been presented that the temporal representation of frequency is more robust than the place representation and thus regarded more important for speech discrimination. The fact that some cochlear implants provide good speech discrimination using only information about the energy in a few spectral bands seems to contradict these studies. In that way, frequency discrimination may be similar to trichromatic color vision, which is based on the energy in only three different spectral bands of light, accomplished by different color-sensitive pigments in the cones of the retina. Cochlear nucleus implants (ABIs) also bypass the auditory nerve, which does not perform any processing. Therefore, it may be expected that ABIs are equally efficient as cochlear implants. However, experience from the use of ABIs in patients with bilateral vestibular schwannoma has not been encouraging, but recent studies of the use of ABIs in patients with other causes of injuries to the auditory nerve have shown similar speech discrimination as achieved with modern cochlear implants. Cochlear implants and ABIs are successful in providing speech discrimination because of redundancy in the processing in the ear, redundancy of the speech signal and because the auditory nervous system has a high degree of plasticity. Expression of neural plasticity makes the auditory nervous system adapt to the change in demands of processing of the information provided by cochlear implants. PMID

  14. Behavioral and Electrophysiological Responses Evoked by Chronic Infrared Neural Stimulation of the Cochlea

    PubMed Central

    Matic, Agnella Izzo; Robinson, Alan M.; Young, Hunter K.; Badofsky, Ben; Rajguru, Suhrud M.; Stock, Stuart; Richter, Claus-Peter

    2013-01-01

    Infrared neural stimulation (INS) has been proposed as a novel method for neural stimulation. In order for INS to translate to clinical use, which would involve the use of implanted devices over years or decades, the efficacy and safety of chronic INS needs to be determined. We examined a population of cats that were chronically implanted with an optical fiber to stimulate the cochlea with infrared radiation, the first known chronic application of INS. Through behavioral responses, the cats demonstrate that stimulation occurs and a perceptual event results. Long-term stimulation did not result in a change in the electrophysiological responses, either optically-evoked or acoustically-evoked. Spiral ganglion neuron counts and post implantation tissue growth, which was localized at the optical fiber, were similar in chronically stimulated and sham implanted cochleae. Results from chronic INS experiments in the cat cochlea support future work toward INS-based neuroprostheses for humans. PMID:23505466

  15. Gelatine-embedded electrodes--a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes.

    PubMed

    Lind, Gustav; Linsmeier, Cecilia Eriksson; Thelin, Jonas; Schouenborg, Jens

    2010-08-01

    Chronic neural interfaces that are both structurally and functionally stable inside the brain over years or decades hold great promise to become an invaluable clinical tool in the near future. A key flaw in the current electrode interfaces is that their recording capabilities deteriorate over time, possibly due to the lack of flexibility, which causes movements in relation to the neural tissue that result in small inflammations and loss of electrode function. We have developed a new neural probe using the stabilizing property of gelatine that allows the implantation of ultra-thin and flexible electrodes into the central nervous system. The microglial and astrocytic reactions evoked by implanted gelatine needles, as well as the wire bundles in combination with gelatine, were investigated using immunohistochemistry and fluorescence microscopy up to 12 weeks after implantation. The results indicate that pure gelatine needles were stiff enough to penetrate the brain tissue on their own, and evoked a significantly smaller chronic scar than stab wounds. Moreover, gelatine embedding appeared to reduce the acute reactions caused by the implants and we found no adverse effects of gelatine or gelatine-embedded electrodes. Successful electrophysiological recordings were made from very thin electrodes implanted in this fashion.

  16. Gelatine-embedded electrodes—a novel biocompatible vehicle allowing implantation of highly flexible microelectrodes

    NASA Astrophysics Data System (ADS)

    Lind, Gustav; Eriksson Linsmeier, Cecilia; Thelin, Jonas; Schouenborg, Jens

    2010-08-01

    Chronic neural interfaces that are both structurally and functionally stable inside the brain over years or decades hold great promise to become an invaluable clinical tool in the near future. A key flaw in the current electrode interfaces is that their recording capabilities deteriorate over time, possibly due to the lack of flexibility, which causes movements in relation to the neural tissue that result in small inflammations and loss of electrode function. We have developed a new neural probe using the stabilizing property of gelatine that allows the implantation of ultra-thin and flexible electrodes into the central nervous system. The microglial and astrocytic reactions evoked by implanted gelatine needles, as well as the wire bundles in combination with gelatine, were investigated using immunohistochemistry and fluorescence microscopy up to 12 weeks after implantation. The results indicate that pure gelatine needles were stiff enough to penetrate the brain tissue on their own, and evoked a significantly smaller chronic scar than stab wounds. Moreover, gelatine embedding appeared to reduce the acute reactions caused by the implants and we found no adverse effects of gelatine or gelatine-embedded electrodes. Successful electrophysiological recordings were made from very thin electrodes implanted in this fashion.

  17. Artificial neural interfaces for bionic cardiovascular treatments.

    PubMed

    Kawada, Toru; Sugimachi, Masaru

    2009-01-01

    An artificial nerve, in the broad sense, may be conceptualized as a physical and logical interface system that reestablishes the information traffic between the central nervous system and peripheral organs. Studies on artificial nerves targeting the autonomic nervous system are in progress to explore new treatment strategies for several cardiovascular diseases. In this article, we will review our research targeting the autonomic nervous system to treat cardiovascular diseases. First, we identified the rule for decoding native sympathetic nerve activity into a heart rate using transfer function analysis, and established a framework for a neurally regulated cardiac pacemaker. Second, we designed a bionic baroreflex system to restore the baroreflex buffering function using electrical stimulation of the celiac ganglion in a rat model of orthostatic hypotension. Third, based on the hypothesis that autonomic imbalance aggravates chronic heart failure, we implanted a neural interface into the right vagal nerve and demonstrated that intermittent vagal stimulation significantly improved the survival rate in rats with chronic heart failure following myocardial infarction. Although several practical problems need to be resolved, such as those relating to the development of electrodes feasible for long-term nerve activity recording, studies of artificial neural interfaces with the autonomic nervous system have great possibilities in the field of cardiovascular treatment. We expect further development of artificial neural interfaces as novel strategies to cope with cardiovascular diseases resistant to conventional therapeutics.

  18. Natural grouping of neural responses reveals spatially segregated clusters in prearcuate cortex

    PubMed Central

    Kiani, Roozbeh; Cueva, Christopher J.; Reppas, John B.; Peixoto, Diogo; Ryu, Stephen I.; Newsome, William T.

    2015-01-01

    Summary A fundamental challenge in studying the frontal lobe is to parcellate this cortex into ‘natural’ functional modules despite the absence of topographic maps, which are so helpful in primary sensory areas. Here we show that unsupervised clustering algorithms, applied to 96-channel array recordings from prearcuate gyrus, reveal spatially segregated sub-networks that remain stable across behavioral contexts. Looking for natural groupings of neurons based on response similarities, we discovered that the recorded area includes at least two spatially segregated sub-networks that differentially represent behavioral choice and reaction time. Importantly, these sub-networks are detectable during different behavioral states, and surprisingly, are defined better by ‘common noise’ than task-evoked responses. Our parcellation process works well on ‘spontaneous’ neural activity, and thus bears strong resemblance to the identification of ‘resting state’ networks in fMRI datasets. Our results demonstrate a powerful new tool for identifying cortical sub-networks by objective classification of simultaneously recorded electrophysiological activity. PMID:25728571

  19. Research Update: Platinum-elastomer mesocomposite as neural electrode coating

    NASA Astrophysics Data System (ADS)

    Minev, Ivan R.; Wenger, Nikolaus; Courtine, Grégoire; Lacour, Stéphanie P.

    2015-01-01

    Platinum is electrochemically stable and biocompatible, and remains the preferred material for the fabrication of implantable neural electrodes. In a foil or film format, platinum is mechanically stiff compared to interfaced biological tissue. We report a soft, highly stable platinum-elastomer composite that offers both mechanical compliance and the electrochemical properties of platinum. We demonstrate the high-performance of the novel mesocomposite printed on stretchable microelectrodes both in vitro and in vivo. The platinum-elastomer composite is a new promising coating for chronic neural interfaces.

  20. Eye enucleation and regeneration of neural retina in axolotl larvae (Ambystoma mexicanum).

    PubMed

    Yew, D T

    1985-01-01

    The eyes of Axolotl larvae were enucleated at stages 30 and 37. Animals with single dorsomedian eyes resulted in the first case (i.e. stage 30). When a piece of pigment epithelium was re-implanted into stage 37 animals at the site of the lesion, limited regeneration was observed when the implant formed a vesicle, but, when the pigment epithelium remained "open" regeneration of the neural retina was extensive. The possible resons for this difference was discussed.

  1. Foundations of neural networks

    SciTech Connect

    Simpson, P.K.

    1994-12-31

    Building intelligent systems that can model human behavior has captured the attention of the world for years. So, it is not surprising that a technology such as neural networks has generated great interest. This paper will provide an evolutionary introduction to neural networks by beginning with the key elements and terminology of neural networks, and developing the topologies, learning laws, and recall dynamics from this infrastructure. The perspective taken in this paper is largely that of an engineer, emphasizing the application potential of neural networks and drawing comparisons with other techniques that have similar motivations. As such, mathematics will be relied upon in many of the discussions to make points as precise as possible. The paper begins with a review of what neural networks are and why they are so appealing. A typical neural network is immediately introduced to illustrate several of the key features. With this network as a reference, the evolutionary introduction to neural networks is then pursued. The fundamental elements of a neural network, such as input and output patterns, processing element, connections, and threshold operations, are described, followed by descriptions of neural network topologies, learning algorithms, and recall dynamics. A taxonomy of neural networks is presented that uses two of the key characteristics of learning and recall. Finally, a comparison of neural networks and similar nonneural information processing methods is presented.

  2. Pediatric Cochlear Implantation: Why Do Children Receive Implants Late?

    PubMed Central

    Ham, Julia; Whittingham, JoAnne

    2015-01-01

    Objectives: Early cochlear implantation has been widely promoted for children who derive inadequate benefit from conventional acoustic amplification. Universal newborn hearing screening has led to earlier identification and intervention, including cochlear implantation in much of the world. The purpose of this study was to examine age and time to cochlear implantation and to understand the factors that affected late cochlear implantation in children who received cochlear implants. Design: In this population-based study, data were examined for all children who underwent cochlear implant surgery in one region of Canada from 2002 to 2013. Clinical characteristics were collected prospectively as part of a larger project examining outcomes from newborn hearing screening. For this study, audiologic details including age and severity of hearing loss at diagnosis, age at cochlear implant candidacy, and age at cochlear implantation were documented. Additional detailed medical chart information was extracted to identify the factors associated with late implantation for children who received cochlear implants more than 12 months after confirmation of hearing loss. Results: The median age of diagnosis of permanent hearing loss for 187 children was 12.6 (interquartile range: 5.5, 21.7) months, and the age of cochlear implantation over the 12-year period was highly variable with a median age of 36.2 (interquartile range: 21.4, 71.3) months. A total of 118 (63.1%) received their first implant more than 12 months after confirmation of hearing loss. Detailed analysis of clinical profiles for these 118 children revealed that late implantation could be accounted for primarily by progressive hearing loss (52.5%), complex medical conditions (16.9%), family indecision (9.3%), geographical location (5.9%), and other miscellaneous known (6.8%) and unknown factors (8.5%). Conclusions: This study confirms that despite the trend toward earlier implantation, a substantial number of children

  3. Piezosurgery in implant dentistry

    PubMed Central

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  4. Sterilisation of implantable devices.

    PubMed

    Matthews, I P; Gibson, C; Samuel, A H

    1994-01-01

    The pathogenesis and rates of infection associated with the use of a wide variety of implantable devices are described. The multi-factorial nature of post-operative periprosthetic infection is outlined and the role of sterilisation of devices is explained. The resistance of bacterial spores is highlighted as a problem and a full description is given of the processes of sterilisation by heat, steam, ethylene oxide, low temperature steam and formaldehyde, ionising radiation and liquid glutaraldehyde. Sterility assurance and validation are discussed in the context of biological indicators and physical/chemical indicators. Adverse effects upon the material composition of devices and problems of process control are listed. Finally, possible optimisations of the ethylene oxide process and their potential significance to the field of sterilisation of implants is explored. PMID:10172076

  5. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.

    PubMed

    Lichter, Samantha G; Escudié, Mathilde C; Stacey, Alastair D; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas V; Kua, Dunstan C; Lee, Aaron Z; McGowan, Ceara; Saunders, Alexia L; Burns, Owen; Nayagam, David A X; Williams, Richard A; Garrett, David J; Meffin, Hamish; Prawer, Steven

    2015-01-01

    As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining.

  6. Auditory cortical activity during cochlear implant-mediated perception of spoken language, melody, and rhythm.

    PubMed

    Limb, Charles J; Molloy, Anne T; Jiradejvong, Patpong; Braun, Allen R

    2010-03-01

    Despite the significant advances in language perception for cochlear implant (CI) recipients, music perception continues to be a major challenge for implant-mediated listening. Our understanding of the neural mechanisms that underlie successful implant listening remains limited. To our knowledge, this study represents the first neuroimaging investigation of music perception in CI users, with the hypothesis that CI subjects would demonstrate greater auditory cortical activation than normal hearing controls. H(2) (15)O positron emission tomography (PET) was used here to assess auditory cortical activation patterns in ten postlingually deafened CI patients and ten normal hearing control subjects. Subjects were presented with language, melody, and rhythm tasks during scanning. Our results show significant auditory cortical activation in implant subjects in comparison to control subjects for language, melody, and rhythm. The greatest activity in CI users compared to controls was seen for language tasks, which is thought to reflect both implant and neural specializations for language processing. For musical stimuli, PET scanning revealed significantly greater activation during rhythm perception in CI subjects (compared to control subjects), and the least activation during melody perception, which was the most difficult task for CI users. These results may suggest a possible relationship between auditory performance and degree of auditory cortical activation in implant recipients that deserves further study.

  7. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys.

    PubMed

    Lichter, Samantha G; Escudié, Mathilde C; Stacey, Alastair D; Ganesan, Kumaravelu; Fox, Kate; Ahnood, Arman; Apollo, Nicholas V; Kua, Dunstan C; Lee, Aaron Z; McGowan, Ceara; Saunders, Alexia L; Burns, Owen; Nayagam, David A X; Williams, Richard A; Garrett, David J; Meffin, Hamish; Prawer, Steven

    2015-01-01

    As the field of biomedical implants matures the functionality of implants is rapidly increasing. In the field of neural prostheses this is particularly apparent as researchers strive to build devices that interact with highly complex neural systems such as vision, hearing, touch and movement. A retinal implant, for example, is a highly complex device and the surgery, training and rehabilitation requirements involved in deploying such devices are extensive. Ideally, such devices will be implanted only once and will continue to function effectively for the lifetime of the patient. The first and most pivotal factor that determines device longevity is the encapsulation that separates the sensitive electronics of the device from the biological environment. This paper describes the realisation of a free standing device encapsulation made from diamond, the most impervious, long lasting and biochemically inert material known. A process of laser micro-machining and brazing is described detailing the fabrication of hermetic electrical feedthroughs and laser weldable seams using a 96.4% gold active braze alloy, another material renowned for biochemical longevity. Accelerated ageing of the braze alloy, feedthroughs and hermetic capsules yielded no evidence of corrosion and no loss of hermeticity. Samples of the gold braze implanted for 15 weeks, in vivo, caused minimal histopathological reaction and results were comparable to those obtained from medical grade silicone controls. The work described represents a first account of a free standing, fully functional hermetic diamond encapsulation for biomedical implants, enabled by gold active alloy brazing and laser micro-machining. PMID:25890743

  8. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface.

    PubMed

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S; Lee, Sung Q; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time.

  9. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface.

    PubMed

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S; Lee, Sung Q; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  10. Implants for cranioplasty.

    PubMed

    Gladstone, H B; McDermott, M W; Cooke, D D

    1995-04-01

    As long as there have been skull defects, there has been a recognized need to cover them in some way. Cranioplasty is the surgical correction of skull defects. The two major purposes of performing a cranioplasty are to protect the brain and to provide reasonable cosmesis. The two physical requirements of the implant are strength and malleability. Originally, foreign materials such as precious metals were used. Autogenous bone grafts have also achieved successful results. Over the past quarter-century, the popularization of acrylics and radiolucent metals has favored them over bone because of their ease of use, the absence of need to harvest donor bone, and, particularly, bone's tendency to resorb or scar. Yet foreign materials can cause excessive inflammation, producing a synovial membrane at the interface between the host bone and cranioplasty construct, increasing the risk of infection. Currently, hydroxyapatite-based ceramics, which may induce bone growth into the implant, are increasingly being used. Future applications will include antibiotic-impregnated implants and computer-generated models to improve the precision of cranioplasty fit and cosmesis.

  11. [Neurotology and cochlear implants].

    PubMed

    Merchán, Miguel A

    2015-05-01

    In this review we analyse cochlear implantation in terms of the fundamental aspects of the functioning of the auditory system. Concepts concerning neuronal plasticity applied to electrical stimulation in perinatal and adult deep hypoacusis are reviewed, and the latest scientific bases that justify early implantation following screening for congenital deafness are discussed. Finally, this review aims to serve as an example of the importance of fostering the sub-specialty of neurotology in our milieu, with the aim of bridging some of the gaps between specialties and thus improving both the knowledge in the field of research on auditory pathologies and in the screening of patients. The objectives of this review, targeted above all towards specialists in the field of otorhinolaryngology, are to analyse some significant neurological foundations in order to reach a better understanding of the clinical events that condition the indications and the rehabilitation of patients with cochlear implants, as well as to use this means to foster the growth of the sub-specialty of neurotology.

  12. A miniaturized neuroprosthesis suitable for implantation into the brain

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Binkley, David; Blalock, Benjamin; Andersen, Richard; Ulshoefer, Norbert; Johnson, Travis; Del Castillo, Linda

    2003-01-01

    This paper presents current research on a miniaturized neuroprosthesis suitable for implantation into the brain. The prosthesis is a heterogeneous integration of a 100-element microelectromechanical system (MEMS) electrode array, front-end complementary metal-oxide-semiconductor (CMOS) integrated circuit for neural signal preamplification, filtering, multiplexing and analog-to-digital conversion, and a second CMOS integrated circuit for wireless transmission of neural data and conditioning of wireless power. The prosthesis is intended for applications where neural signals are processed and decoded to permit the control of artificial or paralyzed limbs. This research, if successful, will allow implantation of the electronics into the brain, or subcutaneously on the skull, and eliminate all external signal and power wiring. The neuroprosthetic system design has strict size and power constraints with each of the front-end preamplifier channels fitting within the 400 x 400-microm pitch of the 100-element MEMS electrode array and power dissipation resulting in less than a 1 degree C temperature rise for the surrounding brain tissue. We describe the measured performance of initial micropower low-noise CMOS preamplifiers for the neuroprosthetic.

  13. Evolvable Neural Software System

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  14. [Professional occupation after cochlear implantation].

    PubMed

    Kós, Maria-Izabel; Degive, Colette; Boëx, Colette; Maire, Raphaël; Guyot, Jean-Philippe

    2006-10-01

    This study verifies whether cochlear implants helps deaf adults to maintain or develop their professional occupations. Sixty-seven patients received a questionnaire concerning their professional activities before and after implantation. At the time of implantation 34 were professionally active. After the implantation 29 remained active, 4 of them reporting positive developments in their careers. Five patients became inactive. The previously inactive patients remained inactive. There was no difference in auditory performances between professionally active or inactive patients. Cochlear implants enable most implanted adults to maintain and even progress in their professions. However, deafness still represents an obstacle to social integration as inactive patients who searched for a job were rejected after the job interviews. PMID:17076153

  15. The Evolution of Breast Implants.

    PubMed

    Gabriel, Allen; Maxwell, G Patrick

    2015-10-01

    Breast augmentation remains one of the most common procedures performed in the United States. However, shape, feel, safety, and longevity of the implants remain important areas of research. The data provided by manufacturers show the safety and efficacy of these medical devices. Clinicians should strive to provide ongoing data and sound science to continue to improve clinical outcomes in the future. This article explores the evolution of breast implants with special emphasis on the advancement of silicone implants.

  16. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.

    PubMed

    Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2010-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.

  17. Implant biomaterials: A comprehensive review

    PubMed Central

    Saini, Monika; Singh, Yashpal; Arora, Pooja; Arora, Vipin; Jain, Krati

    2015-01-01

    Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about the different biomaterials used for the dental implants. This article makes an effort to summarize various dental bio-materials which were used in the past and as well as the latest material used now. PMID:25610850

  18. Professional occupation after cochlear implantation.

    PubMed

    Kos, M-I; Degive, C; Boex, C; Guyot, J-P

    2007-03-01

    The aims of this study were to verify whether cochlear implants helped profoundly deaf adults to maintain or even to develop their professional occupations, and to identify other elements that may contribute to or, on the contrary, impede such patients' professional success. All adult patients received a questionnaire concerning their professional activities before and after implantation. Demographic data, health information, hearing performance and degree of satisfaction with the implant were also considered. Sixty-seven adults had been implanted, with three different devices, since 1985. At the time of implantation, 34 had been professionally active. After implantation, 29 had remained professionally active, four of whom reported positive developments in their careers. Five patients had become professionally inactive. Those patients who had previously been professionally inactive remained so. There had been no difference in performance, either between different types of cochlear implants or between professionally active or inactive patients. The implanted patients had kept their jobs and many of them had developed their professional skills. In spite of this, cochlear implants may still be perceived as proving insufficiently satisfactory hearing to enable professionally inactive patients to reintegrate and to facilitate further learning or career developments. PMID:17052367

  19. Fuzzy and neural control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.

  20. Exploring neural network technology

    SciTech Connect

    Naser, J.; Maulbetsch, J.

    1992-12-01

    EPRI is funding several projects to explore neural network technology, a form of artificial intelligence that some believe may mimic the way the human brain processes information. This research seeks to provide a better understanding of fundamental neural network characteristics and to identify promising utility industry applications. Results to date indicate that the unique attributes of neural networks could lead to improved monitoring, diagnostic, and control capabilities for a variety of complex utility operations. 2 figs.

  1. Wireless gigabit data telemetry for large-scale neural recording.

    PubMed

    Kuan, Yen-Cheng; Lo, Yi-Kai; Kim, Yanghyo; Chang, Mau-Chung Frank; Liu, Wentai

    2015-05-01

    Implantable wireless neural recording from a large ensemble of simultaneously acting neurons is a critical component to thoroughly investigate neural interactions and brain dynamics from freely moving animals. Recent researches have shown the feasibility of simultaneously recording from hundreds of neurons and suggested that the ability of recording a larger number of neurons results in better signal quality. This massive recording inevitably demands a large amount of data transfer. For example, recording 2000 neurons while keeping the signal fidelity ( > 12 bit, > 40 KS/s per neuron) needs approximately a 1-Gb/s data link. Designing a wireless data telemetry system to support such (or higher) data rate while aiming to lower the power consumption of an implantable device imposes a grand challenge on neuroscience community. In this paper, we present a wireless gigabit data telemetry for future large-scale neural recording interface. This telemetry comprises of a pair of low-power gigabit transmitter and receiver operating at 60 GHz, and establishes a short-distance wireless link to transfer the massive amount of neural signals outward from the implanted device. The transmission distance of the received neural signal can be further extended by an externally rendezvous wireless transceiver, which is less power/heat-constraint since it is not at the immediate proximity of the cortex and its radiated signal is not seriously attenuated by the lossy tissue. The gigabit data link has been demonstrated to achieve a high data rate of 6 Gb/s with a bit-error-rate of 10(-12) at a transmission distance of 6 mm, an applicable separation between transmitter and receiver. This high data rate is able to support thousands of recording channels while ensuring a low energy cost per bit of 2.08 pJ/b.

  2. Wireless gigabit data telemetry for large-scale neural recording.

    PubMed

    Kuan, Yen-Cheng; Lo, Yi-Kai; Kim, Yanghyo; Chang, Mau-Chung Frank; Liu, Wentai

    2015-05-01

    Implantable wireless neural recording from a large ensemble of simultaneously acting neurons is a critical component to thoroughly investigate neural interactions and brain dynamics from freely moving animals. Recent researches have shown the feasibility of simultaneously recording from hundreds of neurons and suggested that the ability of recording a larger number of neurons results in better signal quality. This massive recording inevitably demands a large amount of data transfer. For example, recording 2000 neurons while keeping the signal fidelity ( > 12 bit, > 40 KS/s per neuron) needs approximately a 1-Gb/s data link. Designing a wireless data telemetry system to support such (or higher) data rate while aiming to lower the power consumption of an implantable device imposes a grand challenge on neuroscience community. In this paper, we present a wireless gigabit data telemetry for future large-scale neural recording interface. This telemetry comprises of a pair of low-power gigabit transmitter and receiver operating at 60 GHz, and establishes a short-distance wireless link to transfer the massive amount of neural signals outward from the implanted device. The transmission distance of the received neural signal can be further extended by an externally rendezvous wireless transceiver, which is less power/heat-constraint since it is not at the immediate proximity of the cortex and its radiated signal is not seriously attenuated by the lossy tissue. The gigabit data link has been demonstrated to achieve a high data rate of 6 Gb/s with a bit-error-rate of 10(-12) at a transmission distance of 6 mm, an applicable separation between transmitter and receiver. This high data rate is able to support thousands of recording channels while ensuring a low energy cost per bit of 2.08 pJ/b. PMID:25823050

  3. [Extruded cochlear implant magnet covered with a temporoparietal fascial flap. A case report].

