Science.gov

Sample records for implantable loop recorders

  1. Use of an implantable loop recorder in the investigation of arrhythmias in adult captive chimpanzees (Pan troglodytes).

    PubMed

    Lammey, Michael L; Jackson, Raven; Ely, John J; Lee, D Rick; Sleeper, Meg M

    2011-02-01

    Cardiovascular disease in general, and cardiac arrhythmias specifically, is common in great apes. However, the clinical significance of arrhythmias detected on short-duration electrocardiograms is often unclear. Here we describe the use of an implantable loop recorder to evaluate cardiac rhythms in 4 unanesthetized adult chimpanzees (Pan troglodytes), 1 with a history of possible syncope and 3 with the diagnosis of multiform ventricular ectopy (ventricular premature complexes) and cardiomyopathy. The clinical significance of ventricular ectopy was defined further by using the implantable loop recorder. Arrhythmia was ruled out as a cause of collapse in the chimpanzee that presented with possible syncope because the implantable loop recorder demonstrated normal sinus rhythm during a so-called syncopal event. This description is the first report of the use of an implantable loop recorder to diagnose cardiac arrhythmias in an unanesthetized great ape species. PMID:21819684

  2. Use of an Implantable Loop Recorder in the Investigation of Arrhythmias in Adult Captive Chimpanzees (Pan troglodytes)

    PubMed Central

    Lammey, Michael L; Jackson, Raven; Ely, John J; Lee, D Rick; Sleeper, Meg M

    2011-01-01

    Cardiovascular disease in general, and cardiac arrhythmias specifically, is common in great apes. However, the clinical significance of arrhythmias detected on short-duration electrocardiograms is often unclear. Here we describe the use of an implantable loop recorder to evaluate cardiac rhythms in 4 unanesthetized adult chimpanzees (Pan troglodytes), 1 with a history of possible syncope and 3 with the diagnosis of multiform ventricular ectopy (ventricular premature complexes) and cardiomyopathy. The clinical significance of ventricular ectopy was defined further by using the implantable loop recorder. Arrhythmia was ruled out as a cause of collapse in the chimpanzee that presented with possible syncope because the implantable loop recorder demonstrated normal sinus rhythm during a so-called syncopal event. This description is the first report of the use of an implantable loop recorder to diagnose cardiac arrhythmias in an unanesthetized great ape species. PMID:21819684

  3. Subclinical tonic-clonic epileptic seizure detected by an implantable loop recorder.

    PubMed

    Kohno, Ritsuko; Abe, Haruhiko; Akamatsu, Naoki; Tamura, Masahito; Takeuchi, Masaaki; Otsuji, Yutaka; Benditt, David G

    2013-01-01

    A 73-year old man received an implantable loop recorder (ILR) for the evaluation of transient loss of consciousness (TLOC) spells. His medical history was without any epileptic convulsions or automatism. ILR recording during a spontaneous episode revealed the presence of a regular, narrow QRS complex tachycardia associated with low-amplitude, high-frequency, continuous or discontinuous artifacts, consistent with myopotentials. During the event, the regular, low-amplitude continuous signals gradually became discontinuous, with a prolongation of the inter-signal cycle length, until their disappearance after manual activation of the ILR. The patient was diagnosed as experiencing subclinical tonic-clonic epileptic seizures. Antiepileptic drug treatment was initiated, and the patient has remained free of TLOC symptoms during 13 months follow-up. PMID:24097218

  4. Value of Implantable Loop Recorders in Monitoring Efficacy of Radiofrequency Catheter Ablation in Atrial Fibrillation

    PubMed Central

    Yang, Ping; Pu, Lijin; Yang, Liuqing; Li, Fang; Luo, Zhiling; Guo, Tao; Hua, Baotong; Li, Shumin

    2016-01-01

    Background The aim of this study was to evaluate the value of the implantable loop recorder (ILR) in diagnosing atrial fibrillation (AF) and assessing the postoperative efficacy of radiofrequency catheter ablation (RFCA). Material/Methods A total of 32 patients who successfully underwent RFCA were selected. These patients discontinued antiarrhythmic medication with no AF recurrence for more than 3 months after RFCA, and underwent ILR placement by a conventional method. The clinical manifestations and information on arrhythmias recorded by the ILR were followed up to assess the efficacy of AF RFCA. Results The mean follow-up period was 24.7±12.5 months. Of 32 patients with ILR information, 27 had successful RFCA and 5 had recurrent AF. The follow-up results obtained by traditional methods showed 29 patients with successful RFCA and 3 with recurrent AF (P<0.05). Among the 18 patients with clinical symptoms, 13 had recorded cardiac arrhythmic events (72.2%) and 5 showed sinus rhythm (27.8%). The ILRs recorded 18 patients with arrhythmic events (56.3%), including 12 cases of atrial arrhythmias, among whom 5 recurred at 9, 12, 16, 17, and 32 months after AF RFCA; there were also 2 patients with ventricular tachycardia (VT) and 4 with bradycardia. Conclusions The value of ILR in assessing the efficacy of AF RFCA was superior to that of traditional methods. ILR can promptly detect asymptomatic AF, and can monitor electrocardiogram features after RFCA, thus providing objective evidence of efficacy. PMID:27518153

  5. Predictors of Arrhythmic Events Detected by Implantable Loop Recorders in Renal Transplant Candidates

    PubMed Central

    Silva, Rodrigo Tavares; Martinelli Filho, Martino; Peixoto, Giselle de Lima; de Lima, José Jayme Galvão; de Siqueira, Sérgio Freitas; Costa, Roberto; Gowdak, Luís Henrique Wolff; de Paula, Flávio Jota; Kalil Filho, Roberto; Ramires, José Antônio Franchini

    2015-01-01

    Background The recording of arrhythmic events (AE) in renal transplant candidates (RTCs) undergoing dialysis is limited by conventional electrocardiography. However, continuous cardiac rhythm monitoring seems to be more appropriate due to automatic detection of arrhythmia, but this method has not been used. Objective We aimed to investigate the incidence and predictors of AE in RTCs using an implantable loop recorder (ILR). Methods A prospective observational study conducted from June 2009 to January 2011 included 100 consecutive ambulatory RTCs who underwent ILR and were followed-up for at least 1 year. Multivariate logistic regression was applied to define predictors of AE. Results During a mean follow-up of 424 ± 127 days, AE could be detected in 98% of patients, and 92% had more than one type of arrhythmia, with most considered potentially not serious. Sustained atrial tachycardia and atrial fibrillation occurred in 7% and 13% of patients, respectively, and bradyarrhythmia and non-sustained or sustained ventricular tachycardia (VT) occurred in 25% and 57%, respectively. There were 18 deaths, of which 7 were sudden cardiac events: 3 bradyarrhythmias, 1 ventricular fibrillation, 1 myocardial infarction, and 2 undetermined. The presence of a long QTc (odds ratio [OR] = 7.28; 95% confidence interval [CI], 2.01–26.35; p = 0.002), and the duration of the PR interval (OR = 1.05; 95% CI, 1.02–1.08; p < 0.001) were independently associated with bradyarrhythmias. Left ventricular dilatation (LVD) was independently associated with non-sustained VT (OR = 2.83; 95% CI, 1.01–7.96; p = 0.041). Conclusions In medium-term follow-up of RTCs, ILR helped detect a high incidence of AE, most of which did not have clinical relevance. The PR interval and presence of long QTc were predictive of bradyarrhythmias, whereas LVD was predictive of non-sustained VT. PMID:26351983

  6. Usefulness of implantable loop recorders in office-based practice for evaluation of syncope in patients with and without structural heart disease.

    PubMed

    Mason, Pamela K; Wood, Mark A; Reese, Daniel B; Lobban, John H; Mitchell, Mark A; DiMarco, John P

    2003-11-01

    Early use of an implantable loop recorder for evaluating unexplained syncope in an office-based electrophysiology practice is an effective approach in patients with and without structural heart disease. Documentation of rhythm with an implantable loop recorder at the time of symptoms is possible in approximately 50% and 80% of patients in both groups after 1 and 2 years of follow-up, respectively. PMID:14583373

  7. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    PubMed

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  8. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    PubMed

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  9. Use of an Implantable Loop Recorder in a Chimpanzee (Pan troglodytes) to Monitor Cardiac Arrhythmias and Assess the Effects of Acupuncture and Laser Therapy.

    PubMed

    Magden, Elizabeth R; Sleeper, Meg M; Buchl, Stephanie J; Jones, Rebekah A; Thiele, Erica J; Wilkerson, Gregory K

    2016-02-01

    Cardiovascular disease is a leading cause of death in captive chimpanzees and is often associated with myocardial fibrosis, which increases the risk of cardiac arrhythmias. In this case report, we present a 36-y-old male chimpanzee (Pan troglodytes) diagnosed with frequent ventricular premature complexes (VPC). We placed a subcutaneous implantable loop recorder for continual ECG monitoring to assess his arrhythmias without the confounding effects of anesthetics. During his initial treatment with the antiarrhythmia medication amiodarone, he developed thrombocytopenia, and the drug was discontinued. After reviewing other potential therapies for the treatment of cardiac arrhythmias, we elected to try acupuncture and laser therapy in view of the positive results and the lack of adverse side effects reported in humans. We used 2 well-known cardiac acupuncture sites on the wrist, PC6 (pericardium 6) and HT7 (heart 7), and evaluated the results of the therapy by using the ECG recordings from the implantable loop recorder. Although periodic increases in the animal's excitement level introduced confounding variables that caused some variation in the data, acupuncture and laser therapy appeared to decrease the mean number of VPC/min in this chimpanzee.

  10. Use of an Implantable Loop Recorder in a Chimpanzee (Pan troglodytes) to Monitor Cardiac Arrhythmias and Assess the Effects of Acupuncture and Laser Therapy

    PubMed Central

    Magden, Elizabeth R; Sleeper, Meg M; Buchl, Stephanie J; Jones, Rebekah A; Thiele, Erica J; Wilkerson, Gregory K

    2016-01-01

    Cardiovascular disease is a leading cause of death in captive chimpanzees and is often associated with myocardial fibrosis, which increases the risk of cardiac arrhythmias. In this case report, we present a 36-y-old male chimpanzee (Pan troglodytes) diagnosed with frequent ventricular premature complexes (VPC). We placed a subcutaneous implantable loop recorder for continual ECG monitoring to assess his arrhythmias without the confounding effects of anesthetics. During his initial treatment with the antiarrhythmia medication amiodarone, he developed thrombocytopenia, and the drug was discontinued. After reviewing other potential therapies for the treatment of cardiac arrhythmias, we elected to try acupuncture and laser therapy in view of the positive results and the lack of adverse side effects reported in humans. We used 2 well-known cardiac acupuncture sites on the wrist, PC6 (pericardium 6) and HT7 (heart 7), and evaluated the results of the therapy by using the ECG recordings from the implantable loop recorder. Although periodic increases in the animal's excitement level introduced confounding variables that caused some variation in the data, acupuncture and laser therapy appeared to decrease the mean number of VPC/min in this chimpanzee. PMID:26884410

  11. Novel use of an “insertable” loop recorder

    PubMed Central

    Gimbel, J R

    2003-01-01

    A patient with palpitations and suspected arrhythmia underwent Holter and external loop recorder monitoring. No arrhythmias were detected by these traditional monitoring methods. An insertable loop recorder (ILR) was placed on the patient’s chest and used as an extended loop recorder. An arrhythmia was ultimately recorded by the externally placed ILR leading to appropriate treatment. PMID:12748241

  12. Holter Monitoring and Loop Recorders: From Research to Clinical Practice

    PubMed Central

    Ambrosini, Francesco; Lombardi, Federico

    2016-01-01

    Holter monitors are tools of proven efficacy in diagnosing and monitoring cardiac arrhythmias. Despite the fact their use is widely prescribed by general practitioners, little is known about their evolving role in the management of patients with cryptogenic stroke, paroxysmal atrial fibrillation, unexplained recurrent syncope and risk stratification in implantable cardioverter defibrillator or pacemaker candidates. New Holter monitoring technologies and loop recorders allow prolonged monitoring of heart rhythm for periods from a few days to several months, making it possible to detect infrequent arrhythmias in patients of all ages. This review discusses the advances in this area of arrhythmology and how Holter monitors have improved the clinical management of patients with suspected cardiac rhythm diseases.

  13. Holter Monitoring and Loop Recorders: From Research to Clinical Practice

    PubMed Central

    Ambrosini, Francesco; Lombardi, Federico

    2016-01-01

    Holter monitors are tools of proven efficacy in diagnosing and monitoring cardiac arrhythmias. Despite the fact their use is widely prescribed by general practitioners, little is known about their evolving role in the management of patients with cryptogenic stroke, paroxysmal atrial fibrillation, unexplained recurrent syncope and risk stratification in implantable cardioverter defibrillator or pacemaker candidates. New Holter monitoring technologies and loop recorders allow prolonged monitoring of heart rhythm for periods from a few days to several months, making it possible to detect infrequent arrhythmias in patients of all ages. This review discusses the advances in this area of arrhythmology and how Holter monitors have improved the clinical management of patients with suspected cardiac rhythm diseases. PMID:27617093

  14. Holter Monitoring and Loop Recorders: From Research to Clinical Practice.

    PubMed

    Galli, Alessio; Ambrosini, Francesco; Lombardi, Federico

    2016-08-01

    Holter monitors are tools of proven efficacy in diagnosing and monitoring cardiac arrhythmias. Despite the fact their use is widely prescribed by general practitioners, little is known about their evolving role in the management of patients with cryptogenic stroke, paroxysmal atrial fibrillation, unexplained recurrent syncope and risk stratification in implantable cardioverter defibrillator or pacemaker candidates. New Holter monitoring technologies and loop recorders allow prolonged monitoring of heart rhythm for periods from a few days to several months, making it possible to detect infrequent arrhythmias in patients of all ages. This review discusses the advances in this area of arrhythmology and how Holter monitors have improved the clinical management of patients with suspected cardiac rhythm diseases.

  15. Holter Monitoring and Loop Recorders: From Research to Clinical Practice.

    PubMed

    Galli, Alessio; Ambrosini, Francesco; Lombardi, Federico

    2016-08-01

    Holter monitors are tools of proven efficacy in diagnosing and monitoring cardiac arrhythmias. Despite the fact their use is widely prescribed by general practitioners, little is known about their evolving role in the management of patients with cryptogenic stroke, paroxysmal atrial fibrillation, unexplained recurrent syncope and risk stratification in implantable cardioverter defibrillator or pacemaker candidates. New Holter monitoring technologies and loop recorders allow prolonged monitoring of heart rhythm for periods from a few days to several months, making it possible to detect infrequent arrhythmias in patients of all ages. This review discusses the advances in this area of arrhythmology and how Holter monitors have improved the clinical management of patients with suspected cardiac rhythm diseases. PMID:27617093

  16. A Fully-Implanted Intramuscular Bipolar Myoelectric Signal Recording Electrode

    PubMed Central

    Memberg, William D.; Stage, Thomas G.; Kirsch, Robert F.

    2014-01-01

    Objectives To develop a fully-implanted, intramuscular, bipolar, myoelectric signal recording electrode (IM-MES) for functional electrical stimulation (FES), prosthetic myoelectric control, and other permanently implantable systems. Materials and Methods An existing fully-implanted intramuscular stimulating electrode was modified at each end to allow bipolar recording. The design change also required a modification of the implantation method. Mechanical and in vivo testing was performed on the novel components of the electrode. The first clinical application is also described. Results The electrode design modifications did not create any areas of excess mechanical strain on the wires at the distal end where the leads were wound into electrode surfaces. In vivo testing showed that the IM-MES electrode recorded myoelectric signals that were equivalent to an existing epimysial MES electrode. The modified implantation method was simple to implement. The IM-MES electrode was used in an upper extremity FES system in an individual with a spinal cord injury, and provided signals that were suitable for a command signal. Conclusions A fully-implanted, bipolar intramuscular recording electrode (IM-MES) was developed. Implantation of the IM-MES is straightforward and almost any muscle can be targeted. Testing has been performed to demonstrate the suitability of the IM-MES electrode for clinical use. Initial clinical applications were successful. PMID:24612356

  17. Versatile retraction mechanics: Implant assisted en-masse retraction with a boot loop

    PubMed Central

    Philip, Pramod; Jose, Nidhin Philip

    2015-01-01

    The purpose of this paper is to explain the versatility offered by the use of arch wires with boot loops in retraction mechanics while taking direct anchorage from mini-screws. Materials and Methods: The materials include the mini screws placed at the appropriate location and retraction arches made of 0.019 X 0.025 SS with boot loops placed distal to the lateral incisors. Mini screw provides a stable anchorage for enmasse retraction of the anterior teeth with the help of a boot loop using sliding and/or loop mechanics. Results: The arch wires with boot loops have a definite advantage over the soldered/crimpable hooks because of the versatility it offers during the process of retraction. Conclusion: An innovative approach combining the advantages of absolute anchorage using mini implants and a retraction arch with boot loop is presented here. PMID:25821373

  18. A closed-loop inductive power control system for an instrumented strain sensing tibial implant.

    PubMed

    Shiying Hao; Taylor, Stephen

    2014-01-01

    Inductively-powered implantable biomedical devices are widely used nowadays, however the power variations due to the coil misalignment can significantly affect the device performance. A closed-loop power control system is proposed in this paper, which is implemented in a Subject-Carried Implant Monitoring Inductive Telemetric Ambulatory Reader (SCIMITAR) for remote strain data acquisition from an instrumented ovine tibia implant. The output power of the energizer is adaptively adjusted via a feedback circuitry connected the demodulator with the power energizer. Lab results showed that feedback suppressed variations in induced power caused by coil misalignment and extended the functional range of the device in axial and planar directions. PMID:25571497

  19. A closed-loop compressive-sensing-based neural recording system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S.; Hsiao, Steven; Tran, Trac D.; Yazicioglu, Firat; Etienne-Cummings, Ralph

    2015-06-01

    Objective. This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. Approach. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Main results. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm2/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Significance. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.

  20. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters. PMID:26738106

  1. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.

  2. Patient ECG recording control for an automatic implantable defibrillator

    NASA Technical Reports Server (NTRS)

    Fountain, Glen H. (Inventor); Lee, Jr., David G. (Inventor); Kitchin, David A. (Inventor)

    1986-01-01

    An implantable automatic defibrillator includes sensors which are placed on or near the patient's heart to detect electrical signals indicative of the physiology of the heart. The signals are digitally converted and stored into a FIFO region of a RAM by operation of a direct memory access (DMA) controller. The DMA controller operates transparently with respect to the microprocessor which is part of the defibrillator. The implantable defibrillator includes a telemetry communications circuit for sending data outbound from the defibrillator to an external device (either a patient controller or a physician's console or other) and a receiver for sensing at least an externally generated patient ECG recording command signal. The patient recording command signal is generated by the hand held patient controller. Upon detection of the patient ECG recording command, DMA copies the contents of the FIFO into a specific region of the RAM.

  3. 10 CFR 35.2404 - Records of surveys after source implant and removal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of surveys after source implant and removal. 35.2404 Section 35.2404 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2404 Records of surveys after source implant and removal. A licensee shall maintain a record...

  4. Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate

    NASA Astrophysics Data System (ADS)

    Ryapolova-Webb, Elena; Afshar, Pedram; Stanslaski, Scott; Denison, Tim; de Hemptinne, Coralie; Bankiewicz, Krystof; Starr, Philip A.

    2014-02-01

    Objective. Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. Approach. A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. Main results. Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 μV/\\sqrtHz and 0.7 μV/\\sqrt{Hz}, respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (˜1 μVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. Significance. This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain

  5. Modeling of the Near Field Coupling Between an External Loop and an Implantable Spiral Chip Antennas in Biosensor Systems

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.

    2006-01-01

    In this paper, the near field coupling between an external hand-held loop antenna and an implantable miniature (1x1 mm) printed square spiral chip antenna used in bio-MEMS sensors for contact-less powering and RF telemetry is investigated. The loop and the spiral are inductively coupled and effectively form a transformer. The numerical results include the quasi-stationary magnetic field pattern of the implanted antenna, near zone wave impedance as a function of the radial distance and the values of the lumped elements in the equivalent circuit model for the transformer.

  6. 10 CFR 35.2404 - Records of surveys after source implant and removal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of surveys after source implant and removal. 35.2404 Section 35.2404 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2404 Records of surveys after source implant and removal. A licensee shall maintain a record of the surveys required by §§ 35.404 and 35.604 for...

  7. A wireless power interface for rechargeable battery operated neural recording implants.

    PubMed

    Li, Pengfei; Principe, Jose C; Bashirullah, Rizwan

    2006-01-01

    This paper describes an integrated analog front-end for wireless powering and recharging of miniature Li-ion batteries used in implantable neural recording microsystems. DC signal extraction from a wireless carrier is accomplished using Schottky barrier contact diodes with lower forward voltage drop for improved efficiency. The battery charger employs a new control loop that relaxes comparator resolution requirements, provides simultaneous operation of constant-current and constant-voltage loops, and eliminates the external current sense resistor from the charging path. The accuracy of the end-of-charge detection is primarily determined by the voltage drop across matched resistors and current-sources and the offset voltage of the sense comparator. Experimental results in 0.6 mum bulk CMOS technology indicate that +/- 1.3% (or +/-20 microA) end-of-charge accuracy can be obtained under worst-case conditions for a comparator offset voltage of +/-5mV. The circuits occupy 1.735 mm(2) with a power dissipation of 8.4 mW when delivering a load current of 1.5 mA at 4.1 V (or 6.15 mW) for an efficiency of 73%

  8. CUSTOM-FIT RADIOLUCENT CRANIAL IMPLANTS FOR NEUROPHYSIOLOGICAL RECORDING AND STIMULATION

    PubMed Central

    Mulliken, Grant H; Bichot, Narcisse P; Ghadooshahy, Azriel; Sharma, Jitendra; Kornblith, Simon; Philcock, Michael; Desimone, Robert

    2015-01-01

    Background Recording and manipulating neural activity in awake behaving animal models requires long-term implantation of cranial implants that must address a variety of design considerations, which include preventing infection, minimizing tissue damage, mechanical strength of the implant, and MRI compatibility. New Method Here we address these issues by designing legless, custom-fit cranial implants using structural MRI-based reconstruction of the skull and that are made from carbon-reinforced PEEK. Results We report several novel custom-fit radiolucent implant designs, which include a legless recording chamber, a legless stimulation chamber, a multi-channel microdrive and a head post. The fit to the skull was excellent in all cases, with no visible gaps between the base of the implants and the skull. The wound margin was minimal in size and showed no sign of infection or skin recession. Comparison with Existing Methods Cranial implants used for neurophysiological investigation in awake behaving animals often employ methyl methacrylate (MMA) to serve as a bonding agent to secure the implant to the skull. Other designs rely on radially extending legs to secure the implant. Both of these methods have significant drawbacks. MMA is toxic to bone and frequently leads to infection while radially extending legs cause the skin to recede away from the implant, ultimately exposing bone and proliferating granulation tissue. Conclusions These radiolucent implants constitute a set of technologies suitable for reliable long-term recording, which minimize infection and tissue damage. PMID:25542350

  9. Implantable Myoelectric Sensors (IMESs) for Intramuscular Electromyogram Recording

    PubMed Central

    Weir, Richard F. ff.; Troyk, Phil R.; DeMichele, Glen A.; Kerns, Douglas A.; Schorsch, Jack F.; Maas, Huub

    2011-01-01

    We have developed a multichannel electrogmyography sensor system capable of receiving and processing signals from up to 32 implanted myoelectric sensors (IMES). The appeal of implanted sensors for myoelectric control is that electromyography (EMG) signals can be measured at their source providing relatively cross-talk-free signals that can be treated as independent control sites. An external telemetry controller receives telemetry sent over a transcutaneous magnetic link by the implanted electrodes. The same link provides power and commands to the implanted electrodes. Wireless telemetry of EMG signals from sensors implanted in the residual musculature eliminates the problems associated with percutaneous wires, such as infection, breakage, and marsupialization. Each implantable sensor consists of a custom-designed application-specified integrated circuit that is packaged into a bio-compatible RF BION capsule from the Alfred E. Mann Foundation. Implants are designed for permanent long-term implantation with no servicing requirements. We have a fully operational system. The system has been tested in animals. Implants have been chronically implanted in the legs of three cats and are still completely operational four months after implantation. PMID:19224729

  10. Stereophotogrammetry for Recording the Position of Multiple Implants: Technical Description.

    PubMed

    Agustín-Panadero, Rubén; Peñarrocha-Oltra, David; Gomar-Vercher, Sonia; Peñarrocha-Diago, Miguel

    2015-01-01

    Dental implants are one of the most widely used treatments for the rehabilitation of partially or completely edentulous areas. Achieving proper passive adjustment of the implant-supported prosthesis improves its long-term prognosis. This article discusses a new technique for digitally printing prostheses supported by multiple implants with optimum passive fit. The technique is based on a stereophotogrammetry system that captures the exact location of prosthetic implant platforms. This photogrammetry device takes 10 pictures per second with an error margin of less than 10 μm between two scanbodies and identifies the spatial position of each implant without physical contact. Three-dimensional data for each implant are registered in vector format, together with interrelated implant angles and distances. The information is then stored in an STL file. PMID:26523726

  11. Spiral Chip Implantable Radiator and Printed Loop External Receptor for RF Telemetry in Bio-Sensor Systems

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Hall, David G.; Miranda, Felix A.

    2004-01-01

    The paper describes the operation of a patented wireless RF telemetry system, consisting of a bio-MEMS implantable sensor and an external hand held unit, operating over the frequency range of few hundreds of MHz. A MEMS capacitive pressure sensor integrated with a miniature inductor/antenna together constitute the implantable sensor. Signal processing circuits collocated with a printed loop antenna together form the hand held unit, capable of inductively powering and also receiving the telemetry signals from the sensor. The paper in addition, demonstrates a technique to enhance the quality factor and inductance of the inductor in the presence of a lower ground plane and also presents the radiation characteristics of the loop antenna.

  12. Comprehensive Analysis of Tissue Preservation and Recording Quality from Chronic Multielectrode Implants

    PubMed Central

    Freire, Marco Aurelio M.; Morya, Edgard; Faber, Jean; Santos, Jose Ronaldo; Guimaraes, Joanilson S.; Lemos, Nelson A. M.; Sameshima, Koichi; Pereira, Antonio; Ribeiro, Sidarta; Nicolelis, Miguel A. L.

    2011-01-01

    Multielectrodes have been used with great success to simultaneously record the activity of neuronal populations in awake, behaving animals. In particular, there is great promise in the use of this technique to allow the control of neuroprosthetic devices by human patients. However, it is crucial to fully characterize the tissue response to the chronic implants in animal models ahead of the initiation of human clinical trials. Here we evaluated the effects of unilateral multielectrode implants on the motor cortex of rats weekly recorded for 1–6 months using several histological methods to assess metabolic markers, inflammatory response, immediate-early gene (IEG) expression, cytoskeletal integrity and apoptotic profiles. We also investigated the correlations between each of these features and firing rates, to estimate the impact of post-implant time on neuronal recordings. Overall, limited neuronal loss and glial activation were observed on the implanted sites. Reactivity to enzymatic metabolic markers and IEG expression were not significantly different between implanted and non-implanted hemispheres. Multielectrode recordings remained viable for up to 6 months after implantation, and firing rates correlated well to the histochemical and immunohistochemical markers. Altogether, our results indicate that chronic tungsten multielectrode implants do not substantially alter the histological and functional integrity of target sites in the cerebral cortex. PMID:22096594

  13. Management of fractured implant case using loop connector fixed partial denture

    PubMed Central

    Yadav, Ashish; Gupta, Aratee; Tandan, Amrit; Kumar, Sulabh

    2013-01-01

    Dental implants treatment have become a common modality of treatment nowadays for the replacement of missing tooth/teeth, but there have been failures due to a number of reasons; one of the rare problems is the fracture of the dental implants fixture. It is of prime importance to understand the type/system of the implant to be placed in a site and the amount and direction of occlusal forces incurred after the loading of prosthesis. PMID:23709559

  14. A novel closed-loop electromechanical stimulator to enhance osseointegration with immediate loading of dental implant restorations.

    PubMed

    Meswania, I M; Bousdras, V A; Ahir, S P; Cunningham, J L; Blunn, G W; Goodship, A E

    2010-10-01

    The degree of osseomechanical integration of dental implants is acutely sensitive to their mechanical environment. Bone, both as a tissue and structure, adapts its mass and architecture in response to loading conditions. Therefore, application of predefined controlled loads may be considered as a treatment option to promote early maturation of bone/implant interface prior to or in conjunction with crown/prosthesis attachment. Although many studies have established that the magnitude, rate of the applied strain, and frequency have significant effects on the osteogenic response, the actual specific relationships between strain parameters and frequency have not yet been fully defined. The purpose of this study was to develop a stimulator to apply defined mechanical stimuli to individual dental implants in vivo immediately after implantation, exploring the hypothesis that immediate controlled loading could enhance implant integration. An electromechanical device was developed, based on load values obtained using a two-dimensional finite element analysis of the bone/implant interface generating 1000 to 4000 pe and operated at 30 and 3 Hz respectively. The device was then tested in a cadaveric pig mandible, and periosteal bone surface strains were recorded for potential future comparison with a three-dimensional finite element model to determine loading regimens to optimize interface strains and iterate the device for clinical use.

  15. Implantable electrode for recording nerve signals in awake animals

    NASA Technical Reports Server (NTRS)

    Ninomiya, I.; Yonezawa, Y.; Wilson, M. F.

    1976-01-01

    An implantable electrode assembly consisting of collagen and metallic electrodes was constructed to measure simultaneously neural signals from the intact nerve and bioelectrical noises in awake animals. Mechanical artifacts, due to bodily movement, were negligibly small. The impedance of the collagen electrodes, measured in awake cats 6-7 days after implantation surgery, ranged from 39.8-11.5 k ohms at a frequency range of 20-5 kHz. Aortic nerve activity and renal nerve activity, measured in awake conditions using the collagen electrode, showed grouped activity synchronous with the cardiac cycle. Results indicate that most of the renal nerve activity was from postganglionic sympathetic fibers and was inhibited by the baroceptor reflex in the same cardiac cycle.