    PubMed

    Lima Sánchez, J; Berenguer, B; Aránguez, G; González Meli, B; Marín Molina, C; de Tomás Palacios, E

    2013-01-01

    Complications are infrequent after cochlear implant surgery but they might occur despite careful preoperative planning and meticulous surgical technique. Among the most commonly encountered problems are those associated with the postauricular flap. An exposed, and therefore contaminated, device requires immediate attention and intervention. Cochlear implantation revision surgery is justified by two main reasons, the high price of these devices and the difficulty of reimplantation, due to cochlear fibrosis and ossification after its removal. There are multiple options in cochlear implantation revision surgery with infected device. However, the temporoparietal fascia flap is highly vascularized and provides some advantages over other alternatives. We report a case of a 5 year old boy with bilateral sensor neural hearing loss, who suffered a device extrusion three years after its implantation. PMID:23833928

  4. A consensual neural network

    NASA Technical Reports Server (NTRS)

    Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.

    1991-01-01

    A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.

  5. Computing with neural synchrony.

    PubMed

    Brette, Romain

    2012-01-01

    Neurons communicate primarily with spikes, but most theories of neural computation are based on firing rates. Yet, many experimental observations suggest that the temporal coordination of spikes plays a role in sensory processing. Among potential spike-based codes, synchrony appears as a good candidate because neural firing and plasticity are sensitive to fine input correlations. However, it is unclear what role synchrony may play in neural computation, and what functional advantage it may provide. With a theoretical approach, I show that the computational interest of neural synchrony appears when neurons have heterogeneous properties. In this context, the relationship between stimuli and neural synchrony is captured by the concept of synchrony receptive field, the set of stimuli which induce synchronous responses in a group of neurons. In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. This theory of synchrony-based computation shows that relative spike timing may indeed have computational relevance, and suggests new types of neural network models for sensory processing with appealing computational properties.

  6. Neural-Network Simulator

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul H.

    1991-01-01

    F77NNS (FORTRAN 77 Neural Network Simulator) computer program simulates popular back-error-propagation neural network. Designed to take advantage of vectorization when used on computers having this capability, also used on any computer equipped with ANSI-77 FORTRAN Compiler. Problems involving matching of patterns or mathematical modeling of systems fit class of problems F77NNS designed to solve. Program has restart capability so neural network solved in stages suitable to user's resources and desires. Enables user to customize patterns of connections between layers of network. Size of neural network F77NNS applied to limited only by amount of random-access memory available to user.

  7. Computing with Neural Synchrony

    PubMed Central

    Brette, Romain

    2012-01-01

    Neurons communicate primarily with spikes, but most theories of neural computation are based on firing rates. Yet, many experimental observations suggest that the temporal coordination of spikes plays a role in sensory processing. Among potential spike-based codes, synchrony appears as a good candidate because neural firing and plasticity are sensitive to fine input correlations. However, it is unclear what role synchrony may play in neural computation, and what functional advantage it may provide. With a theoretical approach, I show that the computational interest of neural synchrony appears when neurons have heterogeneous properties. In this context, the relationship between stimuli and neural synchrony is captured by the concept of synchrony receptive field, the set of stimuli which induce synchronous responses in a group of neurons. In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the presence of distractors. This theory of synchrony-based computation shows that relative spike timing may indeed have computational relevance, and suggests new types of neural network models for sensory processing with appealing computational properties. PMID:22719243

  8. Listening to Brain Microcircuits for Interfacing With External World—Progress in Wireless Implantable Microelectronic Neuroengineering Devices

    PubMed Central

    Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.; Patterson, William R.; Song, Yoon-Kyu; Bull, Christopher W.; Borton, David A.; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2011-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature’s amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic “brain-interfaces” within the body, a point of special emphasis of this paper. PMID:21654935

  9. Implantable electrode for recording nerve signals in awake animals

    NASA Technical Reports Server (NTRS)

    Ninomiya, I.; Yonezawa, Y.; Wilson, M. F.

    1976-01-01

    An implantable electrode assembly consisting of collagen and metallic electrodes was constructed to measure simultaneously neural signals from the intact nerve and bioelectrical noises in awake animals. Mechanical artifacts, due to bodily movement, were negligibly small. The impedance of the collagen electrodes, measured in awake cats 6-7 days after implantation surgery, ranged from 39.8-11.5 k ohms at a frequency range of 20-5 kHz. Aortic nerve activity and renal nerve activity, measured in awake conditions using the collagen electrode, showed grouped activity synchronous with the cardiac cycle. Results indicate that most of the renal nerve activity was from postganglionic sympathetic fibers and was inhibited by the baroceptor reflex in the same cardiac cycle.

  10. A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System

    PubMed Central

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen

    2015-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099

  11. A wireless implantable switched-capacitor based optogenetic stimulating system.

    PubMed

    Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen; Ghovanloo, Maysam

    2014-01-01

    This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099

  12. Deafness: Cross-modal plasticity and cochlear implants

    NASA Astrophysics Data System (ADS)

    Lee, Dong Soo; Lee, Jae Sung; Oh, Seung Ha; Kim, Seok-Ki; Kim, Jeung-Whoon; Chung, June-Key; Lee, Myung Chul; Kim, Chong Sun

    2001-01-01

    Hearing in profoundly deaf people can be helped by inserting an implant into the inner ear to stimulate the cochlear nerve. This also boosts the low metabolic activity of the auditory cortex, the region of the brain normally used for hearing. Other sensory modalities, such as sign language, can also activate the auditory cortex, a phenomenon known as cross-modal plasticity. Here we show that when metabolism in the auditory cortex of prelingually deaf children (whose hearing was lost before they learned to talk) has been restored by cross-modal plasticity, the auditory cortex can no longer respond to signals from a cochlear implant installed afterwards. Neural substrates in the auditory cortex might therefore be routed permanently to other cognitive processes in prelingually deaf patients.

  13. Comprehensive characterization of tungsten microwires in chronic neurocortical implants.

    PubMed

    Prasad, Abhishek; Xue, Qing-Shan; Sankar, Viswanath; Nishida, Toshikazu; Shaw, Gerry; Streit, Wolfgang; Sanchez, Justin C

    2012-01-01

    The long-term performance of chronic microelectrode array implants for neural ensemble recording is affected by temporal degradation in signal quality due to several factors including structural changes in the recording surface, electrical responses, and tissue immune reactivity. This study combines the information available from the temporal aggregation of both biotic and abiotic metrics to analyze and quantify the combined effects on long-term performance. Study of a 42-day implant showed there was a functional relationship between the measured impedance and the array neuronal yield. This was correlated with structural changes in the recording sites, microglial activation/degeneration, and elevation of a blood biochemical marker for axonal injury. We seek to elucidate the mechanisms of chronic microelectrode array failure through the study of the combined effects of these biotic and abiotic factors. PMID:23366002

  14. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  15. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  16. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  17. Computer implants and death.

    PubMed

    Gert, Bernard

    2009-01-01

    Although a patient whose whole brain has ceased to function may have his heart, lungs, and other organs continue to function if they are connected to the appropriate machines, the patient is still dead and the machines can be disconnected. In the future, nanotechnology, or other technology, may allow putting implants in the brainstem that can keep a patient's heart, lungs and other organs functioning, even though the whole natural brain has ceased to function. It would be useful to consider how this technology might affect the criterion of death before it is actually available.

  18. Bone cement implantation syndrome.

    PubMed

    Razuin, R; Effat, O; Shahidan, M N; Shama, D V; Miswan, M F M

    2013-06-01

    Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material. PMID:23817399

  19. What Are Neural Tube Defects?

    MedlinePlus

    ... NICHD Research Information Clinical Trials Resources and Publications Neural Tube Defects (NTDs): Condition Information Skip sharing on ... media links Share this: Page Content What are neural tube defects? Neural (pronounced NOOR-uhl ) tube defects ...

  20. Simplified Design Equations for Class-E Neural Prosthesis Transmitters

    PubMed Central

    Troyk, Philip; Hu, Zhe

    2013-01-01

    Extreme miniaturization of implantable electronic devices is recognized as essential for the next generation of neural prostheses, owing to the need for minimizing the damage and disruption of the surrounding neural tissue. Transcutaneous power and data transmission via a magnetic link remains the most effective means of powering and controlling implanted neural prostheses. Reduction in the size of the coil, within the neural prosthesis, demands the generation of a high-intensity radio frequency magnetic field from the extracoporeal transmitter. The Class-E power amplifier circuit topology has been recognized as a highly effective means of producing large radio frequency currents within the transmitter coil. Unfortunately, design of a Class-E circuit is most often fraught by the need to solve a complex set of equations so as to implement both the zero-voltage-switching and zero-voltage-derivative-switching conditions that are required for efficient operation. This paper presents simple explicit design equations for designing the Class-E circuit topology. Numerical design examples are presented to illustrate the design procedure. PMID:23292784

  1. Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing.

    PubMed

    Schoof, Tim; Green, Tim; Faulkner, Andrew; Rosen, Stuart

    2013-02-01

    Acoustic simulations were used to study the contributions of spatial hearing that may arise from combining a cochlear implant with either a second implant or contralateral residual low-frequency acoustic hearing. Speech reception thresholds (SRTs) were measured in twenty-talker babble. Spatial separation of speech and noise was simulated using a spherical head model. While low-frequency acoustic information contralateral to the implant simulation produced substantially better SRTs there was no effect of spatial cues on SRT, even when interaural differences were artificially enhanced. Simulated bilateral implants showed a significant head shadow effect, but no binaural unmasking based on interaural time differences, and weak, inconsistent overall spatial release from masking. There was also a small but significant non-spatial summation effect. It appears that typical cochlear implant speech processing strategies may substantially reduce the utility of spatial cues, even in the absence of degraded neural processing arising from auditory deprivation. PMID:23363118

  2. Implants and Decoding for Intracortical Brain Computer Interfaces

    PubMed Central

    Homer, Mark L.; Nurmikko, Arto V.; Donoghue, John P.; Hochberg, Leigh R.

    2014-01-01

    Intracortical brain computer interfaces (iBCIs) are being developed to enable a person to drive an output device, such as a computer cursor, directly from their neural activity. One goal of the technology is to help people with severe paralysis or limb loss. Key elements of an iBCI are the implanted sensor that records the neural signals and the software which decodes the user’s intended movement from those signals. Here, we focus on recent advances in these two areas, with special attention being placed on contributions that are or may soon be adopted by the iBCI research community. We discuss how these innovations increase the technology’s capability, accuracy, and longevity, all important steps that are expanding the range of possible future clinical applications. PMID:23862678

  3. Auditory Implant Research at the House Ear Institute 1989–2013

    PubMed Central

    Shannon, Robert V.

    2014-01-01

    The House Ear Institute (HEI) had a long and distinguished history of auditory implant innovation and development. Early clinical innovations include being one of the first cochlear implant (CI) centers, being the first center to implant a child with a cochlear implant in the US, developing the auditory brainstem implant, and developing multiple surgical approaches and tools for Otology. This paper reviews the second stage of auditory implant research at House – in-depth basic research on perceptual capabilities and signal processing for both cochlear implants and auditory brainstem implants. Psychophysical studies characterized the loudness and temporal perceptual properties of electrical stimulation as a function of electrical parameters. Speech studies with the noise-band vocoder showed that only four bands of tonotopically arrayed information were sufficient for speech recognition, and that most implant users were receiving the equivalent of 8–10 bands of information. The noise-band vocoder allowed us to evaluate the effects of the manipulation of the number of bands, the alignment of the bands with the original tonotopic map, and distortions in the tonotopic mapping, including holes in the neural representation. Stimulation pulse rate was shown to have only a small effect on speech recognition. Electric fields were manipulated in position and sharpness, showing the potential benefit of improved tonotopic selectivity. Auditory training shows great promise for improving speech recognition for all patients. And the Auditory Brainstem Implant was developed and improved and its application expanded to new populations. Overall, the last 25 years of research at HEI helped increase the basic scientific understanding of electrical stimulation of hearing and contributed to the improved outcomes for patients with the CI and ABI devices. PMID:25449009

  4. Sensory innervation around immediately vs. delayed loaded implants: a pilot study

    PubMed Central

    Huang, Yan; van Dessel, Jeroen; Martens, Wendy; Lambrichts, Ivo; Zhong, Wei-Jian; Ma, Guo-Wu; Lin, Dan; Liang, Xin; Jacobs, Reinhilde

    2015-01-01

    Although neurophysiological and psychophysical proof of osseoperception is accumulating, histomorphometric evidence for the neural mechanisms of functional compensation following immediate and delayed implant loading is still lacking. For this randomized split-mouth study, six mongrel dogs randomly received one of four treatment protocols at 36 implant-recipient sites over 16 weeks (third maxillary incisor, third and fourth mandibular premolar): immediate implant placement and immediate loading (IIP+IL); delayed implant placement and delayed loading (DIP+DL); delayed implant placement and immediate loading (DIP+IL); and natural extraction socket healing (control). Histomorphometry was performed in the peri-implant bone and soft tissues within 300 µm around the implants. Immunocytochemistry and transmission electron microscopy were used to confirm the presence of neural structures and to reveal their ultrastructural characteristics, respectively. Myelinated nerve fibres densely populated the peri-implant crestal gingival and apical regions, although they were also identified in the woven bone and in the osteons near the implant threads. Compared with the control group in the mandible, the group that received IIP+IL showed a higher innervation (in N⋅mm−2, 5.94±1.12 vs. 3.15±0.63, P<0.001) and smaller fibre diameter (in µm, 1.37±0.05 vs. 1.64±0.13, P=0.016), smaller axon diameter (in µm, 0.89±0.05 vs. 1.24±0.10, P=0.009) and g-ratio (0.64±0.04 vs. 0.76±0.05, P<0.001) in the middle region around the implants. Compared with DIP+IL in the mandible, IIP+IL had a higher nerve density (in N⋅mm−2, 13.23±2.54 vs. 9.64±1.86, P=0.027), greater fibre diameter (in µm, 1.32±0.02 vs. 1.20±0.04, P=0.021), greater axon diameter (in µm, 0.92±0.01 vs. 0.89±0.03, P=0.035) and lower g-ratio (0.69±0.01 vs. 0.74±0.01, P=0.033) in the apical region around the implants. It may be assumed that the treatment protocol with IIP+IL is the preferred method to allow

  5. The application of nanofibrous scaffolds in neural tissue engineering.

    PubMed

    Cao, Haoqing; Liu, Ting; Chew, Sing Yian

    2009-10-01

    The repairing process in the nervous system is complicated and brings great challenges to researchers. Tissue engineering scaffolds provide an alternative approach for neural regeneration. Sub-micron and nano-scale fibrous scaffolds which mimic the topography of natural extracellular matrix (ECM) can be potential scaffold candidates for neural tissue engineering. Two fiber-fabrication methods have been explored in the field of nerve regeneration: electrospinning and self-assembly. Electrospinning produces fibers with diameters ranging from several micrometers to hundreds of nanometers. The fibrous nerve conduits can be introduced at lesion sites by implantation. Self-assembly fibers have diameters of tens of nanometers and can be injected for central nervous system (CNS) injury repair. Both fibrous scaffolds would enhance neurite extension and axon regrowth. These functional nanofibrous scaffolds can serve as powerful tools for neural tissue engineering.

  6. The Implantable Cardiac Pacemaker

    PubMed Central

    Trimble, A. S.; Heimbecker, R. O.; Bigelow, W. G.

    1964-01-01

    The transistorized implanted pacemaker is proving to be an effective and reliable method for long-term pacing of the heart. All patients suffering from Stokes-Adams seizures were first given a trial period of conservative therapy, including isoproterenol (Isuprel), ephedrine, atropine and steroids. Twenty-four pacemaker implants were performed on 23 patients over a 21-month period. The preoperative insertion of a pacemaker cardiac catheter was a very valuable safety precaution. In this way the heart could be safely and reliably paced during the period of preoperative assessment and during the critical periods of anesthetic induction and thoracotomy. Infection did not occur, probably because of careful gas sterilization of the units. Various models of pacemakers are compared, and the reasons for two pacemaker failures are presented. There were two early deaths and one late death in the series. The relationship of progressive coronary disease to recent infarction is stressed. Patients having intermittent heart block frequently showed the picture of “competing pacemakers” postoperatively, but without deleterious effect. Twenty patients, between 54 and 88 years of age, are alive and well at the time of reporting, with excellent pacemaker response and no further Stokes-Adams attacks. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:14118681

  7. Transcatheter aortic valve implantation.

    PubMed

    Kapadia, Samir R; Tuzcu, E Murat

    2009-12-01

    Aortic stenosis is the most important valvular heart disease affecting the elderly population. Surgical aortic valve replacement is the mainstay of treatment, although a substantial number of patients are considered high risk for surgery. Many of these patients do not undergo surgery and have poor outcomes from medically treated symptomatic, severe aortic stenosis. Transcatheter aortic valve implantation (TAVI) provides a promising treatment option for some of these patients. Several devices are under investigation. The Edwards Sapien valve (Edwards Lifesciences, Irvine, CA) and the CoreValve (Medtronic, Minneapolis, MN) have the largest human experience to date. Initial data suggest that these devices have an acceptable safety profile and provide excellent hemodynamic relief of aortic stenosis. The Edwards Sapien valve is currently under investigation in the United States in the PARTNER (Placement of Aortic Transcatheter Valve) trial in high-risk surgical or inoperable patients; TAVI is available for clinical use in both Canada and Europe. TAVI is not used in low- or intermediate-risk surgical patients; however, future studies may prove its applicability in these subsets. The major complications of TAVI include access site-related problems and device malpositioning/migration. There are several new-generation prosthetic valves and delivery systems designed to be low profile and repositionable. Technical advances and refinement of the implantation methods may make TAVI even safer and ultimately a better treatment option, not only for patients with high surgical risk but also for those with moderate or low risk.

  8. Auditory Midbrain Implant: Research and Development Towards a Second Clinical Trial

    PubMed Central

    Lim, Hubert H.; Lenarz, Thomas

    2015-01-01

    The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients, which is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. Modifications to the AMI array design, stimulation strategy, and surgical approach have been made that are expected to improve hearing performance in the patients implanted with a two-shank array in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. PMID:25613994

  9. Auditory midbrain implant: research and development towards a second clinical trial.

    PubMed

    Lim, Hubert H; Lenarz, Thomas

    2015-04-01

    The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients that is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. A new two-shank array, stimulation strategy, and surgical approach are planned for the AMI that are expected to improve hearing performance in the patients who will be implanted in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. This article is part of a Special Issue entitled .

  10. Porous metal for orthopedics implants

    PubMed Central

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Summary Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery. PMID:24133527

  11. Implant Maintenance: A Clinical Update

    PubMed Central

    Gulati, Minkle; Govila, Vivek; Anand, Vishal; Anand, Bhargavi

    2014-01-01

    Introduction. The differences in the supporting structure of the implant make them more susceptible to inflammation and bone loss when plaque accumulates as compared to the teeth. Therefore, a comprehensive maintenance protocol should be followed to ensure the longevity of the implant. Material and Method. A research to provide scientific evidence supporting the feasibility of various implant care methods was carried out using various online resources to retrieve relevant studies published since 1985. Results. The electronic search yielded 708 titles, out of which a total of 42 articles were considered appropriate and finally included for the preparation of this review article. Discussion. A typical maintenance visit for patients with dental implants should last 1 hour and should be scheduled every 3 months to evaluate any changes in their oral and general history. It is essential to have a proper instrument selection to prevent damage to the implant surface and trauma to the peri-implant tissues. Conclusion. As the number of patients opting for dental implants is increasing, it becomes increasingly essential to know the differences between natural teeth and implant care and accept the challenges of maintaining these restorations. PMID:27437506

  12. Awake transapical aortic valve implantation.

    PubMed

    Petridis, Francesco Dimitri; Savini, Carlo; Castelli, Andrea; Di Bartolomeo, Roberto

    2012-05-01

    Transapical aortic valve implantation is being employed as a less invasive alternative to open heart surgery in high-risk patients with severe aortic stenosis. Here we report the case of an awake transapical aortic valve implantation in a patient with severe chronic obstructive pulmonary disease.

  13. Photonic technologies for visual implants

    NASA Astrophysics Data System (ADS)

    Buss, Ruediger; Praemassing, F.; Puettjer, D.; Stawski, N.; Jaeger, Dieter

    2003-02-01

    In this paper two applications of photonic technologies for visual implants in the field of medicine are presented. Both are technical systems working as vision aid for people suffering from blindness due to damages in their visual system. The first system is a retinal implant (RI), the second an intraocular vision aid (IoVA) for people with opaque cornea.

  14. Regenerative Surgical Treatment of Peri-implantitis

    ClinicalTrials.gov

    2016-08-31

    Failure of Dental Implant Due to Infection; Infection; Inflammation; Peri-implantitis; Bacterial Infections; Bleeding of Subgingival Space; Molecular Sequence Variation; Periodontal Diseases; Mouth Diseases

  15. Critical Branching Neural Networks

    ERIC Educational Resources Information Center

    Kello, Christopher T.

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical…

  16. A 96 channel receiver for the ILCTA LLRF system at Fermilab

    SciTech Connect

    Mavric, Uros; Chase, Brian; Branlard, Julien; Cullerton, Ed; Klepec, Dan; /Fermilab

    2007-06-01

    The present configuration of an ILC main LINAC RF station has 26 nine cell cavities driven from one klystron. With the addition of waveguide power coupler monitors, 96 RF signals will be down-converted and processed. A down-converter chassis is being developed that contains 12 eight channel analog modules and a single upconverter module. This chassis will first be deployed for testing a cryomodule composed of eight cavities located at New Muon Laboratory (NML) - Fermilab. Critical parts of the design for LLRF applications are identified and a detailed description of the circuit with various characteristic measurements is presented. The board is composed of an input band-pass filter centered at 1.3GHz, followed by a mixer, which down-converts the cavity probe signal to a proposed 13 MHz intermediate frequency. Cables with 8 channels per connector and good isolation between channels are being used to interconnect each down-converter module with a digital board. As mixers, amplifiers and power splitters are the most sensitive parts for noise, nonlinearities and crosstalk issues, special attention is given to these parts in the design of the LO port multiplication and distribution.

  17. High-performance neural networks. [Neural computers

    SciTech Connect

    Dress, W.B.

    1987-06-01

    The new Forth hardware architectures offer an intermediate solution to high-performance neural networks while the theory and programming details of neural networks for synthetic intelligence are developed. This approach has been used successfully to determine the parameters and run the resulting network for a synthetic insect consisting of a 200-node ''brain'' with 1760 interconnections. Both the insect's environment and its sensor input have thus far been simulated. However, the frequency-coded nature of the Browning network allows easy replacement of the simulated sensors by real-world counterparts.

  18. [Dental implants in tooth grinders].

    PubMed

    Lobbezoo, F; Brouwers, J E; Cune, M S; Naeije, M

    2004-03-01

    Bruxism (tooth grinding and clenching) is generally considered a contraindication for dental implants, although the evidence is usually based on clinical experience only. So far, studies to the possible cause-and-effect relationship between bruxism and implant failure do not yield consistent and specific outcomes. This is partly due to the large variation in the technical and the biological aspects of the investigations. Although there is still no proof that bruxism causes overload of dental implants and their suprastructures, a careful approach is recommended. Practical advices as to minimize the chance of implant failure are given. Besides the recommendation to reduce or eliminate bruxism itself, these advices concern the number and dimensions of the implants, the design of the occlusion and articulation patterns, and the use of a hard nightguard. PMID:15058243

  19. Is neural Darwinism Darwinism?

    PubMed

    van Belle, T

    1997-01-01

    Neural Darwinism is a theory of cognition developed by Gerald Edelman along with George Reeke and Olaf Sporns at Rockefeller University. As its name suggests, neural Darwinism is modeled after biological Darwinism, and its authors assert that the two processes are strongly analogous. both operate on variation in a population, amplifying the more adaptive individuals. However, from a computational perspective, neural Darwinism is quite different from other models of natural selection, such as genetic algorithms. The individuals of neural Darwinism do not replicate, thus robbing the process of the capacity to explore new solutions over time and ultimately reducing it to a random search. Because neural Darwinism does not have the computational power of a truly Darwinian process, it is misleading to label it as such. to illustrate this disparity in adaptive power, one of Edelman's early computer experiments, Darwin I, is revisited, and it is shown that adding replication greatly improves the adaptive power of the system.

  20. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing.

    PubMed

    Piret, Gaëlle; Hébert, Clément; Mazellier, Jean-Paul; Rousseau, Lionel; Scorsone, Emmanuel; Cottance, Myline; Lissorgues, Gaelle; Heuschkel, Marc O; Picaud, Serge; Bergonzo, Philippe; Yvert, Blaise

    2015-06-01

    The electrode material is a key element in the design of long-term neural implants and neuroprostheses. To date, the ideal electrode material offering high longevity, biocompatibility, low-noise recording and high stimulation capabilities remains to be found. We show that 3D-nanostructured boron doped diamond (BDD), an innovative material consisting in a chemically stable material with a high aspect ratio structure obtained by encapsulation of a carbon nanotube template within two BDD nanolayers, allows neural cell attachment, survival and neurite extension. Further, we developed arrays of 20-μm-diameter 3D-nanostructured BDD microelectrodes for neural interfacing. These microelectrodes exhibited low impedances and low intrinsic recording noise levels. In particular, they allowed the detection of low amplitude (10-20 μV) local-field potentials, single units and multiunit bursts neural activity in both acute whole embryonic hindbrain-spinal cord preparations and long-term hippocampal cell cultures. Also, cyclic voltammetry measurements showed a wide potential window of about 3 V and a charge storage capacity of 10 mC.cm(-2), showing high potentiality of this material for neural stimulation. These results demonstrate the attractiveness of 3D-nanostructured BDD as a novel material for neural interfacing, with potential applications for the design of biocompatible neural implants for the exploration and rehabilitation of the nervous system.

  1. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing.

    PubMed

    Piret, Gaëlle; Hébert, Clément; Mazellier, Jean-Paul; Rousseau, Lionel; Scorsone, Emmanuel; Cottance, Myline; Lissorgues, Gaelle; Heuschkel, Marc O; Picaud, Serge; Bergonzo, Philippe; Yvert, Blaise

    2015-06-01

    The electrode material is a key element in the design of long-term neural implants and neuroprostheses. To date, the ideal electrode material offering high longevity, biocompatibility, low-noise recording and high stimulation capabilities remains to be found. We show that 3D-nanostructured boron doped diamond (BDD), an innovative material consisting in a chemically stable material with a high aspect ratio structure obtained by encapsulation of a carbon nanotube template within two BDD nanolayers, allows neural cell attachment, survival and neurite extension. Further, we developed arrays of 20-μm-diameter 3D-nanostructured BDD microelectrodes for neural interfacing. These microelectrodes exhibited low impedances and low intrinsic recording noise levels. In particular, they allowed the detection of low amplitude (10-20 μV) local-field potentials, single units and multiunit bursts neural activity in both acute whole embryonic hindbrain-spinal cord preparations and long-term hippocampal cell cultures. Also, cyclic voltammetry measurements showed a wide potential window of about 3 V and a charge storage capacity of 10 mC.cm(-2), showing high potentiality of this material for neural stimulation. These results demonstrate the attractiveness of 3D-nanostructured BDD as a novel material for neural interfacing, with potential applications for the design of biocompatible neural implants for the exploration and rehabilitation of the nervous system. PMID:25890717

  2. Speech Production Intelligibility of Early Implanted Pediatric Cochlear Implant Users

    PubMed Central

    Habib, Mirette G.; Waltzman, Susan B.; Tajudeen, Bobby; Svirsky, Mario A.

    2010-01-01

    Objectives To investigate the influence of age, and age at implantation, on speech production intelligibility in prelingually deaf pediatric cochlear implant recipients. Methods Forty prelingually, profoundly deaf children who received cochlear implants between 8 and 40 months of age. Their age at testing ranged between 2.5 – 18 years. Children were recorded repeating the ten sentences in the Beginner’s Intelligibility Test. These recordings were played back to normal-hearing listeners who were unfamiliar with deaf speech and who were instructed to write down what they heard. They also rated each subject for the intelligibility of their speech production on a 5-point rating scale. The main outcome measures were the percentage of target words correctly transcribed, and the intelligibility ratings, in both cases averaged across three normal-hearing listeners. Results The data showed a strong effect of age at testing, with older children being more intelligible. This effect was particularly pronounced for children implanted in the first 24 months of life, all of whom had speech production intelligibility scores of 80% or higher when they were tested at age 5.5 years or older. This was true for only five out of nine children implanted at age 25 to 36 months. Conclusions Profoundly deaf children who receive cochlear implants in the first two years of life produce highly intelligible speech before age 6. This is also true for most, but not all children implanted in their third year. PMID:20472308

  3. Transcatheter aortic valve implantation.

    PubMed

    Nielsen, Hans Henrik Møller

    2012-12-01

    Transcatheter aortic valve implantation (TAVI) was introduced experimentally in 1989, based on a newly developed heart valve prosthesis - the stentvalve. The valve was invented by a Danish cardiologist named Henning Rud Andersen. The new valve was revolutionary. It was foldable and could be inserted via a catheter through an artery in the groin, without the need for heart lung machine. This allowed for a new valve implantation technique, much less invasive than conventional surgical aortic valve replacement (SAVR). Surgical aortic valve replacement is safe and improves symptoms along with survival. However, up to 1/3 of patients with aortic valve stenosis cannot complete the procedure due to frailty. The catheter technique was hoped to provide a new treatment option for these patients. The first human case was in 2002, but more widespread clinical use did not begin until 2006-2010. Today, in 2011, more than 40,000 valves have been implanted worldwide. Initially, because of the experimental character of the procedure, TAVI was reserved for patients who could not undergo SAVR due to high risk. The results in this group of patients were promising. The procedural safety was acceptable, and the patients experienced significant improvements in their symptoms. Three of the papers in this PhD-thesis are based on the outcome of TAVI at Skejby Hospital, in this high-risk population [I, II and IV]. Along with other international publications, they support TAVI as being superior to standard medical treatment, despite a high risk of prosthetic regurgitation. These results only apply to high-risk patients, who cannot undergo SAVR. The main purpose of this PhD study has been to investigate the quality of TAVI compared to SAVR, in order to define the indications for this new procedure. The article attached [V] describes a prospective clinical randomised controlled trial, between TAVI to SAVR in surgically amenable patients over 75 years of age with isolated aortic valve stenosis

  4. Outcomes in cochlear implantation: variables affecting performance in adults and children.

    PubMed

    Cosetti, Maura K; Waltzman, Susan B

    2012-02-01

    This article highlights variables that affect cochlear implant performance, emerging factors warranting consideration, and variables shown not to affect performance. Research on the outcomes following cochlear implantation has identified a wide spectrum of variables known to affect pos0timplantation performance. These variables relate to the device itself as well as individual patient characteristics. Factors believed to affect spiral ganglion cell survival and function have been shown to influence postoperative performance. Binaural hearing affects performance. Social and educational factors also affect postoperative performance. Novel variables capable of affecting performance continue to emerge with increased understanding of auditory pathway development and neural plasticity. PMID:22115688

  5. Neurotrophic factors and neural prostheses: potential clinical applications based upon findings in the auditory system.

    PubMed

    Pettingill, Lisa N; Richardson, Rachael T; Wise, Andrew K; O'Leary, Stephen J; Shepherd, Robert K

    2007-06-01

    Spiral ganglion neurons (SGNs) are the target cells of the cochlear implant, a neural prosthesis designed to provide important auditory cues to severely or profoundly deaf patients. The ongoing degeneration of SGNs that occurs following a sensorineural hearing loss is, therefore, considered a limiting factor in cochlear implant efficacy. We review neurobiological techniques aimed at preventing SGN degeneration using exogenous delivery of neurotrophic factors. Application of these proteins prevents SGN degeneration and can enhance neurite outgrowth. Furthermore, chronic electrical stimulation of SGNs increases neurotrophic factor-induced survival and is correlated with functional benefits. The application of neurotrophic factors has the potential to enhance the benefits that patients can derive from cochlear implants; moreover, these techniques may be relevant for use with neural prostheses in other neurological conditions. PMID:17551571

  6. Percutaneous Pulmonary Valve Implantation

    PubMed Central

    Lee, Hyoung-Doo

    2012-01-01

    Pulmonary regurgitation (PR) is a frequent sequelae after repair of tetralogy of Fallot, pulmonary atresia, truncus arteriosus, Rastelli and Ross operation. Due to patient growth and conduit degeneration, these conduits have to be changed frequently due to regurgitation or stenosis. However, morbidity is significant in these repeated operations. To prolong conduit longevity, bare-metal stenting in the right ventricular outflow tract (RVOT) obstruction has been performed. Stenting the RVOT can reduce the right ventricular pressure and symptomatic improvement, but it causes PR with detrimental effects on the right ventricle function and risks of arrhythmia. Percutaneous pulmonary valve implantation has been shown to be a safe and effective treatment for patients with pulmonary valve insufficiency, or stenotic RVOTs. PMID:23170091

  7. Transcatheter Aortic Valve Implantation.

    PubMed

    Malaisrie, S Chris; Iddriss, Adam; Flaherty, James D; Churyla, Andrei

    2016-05-01

    Severe aortic stenosis (AS) is a life-threatening condition when left untreated. Aortic valve replacement (AVR) is the gold standard treatment for the majority of patients; however, transcatheter aortic valve implantation/replacement (TAVI/TAVR) has emerged as the preferred treatment for high-risk or inoperable patients. The concept of transcatheter heart valves originated in the 1960s and has evolved into the current Edwards Sapien and Medtronic CoreValve platforms available for clinical use. Complications following TAVI, including cerebrovascular events, perivalvular regurgitation, vascular injury, and heart block have decreased with experience and evolving technology, such that ongoing trials studying TAVI in lower risk patients have become tenable. The multidisciplinary team involving the cardiac surgeon and cardiologist plays an essential role in patient selection, procedural conduct, and perioperative care.

  8. Implantable, multifunctional, bioresorbable optics

    PubMed Central

    Tao, Hu; Kainerstorfer, Jana M.; Siebert, Sean M.; Pritchard, Eleanor M.; Sassaroli, Angelo; Panilaitis, Bruce J. B.; Brenckle, Mark A.; Amsden, Jason J.; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L.; Omenetto, Fiorenzo G.

    2012-01-01

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  9. Implantable, multifunctional, bioresorbable optics.

    PubMed

    Tao, Hu; Kainerstorfer, Jana M; Siebert, Sean M; Pritchard, Eleanor M; Sassaroli, Angelo; Panilaitis, Bruce J B; Brenckle, Mark A; Amsden, Jason J; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L; Omenetto, Fiorenzo G

    2012-11-27

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  10. Dynamics of neural cryptography.

    PubMed

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-01

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  11. Dynamics of neural cryptography

    SciTech Connect

    Ruttor, Andreas; Kinzel, Wolfgang; Kanter, Ido

    2007-05-15

    Synchronization of neural networks has been used for public channel protocols in cryptography. In the case of tree parity machines the dynamics of both bidirectional synchronization and unidirectional learning is driven by attractive and repulsive stochastic forces. Thus it can be described well by a random walk model for the overlap between participating neural networks. For that purpose transition probabilities and scaling laws for the step sizes are derived analytically. Both these calculations as well as numerical simulations show that bidirectional interaction leads to full synchronization on average. In contrast, successful learning is only possible by means of fluctuations. Consequently, synchronization is much faster than learning, which is essential for the security of the neural key-exchange protocol. However, this qualitative difference between bidirectional and unidirectional interaction vanishes if tree parity machines with more than three hidden units are used, so that those neural networks are not suitable for neural cryptography. In addition, the effective number of keys which can be generated by the neural key-exchange protocol is calculated using the entropy of the weight distribution. As this quantity increases exponentially with the system size, brute-force attacks on neural cryptography can easily be made unfeasible.

  12. Neural network machine vision

    SciTech Connect

    Fox, R.O.; Czerniejewski, F.; Fluet, F.; Mitchell, E.

    1988-09-01

    Gould, Inc. and Nestor, Inc. cooperated on a joint development project to combine machine vision technology with neural network technology. The result is a machine vision system which can be trained by an inexperienced operator to perform qualitative classification. The hardware preprocessor reduces the information in the 2D camera image from 122,880 (i.e. 512 x 240) bytes to several hundred bytes in 64 milliseconds. The output of the preprocessor, which is in the format of connected lines, is fed to the first neural network. This neural network performs feature recognition. The output of the first neural network is a probability map. This map is fed to the input of the second neural network which performs object verification. The output of the second neural network is the object location and classification in the field of view. This information can optionally be fed into a third neural network which analyzes spatial relationships of objects in the field of view. The final output is a classification, by quality level, or by style. The system has been tested on applications ranging from the grading of plywood and the grading of paper to the sorting of fabricated metal parts. Specific application examples are presented.

  13. Optical coherence microscopy of mouse cortical vasculature surrounding implanted electrodes

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Lozzi, Andrea; Abliz, Erkinay; Greenbaum, Noah; Turner, Kevin P.; Pfefer, T. Joshua; Agrawal, Anant; Krauthamer, Victor; Welle, Cristin G.

    2014-03-01

    Optical coherence microscopy (OCM) provides real-time, in-vivo, three-dimensional, isotropic micron-resolution structural and functional characterization of tissue, cells, and other biological targets. Optical coherence angiography (OCA) also provides visualization and quantification of vascular flow via speckle-based or phase-resolved techniques. Performance assessment of neuroprosthetic systems, which allow direct thought control of limb prostheses, may be aided by OCA. In particular, there is a need to examine the underlying mechanisms of chronic functional degradation of implanted electrodes. Angiogenesis, capillary network remodeling, and changes in flow velocity are potential indicators of tissue changes that may be associated with waning electrode performance. The overall goal of this investigation is to quantify longitudinal changes in vascular morphology and capillary flow around neural electrodes chronically implanted in mice. We built a 1315-nm OCM system to image vessels in neocortical tissue in a cohort of mice. An optical window was implanted on the skull over the primary motor cortex above a penetrating shank-style microelectrode array. The mice were imaged bi-weekly to generate vascular maps of the region surrounding the implanted microelectrode array. Acute effects of window and electrode implantation included vessel dilation and profusion of vessels in the superficial layer of the cortex (0-200 μm). In deeper layers surrounding the electrode, no qualitative differences were seen in this early phase. These measurements establish a baseline vascular tissue response from the cortical window preparation and lay the ground work for future longitudinal studies to test the hypothesis that vascular changes will be associated with chronic electrode degradation.

  14. Photovoltaic retinal prosthesis: implant fabrication and performance

    NASA Astrophysics Data System (ADS)

    Wang, Lele; Mathieson, K.; Kamins, T. I.; Loudin, J. D.; Galambos, L.; Goetz, G.; Sher, A.; Mandel, Y.; Huie, P.; Lavinsky, D.; Harris, J. S.; Palanker, D. V.

    2012-08-01

    The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring sight to patients blinded by degenerative retinal diseases. A silicon photodiode array for subretinal stimulation has been fabricated by a silicon-integrated-circuit/MEMS process. Each pixel in the two-dimensional array contains three series-connected photodiodes, which photovoltaically convert pulsed near-infrared light into bi-phasic current to stimulate nearby retinal neurons without wired power connections. The device thickness is chosen to be 30 µm to absorb a significant portion of light while still being thin enough for subretinal implantation. Active and return electrodes confine current near each pixel and are sputter coated with iridium oxide to enhance charge injection levels and provide a stable neural interface. Pixels are separated by 5 µm wide trenches to electrically isolate them and to allow nutrient diffusion through the device. Three sizes of pixels (280, 140 and 70 µm) with active electrodes of 80, 40 and 20 µm diameter were fabricated. The turn-on voltages of the one-diode, two-series-connected diode and three-series-connected diode structures are approximately 0.6, 1.2 and 1.8 V, respectively. The measured photo-responsivity per diode at 880 nm wavelength is ˜0.36 A W-1, at zero voltage bias and scales with the exposed silicon area. For all three pixel sizes, the reverse-bias dark current is sufficiently low (<100 pA) for our application. Pixels of all three sizes reliably elicit retinal responses at safe near-infrared light irradiances, with good acceptance of the photodiode array in the subretinal space. The fabricated device delivers efficient retinal stimulation at safe near-infrared light irradiances without any wired power connections, which greatly simplifies the implantation procedure. Presence of the return electrodes in each pixel helps to localize the current, and thereby improves resolution.

  15. Photovoltaic retinal prosthesis: implant fabrication and performance.

    PubMed

    Wang, Lele; Mathieson, K; Kamins, T I; Loudin, J D; Galambos, L; Goetz, G; Sher, A; Mandel, Y; Huie, P; Lavinsky, D; Harris, J S; Palanker, D V

    2012-08-01

    The objective of this work is to develop and test a photovoltaic retinal prosthesis for restoring sight to patients blinded by degenerative retinal diseases. A silicon photodiode array for subretinal stimulation has been fabricated by a silicon-integrated-circuit/MEMS process. Each pixel in the two-dimensional array contains three series-connected photodiodes, which photovoltaically convert pulsed near-infrared light into bi-phasic current to stimulate nearby retinal neurons without wired power connections. The device thickness is chosen to be 30 µm to absorb a significant portion of light while still being thin enough for subretinal implantation. Active and return electrodes confine current near each pixel and are sputter coated with iridium oxide to enhance charge injection levels and provide a stable neural interface. Pixels are separated by 5 µm wide trenches to electrically isolate them and to allow nutrient diffusion through the device. Three sizes of pixels (280, 140 and 70 µm) with active electrodes of 80, 40 and 20 µm diameter were fabricated. The turn-on voltages of the one-diode, two-series-connected diode and three-series-connected diode structures are approximately 0.6, 1.2 and 1.8 V, respectively. The measured photo-responsivity per diode at 880 nm wavelength is ∼0.36 A W(-1), at zero voltage bias and scales with the exposed silicon area. For all three pixel sizes, the reverse-bias dark current is sufficiently low (<100 pA) for our application. Pixels of all three sizes reliably elicit retinal responses at safe near-infrared light irradiances, with good acceptance of the photodiode array in the subretinal space. The fabricated device delivers efficient retinal stimulation at safe near-infrared light irradiances without any wired power connections, which greatly simplifies the implantation procedure. Presence of the return electrodes in each pixel helps to localize the current, and thereby improves resolution.

  16. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  17. Invariance and neural nets.

    PubMed

    Barnard, E; Casasent, D

    1991-01-01

    Application of neural nets to invariant pattern recognition is considered. The authors study various techniques for obtaining this invariance with neural net classifiers and identify the invariant-feature technique as the most suitable for current neural classifiers. A novel formulation of invariance in terms of constraints on the feature values leads to a general method for transforming any given feature space so that it becomes invariant to specified transformations. A case study using range imagery is used to exemplify these ideas, and good performance is obtained.

  18. Neural correlates of consciousness.

    PubMed

    Rees, Geraint

    2013-08-01

    Jon Driver's scientific work was characterized by an innovative combination of new methods for studying mental processes in the human brain in an integrative manner. In our collaborative work, he applied this approach to the study of attention and awareness, and their relationship to neural activity in the human brain. Here I review Jon's scientific work that relates to the neural basis of human consciousness, relating our collaborative work to a broader scientific context. I seek to show how his insights led to a deeper understanding of the causal connections between distant brain structures that are now believed to characterize the neural underpinnings of human consciousness.

  19. Neural control of muscle

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Markelonis, G. J.

    1983-01-01

    Cholinergic innervation regulates the physiological and biochemical properties of skeletal muscle. The mechanisms that appear to be involved in this regulation include soluble, neurally-derived polypeptides, transmitter-evoked muscle activity and the neurotransmitter, acetylcholine, itself. Despite extensive research, the interacting neural mechanisms that control such macromolecules as acetylcholinesterase, the acetylcholine receptor and glucose 6-phosphate dehydrogenase remain unclear. It may be that more simplified in vitro model systems coupled with recent dramatic advances in the molecular biology of neurally-regulated proteins will begin to allow researchers to unravel the mechanisms controlling the expression and maintenance of these macromolecules.

  20. An application of mapping neural networks and a digital signal processor for cochlear neuroprostheses.

    PubMed

    Zadák, J; Unbehauen, R

    1993-01-01

    Cochlear neuroprostheses strive to restore the sensation of hearing to patients with a profound sensorineural deafness. They exhibit a stimulation of the surviving auditory nerve neurons by electrical currents delivered through electrodes placed on or within the cochlea. The present article describes a new method for an efficient derivation of the required information from the incoming speech signal necessary for the implant stimulation. Also some realization aspects of the new approach are addressed. In the new strategy, a multilayer neural network is employed in the formant frequency estimation having some suitable speech signal descriptors as particular input signals. The proposed method allows us a fast formant frequency estimation necessary for the implant stimulation. With the developed strategy, the prosthesis can be adjusted to the environment which the patient is supposed to live in. Moreover, the neural network concept offers us an alternative for dealing with the areas of neural loss or "holes" in the frequency map of the patient's ear.

  1. Hardness of ion implanted ceramics

    SciTech Connect

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al/sub 2/O/sub 3/ with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material.

  2. Embedded electronics for a 64-channel wireless brain implant

    NASA Astrophysics Data System (ADS)

    Burgert, Johann D.; Malasek, Jan; Martel, Sylvain M.; Wiseman, Colette; Fofonoff, Timothy; Dyer, Robert; Hunter, Ian W.; Hatsopoulos, Nicholas; Donoghue, John

    2001-10-01

    The Telemetric Electrode Array System (TEAS) is a surgically implantable device for the study of neural activity in the brain. An 8x8 array of electrodes collects intra-cortical neural signals and connects them to an analog front end. The front end amplifies and digitizes these microvolt-level signals with 12 bits of resolution and at 31KHz per channel. Peak detection is used to extract the information carrying features of these signals, which are transmitted over a Bluetooth-based radio link at 725 Kbit/sec. The electrode array is made up of 1mm tall, 60-micron square electrodes spaced 500 microns tip-to-tip. A flex circuit connector provides mechanical isolation between the brain and the electronics, which are mounted to the cranium. Power consumption and management is a critical aspect of the design. The entire system must operate off a surgically implantable battery. With this power source, the system must provide the functionality of a wireless, 64-channel oscilloscope for several hours. The system also provides a low-power sleep mode during which the battery can be inductively charged. Power dissipation and biocompatibility issues also affect the design of the electronics for the probe. The electronics system must fit between the skull and the skin of the test subject. Thus, circuit miniaturization and microassembly techniques are essential to construct the probe's electronics.

  3. Neural networks for aircraft control

    NASA Technical Reports Server (NTRS)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  4. Weakly connected neural nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1990-01-01

    A new neural network architecture is proposed based upon effects of non-Lipschitzian dynamics. The network is fully connected, but these connections are active only during vanishingly short time periods. The advantages of this architecture are discussed.

  5. Critical branching neural networks.

    PubMed

    Kello, Christopher T

    2013-01-01

    It is now well-established that intrinsic variations in human neural and behavioral activity tend to exhibit scaling laws in their fluctuations and distributions. The meaning of these scaling laws is an ongoing matter of debate between isolable causes versus pervasive causes. A spiking neural network model is presented that self-tunes to critical branching and, in doing so, simulates observed scaling laws as pervasive to neural and behavioral activity. These scaling laws are related to neural and cognitive functions, in that critical branching is shown to yield spiking activity with maximal memory and encoding capacities when analyzed using reservoir computing techniques. The model is also shown to account for findings of pervasive 1/f scaling in speech and cued response behaviors that are difficult to explain by isolable causes. Issues and questions raised by the model and its results are discussed from the perspectives of physics, neuroscience, computer and information sciences, and psychological and cognitive sciences.

  6. [Imaging in silicone breast implantation].

    PubMed

    Gielens, Maaike P M; Koolen, Pieter G L; Hermens, Roland A E C; Rutten, Matthieu J C M

    2013-01-01

    Recently, there have been concerns regarding the use of breast implants from Poly Implant Prothèse (PIP, Seyne sur Mer, France) for breast augmentation due to their tendency to rupture and the possibility of having toxic contents. MRI using a specific silicone-sensitive sequence has proven to be the most sensitive and specific technique in the detection of intra- and extracapsular implant rupture. However, given its high costs, it is important that this technique is used sparingly. In this clinical lesson, we compare the sensitivity and specificity of mammography, ultrasound, CT and MRI for the detection of breast implant rupture. Based on two cases, a diagnostic approach is given in order to reduce health care costs. PMID:24252405

  7. Implants for draining neovascular glaucoma.

    PubMed Central

    Molteno, A C; Van Rooyen, M M; Bartholomew, R S

    1977-01-01

    The implant design, surgical technique, and pharmacological methods of controlling bleb fibrosis, used to treat neovascular glaucoma, are described, together with the results of 14 operations performed on 12 eyes. Images PMID:843508

  8. Neural cryptography with feedback.

    PubMed

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message.

  9. Imaging the Neural Symphony.

    PubMed

    Svoboda, Karel

    2016-01-01

    Since the start of the new millennium, a method called two-photon microscopy has allowed scientists to peer farther into the brain than ever before. Our author, one of the pioneers in the development of this new technology, writes that "directly observing the dynamics of neural networks in an intact brain has become one of the holy grails of brain research." His article describes the advances that led to this remarkable breakthrough-one that is helping neuroscientists better understand neural networks.

  10. Neural constraints on learning

    PubMed Central

    Sadtler, Patrick T.; Quick, Kristin M.; Golub, Matthew D.; Chase, Steven M.; Ryu, Stephen I.; Tyler-Kabara, Elizabeth C.; Yu, Byron M.; Batista, Aaron P.

    2014-01-01

    Motor, sensory, and cognitive learning require networks of neurons to generate new activity patterns. Because some behaviors are easier to learn than others1,2, we wondered if some neural activity patterns are easier to generate than others. We asked whether the existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define the constraint. We employed a closed-loop intracortical brain-computer interface (BCI) learning paradigm in which Rhesus monkeys controlled a computer cursor by modulating neural activity patterns in primary motor cortex. Using the BCI paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. These patterns comprise a low-dimensional space (termed the intrinsic manifold, or IM) within the high-dimensional neural firing rate space. They presumably reflect constraints imposed by the underlying neural circuitry. We found that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the IM. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the IM. This result suggests that the existing structure of a network can shape learning. On the timescale of hours, it appears to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already possess3,4. PMID:25164754

  11. Dental-Implantate und ihre Werkstoffe

    NASA Astrophysics Data System (ADS)

    Newesely, Heinrich

    1983-07-01

    Some new trends in materials for dental implants, which also effect in the operative techniques and implant design, are described. Advantages and shortcomings of the different material types are exemplified and correlated with their bioinert resp. bioactive functions. The practical interest in metallic implants focussed in titanium resp. oxide ceramics in the ceramic field, whereas the special goal of implant research follows from the improvement of the bioactive principle with loaded calcium phosphate implants.