  16. In-vitro characterization of a cochlear implant system for recording of evoked compound action potentials

    PubMed Central

    2012-01-01

    Background Modern cochlear implants have integrated recording systems for measuring electrically evoked compound action potentials of the auditory nerve. The characterization of such recording systems is important for establishing a reliable basis for the interpretation of signals acquired in vivo. In this study we investigated the characteristics of the recording system integrated into the MED-EL PULSARCI100 cochlear implant, especially its linearity and resolution, in order to develop a mathematical model describing the recording system. Methods In-vitro setup: The cochlear implant, including all attached electrodes, was fixed in a tank of physiologic saline solution. Sinusoidal signals of the same frequency but with different amplitudes were delivered via a signal generator for measuring and recording on a single electrode. Computer simulations: A basic mathematical model including the main elements of the recording system, i.e. amplification and digitalization stage, was developed. For this, digital output for sinusoidal input signals of different amplitudes were calculated using in-vitro recordings as reference. Results Using an averaging of 100 measurements the recording system behaved linearly down to approximately -60 dB of the input signal range. Using the same method, a system resolution of 10 μV was determined for sinusoidal signals. The simulation results were in very good agreement with the results obtained from in-vitro experiments. Conclusions The recording system implemented in the MED-EL PULSARCI100 cochlear implant for measuring the evoked compound action potential of the auditory nerve operates reliably. The developed mathematical model provides a good approximation of the recording system. PMID:22531599

  17. Reliability of VEP Recordings Using Chronically Implanted Screw Electrodes in Mice

    PubMed Central

    Makowiecki, Kalina; Garrett, Andrew; Clark, Vince; Graham, Stuart L.; Rodger, Jennifer

    2015-01-01

    Purpose: Visual evoked potentials (VEPs) are widely used to objectively assess visual system function in animal models of ophthalmological diseases. Although use of chronically implanted electrodes is common in longitudinal VEP studies using rodent models, reliability of recordings over time has not been assessed. We compared VEPs 1 and 7 days after electrode implantation in the adult mouse. We also examined stimulus-independent changes over time, by assessing electroencephalogram (EEG) power and approximate entropy of the EEG signal. Methods: Stainless steel screws (600-μm diameter) were implanted into the skull overlying the right visual cortex and the orbitofrontal cortex of adult mice (C57Bl/6J, n = 7). Animals were reanesthetized 1 and 7 days after implantation to record VEP responses (flashed gratings) and EEG activity. Brain sections were stained for glial activation (GFAP) and cell death (TUNEL). Results: Reliability analysis, using intraclass correlation coefficients, showed VEP recordings had high reliability within the same session, regardless of time after electrode implantation and peak latencies and approximate entropy of the EEG did not change significantly with time. However, there was poorer reliability between recordings obtained on different days, and a significant decrease in VEP amplitudes and EEG power. This amplitude decrease could be normalized by scaling to EEG power (within-subjects). Furthermore, glial activation was present at both time points but there was no evidence of cell death. Conclusions: These results indicate that VEP responses can be reliably recorded even after a relatively short recovery period but decrease response peak amplitude over time. Although scaling the VEP trace to EEG power normalized this decrease, our results highlight that time-dependent cortical excitability changes are an important consideration in longitudinal VEP studies. Translational Relevance: This study shows changes in VEP characteristics over time in

  18. Instrumentation to record evoked potentials for closed-loop control of deep brain stimulation.

    PubMed

    Kent, Alexander R; Grill, Warren M

    2011-01-01

    Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000× over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894

  19. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ˜80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  20. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor

    2016-06-01

    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275–364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ∼80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  1. WIMAGINE: wireless 64-channel ECoG recording implant for long term clinical applications.

    PubMed

    Mestais, Corinne S; Charvet, Guillaume; Sauter-Starace, Fabien; Foerster, Michael; Ratel, David; Benabid, Alim Louis

    2015-01-01

    A wireless 64-channel ElectroCorticoGram (ECoG) recording implant named WIMAGINE has been designed for various clinical applications. The device is aimed at interfacing a cortical electrode array to an external computer for neural recording and control applications. This active implantable medical device is able to record neural activity on 64 electrodes with selectable gain and sampling frequency, with less than 1 μV(RMS) input referred noise in the [0.5 Hz - 300 Hz] band. It is powered remotely through an inductive link at 13.56 MHz which provides up to 100 mW. The digitized data is transmitted wirelessly to a custom designed base station connected to a PC. The hermetic housing and the antennae have been designed and optimized to ease the surgery. The design of this implant takes into account all the requirements of a clinical trial, in particular safety, reliability, and compliance with the regulations applicable to class III AIMD. The main features of this WIMAGINE implantable device and its architecture are presented, as well as its functional performances and long-term biocompatibility results. PMID:25014960

  2. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals

    NASA Astrophysics Data System (ADS)

    Angotzi, Gian Nicola; Boi, Fabio; Zordan, Stefano; Bonfanti, Andrea; Vato, Alessandro

    2014-08-01

    A portable 16-channels microcontroller-based wireless system for a bi-directional interaction with the central nervous system is presented in this work. The device is designed to be used with freely behaving small laboratory animals and allows recording of spontaneous and evoked neural activity wirelessly transmitted and stored on a personal computer. Biphasic current stimuli with programmable duration, frequency and amplitude may be triggered in real-time on the basis of the recorded neural activity as well as by the animal behavior within a specifically designed experimental setup. An intuitive graphical user interface was developed to configure and to monitor the whole system. The system was successfully tested through bench tests and in vivo measurements on behaving rats chronically implanted with multi-channels microwire arrays.

  3. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals

    PubMed Central

    Angotzi, Gian Nicola; Boi, Fabio; Zordan, Stefano; Bonfanti, Andrea; Vato, Alessandro

    2014-01-01

    A portable 16-channels microcontroller-based wireless system for a bi-directional interaction with the central nervous system is presented in this work. The device is designed to be used with freely behaving small laboratory animals and allows recording of spontaneous and evoked neural activity wirelessly transmitted and stored on a personal computer. Biphasic current stimuli with programmable duration, frequency and amplitude may be triggered in real-time on the basis of the recorded neural activity as well as by the animal behavior within a specifically designed experimental setup. An intuitive graphical user interface was developed to configure and to monitor the whole system. The system was successfully tested through bench tests and in vivo measurements on behaving rats chronically implanted with multi-channels microwire arrays. PMID:25096831

  4. Multichannel neural recording with a 128 Mbps UWB wireless transmitter for implantable brain-machine interfaces.

    PubMed

    Ando, H; Takizawa, K; Yoshida, T; Matsushita, K; Hirata, M; Suzuki, T

    2015-01-01

    To realize a low-invasive and high accuracy BMI (Brain-machine interface) system, we have already developed a fully-implantable wireless BMI system which consists of ECoG neural electrode arrays, neural recording ASICs, a Wi-Fi based wireless data transmitter and a wireless power receiver with a rechargeable battery. For accurate estimation of movement intentions, it is important for a BMI system to have a large number of recording channels. In this paper, we report a new multi-channel BMI system which is able to record up to 4096-ch ECoG data by multiple connections of 64-ch ASICs and time division multiplexing of recorded data. This system has an ultra-wide-band (UWB) wireless unit for transmitting the recorded neural signals to outside the body. By preliminary experiments with a human body equivalent liquid phantom, we confirmed 4096-ch UWB wireless data transmission at 128 Mbps mode below 20 mm distance.

  5. Wireless, High-Bandwidth Recordings from Non-Human Primate Motor Cortex using a Scalable 16-Ch Implantable Microsystem

    PubMed Central

    Borton, David A.; Song, Yoon-Kyu; Patterson, William R.; Bull, Christopher W.; Park, Sunmee; Laiwalla, Farah; Donoghue, John P.; Nurmikko, Arto V.

    2013-01-01

    A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC). PMID:19964128

  6. An implantable 64-channel neural interface with reconfigurable recording and stimulation.

    PubMed

    Wheeler, Jesse J; Baldwin, Keith; Kindle, Alex; Guyon, Daniel; Nugent, Brian; Segura, Carlos; Rodriguez, John; Czarnecki, Andrew; Dispirito, Hailey J; Lachapelle, John; Parks, Philip D; Moran, James; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    Next generation implantable medical devices will have the potential to provide more precise and effective therapies through adaptive closed-loop controllers that combine sensing and stimulation across larger numbers of electrode channels. A major challenge in the design of such devices is balancing increased functionality and channel counts with the miniaturization required for implantation within small anatomical spaces. Customized therapies will require adaptive systems capable of tuning which channels are sensed and stimulated to overcome variability in patient-specific needs, surgical placement of electrodes, and chronic physiological responses. In order to address these challenges, we have designed a miniaturized implantable fully-reconfigurable front-end system that is integrated into the distal end of an 8-wire lead, enabling up to 64 electrodes to be dynamically configured for sensing and stimulation. Full reconfigurability is enabled by two custom 32×2 cross-point switch (CPS) matrix ASICs which can route any electrode to either an amplifier with reprogrammable bandwidth and integrated ADC or to one of two independent stimulation channels that can be driven through the lead. The 8-wire circuit includes a digital interface for robust communication as well as a charge-balanced powering scheme for enhanced safety. The system is encased in a hermetic package designed to fit within a 14 mm bur-hole in the skull for neuromodulation of the brain, but could easily be adapted to enhance therapies across a broad spectrum of applications. PMID:26738108

  7. Maxillomandibular relationship record for implant complete mouth rehabilitation with elastomeric material and facial surface index of existing denture

    PubMed Central

    Patil, Pravinkumar G.; Nimbalkar-Patil, Smita

    2015-01-01

    Introduction: The maxillomandibular relationship (MMR) record is a critical step to establish the new occlusion in implant supported complete mouth rehabilitation. Using patients existing denture for recording the MMR requires implant definitive cast to be modified extensively to completely seat the denture (with unaltered flanges) on it. This may influence the correct seating of the denture on the implant definitive cast causing faulty recording of the MMR. Materials and Method: Elastomeric record bases, reinforced with the resin framework, are fabricated and relined with the light body elastomeric material when all the healing abutments are in place. The MMR is recorded with these elastomeric record bases using vacuum formed facial surface index of the occluded existing dentures as a guideline. Results: The elastomeric record bases with facial surface index of the existing dentures can allow clinicians to record MMR records without removing the healing abutments from the mouth with acceptable accuracy. This can save chair-side time of the procedure. The record of facial surfaces of existing complete denture in the form of vacuum formed sheet helps to set the occlusal vertical dimension. Conclusion: Use of facial surface index together with the elastomeric record bases can be the useful alternative technique to record the MMR in patients with implant supported full mouth rehabilitation. Further study is required to prove its routine clinical utility. PMID:26929537

  8. Flexible, Polarization-Diverse UWB Antennas for Implantable Neural Recording Systems.

    PubMed

    Bahrami, Hadi; Mirbozorgi, S Abdollah; Ameli, Reza; Rusch, Leslie A; Gosselin, Benoit

    2016-02-01

    Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2-11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1-10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Our miniaturized flexible antennas are 12 mm×12 mm and 10 mm×9 mm for single- and dual-polarizations, respectively. Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity.

  9. WIMAGINE(®): 64-channel ECoG recording implant for human applications.

    PubMed

    Charvet, G; Sauter-Starace, F; Foerster, M; Ratel, D; Chabrol, C; Porcherot, J; Robinet, S; Reverdy, J; D'Errico, R; Mestais, C; Benabid, A L

    2013-01-01

    A wireless 64-channel ElectroCorticoGram (ECoG) recording implant named WIMAGINE(®) has been designed for clinical applications. This active implantable medical device is able to record ECoG on 64 electrodes with selectable gain and sampling frequency, with less than 0.7 µVRMS input referred noise in the [0.5 Hz - 300 Hz] band. It is powered remotely through an inductive link at 13.56 MHz, communicates wirelessly on the MICS band at 402-405 MHz with a custom designed base station connected to a PC and complies with the regulations applicable to class III AIMD. The design of the housing and the antenna have been optimized to ease the surgery and to take into account all the requirements of a clinical trial in particular patient safety and comfort. The main features of this WIMAGINE(®) implantable device and its architecture will be presented, as well as its performances and in vivo validations. PMID:24110298

  10. Maxillomandibular relationship record for complete arch/mouth implant restorations using putty-elastomeric occlusion rim at healing abutment level

    PubMed Central

    Patil, Pravinkumar G.; Nimbalkar-Patil, Smita

    2015-01-01

    Introduction: Recording of the maxillomandibular relationship (MMR) in implant complete arch restorations usually necessitates removal of the healing abutments to attach the record bases, which makes the procedures tedious and time-consuming. Materials and Methods: This article describes the procedure of recording of MMR for complete mouth rehabilitation with the help of the putty elastomeric record base cum occlusion rim reinforced with the acrylic resin framework. This technique records the MMR without removing the healing abutments from mouth and without attaching the acrylic-resin record base with wax occlusion rim. Results: The use of putty-elastomeric occlusion rim provides stable interocclusal records for implant supported complete arch (or mouth) rehabilitation. Conclusion: Maxillomandibular relationship records made with the present technique is less time-consuming and accurate with less chances of distortion of the MMR records. PMID:26321828

  11. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording.

    PubMed

    Kozai, Takashi D Y; Catt, Kasey; Li, Xia; Gugel, Zhannetta V; Olafsson, Valur T; Vazquez, Alberto L; Cui, X Tracy

    2015-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133-189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array.

  12. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording

    PubMed Central

    Kozai, Takashi D. Y.; Catt, Kasey; Li, Xia; Gugel, Zhannetta V.; Olafsson, Valur T.; Vazquez, Alberto L.; Cui, X. Tracy

    2014-01-01

    Penetrating intracortical electrode arrays that record brain activity longitudinally are powerful tools for basic neuroscience research and emerging clinical applications. However, regardless of the technology used, signals recorded by these electrodes degrade over time. The failure mechanisms of these electrodes are understood to be a complex combination of the biological reactive tissue response and material failure of the device over time. While mechanical mismatch between the brain tissue and implanted neural electrodes have been studied as a source of chronic inflammation and performance degradation, the electrode failure caused by mechanical mismatch between different material properties and different structural components within a device have remained poorly characterized. Using Finite Element Model (FEM) we simulate the mechanical strain on a planar silicon electrode. The results presented here demonstrate that mechanical mismatch between iridium and silicon leads to concentrated strain along the border of the two materials. This strain is further focused on small protrusions such as the electrical traces in planar silicon electrodes. These findings are confirmed with chronic in vivo data (133–189 days) in mice by correlating a combination of single-unit electrophysiology, evoked multi-unit recordings, electrochemical impedance spectroscopy, and scanning electron microscopy from traces and electrode sites with our modeling data. Several modes of mechanical failure of chronically implanted planar silicon electrodes are found that result in degradation and/or loss of recording. These findings highlight the importance of strains and material properties of various subcomponents within an electrode array. PMID:25453935

  13. A Programmable Implantable Microstimulator SoC With Wireless Telemetry: Application in Closed-Loop Endocardial Stimulation for Cardiac Pacemaker.

    PubMed

    Shuenn-Yuh Lee; Su, M Y; Ming-Chun Liang; You-Yin Chen; Cheng-Han Hsieh; Chung-Min Yang; Hsin-Yi Lai; Jou-Wei Lin; Qiang Fang

    2011-12-01

    A low-power, wireless, and implantable microstimulator system on chip with smart powering management, immediate neural signal acquisition, and wireless rechargeable system is proposed. A system controller with parity checking handles the adjustable stimulus parameters for the stimulated objective. In the current paper, the rat's intra-cardiac electrogram is employed as the stimulated model in the animal study, and it is sensed by a low-voltage and low-power monitoring analog front end. The power management unit, which includes a rectifier, battery charging and detection, and a regulator, is used for the power control of the internal circuits. The stimulation data and required clock are extracted by a phase-locked-loop-based phase shift keying demodulator from an inductive AC signal. The full chip, which consumes 48 μW only, is fabricated in a TSMC 0.35 μm 2P4M standard CMOS process to perform the monitoring and pacing functions with inductively powered communication in the in vivo study.

  14. Two-dimensional jaw tracking and EMG recording system implanted in the freely moving rabbit.

    PubMed

    Yamada, Y; Haraguchi, N; Oi, K; Sasaki, M

    1988-04-01

    A system for simultaneously recording mandibular position in the sagittal plane together with masticatory muscle activity was designed and tested in rabbits. Two small magnetic sensors were implanted in the maxillary bone and a powerful magnet made of a rare earth metal attached to the mandibular central incisors. The magnetic sensors detected the mandibular movements in the sagittal plane by movement of the magnet. Masseter EMG was recorded by fine wire electrodes and amplified by a specially designed amplifier. The necessary preamplifiers were assembled as an integrated circuit (IC) chip in a small housing. The signals from the preamplifier were then passed through a signal processing unit and taped on an instrumentation tape. The system was applied to the freely moving rabbit supplied with food and water during the night. It worked without any trouble for more than 24 h. Since the implanted magnetic sensors were stable for more than 4 months, long-term recording could be done by merely reimplanting the magnet, the cables and the EMG electrodes, which was simple.

  15. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.

    PubMed

    Sodagar, Amir M; Wise, Kensall D; Najafi, Khalil

    2007-06-01

    A 64-channel neural processor has been developed for use in an implantable neural recording microsystem. In the Scan Mode, the processor is capable of detecting neural spikes by programmable positive, negative, or window thresholding. Spikes are tagged with their associated channel addresses and formed into 18-bit data words that are sent serially to the external host. In the Monitor Mode, two channels can be selected and viewed at high resolution for studies where the entire signal is of interest. The processor runs from a 3-V supply and a 2-MHz clock, with a channel scan rate of 64 kS/s and an output bit rate of 2 Mbps.

  16. A wireless 64-channel ECoG recording electronic for implantable monitoring and BCI applications: WIMAGINE.

    PubMed

    Charvet, G; Foerster, M; Chatalic, G; Michea, A; Porcherot, J; Bonnet, S; Filipe, S; Audebert, P; Robinet, S; Josselin, V; Reverdy, J; D'Errico, R; Sauter, F; Mestais, C; Benabid, A L

    2012-01-01

    A wireless, low power, 64-channel data acquisition system named WIMAGINE has been designed for ElectroCorticoGram (ECoG) recording. This system is based on a custom integrated circuit (ASIC) for amplification and digitization on 64 channels. It allows the RF transmission (in the MICS band) of 32 ECoG recording channels (among 64 channels available) sampled at 1 kHz per channel with a 12-bit resolution. The device is powered wirelessly through an inductive link at 13.56 MHz able to provide 100mW (30mA at 3.3V). This integration is a first step towards an implantable device for brain activity monitoring and Brain-Computer Interface (BCI) applications. The main features of the WIMAGINE platform and its architecture will be presented, as well as its performances and in vivo studies. PMID:23366009

  17. WIMAGINE: an implantable electronic platform for wireless 64-channel ECoG recording

    NASA Astrophysics Data System (ADS)

    Foerster, M.; Porcherot, J.; Robinet, S.; D'Errico, R.; Josselin, V.; Sauter, F.; Mestais, C.; Charvet, G.

    2013-05-01

    The WIMAGINE platform was developed as a proof of concept and first functional prototype of an implantable device for recording ECoG signals on a large number of electrodes. The designed system provides the means of recording wirelessly up to 64 ECoG channels. Two ASIC CINESIC32 ensure the amplification and digitization of the neurosignals which are then transmitted to a PC using a ZL70102 transceiver in the MICS band. An MSP430 handles the communication protocol, configures the ASICs and gives access to various sensor information. The electronics are packaged hermetically in a biocompatible titanium housing encapsulated medical grade silicone. The whole device is powered remotely over an inductive link at 13.56MHz and complies with the regulations applicable to class III AIMD.

  18. Closed-loop glycaemic control using an implantable artificial pancreas in diabetic domestic pig (Sus scrofa domesticus).

    PubMed

    Taylor, M J; Gregory, R; Tomlins, P; Jacob, D; Hubble, J; Sahota, T S

    2016-03-16

    The performance of a completely implantable peritoneal artificial pancreas (AP) has been demonstrated in principle in a live diabetic domestic pig. The device consists of a smart glucose-sensitive gel that forms a gateway to an insulin reservoir and is designed to both sense glucose and deliver insulin in the peritoneal cavity. It can be refilled with insulin via subcutaneous ports and surgery was developed to insert the AP. Diabetes was induced with streptozotocin (STZ), the device filled with insulin (Humulin(®) R U-500) in situ and the animal observed for several weeks, during which time there was normal access to food and water and several oral glucose challenges. Blood glucose (BG) levels were brought down from >30 mmol/L (540 mg/dL) to non-fasted values between 7 and 13 mmol/L (126-234 mg/dL) about five days after filling the device. Glucose challenge responses improved ultimately so that, starting at 10 mmol/L (180 mg/dL), the BG peak was 18 mmol/L (324 mg/dL) and fell to 7 mmol/L (126 mg/dL) after 30 min, contrasting with intravenous attempts. The reservoir solution was removed after 8 days of blood glucose levels during which they had been increasingly better controlled. A rapid return to diabetic BG levels (30 mmol/L) occurred only after a further 24 days implying some insulin had remained in the device after removal of the reservoir solution. Thus, the closed loop system appeared to have particular influence on the basal and bolus needs for the 8 days in which the reservoir solution was in place and substantial impact for a further 3 weeks. No additional insulin manual adjustment was given during this period. PMID:26691655

  19. Refined methodology for implantation of a head fixation device and chronic recording chambers in non-human primates.

    PubMed

    Lanz, F; Lanz, X; Scherly, A; Moret, V; Gaillard, A; Gruner, P; Hoogewoud, H M; Belhaj-Saif, A; Loquet, G; Rouiller, E M

    2013-10-15

    The present study was aimed at developing a new strategy to design and anchor custom-fitted implants, consisting of a head fixation device and a chronic recording chamber, on the skull of adult macaque monkeys. This was done without the use of dental resin or orthopedic cement, as these modes of fixation exert a detrimental effect on the bone. The implants were made of titanium or tekapeek and anchored to the skull with titanium screws. Two adult macaque monkeys were initially implanted with the head fixation device several months previous to electrophysiological investigation, to allow optimal osseous-integration, including growth of the bone above the implant's footplate. In a second step, the chronic recording chamber was implanted above the brain region of interest. The present study proposes two original approaches for both implants. First, based on a CT scan of the monkey, a plastic replicate of the skull was obtained in the form of a 3D print, used to accurately shape and position the two implants. This would ensure a perfect match with the skull surface. Second, the part of the implants in contact with the bone was coated with hydroxyapatite, presenting chemical similarity to natural bone, thus promoting excellent osseous-integration. The longevity of the implants used here was 4 years for the head fixation device and 1.5 years for the chronic chamber. There were no adverse events and daily care was easy. This is clear evidence that the present implanting strategy was successful and provokes less discomfort to the animals.

  20. Refined methodology for implantation of a head fixation device and chronic recording chambers in non-human primates.

    PubMed

    Lanz, F; Lanz, X; Scherly, A; Moret, V; Gaillard, A; Gruner, P; Hoogewoud, H M; Belhaj-Saif, A; Loquet, G; Rouiller, E M

    2013-10-15

    The present study was aimed at developing a new strategy to design and anchor custom-fitted implants, consisting of a head fixation device and a chronic recording chamber, on the skull of adult macaque monkeys. This was done without the use of dental resin or orthopedic cement, as these modes of fixation exert a detrimental effect on the bone. The implants were made of titanium or tekapeek and anchored to the skull with titanium screws. Two adult macaque monkeys were initially implanted with the head fixation device several months previous to electrophysiological investigation, to allow optimal osseous-integration, including growth of the bone above the implant's footplate. In a second step, the chronic recording chamber was implanted above the brain region of interest. The present study proposes two original approaches for both implants. First, based on a CT scan of the monkey, a plastic replicate of the skull was obtained in the form of a 3D print, used to accurately shape and position the two implants. This would ensure a perfect match with the skull surface. Second, the part of the implants in contact with the bone was coated with hydroxyapatite, presenting chemical similarity to natural bone, thus promoting excellent osseous-integration. The longevity of the implants used here was 4 years for the head fixation device and 1.5 years for the chronic chamber. There were no adverse events and daily care was easy. This is clear evidence that the present implanting strategy was successful and provokes less discomfort to the animals. PMID:23933327

  1. Methods for implantation of micro-wire bundles and optimization of single/multiunit recordings from human mesial temporal lobe

    PubMed Central

    Misra, A; Burke, JF; Ramayya, A; Jacobs, J; Sperling, MR; Moxon, KA; Kahana, MJ; Evans, JJ; Sharan, AD

    2014-01-01

    Objective The authors report methods developed for the implantation of micro-wire bundles into mesial temporal lobe structures and subsequent single neuron recording in epileptic patients undergoing in-patient diagnostic monitoring. This is done with the intention of lowering the perceived barriers to routine single neuron recording from deep brain structures in the clinical setting. Approach Over a 15 month period, 11 patients were implanted with platinum micro-wire bundles into mesial temporal structures. Protocols were developed for A) monitoring electrode integrity through impedance testing, B) ensuring continuous 24-7 recording, C) localizing micro-wire position and “splay” pattern and D) monitoring grounding and referencing to maintain the quality of recordings. Main Result Five common modes of failure were identified: 1) broken micro-wires from acute tensile force, 2) broken micro-wires from cyclic fatigue at stress points, 3) poor in-vivo micro-electrode separation, 4) motion artifact and 5) deteriorating ground connection and subsequent drop in common mode noise rejection. Single neurons have been observed up to 14 days post implantation and on 40% of micro-wires. Significance Long-term success requires detailed review of each implant by both the clinical and research teams to identify failure modes, and appropriate refinement of techniques while moving forward. This approach leads to reliable unit recordings without prolonging operative times, which will help increase the availability and clinical viability of human single neuron data. PMID:24608589

  2. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates

    NASA Astrophysics Data System (ADS)

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-04-01

    Objective. Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims and those living with severe neuromotor disease. Such systems must be chronically safe, durable and effective. Approach. We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based microelectrode array via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1 Hz to 7.8 kHz, 200× gain) and multiplexed by a custom application specific integrated circuit, digitized and then packaged for transmission. The neural data (24 Mbps) were transmitted by a wireless data link carried on a frequency-shift-key-modulated signal at 3.2 and 3.8 GHz to a receiver 1 m away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7 h continuous operation between recharge via an inductive transcutaneous wireless power link at 2 MHz. Main results. Device verification and early validation were performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance. We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight into how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile

  3. An Implantable Wireless Neural Interface for Recording Cortical Circuit Dynamics in Moving Primates

    PubMed Central

    Borton, David A.; Yin, Ming; Aceros, Juan; Nurmikko, Arto

    2013-01-01

    Objective Neural interface technology suitable for clinical translation has the potential to significantly impact the lives of amputees, spinal cord injury victims, and those living with severe neuromotor disease. Such systems must be chronically safe, durable, and effective. Approach We have designed and implemented a neural interface microsystem, housed in a compact, subcutaneous, and hermetically sealed titanium enclosure. The implanted device interfaces the brain with a 510k-approved, 100-element silicon-based MEA via a custom hermetic feedthrough design. Full spectrum neural signals were amplified (0.1Hz to 7.8kHz, ×200 gain) and multiplexed by a custom application specific integrated circuit, digitized, and then packaged for transmission. The neural data (24 Mbps) was transmitted by a wireless data link carried on an frequency shift key modulated signal at 3.2GHz and 3.8GHz to a receiver 1 meter away by design as a point-to-point communication link for human clinical use. The system was powered by an embedded medical grade rechargeable Li-ion battery for 7-hour continuous operation between recharge via an inductive transcutaneous wireless power link at 2MHz. Main results Device verification and early validation was performed in both swine and non-human primate freely-moving animal models and showed that the wireless implant was electrically stable, effective in capturing and delivering broadband neural data, and safe for over one year of testing. In addition, we have used the multichannel data from these mobile animal models to demonstrate the ability to decode neural population dynamics associated with motor activity. Significance We have developed an implanted wireless broadband neural recording device evaluated in non-human primate and swine. The use of this new implantable neural interface technology can provide insight on how to advance human neuroprostheses beyond the present early clinical trials. Further, such tools enable mobile patient use, have

  4. A New Trend in Recording Subgingival Tissue around an Implant While Making a Direct Abutment Impression

    PubMed Central

    Deogade, Suryakant C.; Mantri, Sneha S.; Dube, Gunjan; Shrivastava, Radhika; Noorani, Syed

    2014-01-01

    A successful implant-supported restoration must provide adequate function and esthetics. Osseointegrated implants have given an alternative choice for patients who have lost their teeth. Most commonly encountered problems while doing a transfer from patient to the master cast in restoring implant-supported crowns are an uneven distribution of occlusal loads and undue torquing forces on the various elements of implant. This is caused due to poor fit of frameworks connected to implant, which further leads to marginal bone loss, loosening of screws, fatigue fracture of implant components, and ultimately implant failure. This paper presents a simplified and easy solution to overcome such problems by introducing an innovative gingival retraction system for restoring implant-supported crowns to achieve superior and predictable long-term outcomes. PMID:24987534

  5. A method for compression of intra-cortically-recorded neural signals dedicated to implantable brain-machine interfaces.

    PubMed

    Shaeri, Mohammad Ali; Sodagar, Amir M

    2015-05-01

    This paper proposes an efficient data compression technique dedicated to implantable intra-cortical neural recording devices. The proposed technique benefits from processing neural signals in the Discrete Haar Wavelet Transform space, a new spike extraction approach, and a novel data framing scheme to telemeter the recorded neural information to the outside world. Based on the proposed technique, a 64-channel neural signal processor was designed and prototyped as a part of a wireless implantable extra-cellular neural recording microsystem. Designed in a 0.13- μ m standard CMOS process, the 64-channel neural signal processor reported in this paper occupies ∼ 0.206 mm(2) of silicon area, and consumes 94.18 μW when operating under a 1.2-V supply voltage at a master clock frequency of 1.28 MHz. PMID:25222949

  6. Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.

    PubMed

    Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric

    2010-06-01

    We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.

  7. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.

    PubMed

    Anand, Sindhu; Kumar, Swathy Sampath; Muthuswamy, Jit

    2016-08-01

    Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time).

  8. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.