  12. Cochlear implants in young children.

    PubMed

    Niparko, John K; Blankenhorn, Rebecca

    2003-01-01

    The cochlear implant is best characterized as a device that provides access to the sound environment. The device enables the hearing pathway to respond to environmental and speech sounds, providing informational cues from the surroundings and from others that may escape visual detection. As the developmental effects of a profound hearing loss are multiple, cochlear implants have been applied to ever younger children in an attempt to promote a more normal level of developmental learning through audition. In deafness, transducer elements of the inner ear fail to trigger auditory nerve afferent nerves in the presence of sound input. However, large reserves of afferent fibers exist even in the auditory nerve of a profoundly deaf patient. Furthermore, these nerve fibers retain the ability to respond to prosthetic activation. Through developmental learning in the early, formative years, auditory centers of the brain appear capable of processing information from the implant to provide speech comprehension and oral language development. Multichannel implants have replaced original single channel designs. multichannel devices enable larger percentages of recipients to recognize the spoken word without visual cues because they provide spectral information in addition to temporal and intensity cues. Testing under conditions of auditory (implant)-only input reveals significant open-set speech understanding capabilities in more than 75% of children after three years of device use. The benefit provided by implants may vary with a number of conditions including: hearing history, age of deafness onset, age at implantation, etiology of deafness, linguistic abilities, and the presence of a motivated system of support of oral language development. Patient variables should be given individual consideration in judging candidacy for a cochlear implant and in planning rehabilitative and education services after surgery and activation of the device.

  13. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  14. Orbital implants: potential new directions.

    PubMed

    Hicks, Celia R; Morrison, David; Lou, Xia; Crawford, Geoffrey J; Gadjatsy, Adam; Constable, Ian J

    2006-11-01

    This article reviews orbital implants used to replace an eye after enucleation or evisceration. Advantages of implant placement are described, with discussion of implant and wrap material, and design features that affect clinical outcomes. Implants may be porous or nonporous, pegged for linkage with a cosmetic shell or unpegged, and may be wrapped with a covering material or tissue or unwrapped. Device shape, volume and material qualities affect tissue tolerance and the risk of exposure or extrusion. Limitations of currently available devices are discussed, with factors affecting surgeon and patient choice. Ideally, a device should be easy to insert, avoid the need for wrapping or adjunctive tissues, be light, biointegratable, comfortable after implantation and provide satisfactory orbital volume replacement, movement and cosmesis without requiring further surgery or pegging. This review briefly discusses developments in implant design and aspects of design that affect function, but is not a detailed clinical review; rather, it aims to stimulate thought on optimal design and discusses recent developments. Novel technology in the form of a prototype device with a soft, biointegratable anterior surface is described as an example of newer approaches.

  15. Nanostructured Surfaces of Dental Implants

    PubMed Central

    Bressan, Eriberto; Sbricoli, Luca; Guazzo, Riccardo; Tocco, Ilaria; Roman, Marco; Vindigni, Vincenzo; Stellini, Edoardo; Gardin, Chiara; Ferroni, Letizia; Sivolella, Stefano; Zavan, Barbara

    2013-01-01

    The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years. PMID:23344062

  16. Biomechanics of Corneal Ring Implants

    PubMed Central

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  17. [Implant-associated infections - Diagnostics].

    PubMed

    Renz, N; Müller, M; Perka, C; Trampuz, A

    2016-10-01

    The diagnosis of implant-associated infections is challenging as chronic low-grade infections often only manifest as subtle clinical symptoms. Clinical evaluation, patient history, imaging, histopathological and microbiological examinations build the cornerstones of the diagnostics for implant-associated infections. New onset of pain at rest, local symptoms at the surgical site and early loosening of the prosthesis or pseudarthrosis should raise suspicion for an infection and prompt further evaluation. Percutaneous sinus tracts, purulent wound secretions and skin erosions with exposure of the implant are certain signs of implant-associated infections. Elevated C‑reactive protein levels in blood support the diagnosis of infection but are neither sufficient sensitive nor specific to confirm or exclude infection. Preoperative antibiotic therapy interferes with the diagnostic evaluation and should be avoided. In periprosthetic joint infections, joint aspiration with determination of the leukocyte count and microbiological examination is a crucial first diagnostic step. Through microbiological and histopathological examinations of intraoperative tissue samples, as well as sonication of explanted implants, the causative pathogen can be identified in most cases. In osteosynthesis-associated infections imaging plays a key role to detect non-union, infection callus, sequester, peri-implant osteolysis and extraosseous and intramedullary pathologies. In prosthetic joint infections imaging provides information about the position and stability of the prosthesis. In case of hematogenic infection seeding from a distant focus, blood cultures should be sampled, followed by a meticulous investigation of potential primary focus of infection, depending on the causative agent.

  18. Retinal implants: a systematic review.

    PubMed

    Chuang, Alice T; Margo, Curtis E; Greenberg, Paul B

    2014-07-01

    Retinal implants present an innovative way of restoring sight in degenerative retinal diseases. Previous reviews of research progress were written by groups developing their own devices. This systematic review objectively compares selected models by examining publications describing five representative retinal prostheses: Argus II, Boston Retinal Implant Project, Epi-Ret 3, Intelligent Medical Implants (IMI) and Alpha-IMS (Retina Implant AG). Publications were analysed using three criteria for interim success: clinical availability, vision restoration potential and long-term biocompatibility. Clinical availability: Argus II is the only device with FDA approval. Argus II and Alpha-IMS have both received the European CE Marking. All others are in clinical trials, except the Boston Retinal Implant, which is in animal studies. Vision restoration: resolution theoretically correlates with electrode number. Among devices with external cameras, the Boston Retinal Implant leads with 100 electrodes, followed by Argus II with 60 electrodes and visual acuity of 20/1262. Instead of an external camera, Alpha-IMS uses a photodiode system dependent on natural eye movements and can deliver visual acuity up to 20/546. Long-term compatibility: IMI offers iterative learning; Epi-Ret 3 is a fully intraocular device; Alpha-IMS uses intraocular photosensitive elements. Merging the results of these three criteria, Alpha-IMS is the most likely to achieve long-term success decades later, beyond current clinical availability. PMID:24403565

  19. Voltage Biasing, Cyclic Voltammetry, & Electrical Impedance Spectroscopy for Neural Interfaces

    PubMed Central

    Wilks, Seth J.; Richner, Tom J.; Brodnick, Sarah K.; Kipke, Daryl R.; Williams, Justin C.; Otto, Kevin J.

    2012-01-01

    Electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measure properties of the electrode-tissue interface without additional invasive procedures, and can be used to monitor electrode performance over the long term. EIS measures electrical impedance at multiple frequencies, and increases in impedance indicate increased glial scar formation around the device, while cyclic voltammetry measures the charge carrying capacity of the electrode, and indicates how charge is transferred at different voltage levels. As implanted electrodes age, EIS and CV data change, and electrode sites that previously recorded spiking neurons often exhibit significantly lower efficacy for neural recording. The application of a brief voltage pulse to implanted electrode arrays, known as rejuvenation, can bring back spiking activity on otherwise silent electrode sites for a period of time. Rejuvenation alters EIS and CV, and can be monitored by these complementary methods. Typically, EIS is measured daily as an indication of the tissue response at the electrode site. If spikes are absent in a channel that previously had spikes, then CV is used to determine the charge carrying capacity of the electrode site, and rejuvenation can be applied to improve the interface efficacy. CV and EIS are then repeated to check the changes at the electrode-tissue interface, and neural recordings are collected. The overall goal of rejuvenation is to extend the functional lifetime of implanted arrays. PMID:22395095

  20. Wireless neural stimulation in freely behaving small animals.

    PubMed

    Arfin, Scott K; Long, Michael A; Fee, Michale S; Sarpeshkar, Rahul

    2009-07-01

    We introduce a novel wireless, low-power neural stimulation system for use in freely behaving animals. The system consists of an external transmitter and a miniature, implantable wireless receiver-stimulator. The implant uses a custom integrated chip to deliver biphasic current pulses to four addressable bipolar electrodes at 32 selectable current levels (10 microA to 1 mA). To achieve maximal battery life, the chip enters a sleep mode when not needed and can be awakened remotely when required. To test our device, we implanted bipolar stimulating electrodes into the songbird motor nucleus HVC (formerly called the high vocal center) of zebra finches. Single-neuron recordings revealed that wireless stimulation of HVC led to a strong increase of spiking activity in its downstream target, the robust nucleus of the arcopallium. When we used this device to deliver biphasic pulses of current randomly during singing, singing activity was prematurely terminated in all birds tested. Thus our device is highly effective for remotely modulating a neural circuit and its corresponding behavior in an untethered, freely behaving animal. PMID:19386759

  1. Automatic segmentation of intra-cochlear anatomy in post-implantation CT

    NASA Astrophysics Data System (ADS)

    Reda, Fitsum A.; Dawant, Benoit M.; McRackan, Theodore R.; Labadie, Robert F.; Noble, Jack H.

    2013-03-01

    A cochlear implant (CI) is a neural prosthetic device that restores hearing by directly stimulating the auditory nerve with an electrode array. In CI surgery, the surgeon threads the electrode array into the cochlea, blind to internal structures. We have recently developed algorithms for determining the position of CI electrodes relative to intra-cochlear anatomy using pre- and post-implantation CT. We are currently using this approach to develop a CI programming assistance system that uses knowledge of electrode position to determine a patient-customized CI sound processing strategy. However, this approach cannot be used for the majority of CI users because the cochlea is obscured by image artifacts produced by CI electrodes and acquisition of pre-implantation CT is not universal. In this study we propose an approach that extends our techniques so that intra-cochlear anatomy can be segmented for CI users for which pre-implantation CT was not acquired. The approach achieves automatic segmentation of intra-cochlear anatomy in post-implantation CT by exploiting intra-subject symmetry in cochlear anatomy across ears. We validated our approach on a dataset of 10 ears in which both pre- and post-implantation CTs were available. Our approach results in mean and maximum segmentation errors of 0.27 and 0.62 mm, respectively. This result suggests that our automatic segmentation approach is accurate enough for developing customized CI sound processing strategies for unilateral CI patients based solely on postimplantation CT scans.

  2. Relationship between multipulse integration and speech recognition with cochlear implants

    PubMed Central

    Zhou, Ning; Pfingst, Bryan E.

    2014-01-01

    Comparisons of performance with cochlear implants and postmortem conditions in the cochlea in humans have shown mixed results. The limitations in those studies favor the use of within-subject designs and non-invasive measures to estimate cochlear conditions. One non-invasive correlate of cochlear health is multipulse integration, established in an animal model. The present study used this measure to relate neural health in human cochlear implant users to their speech recognition performance. The multipulse-integration slopes were derived based on psychophysical detection thresholds measured for two pulse rates (80 and 640 pulses per second). A within-subject design was used in eight subjects with bilateral implants where the direction and magnitude of ear differences in the multipulse-integration slopes were compared with those of the speech-recognition results. The speech measures included speech reception threshold for sentences and phoneme recognition in noise. The magnitude of ear difference in the integration slopes was significantly correlated with the magnitude of ear difference in speech reception thresholds, consonant recognition in noise, and transmission of place of articulation of consonants. These results suggest that multipulse integration predicts speech recognition in noise and perception of features that use dynamic spectral cues. PMID:25190399

  3. The cochlear implant: Historical aspects and future prospects

    PubMed Central

    Eshraghi, Adrien A.; Nazarian, Ronen; Telischi, Fred F.; Rajguru, Suhrud M.; Truy, Eric; Gupta, Chhavi

    2016-01-01

    The cochlear implant (CI) is the first effective treatment for deafness and severe losses in hearing. As such, the CI is now widely regarded as one of the great advances in modern medicine. This paper reviews the key events and discoveries that led up to the current CI systems, and we review and present some among the many possibilities for further improvements in device design and performance. The past achievements include: (1) development of reliable devices that can be used over the lifetime of a patient; (2) development of arrays of implanted electrodes that can stimulate more than one site in the cochlea; and (3) progressive and large improvements in sound processing strategies for CIs. In addition, cooperation between research organizations and companies greatly accelerated the widespread availability and use of safe and effective devices. Possibilities for the future include: (1) use of otoprotective drugs; (2) further improvements in electrode designs and placements; (3) further improvements in sound processing strategies; (4) use of stem cells to replace lost sensory hair cells and neural structures in the cochlea; (5) gene therapy; (6) further reductions in the trauma caused by insertions of electrodes and other manipulations during implant surgeries; and (7) optical rather electrical stimulation of the auditory nerve. Each of these possibilities is the subject of active research. Although great progress has been made to date in the development of the CI, including the first substantial restoration of a human sense, much more progress seems likely and certainly would not be a surprise. PMID:23044644

  4. [Nerve injury following implant placement: prevention, diagnosis and treatment modalities].

    PubMed

    Nazarian, Y; Eliav, E; Nahlieli, O

    2003-07-01

    Nerve injury is a well-known complication following oral and maxillofacial surgery. Direct trauma, inflammation and infection are postoperative neural disturbances main causes. The most inflicted nerves associated with endosseous implant placement are those innervating the mandible: the inferior alveolar nerve, the mental nerve and the lingual nerve. Evaluation of the nerve injury characteristics and severity as early as possible has always imposed a great challenge for clinicians. We demonstrate a reliable yet simple way of dealing with this kind of problem in conjunction with comparing preoperative and postoperative sensation of the chin, the tongue and the lower lip. On the other hand, it is considerably important to take preventive measures for such injuries by using appropriate radiographic images. If a nerve damage has occurred, best prognosis is to be expected by early and appropriate treatment. It is imperative to treat such injuries in four months following the injury, otherwise a permanent nerve damage may occur. Further investigation of nerve damage risks following implant placement should be performed in order to enable patient to decide whether having implants dependent rehabilitation or choosing an alternative. PMID:14515628

  5. [Implantable hemodynamic monitoring devices].

    PubMed

    Seifert, M; Butter, C

    2015-11-01

    Heart failure is one of the most frequent diagnoses in hospital admissions in Germany. In the majority of these admissions acute decompensation of an already existing chronic heart failure is responsible. New mostly wireless and remote strategies for monitoring, titration, adaptation and optimization are the focus for improvement of the treatment of heart failure patients and the poor prognosis. The implantation of hemodynamic monitoring devices follows the hypothesis that significant changes in hemodynamic parameters occur before the occurrence of acute decompensation requiring readmission. Three different hemodynamic monitoring devices have so far been investigated in clinical trials employing right ventricular pressure, left atrial pressure and pulmonary artery pressure monitoring. Only one of these systems, the CardioMENS™ HF monitoring system, demonstrated a significant reduction of hospitalization due to heart failure over 6 months in the CHAMPION trial. The systematic adaptation of medication in the CHAMPION trial significantly differed from the usual care of the control arm over 6 months. This direct day to day management of diuretics is currently under intensive investigation; however, further studies demonstrating a positive effect on mortality are needed before translation of this approach into guidelines. Without this evidence a further implementation of pressure monitoring into currently used devices and justification of the substantial technical and personnel demands are not warranted.

  6. Imaging of common breast implants and implant-related complications: A pictorial essay

    PubMed Central

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269

  7. Why are mini-implants lost: The value of the implantation technique!

    PubMed Central

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss. PMID:25741821

  8. Cochlear implantation: a biomechanical prosthesis for hearing loss.

    PubMed

    Yawn, Robert; Hunter, Jacob B; Sweeney, Alex D; Bennett, Marc L

    2015-01-01

    Cochlear implants are a medical prosthesis used to treat sensorineural deafness, and one of the greatest advances in modern medicine. The following article is an overview of cochlear implant technology. The history of cochlear implantation and the development of modern implant technology will be discussed, as well as current surgical techniques. Research regarding expansion of candidacy, hearing preservation cochlear implantation, and implantation for unilateral deafness are described. Lastly, innovative technology is discussed, including the hybrid cochlear implant and the totally implantable cochlear implant.

  9. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  10. EDITORIAL: Special issue containing contributions from the 39th Neural Interfaces Conference Special issue containing contributions from the 39th Neural Interfaces Conference

    NASA Astrophysics Data System (ADS)

    Weiland, James D.

    2011-07-01

    Implantable neural interfaces provide substantial benefits to individuals with neurological disorders. That was the unequivocal message delivered by speaker after speaker from the podium of the 39th Neural Interfaces Conference (NIC2010) held in Long Beach, California, in June 2010. Giving benefit to patients is the most important measure for any biomedical technology, and myriad presentations at NIC2010 made clear that implantable neurostimulation technology has achieved this goal. Cochlear implants allow deaf people to communicate through speech. Deep brain stimulators give back mobility and dexterity necessary for so many daily tasks that are often taken for granted. Chronic pain can be alleviated through spinal cord stimulation. Motor prosthesis systems have been demonstrated in humans, through both reanimation of paralyzed limbs and neural control of robotic arms. Earlier this year, a retinal prosthesis was approved for sale in Europe, providing some hope for the blind. In sum, current clinical implants have been tremendously beneficial for today's patients and experimental systems that will be translated to the clinic promise to expand the number of people helped through bioelectronic therapies. Yet there are significant opportunities for improvement. For sensory prostheses, patients report an artificial sensation, clearly different from the natural sensation they remember. Neuromodulation systems, such as deep brain stimulation and pain stimulators, often have side effects that are tolerated as long as the side effects are less impactful than the disease. The papers published in the special issue from NIC2010 reflect the maturing and expanding field of neural interfaces. Our field has moved past proof-of-principle demonstrations and is now focusing on proving the longevity required for clinical implementation of new devices, extending existing approaches to new diseases and improving current devices for better outcomes. Closed-loop neuromodulation is a

  11. Functional regeneration of severed peripheral nerve using an implantable electrical stimulator.

    PubMed

    Lee, Tae Hyung; Pan, Hui; Kim, In Sook; Hwang, Soon Jung; Kim, Sung June

    2010-01-01

    This paper presents functional regeneration of severed peripheral nerve using a polymer-based implantable electrical stimulator. A polyimide based conduit electrode was made by micro-fabrication and a stimulation chip was designed to generate biphasic current pulse for electrical stimulation. The stimulation chip was packaged with a battery using silicone elastomer, and integrated with the electrode. The implantable electrical stimulator was implanted in the rat sciatic nerve with 7 mm gap. The electrical stimulation was applied for periods of one, two and four weeks between the proximal and the distal nerve stumps. After four weeks of post-operations, the degree of regeneration was evaluated through walking track assessments and by measuring neural response of the regenerated nerve. Based on these results, electrical stimulation, especially for two weeks of stimulation, could accelerate functional regeneration of the severed nerve.

  12. Biomechanical load analysis of cantilevered implant systems.

    PubMed

    Osier, J F

    1991-01-01

    Historically, dental implants have been placed in areas where quality bone exists. The maxillary sinus areas and mandibular canal proximities have been avoided. From these placements, various cantilevered prosthetic applications have emerged. This analysis uses static engineering principles to define the loads (i.e., forces) placed upon the implants. These principles make use of Newton's first and third laws of mechanics by summing the forces and moments to zero. These summations then generate mathematical equations and their algebraic solutions. Three implant systems are analyzed. The first is a two-implant system. The second is a three-implant cross-arch stabilized system usually found in mandibular replacements of lower full dentures. The third is a five-implant system which is identical to the three-implant cantilevered system but which uses implants in the first molar area, thereby negating the cantilevered load magnification of the three-implant design. These analyses demonstrate that, in a cantilevered application, the implant closest to the point of load application (usually the most posterior implant) takes the largest compressive load. Implants opposite the load application (generally the anterior implant) are in tension. These loads on the implants are normally magnified over the biting force and can easily reach 2 1/2 to five times the biting load.

  13. Materials for endosseous dental implants.

    PubMed

    Wataha, J C

    1996-02-01

    The goal of placement of endosseous dental implants is to achieve osseointegration or biointegration of the bone with the implant. A wide variety of materials has been used for these implants, but only a few promote osseointegration and biointegration. Titanium and titanium alloy (Ti6A14V) have been the most widely used of these materials. The surface oxide of titanium appears to be central to the ability of this material to osseointegrate. The oxide limits dissolution of elements and promotes the deposition of biological molecules which allow bone to exist as close as 30 A to the surface of the implant. The details of the ultrastructure of the gap between the implant and bone remain undefined, and the consequences of elements which are released on the interface over time are not known. These areas of investigation are particularly important in defining the differences between commercially pure titanium implants and those made of titanium, aluminium and vanadium. The epithelial interface between the gingiva and titanium appears to contain many of the structural characteristics of the native tooth-gingiva interface, but details are still vague. The connective tissue interface with the titanium appears to be one of tightly fitting tissues rather than adhesion. Ceramic coatings appear to improve the ingrowth of bone and promote chemical integration of the implant with the bone. The characteristics of these coatings are complex and affect the bony response, but the mechanisms remain obscure. The degradation of the coatings is an issue of particular controversy. Progress in dental implantology is likely to continue as the interface between the material and bone is more clearly understood, and biological molecules and artificial tissues are developed.

  14. Drug-eluting medical implants.

    PubMed

    Zilberman, Meital; Kraitzer, Amir; Grinberg, Orly; Elsner, Jonathan J

    2010-01-01

    Drug-eluting medical implants are actually active implants that induce healing effects, in addition to their regular task of support. This effect is achieved by controlled release of active pharmaceutical ingredients (API) into the surrounding tissue. In this chapter we focus on three types of drug-eluting devices: drug-eluting vascular stents, drug-eluting wound dressings and protein-eluting scaffolds for tissue regeneration, thus describing both internal and external implants. Each of these drug-eluting devices also presents an approach for solving the drug release issue. Most drug-eluting vascular stents are loaded with water-insoluble antiproliferative agents, and their diffusion from the device to the surrounding tissue is relatively slow. In contrast, most drug-eluting wound dressings are loaded with highly water-soluble antibacterial agents and the issue of fast release must therefore be addressed. Growth factor release from scaffolds for tissue regeneration offers a new approach of incorporating high-molecular-weight bioactive agents which are very sensitive to process conditions and preserve their activity during the preparation stage. The drug-eluting medical implants are described here in terms of matrix formats and polymers, incorporated drugs and their release profiles from the implants, and implant functioning. Basic elements, such as new composite core/shell fibers and structured films, can be used to build new antibiotic-eluting devices. As presented in this chapter, the effect of the processing parameters on the microstructure and the resulting drug release profiles, mechanical and physical properties, and other relevant properties, must be elucidated in order to achieve the desired properties. Newly developed implants and novel modifications of previously developed approaches have enhanced the tools available for creating clinically important biomedical applications.

  15. Nanoscale laminin coating modulates cortical scarring response around implanted silicon microelectrode arrays

    NASA Astrophysics Data System (ADS)

    He, Wei; McConnell, George C.; Bellamkonda, Ravi V.

    2006-12-01

    Neural electrodes could significantly enhance the quality of life for patients with sensory and/or motor deficits as well as improve our understanding of brain functions. However, long-term electrical connectivity between neural tissue and recording sites is compromised by the development of astroglial scar around the recording probes. In this study we investigate the effect of a nanoscale laminin (LN) coating on Si-based neural probes on chronic cortical tissue reaction in a rat model. Tissue reaction was evaluated after 1 day, 1 week, and 4 weeks post-implant for coated and uncoated probes using immunohistochemical techniques to evaluate activated microglia/macrophages (ED-1), astrocytes (GFAP) and neurons (NeuN). The coating did not have an observable effect on neuronal density or proximity to the electrode surface. However, the response of microglia/macrophages and astrocytes was altered by the coating. One day post-implant, we observed an ~60% increase in ED-1 expression near LN-coated probe sites compared with control uncoated probe sites. Four weeks post-implant, we observed an ~20% reduction in ED-1 expression along with an ~50% reduction in GFAP expression at coated relative to uncoated probe sites. These results suggest that LN has a stimulatory effect on early microglia activation, accelerating the phagocytic function of these cells. This hypothesis is further supported by the increased mRNA expression of several pro-inflammatory cytokines (TNF-α, IL-1 and IL-6) in cultured microglia on LN-bound Si substrates. LN immunostaining of coated probes immediately after insertion and retrieval demonstrates that the coating integrity is not compromised by the shear force during insertion. We speculate, based on these encouraging results, that LN coating of Si neural probes could potentially improve chronic neural recordings through dispersion of the astroglial scar.

  16. Multicomponent Implant Releasing Dexamethasone

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Ashammakhi, N.

    2008-02-01

    Several inflammatory conditions are usually treated with corticosteroids. There are various problems like side effects with traditional applications of steroids, e.g. topical, or systemic routes. Local drug delivery systems have been studied and developed to gain more efficient administration with fewer side effects. Earlier, we reported on developing Dexamethasone (DX) releasing biodegradable fibers. However, their drug release properties were not satisfactory in terms of onset of drug release. Thus, we assessed the development of multicomponent (MC) implant to enhance earlier drug release from such biodegradable fibers. Poly (lactide-co-glycolide) (PLGA) and 2 wt-% and 8 wt-% DX were compounded and extruded with twin-screw extruder to form of fibers. Some of the fibers were sterilized to obtain a change in drug release properties. Four different fiber classes were studied: 2 wt-%, 8 wt-%, sterilized 2 wt-%, and sterilized 8 wt-%. 3×4 different DX-releasing fibers were then heat-pressed to form one multicomponent rod. Half of the rods where sterilized. Drug release was measured from initial fibers and multicomponent rods using a UV/VIS spectrometer. Shear strength and changes in viscosity were also measured. Drug release studies showed that drug release commenced earlier from multicomponent rods than from component fibers. Drug release from multicomponent rods lasted from day 30 to day 70. The release period of sterilized rods extended from day 23 to day 57. When compared to the original component fibers, the drug release from MC rods commenced earlier. The initial shear strength of MC rods was 135 MPa and decreased to 105 MPa during four weeks of immersion in phosphate buffer solution. Accordingly, heat pressing has a positive effect on drug release. After four weeks in hydrolysis, no disintegration was observed.