    PubMed

    Anand, Sindhu; Kumar, Swathy Sampath; Muthuswamy, Jit

    2016-08-01

    Emerging neural prosthetics require precise positional tuning and stable interfaces with single neurons for optimal function over a lifetime. In this study, we report an autonomous control to precisely navigate microscale electrodes in soft, viscoelastic brain tissue without visual feedback. The autonomous control optimizes signal-to-noise ratio (SNR) of single neuronal recordings in viscoelastic brain tissue while maintaining quasi-static mechanical stress conditions to improve stability of the implant-tissue interface. Force-displacement curves from microelectrodes in in vivo rodent experiments are used to estimate viscoelastic parameters of the brain. Using a combination of computational models and experiments, we determined an optimal movement for the microelectrodes with bidirectional displacements of 3:2 ratio between forward and backward displacements and a inter-movement interval of 40 s for minimizing mechanical stress in the surrounding brain tissue. A regulator with the above optimal bidirectional motion for the microelectrodes in in vivo experiments resulted in significant reduction in the number of microelectrode movements (0.23 movements/min) and longer periods of stable SNR (53 % of the time) compared to a regulator using a conventional linear, unidirectional microelectrode movement (with 1.48 movements/min and stable SNR 23 % of the time). PMID:27457752

  9. Objective intraoperative method to record averaged electromyographic stapedius muscle reflexes in cochlear implant patients.

    PubMed

    Almqvist, B; Harris, S; Shallop, J K

    2000-01-01

    We have developed a procedure to measure the averaged stapedius muscle reflex in response to electrical stimulation (AESR) with a cochlear implant. The AESR, as activated by ipsilateral stimulation with a cochlear implant, was investigated intra-operatively in a series of 12 children. After the cochlear implant was placed into the cochlea and secured by the surgeon, an electromyographic (EMG) needle electrode was gently placed into the stapedius muscle. During stimulation of the cochlear implant, the stapedius reflex was monitored visually (VESR) and as an averaged EMG response (AESR). Consistent AESRs were obtained in 7 of the 12 children. These measures provide a method to obtain stapedius muscle responses that may be helpful in the programming of young children with cochlear implants. Comparative post-operative measures were also obtained, including behavioral threshold levels, behavioral comfort levels, and the contralateral stapedius reflex threshold (ESR) on selected electrodes.

  10. Implanted electrode recordings from a praying mantis auditory interneuron during flying bat attacks.

    PubMed

    Triblehorn, Jeffrey D; Yager, David D

    2002-02-01

    Using an implanted electrode, we recorded the responses from the ultrasound-sensitive mantis interneuron 501-T3 during flying bat attacks in a large flight room where the mantis served as the target. 501-T3 responds to each vocalization emitted with multi-spike bursts when pulse repetition rates (PRRs) are below 55 pulses x s(-1). As PRR increases and pulse durations fall below 3 ms, 501-T3 ceases burst activity. On average, spike bursts cease 272 ms before contact (when the bat is 73 cm away from the preparation). The timing of cessation of activity in 501-T3 is similar to the latency for the diving portion of the response of the mantid (242 ms). Experiments using vocalizing stationary bats confirm that 501-T3 responds more reliably to longer pulse durations (> or =3 ms) when intensities are below 90 dB pe SPL. The cessation of 501-T3 activity is probably due both to the increasing PRR and to the decreasing pulse duration that occur in the terminal buzz phase of a bat attack. 501-T3 may be actively shut off at high PRRs and/or intensities to protect the interneuron from habituation while the mantis performs an escape response. The cessation of 501-T3 activity is consistent with the lack of a very late ultrasound-mediated evasive response by the mantis. However, cessation of 501-T3 activity may allow a true 'last-chance' response to be mediated by other neural systems. PMID:11854368

  11. A 65nm CMOS low-power MedRadio-band integer-N cascaded phase-locked loop for implantable medical systems.

    PubMed

    Wang, Yi-Xiao; Chen, Wei-Ming; Wu, Chung-Yu

    2014-01-01

    This paper presents a low-power MedRadio-band integer-N phase-locked Loop (PLL) system which is composed of two charge-pump PLLs cascade connected. The PLL provides the operation clock and local carrier signals for an implantable medical electronic system. In addition, to avoid the off-chip crystal oscillator, the 13.56 MHz Industrial, Scientific and Medical (ISM) band signal from the wireless power transmission system is adopted as the input reference signal for the PLL. Ring-based voltage controlled oscillators (VCOs) with current control units are adopted to reduce chip area and power dissipation. The proposed cascaded PLL system is designed and implemented in TSMC 65-nm CMOS technology. The measured jitter for 216.96 MHz signal is 12.23 ps and the phase noise is -65.9 dBc/Hz at 100 kHz frequency offset under 402.926 MHz carrier frequency. The measured power dissipations are 66 μW in the first PLL and 195 μW in the whole system under 1-V supply voltage. The chip area is 0.1088 mm(2) and no off-chip component is required which is suitable for the integration of the implantable medical electronic system.

  12. Batteryless implanted echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.

    1977-01-01

    Miniature ultrasonic echosonometer implanted within laboratory animals obtains energy from RF power oscillator that is electronically transduced via induction loop to power receiving loop located just under animal's skin. Method of powering device offers significant advantages over those in which battery is part of implanted package.

  13. Potential applications of a small high-surface-area platinum electrode as an implanted impedance biosensor or recording electrode

    NASA Astrophysics Data System (ADS)

    Duan, Yvonne Y.; Millard, Rodney E.; Tykocinski, Michael; Lui, Xuguang; Clark, Graeme M.; Cowan, Robert S. C.

    2001-03-01

    A small Platinum (Pt) electrode (geometric area: ~0.43 mm2) was treated in an electrochemical etching process, to produce a highly porous columnar thin layer (~600 nm) on the surface of the electrode. The modified Pt electrode (Pt-p) showed similar electrical properties to a platinum-black electrode but with high mechanical integrity. Previous studies of chronic stimulation had also shown good biocompatibility and surface stability over several months implantation. This paper discusses the potential applications of the modified electrode as an implanted bio-sensor: (1) as a recording electrode compared to an untreated Pt electrode. (2) as a probe in detecting electrical characteristics of living biological material adjacent to the electrode in vivo, which may correlate to inflammation or trauma repair. Results of electrochemical impedance spectroscopy (EIS) revealed much lower electrode interface polarisation impedance, reduced overall electrode impedance, and a largely constant impedance above 100 Hz for the Pt-p electrode compared with untreated Pt electrodes. This provides a platform for recording biological events with low noise interference. Results of A.C. impedance spectroscopy of the high surface area electrode only reflect changes in the surrounding biological environment in the frequency range (1 k Hz to 100 k Hz), interference from electrode polarisation impedance can be neglected. The results imply that the surface-modified electrode is a good candidate for application to implantable biosensors for detecting bio-electric events. The modification procedure and its high surface area concept could have application to a smart MEMS device or microelectrode.

  14. Dosimeter design, construction, and implantation. [for recording HZE cosmic particle tracks

    NASA Technical Reports Server (NTRS)

    Winter, D. L.; Suri, K.; Durso, J. A.; Cota, F. L.; Ashley, W. W.; Binnard, R. M.; Haymaker, W.; Benton, E. V.; Cruty, M. R.; Zeman, W.

    1975-01-01

    To detect the passage of cosmic ray particles through the heads of the pocket mice during the Apollo XVII flight, a 'monitor' (dosimeter) composed of plastics was prepared and implanted under the scalp. The monitor was mounted on a platform, the undersurface of which fitted the contour of the skull. Numerous tests were run to assure that the presence of the monitor assembly beneath the scalp would be compatible with the well-being of the mice and that the capacity of the monitor to detect the traversal of cosmic ray particles would be preserved over the several weeks during which it would remain under the scalp.

  15. In Vitro Testing of an Implantable Wireless Telemetry System for Long-Term Electromyography Recordings in Large Animals.

    PubMed

    Kneisz, Lukas; Unger, Ewald; Lanmüller, Hermann; Mayr, Winfried

    2015-10-01

    Multichannel bio-signal recording in undisturbed in vivo conditions is a frequent demand in experimental work for development of methodology and associated equipment for functional electrical stimulation (FES) application, limb prosthesis, and diagnostic tools in contemporary rehabilitation efforts. Intramuscular electromyogram (EMG) recordings can provide comprehensive insight in complex interactions of agonistic and antagonistic muscles during movement tasks and in contrast act as reliable control signals for both neuroprosthesis and mechanical prosthesis. We fabricated a fully implantable device, which is capable of recording electromyography signals from inside a body and transmit these signals wirelessly to an external receiver. The developed analog front end uses only two electrodes per channel, provides a gain of 60 dB, and incorporates a band pass filter with lower cut-off frequency of 4 Hz and upper cut-off frequency of 480 Hz. The bidirectional wireless data link, which operates in the 2.4 GHz Industrial, Scientific and Medical band, is designed for transmission distances of 10 m using an application data rate of 1 kSps for each of the two channels. Performed in vitro tests with the devices coated in epoxy resin and inserted into a phantom with tissue-equivalent characteristics confirmed the functionality of our concept and the measurement results are consistent with those from preceding simulations.

  16. Event-related potentials recorded from the cingulate gyrus during attentional tasks: a study in patients with implanted electrodes.

    PubMed

    Turak, Baris; Louvel, Jacques; Buser, Pierre; Lamarche, Michel

    2002-01-01

    Recent neuroimaging data suggests that the cingulate gyrus is involved in a variety of cognitive tasks. In this study sensory field potentials were directly recorded from the cingulate gyrus in order to investigate its implication in attentional processes associated or not with a motor task. Evoked potentials recordings were performed in 29 epileptic patients with multilead electrodes implanted for presurgical evaluation, who agreed to participate in an experimental protocol consisting of a series of paradigms designed using a warning auditory tone, two distinct visual patterns and various attentional, memory, motor and decisional tasks. Our data shows that evoked potentials could be recorded from various parts of the cingulate gyrus. The inclusion of an instruction in the experimental paradigm resulted in an increase in the amplitude of the late, intrinsic component of the visual evoked potential culminating at about 450 ms. Several variations of response patterns across individuals were identified. We conclude that the cingulate gyrus appears to be a multimodal area involved in several types of cognitive activity, including attention. Variations in response patterns are probably related to differences in the strategy adopted by each subject when faced with a particular cognitive task.

  17. A Chronic Implant to Record Electroretinogram, Visual Evoked Potentials and Oscillatory Potentials in Awake, Freely Moving Rats for Pharmacological Studies

    PubMed Central

    Guarino, Irene; Loizzo, Stefano; Lopez, Luisa; Fadda, Antonello; Loizzo, Alberto

    2004-01-01

    Electroretinogram (ERG), widely used to study the pharmacological effects of drugs in animal models (e.g., diabetic retinopathy), is usually recorded in anesthetized rats. We report here a novel simple method to obtain chronic implantation of electrodes for simultaneous recording at the retinal and cortical levels in freely moving, unanesthetized animals. We recorded cortical (VEPs) and retinal (ERGs) responses evoked by light (flash) stimuli in awake rats and compared the results in the same rats anesthetized with urethane (0.6 mg/kg) before and after the monocular administration of scopolamine methyl bromide (1‰solution). We also compared the retinal responses with those derived from a classic acute corneal electrode. Anesthesia induced consistent changes of several VEP and ERG parameters like an increase of both latency and amplitude. In particular, the analysis of the variation of latency, amplitude, and spectral content of rapid oscillatory potentials could be important for a functional evaluation of the visual system in unanesthetized versus anesthetized animals. PMID:15656271

  18. Methods for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial temporal lobe

    NASA Astrophysics Data System (ADS)

    Misra, A.; Burke, J. F.; Ramayya, A. G.; Jacobs, J.; Sperling, M. R.; Moxon, K. A.; Kahana, M. J.; Evans, J. J.; Sharan, A. D.

    2014-04-01

    Objective. The authors report methods developed for the implantation of micro-wire bundles into mesial temporal lobe structures and subsequent single neuron recording in epileptic patients undergoing in-patient diagnostic monitoring. This is done with the intention of lowering the perceived barriers to routine single neuron recording from deep brain structures in the clinical setting. Approach. Over a 15 month period, 11 patients were implanted with platinum micro-wire bundles into mesial temporal structures. Protocols were developed for (A) monitoring electrode integrity through impedance testing, (B) ensuring continuous 24-7 recording, (C) localizing micro-wire position and ‘splay’ pattern and (D) monitoring grounding and referencing to maintain the quality of recordings. Main results. Five common modes of failure were identified: (1) broken micro-wires from acute tensile force, (2) broken micro-wires from cyclic fatigue at stress points, (3) poor in vivo micro-electrode separation, (4) motion artifact and (5) deteriorating ground connection and subsequent drop in common mode noise rejection. Single neurons have been observed up to 14 days post-implantation and on 40% of micro-wires. Significance. Long-term success requires detailed review of each implant by both the clinical and research teams to identify failure modes, and appropriate refinement of techniques while moving forward. This approach leads to reliable unit recordings without prolonging operative times, which will help increase the availability and clinical viability of human single neuron data.

  19. CLINATEC® BCI platform based on the ECoG-recording implant WIMAGINE® and the innovative signal-processing: preclinical results.

    PubMed

    Eliseyev, Andrey; Mestais, Corinne; Charvet, Guillaume; Sauter, Fabien; Abroug, Neil; Arizumi, Nana; Cokgungor, Serpil; Costecalde, Thomas; Foerster, Michael; Korczowski, Louis; Moriniere, Boris; Porcherot, Jean; Pradal, Jeremy; Ratel, David; Tarrin, Nicolas; Torres-Martinez, Napoleon; Verney, Alexandre; Aksenova, Tetiana; Benabid, Alim-Louis

    2014-01-01

    The goal of the CLINATEC® Brain Computer Interface (BCI) Project is to improve tetraplegic subjects' quality of life by allowing them to interact with their environment through the control of effectors, such as an exoskeleton. The BCI platform is based on a wireless 64-channel ElectroCorticoGram (ECoG) recording implant WIMAGINE®, designed for long-term clinical application, and a BCI software environment associated to a 4-limb exoskeleton EMY (Enhancing MobilitY). Innovative ECoG signal decoding algorithms will allow the control of the exoskeleton by the subject's brain activity. Currently, the whole BCI platform was tested in real-time in preclinical experiments carried out in nonhuman primates. In these experiments, the exoskeleton arm was controlled by means of the decoded neuronal activity. PMID:25570185

  20. CLINATEC® BCI platform based on the ECoG-recording implant WIMAGINE® and the innovative signal-processing: preclinical results.

    PubMed

    Eliseyev, Andrey; Mestais, Corinne; Charvet, Guillaume; Sauter, Fabien; Abroug, Neil; Arizumi, Nana; Cokgungor, Serpil; Costecalde, Thomas; Foerster, Michael; Korczowski, Louis; Moriniere, Boris; Porcherot, Jean; Pradal, Jeremy; Ratel, David; Tarrin, Nicolas; Torres-Martinez, Napoleon; Verney, Alexandre; Aksenova, Tetiana; Benabid, Alim-Louis

    2014-01-01

    The goal of the CLINATEC® Brain Computer Interface (BCI) Project is to improve tetraplegic subjects' quality of life by allowing them to interact with their environment through the control of effectors, such as an exoskeleton. The BCI platform is based on a wireless 64-channel ElectroCorticoGram (ECoG) recording implant WIMAGINE®, designed for long-term clinical application, and a BCI software environment associated to a 4-limb exoskeleton EMY (Enhancing MobilitY). Innovative ECoG signal decoding algorithms will allow the control of the exoskeleton by the subject's brain activity. Currently, the whole BCI platform was tested in real-time in preclinical experiments carried out in nonhuman primates. In these experiments, the exoskeleton arm was controlled by means of the decoded neuronal activity.

  1. A Single-Chip Full-Duplex High Speed Transceiver for Multi-Site Stimulating and Recording Neural Implants.

    PubMed

    Mirbozorgi, S Abdollah; Bahrami, Hadi; Sawan, Mohamad; Rusch, Leslie A; Gosselin, Benoit

    2016-06-01

    We present a novel, fully-integrated, low-power full-duplex transceiver (FDT) to support high-density and bidirectional neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size and complexity. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (>20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18- μm CMOS within a total size of 0.8 mm(2). The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Additionally, a 3-coil inductive link along with on-chip power management circuits allows to powering up the implantable transceiver wirelessly by delivering 25 mW extracted from a 13.56-MHz carrier signal, at a total efficiency of 41.6%. PMID:26469635

  2. Recording and analysis of electrically evoked compound action potentials (ECAPs) with MED-EL cochlear implants and different artifact reduction strategies in Matlab.

    PubMed

    Bahmer, Andreas; Peter, Otto; Baumann, Uwe

    2010-08-15

    Electrically evoked compound action potentials (ECAPs) are used in auditory research to evaluate the response of the auditory nerve to electrical stimulation. Animal preparations are typically used for the recording. With the introduction of a new generation of cochlear implants, however it is possible to record the response of the auditory nerve to electrical stimulation in humans as well, which is used in the clinic to test whether the implant works properly and whether the auditory nerve is responsive. Currently, ECAPs are used to estimate thresholds for speech processor programs. In addition, ECAPs recordings allow new research to be addressed, e.g., to evaluate enhanced electrical stimulation patterns. Research platforms are required to test user-defined stimuli and algorithms for the ECAPs analysis. Clinical fitting software that records ECAPs is not flexible enough for this purpose. To enable a larger group of scientists to pursue research in this field, we introduce a flexible setup that allows to change stimulation and recording parameters. ECAP recording and analysis software was developed in Matlab (The Mathworks, Inc.) for standard PC, using a National instruments (PCI-6533, National Instruments, Austin, TX) card and a Research Interface Box 2 (RIB2, Department of Ion Physics and Applied Physics at the University of Innsbruck, Innsbruck, Austria) for MED-EL cochlear implants. ECAP recordings of a human subject with three different artifact reduction methods (alternating, Miller modified masker-probe, triphasic pulses) are presented and compared.

  3. STN area detection using K-NN classifiers for MER recordings in Parkinson patients during neurostimulator implant surgery

    NASA Astrophysics Data System (ADS)

    Schiaffino, L.; Rosado Muñoz, A.; Guerrero Martínez, J.; Francés Villora, J.; Gutiérrez, A.; Martínez Torres, I.; Kohan, y. D. R.

    2016-04-01

    Deep Brain Stimulation (DBS) applies electric pulses into the subthalamic nucleus (STN) improving tremor and other symptoms associated to Parkinson’s disease. Accurate STN detection for proper location and implant of the stimulating electrodes is a complex task and surgeons are not always certain about final location. Signals from the STN acquired during DBS surgery are obtained with microelectrodes, having specific characteristics differing from other brain areas. Using supervised learning, a trained model based on previous microelectrode recordings (MER) can be obtained, being able to successfully classify the STN area for new MER signals. The K Nearest Neighbours (K-NN) algorithm has been successfully applied to STN detection. However, the use of the fuzzy form of the K-NN algorithm (KNN-F) has not been reported. This work compares the STN detection algorithm of K-NN and KNN-F. Real MER recordings from eight patients where previously classified by neurophysiologists, defining 15 features. Sensitivity and specificity for the classifiers are obtained, Wilcoxon signed rank non-parametric test is used as statistical hypothesis validation. We conclude that the performance of KNN-F classifier is higher than K-NN with p<0.01 in STN specificity.

  4. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Stark, Eran; Im, Maesoon; Cho, Il-Joo; Yoon, Eui-Sung; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik

    2013-10-01

    Objective. Optogenetics promises exciting neuroscience research by offering optical stimulation of neurons with unprecedented temporal resolution, cell-type specificity and the ability to excite as well as to silence neurons. This work provides the technical solution to deliver light to local neurons and record neural potentials, facilitating local circuit analysis and bridging the gap between optogenetics and neurophysiology research. Approach. We have designed and obtained the first in vivo validation of a neural probe with monolithically integrated electrodes and waveguide. High spatial precision enables optical excitation of targeted neurons with minimal power and recording of single-units in dense cortical and subcortical regions. Main results. The total coupling and transmission loss through the dielectric waveguide at 473 nm was 10.5 ± 1.9 dB, corresponding to an average output intensity of 9400 mW mm-2 when coupled to a 7 mW optical fiber. Spontaneous field potentials and spiking activities of multiple Channelrhodopsin-2 expressing neurons were recorded in the hippocampus CA1 region of an anesthetized rat. Blue light stimulation at intensity of 51 mW mm-2 induced robust spiking activities in the physiologically identified local populations. Significance. This minimally invasive, complete monolithic integration provides unmatched spatial precision and scalability for future optogenetics studies at deep brain regions with high neuronal density.

  5. Risk-reducing, conservative mastectomy—analysis of surgical outcome and quality of life in 272 implant-based reconstructions using TiLoop® Bra versus autologous corial flaps

    PubMed Central

    Strauß, Stefanie; Kimmig, Rainer; Kern, Peter

    2016-01-01

    Background Different approaches have evolved for conservative mastectomies, mostly according to surgeon’s preference. Patients’ perspective was not always in the primary focus. BRCA status has drawn much attention and therapeutic as well as prophylactic mastectomies are rising. However, knowledge on quality of life (QoL) thereafter is limited. We investigated the surgical and patient reported outcome of conservative mastectomies with implants and TiLoop® Bra vs. corial flaps. Methods Conservative mastectomies were analyzed from a prospectively maintained database in a unicentric study of consecutive 272 reconstructions from 2000-2014. We used four validated QoL questionnaires: FACT-G, EORTC C-30, EORTC B-23 and Breast Cancer Treatment Outcome Scale (BCTOS). The use of TiLoop® Bra, a titanized polypropylene mesh, for lower breast pole coverage was compared to autologous corial flaps. Results A total of 217 patients with 272 conservative mastectomies (55 bilateral) were included. Median follow-up was 3.5 years (range, 0-14 years). Skin-sparing mastectomy (SSM) was performed in 131 patients and subcutaneous mastectomy (SCM) in 86 patients. Invasive breast-cancer was the indication for surgery in 106 patients, non-invasive breast cancer (DCIS) in 80 patients, prophylactic indication (BRCA1/2-mutation) in 30 patients and contralateral alignment in 1 patient. TiLoop® Bra was used in 78 and corial flap in 79 patients. Response to questionnaires was 70%. TiLoop® Bra improved aesthetic results (P=0.049) and prevented implant dislocation (P=0.009). All patients expressed their adherence to the decision for surgery. Patients with SCM expressed their satisfaction even to a higher extent than those with SSM, particulary with regard to symmetry (P=0.018) and scars (P=0.037). Conclusions QoL after conservative mastectomies is demonstrated as excellent in several validated QoL-instruments. Double-plane technique for coverage of the implant yields good results with

  6. An efficient and compact compressed sensing microsystem for implantable neural recordings.

    PubMed

    Zhang, Jie; Suo, Yuanming; Mitra, Srinjoy; Chin, Sang Peter; Hsiao, Steven; Yazicioglu, Refet Firat; Tran, Trac D; Etienne-Cummings, Ralph

    2014-08-01

    Multi-Electrode Arrays (MEA) have been widely used in neuroscience experiments. However, the reduction of their wireless transmission power consumption remains a major challenge. To resolve this challenge, an efficient on-chip signal compression method is essential. In this paper, we first introduce a signal-dependent Compressed Sensing (CS) approach that outperforms previous works in terms of compression rate and reconstruction quality. Using a publicly available database, our simulation results show that the proposed system is able to achieve a signal compression rate of 8 to 16 while guaranteeing almost perfect spike classification rate. Finally, we demonstrate power consumption measurements and area estimation of a test structure implemented using TSMC 0.18 μm process. We estimate the proposed system would occupy an area of around 200 μm ×300 μm per recording channel, and consumes 0.27 μ W operating at 20 KHz . PMID:25073125

  7. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb.

    PubMed

    Dong, Qi; Du, Liping; Zhuang, Liujing; Li, Rong; Liu, Qingjun; Wang, Ping

    2013-11-15

    The mammalian olfactory system has merits of higher sensitivity, selectivity and faster response than current electronic nose system based on chemical sensor array. It is advanced and feasible to detect and discriminate odors by mammalian olfactory system. The purpose of this study is to develop a novel bioelectronic nose based on the brain-machine interface (BMI) technology for odor detection by in vivo electrophysiological measurements of olfactory bulb. In this work, extracellular potentials of mitral/tufted (M/T) cells in olfactory bulb (OB) were recorded by implanted 16-channel microwire electrode arrays. The odor-evoked response signals were analyzed. We found that neural activities of different neurons showed visible different firing patterns both in temporal features and rate features when stimulated by different small molecular odorants. The detection low limit is below 1 ppm for some specific odors. Odors were classified by an algorithm based on population vector similarity and support vector machine (SVM). The results suggested that the novel bioelectonic nose was sensitive to odorant stimuli. The best classifying accuracy was up to 95%. With the development of the BMI and olfactory decoding methods, we believe that this system will represent emerging and promising platforms for wide applications in medical diagnosis and security fields.

  8. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    PubMed

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance. PMID:24110075

  9. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface.

    PubMed

    Matsushita, Kojiro; Hirata, Masayuki; Suzuki, Takafumi; Ando, Hiroshi; Ota, Yuki; Sato, Fumihiro; Morris, Shyne; Yoshida, Takeshi; Matsuki, Hidetoshi; Yoshimine, Toshiki

    2013-01-01

    Brain Machine Interface (BMI) is a system that assumes user's intention by analyzing user's brain activities and control devices with the assumed intention. It is considered as one of prospective tools to enhance paralyzed patients' quality of life. In our group, we especially focus on ECoG (electro-corti-gram)-BMI, which requires surgery to place electrodes on the cortex. We try to implant all the devices within the patient's head and abdomen and to transmit the data and power wirelessly. Our device consists of 5 parts: (1) High-density multi-electrodes with a 3D shaped sheet fitting to the individual brain surface to effectively record the ECoG signals; (2) A small circuit board with two integrated circuit chips functioning 128 [ch] analogue amplifiers and A/D converters for ECoG signals; (3) A Wifi data communication & control circuit with the target PC; (4) A non-contact power supply transmitting electrical power minimum 400[mW] to the device 20[mm] away. We developed those devices, integrated them, and, investigated the performance.

  10. A Wireless and Batteryless Microsystem with Implantable Grid Electrode/3-Dimensional Probe Array for ECoG and Extracellular Neural Recording in Rats

    PubMed Central

    Chang, Chih-Wei; Chiou, Jin-Chern

    2013-01-01

    This paper presents the design and implementation of an integrated wireless microsystem platform that provides the possibility to support versatile implantable neural sensing devices in free laboratory rats. Inductive coupled coils with low dropout regulator design allows true long-term recording without limitation of battery capacity. A 16-channel analog front end chip located on the headstage is designed for high channel account neural signal conditioning with low current consumption and noise. Two types of implantable electrodes including grid electrode and 3D probe array are also presented for brain surface recording and 3D biopotential acquisition in the implanted target volume of tissue. The overall system consumes less than 20 mA with small form factor, 3.9 × 3.9 cm2 mainboard and 1.8 × 3.4 cm2 headstage, is packaged into a backpack for rats. Practical in vivo recordings including auditory response, brain resection tissue and PZT-induced seizures recording demonstrate the correct function of the proposed microsystem. Presented achievements addressed the aforementioned properties by combining MEMS neural sensors, low-power circuit designs and commercial chips into system-level integration. PMID:23567528

  11. A CMOS frontend chip for implantable neural recording with wide voltage supply range

    NASA Astrophysics Data System (ADS)

    Jialin, Liu; Xu, Zhang; Xiaohui, Hu; Yatao, Guo; Peng, Li; Ming, Liu; Bin, Li; Hongda, Chen

    2015-10-01

    A design for a CMOS frontend integrated circuit (chip) for neural signal acquisition working at wide voltage supply range is presented in this paper. The chip consists of a preamplifier, a serial instrumental amplifier (IA) and a cyclic analog-to-digital converter (CADC). The capacitive-coupled and capacitive-feedback topology combined with MOS-bipolar pseudo-resistor element is adopted in the preamplifier to create a -3 dB upper cut-off frequency less than 1 Hz without using a ponderous discrete device. A dual-amplifier instrumental amplifier is used to provide a low output impedance interface for ADC as well as to boost the gain. The preamplifier and the serial instrumental amplifier together provide a midband gain of 45.8 dB and have an input-referred noise of 6.7 μVrms integrated from 1 Hz to 5 kHz. The ADC digitizes the amplified signal at 12-bits precision with a highest sampling rate of 130 kS/s. The measured effective number of bits (ENOB) of the ADC is 8.7 bits. The entire circuit draws 165 to 216 μA current from the supply voltage varied from 1.34 to 3.3 V. The prototype chip is fabricated in the 0.18-μm CMOS process and occupies an area of 1.23 mm2 (including pads). In-vitro recording was successfully carried out by the proposed frontend chip. Project supported by the National Natural Science Foundation of China (Nos. 61474107, 61372060, 61335010, 61275200, 61178051) and the Key Program of the Chinese Academy of Sciences (No. KJZD-EW-L11-01).

  12. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  13. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain.

    PubMed

    Zhang, Song; Song, Yilin; Wang, Mixia; Zhang, Zhiming; Fan, Xinyi; Song, Xianteng; Zhuang, Ping; Yue, Feng; Chan, Piu; Cai, Xinxia

    2016-11-15

    Dual-mode, multielectrode recordings have become routine in rodent neuroscience research and have recently been adapted to the non-human primate. However, robust and reliable application of acute, multielectrode recording methods in monkeys especially for deep brain nucleus research remains a challenge. In this paper, We described a low cost silicon based 16-site implantable microelectrode array (MEA) chip fabricated by standard lithography technology for in vivo test. The array was 25mm long and designed to use in non-human primate models, for electrophysiological and electrochemical recording. We presented a detailed protocol for array fabrication, then showed that the device can record Spikes, LFPs and dopamine (DA) variation continuously from cortex to striatum in an esthetized monkey. Though our experiment, high-quality electrophysiological signals were obtained from the animal. Across any given microelectrode, spike amplitudes ranged from 70 to 300μV peak to peak, with a mean signal-to-noise ratio of better than 5:1. Calibration results showed the MEA probe had high sensitivity and good selectivity for DA. The DA concentration changed from 42.8 to 481.6μM when the MEA probe inserted from cortex into deep brain nucleus of striatum, which reflected the inhomogeneous distribution of DA in brains. Compared with existing methods allowing single mode (electrophysiology or electrochemistry) recording. This system is designed explicitly for dual-mode recording to meet the challenges of recording in non-human primates. PMID:27155116

  14. Simultaneous recording of brain extracellular glucose, spike and local field potential in real time using an implantable microelectrode array with nano-materials

    NASA Astrophysics Data System (ADS)

    Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia

    2016-03-01

    Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.

  15. A detection of Milankovitch frequencies in tephra records of arc volcanism: Shedding light on a feedback loop between climate and volcanism. (Invited)

    NASA Astrophysics Data System (ADS)

    Kutterolf, S.; Jegen, M.; Schindlbeck, J. C.; Mitrovica, J. X.; Kwasnitschka, T.; Freundt, A.; Huybers, P. J.

    2013-12-01

    Although it is well understood that volcanism can impact global climate or tectonics can influence volcanism, it is less well appreciated that climate can influence volcanism. In this regard, both regional and global studies have provided compelling evidence that ice age loading processes modulate the frequency of volcanic eruption. However, a rigorous detection of Milankovitch periodicities in global volcanic output across the Pleistocene-Holocene ice age, which would firmly establish a connection between ice age climate and eruption frequency, has remained elusive. To this end, we report on a spectral analysis of a large number of well-preserved ash plume deposits recorded in marine sediments along the Pacific Ring of Fire, which accounts for about half of the global length of 44,000 km of active subduction. Eruptions at arc volcanoes tend to be highly explosive. We analyze the Pleistocene-to-Recent marine records of widespread tephras of sub-Plinian to Plinian, and occasionally co-ignimbrite, origin since they provide a well-preserved record of how eruption frequencies varied with depth (and, hence time). Our analysis yields a statistically significant detection of spectral peaks at the obliquity period. We propose that the variability in volcanic activity results from crustal stress changes associated with ice age mass redistribution. In particular, increased volcanism lags behind the highest rate of increasing eustatic sea level (decreasing global ice volume) by 4.0 × 3.6 kyr and correlates well with numerical predictions of stress changes at volcanically active sites. Our results strongly support the presence of a coupling between ice age climate, volcanism and the continental stress field. In future work we will incorporate longer tephra time series and more accurate age controls in order to improve - and widen - our detection of Milankovitch periodicities thus further elucidating the feedback loop between climate and volcanism as well as tectonics.

  16. Using the net benefit regression framework to construct cost-effectiveness acceptability curves: an example using data from a trial of external loop recorders versus Holter monitoring for ambulatory monitoring of "community acquired" syncope

    PubMed Central

    Hoch, Jeffrey S; Rockx, Marie Antoinette; Krahn, Andrew D

    2006-01-01

    Background Cost-effectiveness acceptability curves (CEACs) describe the probability that a new treatment or intervention is cost-effective. The net benefit regression framework (NBRF) allows cost-effectiveness analysis to be done in a simple regression framework. The objective of the paper is to illustrate how net benefit regression can be used to construct a CEAC. Methods One hundred patients referred for ambulatory monitoring with syncope or presyncope were randomized to a one-month external loop recorder (n = 49) or 48-hour Holter monitor (n = 51). The primary endpoint was symptom-rhythm correlation during monitoring. Direct costs were calculated based on the 2003 Ontario Health Insurance Plan (OHIP) fee schedule combined with hospital case costing of labour, materials, service and overhead costs for diagnostic testing and related equipment. Results In the loop recorder group, 63.27% of patients (31/49) had symptom recurrence and successful activation, compared to 23.53% in the Holter group (12/51). The cost in US dollars for loop recording was $648.50 and $212.92 for Holter monitoring. The incremental cost-effectiveness ratio (ICER) of the loop recorder was $1,096 per extra successful diagnosis. The probability that the loop recorder was cost-effective compared to the Holter monitor was estimated using net benefit regression and plotted on a CEAC. In a sensitivity analysis, bootstrapping was used to examine the effect of distributional assumptions. Conclusion The NBRF is straightforward to use and interpret. The resulting uncertainty surrounding the regression coefficient relates to the CEAC. When the link from the regression's p-value to the probability of cost-effectiveness is tentative, bootstrapping may be used. PMID:16756680

  17. 10 CFR 35.2075 - Records of the release of individuals containing unsealed byproduct material or implants...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... record that the instructions required by § 35.75(b) were provided to a breast-feeding female if the radiation dose to the infant or child from continued breast-feeding could result in a total effective...

  18. 10 CFR 35.2075 - Records of the release of individuals containing unsealed byproduct material or implants...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... record that the instructions required by § 35.75(b) were provided to a breast-feeding female if the radiation dose to the infant or child from continued breast-feeding could result in a total effective...

  19. 10 CFR 35.2075 - Records of the release of individuals containing unsealed byproduct material or implants...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... record that the instructions required by § 35.75(b) were provided to a breast-feeding female if the radiation dose to the infant or child from continued breast-feeding could result in a total effective...

  20. 10 CFR 35.2075 - Records of the release of individuals containing unsealed byproduct material or implants...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... record that the instructions required by § 35.75(b) were provided to a breast-feeding female if the radiation dose to the infant or child from continued breast-feeding could result in a total effective...

  1. 10 CFR 35.2075 - Records of the release of individuals containing unsealed byproduct material or implants...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... record that the instructions required by § 35.75(b) were provided to a breast-feeding female if the radiation dose to the infant or child from continued breast-feeding could result in a total effective...

  2. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  3. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes

    NASA Astrophysics Data System (ADS)

    McConnell, G. C.; Butera, R. J.; Bellamkonda, R. V.

    2009-10-01

    The widespread adoption of neural prosthetic devices is currently hindered by our inability to reliably record neural signals from chronically implanted electrodes. The extent to which the local tissue response to implanted electrodes influences recording failure is not well understood. To investigate this phenomenon, impedance spectroscopy has shown promise for use as a non-invasive tool to estimate the local tissue response to microelectrodes. Here, we model impedance spectra from chronically implanted rats using the well-established Cole model, and perform a correlation analysis of modeled parameters with histological markers of astroglial scar, including glial fibrillary acid protein (GFAP) and 4',6-diamidino-2- phenylindole (DAPI). Correlations between modeled parameters and GFAP were significant for three parameters studied: Py value, Ro and |Z|1 kHz, and in all cases were confined to the first 100 µm from the interface. Py value was the only parameter also correlated with DAPI in the first 100 µm. Our experimental results, along with computer simulations, suggest that astrocytes are a predominant cellular player affecting electrical impedance spectra. The results also suggest that the largest contribution from reactive astrocytes on impedance spectra occurs in the first 100 µm from the interface, where electrodes are most likely to record electrical signals. These results form the basis for future approaches where impedance spectroscopy can be used to evaluate neural implants, evaluate strategies to minimize scar and potentially develop closed-loop prosthetic devices.

  4. Dental Implants

    MedlinePlus

    ... Procedures Dental Implants Dentures Direct Bonding Implants versus Bridges Orthodontics and Aligners Periodontal Plastic Surgery Porcelain Crowns Porcelain Fixed Bridges Porcelain Veneers Repairing Chipped Teeth Teeth Whitening Tooth- ...

  5. Seizure Suppression Efficacy of Closed-Loop Versus Open-Loop Deep Brain Stimulation in a Rodent Model of Epilepsy.

    PubMed

    Salam, M Tariqus; Perez Velazquez, Jose Luis; Genov, Roman

    2016-06-01

    We assess and compare the effects of both closed-loop and open-loop neurostimulation of the rat hippocampus by means of a custom low-power programmable therapeutic neurostimulation device on the suppression of spontaneous seizures in a rodent model of epilepsy. Chronic seizures were induced by intraperitoneal kainic acid injection. Two bipolar electrodes were implanted into the CA1 regions of both hippocampi. The electrodes were connected to the custom-built programmable therapeutic neurostimulation device that can trigger an electrical stimulation either in a periodic manner or upon detection of the intracerebral electroencephalographic (icEEE) seizure onset. This device includes a microchip consisting of a 256-channel icEEG recording system and a 64-channel stimulator, and a programmable seizure detector implemented in a field-programmable gate array (FPGA). The neurostimulator was used to evaluate seizure suppression efficacy in ten epileptic rats for a total of 240 subject-days (5760 subject-hours). For this purpose, all rats were randomly divided into two groups: the no-stimulation group and the stimulation group. The no-stimulation group did not receive stimulation. The stimulation group received, first, closed-loop stimulation and, next, open-loop stimulation. The no-stimulation and stimulation groups had a similar seizure frequency baseline, averaging five seizures per day. Closed-loop stimulation reduced seizure frequency by 90% and open-loop stimulation reduced seizure frequency by 17%, both in the stimulation group as compared to the no-stimulation group. PMID:26571534

  6. Loop-to-loop coupling.

    SciTech Connect

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  7. Cochlear Implants

    MedlinePlus

    ... electrodes are inserted. The electronic device at the base of the electrode array is then placed under ... FDA approval for implants The Food and Drug Administration (FDA) regulates cochlear implant devices for both adults ...

  8. Dental Implants.

    PubMed

    Zohrabian, Vahe M; Sonick, Michael; Hwang, Debby; Abrahams, James J

    2015-10-01

    Dental implants restore function to near normal in partially or completely edentulous patients. A root-form implant is the most frequently used type of dental implant today. The basis for dental implants is osseointegration, in which osteoblasts grow and directly integrate with the surface of titanium posts surgically embedded into the jaw. Radiologic assessment is critical in the preoperative evaluation of the dental implant patient, as the exact height, width, and contour of the alveolar ridge must be determined. Moreover, the precise locations of the maxillary sinuses and mandibular canals, as well as their relationships to the site of implant surgery must be ascertained. As such, radiologists must be familiar with implant design and surgical placement, as well as augmentation procedures utilized in those patients with insufficient bone in the maxilla and mandible to support dental implants.

  9. Printed Multi-Turn Loop Antennas for RF Biotelemetry

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Hall, David G.; Miranda, Felix A.

    2007-01-01

    Printed multi-turn loop antennas have been designed for contactless powering of, and reception of radio signals transmitted by, surgically implantable biotelemetric sensor units operating at frequencies in the vicinity of 300 MHz.

  10. [Hearing implants].

    PubMed

    Stokroos, Robert J; George, Erwin L J

    2013-01-01

    In the Netherlands, more than 1.5 million people suffer from sensorineural hearing loss or deafness. However, fitting conventional hearing aids does not provide a solution for everyone. In recent decades, developments in medical technology have produced implantable and other devices that restore both sensorineural and conductive hearing losses. These hearing devices can be categorized into bone conductive devices, implantable middle ear prostheses, cochlear implants and auditory brainstem implants. Furthermore, new implants aimed at treating tinnitus and loss of vestibular function have recently been developed.

  11. Sub-meninges implantation reduces immune response to neural implants.

    PubMed

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability.

  12. Sub-meninges Implantation Reduces Immune Response to Neural Implants

    PubMed Central

    Markwardt, Neil T.; Stokol, Jodi; Rennaker, Robert L.

    2013-01-01

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. PMID:23370311

  13. Mini vs. Standard Implants for Mandibular Overdentures: A Randomized Trial.

    PubMed

    de Souza, R F; Ribeiro, A B; Della Vecchia, M P; Costa, L; Cunha, T R; Reis, A C; Albuquerque, R F

    2015-10-01

    A mandibular implant-retained overdenture is considered a first-choice treatment for edentulism. However, some aspects limit the use of standard implants-for example, the width of edentulous ridges, chronic diseases, fear, or costs. This randomized trial compared mandibular overdentures retained by 2 or 4 mini-implants with standard implants, considering oral health-related quality of life (OHRQoL), patient satisfaction, and complications such as lost implant. In sum, 120 edentulous men and women (mean age, 59.5 ± 8.5 y) randomly received 4 mini-implants, 2 mini-implants, or 2 standard implants. Participants provided data regarding OHRQoL and satisfaction until 12 mo. Clinical parameters, including implant survival rate, were also recorded. Both 2 and 4 mini-implants led to better OHRQoL, compared with 2 standard implants. Treatment with 4 mini-implants was more satisfying than 2 standard implants, with 2 mini-implants presenting intermediate results. Implant survival rate was 89%, 82%, and 99% for 4 mini-implants, 2 mini-implants, or 2 standard implants, respectively. Overdentures retained by 4 or 2 mini-implants can achieve OHRQoL and satisfaction at least comparable with that of 2 standard implants. However, the survival rate of mini implants is not as high as that of standard implants (ClinicalTrials.gov NCT01411683).

  14. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications.

  15. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  16. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.

    PubMed

    Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A L

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  17. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation

    PubMed Central

    Pais-Vieira, Miguel; Yadav, Amol P.; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A. L.

    2016-01-01

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders. PMID:27605389

  18. A Closed Loop Brain-machine Interface for Epilepsy Control Using Dorsal Column Electrical Stimulation.

    PubMed

    Pais-Vieira, Miguel; Yadav, Amol P; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A L

    2016-09-08

    Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closed-loop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.

  19. Histrelin Implant

    MedlinePlus

    ... response to histrelin implant. Your blood sugar and glycosylated hemoglobin (HbA1c) should be checked regularly.Ask your pharmacist any questions you have about histrelin implant.It is important for you to keep a written list of all of the prescription and ...

  20. A Percutaneously Implantable Fetal Pacemaker

    PubMed Central

    Zhou, Li; Vest, Adriana N.; Chmait, Ramen H.; Bar-Cohen, Yaniv; Pruetz, Jay; Silka, Michael; Zheng, Kaihui; Peck, Ray; Loeb, Gerald E.

    2015-01-01

    A miniaturized, self-contained pacemaker that could be implanted with a minimally invasive technique would dramatically improve the survival rate for fetuses that develop hydrops fetalis as a result of congenital heart block. We are currently validating a device that we developed to address this bradyarrhythmia. Preclinical studies in a fetal sheep model are underway to demonstrate that the device can be implanted via a minimally invasive approach, can mechanically withstand the harsh bodily environment, can induce effective contractions of the heart muscle with an adequate safety factor, and can successfully operate for the required device lifetime of three months using the previously-developed closed loop transcutaneous recharging system. PMID:25570982

  1. Active tendon implants in flexor tendon reconstruction.

    PubMed

    Hunter, J M; Singer, D I; Jaeger, S H; Mackin, E J

    1988-11-01

    Forty-five active flexor tendon implants were evaluated after placement in scarred tendon beds of digits II through V. The implant is constructed of silicone rubber with a Dacron core, terminating in a loop proximally and a metal plate distally. Modification of the implant during the period of study has improved its reliability and longevity. The improvement in total active motion (TAM) averaged 72 degrees during implant functioning (stage I) in a group of digits that before operation were classified as 78% Boyes grade 5 (salvage). Complication rate during stage I was 11% (5 out of 45). Of the 27 digits evaluated after implant replacement by tendon autograft (stage II), there was an overall improvement in 62 degrees total active motion with 70% of digits being Boyes grade 5. Many of the complications were believed to be avoidable with experience. This study demonstrates the feasibility of an active tendon implant and the possibility of a permanent prosthesis. PMID:2976074

  2. Listening to Brain Microcircuits for Interfacing With External World-Progress in Wireless Implantable Microelectronic Neuroengineering Devices: Experimental systems are described for electrical recording in the brain using multiple microelectrodes and short range implantable or wearable broadcasting units.

    PubMed

    Nurmikko, Arto V; Donoghue, John P; Hochberg, Leigh R; Patterson, William R; Song, Yoon-Kyu; Bull, Christopher W; Borton, David A; Laiwalla, Farah; Park, Sunmee; Ming, Yin; Aceros, Juan

    2010-01-01

    Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain. By implanting biocompatible neural sensor probes directly into the brain, in the form of microelectrode arrays, it is now possible to extract information from interacting populations of neural cells with spatial and temporal resolution at the single cell level. With parallel advances in application of statistical and mathematical techniques tools for deciphering the neural code, extracted populations or correlated neurons, significant understanding has been achieved of those brain commands that control, e.g., the motion of an arm in a primate (monkey or a human subject). These developments are accelerating the work on neural prosthetics where brain derived signals may be employed to bypass, e.g., an injured spinal cord. One key element in achieving the goals for practical and versatile neural prostheses is the development of fully implantable wireless microelectronic "brain-interfaces" within the body, a point of special emphasis of this paper.

  3. Rollercoaster loop shapes

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie

    2005-11-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  4. Enhanced in-vivo optical coherence tomography of live mouse brain by the use of implanted micro-lens (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Hassani Nia, Iman; Dombeck, Daniel; Mohseni, Hooman

    2015-08-01

    Near-infrared optical coherence tomography (OCT) has gained a lot of attention due to the fact that it is relatively cheap, non-invasive and provides high resolution and fast method of imaging. However the main challenge of this technique is the poor signal to noise ratio of the images of the tissue at large depths due to optical scattering. The signal to noise ratio can be improved by increasing the source power, however the laser safety standards (ANSI Z136.1) restricts the maximum amount of power that can be used safely to characterize the biological tissue. In this talk, we discuss the advantage of implanting a micro-lens inside the tissue to have a higher signal to noise ratio for confocal and OCT measurements. We explain the theoretical background, experimental setup and the method of implanting the micro lens at arbitrary depths within a live mouse brain. The in-vivo 3D OCT and two-photon microscopy images of live mouse with implanted micro-lens are presented and significant enhancement of signal to noise ratio is observed. The confocal and OCT measurements have been performed with super-luminescent LEDs emitting at 1300 nm. We believe that the high resolution and high sensitivity of this technique is of fundamental importance for characterization of neural activity, monitoring the hemodynamic responses, tumors and for performing image guided surgeries.

  5. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  6. Development and functionality of isoelastic dental implants of titanium alloys.

    PubMed

    Breme, J; Biehl, V; Schulte, W; d'Hoedt, B; Donath, K

    1993-10-01

    Two types of isoelastic endosseous dental implants were produced and their functionality was tested. One type consisted of a porous sintered TiTa30 alloy, the other had a special surface structure consisting of titanium wire loops. Their mechanical properties were optimized by the production parameter (sintering and diffusion bonding, respectively). The functionality was tested after insertion into an artificial jaw which had properties corresponding to the natural mandibular. The elastic properties of both implants were similar to the properties of the bone. In addition the implants have a safe anchorage bone ingrowth. In animal experiments using the implant with surface loops it was observed that the bone entered the loops and even extremely small surface cavities in the wire loops.

  7. Speech Production Intelligibility of Early Implanted Pediatric Cochlear Implant Users

    PubMed Central

    Habib, Mirette G.; Waltzman, Susan B.; Tajudeen, Bobby; Svirsky, Mario A.

    2010-01-01

    Objectives To investigate the influence of age, and age at implantation, on speech production intelligibility in prelingually deaf pediatric cochlear implant recipients. Methods Forty prelingually, profoundly deaf children who received cochlear implants between 8 and 40 months of age. Their age at testing ranged between 2.5 – 18 years. Children were recorded repeating the ten sentences in the Beginner’s Intelligibility Test. These recordings were played back to normal-hearing listeners who were unfamiliar with deaf speech and who were instructed to write down what they heard. They also rated each subject for the intelligibility of their speech production on a 5-point rating scale. The main outcome measures were the percentage of target words correctly transcribed, and the intelligibility ratings, in both cases averaged across three normal-hearing listeners. Results The data showed a strong effect of age at testing, with older children being more intelligible. This effect was particularly pronounced for children implanted in the first 24 months of life, all of whom had speech production intelligibility scores of 80% or higher when they were tested at age 5.5 years or older. This was true for only five out of nine children implanted at age 25 to 36 months. Conclusions Profoundly deaf children who receive cochlear implants in the first two years of life produce highly intelligible speech before age 6. This is also true for most, but not all children implanted in their third year. PMID:20472308

  8. Cochlear implant

    MedlinePlus

    ... implant. These specialists may include: Audiologists Speech therapists Ear, nose, and throat doctors (otolaryngologists) This is a very important part of the process. You will need to work closely with your team of specialists to get ...

  9. Cochlear Implants

    MedlinePlus

    ... additional visits are needed for activating, adjusting, and programming the various electrodes that have been implanted. Also, ... to the center for checkups once the final programming is made to the speech processor. Both children ...

  10. Contraceptive implants.

    PubMed

    McDonald-Mosley, Raegan; Burke, Anne E

    2010-03-01

    Implantable contraception has been extensively used worldwide. Implants are one of the most effective and reversible methods of contraception available. These devices may be particularly appropriate for certain populations of women, including women who cannot use estrogen-containing contraception. Implants are safe for use by women with many chronic medical problems. The newest implant, Implanon (Organon International, Oss, The Netherlands), is the only device currently available in the United States and was approved in 2006. It is registered for 3 years of pregnancy prevention. Contraceptive implants have failure rates similar to tubal ligation, and yet they are readily reversible with a return to fertility within days of removal. Moreover, these contraceptive devices can be safely placed in the immediate postpartum period, ensuring good contraceptive coverage for women who may be at risk for an unintended pregnancy. Irregular bleeding is a common side effect for all progestin-only contraceptive implants. Preinsertion counseling should address possible side effects, and treatment may be offered to women who experience prolonged or frequent bleeding.

  11. Look before You Loop.

    ERIC Educational Resources Information Center

    Bellis, Marilyn

    1999-01-01

    Explores looping, which involves one teacher staying with the same group of children for more than one year. Recognizes that, with today's changing demographics, looping can be a way to foster a family-like classroom atmosphere. Discusses advantages and disadvantages to looping. Includes a chart of looping opportunities and considerations;…

  12. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  13. OPE for super loops

    NASA Astrophysics Data System (ADS)

    Sever, Amit; Vieira, Pedro; Wang, Tianheng

    2011-11-01

    We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.

  14. The preprocessed doacross loop

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi

    1990-01-01

    Dependencies between loop iterations cannot always be characterized during program compilation. Doacross loops typically make use of a-priori knowledge of inter-iteration dependencies to carry out required synchronizations. A type of doacross loop is proposed that allows the scheduling of iterations of a loop among processors without advance knowledge of inter-iteration dependencies. The method proposed for loop iterations requires that parallelizable preprocessing and postprocessing steps be carried out during program execution.

  15. Cochlear Implants

    MedlinePlus

    ... outside of the body, behind the ear. A second part is surgically placed under the skin. An implant does not restore normal hearing. It can help a person understand speech. Children and adults can benefit from them. National Institute on Deafness and Other Communication Disorders

  16. Facial implants.

    PubMed

    Arcuri, M R; Rubenstein, J T

    1998-01-01

    The application of endosseous dental implants for the retention and stabilization of extraoral prostheses and hearing aids has been shown to be effective functionally and aesthetically. Implants have reduced the need for adhesive use, simplifying cleaning procedures and thus extending the life of the prosthesis. Implant-retained prostheses have provided patients the opportunity to participate in routine activities such as work, shopping, swimming, and jogging with less fear of losing their prosthesis. The implants' impact on patients has resulted in their ability to function in society with confidence that their defects will be less noticeable and their ability to respond to the environment enhanced. The culmination of these effects have without doubt improved the overall quality of life for patients. As with any new technology, its application will encounter unanticipated problems and some limitations in use. As the art and science of this technique evolve, however, it is anticipated that it will result in the ability to provide improved health care for patients.

  17. Recent refinements to cranial implants for rhesus macaques (Macaca mulatta).

    PubMed

    Johnston, Jessica M; Cohen, Yale E; Shirley, Harry; Tsunada, Joji; Bennur, Sharath; Christison-Lagay, Kate; Veeder, Christin L

    2016-05-01

    The advent of cranial implants revolutionized primate neurophysiological research because they allow researchers to stably record neural activity from monkeys during active behavior. Cranial implants have improved over the years since their introduction, but chronic implants still increase the risk for medical complications including bacterial contamination and resultant infection, chronic inflammation, bone and tissue loss and complications related to the use of dental acrylic. These complications can lead to implant failure and early termination of study protocols. In an effort to reduce complications, we describe several refinements that have helped us improve cranial implants and the wellbeing of implanted primates. PMID:27096188

  18. [Evaluation of asymetric implants in breast cancer].

    PubMed

    Fitoussi, A; Couturaud, B; Laki, F; Alran, S; Salmon, R J

    2005-10-01

    Since more than twenty years, methods of breast reconstruction using implants have continued to evolve in order to improve their aesthetic results. Shapes and materials of these implants have also evolved to obtain contours similar to that of the natural opposite breast. Therefore it can be considered that the use of asymmetric implants is the last step in implant technology before using made to measure implants. Asymmetric implants allow obtaining different contours in harmony to the different breast shapes according to the side, left or right, of the reconstructed breast which maximise the naturalness of the result. Such implants have an axis directed towards the exterior and lower part of the chest wall, are wider than high with a thinner part on their inner edge and a concave rear side moulding the curves of the chest wall. In our own experience, we placed more than 500 asymmetric implants. When analysing retrospectively the medical records of 156 patients, no distinctive features were observed when compared to symmetric classic implants in easiness in the surgical procedure or in complications except a slightly higher rate of seroma formation. When compared to usual implants the main benefits of asymmetric implants are: to offer a wider breadth, to slope down gently on their upper and inner sides according to their concave rear side, and therefore to better match subtle curves of a normal breast. Moreover such contours allow a distribution of the volume which fit better to the usual natural breast configuration of patients who underwent surgery for breast carcinoma. At last, such implants are easy to place and a very low rate of secondary rotation has been observed. In summary, for all these reasons, asymmetric implants, can be considered to be the class one in the choice of implants for breast reconstruction after breast surgery. PMID:16198040

  19. Short Implants: New Horizon in Implant Dentistry

    PubMed Central

    Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-01-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598

  20. A 13µW 87dB dynamic range implantable ΔΣ modulator for full-spectrum neural recording.

    PubMed

    Xu, Jian; Islam, Md Kafiul; Wang, Shuo; Yang, Zhi

    2013-01-01

    Experiment analysis on in-vivo data sequences suggests a wide system dynamic range (DR) is required to simultaneously record local field potentials (LFPs), extra-cellular spikes, and artifacts/interferences. In this paper, we present a 13 µW 87 dB DR ΔΣ modulator for full-spectrum neural recording. To achieve a wide DR and low power consumption, a fully-differential topology is used with multi-bit (MB) quantization scheme and switched-opamp (SO) technique. By adopting a novel fully-clocked scheme, a power-efficient current-mirror SO is developed with 50% power saving, which doubles the figure-of-merit (FOM) over its counterpart. A new static power-less multi-bit quantizer with 96% power and 69% area reduction is also introduced. Besides, instead of metal-insulator-metal (MIM) capacitor, three high-density MOS capacitor (MOSCAP) structures are employed to reduce circuit area. Measurement results show a peak signal-to-noise and distortion ratio (SNDR) of 85 dB with 10 kHz bandwidth at 1.0 V supply, corresponding to an FOM of 45 fJ/conv.-step. which is implemented in a 0.18 µm CMOS. PMID:24110300

  1. Closed-Loop, Open-Source Electrophysiology

    PubMed Central

    Rolston, John D.; Gross, Robert E.; Potter, Steve M.

    2010-01-01

    Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents. PMID:20859448

  2. Closed-loop, open-source electrophysiology.

    PubMed

    Rolston, John D; Gross, Robert E; Potter, Steve M

    2010-01-01

    Multiple extracellular microelectrodes (multi-electrode arrays, or MEAs) effectively record rapidly varying neural signals, and can also be used for electrical stimulation. Multi-electrode recording can serve as artificial output (efferents) from a neural system, while complex spatially and temporally targeted stimulation can serve as artificial input (afferents) to the neuronal network. Multi-unit or local field potential (LFP) recordings can not only be used to control real world artifacts, such as prostheses, computers or robots, but can also trigger or alter subsequent stimulation. Real-time feedback stimulation may serve to modulate or normalize aberrant neural activity, to induce plasticity, or to serve as artificial sensory input. Despite promising closed-loop applications, commercial electrophysiology systems do not yet take advantage of the bidirectional capabilities of multi-electrodes, especially for use in freely moving animals. We addressed this lack of tools for closing the loop with NeuroRighter, an open-source system including recording hardware, stimulation hardware, and control software with a graphical user interface. The integrated system is capable of multi-electrode recording and simultaneous patterned microstimulation (triggered by recordings) with minimal stimulation artifact. The potential applications of closed-loop systems as research tools and clinical treatments are broad; we provide one example where epileptic activity recorded by a multi-electrode probe is used to trigger targeted stimulation, via that probe, to freely moving rodents. PMID:20859448

  3. Immediate implants in anterior maxillary arch

    PubMed Central

    Anitha, K.; Kumar, S. Senthil; Babu, M. R. Ramesh; Candamourty, Ramesh; Thirumurugan

    2014-01-01

    Aim: The aim of the study was to evaluate the osseo-integration and soft tissue status of the endosseous implants placed in immediate extraction socket. Methodology: Seven patients (4 males and 3 females) aged 20-30 years were selected for the study. Nine implants were placed in seven patients in the maxillary arch. All the patients were clinically αnd thoroughly examined. Under local anesthesia, the indicated tooth was extracted. The extracted socket was prepared using standard drills with palatal wall as guide. The longest and widest implants were placed (Hi-Tec Implants). All implants showed good primary stability. The implants used in the study were tapered design endosseous implants with Threaded implants (TI) unit plasma-sprayed surface. Surgical re-entry (secondary surgery) was performed to remove the healing cap after 6 months for supra crestal fabrication. All patients were reviewed periodically at 3rd and 6th month interval and the following clinical parameters including modified plaque index (mPlI), modified bleeding index (mBI), probing depth (PD), attachment level (AL), and distance between the implant shoulder and mucosal margin (DIM), distance between the implant shoulder and first bone-implant contact, and Clinical Mobility Index were recorded. The results were computed and subjected to statistical evaluation. Results: The mPlI, mBI, PD, AL, and DIM were evaluated around the implants at baseline, 3rd and 6th month intervals and analyzed statistically by Friedman T-test. The results of the above were shown to be statistically non-significant. The distance between the implant shoulder and first bone implant contact was evaluated around the implants at base line, 3rd and 6th month intervals. The results proved to be statistically significant (0.01) implying that there was a bone apposition around the implants. Conclusion: During the course of the study, soft tissue status around implants was found to be healthy. Osseointegration as assessed by

  4. Clinical success of implant-supported and tooth-implant-supported double crown-retained dentures.

    PubMed

    Bernhart, Gunda; Koob, Andreas; Schmitter, Marc; Gabbert, Olaf; Stober, Thomas; Rammelsberg, Peter

    2012-08-01

    The objective of this retrospective study was to compare biological and technical complications of implant-supported and tooth-implant-supported double crown-retained dentures (DCRDs) with those of tooth-supported DCRDs. Sixty-three DCRDs were monitored. One study group included 16 prostheses with a combination of implants and natural teeth as double crowns (ti group), whereas in the second study group, 19 dentures were retained exclusively on implants (ii group); a third study group with 28 exclusively tooth-supported dentures served as controls (tt group). Tooth loss, implant failure, and technical complications (loss of retention of primary crown, abutment screw loosening, loss of facing, fracture of resin denture teeth and fracture of saddle resin) were analysed. During the observation period of 24 months, no implants or teeth were lost in the ti group and three technical complications were recorded. In the ii group, two implants were lost, two cases of peri-implantitis occurred and four technical complications were observed. In the tt group, two cases of tooth loss and seven technical complications were observed. At the time of the last examination, all prostheses of the ti group and the ii group were functional. Patients of these two study groups reported high satisfaction with both function and aesthetics with no significant difference between the two groups. Treatment with DCRDs showed comparable results in the three study groups. The 2-year results indicate that double crowns can be recommended for implant and combined tooth-implant-retained dentures.