  17. WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications.

    PubMed

    Mestais, Corinne S; Charvet, Guillaume; Sauter-Starace, Fabien; Foerster, Michael; Ratel, David; Benabid, Alim Louis

    2015-01-01

    A wireless 64-channel ElectroCorticoGram (ECoG) recording implant named WIMAGINE has been designed for various clinical applications. The device is aimed at interfacing a cortical electrode array to an external computer for neural recording and control applications. This active implantable medical device is able to record neural activity on 64 electrodes with selectable gain and sampling frequency, with less than 1 μV(RMS) input referred noise in the [0.5 Hz - 300 Hz] band. It is powered remotely through an inductive link at 13.56 MHz which provides up to 100 mW. The digitized data is transmitted wirelessly to a custom designed base station connected to a PC. The hermetic housing and the antennae have been designed and optimized to ease the surgery. The design of this implant takes into account all the requirements of a clinical trial, in particular safety, reliability, and compliance with the regulations applicable to class III AIMD. The main features of this WIMAGINE implantable device and its architecture are presented, as well as its functional performances and long-term biocompatibility results. PMID:25014960

  18. Neural timing nets.

    PubMed

    Cariani, P A

    2001-01-01

    Formulations of artificial neural networks are directly related to assumptions about neural coding in the brain. Traditional connectionist networks assume channel-based rate coding, while time-delay networks convert temporally-coded inputs into rate-coded outputs. Neural timing nets that operate on time structured input spike trains to produce meaningful time-structured outputs are proposed. Basic computational properties of simple feedforward and recurrent timing nets are outlined and applied to auditory computations. Feed-forward timing nets consist of arrays of coincidence detectors connected via tapped delay lines. These temporal sieves extract common spike patterns in their inputs that can subserve extraction of common fundamental frequencies (periodicity pitch) and common spectrum (timbre). Feedforward timing nets can also be used to separate time-shifted patterns, fusing patterns with similar internal temporal structure and spatially segregating different ones. Simple recurrent timing nets consisting of arrays of delay loops amplify and separate recurring time patterns. Single- and multichannel recurrent timing nets are presented that demonstrate the separation of concurrent, double vowels. Timing nets constitute a new and general neural network strategy for performing temporal computations on neural spike trains: extraction of common periodicities, detection of recurring temporal patterns, and formation and separation of invariant spike patterns that subserve auditory objects.

  19. The neural decoding toolbox

    PubMed Central

    Meyers, Ethan M.

    2013-01-01

    Population decoding is a powerful way to analyze neural data, however, currently only a small percentage of systems neuroscience researchers use this method. In order to increase the use of population decoding, we have created the Neural Decoding Toolbox (NDT) which is a Matlab package that makes it easy to apply population decoding analyses to neural activity. The design of the toolbox revolves around four abstract object classes which enables users to interchange particular modules in order to try different analyses while keeping the rest of the processing stream intact. The toolbox is capable of analyzing data from many different types of recording modalities, and we give examples of how it can be used to decode basic visual information from neural spiking activity and how it can be used to examine how invariant the activity of a neural population is to stimulus transformations. Overall this toolbox will make it much easier for neuroscientists to apply population decoding analyses to their data, which should help increase the pace of discovery in neuroscience. PMID:23734125

  20. Conducting Polymers for Neural Prosthetic and Neural Interface Applications.

    PubMed

    Green, Rylie; Abidian, Mohammad Reza

    2015-12-01

    Neural-interfacing devices are an artificial mechanism for restoring or supplementing the function of the nervous system, lost as a result of injury or disease. Conducting polymers (CPs) are gaining significant attention due to their capacity to meet the performance criteria of a number of neuronal therapies including recording and stimulating neural activity, the regeneration of neural tissue and the delivery of bioactive molecules for mediating device-tissue interactions. CPs form a flexible platform technology that enables the development of tailored materials for a range of neuronal diagnostic and treatment therapies. In this review, the application of CPs for neural prostheses and other neural interfacing devices is discussed, with a specific focus on neural recording, neural stimulation, neural regeneration, and therapeutic drug delivery.

  1. Medical implants and methods of making medical implants

    SciTech Connect

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  2. Influence of resveratrol release on the tissue response to mechanically adaptive cortical implants.

    PubMed

    Nguyen, Jessica K; Jorfi, Mehdi; Buchanan, Kelly L; Park, Daniel J; Foster, E Johan; Tyler, Dustin J; Rowan, Stuart J; Weder, Christoph; Capadona, Jeffrey R

    2016-01-01

    The stability and longevity of recordings obtained from intracortical microelectrodes continues to remain an area of concern for neural interfacing applications. The limited longevity of microelectrode performance has been associated with the integrity of the blood brain barrier (BBB) and the neuroinflammatory response to the microelectrode. Here, we report the investigation of an additive approach that targets both mechanical and chemical factors believed to contribute to chronic BBB instability and the neuroinflammatory response associated with implanted intracortical microelectrodes. The implants investigated were based on a mechanically adaptive, compliant nanocomposite (NC), which reduces the tissue response and tissue strain. This material was doped with various concentrations of the antioxidant resveratrol with the objective of local and rapid delivery. In vitro analysis of resveratrol release, antioxidant activity, and cytotoxicity suggested that a resveratrol content of 0.01% was optimal for in vivo assessment. Thus, probes made from the neat NC reference and probes containing resveratrol (NC Res) were implanted into the cortical tissue of rats for up to sixteen weeks. Histochemical analysis suggested that at three days post-implantation, neither materials nor therapeutic approaches (independently or in combination) could alter the initial wound healing response. However, at two weeks post-implantation, the NC Res implant showed a reduction in activated microglia/macrophages and improvement in neuron density at the tissue-implant interface when compared to the neat NC reference. However, sixteen weeks post-implantation, when the antioxidant was exhausted, NC Res and the neat NC reference exhibited similar tissue responses. The data show that NC Res provides short-term, short-lived benefits due to the antioxidant release, and a long-term reduction in neuroinflammation on account of is mechanical adaptive, compliant nature. Together, these results

  3. Influence of resveratrol release on the tissue response to mechanically adaptive cortical implants.

    PubMed

    Nguyen, Jessica K; Jorfi, Mehdi; Buchanan, Kelly L; Park, Daniel J; Foster, E Johan; Tyler, Dustin J; Rowan, Stuart J; Weder, Christoph; Capadona, Jeffrey R

    2016-01-01

    The stability and longevity of recordings obtained from intracortical microelectrodes continues to remain an area of concern for neural interfacing applications. The limited longevity of microelectrode performance has been associated with the integrity of the blood brain barrier (BBB) and the neuroinflammatory response to the microelectrode. Here, we report the investigation of an additive approach that targets both mechanical and chemical factors believed to contribute to chronic BBB instability and the neuroinflammatory response associated with implanted intracortical microelectrodes. The implants investigated were based on a mechanically adaptive, compliant nanocomposite (NC), which reduces the tissue response and tissue strain. This material was doped with various concentrations of the antioxidant resveratrol with the objective of local and rapid delivery. In vitro analysis of resveratrol release, antioxidant activity, and cytotoxicity suggested that a resveratrol content of 0.01% was optimal for in vivo assessment. Thus, probes made from the neat NC reference and probes containing resveratrol (NC Res) were implanted into the cortical tissue of rats for up to sixteen weeks. Histochemical analysis suggested that at three days post-implantation, neither materials nor therapeutic approaches (independently or in combination) could alter the initial wound healing response. However, at two weeks post-implantation, the NC Res implant showed a reduction in activated microglia/macrophages and improvement in neuron density at the tissue-implant interface when compared to the neat NC reference. However, sixteen weeks post-implantation, when the antioxidant was exhausted, NC Res and the neat NC reference exhibited similar tissue responses. The data show that NC Res provides short-term, short-lived benefits due to the antioxidant release, and a long-term reduction in neuroinflammation on account of is mechanical adaptive, compliant nature. Together, these results

  4. Design considerations for miniaturized optical neural probes

    NASA Astrophysics Data System (ADS)

    Rudmann, Linda; Ordonez, Juan S.; Stieglitz, Thomas

    2016-03-01

    Neural probes are designed to selectively record from or stimulate nerve cells. In optogenetics it is desirable to build miniaturized and long-term stable optical neural probes, in which the light sources can be directly and chronically implanted into the animals to allow free movement and behavior. Because of the size and the beam shape of the available light sources, it is difficult to target single cells as well as spatially localized networks. We therefore investigated design considerations for packages, which encapsulate the light source hermetically and have integrated hemispherical lens structures that enable to focus the light onto the desired region, by optical simulations. Integration of a biconvex lens into the package lid (diameter = 300 μm, material: silicon carbide) increased the averaged absolute irradiance ηA by 298 % compared to a system without a lens and had a spot size of around 120 μm. Solely integrating a plano-convex lens (same diameter and material) results in an ηA of up to 227 %.

  5. Implantable biomedical devices on bioresorbable substrates

    DOEpatents

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  6. Cochlear Implantation in Older Adults

    PubMed Central

    Lin, Frank R.; Chien, Wade W.; Li, Lingsheng; Niparko, John K.; Francis, Howard W.

    2012-01-01

    Cochlear implants allow individuals with severe-to-profound hearing loss access to sound and spoken language. The number of older adults in the United States who are potential candidates for cochlear implantation is approximately 150,000 and will continue to increase with the aging of the population. Should cochlear implantation (CI) be routinely recommended for these older adults, and do these individuals benefit from CI? We reviewed our 12 year experience with cochlear implantation in adults ≥60 years (n = 445) at Johns Hopkins to investigate the impact of CI on speech understanding and to identify factors associated with speech performance. Complete data on speech outcomes at baseline and 1 year post-CI were available for 83 individuals. Our results demonstrate that cochlear implantation in adults ≥60 years consistently improved speech understanding scores with a mean increase of 60. 0% (S. D. 24. 1) on HINT sentences in quiet . The magnitude of the gain in speech scores was negatively associated with age at implantation such that for every increasing year of age at CI the gain in speech scores was 1. 3 percentage points less (95% CI: 0. 6 – 1. 9) after adjusting for age at hearing loss onset. Conversely, individuals with higher pre-CI speech scores (HINT scores between 40–60%) had significantly greater post-CI speech scores by a mean of 10. 0 percentage points (95% CI: 0. 4 – 19. 6) than those with lower pre-CI speech scores (HINT <40%) after adjusting for age at CI and age at hearing loss onset. These results suggest that older adult CI candidates who are younger at implantation and with higher preoperative speech scores obtain the highest speech understanding scores after cochlear implantation with possible implications for current Medicare policy. Finally, we provide an extended discussion of the epidemiology and impact of hearing loss in older adults. Future research of CI in older adults should expand beyond simple speech outcomes to take into

  7. EDITORIAL: Commercial opportunities for neural engineers

    NASA Astrophysics Data System (ADS)

    Cavuoto, James

    2008-03-01

    Research and academic professionals in neural engineering know well the promise the field offers for advancing our understanding of basic neuroscience and devising new therapies for treating neurological diseases and disorders. But there is also considerable commercial opportunity for new start-up companies in several areas of neural engineering. The neurotechnology industry, which includes firms that manufacture neuromodulation devices, neural prostheses, neurorehabilitation systems, and neurosensing devices, is forecast to grow to grow from 3.6 billion this year to 8.8 billion in 2012, according to a recently published market research study from Neurotech Reports. In recent years, there have been several successful spinoffs of neurotechnology startup firms that originated with research at universities and clinical institutions. In many cases, the academic researchers who invented the new technology or product innovation have stayed on with their startup firms after receiving funding from venture capital firms, or after going public. Among the most successful neurotechnology industry spinoffs in recent years were: Cyberkinetics Inc., Foxborough, MA, a manufacturer of brain-computer interface devices based on research at Brown University. John Donoghue, a professor and chairman of the department of neuroscience at Brown University and executive director of the brain science program at Brown, founded the company in 2001 and remains on board as the chief scientific officer. Synapse Biomedical, Inc., Oberlin, OH, a manufacturer of diaphragm pacing systems, based on research at Case Western Reserve University. Raymond Onders, director of minimal invasive surgery and associate professor at University Hospital Case Medical Center in Cleveland, was the primary researcher. He was helped by J. Thomas Mortimer, professor emeritus of biomedical engineering at Case, and it was Mortimer who came up with the name NeuRx for the device. Onders performed his first surgical implant

  8. Capacitive Feedthroughs for Medical Implants.

    PubMed

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  9. SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY

    PubMed Central

    Thevenot, Paul; Hu, Wenjing; Tang, Liping

    2011-01-01

    Implantable medical devices are increasingly important in the practice of modern medicine. Unfortunately, almost all medical devices suffer to a different extent from adverse reactions, including inflammation, fibrosis, thrombosis and infection. To improve the safety and function of many types of medical implants, a major need exists for development of materials that evoked desired tissue responses. Because implant-associated protein adsorption and conformational changes thereafter have been shown to promote immune reactions, rigorous research efforts have been emphasized on the engineering of surface property (physical and chemical characteristics) to reduce protein adsorption and cell interactions and subsequently improve implant biocompatibility. This brief review is aimed to summarize the past efforts and our recent knowledge about the influence of surface functionality on protein:cell:biomaterial interactions. It is our belief that detailed understandings of bioactivity of surface functionality provide an easy, economic, and specific approach for the future rational design of implantable medical devices with desired tissue reactivity and, hopefully, wound healing capability. PMID:18393890

  10. Capacitive Feedthroughs for Medical Implants.

    PubMed

    Grob, Sven; Tass, Peter A; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging. PMID:27660602

  11. Capacitive Feedthroughs for Medical Implants

    PubMed Central

    Grob, Sven; Tass, Peter A.; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging. PMID:27660602

  12. Capacitive Feedthroughs for Medical Implants

    PubMed Central

    Grob, Sven; Tass, Peter A.; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

  13. Prototype to product—developing a commercially viable neural prosthesis

    NASA Astrophysics Data System (ADS)

    Seligman, Peter

    2009-12-01

    The Cochlear implant or 'Bionic ear' is a device that enables people who do not get sufficient benefit from a hearing aid to communicate with the hearing world. The Cochlear implant is not an amplifier, but a device that electrically stimulates the auditory nerve in a way that crudely mimics normal hearing, thus providing a hearing percept. Many recipients are able to understand running speech without the help of lipreading. Cochlear implants have reached a stage of maturity where there are now 170 000 recipients implanted worldwide. The commercial development of these devices has occurred over the last 30 years. This development has been multidisciplinary, including audiologists, engineers, both mechanical and electrical, histologists, materials scientists, physiologists, surgeons and speech pathologists. This paper will trace the development of the device we have today, from the engineering perspective. The special challenges of designing an active device that will work in the human body for a lifetime will be outlined. These challenges include biocompatibility, extreme reliability, safety, patient fitting and surgical issues. It is emphasized that the successful development of a neural prosthesis requires the partnership of academia and industry.

  14. PROPERTIES OF DEFECTS AND IMPLANTS IN Mg+ IMPLANTED SILICON CARBIDE

    SciTech Connect

    Jiang, Weilin; Zhu, Zihua; Varga, Tamas; Bowden, Mark E.; Manandhar, Sandeep; Roosendaal, Timothy J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2013-09-25

    As a candidate material for fusion reactor designs, silicon carbide (SiC) under high-energy neutron irradiation undergoes atomic displacement damage and transmutation reactions that create magnesium as one of the major metallic products. The presence of Mg and lattice disorder in SiC is expected to affect structural stability and degrade thermo-mechanical properties that could limit SiC lifetime for service. We have initiated a combined experimental and computational study that uses Mg+ ion implantation and multiscale modeling to investigate the structural and chemical effects in Mg implanted SiC and explore possible property degradation mechanisms.

  15. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496

  16. Neural Architectures for Control

    NASA Technical Reports Server (NTRS)

    Peterson, James K.

    1991-01-01

    The cerebellar model articulated controller (CMAC) neural architectures are shown to be viable for the purposes of real-time learning and control. Software tools for the exploration of CMAC performance are developed for three hardware platforms, the MacIntosh, the IBM PC, and the SUN workstation. All algorithm development was done using the C programming language. These software tools were then used to implement an adaptive critic neuro-control design that learns in real-time how to back up a trailer truck. The truck backer-upper experiment is a standard performance measure in the neural network literature, but previously the training of the controllers was done off-line. With the CMAC neural architectures, it was possible to train the neuro-controllers on-line in real-time on a MS-DOS PC 386. CMAC neural architectures are also used in conjunction with a hierarchical planning approach to find collision-free paths over 2-D analog valued obstacle fields. The method constructs a coarse resolution version of the original problem and then finds the corresponding coarse optimal path using multipass dynamic programming. CMAC artificial neural architectures are used to estimate the analog transition costs that dynamic programming requires. The CMAC architectures are trained in real-time for each obstacle field presented. The coarse optimal path is then used as a baseline for the construction of a fine scale optimal path through the original obstacle array. These results are a very good indication of the potential power of the neural architectures in control design. In order to reach as wide an audience as possible, we have run a seminar on neuro-control that has met once per week since 20 May 1991. This seminar has thoroughly discussed the CMAC architecture, relevant portions of classical control, back propagation through time, and adaptive critic designs.

  17. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.

    PubMed

    Hassarati, Rachelle T; Marcal, Helder; John, L; Foster, R; Green, Rylie A

    2016-05-01

    Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways. Conductive hydrogel (CH) electrode coatings have been proposed as a substrate for supporting OEC survival and proliferation at the device interface. To determine an ideal CH to support OECs, this study explored eight CH variants, with differing biochemical composition, in comparison to a conventional Pt electrodes. All CH variants were based on a biosynthetic hydrogel, consisting of poly(vinyl alcohol) and heparin, through which the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) was electropolymerized. The biochemical composition was varied through incorporation of gelatin and sericin, which were expected to provide cell adherence functionality, supporting attachment, and cell spreading. Combinations of these biomolecules varied from 1 to 3 wt %. The physical, electrical, and biological impact of these molecules on electrode performance was assessed. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that the addition of these biological molecules had little significant effect on the coating's ability to safely transfer charge. Cell attachment studies, however, determined that the incorporation of 1 wt % gelatin in the hydrogel was sufficient to significantly increase the attachment of OECs compared to the nonfunctionalized CH.

  18. Sequential neural text compression.

    PubMed

    Schmidhuber, J; Heil, S

    1996-01-01

    The purpose of this paper is to show that neural networks may be promising tools for data compression without loss of information. We combine predictive neural nets and statistical coding techniques to compress text files. We apply our methods to certain short newspaper articles and obtain compression ratios exceeding those of the widely used Lempel-Ziv algorithms (which build the basis of the UNIX functions "compress" and "gzip"). The main disadvantage of our methods is that they are about three orders of magnitude slower than standard methods.

  19. Nested neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.

  20. Neural processing of itch.

    PubMed

    Akiyama, Tasuku; Carstens, E

    2013-10-10

    While considerable effort has been made to investigate the neural mechanisms of pain, much less effort has been devoted to itch, at least until recently. However, itch is now gaining increasing recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and rapidly-advancing field of research. The goal of the present forefront review is to describe the recent progress that has been made in our understanding of itch mechanisms.

  1. Neural Analog Information Processing

    NASA Astrophysics Data System (ADS)

    Hecht-Nielsen, Robert

    1982-07-01

    Neural Analog Information Processing (NAIP) is an effort to develop general purpose pattern classification architectures based upon biological information processing principles. This paper gives an overview of NAIP and its relationship to the previous work in neural modeling from which its fundamental principles are derived. It also presents a theorem concerning the stability of response of a slab (a two dimensional array of identical simple processing units) to time-invariant (spatial) patterns. An experiment (via computer emulation) demonstrating classification of a spatial pattern by a simple, but complete NAIP architecture is described. A concept for hardware implementation of NAIP architectures is briefly discussed.

  2. Imaging the Neural Symphony.

    PubMed

    Svoboda, Karel

    2016-01-01

    Since the start of the new millennium, a method called two-photon microscopy has allowed scientists to peer farther into the brain than ever before. Our author, one of the pioneers in the development of this new technology, writes that "directly observing the dynamics of neural networks in an intact brain has become one of the holy grails of brain research." His article describes the advances that led to this remarkable breakthrough-one that is helping neuroscientists better understand neural networks. PMID:27408677

  3. Self-control of chaos in neural circuits with plastic electrical synapses

    NASA Astrophysics Data System (ADS)

    Zhigulin, V. P.; Rabinovich, M. I.

    2004-10-01

    Two kinds of connections are known to exist in neural circuits: electrical (also called gap junctions) and chemical. Whereas chemical synapses are known to be plastic (i. e., modifiable), but slow, electrical transmission through gap junctions is not modifiable, but is very fast. We suggest the new artificial synapse that combines the best properties of both: the fast reaction of a gap junction and the plasticity of a chemical synapse. Such a plastic electrical synapse can be used in hybrid neural circuits and for the development of neural prosthetics, i.e., implanted devices that can interact with the real nervous system. Based on the computer modelling we show that such a plastic electrical synapse regularizes chaos in the minimal neural circuit consisting of two chaotic bursting neurons.

  4. Implant rehabilitation in bruxism patient.

    PubMed

    Goiato, Marcelo Coelho; Sonego, Mariana Vilela; dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas

    2014-06-06

    A white female patient presented to the university clinic to obtain implant retained prostheses. She had an edentulous maxillary jaw and presented three teeth with poor prognosis (33, 34 and 43). The alveolar bone and the surrounding tissues were healthy. The patient did not report any relevant medical history contraindicating routine dental treatment or implant surgery, but self-reported a dental history of asymptomatic nocturnal bruxism. The treatment plan was set and two Branemark protocols supported by six implants in each arch were installed after a 6-month healing period. A soft occlusal splint was made due to the patient's history of bruxism, and the lack of its use by the patient resulted in an acrylic fracture. The prosthesis was repaired and the importance of using the occlusal splint was restated. In the 4-year follow-up no fractures were reported.

  5. Implant rehabilitation in bruxism patient.

    PubMed

    Goiato, Marcelo Coelho; Sonego, Mariana Vilela; dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas

    2014-01-01

    A white female patient presented to the university clinic to obtain implant retained prostheses. She had an edentulous maxillary jaw and presented three teeth with poor prognosis (33, 34 and 43). The alveolar bone and the surrounding tissues were healthy. The patient did not report any relevant medical history contraindicating routine dental treatment or implant surgery, but self-reported a dental history of asymptomatic nocturnal bruxism. The treatment plan was set and two Branemark protocols supported by six implants in each arch were installed after a 6-month healing period. A soft occlusal splint was made due to the patient's history of bruxism, and the lack of its use by the patient resulted in an acrylic fracture. The prosthesis was repaired and the importance of using the occlusal splint was restated. In the 4-year follow-up no fractures were reported. PMID:24907215

  6. Implant rehabilitation in bruxism patient

    PubMed Central

    Goiato, Marcelo Coelho; Sonego, Mariana Vilela; dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas

    2014-01-01

    A white female patient presented to the university clinic to obtain implant retained prostheses. She had an edentulous maxillary jaw and presented three teeth with poor prognosis (33, 34 and 43). The alveolar bone and the surrounding tissues were healthy. The patient did not report any relevant medical history contraindicating routine dental treatment or implant surgery, but self-reported a dental history of asymptomatic nocturnal bruxism. The treatment plan was set and two Branemark protocols supported by six implants in each arch were installed after a 6-month healing period. A soft occlusal splint was made due to the patient's history of bruxism, and the lack of its use by the patient resulted in an acrylic fracture. The prosthesis was repaired and the importance of using the occlusal splint was restated. In the 4-year follow-up no fractures were reported. PMID:24907215

  7. [Signal processing in contour implants].

    PubMed

    Ormezzano, Y; Deleurme, C; Vormès, E; Frachet, B

    1990-01-01

    Signal processing by cochlear implants is aimed at transmitting all the acoustic information carried by the human voice, whether in its semantic, esthetic or affective aspects, as an electrical signal. The "translating" approach, which encodes the signal according to the characteristics of the sounds, can only be ideally used in multiple-canal implants. On the contrary, our experience with various single-canal prostheses shows that our patients choose one of these according to the comfort of the signal and to its reliability rather than to the complexity of signal processing: all prostheses produce approximately the same results, whatever the method implemented. The contour implant allows an easy, effective and well-tolerated fitting at low costs.

  8. MRI artefacts after Bonebridge implantation.

    PubMed

    Steinmetz, C; Mader, I; Arndt, S; Aschendorff, A; Laszig, R; Hassepass, F

    2014-07-01

    The new transcutaneous bone conduction implant (BCI) Bonebridge (BB, MED-EL) allows the skin to remain intact and therefore overcomes some issues related to percutaneous systems, such as skin reaction around the external screw and cosmetic complaints. According to manufacturer, BB is MRI conditional up to 1,5 Tesla (T). The artefact of the neurocranium after BB implantation is extensive as shown in the present report. This has to be taken into account when patients suffering conductive, mixed or single-sided hearing loss with candidacy for a BCI are counselled. In patients with comorbid intracranial tumour or other diseases of the brain that require imaging control scans with MRI percutaneous, BCI should be the implant of choice considering the very small artefact of the percutaneous screw in MRI.