  5. Trapping of interstitials during ion implantation in silicon

    SciTech Connect

    Culbertson, R.J.; Pennycook, S.J.

    1984-01-01

    The solid phase epitaxial regrowth of silicon implanted with a group V dopant, such as antimony, results in excellent incorporation of the dopant atoms into silicon lattice sites. However, annealing at higher temperatures or longer times results in transient dopant precipitation with a diffusion coefficient up to five orders of magnitude above that of tracer diffusion and with a reduced activation energy. This precipitation is accompanied by the nucleation of dislocation loops that are interstitial in nature, and the transient ceases as the dislocation loops develop. It is believed that Si interstitials are trapped in a stable defect complex during the implantation process. Although they survive SPE these complexes dissolve at higher temperatures and release a large supply of interstitials which serve to promote dopant migration via an interstitialcy mechanism until they condense to form the observed dislocation loops. By following the Sb implantation with an implantation of B to an equivalent concentration profile the loop formation is efficiently suppressed. For higher B concentrations the Sb precipitation is no longer observed. Results for As implantation are similar to Sb except that As precipitates cannot be directly observed. Calculations of the dopant and interstitial concentration depth distributions were also performed.

  6. Aesthetic rehabilitation with multiple loop connectors

    PubMed Central

    Kalra, Ashish; Gowda, Mahesh E.; Verma, Kamal

    2013-01-01

    Patients with a missing tooth along with diastema have limited treatment options to restore the edentulous space. The use of a conventional fixed partial denture (FPD) to replace the missing tooth may result in too wide anterior teeth leading to poor esthetics. The diastema resulting from the missing central incisors can be managed with implant-supported prosthesis or FPD with loop connectors. An old lady reported with chief complaints of missing upper anterior teeth due to trauma. Her past dental history revealed that she was having generalized spacing between her upper anterior teeth. Considering her esthetic requirement of maintaining the diastema between 12, 11, 22, and 21, the treatment option of 06 units porcelain fused to metal FPD from canine to canine with intermittent loop connectors between 21, 22, 11, 12 was planned. Connectors basically link different parts of FPDs. The modified FPD with loop connectors enhanced the natural appearance of the restoration, maintained the diastemas and the proper emergence profile, and preserve the remaining tooth structure of abutment teeth. This clinical report discussed a method for fabrication of a modified FPD with loop connectors to restore the wide span created by missing central incisors. PMID:23853468

  7. Implant success rates in full-arch rehabilitations supported by upright and tilted implants: a retrospective investigation with up to five years of follow-up

    PubMed Central

    2015-01-01

    Purpose The aim of this retrospective study was to investigate the cumulative success rate, the implant survival rate, and the occurrence of biological complications in implants supporting full-arch immediately loaded rehabilitations supported by upright and tilted implants. Methods The clinical records and periapical radiographs of patients who attended follow-up visits were collected, and information was recorded regarding marginal bone loss resorption, the occurrence of peri-implant infectious diseases, and the implant survival rate. Implants were classified as successful or not successful according to two distinct classifications for implant success. Results A total of 53 maxillary and mandibular restorations including 212 implants were analysed, of which 56 implants were studied over the full five-year follow-up period. After five years, the cumulative success rate was 76.04% according to the Misch classification and 56.34% according to the Albrektsson classification. The cumulative implant survival rate was 100%, although one implant was found to be affected by peri-implantitis at the second follow-up visit. Conclusions The cumulative success rate of the implants dropped over time, corresponding to the progression of marginal bone resorption. The prevalence of peri-implantitis was very low, and the implant survival rate was not found to be related to the cumulative success rate. PMID:26734491

  8. The effect of implantation conditions on microstructural evolution in oxygen implanted silicon

    NASA Astrophysics Data System (ADS)

    Datta, Ranju

    Ion implantation is used for the fabrication of SIMOX (separation by implanted oxygen). SIMOX is a silicon on insulator structure used for microelectronic devices, where a buried oxide layer insulates a silicon overlayer from the substrate. High energy, high dose oxygen ions are implanted into a heated single crystalline silicon wafer, followed by high temperature annealing to create a uniform buried oxide and eliminate implantation damage. The final quality of SIMOX material depends on the properties of the silicon overlayer and the buried oxide. The dominant defects are threading dislocations in the silicon overlayer and silicon inclusions (silicon islands) within the buried oxide, both of which are detrimental. The objectives of this dissertation were to evaluate the effect of implantation conditions on the formation of these defects, and to understand the underlying physical mechanisms which govern microstructural evolution in this system. The effects of implant dose, energy, substrate temperature and beam current variations on microstructural evolution were investigated, primarily, by transmission electron microscopy and x-ray diffraction. Only specific dose ranges yielded low defect density SIMOX. Threading dislocation densities were low for intermediate doses and were high for very low and very high doses. However, low silicon island densities in the buried oxide were obtained at only one specific low dose and at high doses. These dose windows were affected to different extents by the other implantation parameters. The physical mechanisms for these effects were established. Threading dislocations in the annealed state evolved from dislocation half loops present in the as-implanted state at high doses. The presence of dislocation half loops was a result of strain relief processes in the near surface region during implantation. Threading dislocations at low doses were the result of defect pinning by a bilayer oxide structure. The precipitate distribution in

  9. Spin and orbital magnetization loops obtained using magnetic Compton scattering

    SciTech Connect

    Itou, M.; Sakurai, Y.; Koizumi, A.

    2013-02-25

    We present an application of magnetic Compton scattering (MCS) to decompose a total magnetization loop into spin and orbital magnetization contributions. A spin magnetization loop of SmAl{sub 2} was measured by recording the intensity of magnetic Compton scattering as a function of applied magnetic field. Comparing the spin magnetization loop with the total magnetization one measured by a vibrating sample magnetometer, the orbital magnetization loop was obtained. The data display an anti-coupled behavior between the spin and orbital magnetizations and confirm that the orbital part dominates the magnetization.

  10. Thermal power loops

    NASA Technical Reports Server (NTRS)

    Gottschlich, Joseph M.; Richter, Robert

    1991-01-01

    The concept of a thermal power loop (TPL) to transport thermal power over relatively large distances is presented as an alternative to heat pipes and their derivatives. The TPL is compared to heat pipes, and capillary pumped loops with respect to size, weight, conservation of thermal potential, start-up, and 1-g testing capability. Test results from a proof of feasibility demonstrator at the NASA JPL are discussed. This analysis demonstrates that the development of specific thermal power loops will result in substantial weight and cost savings for many spacecraft.

  11. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  12. Natively Unstructured Loops Differ from Other Loops

    PubMed Central

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%–70% of all worm proteins observed to have more than seven protein–protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  13. Natively unstructured loops differ from other loops.

    PubMed

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-07-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  14. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  15. The Development of Intonation in Young Children with Cochlear Implants: A Preliminary Study of the Influence of Age at Implantation and Length of Implant Experience

    ERIC Educational Resources Information Center

    Snow, David; Ertmer, David

    2009-01-01

    This study describes the development of emerging intonation in six children who had received a cochlear implant (CI) before the age of 3 years. At the time their implant was activated, the children ranged in age from 11-37 months. Spontaneous longitudinal speech samples were recorded from 30-minute sessions in which the child interacted with his…

  16. He reemission implanted in metals

    NASA Astrophysics Data System (ADS)

    Tanabe, T.

    2014-10-01

    Helium (He) reemission of Al, Ni and Mo under energetic He implantation (10-30 keV) in wide temperature range is studied to understand behavior of implanted He in correlation with structure changes. The reemission behavior is categorized into 4 different temperature ranges with the normalized temperature (Tm) to the melting point of each metal. At elevated temperatures (well above ∼0.6 Tm), interstitial He atoms and/or He-vacancy (ies) clusters can migrate remaining no structure change and showing smooth reemission without any burst. Between ∼0.25 and 0.6 Tm, He reemission always accompanies significant structure modification. For ∼04-0.6 Tm, implanted He coalesce to make bubbles and the bubbles can move to the surface. Bubble migration accompanies materials flow to the surface resulting in fuzz surface or columnar structure, depending on implantation flux. Slower bubble motion at ∼0.25-0.4 prohibits the material migration. Instead the bubbles coalesce to grow large and multi-layered blistering appears as periodic reemission behavior. Below ∼0.25 Tm, He migration is too slow for bubbles to grow large, but bubble density increases up to a certain fluence, where neighboring bubbles start to coalesce. Accordingly, He release is mostly caused by mechanical failure or blister rapture. With increasing fluence, all defects (bubbles and dislocation loops) tangle or inter connected with neighboring defects and accordingly He migration to the surface along the tangled or connected defects is enhanced, resulting 100% reemission easily without making multilayered blistering.

  17. Blind loop syndrome

    MedlinePlus

    ... operations for extreme obesity As a complication of inflammatory bowel disease Diseases such as diabetes or scleroderma may slow down movement in a segment of the intestine, leading to blind loop syndrome.

  18. Choking loops on surfaces.

    PubMed

    Feng, Xin; Tong, Yiying

    2013-08-01

    We present a method for computing "choking" loops--a set of surface loops that describe the narrowing of the volumes inside/outside of the surface and extend the notion of surface homology and homotopy loops. The intuition behind their definition is that a choking loop represents the region where an offset of the original surface would get pinched. Our generalized loops naturally include the usual 2g handles/tunnels computed based on the topology of the genus-g surface, but also include loops that identify chokepoints or bottlenecks, i.e., boundaries of small membranes separating the inside or outside volume of the surface into disconnected regions. Our definition is based on persistent homology theory, which gives a measure to topological structures, thus providing resilience to noise and a well-defined way to determine topological feature size. More precisely, the persistence computed here is based on the lower star filtration of the interior or exterior 3D domain with the distance field to the surface being the associated 3D Morse function. PMID:23744260

  19. Implant success!!!.....simplified.

    PubMed

    Luthra, Kaushal K

    2009-01-01

    The endeavor towards life-like restoration has helped nurture new vistas in the art and science of implant dentistry. The protocol of "restoration-driven implant placement" ensures that the implant is an apical extension of the ideal future restoration and not the opposite. Meticulous pre-implant evaluation of soft and hard tissues, diagnostic cast and use of aesthetic wax-up and radiographic template combined with surgical template can simplify the intricate roadmap for appropriate implant treatment.By applying the harmony of artistic skill, scientific knowledge and clinical expertise, we can simply master the outstanding implant success in requisites of aesthetics, phonetics and function.

  20. [Biomaterials in cochlear implants].

    PubMed

    Stöver, T; Lenarz, T

    2009-05-01

    Cochlear implants (CI) represent the "gold standard" for the treatment of congenitally deaf children and postlingually deafened adults. Thus, cochlear implantation is a success story of new bionic prosthesis development. Owing to routine application of cochlear implants in adults but also in very young children (below the age of one), high demands are placed on the implants. This is especially true for biocompatibility aspects of surface materials of implant parts which are in contact with the human body. In addition, there are various mechanical requirements which certain components of the implants must fulfil, such as flexibility of the electrode array and mechanical resistance of the implant housing. Due to the close contact of the implant to the middle ear mucosa and because the electrode array is positioned in the perilymphatic space via cochleostomy, there is a potential risk of bacterial transferral along the electrode array into the cochlea. Various requirements that have to be fulfilled by cochlear implants, such as biocompatibility, electrode micromechanics, and although a very high level of technical standards has been carried out there is still demand for the improvement of implants as well as of the materials used for manufacturing, ultimately leading to increased implant performance. General considerations of material aspects related to cochlear implants as well as potential future perspectives of implant development will be discussed.

  1. Breast reconstruction - implants

    MedlinePlus

    ... visits, your surgeon injects a small amount of saline (salt water) through the valve into the expander. ... breast implants. Implants may be filled with either saline or a silicone gel. You may have another ...

  2. Cochlear implants: our experience and literature review

    PubMed Central

    Martins, Mariane Barreto Brandão; de Lima, Francis Vinicius Fontes; Santos, Ronaldo Carvalho; Santos, Arlete Cristina Granizo; Barreto, Valéria Maria Prado; de Jesus, Eduardo Passos Fiel

    2012-01-01

    Summary Introduction: Cochlear Implants are important for individuals with severe to profound bilateral sensorineural hearing loss. Objective: Evaluate the experience of cochlear implant center of Otorhinolaryngology through the analysis of records of 9 patients who underwent cochlear implant surgery. Methods: This is a retrospective study performed with the patients records. Number 0191.0.107.000-11 ethics committee approval. We evaluated gender, etiology, age at surgery, duration of deafness, classification of deafness, unilateral or bilateral surgery, intraoperative and postoperative neural response and impedance of the electrodes in intraoperative and preoperative tests and found those that counter-indicated surgery. Results: There were 6 pediatric and 3 adult patients. Four male and 5 female. Etiologies: maternal rubella, cytomegalovirus, ototoxicity, meningitis, and sudden deafness. The age at surgery and duration of deafness ranged from 2–46 years and 2–18 years, respectively. Seven patients were pre-lingual. All had profound bilateral PA. There were 7 bilateral implants. Intraoperative complications: hemorrhage. Complications after surgery: vertigo and internal device failure. In 7 patients the electrodes were implanted through. Telemetry showed satisfactory neural response and impedance. CT and MRI was performed in all patients. We found enlargement of the vestibular aqueduct in a patient and incudomalleolar malformation. Conclusion: The cochlear implant as a form of auditory rehabilitation is well established and spreading to different centers specialized in otoaudiology. Thus, the need for structured services and trained professionals in this type of procedure is clear. PMID:25991976

  3. Real-time control of walking using recordings from dorsal root ganglia

    PubMed Central

    Holinski, B J; Everaert, D G; Mushahwar, V K; Stein, R B

    2013-01-01

    Objective The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the dorsal root ganglia. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modeled from recorded neural firing rates. These models were then used for closed-loop feedback. Main Results Overall, firing-rate based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48±13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development. PMID:23928579

  4. Real-time control of walking using recordings from dorsal root ganglia

    NASA Astrophysics Data System (ADS)

    Holinski, B. J.; Everaert, D. G.; Mushahwar, V. K.; Stein, R. B.

    2013-10-01

    Objective. The goal of this study was to decode sensory information from the dorsal root ganglia (DRG) in real time, and to use this information to adapt the control of unilateral stepping with a state-based control algorithm consisting of both feed-forward and feedback components. Approach. In five anesthetized cats, hind limb stepping on a walkway or treadmill was produced by patterned electrical stimulation of the spinal cord through implanted microwire arrays, while neuronal activity was recorded from the DRG. Different parameters, including distance and tilt of the vector between hip and limb endpoint, integrated gyroscope and ground reaction force were modelled from recorded neural firing rates. These models were then used for closed-loop feedback. Main results. Overall, firing-rate-based predictions of kinematic sensors (limb endpoint, integrated gyroscope) were the most accurate with variance accounted for >60% on average. Force prediction had the lowest prediction accuracy (48 ± 13%) but produced the greatest percentage of successful rule activations (96.3%) for stepping under closed-loop feedback control. The prediction of all sensor modalities degraded over time, with the exception of tilt. Significance. Sensory feedback from moving limbs would be a desirable component of any neuroprosthetic device designed to restore walking in people after a spinal cord injury. This study provides a proof-of-principle that real-time feedback from the DRG is possible and could form part of a fully implantable neuroprosthetic device with further development.

  5. [Pathology of implants].

    PubMed

    Mittermayer, C; Eblenkamp, M; Richter, H A; Zwadlo-Klarwasser, G; Bhardwaj, R S; Klosterhalfen, B

    2002-01-01

    Progress in the surgery of implants and biomaterials can be accomplished by: 1. Painstakingly analysing and registering of defaulting implants after explantation within a "National Registry of Implant Pathology". 2. Development of a DNA-microarray named "Implantat/Chronic Wound" in order to discover the differential transcriptional activities of cells brought into contact with different foreign surfaces. 3. Predictive cell-engineering combined with custom-made implant surfaces with the aim of optimal patient care.

  6. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  7. A touch probe method of operating an implantable RFID tag for orthopedic implant identification.

    PubMed

    Liu, Xiaoyu; Berger, J Lee; Ogirala, Ajay; Mickle, Marlin H

    2013-06-01

    The major problem in operating an implantable radio-frequency identification (RFID) tag embedded on an orthopedic implant is low efficiency because of metallic interference. To improve the efficiency, this paper proposes a method of operating an implantable passive RFID tag using a touch probe at 13.56 MHz. This technology relies on the electric field interaction between two pairs of electrodes, one being a part of the touch probe placed on the surface of tissue and the other being a part of the tag installed under the tissue. Compared with using a conventional RFID antenna such as a loop antenna, this method has a better performance in the near field operation range to reduce interference with the orthopedic implant. Properly matching the touch probe and the tag to the tissue and the implant reduces signal attenuation and increases the overall system efficiency. The experiments have shown that this method has a great performance in the near field transcutaneous operation and can be used for orthopedic implant identification.

  8. The Anderson Current Loop

    NASA Technical Reports Server (NTRS)

    Anderson, Karl F.

    1994-01-01

    Four-wire-probe concept applied to electrical-resistance transducers. Anderson current loop is excitation-and-signal-conditioning circuit suitable for use with strain gauges, resistance thermometers, and other electrical-resistance transducers mounted in harsh environments. Used as alternative to Wheatstone bridge. Simplifies signal-conditioning problem, enabling precise measurement of small changes in resistance of transducer. Eliminates some uncertainties in Wheatstone-bridge resistance-change measurements in flight research. Current loop configuration makes effects of lead-wire and contact resistances insignificantly small. Also provides output voltage that varies linearly with change in gauge resistance, and does so at double sensitivity of Wheatstone bridge.

  9. Wilson-loop instantons

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Holman, Richard; Kolb, Edward W.

    1987-01-01

    Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.

  10. Loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Chiou, Dah-Wei

    2015-12-01

    This paper presents an "in-a-nutshell" yet self-contained introductory review on loop quantum gravity (LQG) — a background-independent, nonperturbative approach to a consistent quantum theory of gravity. Instead of rigorous and systematic derivations, it aims to provide a general picture of LQG, placing emphasis on the fundamental ideas and their significance. The canonical formulation of LQG, as the central topic of the paper, is presented in a logically orderly fashion with moderate details, while the spin foam theory, black hole thermodynamics, and loop quantum cosmology are covered briefly. Current directions and open issues are also summarized.

  11. Implantation in IVF.

    PubMed

    Busso, Cristiano E; Melo, Marco A B; Fernandez, Manuel; Pellicer, Antonio; Simon, Carlos

    2006-01-01

    The recent advances in assisted reproduction have made it possible to study and interfere in almost every step of the human reproductive process except for implantation. The most complex and important step remains in great part unknown. Implantation in human has proven to be less efficient compared with other species. However, in in vitro fertilization (IVF) patients, it has been evaluated to be even poorer. This paper highlights the factors related to infertile patients and IVF treatments that can affect implantation and implantation's clinical aspects related to these treatments: implantation failure and early pregnancy loss.

  12. Cine recording ophthalmoscope

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. W.

    1972-01-01

    Camera system provides accurate photographic recording during acceleration of centrifuge and permits immediate observation of dynamic changes in retinal circulation by a closed-circuit television loop. System consists of main camera, remote control unit, and strobe power supply unit, and is used for fluorescein studies and dynamometry sequences.

  13. The Biolink Implantable Telemetry System

    NASA Technical Reports Server (NTRS)

    Betancourt-Zamora, Rafael J.

    1999-01-01

    Most biotelemetry applications deal with the moderated data rates of biological signals. Few people have studied the problem of transcutaneous data transmission at the rates required by NASA's Life Sciences-Advanced BioTelemetry System (LS-ABTS). Implanted telemetry eliminate the problems associated with wire breaking the skin, and permits experiments with awake and unrestrained subjects. Our goal is to build a low-power 174-216MHz Radio Frequency (RF) transmitter suitable for short range biosensor and implantable use. The BioLink Implantable Telemetry System (BITS) is composed of three major units: an Analog Data Module (ADM), a Telemetry Transmitter Module (TTM), and a Command Receiver Module (CRM). BioLink incorporates novel low-power techniques to implement a monolithic digital RF transmitter operating at 100kbps, using quadrature phase shift keying (QPSK) modulation in the 174-216MHz ISM band. As the ADM will be specific for each application, we focused on solving the problems associated with a monolithic implementation of the TTM and CRM, and this is the emphasis of this report. A system architecture based on a Frequency-Locked Loop (FLL) Frequency Synthesizer is presented, and a novel differential frequency that eliminates the need for a frequency divider is also shown. A self sizing phase modulation scheme suitable for low power implementation was also developed. A full system-level simulation of the FLL was performed and loop filter parameters were determined. The implantable antenna has been designed, simulated and constructed. An implant package compatible with the ABTS requirements is also being proposed. Extensive work performed at 200MHz in 0.5um complementary metal oxide semiconductors (CMOS) showed the feasibility of integrating the RF transmitter circuits in a single chip. The Hajimiri phase noise model was used to optimize the Voltage Controlled Oscillator (VCO) for minimum power consumption. Two test chips were fabricated in a 0.5pm, 3V CMOS

  14. Livermore Compiler Analysis Loop Suite

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizationsmore » and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  15. Livermore Compiler Analysis Loop Suite

    SciTech Connect

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.

  16. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  17. Breast implants. A review.

    PubMed

    Van Zele, D; Heymans, O

    2004-04-01

    Breast implants have been used for about four decades for both reconstructive and aesthetic purposes. In 1963, the quality of the artificial implants was revolutionized by the introduction of the silicone gel-filled implant. Since, this modern prosthesis has gone through an evolution of change and improvement with several types of devices with many variations and styles within each class. Actually, for the last three decades, approximately one million women have received silicone breast implants in the USA. But, in 1992, the American FDA banned silicone from the market, leaving saline implants as the only product generally available as an alternative until now. Other filler materials were introduced, but have never progressed beyond the experimental stage in the USA (in contrast with Europe). The evolution of the different implants through time, with their advantages and disadvantages will be discussed, but also the controversy on silicone implants in the USA and their suspected association with systemic diseases. PMID:15154572

  18. Direct Observation of Interstitial Dislocation Loop Coarsening in α-Iron

    NASA Astrophysics Data System (ADS)

    Moll, S.; Jourdan, T.; Lefaix-Jeuland, H.

    2013-07-01

    Interstitial loop coarsening by Ostwald ripening can provide insight into single point defects but is very difficult to observe in α-iron and many other metals where nanoscale vacancy clusters dissociate and annihilate loops. We show that by implanting helium in the samples at a carefully chosen energy, it is possible to observe Ostwald ripening of loops by transmission electron microscopy during in situ isochronal annealings. This coarsening of loops results in a sharp increase of the mean loop radius at around 850 K. Using cluster dynamics simulations, we demonstrate that loops evolve due to vacancy emission and that such experiments give a robust estimation of the sum of the formation and migration free energies of vacancies. In particular, our results are in good agreement with self-diffusion experiments and confirm that entropic contributions are large for the vacancy in α-iron.

  19. Closing the Loop Sampler.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…

  20. Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Piguet, O.

    2014-09-01

    In this talk, I give a short general introduction to Loop Quantum Gravity (LQG), beginning with some motivations for quantizing General Relativity, listing various attempts and then focusing on the case of LQG. Work supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (Brazil).

  1. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2016-07-12

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  2. NETL - Chemical Looping Reactor

    SciTech Connect

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  3. A Looping Journey.

    ERIC Educational Resources Information Center

    Chapman, Janet

    1999-01-01

    Recounts a teacher's experiences staying with the same group of children for more than one year (looping) as they progress through kindergarten and first grade. Discusses advantages of more stability and less trauma for the child, and more instructional time and less stress for the teacher. Addresses possible disadvantages of children having…

  4. Radiographic dental implants recognition for geographic evaluation in human identification.

    PubMed

    Nuzzolese, E; Lusito, S; Solarino, B; Di Vella, G

    2008-06-01

    Dental implants for prosthetic rehabilitation with fixed crown or mobile partial/total dentures is a very common oral treatment among the population in Italy as elsewhere. There is a great number of implant systems of different designs. However, a catalogue of radiographic images and a description of the dental implants available in Italy would be useful in order to identify the manufacturer and the type of implant encountered in forensic casework. When an unidentified body is found with one or more implants in the jaws, and no dental record is available, clues gleaned from the type of implants used could give direction to the investigation. In this study Italian implant manufactures were contacted and asked to provide specimen implants. Digital radiographs were taken of all the implants donated at 0º, 30º, and 60º horizontal rotation, combined with -20º, -10º, 0º, +10º, and +20º vertical inclination relative to the radiographic beam and the X-ray sensor. A total of 15 images per implant were taken and examined to identify consistent, unique features that would aid in implant recognition. Only those observations made from radiographs between -10º and +10º vertical inclination would ever be used for definite identification of any implant. The information from this study should be considered a survey of the commercial distribution of dental implants in Italy through their digital radiographic images. It is also a starting point for a wider geographical evaluation of different manufacturers in other countries and continents. The radiographic images provided should help both the forensic odontologist and the prosthodontist to identify pre-existing implants which they may discover from their radiographic images. PMID:22689351

  5. CO2 lasers and temperature changes of titanium implants.

    PubMed

    Oyster, D K; Parker, W B; Gher, M E

    1995-12-01

    Lasers may be useful in uncovering submerged implants or in removing contaminants from "ailing" implants. The purposes of this study were to record temperature changes at the bone-titanium implant interface when using a CO2 laser to: 1) uncover the implant at second stage surgery; and 2) "decontaminate" exposed implant threads. Scanning electron microscopy (SEM) was used to characterize surface changes of lased implants, both uncontaminated or contaminated with blood or saliva. In part one, 28 titanium implants, measuring 3.75 mm by 7 to 20 mm, were placed into room temperature, fresh, resected pig mandibles and covered with a flap of gingiva. The overlying tissue was removed with a CO2 laser at different power levels. Bone-implant interface temperatures were measured with a thermocouple near the top of the implant, and 5 to 7 mm apical to the osseous crest. The effects of implant size, power level, tissue thickness, and operation time were evaluated. In part two, 5 mm by 4 mm bony dehiscences were created on 3 implants in one mandible and the exposed fixture threads lased at varying times and power levels. The results from part one showed temperature increases at the top thermocouple ranged from 4.2 to 16.8 degrees C and increases at the bottom thermocouple ranged from 2.0 to 11.5 degrees C. The results from part two showed temperature increases at the top thermocouple ranged from 1.2 to 11.7 degrees C and increases at the bottom thermocouple from 0.0 to 5.0 degrees C. If baseline ambient temperatures are 37 degrees C, then the temperature at the bone-implant interface might exceed 50 degrees C. SEM revealed no gross surface changes in lased uncontaminated implants, but laser treatment alone of contaminated implants failed to completely remove saliva or blood. Further study is needed regarding temperature increases and surface changes induced by lasers that may adversely affect osseointegration.

  6. Nanotechnology and dental implants.

    PubMed

    Lavenus, Sandrine; Louarn, Guy; Layrolle, Pierre

    2010-01-01

    The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate.

  7. Nanotechnology and Dental Implants

    PubMed Central

    Lavenus, Sandrine; Louarn, Guy; Layrolle, Pierre

    2010-01-01

    The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces may ultimately direct the nature of peri-implant tissues and improve their clinical success rate. PMID:21253543

  8. COLD TEST LOOP INTEGRATED TEST LOOP RESULTS

    SciTech Connect

    Abraham, TJ

    2003-10-22

    A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75 ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement

  9. A novel strategy for long-term implantable artificial pancreas.

    PubMed

    Ricotti, Leonardo; Assaf, Tareq; Menciassi, Arianna; Dario, Paolo

    2011-01-01

    Technology has recently changed type 1 diabetes treatment by introducing several advancements able to improve patients' quality of life. However, despite of several decades of research efforts, the dream of a fully-automated implanted artificial pancreas is quite far from its realization. The need for periodically restoring the implanted battery charge and refilling the implanted insulin reservoir are the main issues, for which invasive surgery, transcutaneous catheters or external portable devices are presently the only solutions. In this paper we propose a novel approach to these issues, describing a totally implanted closed-loop artificial pancreas with a wireless battery charger and a non-invasive strategy for insulin refilling, based on sensorized swallowable "insulin carrier" capsules. Such system has the potential to represent a final solution for diabetes treatment, by fully restoring patients' quality of life.

  10. The Effect of Breast Implants on Mammogram Outcomes.

    PubMed

    Kam, Kelli; Lee, Esther; Pairawan, Seyed; Anderson, Kendra; Cora, Cherie; Bae, Won; Senthil, Maheswari; Solomon, Naveenraj; Lum, Sharon

    2015-10-01

    Breast cancer detection in women with implants has been questioned. We sought to evaluate the impact of breast implants on mammographic outcomes. A retrospective review of women undergoing mammography between March 1 and October 30, 2013 was performed. Demographic characteristics and mammogram results were compared between women with and without breast implants. Overall, 4.8 per cent of 1863 women identified during the study period had breast implants. Median age was 59 years (26-93). Women with implants were younger (53.9 vs 59.2 years, P < 0.0001), had lower body mass index (25.4 vs 28.9, P < 0.0001), and were more likely to have dense breast tissue (72.1% vs 56.4%, P = 0.004) than those without. There were no statistically significant differences with regards to Breast Imaging Recording and Data System 0 score (13.3% with implants vs 21.4% without), call back exam (18.9% with vs 24.1% without), time to resolution of abnormal imaging (58.6 days with vs 43.3 without), or cancer detection rate (0% with implants vs 1.0% without). Because implants did not significantly affect mammogram results, women with implants should be reassured that mammography remains useful in detecting cancer. However, future research is required to determine whether lower call back rates and longer time to resolution of imaging findings contribute to delays in diagnosis in patients with implants. PMID:26463307

  11. Calibration of radiographs by a reference metal ball affects preoperative selection of implant size.

    PubMed

    Schropp, Lars; Stavropoulos, Andreas; Gotfredsen, Erik; Wenzel, Ann

    2009-12-01

    The aim was to evaluate the impact of a reference ball for calibration of periapical and panoramic radiographs on preoperative selection of implant size for three implant systems. Presurgical digital radiographs (70 panoramic, 43 periapical) from 70 patients scheduled for single-tooth implant treatment, recorded with a metal ball placed in the edentulous area, were evaluated by three observers with the intent to select the appropriate implant size. Four reference marks corresponding to the margins of the metal ball were manually placed on the digital image by means of computer software. Additionally, an implant with proper dimensions for the respective site was outlined by manually placing four reference marks. The diameter of the metal ball and the unadjusted length and width of the implant were calculated. Implant size was adjusted according to a "standard" calibration method (SCM; magnification factor 1.25 in panoramic images and 1.05 in periapical images) and according to a reference ball calibration method (RCM; true magnification). Based on the unadjusted as well as the adjusted implant dimensions, the implant size was selected among those available in a given implant system. For periapical radiographs, when comparing SCM and RCM with unadjusted implant dimensions, implant size changed in 42% and 58%, respectively. When comparing SCM and RCM, implant size changed in 24%. For panoramic radiographs, comparing SCM and RCM changed implant size in 48%. The use of a reference metal ball for calibration of periapical and panoramic radiographs when selecting implant size during treatment planning might be advantageous. PMID:19221809

  12. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  13. Inner mappings of Bruck loops

    NASA Astrophysics Data System (ADS)

    Kreuzer, Alexander

    1998-01-01

    K-loops have their origin in the theory of sharply 2-transitive groups. In this paper a proof is given that K-loops and Bruck loops are the same. For the proof it is necessary to show that in a (left) Bruck loop the left inner mappings L(b)L(a) L(ab)[minus sign]1 are automorphisms. This paper generalizes results of Glauberman [3], Kist [8] and Kreuzer [9].

  14. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  15. Closed-loop anesthesia.

    PubMed

    LE Guen, Morgan; Liu, Ngai; Chazot, Thierry; Fischler, Marc

    2016-05-01

    Automated anesthesia which may offer to the physician time to control hemodynamic and to supervise neurological outcome and which may offer to the patient safety and quality was until recently consider as a holy grail. But this field of research is now increasing in every component of general anesthesia (hypnosis, nociception, neuromuscular blockade) and literature describes some successful algorithms - single or multi closed-loop controller. The aim of these devices is to control a predefined target and to continuously titrate anesthetics whatever the patients' co morbidities and surgical events to reach this target. Literature contains many randomized trials comparing manual and automated anesthesia and shows feasibility and safety of this system. Automation could quickly concern other aspects of anesthesia as fluid management and this review proposes an overview of closed-loop systems in anesthesia.

  16. Implants in adolescents

    PubMed Central

    Shah, Rohit A.; Mitra, Dipika K.; Rodrigues, Silvia V.; Pathare, Pragalbha N.; Podar, Rajesh S.; Vijayakar, Harshad N.

    2013-01-01

    Implants have gained tremendous popularity as a treatment modality for replacement of missing teeth in adults. There is extensive research present on the use of implants in adults, but there is a dearth of data available on the same in adolescents. The treatment planning and execution of implant placement in adolescents is still in its infancy. This review article is an attempt to bring together available literature. PMID:24174743

  17. Determinants of RNA hairpin loop-loop complex stability.

    PubMed

    Gregorian, R S; Crothers, D M

    1995-05-19

    Complexes formed by RNA hairpin loops with complementary loop sequences derived from Escherichia coli RNA I and RNA II, which are involved in the control of DNA replication of plasmid ColE1, have been analyzed to determine the sequence and structural elements required to achieve full affinity. Of particular interest is the origin of the enhanced stability of the complex formed by hairpin loops whose loop sequences have been inverted 5' to 3' with respect to wild-type sequences. Full complementarity of the two interacting loops is required to achieve full or enhanced affinity, while the stems of the two hairpins can differ. The major determinant of enhanced affinity lies in the base-pairs formed at positions 1 and 7 of the loops, together with the two base-pairs of each stem which are closest to the loop. Sequence variation in the middle of the loops, or further down the stem away from the loops, exerts only a modest influence on complex stability. We incorporate these results into a model for the loop-loop interaction which accounts for the importance of positions one and seven and the first two nucleotides of the stem, while providing potentially unique structures for recognition by the RNA one modulator protein. PMID:7539081

  18. Determinants of RNA hairpin loop-loop complex stability.

    PubMed

    Gregorian, R S; Crothers, D M

    1995-05-19

    Complexes formed by RNA hairpin loops with complementary loop sequences derived from Escherichia coli RNA I and RNA II, which are involved in the control of DNA replication of plasmid ColE1, have been analyzed to determine the sequence and structural elements required to achieve full affinity. Of particular interest is the origin of the enhanced stability of the complex formed by hairpin loops whose loop sequences have been inverted 5' to 3' with respect to wild-type sequences. Full complementarity of the two interacting loops is required to achieve full or enhanced affinity, while the stems of the two hairpins can differ. The major determinant of enhanced affinity lies in the base-pairs formed at positions 1 and 7 of the loops, together with the two base-pairs of each stem which are closest to the loop. Sequence variation in the middle of the loops, or further down the stem away from the loops, exerts only a modest influence on complex stability. We incorporate these results into a model for the loop-loop interaction which accounts for the importance of positions one and seven and the first two nucleotides of the stem, while providing potentially unique structures for recognition by the RNA one modulator protein.

  19. Cavotricuspid isthmus ablation and subcutaneous monitoring device implantation in a 2-year-old baby with 2 SCN5A mutations, sinus node dysfunction, atrial flutter recurrences, and drug induced long-QT syndrome: a tricky case of pediatric overlap syndrome?

    PubMed

    De Filippo, Paolo; Ferrari, Paola; Iascone, Maria; Racheli, Marco; Senni, Michele

    2015-03-01

    We describe the case of 2-year-old baby with compound heterozygosity for paternal and maternal alleles mutation of α-subunit of the cardiac sodium channel (SCN5A), sinus node dysfunction, atrial flutter recurrences, and drug induced long-QT syndrome. In this setting, we chose at first to perform linear ablation of cavotricuspid isthmus resulting in a bidirectional isthmus block. As a second step, we decided to implant a miniaturized loop recorder that, with a minimally invasive procedure, permits us to follow the development of the disease in order to define the future strategy. After 8 months follow-up, automatic daily loop-recorder transmissions disclose the complete absence of any arrhythmia along with asymptomatic ventricular pauses due to sinus node dysfunction. Echocardiography shows normal findings, in particular no left ventricular dysfunction.

  20. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  1. Implantable cardioverter defibrillator - discharge

    MedlinePlus

    Baddour LM, Epstein AE, Erickson CC, et al. Update on cardiovascular implantable electronic device infections and their management: a scientific statement from the American Heart Association. Circulation . ...

  2. [Evaluation of asymmetric implants in breast augmentation surgery].

    PubMed

    Fitoussi, A D; Couturaud, B

    2005-10-01

    Since more than 30 years, the quality of breast implants has continued to evolve in order to improve the aesthetic results of prosthetic augmentation. Shapes and materials of these implants have also evolved to obtain stronger and more reliable prostheses almost similar to the natural breast. Therefore it can be considered that the use of asymmetric implants is the last step in implant technology before using made to measure implants. Asymmetric implants allow obtaining different contours in harmony to the different breast shapes capable to reproduce faithfully, in all dimensions, the anatomy of the female breast, including the differences between each side which maximise the naturalness of the result. Such implants have an axis directed towards the exterior and lower part of the chest wall, are wider than high with a thinner part on their inner edge and a concave rear side moulding the curves of the chest wall. In our own experience, we placed between 2002 and 2004, asymmetric implants in 100 patients. Such implants were easy to place and no secondary rotation was observed. The control of secondary displacements even in case of prosthesis change seems to be linked to their concave rear side, roughness and asymmetry. When analysing retrospectively the medical records, no distinctive features were observed when compared to symmetric classic implants in easiness in the surgical procedure or in complications except a slightly higher rate of seroma formation. However asymmetric implants are less appropriate in case of major breast ptosis, patients being unsatisfied by the "too natural" breast shape. Moreover a high risk of secondary rotation seems to be real in such cases. In summary, for all these reasons, asymmetric implants, are gradually considered to be a first-rank choice for implants in breast augmentation cosmetic surgery. PMID:16198044

  3. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  4. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  5. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  6. In vitro experiment of the pressure regulating valve for a glaucoma implant

    NASA Astrophysics Data System (ADS)

    Bae, Byunghoon; Kee, Hongseok; Kim, Seonho; Lee, Yeon; Sim, Taeseok; Kim, Yongkweon; Park, Kyihwan

    2003-09-01

    Glaucoma is an eye disease which is caused by abnormal high intraocular pressure (IOP) in the eye. If the condition of the patient becomes serious, the use of an implant device is recommended, which decreases the IOP compulsory. Active implants for glaucoma implants are capable of controlling the IOP actively and coping with the personal differences of patients. However, the conventional active valves for the glaucoma implant are not convenient for the patient and feasibility is not shown for the glaucoma treatment. In this paper, we propose, analyze, fabricate and experiment on the pressure regulating valve for the active implant. Based on the analysis, we carry out optimal design of the proposed valve. The in vitro experiments are performed extensively both using and not using a rabbit in open- and closed-loop pressure control. The various experimental results verify the possibility of the proposed valve for a glaucoma implant.

  7. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  8. The behavior of vacancy-type dislocation loops under electron irradiation in iron

    NASA Astrophysics Data System (ADS)

    Wan, Farong; Zhan, Qian; Long, Yi; Yang, Shanwu; Zhang, Gaowei; Du, Yufeng; Jiao, Zhijie; Ohnuki, Somei

    2014-12-01

    Two different types of dislocation loops were found in hydrogen ion implanted pure iron after annealing. The natures of these dislocation loops have been characterized by the inside-outside method of transmission electron microscope (TEM). It is found that the dislocation loops in specimens annealed at 670 K are interstitial type with b = 1/2<1 1 1>, n ≈ <1 1 2>, and the dislocation loops in the specimens annealed at 770 K are vacancy type with b = 1/2<1 1 1>, n ≈ <0 1 1> or b = <1 0 0> and, n ≈ <1 1 2>. Adding nickle element in iron could decrease the formation temperature of the vacancy loops.

  9. Closing the loop.

    PubMed

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  10. Experimental elevation of wildlife testosterone using silastic tube implants.

    PubMed

    Koresh, Efrat; Matas, Devorah; Koren, Lee

    2016-10-01

    Testosterone (T) is a key androgen that mediates vertebrate molecular, cellular, and behavioral processes. Its manipulation is therefore of interest to a vast number of researchers studying animal behavior and reproduction, among others. Here, the usage of silastic implants across wildlife species is reviewed, and a method to manipulate rock hyrax (Procavia capensis) testosterone levels using silastic implants is presented. Using a series of in-vitro and in-vivo experiments, the secretion patterns of silastic tubes and silastic glue were tested and were surprisingly found to be similar. In addition, we studied endogenous T levels in wild-captured rock hyraxes (Procavia capensis), and using T implants succeeded in elevating T to the maximal physiological concentrations recorded during the mating period. The number of implants that were inserted was the only predictor of T levels, and seven 20mm implants were found to be the optimal dose. Implants induced sexual behaviors in the non-reproductive period. The duration of time that the implants were in the hyrax was the only significant factor that influenced the amount of T left over in the implant once it was removed. All together we affirm that T implants may offer a versatile tool for wildlife behavioral research by elevating T levels in the non-breeding period to maximal breeding levels. PMID:27663363

  11. Survival of single crystal sapphire implants supporting mandibular overdentures.

    PubMed

    Berge, T I; Grønningsaeter, A G

    2000-04-01

    One hundred and sixteen sapphire (Bioceram, Kyocera) implants were inserted in 30 patients between 1984 and 1991 to support mandibular overdentures. Survival analyses were made on the basis of clinical and radiographic follow-up evaluation for 15 patients with 56 implants. For the 15 patients who were lost to follow-up, 7 of whom were deceased, reviews of records and available radiographs determined outcome and observation time. The resulting Kaplan-Meier cumulative survival rate for the sapphire implants was 68.66%, mean survival time 11.44 years, 95% confidence interval 10.56-12.32 years. Uni- and multivariate analysis using the Cox Regression model, indicated an increased risk of implant failure in patients over 60 years at time of operation, and in patients who smoke. Limited experience in implant surgery were associated with increased implant failure rate. A qualitative analysis of survived implants showed a mean annual bone loss of 0.2 mm, moderate to excellent plaque control, and excellent to good subjective global assessment of the treatment. The long-term results of the sapphire implant system used for mandibular overdenture support are inferior to other implants systems.

  12. The Seasonality Of The Loop Current

    NASA Astrophysics Data System (ADS)

    Hall, Cody Alan

    A total of 20 Loop Current eddy separation event dates were derived from Seasat and ERS-1 satellite altimetry, Coastal Zone Color Scanner chlorophyll-a images, Advanced Very High Resolution Radiometer sea surface temperature images, Horizon Marine, Inc. EddyWatch(TM) reports, and Climatology and Simulation of Eddies Eddy Joint Industry Project Gulf Eddy Model analyses spanning mid-1978 - 1992. There were many inconsistencies between the new "pre-altimetry" reanalysis dates derived from mostly non-altimeter data and dates published in past literature based on earlier versions of the pre-altimetry record. The reanalysis dates were derived from a larger compilation of data types and, consequently, were not as affected by intermittent and seasonal data outages common with past records. Therefore, the reanalysis dates are likely more accurate. About 30 Loop Current eddy separation dates were derived from altimetry data spanning 1993 -- 2012. The pre-altimetry and altimetry reanalysis dates along with similar altimetry dates published in other literature exhibit statistically significant seasonality. Eddy separation events are more likely in the months March, August, and September, and less likely in December. Reanalysis event dates were objectively divided into "spring" and "fall" seasons using a k-means clustering algorithm. The estimated spring and fall season centers are March 2nd and August 23 rd, respectively, with seasonal boundaries on May 22nd and December 3rd. The altimetry data suggest that Loop Current intrusion/retreat is dominantly an annual process. Loop Current metrics such as maximum northern boundary latitude and area are relatively high from January through about July and low in September and October. February metrics are statistically different than metrics in either October or November or both. This annual process is primarily driven by and dynamically linked to geostrophic currents seaward of the Campeche Bank shelf break forced by Kelvin waves

  13. Consonant Development in Pediatric Cochlear Implant Users Who Were Implanted before 30 Months of Age

    ERIC Educational Resources Information Center

    Spencer, Linda J.; Guo, Ling-Yu

    2013-01-01

    This study provided a yearly record of consonant development for the initial 4 years of cochlear implant (CI) use and established a precedent for using a standardized articulation test, the "Goldman-Fristoe Test of Articulation--2" (Goldman, R., & Fristoe, M. [2000]. Goldman-Fristoe Test of Articulation--2. Circle Pines, MN: American Guidance…

  14. A translational platform for prototyping closed-loop neuromodulation systems

    PubMed Central

    Afshar, Pedram; Khambhati, Ankit; Stanslaski, Scott; Carlson, David; Jensen, Randy; Linde, Dave; Dani, Siddharth; Lazarewicz, Maciej; Cong, Peng; Giftakis, Jon; Stypulkowski, Paul; Denison, Tim

    2013-01-01

    While modulating neural activity through stimulation is an effective treatment for neurological diseases such as Parkinson's disease and essential tremor, an opportunity for improving neuromodulation therapy remains in automatically adjusting therapy to continuously optimize patient outcomes. Practical issues associated with achieving this include the paucity of human data related to disease states, poorly validated estimators of patient state, and unknown dynamic mappings of optimal stimulation parameters based on estimated states. To overcome these challenges, we present an investigational platform including: an implanted sensing and stimulation device to collect data and run automated closed-loop algorithms; an external tool to prototype classifier and control-policy algorithms; and real-time telemetry to update the implanted device firmware and monitor its state. The prototyping system was demonstrated in a chronic large animal model studying hippocampal dynamics. We used the platform to find biomarkers of the observed states and transfer functions of different stimulation amplitudes. Data showed that moderate levels of stimulation suppress hippocampal beta activity, while high levels of stimulation produce seizure-like after-discharge activity. The biomarker and transfer function observations were mapped into classifier and control-policy algorithms, which were downloaded to the implanted device to continuously titrate stimulation amplitude for the desired network effect. The platform is designed to be a flexible prototyping tool and could be used to develop improved mechanistic models and automated closed-loop systems for a variety of neurological disorders. PMID:23346048

  15. Two loop divergences studied with one loop constrained differential renormalization

    SciTech Connect

    Seijas, Cesar . E-mail: cesar@fpaxp1.usc.es

    2007-08-15

    In the context of differential renormalization, using constrained differential renormalization rules at one-loop, we show how to obtain concrete results in two-loop calculations without making use of Ward identities. In order to do that, we obtain a list of integrals with overlapping divergences compatible with CDR that can be applied to various two-loop background field calculations. As an example, we obtain the two-loop coefficient of the beta function of QED, SuperQED and Yang-Mills theory.

  16. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  17. Ekpyrotic loop quantum cosmology

    SciTech Connect

    Wilson-Ewing, Edward

    2013-08-01

    We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.

  18. High temperature storage loop :

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  19. Forced eruption and implant site development in the aesthetic zone: A case report

    PubMed Central

    Keceli, Huseyin Gencay; Guncu, Mustafa Baris; Atalay, Zeynep; Evginer, Mustafa Serdar

    2014-01-01

    A multidisciplinary approach to develop the future implant site in the aesthetic zone was illustrated. A patient with perio-endo combined lesion at her upper central incisors was treated. Before extraction, forced eruption was performed and 12 months later, satisfactory amount of bone apposition was detected. At 2 weeks after atraumatic extraction, implants were placed and loaded with implant-supported restorations following osseous healing. Variables related to crown dimensions, periodontal/peri-implanter soft-tissue health and patient's aesthetic satisfaction were recorded at baseline, before extraction and after prosthetic treatment. At 12-month control, crown dimensions in the implant site were identical to the baseline and in addition to the healthy peri-implant tissues, successful aesthetics were obtained. Forced eruption is a successful non-invasive method to develop the aesthetics of the peri-implant tissues and implant-supported restorations. PMID:24966782

  20. Effect of cochlear implantation on nasality in post-lingually deafened adults.

    PubMed

    Langereis, M C; Dejonckere, P H; van Olphen, A F; Smoorenburg, G F

    1997-01-01

    The present study addresses the effect of cochlear implantation on nasality in 21 post-lingually deafened Dutch subjects. All subjects received the Nucleus 22 implant (MSP version). Speech recordings were made pre-implantation and 3 and 12 months post-implantation with the implant switched on and off. Nasality measurements were performed on a standard text and on two sentences without nasal phonemes. The results show that post-lingual deafness in individuals can result in a deviant degree of nasality in speech production. However, the nasalance value of 86% of the subjects of our study fell within the normative range defined as the mean +/- 2 standard deviations of the normal population. After implantation we found no statistically significant effect of implant use. However, individual nasality values outside the normative range may improve. Furthermore, 12 months post-implantation we found a significant decrease in the variability of the nasalance values obtained for two sentences without nasal phonemes. PMID:9415736

  1. Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten

    SciTech Connect

    Armstrong, D. E. J.; Edmondson, P. D.; Roberts, S. G.

    2013-06-24

    To simulate neutron and helium damage in a fusion reactor first wall sequential self-ion implantation up to 13 dpa followed by helium-ion implantation up to 3000 appm was performed to produce damaged layers of {approx}2 {mu}m depth in pure tungsten. The hardness of these layers was measured using nanoindentation and was studied using transmission electron microscopy. Substantial hardness increases were seen in helium implanted regions, with smaller hardness increases in regions which had already been self-ion implanted, thus, containing pre-existing dislocation loops. This suggests that, for the same helium content, helium trapped in distributed vacancies gives stronger hardening than helium trapped in vacancies condensed into dislocation loops.

  2. Dental Implant Systems

    PubMed Central

    Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036

  3. Intraglomerular microcirculation: measurements of single glomerular loop flow in rats.

    PubMed

    Steinhausen, M; Zimmerhackl, B; Thederan, H; Dussel, R; Parekh, N; Esslinger, H U; von Hagens, G; Komitowski, D; Dallenbach, F D

    1981-08-01

    With the use of a new fluorescent microscopic technique, we were able to measure the mean intracapillary velocities and pressures of single capillary loops of renal glomeruli of living rats. The technique involved photographing and recording the flow of fluorescent latex particles through the glomerular loops with a television monitor. In 25 rats the single glomerular loop flow velocity was 781 +/- (SD) 271 micrometers . sec-1. The mean diameter of the capillary loops measured 8.4 +/- 1.4 micrometers; their lengths were 72.3 +/- 37.5 micrometers. From the decrease in velocity of flow along the capillary loop, we were able to evaluate the filtration equivalent for the capillary surface. It was possible to measure intracapillary pressures of single glomerular loops continuously under microscopic control. High intracapillary pressures correlated with high intracapillary velocities. From the data we obtained, we were unable to calculate a filtration equilibrium at the ends of the observed capillary loops. For further correlations, we injected the glomeruli we had studied in the living state and examined them with the scanning electron microscope.

  4. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  5. Magnetic insertion system for flexible electrode implantation.

    PubMed

    Jaroch, David B; Ward, Matthew P; Chow, Eric Y; Rickus, Jenna L; Irazoqui, Pedro P

    2009-10-15

    Chronic recording electrodes are a vital tool for brain research and neural prostheses. Despite decades of advances in recording technology, probe structures and implantation methods have changed little over time. Then as now, compressive insertion methods require probes to be constructed from hard, stiff materials, such as silicon, and contain a large diameter shank to penetrate the brain, particularly for deeper structures. The chronic presence of these probes results in an electrically isolating glial scar, degrading signal quality over time. This work demonstrates a new magnetic tension-based insertion mechanism that allows for the use of soft, flexible, and thinner probe materials, overcoming the materials limitations of modern electrodes. Probes are constructed from a sharp magnetic tip attached to a flexible tether. A pulsed magnetic field is generated in a coil surrounding a glass pipette containing the electrode. The applied field pulls the electrode tip forward, accelerating the probe into the neural tissue with a penetration depth that is calibrated against the charge voltage. Mathematical modeling and agar gel insertion testing demonstrate that the electrode can be implanted to a predictable depth given system specific parameters. Trial rodent implantations resulted in discernible single-unit activity on one of the probes. The current prototype demonstrates the feasibility of a tension based, magnetically driven implantation system and opens the door to a wide variety of new minimally invasive probe materials and configurations.

  6. Mobility implants: a review.

    PubMed

    Danz, W

    1990-01-01

    We present a brief review of mobility implants, their contribution, and the experiences derived after almost 40 years since the new concepts of full mobility implants were introduced. In early 1940, experiments with a new material for the making of plastic artificial eyes was also being considered for the making of orbital implants. Methyl-methacrylate (MMA) had proven inert and satisfactory for dental products. The Surgeon Generals office of the Armed Services encouraged further research and experimental work in the development of plastic eyes. The success of the new material sponsored the beginning of great expansion with new concepts for orbital implants. Through a period of more than a decade, the design and types of implants went through three stages. First, the buried implant was introduced, then the exposed integrated followed, and the buried integrated subsequently followed. The path of progress was not smooth. Theoretically correct designs and surgical procedures met unexpected practical difficulties for the ophthalmic surgeon, the patient, and the eye maker. Surgical and technical efforts were carefully reviewed to eliminate the problems encountered, only to have further unforeseen complications arise. Infections, extrusions, and migration of the implant were not uncommon. The exposed integrated implant was eventually abandoned. However, there were some extraordinary successes of mobility. A new era introduced fully buried mobility implants that were more successful. However, this procedure also produced some problems, causing infection (or allergy), extrusion, and migration. Tantalum mesh and gauze gave great promise with the inception of their use. Orbital tissue grew into the material in an astonishing way, making it possible to secure the extraocular muscles and tenons.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Nanotechnology for dental implants.

    PubMed

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  8. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  9. Reflections on Rodent Implantation.

    PubMed

    Cha, Jeeyeon M; Dey, Sudhansu K

    2015-01-01

    Embryo implantation is a complex process involving endocrine, paracrine, autocrine, and juxtacrine modulators that span cell-cell and cell-matrix interactions. The quality of implantation is predictive for pregnancy success. Earlier observational studies formed the basis for genetic and molecular approaches that ensued with emerging technological advances. However, the precise sequence and details of the molecular interactions involved have yet to be defined. This review reflects briefly on aspects of our current understanding of rodent implantation as a tribute to Roger Short's lifelong contributions to the field of reproductive physiology. PMID:26450495

  10. Spectroscopy of implants

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.

    1994-01-01

    The spectral criteria of selection of soft intraocular lens (IOL) implants of long service in an organism have been defined for ophthalmology. The analysis of Fourier Transform Infrared (FTIR) spectra provides the required and sufficient level of material polymerization for manufacturing non-toxic lenses for the eye. The spectral limits for determining the biocompatibility of samples can be related to the intensity ratio of two bands only in the FTIR spectra of siloxane. Siloxane-poly(urethane) block copolymers and other materials for implants have been studied. Passivated surfaces of implants have been obtained and registered by methods of Fourier Transform Spectroscopy.

  11. FORTE hardware-in-loop simulation

    SciTech Connect

    Ruud, K.K.; Murray, H.S.; Moore, T.K.

    1997-12-01

    Fast On-Orbit Recording of Transient Events (FORTE) is a small, low Earth orbit satellite scheduled for launch in August 1997. FORTE is a momentum-biased, gravity-gradient stabilized spacecraft. This paper describes the use of a hardware-in-loop simulator, developed by Ithaco Inc. and Los Alamos National Laboratory, in performing FORTE mission simulations. Scenarios studied include separation, acquisition on orbit, control system parameter sensitivity studies, sensor noise simulations, antenna deployment and momentum desaturation. Use of the simulator to refine control algorithms and sequences is also described.

  12. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…

  13. The evolution of embryo implantation.

    PubMed

    McGowen, Michael R; Erez, Offer; Romero, Roberto; Wildman, Derek E

    2014-01-01

    Embryo implantation varies widely in placental mammals. We review this variation in mammals with a special focus on two features: the depth of implantation and embryonic diapause. We discuss the two major types of implantation depth, superficial and interstitial, and map this character on a well-resolved molecular phylogenetic tree of placental mammals. We infer that relatively deep interstitial implantation has independently evolved at least eight times within placental mammals. Moreover, the superficial type of implantation represents the ancestral state for placental mammals. In addition, we review the genes involved in various phases of implantation, and suggest a future direction in investigating the molecular evolution of implantation-related genes. PMID:25023681

  14. Dynamic PID loop control

    SciTech Connect

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  15. Pulse thermal loop

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark M. (Inventor)

    2002-01-01

    A pulse thermal loop heat transfer system includes a means to use pressure rises in a pair of evaporators to circulate a heat transfer fluid. The system includes one or more valves that iteratively, alternately couple the outlets the evaporators to the condenser. While flow proceeds from one of the evaporators to the condenser, heating creates a pressure rise in the other evaporator, which has its outlet blocked to prevent fluid from exiting the other evaporator. When the flow path is reconfigured to allow flow from the other evaporator to the condenser, the pressure in the other evaporator is used to circulate a pulse of fluid through the system. The reconfiguring of the flow path, by actuating or otherwise changing the configuration of the one or more valves, may be triggered when a predetermined pressure difference between the evaporators is reached.

  16. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  17. Reduced boron diffusion under interstitial injection in fluorine implanted silicon

    SciTech Connect

    Kham, M. N.; Matko, I.; Chenevier, B.; Ashburn, P.

    2007-12-01

    Point defect injection studies are performed to investigate how fluorine implantation influences the diffusion of boron marker layers in both the vacancy-rich and interstitial-rich regions of the fluorine damage profile. A 185 keV, 2.3x10{sup 15} cm{sup -2} F{sup +} implant is made into silicon samples containing multiple boron marker layers and rapid thermal annealing is performed at 1000 deg. C for times of 15-120 s. The boron and fluorine profiles are characterized by secondary ion mass spectroscopy and the defect structures by transmission electron microscopy (TEM). Fluorine implanted samples surprisingly show less boron diffusion under interstitial injection than those under inert anneal. This effect is particularly noticeable for boron marker layers located in the interstitial-rich region of the fluorine damage profile and for short anneal times (15 s). TEM images show a band of dislocation loops around the range of the fluorine implant and the density of dislocation loops is lower under interstitial injection than under inert anneal. It is proposed that interstitial injection accelerates the evolution of interstitial defects into dislocation loops, thereby giving transient enhanced boron diffusion over a shorter period of time. The effect of the fluorine implant on boron diffusion is found to be the opposite for boron marker layers in the interstitial-rich and vacancy-rich regions of the fluorine damage profile. For marker layers in the interstitial-rich region of the fluorine damage profile, the boron diffusion coefficient decreases with anneal time, as is typically seen for transient enhanced diffusion. The boron diffusion under interstitial injection is enhanced by the fluorine implant at short anneal times but suppressed at longer anneal times. It is proposed that this behavior is due to trapping of interstitials at the dislocation loops introduced by the fluorine implant. For boron marker layers in the vacancy-rich region of the fluorine damage profile

  18. Transmission electron microscopy of the induced damage by argon implantation in (111) HgCdTe at room temperature

    NASA Astrophysics Data System (ADS)

    Aguirre, Myriam H.; Cánepa, Horacio R.; Walsöe de Reca, Noemí E.