  9. Treatment of Infected Facial Implants.

    PubMed

    Mohan, Kriti; Cox, Joshua A; Dickey, Ryan M; Gravina, Paula; Echo, Anthony; Izaddoost, Shayan A; Nguyen, Anh H

    2016-05-01

    Alloplastic facial implants have a wide range of uses to achieve the appropriate facial contour. A variety of materials such as metals, polymers, ceramics and synthetic injectable fillers are available to the reconstructive and aesthetic surgeon. Besides choosing the right surgical technique and the adequate material, the surgeon must be prepared to treat complications. Infection is an uncommon but serious complication that can cause displeasing consequences for the patient. There are few references in literature regarding treatment and management of facial implant-related infections. This study aims to discuss the role of biofilm in predisposing alloplastic materials to infection, to provide a review of literature, to describe our own institutional experience, and to define a patient care pathway for facial implant-associated infection. PMID:27152100

  10. Oral Implant Imaging: A Review

    PubMed Central

    GUPTA, Sarika; PATIL, Neelkant; SOLANKI, Jitender; SINGH, Ravinder; LALLER, Sanjeev

    2015-01-01

    Selecting an appropriate implant imaging technique has become a challenging task since the advent of advanced imaging modalities, and many of these are used for implant imaging. On imaging, the modality should not only consider the anatomy but should also provide dimensional accuracy. Many dentists use the conventional method, mostly orthopantograph (OPG), in their routine practice of implant placement. However, because of the drawbacks associated with OPG, higher technologies, such as computed tomography (CT) and cone beam computed tomography (CBCT), are better accepted. These help improve image sharpness and reduce distortion. These techniques are not used widely due to the cost effect. Therefore, to decide on the type of imaging technique, all associated advantages and disadvantages should be considered, which will be broadly discussed in this review. PMID:26715891

  11. Dynamic interactions in neural networks

    SciTech Connect

    Arbib, M.A. ); Amari, S. )

    1989-01-01

    The study of neural networks is enjoying a great renaissance, both in computational neuroscience, the development of information processing models of living brains, and in neural computing, the use of neurally inspired concepts in the construction of intelligent machines. This volume presents models and data on the dynamic interactions occurring in the brain, and exhibits the dynamic interactions between research in computational neuroscience and in neural computing. The authors present current research, future trends and open problems.

  12. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  13. Target structures in the cochlea for infrared neural stimulation (INS)

    NASA Astrophysics Data System (ADS)

    Young, Hunter; Tan, Xiaodong; Richter, Claus-Peter

    2014-03-01

    Spatial selective infrared neural stimulation has potential to improve neural prostheses, including cochlear implants. The heating of a confined target volume depolarizes the cell membrane and results in an action potential. Tissue heating may also result in the generation of a stress relaxation wave causing mechanical stimulation of hair cells in the cochlea, creating an optoacoustic response. Data are presented that quantify the effect of an acoustical stimulus (noise masker) on the response obtained with INS in normal hearing, and chronic deaf animals. While in normal hearing animals an acoustic masker can reduce the response to INS, in chronic deaf animals this effect has not been detected. The responses to INS remain stable following the different degrees of cochlear damage.

  14. Wireless Neural Recording With Single Low-Power Integrated Circuit

    PubMed Central

    Harrison, Reid R.; Kier, Ryan J.; Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V.

    2010-01-01

    We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6-μm 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902–928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor. PMID:19497825

  15. [Needle implantations--clinical report].

    PubMed

    Esswein, W

    1977-04-01

    In the last four years 27 patients with edentulous lower jaw were treated with implantation of rows of tantalum needles; 25 of them were followed up clinically and radiologically. After an average of two years and seven months where the success rate was found to be 72%. Reasons for failure were thought to be mistakes in operative technique, insufficient oral hygiene of the patients and less than optimal aftercare. These needle implants have proved their value also in cases with marked atrophy of the lower jaw where other prosthetic-surgical methods aimed at improving the prosthesis site have failed.

  16. A Percutaneously Implantable Fetal Pacemaker

    PubMed Central

    Zhou, Li; Vest, Adriana N.; Chmait, Ramen H.; Bar-Cohen, Yaniv; Pruetz, Jay; Silka, Michael; Zheng, Kaihui; Peck, Ray; Loeb, Gerald E.

    2015-01-01

    A miniaturized, self-contained pacemaker that could be implanted with a minimally invasive technique would dramatically improve the survival rate for fetuses that develop hydrops fetalis as a result of congenital heart block. We are currently validating a device that we developed to address this bradyarrhythmia. Preclinical studies in a fetal sheep model are underway to demonstrate that the device can be implanted via a minimally invasive approach, can mechanically withstand the harsh bodily environment, can induce effective contractions of the heart muscle with an adequate safety factor, and can successfully operate for the required device lifetime of three months using the previously-developed closed loop transcutaneous recharging system. PMID:25570982

  17. Neural nets on the MPP

    NASA Technical Reports Server (NTRS)

    Hastings, Harold M.; Waner, Stefan

    1987-01-01

    The Massively Parallel Processor (MPP) is an ideal machine for computer experiments with simulated neural nets as well as more general cellular automata. Experiments using the MPP with a formal model neural network are described. The results on problem mapping and computational efficiency apply equally well to the neural nets of Hopfield, Hinton et al., and Geman and Geman.

  18. Learning in the "Neural" Organisation.

    ERIC Educational Resources Information Center

    Hutchin, Ted

    1992-01-01

    Argues that methods of organizational communication and learning resemble neural networks and that developing teaching methods to reflect this understanding should be crucial. Provides an overview of neural organization, the application of neural networks to organizational structure, and education and training within organizations. Concludes that…

  19. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  20. Dissociative States and Neural Complexity

    ERIC Educational Resources Information Center

    Bob, Petr; Svetlak, Miroslav

    2011-01-01

    Recent findings indicate that neural mechanisms of consciousness are related to integration of distributed neural assemblies. This neural integration is particularly vulnerable to past stressful experiences that can lead to disintegration and dissociation of consciousness. These findings suggest that dissociation could be described as a level of…

  1. FDA Approves Eye Implant for Aging Boomers

    MedlinePlus

    ... fullstory_159648.html FDA Approves Eye Implant for Aging Boomers Tiny lens reshapes cornea to improve focus ... 2016 (HealthDay News) -- An implant that helps the aging eye focus on small print and nearby objects ...

  2. Elderly Benefit from Using Implantable Defibrillators

    MedlinePlus

    ... org Learn More Elderly benefit from using implantable defibrillators June 17, 2013 Categories: Heart News Study Highlights: Older people may benefit from implantable cardioverter defibrillators (ICDs) as much as younger people. Overall health, ...

  3. Beyond cochlear implants: awakening the deafened brain.

    PubMed

    Moore, David R; Shannon, Robert V

    2009-06-01

    Cochlear implants have provided hearing to more than 120,000 deaf people. Recent surgical developments include direct electrical stimulation of the brain, bilateral implants and implantation in children less than 1 year old. However, research is beginning to refocus on the role of the brain in providing benefits to implant users. The auditory system is able to use the highly impoverished input provided by implants to interpret speech, but this only works well in those who have developed language before their deafness or in those who receive their implant at a very young age. We discuss recent evidence suggesting that developing the ability of the brain to learn how to use an implant may be as important as further improvements of the implant technology. PMID:19471266

  4. How Does an Implantable Cardioverter Defibrillator Work?

    MedlinePlus

    ... on Twitter. How Does an Implantable Cardioverter Defibrillator Work? An implantable cardioverter defibrillator (ICD) has wires with ... tune the programming of your ICD so it works better to correct irregular heartbeats. The type of ...

  5. Physiological and molecular determinants of embryo implantation

    PubMed Central

    Zhang, Shuang; Lin, Haiyan; Kong, Shuangbo; Wang, Shumin; Wang, Hongmei; Wang, Haibin; Armant, D. Randall

    2014-01-01

    Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women. PMID:23290997

  6. Self-Tracking Energy Transfer for Neural Stimulation in Untethered Mice

    NASA Astrophysics Data System (ADS)

    Ho, John S.; Tanabe, Yuji; Iyer, Shrivats Mohan; Christensen, Amelia J.; Grosenick, Logan; Deisseroth, Karl; Delp, Scott L.; Poon, Ada S. Y.

    2015-08-01

    Optical or electrical stimulation of neural circuits in mice during natural behavior is an important paradigm for studying brain function. Conventional systems for optogenetics and electrical microstimulation require tethers or large head-mounted devices that disrupt animal behavior. We report a method for wireless powering of small-scale implanted devices based on the strong localization of energy that occurs during resonant interaction between a radio-frequency cavity and intrinsic modes in mice. The system features self-tracking over a wide (16-cm diameter) operational area, and is used to demonstrate wireless activation of cortical neurons with miniaturized stimulators (10 mm3 , 20 mg) fully implanted under the skin.

  7. Model validation of untethered, ultrasonic neural dust motes for cortical recording.

    PubMed

    Seo, Dongjin; Carmena, Jose M; Rabaey, Jan M; Maharbiz, Michel M; Alon, Elad

    2015-04-15

    A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in size well due to the severe inefficiency of coupling radio-waves at those scales within tissue. This paper explores fundamental system design trade-offs as well as size, power, and bandwidth scaling limits of neural recording systems built from low-power electronics coupled with ultrasonic power delivery and backscatter communication. Such systems will require two fundamental technology innovations: (1) 10-100 μm scale, free-floating, independent sensor nodes, or neural dust, that detect and report local extracellular electrophysiological data via ultrasonic backscattering and (2) a sub-cranial ultrasonic interrogator that establishes power and communication links with the neural dust. We provide experimental verification that the predicted scaling effects follow theory; (127 μm)(3) neural dust motes immersed in water 3 cm from the interrogator couple with 0.002064% power transfer efficiency and 0.04246 ppm backscatter, resulting in a maximum received power of ∼0.5 μW with ∼1 nW of change in backscatter power with neural activity. The high efficiency of ultrasonic transmission can enable the scaling of the sensing nodes down to 10s of micrometer. We conclude with a brief discussion of the application of neural dust for both central and peripheral nervous system recordings, and perspectives on future research directions. PMID:25109901

  8. Model validation of untethered, ultrasonic neural dust motes for cortical recording.

    PubMed

    Seo, Dongjin; Carmena, Jose M; Rabaey, Jan M; Maharbiz, Michel M; Alon, Elad

    2015-04-15

    A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in size well due to the severe inefficiency of coupling radio-waves at those scales within tissue. This paper explores fundamental system design trade-offs as well as size, power, and bandwidth scaling limits of neural recording systems built from low-power electronics coupled with ultrasonic power delivery and backscatter communication. Such systems will require two fundamental technology innovations: (1) 10-100 μm scale, free-floating, independent sensor nodes, or neural dust, that detect and report local extracellular electrophysiological data via ultrasonic backscattering and (2) a sub-cranial ultrasonic interrogator that establishes power and communication links with the neural dust. We provide experimental verification that the predicted scaling effects follow theory; (127 μm)(3) neural dust motes immersed in water 3 cm from the interrogator couple with 0.002064% power transfer efficiency and 0.04246 ppm backscatter, resulting in a maximum received power of ∼0.5 μW with ∼1 nW of change in backscatter power with neural activity. The high efficiency of ultrasonic transmission can enable the scaling of the sensing nodes down to 10s of micrometer. We conclude with a brief discussion of the application of neural dust for both central and peripheral nervous system recordings, and perspectives on future research directions.

  9. Implants and Ethnocide: Learning from the Cochlear Implant Controversy

    ERIC Educational Resources Information Center

    Sparrow, Robert

    2010-01-01

    This paper uses the fictional case of the "Babel fish" to explore and illustrate the issues involved in the controversy about the use of cochlear implants in prelinguistically deaf children. Analysis of this controversy suggests that the development of genetic tests for deafness poses a serious threat to the continued flourishing of Deaf culture.…

  10. Environmental standards for intraocular lens implantation.

    PubMed

    Crawford, B A; Kaufman, D V

    1984-02-01

    Successful implantation of prosthetic devices depends upon their freedom from postoperative inflammation and infection. Techniques and lessons learned in orthopaedic and other implant surgery should be applied to intraocular lens implantation. The avoidance of contamination by particles and micro-organisms is one essential principle of the surgical procedure. Practical steps are described to reduce both types of contamination. These measures taken together are recommended for adoption as a standard of environmental safety for lens implantation.

  11. Detailed spectral analysis of decellularized skin implants

    NASA Astrophysics Data System (ADS)

    Timchenko, E. V.; Timchenko, P. E.; Volova, L. T.; Dolgushkin, D. A.; Shalkovsky, P. Y.; Pershutkina, S. V.

    2016-08-01

    The resutls of detailed analysis of donor skin implants using Raman spectroscopy method are presented. Fourier-deconvolution method was used to separate overlapping spectrum lines and to improve its informativeness. Based on the processed spectra were introduced coefficients that represent changes in relative concentration of implant components, which determines the quality of implants. It was established that Raman spectroscopy method can be used in assessment of skin implants.

  12. Augmentation mammaplasty using implants: a review.

    PubMed

    Takayanagi, Susumu

    2012-09-01

    One of the techniques for augmentation mammaplasty is the procedure using implants. Even though this technique has been used for many years, there are still several controversial issues to be discussed and overcome for patient safety. In this review article, capsular contracture, leak or rupture of the implants, possible systemic disease, relation with breast cancer, and recent problems with Poly Implant Prothese implants are described and discussed. PMID:23094237

  13. Augmentation Mammaplasty Using Implants: A Review

    PubMed Central

    2012-01-01

    One of the techniques for augmentation mammaplasty is the procedure using implants. Even though this technique has been used for many years, there are still several controversial issues to be discussed and overcome for patient safety. In this review article, capsular contracture, leak or rupture of the implants, possible systemic disease, relation with breast cancer, and recent problems with Poly Implant Prothese implants are described and discussed. PMID:23094237

  14. Dental implants in the older adult.

    PubMed

    Jones, John D; Partida, M Norma; Turkyilmaz, Ilser

    2012-01-01

    A need for dental implant treatment in the older population is recognized considering the prevalence of partial and complete edentulism and the positive predictability of implant therapy. Even with a number of barriers to overcome for the older adult seeking implant care, dental implants provide stabilizing support for removable dental appliances and have been shown to be successful in that population. In this paper, we describe quality of life, systemic, surgical, and prosthodontic considerations of this prosthetic treatment along with maintenance challenges.

  15. Combined Subpectoral Implantation of Implantable Cardioverter-Defibrillator and Augmentation Mammoplasty in a Young Female Patient

    PubMed Central

    Kim, Dong-Jun; Park, Je Wook; Youn, Jong-Chan; Lee, Dong Won; Koo, Bon-Nyeo; Lee, Moon-Hyoung

    2016-01-01

    Subcutaneous implantation of a cardiac implantable electronic device is the standard method. Occasionally, subpectoral cardiac implantable electronic device (CIED) implantation via axillary incisions is performed in young female patients for cosmetic purposes. Because subpectoral CIED implantation and augmentation mammoplasty involve the same layer, it is feasible to perform both procedures simultaneously. We report a case of combined subpectoral implantation of an implantable cardioverter-defibrillator and augmentation mammoplasty via the axillary approach in a young female patient with dilated cardiomyopathy and small breasts. PMID:27721868

  16. Photovoltaic retinal prosthesis: implant fabrication and performance

    PubMed Central

    Wang, Lele; Mathieson, K; Kamins, T I; Loudin, J D; Galambos, L; Goetz, G; Sher, A; Mandel, Y; Huie, P; Lavinsky, D; Harris, J S; Palanker, D V

    2012-01-01

    Objective To develop and test a photovoltaic retinal prosthesis for restoring sight to patients blinded by degenerative retinal diseases. Approach A silicon photodiode array for subretinal stimulation has been fabricated by a silicon-integrated-circuit/MEMS process. Each pixel in the two-dimensional array contains three series-connected photodiodes, which photovoltaically convert pulsed near-infrared light into bi-phasic current to stimulate nearby retinal neurons without wired power connections. The device thickness is chosen to be 30 μm to absorb a significant portion of light while still being thin enough for subretinal implantation. Active and return electrodes confine current near each pixel and are sputter coated with iridium oxide to enhance charge injection levels and provide a stable neural interface. Pixels are separated by 5 μm-wide trenches to electrically isolate them and to allow nutrient diffusion through the device. Three sizes of pixels (280μm, 140 μm, and 70 μm) with active electrodes of 80 μm, 40 μm and 20 μm in diameter were fabricated. Main results The turn-on voltages of one-, two- and three-series-connected photodiode structures are approximately 0.6V, 1.2V and 1.8V, respectively. The measured photo-responsivity per diode at 880 nm wavelength is ~0.36 A/W, at zero voltage bias and scales with the exposed silicon area. For all three pixel sizes, the reverse-bias dark current is sufficiently low (<100 pA) for our application. Pixels of all three sizes reliably elicit retinal responses at safe near-infrared light irradiances, with good acceptance of the photodiode array in the subretinal space. Significance The fabricated device delivers efficient retinal stimulation at safe near-infrared light irradiances without any wired power connections, which greatly simplifies the implantation procedure. Presence of the return electrodes in each pixel helps to localize the current, and thereby improves resolution. PMID:22791690

  17. Neural Substrate Expansion for the Restoration of Brain Function.

    PubMed

    Chen, H Isaac; Jgamadze, Dennis; Serruya, Mijail D; Cullen, D Kacy; Wolf, John A; Smith, Douglas H

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  18. Neural Substrate Expansion for the Restoration of Brain Function

    PubMed Central

    Chen, H. Isaac; Jgamadze, Dennis; Serruya, Mijail D.; Cullen, D. Kacy; Wolf, John A.; Smith, Douglas H.

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  19. Subcellular Neural Probes from Single-Crystal Gold Nanowires

    PubMed Central

    2014-01-01

    Size reduction of neural electrodes is essential for improving the functionality of neuroprosthetic devices, developing potent therapies for neurological and neurodegenerative diseases, and long-term brain–computer interfaces. Typical neural electrodes are micromanufactured devices with dimensions ranging from tens to hundreds of micrometers. Their further miniaturization is necessary to reduce local tissue damage and chronic immunological reactions of the brain. Here we report the neural electrode with subcellular dimensions based on single-crystalline gold nanowires (NWs) with a diameter of ∼100 nm. Unique mechanical and electrical properties of defect-free gold NWs enabled their implantation and recording of single neuron-activities in a live mouse brain despite a ∼50× reduction of the size compared to the closest analogues. Reduction of electrode dimensions enabled recording of neural activity with improved spatial resolution and differentiation of brain activity in response to different social situations for mice. The successful localization of the epileptic seizure center was also achieved using a multielectrode probe as a demonstration of the diagnostics potential of NW electrodes. This study demonstrated the realism of single-neuron recording using subcellular-sized electrodes that may be considered a pivotal point for use in diverse studies of chronic brain diseases. PMID:25112683

  20. Myths about Cochlear Implants: A Family Perspective.

    ERIC Educational Resources Information Center

    Luetke-Stahlman, B.

    1994-01-01

    A parent of two young children who received cochlear implant surgery addresses common myths about this procedure including "deaf people don't support the use of cochlear implants,""if you choose cochlear implant surgery, you are choosing the hearing world,""hearing parents are not qualified to decide," and "the deaf child him/herself should…

  1. An Uncommon Presentation of Breast Implant Rupture

    PubMed Central

    Watson, David I.; Dean, Nicola R.

    2016-01-01

    Summary: Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  2. The hydroxyapatite orbital implant: a prospective study.

    PubMed

    Ashworth, J L; Rhatigan, M; Sampath, R; Brammar, R; Sunderland, S; Leatherbarrow, B

    1996-01-01

    The hydroxyapatite orbital implant was first released for use as an orbital implant in humans in August 1989. It has been shown to be well tolerated, providing good motility of the artificial eye with a low complication rate when used as a primary implant. This prospective study evaluated the hydroxyapatite orbital implant used as both a primary and a secondary implant. Sixty patients were implanted between October 1992 and November 1994, 28 being implanted as a primary procedure at the time of enucleation or evisceration, and 32 as a secondary procedure. Seven patients underwent second-stage drilling and pegging of the implant. The mean follow-up time was 13 months (range 2-26 months). A standardised operative and post-operative protocol was followed. The patients were evaluated post-operatively for the amount of enophthalmos, degree of upper lid sulcus deformity, motility of the prosthesis, location of the implant in the socket, socket status and the presence or absence of discharge, position of the drill hole and coverage of the implant. Complications and their management were documented. Both patient and surgeon made a subjective assessment of cosmesis and the patient's satisfaction with the overall result was noted. The results of this study show the hydroxyapatite orbital implant to provide excellent motility of the artificial eye and good cosmesis with a low rate of complications when used both as a primary and as a secondary implant.

  3. Design optimization of functionally graded dental implant.

    PubMed

    Hedia, H S; Mahmoud, Nemat-Alla

    2004-01-01

    The continuous increase of man's life span, and the growing confidence in using artificial materials inside the human body necessities introducing more effective prosthesis and implant materials. However, no artificial implant has biomechanical properties equivalent to the original tissue. Recently, titanium and bioceramic materials, such as hydroxyapatite are extensively used as fabrication materials for dental implant due to their high compatibility with hard tissue and living bone. Titanium has reasonable stiffness and strength while hydroxyapatite has low stiffness, low strength and high ability to reach full integration with living bone. In order to obtain good dental implantation of the biomaterial; full integration of the implant with living bone should be satisfied. Minimum stresses in the implant and the bone must be achieved to increase the life of the implant and prevent bone resorption. Therefore, the aim of the current investigation is to design an implant made from functionally graded material (FGM) to achieve the above advantages. The finite element method and optimization technique are used to reach the required implant design. The optimal materials of the FGM dental implant are found to be hydroxyapatite/titanium. The investigations have shown that the maximum stress in the bone for the hydroxyapatite/titanium FGM implant has been reduced by about 22% and 28% compared to currently used titanium and stainless steel dental implants, respectively.

  4. Using Aerospace Technology To Design Orthopedic Implants

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Mraz, P. J.; Davy, D. T.

    1996-01-01

    Technology originally developed to optimize designs of composite-material aerospace structural components used to develop method for optimizing designs of orthopedic implants. Development effort focused on designing knee implants, long-term goal to develop method for optimizing designs of orthopedic implants in general.

  5. Rescuing failed oral implants via Wnt activation

    PubMed Central

    Yin, Xing; Li, Jingtao; Chen, Tao; Mouraret, Sylvain; Dhamdhere, Girija; Brunski, John B.; Zou, Shujuan; Helms, Jill A.

    2016-01-01

    Aim Implant osseointegration is not always guaranteed and once fibrous encapsulation occurs clinicians have few options other than implant removal. Our goal was to test whether a WNT protein therapeutic could rescue such failed implants. Material and Methods Titanium implants were placed in over-sized murine oral osteotomies. A lack of primary stability was verified by mechanical testing. Interfacial strains were estimated by finite element modelling and histology coupled with histomorphometry confirmed the lack of peri-implant bone. After fibrous encapsulation was established peri-implant injections of a liposomal formulation of WNT3A protein (L-WNT3A) or liposomal PBS (L-PBS) were then initiated. Quantitative assays were employed to analyse the effects of L-WNT3A treatment. Results Implants in gap-type interfaces exhibited high interfacial strains and no primary stability. After verification of implant failure, L-WNT3A or L-PBS injections were initiated. L-WNT3A induced a rapid, significant increase in Wnt responsiveness in the peri-implant environment, cell proliferation and osteogenic protein expression. The amount of peri-implant bone and bone in contact with the implant were significantly higher in L-WNT3A cases. Conclusions These data demonstrate L-WNT3A can induce peri-implant bone formation even in cases where fibrous encapsulation predominates. PMID:26718012

  6. An Uncommon Presentation of Breast Implant Rupture.

    PubMed

    Koh, Eugene; Watson, David I; Dean, Nicola R

    2016-05-01

    Late periprosthetic seroma has lately been concerning for breast implant-associated anaplastic large cell lymphoma. The authors present an uncommon presentation of breast implant rupture with a seroma and skin rash forming 2 years after insertion of the implant. PMID:27579243

  7. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity.