    2002-11-01

    HgCdTe (MCT) is an important semiconductor material used for infrared photovoltaic detectors. Although ion implantation is a widely used technique in the manufacture of devices based on MCT to obtain n/p junctions, a detailed understanding of the n-type behavior of the unannealed damage region has not yet been established. In this work, n/p junctions were formed by Ar++ implantation on MCT (111) grown by the isothermal vapor phase epitaxy method. Structural damage after implantation for different implantation doses (1013, 1014, and 1015 Ar++/cm2) was evaluated by transmission electron microscopy. At high doses, damage distribution exhibits a double region of defects. These were mainly vacancy dislocation loops and lines in the first region, whereas the second zone exhibited small dislocation loops. The observed n-type behavior after implantation was attributed to the generation and diffusion of Hg from the damaged region.

  19. The Loop Algorithm

    NASA Astrophysics Data System (ADS)

    Evertz, Hans Gerd

    1998-03-01

    Exciting new investigations have recently become possible for strongly correlated systems of spins, bosons, and fermions, through Quantum Monte Carlo simulations with the Loop Algorithm (H.G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett. 70, 875 (1993).) (For a recent review see: H.G. Evertz, cond- mat/9707221.) and its generalizations. A review of this new method, its generalizations and its applications is given, including some new results. The Loop Algorithm is based on a formulation of physical models in an extended ensemble of worldlines and graphs, and is related to Swendsen-Wang cluster algorithms. It performs nonlocal changes of worldline configurations, determined by local stochastic decisions. It overcomes many of the difficulties of traditional worldline simulations. Computer time requirements are reduced by orders of magnitude, through a corresponding reduction in autocorrelations. The grand-canonical ensemble (e.g. varying winding numbers) is naturally simulated. The continuous time limit can be taken directly. Improved Estimators exist which further reduce the errors of measured quantities. The algorithm applies unchanged in any dimension and for varying bond-strengths. It becomes less efficient in the presence of strong site disorder or strong magnetic fields. It applies directly to locally XYZ-like spin, fermion, and hard-core boson models. It has been extended to the Hubbard and the tJ model and generalized to higher spin representations. There have already been several large scale applications, especially for Heisenberg-like models, including a high statistics continuous time calculation of quantum critical exponents on a regularly depleted two-dimensional lattice of up to 20000 spatial sites at temperatures down to T=0.01 J.

  20. Uranyl Nitrate Flow Loop

    SciTech Connect

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study

  1. Implantation induced extended defects and transient enhanced diffusion in silicon

    SciTech Connect

    Chen, J.; Liu, J.; Listebarger, J.; Krishnamoorthy, W.; Zhang, L.; Jones, K.S.

    1995-08-01

    Transient enhanced diffusion (TED) of dopant in silicon caused by point defects during annealing of implanted. Si has become one of the essential concerns in miniaturization of silicon device technology. In order to control and minimize the TED effect, a fundamental understanding of the evolution of the point defects upon annealing and the interaction between point defects and extended defects and their effects on dopant diffusion is necessary. Our studies were carried out by two parts; (1) For understanding the evolution of <311> and <110> defects, B{sup +} and Si{sup +} implantation at energies (from 5 keV to 40 keV) and doses in the range from 5 x 10{sup 12} to 1 x 10{sup 14}/cm{sup 2} were used. The annealing kinetics were investigated using a N{sub 2} ambient with temperatures for time ranging from 500{degrees}C to 1100{degrees}C for time ranging from 3 min to 3 hours. A matrix of implant energy vs. dose on formation threshold of <311> and <110> defect, interstitials napped and dissolved condition were obtained. (2) For Understanding the interaction between Type II dislocation loop and point defect a B doped buried marker layer was used. The oxidation of silicon surface used as a interstitials injection source and a buried type II loop layer as a point defect detector used to quantify the flux of interstitials injected. Combining the flux measured by loops and dopant diffusion the D{sub I} C{sub I} was determined. The diffusion limited kinetics was concluded. The TED from <311> and EOR (End of Range) <110> defect was studied using 8keV B{sup +} implanted Si to a dose of the le14 and 190keV Ge{sub +} implanted to a dose of le15. Subsequent anneals are done for 5 min and 30 min, respectively, These defects affect dopant diffusion by trapping and releasing point defects.

  2. Power Approaches for Implantable Medical Devices.

    PubMed

    Ben Amar, Achraf; Kouki, Ammar B; Cao, Hung

    2015-01-01

    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources. PMID:26580626

  3. Power Approaches for Implantable Medical Devices

    PubMed Central

    Ben Amar, Achraf; Kouki, Ammar B.; Cao, Hung

    2015-01-01

    Implantable medical devices have been implemented to provide treatment and to assess in vivo physiological information in humans as well as animal models for medical diagnosis and prognosis, therapeutic applications and biological science studies. The advances of micro/nanotechnology dovetailed with novel biomaterials have further enhanced biocompatibility, sensitivity, longevity and reliability in newly-emerged low-cost and compact devices. Close-loop systems with both sensing and treatment functions have also been developed to provide point-of-care and personalized medicine. Nevertheless, one of the remaining challenges is whether power can be supplied sufficiently and continuously for the operation of the entire system. This issue is becoming more and more critical to the increasing need of power for wireless communication in implanted devices towards the future healthcare infrastructure, namely mobile health (m-Health). In this review paper, methodologies to transfer and harvest energy in implantable medical devices are introduced and discussed to highlight the uses and significances of various potential power sources. PMID:26580626

  4. PIP breast implant removal: a study of 828 cases.

    PubMed

    Oulharj, S; Pauchot, J; Tropet, Y

    2014-03-01

    In March, 2010, the French Health Products Safety Agency suspended the sale of prefilled silicone breast implants manufactured by Poly Implants Prosthèse Prothese (PIP) because of a high failure rate and the use of an inappropriate silicone gel that did not comply with CE marking. These findings led to an international medical crisis. In France, 30,000 female patients had PIP implants. In our Department, 1150 PIP breast implants had been implanted in 630 patients since 2001. A retrospective study was conducted to define the rupture rate of these implants and the complications that arise. The women included in the study underwent implant removal from May 2010 to September 2012 for preventive or curative reasons. Data were collected from medical records that included: results of clinical examination, breast ultrasound before removal, rates of implant rupture, results of biopsy of periprosthetic capsule and pericapsule tissue and postoperative complications. A total of 828 PIP breast implants were removed in 455 patients. The rate of ruptured implants was 7.73% (64/828), corresponding to 11.6% of patients. A periprosthetic effusion was associated with rupture in 44% of cases. Breast ultrasound indicated a rupture for 87 implants; 32% were true positives and 3% were false negatives. Periprosthetic capsule biopsy demonstrated the presence of a foreign body, which seemed to be silicone, in 26% of cases and the presence of inflammation in 13% of cases. No siliconoma-type lesion was identified in the pericapsular tissue at biopsy. A total of 14 implants presented perspiration at removal. A statistically significant difference was found between the rates of rupture for texturised implants as compared to the smooth-surfaced implants. There were eight post-revisional-surgery complications (1%) and three cases of breast adenocarcinoma. The preventive explantation of PIP breast implants is justified given the high failure rate (7.73%) and given patients' exposure to silicone

  5. Peri-Implant Diseases

    MedlinePlus

    ... and flossing and regular check-ups from a dental professional. Other risks factors for developing peri-implant disease include previous periodontal disease diagnosis, poor plaque control, smoking , and diabetes . It is essential to routinely ...

  6. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  7. Risks of Breast Implants

    MedlinePlus

    ... larger and longer than these conducted so far. Breastfeeding Some women who undergo breast augmentation can successfully ... breast implant silicone shell into breast milk during breastfeeding. Although there are currently no established methods for ...

  8. Adhesive bone bonding prospects for lithium disilicate ceramic implants

    NASA Astrophysics Data System (ADS)

    Vennila Thirugnanam, Sakthi Kumar

    Temporomandibular Joint (TMJ) implants articulating mandible with temporal bone in humans have a very high failure rate. Metallic TMJ implants available in the medical market are not osseointegrated, but bond only by mechanical interlocking using screws which may fail, mandating a second surgery for removal. Stress concentration around fixture screws leads to aseptic loosening or fracture of the bone. It has been proposed that this problem can be overcome by using an all-ceramic TMJ implant bonded to bone with dental adhesives. Structural ceramics are promising materials with an excellent track record in the field of dentis.

  9. A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system--battery not included.

    PubMed

    Southcott, Mark; MacVittie, Kevin; Halámek, Jan; Halámková, Lenka; Jemison, William D; Lobel, Robert; Katz, Evgeny

    2013-05-01

    Biocatalytic electrodes made of buckypaper were modified with PQQ-dependent glucose dehydrogenase on the anode and with laccase on the cathode and were assembled in a flow biofuel cell filled with serum solution mimicking the human blood circulatory system. The biofuel cell generated an open circuitry voltage, Voc, of ca. 470 mV and a short circuitry current, Isc, of ca. 5 mA (a current density of 0.83 mA cm(-2)). The power generated by the implantable biofuel cell was used to activate a pacemaker connected to the cell via a charge pump and a DC-DC converter interface circuit to adjust the voltage produced by the biofuel cell to the value required by the pacemaker. The voltage-current dependencies were analyzed for the biofuel cell connected to an Ohmic load and to the electronic loads composed of the interface circuit, or the power converter, and the pacemaker to study their operation. The correct pacemaker operation was confirmed using a medical device - an implantable loop recorder. Sustainable operation of the pacemaker was achieved with the system closely mimicking human physiological conditions using a single biofuel cell. This first demonstration of the pacemaker activated by the physiologically produced electrical energy shows promise for future electronic implantable medical devices powered by electricity harvested from the human body.

  10. Ion implantation at elevated temperatures

    SciTech Connect

    Lam, N.Q.; Leaf, G.K.

    1985-11-01

    A kinetic model has been developed to investigate the synergistic effects of radiation-enhanced diffusion, radiation-induced segregation and preferential sputtering on the spatial redistribution of implanted solutes during implantation at elevated temperatures. Sample calculations were performed for Al and Si ions implanted into Ni. With the present model, the influence of various implantation parameters on the evolution of implant concentration profiles could be examined in detail.

  11. Implant treatment planning: endodontic considerations.

    PubMed

    Simonian, Krikor; Frydman, Alon; Verdugo, Fernando; Roges, Rafael; Kar, Kian

    2014-12-01

    Implants are a predictable and effective method for replacing missing teeth. Some clinicians have advocated extraction and replacement of compromised but treatable teeth on the assumption that implants will outperform endodontically and/or periodontally treated teeth. However, evidence shows that conventional therapy is as effective as implant treatment. With data on implants developing complications long term and a lack of predictable treatment for peri-implantitis, retaining and restoring the natural dentition should be the first choice when possible. PMID:25928961

  12. Wearable Wireless Telemetry System for Implantable BioMEMS Sensors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.

    2008-01-01

    Telemetry systems of a type that have been proposed for the monitoring of physiological functions in humans would include the following subsystems: Surgically implanted or ingested units that would comprise combinations of microelectromechanical systems (MEMS)- based sensors [bioMEMS sensors] and passive radio-frequency (RF) readout circuits that would include miniature loop antennas. Compact radio transceiver units integrated into external garments for wirelessly powering and interrogating the implanted or ingested units. The basic principles of operation of these systems are the same as those of the bioMEMS-sensor-unit/external-RFpowering- and-interrogating-unit systems described in "Printed Multi-Turn Loop Antennas for Biotelemetry" (LEW-17879-1) NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 48, and in the immediately preceding article, "Hand-Held Units for Short-Range Wireless Biotelemetry" (LEW-17483-1). The differences between what is reported here and what was reported in the cited prior articles lie in proposed design features and a proposed mode of operation. In a specific system of the type now proposed, the sensor unit would comprise mainly a capacitive MEMS pressure sensor located in the annular region of a loop antenna (more specifically, a square spiral inductor/ antenna), all fabricated as an integral unit on a high-resistivity silicon chip. The capacitor electrodes, the spiral inductor/antenna, and the conductor lines interconnecting them would all be made of gold. The dimensions of the sensor unit have been estimated to be about 110.4 mm. The external garment-mounted powering/ interrogating unit would include a multi-turn loop antenna and signal-processing circuits. During operation, this external unit would be positioned in proximity to the implanted or ingested unit to provide for near-field, inductive coupling between the loop antennas, which we have as the primary and secondary windings of an electrical transformer.

  13. Effects of inter-implant distance and implant length on the response to frontal traumatic force of two anterior implants in an atrophic mandible: three-dimensional finite element analysis.

    PubMed

    Kan, B; Coskunses, F M; Mutlu, I; Ugur, L; Meral, D G

    2015-07-01

    The aim of this three-dimensional finite element analysis study was to examine the biomechanical behaviour of dental implants and the surrounding bone under traumatic frontal force. Models were created of an edentulous atrophic mandible using cone beam computed tomography data from a patient; two titanium alloy implants (Ti-6Al-4V) were virtually inserted into the anterior of the mandible. Six different variations were modelled to represent differences in implant location (lateral incisor vs. canine placement) and implant length (monocortical, bicortical, and long-bicortical). A static force of 10 MPa was applied frontally to the symphysis region of each model, and the maximum equivalent von Mises strain of bone, maximum von Mises stress of implants, and chromatic force distributions in bone and implants were recorded. In general, when compared to lateral incisor placement, canine placement of implants resulted in greater von Mises stress on implants and greater equivalent von Mises strain on bone. The findings of the present study showed the distribution of traumatic force to be affected more by inter-implant distance than by implant length. The insertion of implants in the lateral incisor area was found to be a better solution than canine area placement in terms of frontal plane trauma and fracture risk. PMID:25818310

  14. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  15. Simple Implant Augmentation Rhinoplasty.

    PubMed

    Nguyen, Anh H; Bartlett, Erica L; Kania, Katarzyna; Bae, Sang Mo

    2015-11-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  16. Dexamethasone: intravitreal implant.

    PubMed

    2011-01-01

    Macular oedema is one of the complications of retinal vein occlusion. About half of the patients recover spontaneously within 3 to 6 months. There is currently no drug that improves outcome. An intravitreal implant delivering 0.7 mg of dexamethasone has been authorised for the treatment of macular oedema in this setting. Clinical assessment is based on two double-blind randomised trials including a total of 1267 patients, comparing treatment with intravitreal implants delivering about 0.7 mg or 0.35 mg of dexamethasone, versus a sham procedure. Despite a more rapid initial improvement with dexamethasone, the number of patients whose reading ability improved at 6 months did not significantly differ between the groups. A retrospective subgroup analysis raised the possibility that dexamethasone implants may be beneficial in patients with central retinal vein occlusion. The adverse effects of dexamethasone intravitreal implants are the same as those of intraocular steroid injections, including elevated intraocular pressure (25% of patients), cataracts (27%), conjunctival haemorrhage (20%), and ocular pain. In practice, dexamethasone intravitreal implants do not have a positive harm-benefit balance in most patients with macular oedema following retinal vein occlusion. More rapid recovery after central vein occlusion remains to be confirmed. Pending such studies, it is better to avoid using dexamethasone implants. Patients should instead receive ophthalmologic monitoring to detect and manage possible complications, and any risk factors should be treated.

  17. RCD+: Fast loop modeling server.

    PubMed

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  18. RCD+: Fast loop modeling server

    PubMed Central

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-01-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  19. Assessment of gliosis around moveable implants in the brain

    NASA Astrophysics Data System (ADS)

    Stice, Paula; Muthuswamy, Jit

    2009-08-01

    Repositioning microelectrodes post-implantation is emerging as a promising approach to achieve long-term reliability in single neuronal recordings. The main goal of this study was to (a) assess glial reaction in response to movement of microelectrodes in the brain post-implantation and (b) determine an optimal window of time post-implantation when movement of microelectrodes within the brain would result in minimal glial reaction. Eleven Sprague-Dawley rats were implanted with two microelectrodes each that could be moved in vivo post-implantation. Three cohorts were investigated: (1) microelectrode moved at day 2 (n = 4 animals), (2) microelectrode moved at day 14 (n = 5 animals) and (3) microelectrode moved at day 28 (n = 2 animals). Histological evaluation was performed in cohorts 1-3 at four-week post-movement (30 days, 42 days and 56 days post-implantation, respectively). In addition, five control animals were implanted with microelectrodes that were not moved. Control animals were implanted for (1) 30 days (n = 1), (2) 42 days (n = 2) and (3) 56 days (n = 2) prior to histological evaluation. Quantitative assessment of glial fibrillary acidic protein (GFAP) around the tip of the microelectrodes demonstrated that GFAP levels were similar around microelectrodes moved at day 2 when compared to the 30-day controls. However, GFAP expression levels around microelectrode tips that moved at day 14 and day 28 were significantly less than those around control microelectrodes implanted for 42 and 56 days, respectively. Therefore, we conclude that moving microelectrodes after implantation is a viable strategy that does not result in any additional damage to brain tissue. Further, moving the microelectrode downwards after 14 days of implantation may actually reduce the levels of GFAP expression around the tips of the microelectrodes in the long term.

  20. Assessment of gliosis around moveable implants in the brain

    PubMed Central

    Stice, Paula

    2010-01-01

    Repositioning microelectrodes post-implantation is emerging as a promising approach to achieve long-term reliability in single neuronal recordings. The main goal of this study was to (a) assess glial reaction in response to movement of microelectrodes in the brain post-implantation and (b) determine an optimal window of time post-implantation when movement of microelectrodes within the brain would result in minimal glial reaction. Eleven Sprague-Dawley rats were implanted with two microelectrodes each that could be moved in vivo post-implantation. Three cohorts were investigated: (1) microelectrode moved at day 2 (n = 4 animals), (2) microelectrode moved at day 14 (n = 5 animals) and (3) microelectrode moved at day 28 (n = 2 animals). Histological evaluation was performed in cohorts 1–3 at four-week post-movement (30 days, 42 days and 56 days post-implantation, respectively). In addition, five control animals were implanted with microelectrodes that were not moved. Control animals were implanted for (1) 30 days (n = 1), (2) 42 days (n = 2) and (3) 56 days (n = 2) prior to histological evaluation. Quantitative assessment of glial fibrillary acidic protein (GFAP) around the tip of the microelectrodes demonstrated that GFAP levels were similar around microelectrodes moved at day 2 when compared to the 30-day controls. However, GFAP expression levels around microelectrode tips that moved at day 14 and day 28 were significantly less than those around control microelectrodes implanted for 42 and 56 days, respectively. Therefore, we conclude that moving microelectrodes after implantation is a viable strategy that does not result in any additional damage to brain tissue. Further, moving the microelectrode downwards after 14 days of implantation may actually reduce the levels of GFAP expression around the tips of the microelectrodes in the long term. PMID:19556680

  1. [Electrophysiologic and other objective tests in pediatric cochlear implantation].

    PubMed

    Bordure, P; O'Donoghue, G M; Mason, S

    1996-01-01

    Various electrophysiological procedures have been developed and utilized in pediatric cochlear implant patients. During surgery and just before implantation, recording of Electrically-Evoked Auditory Brainstem Responses (EABR) by electrical stimulation via a promontory needle electrode is a useful tool to select the suitable ear for implantation in the absence of other criteria. After implantation, peroperative assessment of the Electrically-Evoked Stapedius Reflex thresholds allows an estimation of the comfort levels not to be exceeded during the first tuning sessions. Recording of Averaged Electrode Voltages (AEV) provides assurance against general device failure, and can localize defectives electrodes which will be disactivated. Finally EABR obtained by electrical stimulation via the implant is the last control showing objective auditory responses. Furthermore there is a strong correlation between EABR thresholds and behavioral thresholds which will be obtained during the first tuning session. When a device malfunction is suspected after implantation, recording of AEV and EABR are performed, and the results are compared with the preoperative data.

  2. Implantable radio frequency identification sensors: wireless power and communication.

    PubMed

    Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2011-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm. PMID:22254944

  3. Wearable Wireless Telemetry System for Implantable Bio-MEMS Sensors

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Miranda, Felix A.; Wilson, Jeffrey D.; Simons, Renita E.

    2006-01-01

    In this paper, a telemetry and contact-less powering system consisting of an implantable bio-MEMS sensor with a miniature printed square spiral chip antenna and an external wearable garment with printed loop antenna is investigated. The wearable garment pick-up antenna and the implantable chip antenna are in close proximity to each other and hence couple inductively through their near-fields and behave as the primary and the secondary circuits of a transformer, respectively. The numerical and experimental results are graphically presented, and include the design parameter values as a function of the geometry, the relative RF magnetic near-field intensity as a function of the distance and angle, and the current density on the strip conductors, for the implantable chip antenna.

  4. Wearable wireless telemetry system for implantable bio-MEMS sensors.

    PubMed

    Simons, Rainee N; Miranda, Félix A; Wilson, Jeffrey D; Simons, Renita E

    2006-01-01

    In this paper, a telemetry and contact-less powering system consisting of an implantable bio-MEMS sensor with a miniature printed square spiral chip antenna and an external wearable garment with printed loop antenna is investigated. The implantable chip antenna and the wearable garment pick-up antenna are in close proximity to each other and hence couple inductively through their near-fields and behave as the primary and the secondary circuits of a transformer, respectively. The numerical and experimental results are graphically presented, and include the design parameter values as a function of the geometry and the relative magnetic near-field intensity as a function of the angle, for the implantable chip antenna.

  5. Implantable Radio Frequency Identification Sensors: Wireless Power and Communication

    PubMed Central

    Hutchens, Chriswell; Rennaker, Robert L.; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2013-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700mV, 30 to 40uA load attained at −2dBm. PMID:22254944

  6. Wearable wireless telemetry system for implantable bio-MEMS sensors.

    PubMed

    Simons, Rainee N; Miranda, Félix A; Wilson, Jeffrey D; Simons, Renita E

    2006-01-01

    In this paper, a telemetry and contact-less powering system consisting of an implantable bio-MEMS sensor with a miniature printed square spiral chip antenna and an external wearable garment with printed loop antenna is investigated. The implantable chip antenna and the wearable garment pick-up antenna are in close proximity to each other and hence couple inductively through their near-fields and behave as the primary and the secondary circuits of a transformer, respectively. The numerical and experimental results are graphically presented, and include the design parameter values as a function of the geometry and the relative magnetic near-field intensity as a function of the angle, for the implantable chip antenna. PMID:17946365

  7. Recent advances in micro/nanoscale biomedical implants.

    PubMed

    Arsiwala, Ammar; Desai, Preshita; Patravale, Vandana

    2014-09-10

    The medical device industry is growing at a very fast pace and has recorded great research activity over the past decade. The interdisciplinary nature of this field has made it possible for researchers to incorporate principles from various allied areas like pharmaceutics, bioengineering, biotechnology, chemistry, electronics, biophysics etc. to develop superior medical solutions, offering better prospects to the patient. Moreover, micro and nanotechnology have made it possible to positively affect at the sub-micron scales, the cellular processes initiated upon implantation. Literature is rife with findings on various implants and this review comprehensively summarizes the recent advances in micro/nanoscale implantable medical devices - particularly cardiovascular implants, neural implants, orthopedic and dental implants and other miscellaneous implants. Over the years, medical implants have metamorphosed from mere support providing devices to smart interventions participating positively in the healing process. We have highlighted the current research in each area emphasizing on the value addition provided by micro/nanoscale features, its course through the past and the future perspectives focusing on the unmet needs.

  8. Higher dimensional loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  9. Wilson Loop Diagrams and Positroids

    NASA Astrophysics Data System (ADS)

    Agarwala, Susama; Marin-Amat, Eloi

    2016-07-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  10. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  11. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  12. Foreign body giant cells selectively covering haptics of intraocular lens implants: indicators of poor toleration?

    PubMed

    Wolter, J R

    1983-10-01

    A Sputnik lens implant removed after five years because of bullous keratopathy exhibits a dense covering of its Supramid anterior staves with large foreign body giant cells, while its Prolene loops and Polymethylmethacrylate optics have attracted only few of these cell units. The glass-membrane-like component of the reactive membrane also shows significant differences on the different parts of this implant. The use of observation of the components of reactive membranes on lens implants as indicators of toleration in the eye is suggested. PMID:6364004

  13. The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis.

    PubMed

    Shin, Seung-Il; Lee, Eun-Kwon; Kim, Jeong-Hyun; Lee, Ji-Hun; Kim, Sun-Hee; Kwon, Young-Hyuk; Herr, Yeek; Chung, Jong-Hyuk

    2013-05-01

    The purpose of this study was to evaluate the microscopic changes and surface roughness on hydroxyapatite (HA)-coated implants following exposure to different powers and durations of Er:YAG laser irradiation in order to determine the proper pulse energy level and irradiation time. Ten HA-coated implants and ten fluoride-modified TiO2 implants were used. The implants were divided into a control (one implant) and test group (nine implants) for each implant type. Implants in the test groups were sub-divided into three groups (three implants per group) based on the applied laser pulse energy and irradiation time. The measurement of surface roughness was performed on all implants in the test groups using a white light interferometer before and after laser irradiation. R a values were recorded and compared in order to evaluate changes in surface roughness. For HA-coated implants, the R a values increased in all test groups after laser irradiation. However, mean R a values in the fluoride-modified TiO2-blasted implant test group were decreased after irradiation. There was no statistical difference. Scanning electron microscope analysis revealed surface alterations in both the HA-coated and fluoridated TiO2-blasted implants irradiated for 1.5 min at 100 mJ/pulse, 10 Hz. When the pulse energy and irradiation time increased, greater surface alterations, including surface flattening and microfractures, were observed. In conclusion, the results of the current study suggest that no changes could be observed in both HA-coated implants and fluoride-modified TiO2-blasted implants after irradiation at an intensity of 100 mJ/pulse, 10 Hz for 1 min performed to achieve surface detoxification.

  14. Implant interactions with orthodontics.

    PubMed

    Celenza, Frank

    2012-09-01

    Many situations arise in which orthodontic therapy in conjunction with implant modalities is beneficial, relevant or necessary. These situations might entail orthodontic treatment preparatory to the placement of an implant, such as in the site preparation for implant placement. Traditionally, this has been somewhat well understood, but there are certain guidelines that must be adhered to as well as diagnostic steps that must be followed. Provision of adequate space for implant placement is of paramount importance, but there is also the consideration of tissue manipulation and remodeling which orthodontic therapy can achieve very predictably and orthodontists should be well versed in harnessing and employing this modality of site preparation. In this way, hopeless teeth that are slated for extraction can still be utilized by orthodontic extraction to augment tissues, both hard and soft, thereby facilitating site development. On the corollary, and representing a significant shift in treatment sequencing, there are many situations in which orthodontic mechanotherapy can be simplified, expedited, and facilitated by the placement of an implant and utilization as an integral part of the mechanotherapy. Implants have proven to provide excellent anchorage, and have resulted in a new class of anchorage known as "absolute anchorage". Implants can be harnessed as anchors both in a direct and indirect sense, depending upon the dictates of the case. Further, this has led to the development of orthodontic miniscrew systems and techniques, which can have added features such as flexibility in location and placement, as well as ease of use and removal. As orthodontic appliances evolve, the advent of aligner therapy has become mainstream and well accepted, and many of the aforementioned combined treatment modalities can and should be incorporated into this relatively new treatment modality as well. PMID:23040348

  15. Modeling loop entropy.

    PubMed

    Chirikjian, Gregory S

    2011-01-01

    Proteins fold from a highly disordered state into a highly ordered one. Traditionally, the folding problem has been stated as one of predicting "the" tertiary structure from sequential information. However, new evidence suggests that the ensemble of unfolded forms may not be as disordered as once believed, and that the native form of many proteins may not be described by a single conformation, but rather an ensemble of its own. Quantifying the relative disorder in the folded and unfolded ensembles as an entropy difference may therefore shed light on the folding process. One issue that clouds discussions of "entropy" is that many different kinds of entropy can be defined: entropy associated with overall translational and rotational Brownian motion, configurational entropy, vibrational entropy, conformational entropy computed in internal or Cartesian coordinates (which can even be different from each other), conformational entropy computed on a lattice, each of the above with different solvation and solvent models, thermodynamic entropy measured experimentally, etc. The focus of this work is the conformational entropy of coil/loop regions in proteins. New mathematical modeling tools for the approximation of changes in conformational entropy during transition from unfolded to folded ensembles are introduced. In particular, models for computing lower and upper bounds on entropy for polymer models of polypeptide coils both with and without end constraints are presented. The methods reviewed here include kinematics (the mathematics of rigid-body motions), classical statistical mechanics, and information theory.

  16. Effect of Osteotomy Preparation on Osseointegration of Immediately Loaded, Tapered Dental Implants.

    PubMed

    Stavropoulos, A; Cochran, D; Obrecht, M; Pippenger, B E; Dard, M

    2016-03-01

    The aim of the present preclinical in vivo study was to evaluate whether a modified "drill-only" protocol, involving slight underpreparation of the implant site, may have an effect on aspects of osseointegration of a novel bone-level tapered implant, compared with the "standard drilling" protocol involving taping and profiling of the marginal aspect of the implant socket. In each side of the edentulated and completely healed mandible of 11 minipigs, 2 tapered implants (8 mm long × 4.1 mm Ø, BLT; Institut Straumann AG, Basel, Switzerland) were installed either with the drill-only or the standard drilling protocol. Significantly lower average insertion torque values were recorded for the standard drilling protocol group (52 ± 29 Ncm) compared with the drill-only group (70 ± 27 Ncm) (t test, P ≤ 0.05); no significant difference was observed between the 2 groups regarding implant stability, by means of resonance frequency analysis (75 ± 8 vs. 75 ± 6, respectively). Half of the implants were immediately loaded and the rest were submerged, providing observation times of 8 or 4 wk, respectively. Non-decalcified histological and histomorphometric analysis of the implants with surrounding tissues showed no significant differences between the 2 drilling protocols regarding the distance from the implant platform to the first coronal bone-to-implant contact (f-BIC), the total bone-to-implant contact (BIC) as a percentage of the total implant perimeter, and the bone density in an area extending 1 mm laterally from the implant (BATA) within 2 rectangular regions of interest (ROIs) 4 mm in height, representing the coronal (parallel-walled) and apical (tapered) aspect of the implant (ROI 1 and ROI 2, respectively) in non-submerged implants. In general, marginal peri-implant bone levels were at or slightly apical to the implant platform, and large amounts of bone-to-implant contact were observed. In contrast, immediately loaded implants placed with the drill-only protocol

  17. Immediate Dental Implant Placements Using Osteotome Technique: A Case Report and Literature Review

    PubMed Central

    Al-Almaie, Saad

    2016-01-01

    This clinical case describes the effect of the osteotome technique on the osseointegration of a mandibular dental implant in a 42-year-old female patient with dento-alveolar bony defects and to review the literature regarding immediate implant placement using osteotome technique. The amount of bone expansion at the alveolar ridge and the marginal bone resorption from the time of implant placement to one year after the implant’s functional loading were recorded clinically. The esthetic outcome for the restored implant (the gingival margin) was achieved one years after the implant’s functional loading. The surgical and prosthetic sites for the implant showed no postoperative complications, and no infection or wound dehiscence was recorded during the follow-up period. The osteotome technique is good for the purpose for which it was introduced, and its advantages with immediate implant placement include reduced surgical trauma and a shorter treatment time. PMID:27583046

  18. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.