    PubMed

    Oxley, Thomas J; Opie, Nicholas L; John, Sam E; Rind, Gil S; Ronayne, Stephen M; Wheeler, Tracey L; Judy, Jack W; McDonald, Alan J; Dornom, Anthony; Lovell, Timothy J H; Steward, Christopher; Garrett, David J; Moffat, Bradford A; Lui, Elaine H; Yassi, Nawaf; Campbell, Bruce C V; Wong, Yan T; Fox, Kate E; Nurse, Ewan S; Bennett, Iwan E; Bauquier, Sébastien H; Liyanage, Kishan A; van der Nagel, Nicole R; Perucca, Piero; Ahnood, Arman; Gill, Katherine P; Yan, Bernard; Churilov, Leonid; French, Christopher R; Desmond, Patricia M; Horne, Malcolm K; Kiers, Lynette; Prawer, Steven; Davis, Stephen M; Burkitt, Anthony N; Mitchell, Peter J; Grayden, David B; May, Clive N; O'Brien, Terence J

    2016-03-01

    High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions. PMID:26854476

  8. Neural correlates of behavioral amplitude modulation sensitivity in the budgerigar midbrain.

    PubMed

    Henry, Kenneth S; Neilans, Erikson G; Abrams, Kristina S; Idrobo, Fabio; Carney, Laurel H

    2016-04-01

    Amplitude modulation (AM) is a crucial feature of many communication signals, including speech. Whereas average discharge rates in the auditory midbrain correlate with behavioral AM sensitivity in rabbits, the neural bases of AM sensitivity in species with human-like behavioral acuity are unexplored. Here, we used parallel behavioral and neurophysiological experiments to explore the neural (midbrain) bases of AM perception in an avian speech mimic, the budgerigar (Melopsittacus undulatus). Behavioral AM sensitivity was quantified using operant conditioning procedures. Neural AM sensitivity was studied using chronically implanted microelectrodes in awake, unrestrained birds. Average discharge rates of multiunit recording sites in the budgerigar midbrain were insufficient to explain behavioral sensitivity to modulation frequencies <100 Hz for both tone- and noise-carrier stimuli, even with optimal pooling of information across recording sites. Neural envelope synchrony, in contrast, could explain behavioral performance for both carrier types across the full range of modulation frequencies studied (16-512 Hz). The results suggest that envelope synchrony in the budgerigar midbrain may underlie behavioral sensitivity to AM. Behavioral AM sensitivity based on synchrony in the budgerigar, which contrasts with rate-correlated behavioral performance in rabbits, raises the possibility that envelope synchrony, rather than average discharge rate, might also underlie AM perception in other species with sensitive AM detection abilities, including humans. These results highlight the importance of synchrony coding of envelope structure in the inferior colliculus. Furthermore, they underscore potential benefits of devices (e.g., midbrain implants) that evoke robust neural synchrony. PMID:26843608

  9. Rule generation from neural networks

    SciTech Connect

    Fu, L.

    1994-08-01

    The neural network approach has proven useful for the development of artificial intelligence systems. However, a disadvantage with this approach is that the knowledge embedded in the neural network is opaque. In this paper, we show how to interpret neural network knowledge in symbolic form. We lay down required definitions for this treatment, formulate the interpretation algorithm, and formally verify its soundness. The main result is a formalized relationship between a neural network and a rule-based system. In addition, it has been demonstrated that the neural network generates rules of better performance than the decision tree approach in noisy conditions. 7 refs.

  10. Electromagnetic and thermal effects of IR-UWB wireless implant systems on the human head.

    PubMed

    Thotahewa, Kasun M S; Redouté, Jean-Michel; Yuce, Mehmet R

    2013-01-01

    The usage of implanted wireless transmitting devices inside the human body has become widely popular in recent years. Applications such as multi-channel neural recording systems require high data rates in the wireless transmission link. Because of the inherent advantages provided by Impulse-Radio Ultra Wide Band (IR-UWB) such as high data rate capability, low power consumption and small form factor, there has been an increased research interest in using IR-UWB for bio-medical implant applications. Hence it has become imperative to analyze the electromagnetic effects caused by the use of IR-UWB when it is operated in or near the human body. This paper reports the electromagnetic effects of head implantable transmitting devices operating based on Impulse Radio Ultra Wide Band (IR-UWB) wireless technology. Simulations illustrate the performance of an implantable UWB antenna tuned to operate at 4 GHz with an -10 dB bandwidth of approximately 1 GHz when it is implanted in a human head model. Specific Absorption Rate (SAR), Specific Absorption (SA) and temperature increase are analyzed to compare the compliance of the transmitting device with international safety regulations. PMID:24110902

  11. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies

    NASA Astrophysics Data System (ADS)

    Harris, J. P.; Capadona, J. R.; Miller, R. H.; Healy, B. C.; Shanmuganathan, K.; Rowan, S. J.; Weder, C.; Tyler, D. J.

    2011-10-01

    The hypothesis is that the mechanical mismatch between brain tissue and microelectrodes influences the inflammatory response. Our unique, mechanically adaptive polymer nanocomposite enabled this study within the cerebral cortex of rats. The initial tensile storage modulus of 5 GPa decreases to 12 MPa within 15 min under physiological conditions. The response to the nanocomposite was compared to surface-matched, stiffer implants of traditional wires (411 GPa) coated with the identical polymer substrate and implanted on the contralateral side. Both implants were tethered. Fluorescent immunohistochemistry labeling examined neurons, intermediate filaments, macrophages, microglia and proteoglycans. We demonstrate, for the first time, a system that decouples the mechanical and surface chemistry components of the neural response. The neuronal nuclei density within 100 µm of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire. At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite. The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire. The results suggest that mechanically associated factors such as proteoglycans and intermediate filaments are important modulators of the response of the compliant nanocomposite.

  12. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo.

    PubMed

    Kozai, Takashi D Y; Jaquins-Gerstl, Andrea S; Vazquez, Alberto L; Michael, Adrian C; Cui, X Tracy

    2016-05-01

    Intracortical neural probes enable researchers to measure electrical and chemical signals in the brain. However, penetration injury from probe insertion into living brain tissue leads to an inflammatory tissue response. In turn, microglia are activated, which leads to encapsulation of the probe and release of pro-inflammatory cytokines. This inflammatory tissue response alters the electrical and chemical microenvironment surrounding the implanted probe, which may in turn interfere with signal acquisition. Dexamethasone (Dex), a potent anti-inflammatory steroid, can be used to prevent and diminish tissue disruptions caused by probe implantation. Herein, we report retrodialysis administration of dexamethasone while using in vivo two-photon microscopy to observe real-time microglial reaction to the implanted probe. Microdialysis probes under artificial cerebrospinal fluid (aCSF) perfusion with or without Dex were implanted into the cortex of transgenic mice that express GFP in microglia under the CX3CR1 promoter and imaged for 6 h. Acute morphological changes in microglia were evident around the microdialysis probe. The radius of microglia activation was 177.1 μm with aCSF control compared to 93.0 μm with Dex perfusion. T-stage morphology and microglia directionality indices were also used to quantify the microglial response to implanted probes as a function of distance. Dexamethasone had a profound effect on the microglia morphology and reduced the acute activation of these cells. PMID:26923363

  13. Mechanically adaptive intracortical implants improve the proximity of neuronal cell bodies.

    PubMed

    Harris, J P; Capadona, J R; Miller, R H; Healy, B C; Shanmuganathan, K; Rowan, S J; Weder, C; Tyler, D J

    2011-12-01

    The hypothesis is that the mechanical mismatch between brain tissue and microelectrodes influences the inflammatory response. Our unique, mechanically adaptive polymer nanocomposite enabled this study within the cerebral cortex of rats. The initial tensile storage modulus of 5 GPa decreases to 12 MPa within 15 min under physiological conditions. The response to the nanocomposite was compared to surface-matched, stiffer implants of traditional wires (411 GPa) coated with the identical polymer substrate and implanted on the contralateral side. Both implants were tethered. Fluorescent immunohistochemistry labeling examined neurons, intermediate filaments, macrophages, microglia and proteoglycans. We demonstrate, for the first time, a system that decouples the mechanical and surface chemistry components of the neural response. The neuronal nuclei density within 100 µm of the device at four weeks post-implantation was greater for the compliant nanocomposite compared to the stiff wire. At eight weeks post-implantation, the neuronal nuclei density around the nanocomposite was maintained, but the density around the wire recovered to match that of the nanocomposite. The glial scar response to the compliant nanocomposite was less vigorous than it was to the stiffer wire. The results suggest that mechanically associated factors such as proteoglycans and intermediate filaments are important modulators of the response of the compliant nanocomposite. PMID:22049097

  14. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate

    NASA Astrophysics Data System (ADS)

    Degenhart, Alan D.; Eles, James; Dum, Richard; Mischel, Jessica L.; Smalianchuk, Ivan; Endler, Bridget; Ashmore, Robin C.; Tyler-Kabara, Elizabeth C.; Hatsopoulos, Nicholas G.; Wang, Wei; Batista, Aaron P.; Cui, X. Tracy

    2016-08-01

    Objective. Electrocorticography (ECoG), used as a neural recording modality for brain-machine interfaces (BMIs), potentially allows for field potentials to be recorded from the surface of the cerebral cortex for long durations without suffering the host-tissue reaction to the extent that it is common with intracortical microelectrodes. Though the stability of signals obtained from chronically implanted ECoG electrodes has begun receiving attention, to date little work has characterized the effects of long-term implantation of ECoG electrodes on underlying cortical tissue. Approach. We implanted and recorded from a high-density ECoG electrode grid subdurally over cortical motor areas of a Rhesus macaque for 666 d. Main results. Histological analysis revealed minimal damage to the cortex underneath the implant, though the grid itself was encapsulated in collagenous tissue. We observed macrophages and foreign body giant cells at the tissue-array interface, indicative of a stereotypical foreign body response. Despite this encapsulation, cortical modulation during reaching movements was observed more than 18 months post-implantation. Significance. These results suggest that ECoG may provide a means by which stable chronic cortical recordings can be obtained with comparatively little tissue damage, facilitating the development of clinically viable BMI systems.

  15. Cortical Plasticity after Cochlear Implantation

    PubMed Central

    Petersen, B.; Gjedde, A.; Wallentin, M.; Vuust, P.

    2013-01-01

    The most dramatic progress in the restoration of hearing takes place in the first months after cochlear implantation. To map the brain activity underlying this process, we used positron emission tomography at three time points: within 14 days, three months, and six months after switch-on. Fifteen recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only in individuals in whom Broca's area has been active prior to the loss of hearing. PMID:24377050

  16. Cochlear implant optimized noise reduction.

    PubMed

    Mauger, Stefan J; Arora, Komal; Dawson, Pam W

    2012-12-01

    Noise-reduction methods have provided significant improvements in speech perception for cochlear implant recipients, where only quality improvements have been found in hearing aid recipients. Recent psychoacoustic studies have suggested changes to noise-reduction techniques specifically for cochlear implants, due to differences between hearing aid recipient and cochlear implant recipient hearing. An optimized noise-reduction method was developed with significantly increased temporal smoothing of the signal-to-noise ratio estimate and a more aggressive gain function compared to current noise-reduction methods. This optimized noise-reduction algorithm was tested with 12 cochlear implant recipients over four test sessions. Speech perception was assessed through speech in noise tests with three noise types; speech-weighted noise, 20-talker babble and 4-talker babble. A significant speech perception improvement using optimized noise reduction over standard processing was found in babble noise and speech-weighted noise and over a current noise-reduction method in speech-weighted noise. Speech perception in quiet was not degraded. Listening quality testing for noise annoyance and overall preference found significant improvements over the standard processing and over a current noise-reduction method in speech-weighted and babble noise types. This optimized method has shown significant speech perception and quality improvements compared to the standard processing and a current noise-reduction method.

  17. Advancing Binaural Cochlear Implant Technology.

    PubMed

    Dietz, Mathias; McAlpine, David

    2015-12-30

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology-ABCIT-as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies.

  18. Advancing Binaural Cochlear Implant Technology

    PubMed Central

    McAlpine, David

    2015-01-01

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology—ABCIT—as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies. PMID:26721929

  19. [Biomechanics of single dental implants].

    PubMed

    Zagorskiĭ, V A; Zagorskiĭ, V V

    2013-01-01

    Bone tissues of human skull, jawbones and hard dental tissues were formed formed by the influence of chewing loads which are functional irritants used for maintaining their physical qualities. Knowledge of tensions and deformations in bony structures allows to increase their joint work with dental implants installed.

  20. Cortical plasticity after cochlear implantation.

    PubMed

    Petersen, B; Gjedde, A; Wallentin, M; Vuust, P

    2013-01-01

    The most dramatic progress in the restoration of hearing takes place in the first months after cochlear implantation. To map the brain activity underlying this process, we used positron emission tomography at three time points: within 14 days, three months, and six months after switch-on. Fifteen recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only in individuals in whom Broca's area has been active prior to the loss of hearing. PMID:24377050

  1. Contamination Control in Ion Implantation

    SciTech Connect

    Eddy, R.; Doi, D.; Santos, I.; Wriggins, W.

    2011-01-07

    The investigation and elimination or control of metallic contamination in ion implanters has been a leading, continuous effort at implanter OEMs and in fabs/IDMs alike. Much of the efforts have been in the area of control of sputtering through material and geometry changes in apertures, beamline and target chamber components. In this paper, we will focus on an area that has not, heretofore, been fully investigated or controlled. This is the area of lubricants and internal and external support material such as selected cleaning media. Some of these materials are designated for internal use (beamline/vacuum) only while others are for internal and/or external use. Many applications for selected greases, for example, are designated for or are used for platens, implant disks/wheels and for wafer handling components. We will present data from popular lubricants (to be unnamed) used worldwide in ion implanters. This paper will review elements of concern in many lubricants that should be tracked and monitored by all fabs.Proper understanding of the characteristics, risks and the control of these potential contaminants can provide for rapid return to full process capability following major PMs or parts changes. Using VPD-ICPMS, Glow Discharge Mass Spectrometry and Ion Chromatography (IC) data, we will review the typical cleaning results and correlation to ''on wafer'' contamination by elements of concern--and by some elements that are otherwise barred from the fab.

  2. Immediate loading of dental implants.

    PubMed

    Henry, P J; Liddelow, G J

    2008-06-01

    The purpose of this review is to explore the concept of immediate loading as it pertains to dental implants and the indications for clinical practice. The definition of immediate loading will be considered together with a review of the relevant literature in an attempt to provide evidence-based guidelines for successful implementation into practice. A search of electronic databases including Medline, PubMed and the Cochrane Database of Systematic Reviews was undertaken using the terms "immediate loading'', "dental implants'', "immediate function'', "early loading'', "oral implants'', "immediate restoration'' and "systematic review''. This was supplemented by handsearching in peer-reviewed journals and cross-referenced with the articles accessed. Emphasis was given to systematic reviews and controlled clinical trials. A definition of immediate loading was suggested pertinent to the realities of logistics in clinical practice with respect to application and time frame. The literature was evaluated and shown to be limited with significant shortcomings. Guidelines and recommendations for clinical protocols were suggested and illustrated by examples of case types with a minimum of 1-3 years follow-up. A list of additional references for further reading was provided. Within the limitations of this review, there is evidence to suggest that immediate loading protocols have demonstrated high implant survival rates and may be cautiously recommended for certain clinical situations. However, more high level evidence studies, preferably randomized controlled trials (RCTs), over a long time frame are required to show a clear benefit over more conventional loading protocols.

  3. Sterility of packaged implant components.

    PubMed

    Worthington, Philip

    2005-01-01

    Several implant components in their original glass vial and peel-back packages were subjected to sterility testing to determine whether the contents remained sterile after the expiration date marked on the package had passed. The results from a university microbiology laboratory showed that the contents remained sterile for 6 to 11 years after the expiration dates. PMID:15973959

  4. Cortical plasticity after cochlear implantation.

    PubMed

    Petersen, B; Gjedde, A; Wallentin, M; Vuust, P

    2013-01-01

    The most dramatic progress in the restoration of hearing takes place in the first months after cochlear implantation. To map the brain activity underlying this process, we used positron emission tomography at three time points: within 14 days, three months, and six months after switch-on. Fifteen recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only in individuals in whom Broca's area has been active prior to the loss of hearing.

  5. Effectiveness of Implant Therapy Analyzed in a Swedish Population: Prevalence of Peri-implantitis.

    PubMed

    Derks, J; Schaller, D; Håkansson, J; Wennström, J L; Tomasi, C; Berglundh, T

    2016-01-01

    Peri-implantitis is an inflammatory disease affecting soft and hard tissues surrounding dental implants. As the global number of individuals that undergo restorative therapy through dental implants increases, peri-implantitis is considered as a major and growing problem in dentistry. A randomly selected sample of 588 patients who all had received implant-supported therapy 9 y earlier was clinically and radiographically examined. Prevalence of peri-implantitis was assessed and risk indicators were identified by multilevel regression analysis. Forty-five percent of all patients presented with peri-implantitis (bleeding on probing/suppuration and bone loss >0.5 mm). Moderate/severe peri-implantitis (bleeding on probing/suppuration and bone loss >2 mm) was diagnosed in 14.5%. Patients with periodontitis and with ≥4 implants, as well as implants of certain brands and prosthetic therapy delivered by general practitioners, exhibited higher odds ratios for moderate/severe peri-implantitis. Similarly, higher odds ratios were identified for implants installed in the mandible and with crown restoration margins positioned ≤1.5 mm from the crestal bone at baseline. It is suggested that peri-implantitis is a common condition and that several patient- and implant-related factors influence the risk for moderate/severe peri-implantitis (ClinicalTrials.gov NCT01825772). PMID:26701919

  6. Analysis of implant-failure predictors in the posterior maxilla: a retrospective study of 1395 implants.

    PubMed

    Pabst, Andreas Max; Walter, Christian; Ehbauer, Sebastian; Zwiener, Isabella; Ziebart, Thomas; Al-Nawas, Bilal; Klein, Marcus Oliver

    2015-04-01

    The aim of this study was to analyze predictors for dental implant failure in the posterior maxilla. A database was created to include patients being treated with dental implants posterior to the maxillary cuspids. Independent variables thought to be predictive of potential implant failure included (1) sinus elevation, (2) implant length, (3) implant diameter, (4) indication, (5) implant region, (6) timepoint of implant placement, (7) one-vs. two-stage augmentation, and (8) healing mode. Cox regression analysis was used to evaluate the influence of predictors 1-3 on implant failure as dependent variable. The predictors 4-9 were analyzed strictly descriptively. The final database included 592 patients with 1395 implants. The overall 1- and 5-year implant survival rates were 94.8% and 88.6%, respectively. The survival rates for sinus elevation vs. placement into native bone were 94.4% and 95.4%, respectively (p = 0.33). The survival rates for the short (<10 mm), the middle (10-13 mm) and the long implants (>13 mm) were 100%, 89% and 76.8%, respectively (middle-vs. long implants p = 0.62). The implant survival rates for the small- (<3.6 mm), the middle- (3.6-4.5 mm) and the wide diameter implants (>4.5 mm) were 92.5%, 87.9% and 89.6%, respectively (p = 0.0425). None of the parameters evaluated were identified as predictor of implant failure in the posterior maxilla.

  7. Magnetic Resonance Imaging Compatibility of the Polymer-based Cochlear Implant

    PubMed Central

    Kim, Jin Ho; Min, Kyou Sik; An, Soon Kwan; Jeong, Joon Soo; Jun, Sang Beom; Cho, Min Hyoung; Son, Young-Don; Cho, Zang-Hee

    2012-01-01

    Objectives In this study, we compared the magnetic resonance (MR) image artifacts caused by a conventional metal-based cochlear implant and a newly developed liquid crystal polymer (LCP)-based device. Methods The metal-based cochlear implant system (Nurobiosys Co.) was attached to side of the head of a subject and the LCP-based device was attached to opposite side. In both devices, alignment magnets were removed for safety. Magnetic resonance imaging (MRI) was performed on a widely used 3.0 T and an ultra-high 7.0 T MRI machine. 3.0 and 7.0 T MR images were acquired using T1- and T2*-weighted gradient echo sequences, respectively. Results In the 3.0 T images, the metal-based device on the left side generated the significant amount of artifacts. The MR images in the proximity of the metal package were obscured by the artifacts in both axial and sagittal views. On the other hand, the MR images near the LCP-based device were relatively free from the artifacts and clearly showed the brain structures. 7.0 T MR images showed the more severe distortion in the both sides but the metal-based cochlear implant system caused a much larger obscure area than the LCP-based system. Conclusion The novel LCP-based cochlear implant provides a good MRI compatibility beyond present-day cochlear implants. Thus, MR images can be obtained from the subjects even with the implanted LCP-based neural prosthetic systems providing useful diagnostic information. Furthermore, it will be also useful for functional MRI studies of the auditory perception mechanism after cochlear implantations as well as for positron emission tomography-MRI hybrid imaging. PMID:22701769

  8. Auditory midbrain implant: research and development towards a second clinical trial.

    PubMed

    Lim, Hubert H; Lenarz, Thomas

    2015-04-01

    The cochlear implant is considered one of the most successful neural prostheses to date, which was made possible by visionaries who continued to develop the cochlear implant through multiple technological and clinical challenges. However, patients without a functional auditory nerve or implantable cochlea cannot benefit from a cochlear implant. The focus of the paper is to review the development and translation of a new type of central auditory prosthesis for this group of patients that is known as the auditory midbrain implant (AMI) and is designed for electrical stimulation within the inferior colliculus. The rationale and results for the first AMI clinical study using a multi-site single-shank array will be presented initially. Although the AMI has achieved encouraging results in terms of safety and improvements in lip-reading capabilities and environmental awareness, it has not yet provided sufficient speech perception. Animal and human data will then be presented to show that a two-shank AMI array can potentially improve hearing performance by targeting specific neurons of the inferior colliculus. A new two-shank array, stimulation strategy, and surgical approach are planned for the AMI that are expected to improve hearing performance in the patients who will be implanted in an upcoming clinical trial funded by the National Institutes of Health. Positive outcomes from this clinical trial will motivate new efforts and developments toward improving central auditory prostheses for those who cannot sufficiently benefit from cochlear implants. This article is part of a Special Issue entitled . PMID:25613994

  9. Skeletal implants in aesthetic facial surgery.

    PubMed

    Cox, A J; Wang, T D

    1999-01-01

    The features of the nose, mentum, and malar complex define a person's profile and give the essence of character to the visage. Whether profile deficiencies are due to congenital, traumatic, or aging factors, facial plastic surgeons are able to meet patients' and their own exacting demands more thoroughly with skeletal implants. Although the search for the perfect implant continues, today's armamentarium of implant materials is vast and, with appropriate selection and attention to technique, facial skeletal implants can be successful in creating change impossible to obtain with soft tissue techniques alone. This article reviews both the biomaterials used in mandibular and malar complex implants and the techniques.

  10. Surface biotechnology for refining cochlear implants.

    PubMed

    Tan, Fei; Walshe, Peter; Viani, Laura; Al-Rubeai, Mohamed

    2013-12-01

    The advent of the cochlear implant is phenomenal because it is the first surgical prosthesis that is capable of restoring one of the senses. The subsequent rapid evolution of cochlear implants through increasing complexity and functionality has been synchronized with the recent advancements in biotechnology. Surface biotechnology has refined cochlear implants by directly influencing the implant–tissue interface. Emerging surface biotechnology strategies are exemplified by nanofibrous polymeric materials, topographical surface modification, conducting polymer coatings, and neurotrophin-eluting implants. Although these novel developments have received individual attention in the recent literature, the time has come to investigate their collective applications to cochlear implants to restore lost hearing. PMID:24404581

  11. Choice of a dental implant system.

    PubMed

    Hunt, Peter R; Gartner, Judith L; Norkin, Frederic J

    2005-04-01

    Many dentists are bewildered by the intricacies and complexities of dental implants. They are constantly besieged by product advertisements and can find it difficult to choose which systems to work with. Some dentists are so intimidated by the subject that they choose to avoid getting involved with implants and instead stick to traditional tooth replacement systems. By breaking implants down into 4 main components, the body, collar, connection, and restorative post, it is easier to understand the structure and function of dental implants. Each portion should be designed to achieve certain objectives. Once these structural components are understood, it is easier to compare and contrast differing implant systems.

  12. Surface biotechnology for refining cochlear implants.

    PubMed

    Tan, Fei; Walshe, Peter; Viani, Laura; Al-Rubeai, Mohamed

    2013-12-01

    The advent of the cochlear implant is phenomenal because it is the first surgical prosthesis that is capable of restoring one of the senses. The subsequent rapid evolution of cochlear implants through increasing complexity and functionality has been synchronized with the recent advancements in biotechnology. Surface biotechnology has refined cochlear implants by directly influencing the implant–tissue interface. Emerging surface biotechnology strategies are exemplified by nanofibrous polymeric materials, topographical surface modification, conducting polymer coatings, and neurotrophin-eluting implants. Although these novel developments have received individual attention in the recent literature, the time has come to investigate their collective applications to cochlear implants to restore lost hearing.

  13. Autogenous dermis-fat "baseball" orbital implant.

    PubMed

    Bullock, J D

    1987-01-01

    A new procedure has been devised for the construction of an autogenous dermis-fat orbital implant, in which two figure-eight-shaped dermis-fat grafts are sutured together into a baseball shape. Correct implant size can be determined by preplacement of different-sized Mule spheres and testing for accurate fit. The "baseball" implant eliminates deep orbital fat which is distant from a vascular supply, and because it is covered with dermis, it maximizes graft vascularization, thus promoting survival of the implanted tissues. In eight patients, followed postoperatively for as long as 28 months, baseball implants have produced highly satisfactory results.

  14. Thin-film rechargeable lithium batteries for implantable devices

    SciTech Connect

    Bates, J.b.; Dudney, N.J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  15. A novel implantable multichannel silicon-based microelectrode

    NASA Astrophysics Data System (ADS)

    Sui, Xiao-Hong; Zhang, Ruo-Xin; Pei, Wei-Hua; Chen, Hong-Da

    2007-07-01

    Silicon-based microelectrodes have been confirmed to be helpful in neural prostheses. The fabricated 7-channel silicon-based microelectrode was feasible to be implanted into the brain cortex. The manufacturing process by microelectromechanical system (MEMS) technology was detailed with four photolithographic masks. The microscopic photographs and SEM images indicated that the probe shank was 3 mm long, 100 μm wide and 20 μm thick with the recording sites spaced 120 μm apart for good signal isolation. To facilitate the insertion and minimize the trauma, the microelectrode is narrowed down gradually near the tip with the tip taper angle of 6 degrees. Curve of the single recording site impedance versus frequency was shown by test in vitro and the impedance declined from 150.5kΩ to 6.0 kΩ with frequency changing from 10 k to 10 MHz.

  16. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    DOE R&D Accomplishments Database

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  17. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface

    PubMed Central

    Gore, Russell K.; Choi, Yoonsu; Bellamkonda, Ravi; English, Arthur

    2015-01-01

    Objective Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. Approach Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13-week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. Main results In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. Significance These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small

  18. Functional recordings from awake, behaving rodents through a microchannel based regenerative neural interface

    NASA Astrophysics Data System (ADS)

    Gore, Russell K.; Choi, Yoonsu; Bellamkonda, Ravi; English, Arthur

    2015-02-01

    Objective. Neural interface technologies could provide controlling connections between the nervous system and external technologies, such as limb prosthetics. The recording of efferent, motor potentials is a critical requirement for a peripheral neural interface, as these signals represent the user-generated neural output intended to drive external devices. Our objective was to evaluate structural and functional neural regeneration through a microchannel neural interface and to characterize potentials recorded from electrodes placed within the microchannels in awake and behaving animals. Approach. Female rats were implanted with muscle EMG electrodes and, following unilateral sciatic nerve transection, the cut nerve was repaired either across a microchannel neural interface or with end-to-end surgical repair. During a 13 week recovery period, direct muscle responses to nerve stimulation proximal to the transection were monitored weekly. In two rats repaired with the neural interface, four wire electrodes were embedded in the microchannels and recordings were obtained within microchannels during proximal stimulation experiments and treadmill locomotion. Main results. In these proof-of-principle experiments, we found that axons from cut nerves were capable of functional reinnervation of distal muscle targets, whether regenerating through a microchannel device or after direct end-to-end repair. Discrete stimulation-evoked and volitional potentials were recorded within interface microchannels in a small group of awake and behaving animals and their firing patterns correlated directly with intramuscular recordings during locomotion. Of 38 potentials extracted, 19 were identified as motor axons reinnervating tibialis anterior or soleus muscles using spike triggered averaging. Significance. These results are evidence for motor axon regeneration through microchannels and are the first report of in vivo recordings from regenerated motor axons within microchannels in a small

  19. The change of rotational freedom following different insertion torques in three implant systems with implant driver

    PubMed Central

    Kwon, Joo-Hyun; Han, Chong-Hyun; Chang, Jae-Seung

    2009-01-01

    STATEMENT OF PROBLEM Implant drivers are getting popular in clinical dentistry. Unlike to implant systems with external hex connection, implant drivers directly engage the implant/abutment interface. The deformation of the implant/abutment interface can be introduced while placing an implant with its implant driver in clinical situations. PURPOSE This study evaluated the change of rotational freedom between an implant and its abutment after application of different insertion torques. MATERIAL AND METHODS Three kinds of internal connection implants were utilized for the current study (4.5 × 12 mm Xive, 4.3 × 11.5 mm Inplant Magicgrip, 4.3 × 12 mm Implantium MF). An EstheticBase, a 2-piece top, a Dual abutment was used for its corresponding implant system. The rotational freedom between an implant and its abutment were measured before and after applying 45, 100 Ncm insertion torque. Repeated measures ANOVA was used for statistical analysis. RESULTS Under 45 Ncm insertion torque, the rotational freedom between an implant and its abutment was significantly increased in Xive (P = .003). However, no significant change was noted in Inplant Magicgrip and Implantium MF. Under 100 Ncm torque, both in Xive (P = .0005) and Implatium MF (P = .03) resulted in significantly increased rotational freedom between the implant and its abutment. DISCUSSION The design of the implant/implant driver interface effectively prevented the deformation of implant/abutment interface. Little change was noted in the rotational freedom between an implant and its abutment, even though the insertion torque was far beyond clinical application. CONCLUSIONS The implant/abutment joint of internally connecting implants were quite stable under insertion torque in clinical situation. PMID:21165253

  20. Predicting Peri-implant Stresses Around Titanium and Zirconium Dental Implants-A Finite Element Analysis.

    PubMed

    Gujjarlapudi, Manmohan Choudary; Nunna, Narayana Venkata; Manne, Sanjay Dutt; Sarikonda, Varalakshmi Reddy; Madineni, Praveen Kumar; Meruva, Reddi Narasimha Rao

    2013-09-01

    Due to anatomical and surgical constrains the implant placement may not be parallel to each other always. Non-parallel implants are subjected to detrimental stresses at implant bone interface. Also depending on type of implant material i.e. titanium or zirconium, stresses tend to vary due to change in physical and mechanical properties. Hence stress analysis at implant bone interface between different parallel and non-parallel implants becomes significant. Evaluation and comparison of stress distribution in the bone around two parallel and non-parallel titanium and zirconium dental implants on axial and non-axial loading supporting three unit fixed prosthesis. Three dimensional finite element models (M1, M2, M3) were made of three differently angulated implants in ANSYS (11.0 Version) software and P4 processor with a speed of 3 GHz and 3 Gb RAM hardware, common for titanium and zirconium implants. Stress around the implants was analyzed on an axial load of 200 N and a non-axial load of 50 N. In both titanium and zirconium implants on axial loading in cortical bone, higher stresses were observed in M3 followed by M2 and M1. On non-axial loading higher stresses were observed in M2, followed by M3 and M1. In both titanium and zirconium implants on axial and non-axial loading in cancellous bone stresses were higher in M3 followed by M2 and M1. Zirconium implants showed lower stresses in cortical bone and higher stresses in cancellous bone compared to titanium implants. Over all Stresses in the bone were more due to titanium implants than zirconium implants. Zirconium implants led to lower peri-implant stresses than titanium implants.

  1. The 'baseball' orbital implant: a prospective study.

    PubMed

    Leatherbarrow, B; Kwartz, J; Sunderland, S; Brammar, R; Nichol, E

    1994-01-01

    The 'baseball' orbital implant was described by Frueh and Felker in 1976. Although this implant was originally described for use as a secondary implant, it has also been widely used as a primary implant at the time of enucleation. This prospective study evaluated the effectiveness of this implant used both primarily and secondarily. Forty-four patients were implanted between April 1990 and May 1991, 19 of the implants being primary and 25 secondary. A standardised operative and post-operative protocol was followed. The mean follow-up time was 31 months (range 24-36 months). The patients were evaluated for the degree of volume replacement, implant and associated prosthesis motility, secondary eyelid and socket problems, patient satisfaction, the need for further surgery and post-operative complications. The overall results achieved by primary implantation were superior to those of secondary implantation. Our results suggest that this implant provides a satisfactory functional and cosmetic rehabilitation of the anophthalmic patient with few complications.

  2. Implant fractures: Rare but not exceptional.

    PubMed

    Sanivarapu, Sahitya; Moogla, Srinivas; Kuntcham, Rupa Sruthi; Kolaparthy, Lakshmi Kanth

    2016-01-01

    Fabrication of dentures aided with implants has become a preferred treatment option for rehabilitation of completely and partially edentulous patients when durability is concerned. Simulation to natural teeth in terms of esthetics and to a greater extent in function can be considered as key elements in the raise of implant dentistry worldwide. Despite its high success rate, therapy with osseointegrated dental implants is not free of complications. Implant failure can occur for other reasons, with implant fracture being one of the major reasons for late failure. Although the incidence of implant fractures may be low, it invariably effects the patient and also clinician. Thus, sound evidence based knowledge of cause of fracture is mandatory for that careful treatment that can reduce the incidence of fracture helping in a better treatment plan. The aim of this review is to enlighten the various causes of implant fracture. PMID:27041830

  3. Implant fractures: Rare but not exceptional

    PubMed Central

    Sanivarapu, Sahitya; Moogla, Srinivas; Kuntcham, Rupa Sruthi; Kolaparthy, Lakshmi Kanth

    2016-01-01

    Fabrication of dentures aided with implants has become a preferred treatment option for rehabilitation of completely and partially edentulous patients when durability is concerned. Simulation to natural teeth in terms of esthetics and to a greater extent in function can be considered as key elements in the raise of implant dentistry worldwide. Despite its high success rate, therapy with osseointegrated dental implants is not free of complications. Implant failure can occur for other reasons, with implant fracture being one of the major reasons for late failure. Although the incidence of implant fractures may be low, it invariably effects the patient and also clinician. Thus, sound evidence based knowledge of cause of fracture is mandatory for that careful treatment that can reduce the incidence of fracture helping in a better treatment plan. The aim of this review is to enlighten the various causes of implant fracture. PMID:27041830

  4. Hydroxyapatite motility implants in ocular prosthetics.

    PubMed

    Cowper, T R

    1995-03-01

    For the past 5 years, an increasing number of ophthalmologists have been using hydroxyapatite (HA) motility implants after uncomplicated enucleation or evisceration of the eye. Unlike previous implant materials, HA promotes fibrovascular ingrowth and seemingly true integration of the motility implant to the residual ocular structures. As a result, a more stable defect and greater movement of the overlying prosthesis is produced. In addition, the problems of long-term orbital implant migration and the vexing postenucleation socket syndrome are thought to be minimized. This article briefly reviews the history and development of orbital implants and HA implant surgical and prosthetic procedures. It is concluded that HA implant rehabilitation is indicated after most uncomplicated enucleations or eviscerations where there is small likelihood of complication.

  5. Implantation of nitrogen: Effects of hydrogen and implantation energy

    NASA Technical Reports Server (NTRS)

    Sugiura, Naoji; Futagami, Tsuneji; Nagai, Siro

    1993-01-01

    To solve the question on solar nitrogen in lunar soils, i.e. variation in isotopic composition and apparently high retentivity compared with rare gases, nitrogen implantation experiments were conducted. At the Meteoritical Society Meeting in Copenhagen, the results of stepped combustion of implanted nitrogen in ilmenite and olivine were presented. The degassing behavior of nitrogen (and also Ar) was quite different from that observed in the case of lunar soils. Extraction temperatures are higher (greater than 1100 C for ilmenite and 1500 C for olivine) than that for lunar soils. Both nitrogen and Ar seem to be retained at the same efficiency. Therefore, additional experiments were conducted to make degassing behavior of nitrogen more close to that observed in the case of lunar soils.

  6. Parallel processing neural networks

    SciTech Connect

    Zargham, M.

    1988-09-01

    A model for Neural Network which is based on a particular kind of Petri Net has been introduced. The model has been implemented in C and runs on the Sequent Balance 8000 multiprocessor, however it can be directly ported to different multiprocessor environments. The potential advantages of using Petri Nets include: (1) the overall system is often easier to understand due to the graphical and precise nature of the representation scheme, (2) the behavior of the system can be analyzed using Petri Net theory. Though, the Petri Net is an obvious choice as a basis for the model, the basic Petri Net definition is not adequate to represent the neuronal system. To eliminate certain inadequacies more information has been added to the Petri Net model. In the model, a token represents either a processor or a post synaptic potential. Progress through a particular Neural Network is thus graphically depicted in the movement of the processor tokens through the Petri Net.

  7. Practical emotional neural networks.

    PubMed

    Lotfi, Ehsan; Akbarzadeh-T, M-R

    2014-11-01

    In this paper, we propose a limbic-based artificial emotional neural network (LiAENN) for a pattern recognition problem. LiAENN is a novel computational neural model of the emotional brain that models emotional situations such as anxiety and confidence in the learning process, the short paths, the forgetting processes, and inhibitory mechanisms of the emotional brain. In the model, the learning weights are adjusted by the proposed anxious confident decayed brain emotional learning rules (ACDBEL). In engineering applications, LiAENN is utilized in facial detection, and emotion recognition. According to the comparative results on ORL and Yale datasets, LiAENN shows a higher accuracy than other applied emotional networks such as brain emotional learning (BEL) and emotional back propagation (EmBP) based networks.

  8. Neural network technologies

    NASA Technical Reports Server (NTRS)

    Villarreal, James A.

    1991-01-01

    A whole new arena of computer technologies is now beginning to form. Still in its infancy, neural network technology is a biologically inspired methodology which draws on nature's own cognitive processes. The Software Technology Branch has provided a software tool, Neural Execution and Training System (NETS), to industry, government, and academia to facilitate and expedite the use of this technology. NETS is written in the C programming language and can be executed on a variety of machines. Once a network has been debugged, NETS can produce a C source code which implements the network. This code can then be incorporated into other software systems. Described here are various software projects currently under development with NETS and the anticipated future enhancements to NETS and the technology.

  9. Neural mechanisms of foraging.

    PubMed

    Kolling, Nils; Behrens, Timothy E J; Mars, Rogier B; Rushworth, Matthew F S

    2012-04-01

    Behavioral economic studies involving limited numbers of choices have provided key insights into neural decision-making mechanisms. By contrast, animals' foraging choices arise in the context of sequences of encounters with prey or food. On each encounter, the animal chooses whether to engage or, if the environment is sufficiently rich, to search elsewhere. The cost of foraging is also critical. We demonstrate that humans can alternate between two modes of choice, comparative decision-making and foraging, depending on distinct neural mechanisms in ventromedial prefrontal cortex (vmPFC) and anterior cingulate cortex (ACC) using distinct reference frames; in ACC, choice variables are represented in invariant reference to foraging or searching for alternatives. Whereas vmPFC encodes values of specific well-defined options, ACC encodes the average value of the foraging environment and cost of foraging.

  10. Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait

    NASA Astrophysics Data System (ADS)

    Musick, Katherine M.; Rigosa, Jacopo; Narasimhan, Shreya; Wurth, Sophie; Capogrosso, Marco; Chew, Daniel J.; Fawcett, James W.; Micera, Silvestro; Lacour, Stéphanie P.

    2015-09-01

    Reliably interfacing a nerve with an electrode array is one of the approaches to restore motor and sensory functions after an injury to the peripheral nerve. Accomplishing this with current technologies is challenging as the electrode-neuron interface often degrades over time, and surrounding myoelectric signals contaminate the neuro-signals in awake, moving animals. The purpose of this study was to evaluate the potential of microchannel electrode implants to monitor over time and in freely moving animals, neural activity from regenerating nerves. We designed and fabricated implants with silicone rubber and elastic thin-film metallization. Each implant carries an eight-by-twelve matrix of parallel microchannels (of 120 × 110 μm2 cross-section and 4 mm length) and gold thin-film electrodes embedded in the floor of ten of the microchannels. After sterilization, the soft, multi-lumen electrode implant is sutured between the stumps of the sciatic nerve. Over a period of three months and in four rats, the microchannel electrodes recorded spike activity from the regenerating sciatic nerve. Histology indicates mini-nerves formed of axons and supporting cells regenerate robustly in the implants. Analysis of the recorded spikes and gait kinematics over the ten-week period suggests firing patterns collected with the microchannel electrode implant can be associated with different phases of gait.

  11. Chronic multichannel neural recordings from soft regenerative microchannel electrodes during gait

    PubMed Central

    Musick, Katherine M.; Rigosa, Jacopo; Narasimhan, Shreya; Wurth, Sophie; Capogrosso, Marco; Chew, Daniel J.; Fawcett, James W.; Micera, Silvestro; Lacour, Stéphanie P.

    2015-01-01

    Reliably interfacing a nerve with an electrode array is one of the approaches to restore motor and sensory functions after an injury to the peripheral nerve. Accomplishing this with current technologies is challenging as the electrode-neuron interface often degrades over time, and surrounding myoelectric signals contaminate the neuro-signals in awake, moving animals. The purpose of this study was to evaluate the potential of microchannel electrode implants to monitor over time and in freely moving animals, neural activity from regenerating nerves. We designed and fabricated implants with silicone rubber and elastic thin-film metallization. Each implant carries an eight-by-twelve matrix of parallel microchannels (of 120 × 110 μm2 cross-section and 4 mm length) and gold thin-film electrodes embedded in the floor of ten of the microchannels. After sterilization, the soft, multi-lumen electrode implant is sutured between the stumps of the sciatic nerve. Over a period of three months and in four rats, the microchannel electrodes recorded spike activity from the regenerating sciatic nerve. Histology indicates mini-nerves formed of axons and supporting cells regenerate robustly in the implants. Analysis of the recorded spikes and gait kinematics over the ten-week period suggests firing patterns collected with the microchannel electrode implant can be associated with different phases of gait. PMID:26400791

  12. A cranial window imaging method for monitoring vascular growth around chronically implanted micro-ECoG devices.

    PubMed

    Schendel, Amelia A; Thongpang, Sanitta; Brodnick, Sarah K; Richner, Thomas J; Lindevig, Bradley D B; Krugner-Higby, Lisa; Williams, Justin C

    2013-08-15

    Implantable neural micro-electrode arrays have the potential to restore lost sensory or motor function to many different areas of the body. However, the invasiveness of these implants often results in scar tissue formation, which can have detrimental effects on recorded signal quality and longevity. Traditional histological techniques can be employed to study the tissue reaction to implanted micro-electrode arrays, but these techniques require removal of the brain from the skull, often causing damage to the meninges and cortical surface. This is especially unfavorable when studying the tissue response to electrode arrays such as the micro-electrocorticography (micro-ECoG) device, which sits on the surface of the cerebral cortex. In order to better understand the biological changes occurring around these types of devices, a cranial window implantation scheme has been developed, through which the tissue response can be studied in vivo over the entire implantation period. Rats were implanted with epidural micro-ECoG arrays, over which glass coverslips were placed and sealed to the skull, creating cranial windows. Vascular growth around the devices was monitored for one month after implantation. It was found that blood vessels grew through holes in the micro-ECoG substrate, spreading over the top of the device. Micro-hematomas were observed at varying time points after device implantation in every animal, and tissue growth between the micro-ECoG array and the window occurred in several cases. Use of the cranial window imaging technique with these devices enabled the observation of tissue changes that would normally go unnoticed with a standard device implantation scheme. PMID:23769960

  13. [Evaluation of asymetric implants in breast cancer].

    PubMed

    Fitoussi, A; Couturaud, B; Laki, F; Alran, S; Salmon, R J

    2005-10-01

    Since more than twenty years, methods of breast reconstruction using implants have continued to evolve in order to improve their aesthetic results. Shapes and materials of these implants have also evolved to obtain contours similar to that of the natural opposite breast. Therefore it can be considered that the use of asymmetric implants is the last step in implant technology before using made to measure implants. Asymmetric implants allow obtaining different contours in harmony to the different breast shapes according to the side, left or right, of the reconstructed breast which maximise the naturalness of the result. Such implants have an axis directed towards the exterior and lower part of the chest wall, are wider than high with a thinner part on their inner edge and a concave rear side moulding the curves of the chest wall. In our own experience, we placed more than 500 asymmetric implants. When analysing retrospectively the medical records of 156 patients, no distinctive features were observed when compared to symmetric classic implants in easiness in the surgical procedure or in complications except a slightly higher rate of seroma formation. When compared to usual implants the main benefits of asymmetric implants are: to offer a wider breadth, to slope down gently on their upper and inner sides according to their concave rear side, and therefore to better match subtle curves of a normal breast. Moreover such contours allow a distribution of the volume which fit better to the usual natural breast configuration of patients who underwent surgery for breast carcinoma. At last, such implants are easy to place and a very low rate of secondary rotation has been observed. In summary, for all these reasons, asymmetric implants, can be considered to be the class one in the choice of implants for breast reconstruction after breast surgery. PMID:16198040

  14. Mini vs. Standard Implants for Mandibular Overdentures: A Randomized Trial.

    PubMed

    de Souza, R F; Ribeiro, A B; Della Vecchia, M P; Costa, L; Cunha, T R; Reis, A C; Albuquerque, R F

    2015-10-01

    A mandibular implant-retained overdenture is considered a first-choice treatment for edentulism. However, some aspects limit the use of standard implants-for example, the width of edentulous ridges, chronic diseases, fear, or costs. This randomized trial compared mandibular overdentures retained by 2 or 4 mini-implants with standard implants, considering oral health-related quality of life (OHRQoL), patient satisfaction, and complications such as lost implant. In sum, 120 edentulous men and women (mean age, 59.5 ± 8.5 y) randomly received 4 mini-implants, 2 mini-implants, or 2 standard implants. Participants provided data regarding OHRQoL and satisfaction until 12 mo. Clinical parameters, including implant survival rate, were also recorded. Both 2 and 4 mini-implants led to better OHRQoL, compared with 2 standard implants. Treatment with 4 mini-implants was more satisfying than 2 standard implants, with 2 mini-implants presenting intermediate results. Implant survival rate was 89%, 82%, and 99% for 4 mini-implants, 2 mini-implants, or 2 standard implants, respectively. Overdentures retained by 4 or 2 mini-implants can achieve OHRQoL and satisfaction at least comparable with that of 2 standard implants. However, the survival rate of mini implants is not as high as that of standard implants (ClinicalTrials.gov NCT01411683).

  15. Quantum Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Williams, Colin P.

    1997-01-01

    The capacity of classical neurocomputers is limited by the number of classical degrees of freedom which is roughly proportional to the size of the computer. By Contrast, a Hypothetical quantum neurocomputer can implement an exponentially large number of the degrees of freedom within the same size. In this paper an attempt is made to reconcile linear reversible structure of quantum evolution with nonlinear irreversible dynamics for neural nets.

  16. Neural networks for triggering

    SciTech Connect

    Denby, B. ); Campbell, M. ); Bedeschi, F. ); Chriss, N.; Bowers, C. ); Nesti, F. )

    1990-01-01

    Two types of neural network beauty trigger architectures, based on identification of electrons in jets and recognition of secondary vertices, have been simulated in the environment of the Fermilab CDF experiment. The efficiencies for B's and rejection of background obtained are encouraging. If hardware tests are successful, the electron identification architecture will be tested in the 1991 run of CDF. 10 refs., 5 figs., 1 tab.

  17. Electronic Neural Networks

    NASA Technical Reports Server (NTRS)

    Lambe, John; Moopen, Alexander; Thakoor, Anilkumar P.

    1988-01-01

    Memory based on neural network models content-addressable and fault-tolerant. System includes electronic equivalent of synaptic network; particular, matrix of programmable binary switching elements over which data distributed. Switches programmed in parallel by outputs of serial-input/parallel-output shift registers. Input and output terminals of bank of high-gain nonlinear amplifiers connected in nonlinear-feedback configuration by switches and by memory-prompting shift registers.

  18. Hydroxyapatite ocular implant and non-integrated implants in eviscerated patients

    PubMed Central

    Gradinaru, S; Popescu, V; Leasu, C; Pricopie, S; Yasin, S; Ciuluvica, R; Ungureanu, E

    2015-01-01

    Introduction: This study compares the outcomes and complications of hydroxyapatite ocular implant and non-integrated ocular implants following evisceration. Materials and Methods: This is a retrospective study of 90 patients who underwent evisceration for different ocular affections, in the Ophthalmology Department of the University Emergency Hospital Bucharest, between January 2009 and December 2013. The outcomes measured were conjunctival dehiscence, socket infection, implant exposure and extrusion rate. Results: Forty-three patients had the hydroxyapatite implant (coralline–Integrated Ocular Implants, USA or synthetic–FCI, France) and forty-seven received non-integrated ocular implants (24 acrylic and 23 silicone). Five cases of socket infection, thirteen cases of extrusion and two cases of conjunctival dehiscence were encountered. Conclusions: There was a higher rate of conjunctival dehiscence with hydroxyapatite ocular implant, but implant extrusion and socket infection were found in non-integrated ocular implants. PMID:25914747

  19. Decontamination of dental implant surface in peri-implantitis treatment: A literature review

    PubMed Central

    Buitrago-Vera, Pedro; Solá-Ruiz, María F.; Ferrer-García, Juan C.

    2013-01-01

    Etiological treatment of peri-implantitis aims to reduce the bacterial load within the peri-implant pocket and decontaminate the implant surface in order to promote osseointegration. The aim of this literature review was to evaluate the efficacy of different methods of implant surface decontamination. A search was conducted using the PubMed (Medline) database, which identified 36 articles including in vivo and in vitro studies, and reviews of different decontamination systems (chemical, mechanical, laser and photodynamic therapies). There is sufficient consensus that, for the treatment of peri-implant infections, the mechanical removal of biofilm from the implant surface should be supplemented by chemical decontamination with surgical access. However, more long-term research is needed to confirm this and to establish treatment protocols responding to different implant characterics. Key words:Peri-implantitis, treatment, decontamination, implant surface, laser. PMID:23986023

  20. Effect of Platelet-Rich-Plasma (PRP) and Implant Surface Topography on Implant Stability and Bone

    PubMed Central

    Kundu, Renu

    2014-01-01

    Purpose: To evaluate the effect of Platelet-Rich-Plasma (PRP) and different implant surface topography on implant stability and bone levels around immediately loaded dental implants. Materials and Methods: Dental implants were placed in subjects divided into two groups and four subgroups on basis of implant treatment with PRP and implant surface topography used. A total of 30 implants were placed, 15 in each group. For PRP group, implants were placed after surface treatment with PRP. Temporization was done within two weeks and final prosthesis was given after three months. Implant stability was measured with Periotest at baseline, one month and three months. Bone height was measured on mesial & distal side on standardized IOPA x-rays. Results: A statistically significant difference was noticed in implant stability with PRP at baseline. The effect of PRP on bone height changes was not statistically significant. A synergistic effect of PRP and square thread-form was observed on improved implant stability and bone levels; however, no such effect is seen with PRP and reverse buttress thread-form. Conclusion: Within the limitation of this study, enhancement on implant stability and bone healing was observed with PRP treated implant surfaces, and with use of implant with square thread-form. PMID:25121060