    PubMed

    Hannan, Mahammad A; Hussein, Hussein A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-01-01

    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of

  19. Automatic frequency controller for power amplifiers used in bio-implanted applications: issues and challenges.

    PubMed

    Hannan, Mahammad A; Hussein, Hussein A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-12-11

    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of

  20. Automatic Frequency Controller for Power Amplifiers Used in Bio-Implanted Applications: Issues and Challenges

    PubMed Central

    Hannan, Mahammad A.; Hussein, Hussein A.; Mutashar, Saad; Samad, Salina A.; Hussain, Aini

    2014-01-01

    With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of

  1. Rogowski Loop design for NSTX

    SciTech Connect

    McCormack, B.; Kaita, R.; Kugel, H.; Hatcher, R.

    2000-01-06

    The Rogowski Loop is one of the most basic diagnostics for tokamak operations. On the National Spherical Torus Experiment (NSTX), the plasma current Rogowski Loop had the constraints of the very limited space available on the center stack, 5,000 volt isolation, flexibility requirements as it remained a part of the Center Stack assembly after the first phase of operation, and a +120 C temperature requirement. For the second phase of operation, four Halo Current Rogowski Loops under the Center Stack tiles will be installed having +600 C and limited space requirements. Also as part of the second operational phase, up to ten Rogowski Loops will installed to measure eddy currents in the Passive Plate support structures with +350 C, restricted space, and flexibility requirements. This presentation will provide the details of the material selection, fabrication techniques, testing, and installation results of the Rogowski Loops that were fabricated for the high temperature operational and bakeout requirements, high voltage isolation requirements, and the space and flexibility requirements imposed upon the Rogowski Loops. In the future operational phases of NSTX, additional Rogowski Loops could be anticipated that will measure toroidal plasma currents in the vacuum vessel and in the Passive Plate assemblies.

  2. Feedback characteristics between implantable microphone and transducer in middle ear cavity.

    PubMed

    Arman Woo, S H; Woo, Seong Tak; Song, Byung Seop; Cho, Jin-Ho

    2013-10-01

    With the advent of implantable hearing aids, implementation and acoustic sensing strategy of the implantable microphone becomes an important issue; among the many types of implantable microphone, placing the microphone in middle ear cavity (MEC) has advantages including simple operation and insensitive to skin touching or chewing motion. In this paper, an implantable microphone was implemented and researched feedback characteristic when both the implantable microphone and the transducer were placed in the MEC. Analytical and finite element analysis were conducted to design the microphone to have a natural frequency of 7 kHz and showed good characteristics of SNR and sensitivity. For the feedback test, simple analytical and finite element analysis were calculated and compared with in vitro experiments (n = 4). From the experiments, the open-loop gain and feedback factor were measured and the minimum gain margin measured as 14.3 dB.

  3. Scuba diving with cochlear implants.

    PubMed

    Kompis, Martin; Vibert, Dominique; Senn, Pascal; Vischer, Mattheus W; Häusler, Rudolf

    2003-05-01

    We report on a patient with bilateral cochlear implants (a Med-El Combi40 and a Med-El Combi40+), as well as considerable experience in scuba diving with both of his implants. After having been exposed to 68 and 89 dives, respectively, in depths of up to 43 m, both cochlear implants are in working order and the patient continues to receive excellent speech recognition scores with both cochlear implant systems. The presented data show that scuba diving after cochlear implantation is possible over a considerable number of dives without any major negative impact on the implants.

  4. [Subretinal visual implants].

    PubMed

    Stingl, K; Greppmaier, U; Wilhelm, B; Zrenner, E

    2010-12-01

    Visual implants are medical technologies that replace parts of the visual neuronal pathway. The subretinal implant developed by our group is being used in a human trials since 2005 and replaces the function of degenerated photoreceptors by an electronic device in blind patients. The subretinal implant consists of a 70-µm thin microchip with 1500 microphotodiodes each with an amplifier and an electrode with area of 3 mm × 3 mm. The power supply is provided by a subdermal power supply cable. The microchip is implanted under the macula and transforms the light signal into an electrical one, which is referred directly to the bipolar cells. Requirements for a good function of the implant are a preserved function of the inner retina, as well as clear optic media and a good visual acuity in the earlier life. The current technology can mediate a visual field of 10 - 12° and a computed resolution of up to 0.25° visual angle (corresponding to a visual acuity of 63 / 1000 - 80 / 1000) in blind patients. The so far best results from our studies reached a visual acuity of 21 / 1000 in blind retinitis pigmentosa patients. This overview is intended to inform the ophthalmologist about the current state of the technology and help him/her to advise interested patients.

  5. CD Recorders.

    ERIC Educational Resources Information Center

    Falk, Howard

    1998-01-01

    Discussion of CD (compact disc) recorders describes recording applications, including storing large graphic files, creating audio CDs, and storing material downloaded from the Internet; backing up files; lifespan; CD recording formats; continuous recording; recording software; recorder media; vulnerability of CDs; basic computer requirements; and…

  6. Immunological aspects of implantation and implantation failure.

    PubMed

    Johnson, P M; Christmas, S E; Vince, G S

    1999-12-01

    The human endometrium contains a significant proportion of leukocytes (8-35% of all cells), the absolute numbers and proportions varying during both the menstrual cycle and early in pregnancy. T cells, macrophages and a population of phenotypically unusual large granular lymphocytes (LGL) are commonly present, although B cells are absent. Relative T cell numbers decrease significantly in first trimester decidua, and hence are unlikely to play an important role in maintenance of human pregnancy, but T cells could be important in implantation where their relative numbers are greater. In addition to producing cytokines, local tissue macrophages may provide an immediate antigen non-specific host defence to infection. Most attention has, nevertheless, focused on a role for LGL in implantation and maintenance of pregnancy since, at the time of implantation, LGL comprise 70-80% of the total endometrial leukocyte population. Although endometrial LGL have been shown to express natural killer (NK) cell-type cytotoxicity against classical NK cell targets, such cytotoxicity against trophoblast is induced only after activation by interleukin (IL)-2. Selective expression of the unusual class I human leukocyte antigen (HLA) molecule, HLA-G, by extravillous cytotrophoblast may assist in protecting invasive cytotrophoblast from potential maternal NK cell attack, probably via interactions with killer inhibitory receptor molecules on LGL. Many cytokines have been demonstrated to be expressed at the maternal-fetal interface although, currently, in mice only two (IL-11 and leukaemia inhibitory factor) appear to be absolutely essential for successful pregnancy outcome. Immune effector cells and cytokines may also play a role in human pregnancy pathologies, such as recurrent early pregnancy loss.

  7. Methods of Temperature and Emission Measure Determination of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Cirtain, J. W.; Schmelz, J. T.; Martens, P. C. H.

    2002-05-01

    Recent observational results from both SOHO-EIT and TRACE indicate that coronal loops are isothermal along their length (axially). These results are obtained from a narrowband filter ratio method that assumes that the plasma is isothermal along the line of sight (radially). However, these temperatures vary greatly from those derived from differential emission measure (DEM) curves produced from spectral lines recorded by SOHO-CDS. The DEM results indicate that the loops are neither axially nor radially isothermal. This discrepancy was investigated by Schmelz et al. (2001). They chose pairs of iron lines from the same CDS data set to mimic the EIT and TRACE loop results. Ratios of different lines gave different temperatures, indicating that the plasma was not radially isothermal. In addition the results indicated that the loop was axially isothermal, even though the DEM analysis of the same data showed this result to be false. Here we have analyzed the EIT data for the CDS loop published by Schmelz et al. (2001). We took the ratios of the 171-to-195 and 195-to-284 filter data, and made temperature maps of the loop. The results indicate that the loop is axially isothermal, but different temperatures were found for each pair of filters. Both ratio techniques force the resultant temperature to lie within the range where the response functions (for filters) or the emissivity functions (for lines) overlap; isothermal loops are therefore a byproduct of the analysis. This conclusion strengthens support for the idea that temperature and emission measure results from filter ratio methods may be misleading or even drastically wrong. This research was funded in part by the NASA/TRACE MODA grant for Montana State University. Solar physics research at the University of Memphis is supported by NASA grant NAG5-9783.

  8. Implantation and testing of subretinal film electrodes in domestic pigs.

    PubMed

    Schanze, Thomas; Sachs, Helmut G; Wiesenack, Christoph; Brunner, Ursula; Sailer, Heiko

    2006-02-01

    By definition, an electronic subretinal visual prosthesis requires the implantation of stimulation electrodes in the subretinal space of the eye. Polyimide film electrodes with flat contacts were implanted subretinally and used for electrical stimulation in acute experiments in anaesthetised domestic pigs. In two pigs, the film electrode was inserted through a sclerostomy into the vitreous cavity and, subsequently, via a retinotomy into the subretinal space around the posterior pole (ab interno approach). In three other pigs the sclera and pigment epithelium were opened for combined ab interno and transscleral positioning of the subretinal electrode. In all cases, perfluorocarbon liquid (PFCL) was used to establish a close contact between the film electrode and the outer retina. After cranial preparations of three pigs for epidural recording of visual cortex responses, retinal stimulation was performed in one pig with a film electrode implanted ab interno and in two pigs with film electrodes implanted by the ab interno and transscleral procedure. The five subretinal implantations were carried out successfully and each polyimide film electrode tip was positioned beneath the outer retina of the posterior pole. The retina was attached to the stimulation electrode in all cases. Epidural cortical responses to light and electrical stimulation were recorded in three experiments. Initial cortical responses to Ganzfeld light and to electrical stimuli occurred about 40 and 20 ms, respectively, after stimulation onset. The stimulation threshold was approximately 100 microA and, like the cortical response amplitudes, depended both on the correspondence between retinal stimulation and cortical recording sites and on the number of stimulation electrodes used simultaneously. Our results in a domestic pig model demonstrate that polyimide film electrodes can be implanted subretinally and tested by recording cortical responses to electrical stimulation. These findings suggest that

  9. Dental Implant Complications.

    PubMed

    Liaw, Kevin; Delfini, Ronald H; Abrahams, James J

    2015-10-01

    Dental implants have increased in the last few decades thus increasing the number of complications. Since many of these complications are easily diagnosed on postsurgical images, it is important for radiologists to be familiar with them and to be able to recognize and diagnose them. Radiologists should also have a basic understanding of their treatment. In a pictorial fashion, this article will present the basic complications of dental implants which we have divided into three general categories: biomechanical overload, infection or inflammation, and other causes. Examples of implant fracture, loosening, infection, inflammation from subgingival cement, failure of bone and soft tissue preservation, injury to surround structures, and other complications will be discussed as well as their common imaging appearances and treatment. Lastly, we will review pertinent dental anatomy and important structures that are vital for radiologists to evaluate in postoperative oral cavity imaging.

  10. Comparison of Marginal Bone Changes with Internal Conus and External Hexagon Design Implant Systems: A Prospective, Randomized Study.

    PubMed

    Cooper, Lyndon F; Tarnow, Dennis; Froum, Stuart; Moriarty, John; De Kok, Ingeborg J

    2016-01-01

    A central dental implant success criterion is the marginal bone response as measured longitudinally. Factors that influence marginal bone changes include osseous and soft tissue architecture, occlusal loading factors, implant position, implant design, and inflammatory processes. The evolution of implant design is multifactorial and includes the implant-abutment interface geometries. The primary objective of this study was to compare the proximal marginal bone changes following placement and loading of internal conus design implants (ICI) and external hex design implants (EXI) used in the treatment of posterior partial edentulism. Among 45 enrolled participants, 39 were treated with 47 ICI or 46 EXI implants using a one-stage implant protocol. Prosthetic restoration was completed after 12 weeks using stock titanium abutments and all-ceramic crowns. Follow-up visits including clinical and radiographic examinations were performed 6 months after permanent restoration and then annually for 3 years. Marginal bone level changes, papilla index scores, condition of the peri-implant mucosa, presence of complications, and participant satisfaction were evaluated. The mean marginal bone level change from implant placement to 3 years was -0.25 ± 0.60 mm and -0.5 ± 0.93 mm for ICI and EXI implants, respectively. The change recorded from permanent restoration to 3 years was a gain of 0.31 ± 0.41 mm versus 0.04 ± 0.51 mm for ICI and EXI implants, respectively (P < .05). In the evaluation of interproximal soft tissue 3 years after permanent restoration, 80% of mandibular and 66% of maxillary interproximal ICI sites received papilla scores of 2 and 3, compared with 50% of mandibular and 60% of maxillary interproximal EXI sites. No significant differences in plaque or bleeding scores were recorded. Abutment/healing abutment complications were recorded for 11 EXI versus 1 ICI participant. The vast majority (> 90%) of participants stated they were satisfied or very satisfied with

  11. SDO Sees Flourishing Magnetic Loops

    NASA Video Gallery

    A bright set of loops near the edge of the sun’s face grew and shifted quickly after the magnetic field was disrupted by a small eruption on Nov. 25, 2015. Charged particles emitting light in extre...

  12. Automatic blocking of nested loops

    NASA Technical Reports Server (NTRS)

    Schreiber, Robert; Dongarra, Jack J.

    1990-01-01

    Blocked algorithms have much better properties of data locality and therefore can be much more efficient than ordinary algorithms when a memory hierarchy is involved. On the other hand, they are very difficult to write and to tune for particular machines. The reorganization is considered of nested loops through the use of known program transformations in order to create blocked algorithms automatically. The program transformations used are strip mining, loop interchange, and a variant of loop skewing in which invertible linear transformations (with integer coordinates) of the loop indices are allowed. Some problems are solved concerning the optimal application of these transformations. It is shown, in a very general setting, how to choose a nearly optimal set of transformed indices. It is then shown, in one particular but rather frequently occurring situation, how to choose an optimal set of block sizes.

  13. SDO Sees Brightening Magnetic Loops

    NASA Video Gallery

    Two active regions sprouted arches of bundled magnetic loops in this video from NASA’s Solar Dynamics Observatory taken on Nov. 11-12, 2015. Charged particles spin along the magnetic field, tracing...

  14. Loop Electrosurgical Excision Procedure (LEEP)

    MedlinePlus

    ... that acts like a scalpel (surgical knife). An electric current is passed through the loop, which cuts away ... A procedure in which an instrument works with electric current to destroy tissue. Local Anesthesia: The use of ...

  15. Number of cosmic string loops

    NASA Astrophysics Data System (ADS)

    Blanco-Pillado, Jose J.; Olum, Ken D.; Shlaer, Benjamin

    2014-01-01

    Using recent simulation results, we provide the mass and speed spectrum of cosmic string loops. This is the quantity of primary interest for many phenomenological signatures of cosmic strings, and it can be accurately predicted using recently acquired detailed knowledge of the loop production function. We emphasize that gravitational smoothing of long strings plays a negligible role in determining the total number of existing loops. We derive a bound on the string tension imposed by recent constraints on the stochastic gravitational wave background from pulsar timing arrays, finding Gμ ≤2.8×10-9. We also provide a derivation of the Boltzmann equation for cosmic string loops in the language of differential forms.

  16. Observations of loops and prominences

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.

    1994-01-01

    We review recent observations by the Yohkoh-SXT (Soft X-ray Telescope) in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (greater than or equal to 32 s full-disk and greater than or equal to 2 s partial-frame images), high spatial resolution (greater than or equal to 2.5 arcsec pixels), high sensitivity (EM less than or equal to 10(exp 42) cm(exp -3)), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant Gamma's are the exception, not the rule, implying the presence of widespread currents in the corona. All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly

  17. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.

  18. Hydroxylapatite Otologic Implants

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Beale, B.; Johnson, R.

    2000-01-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (LMER) and Smith and Nephew Richards Inc. of Bartlett, TN, was initiated in March 1997. The original completion date for the Agreement was March 25, 1998. The purpose of this work is to develop and commercialize net shape forming methods for directly creating dense hydroxylapatite (HA) ceramic otologic implants. The project includes three tasks: (1) modification of existing gelcasting formulations to accommodate HA slurries; (2) demonstration of gelcasting to fabricate green HA ceramic components of a size and shape appropriate to otologic implants: and (3) sintering and evaluation of the HA components.

  19. Multichannel extracochlear implant.

    PubMed

    Pulec, J L; Smith, J C; Lewis, M L; Hortmann, G

    1989-03-01

    The transcutaneous eight-channel extracochlear implant has undergone continuous revision to simplify the surgical technique, to minimize patient morbidity, and to improve performance. The extracochlear electrode array has been miniaturized so that it can be inserted through the facial recess without disturbing the external auditory canal, tympanic membrane, or malleus. The use of the remote antenna placed around the external auditory canal has greatly increased battery life and patient comfort. With its simplified incisions, the surgical procedure can be performed as out-patient surgery. Preoperative cochlear nerve testing and use of evoked response cochlear nerve testing allow preadjustment of the speech processor. Current features and performance of the implant are discussed.

  20. Dynamical behaviour in coronal loops

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1986-01-01

    Rapid variability has been found in two active region coronal loops observed by the X-ray Polychromator (XRP) and the Hard X-ray Imaging Spectrometer (HXIS) onboard the Solar Maximum Mission (SMM). There appear to be surprisingly few observations of the short-time scale behavior of hot loops, and the evidence presented herein lends support to the hypothesis that coronal heating may be impulsive and driven by flaring.

  1. Current trends in dental implants

    PubMed Central

    Gaviria, Laura; Salcido, John Paul; Guda, Teja

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants. PMID:24868501

  2. Current trends in dental implants.

    PubMed

    Gaviria, Laura; Salcido, John Paul; Guda, Teja; Ong, Joo L

    2014-04-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants.

  3. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  4. In situ creep under helium implantation of titanium aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Nazmy, M.; Hoffelner, W.

    2006-06-01

    The intermetallic alloy Ti-47Al-2W-0.5Si (at.%) has been homogeneously implanted with 4He2+ ions under uniaxial tensile stresses from 20 to 450 MPa to a maximum dose of about 0.16 dpa (1370 appm-He) with displacement damage rates of 2 × 10-6 dpa s-1 at temperatures of 573 and 773 K. Strain under implantation was determined by Linear Variable Displacement Transformer (LVDT), while changes of microstructure were investigated after implantation by Transmission Electron Microscopy (TEM). Irradiation creep strain showed a pronounced transient behaviour, virtually independent of temperature, with a stress dependence which can be approximately described by a creep compliance of 8 × 10-6 dpa-1 MPa-1 up to stresses of 350 MPa. The microstructure of the as-received material consisted of a patch-work of mainly lamellar γ/α2 colonies and equiaxed γ-grains with islands of precipitates. Only 'black dot' damage was observed after implantation at 573 K under different stresses, while implantation at 773 K yielded a dense population of bubbles and dislocation loops, mostly mutually attached.

  5. THE CORONAL LOOP INVENTORY PROJECT

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S. S.; Paul, K. S.

    2015-11-01

    Most coronal physicists now seem to agree that loops are composed of tangled magnetic strands and have both isothermal and multithermal cross-field temperature distributions. As yet, however, there is no information on the relative importance of each of these categories, and we do not know how common one is with respect to the other. In this paper, we investigate these temperature properties for all loop segments visible in the 171-Å image of AR 11294, which was observed by the Atmospheric Imaging Assembly (AIA) on 2011 September 15. Our analysis revealed 19 loop segments, but only 2 of these were clearly isothermal. Six additional segments were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within measurement uncertainties. One loop had both isothermal transition region and multithermal coronal solutions. Another five loop segments require multithermal plasma to reproduce the AIA observations. The five remaining loop segments could not be separated reliably from the background in the crucial non-171-Å AIA images required for temperature analysis. We hope that the direction of coronal heating models and the efforts modelers spend on various heating scenarios will be influenced by these results.

  6. The Coronal Loop Inventory Project

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S. S.; Paul, K. S.

    2015-11-01

    Most coronal physicists now seem to agree that loops are composed of tangled magnetic strands and have both isothermal and multithermal cross-field temperature distributions. As yet, however, there is no information on the relative importance of each of these categories, and we do not know how common one is with respect to the other. In this paper, we investigate these temperature properties for all loop segments visible in the 171-Å image of AR 11294, which was observed by the Atmospheric Imaging Assembly (AIA) on 2011 September 15. Our analysis revealed 19 loop segments, but only 2 of these were clearly isothermal. Six additional segments were effectively isothermal, that is, the plasma emission to which AIA is sensitive could not be distinguished from isothermal emission, within measurement uncertainties. One loop had both isothermal transition region and multithermal coronal solutions. Another five loop segments require multithermal plasma to reproduce the AIA observations. The five remaining loop segments could not be separated reliably from the background in the crucial non-171-Å AIA images required for temperature analysis. We hope that the direction of coronal heating models and the efforts modelers spend on various heating scenarios will be influenced by these results.

  7. The ruptured PIP breast implant.

    PubMed

    Helyar, V; Burke, C; McWilliams, S

    2013-08-01

    Public concern erupted about the safety of Poly Implant Prothèse (PIP) breast implants when it was revealed in 2011 that they contained an inferior, unlicensed industrial-grade silicone associated with a high rate of rupture. There followed national guidance for UK clinicians, which led to a considerable increase in referrals of asymptomatic women for breast implant assessment. In this review we discuss possible approaches to screening the PIP cohort and the salient characteristics of a ruptured implant. PMID:23622796

  8. Active microelectronic neurosensor arrays for implantable brain communication interfaces.

    PubMed

    Song, Y-K; Borton, D A; Park, S; Patterson, W R; Bull, C W; Laiwalla, F; Mislow, J; Simeral, J D; Donoghue, J P; Nurmikko, A V

    2009-08-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a cortical microelectrode array to an external computer for neural control applications. Our implantable microsystem enables 16-channel broadband neural recording in a nonhuman primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including radio frequency by induction, or infrared light via photovoltaic conversion. As of the time of this report, the implant has been tested as a subchronic unit in nonhuman primates ( approximately 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  9. Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces

    PubMed Central

    Song, Y.-K.; Borton, D. A.; Park, S.; Patterson, W. R.; Bull, C. W.; Laiwalla, F.; Mislow, J.; Simeral, J. D.; Donoghue, J. P.; Nurmikko, A. V.

    2010-01-01

    We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a microelectrode array cortical to an external computer for neural control applications. Our implantable microsystem enables presently 16-channel broadband neural recording in a non-human primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including via radio frequency by induction, or infrared light via a photovoltaic converter. As of today, the implant has been tested as a sub-chronic unit in non-human primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. PMID:19502132

  10. Dynamics of auditory plasticity after cochlear implantation: a longitudinal study.

    PubMed

    Pantev, C; Dinnesen, A; Ross, B; Wollbrink, A; Knief, A

    2006-01-01

    Human representational cortex may fundamentally alter its organization and (re)gain the capacity for auditory processing even when it is deprived of its input for more than two decades. Stimulus-evoked brain activity was recorded in post-lingual deaf patients after implantation of a cochlear prosthesis, which partly restored their hearing. During a 2 year follow-up study this activity revealed almost normal component configuration and was localized in the auditory cortex, demonstrating adequacy of the cochlear implant stimulation. Evoked brain activity increased over several months after the cochlear implant was turned on. This is taken as a measure of the temporal dynamics of plasticity of the human auditory system after implantation of cochlear prosthesis. PMID:15843632

  11. Peri-implant biomechanical responses to standard, short-wide, and mini implants supporting single crowns under axial and off-axial loading (an in vitro study).

    PubMed

    Kheiralla, Lamia Sayed; Younis, Jihan Farouk

    2014-02-01

    This study compared the biomechanical responses of 3 single crowns supported by 3 different implants under axial and off-axial loading. A standard implant (3.75 mm diameter, 13 mm length), a mini implant (3 mm diameter, 13 mm length), and a short-wide implant (5.7 mm diameter, 8 mm length) were embedded in epoxy resin by the aid of a surveyor to ensure their parallelism. Each implant supported a full metal crown made of Ni-Cr alloy with standardized dimensions. Strain gauges and finite element analysis (FEA) were used to measure the strain induced under axial and off-axial functional loads of 300 N. Results showed that mini implants recorded the highest microstrains, under both axial and off-axial loading. All implants showed a considerable increase in strain values under off-axial loading. Standard and short-wide implants proved to be preferable in supporting crowns, as the standard implant showed the lowest strains under axial and off-axial loading using FEA simulation, while the short-wide implant showed the lowest strains under nonaxial loading using strain gauge analysis.

  12. BF{sub 3} PIII modeling: Implantation, amorphisation and diffusion

    SciTech Connect

    Essa, Z.; Cristiano, F.; Spiegel, Y.; Boulenc, P.; Qiu, Y.; Quillec, M.; Taleb, N.; Burenkov, A.; Hackenberg, M.; Bedel-Pereira, E.; Mortet, V.; Torregrosa, Frank; Tavernier, C.

    2012-11-06

    In the race for highly doped ultra-shallow junctions (USJs) in complementary metal oxide semi-conductor (CMOS) technologies, plasma immersion ion implantation (PIII) is a promising alternative to traditional beamline implantation. Currently, no commercial technology computer aided design (TCAD) process simulator allows modeling the complete USJ fabrication process by PIII, including as-implanted dopant profiles, damage formation, dopant diffusion and activation. In this work, a full simulation of a p-type BF{sub 3} PIII USJ has been carried out. In order to investigate the various physical phenomena mentioned above, process conditions included a high energy/high dose case (10 kV, 5 Multiplication-Sign 10{sup 15} cm{sup -2}), specifically designed to increase damage formation, as well as more technology relevant implant conditions (0.5 kV) for comparison. All implanted samples were annealed at different temperatures and times. As implanted profiles for both boron and fluorine in BF{sub 3} implants were modeled and compared to Secondary Ion Mass Spectrometry (SIMS) measurements. Amorphous/crystalline (a/c) interface depths were measured by transmission electron microscopy (TEM) and successfully simulated. Diffused profiles simulations agreed with SIMS data at low thermal budgets. A boron peak behind the a/c interface was observed in all annealed SIMS profiles for the 10 kV case, indicating boron trapping from EOR defects in this region even after high thermal budgets. TEM measurements on the annealed samples showed an end of range (EOR) defects survival behind the a/c interface, including large dislocation loops (DLs) lying on (001) plane parallel to the surface. In the last part of this work, activation simulations were compared to Hall measurements and confirmed the need to develop a (001) large BICs model.

  13. Printed Multi-Turn Loop Antenna for RF Bio-Telemetry

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Hall, David G.; Miranda, Felix A.

    2004-01-01

    In this paper, a novel printed multi-turn loop antenna for contact-less powering and RF telemetry from implantable bio- MEMS sensors at a design frequency of 300 MHz is demonstrated. In addition, computed values of input reactance, radiation resistance, skin effect resistance, and radiation efficiency for the printed multi-turn loop antenna are presented. The computed input reactance is compared with the measured values and shown to be in fair agreement. The computed radiation efficiency at the design frequency is about 24 percent.

  14. Locators versus magnetic attachment effect on peri-implant tissue health of immediate loaded two implants retaining a mandibular overdenture: a 1-year randomised trial.

    PubMed

    Elsyad, M A; Mahanna, F F; Elshahat, M A; Elshoukouki, A H

    2016-04-01

    This study aimed to evaluate peri-implant tissue health of immediate loaded two implants retaining a mandibular overdenture with either magnetic or locator attachment. Thirty two completely edentulous patients (20 males/12 females) were randomly assigned into two groups. Each patient received two implants in the canine area of the mandible using flapless surgical technique. Mandibular overdentures were immediately connected to the implants with either magnetic (group I, GI) or locator (group II, GII) attachments. Peri-implant tissue health was evaluated clinically in terms of plaque scores (PI), bleeding scores (BI), probing depth (PD), implant stability (ISQ) and interleukin-1-β (IL-1b) concentrations in peri-implant sulcular fluid. PI, BI and PD were measured at mesial, distal, buccal and lingual surfaces of each implant. Radiographic evaluation was performed in terms of vertical (VBL) and horizontal (HBLO) alveolar bone loss. Evaluations were performed 2 weeks (T0), 6 months (T1) and 12 months (T2) after overdenture insertion. Plague scores, PD, IL-1b, VBL and HBLO increased significantly with time. ISQ decreased significantly with time. BI showed no significant differences between observation times. GI recorded significant higher PI, ISQ and IL-1b at T2 compared to GII. GII recorded significant higher VBL than GI at T2 only. For HBLO, no significant differences between groups were noted. VBL and HBLO showed a significant positive correlation with PD. Locator attachments for immediate loaded implants retaining mandibular overdentures are associated with decreased plaque accumulation, decreased implant stability, decreased interleukin-1β concentration in peri-implant crevicular fluid and increased per-implant vertical bone loss compared to magnetic attachments after 1 year.

  15. Wrong detection of ventricular fibrillation in an implantable cardioverter defibrillator caused by the movement near the MRI scanner bore.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Mancini, Matteo; Napolitano, Antonio; Genovese, Elisabetta; Cannata, Vittorio; Falsaperla, Rosaria; Calcagnini, Giovanni

    2015-01-01

    The static magnetic field generated by MRI systems is highly non-homogenous and rapidly decreases when moving away from the bore of the scanner. Consequently, the movement around the MRI scanner is equivalent to an exposure to a time-varying magnetic field at very low frequency (few Hz). For patients with an implanted cardiac stimulators, such as an implantable cardioverter/defibrillator (ICD), the movements inside the MRI environment may thus induce voltages on the loop formed by the leads of the device, with the potential to affect the behavior of the stimulator. In particular, the ICD's detection algorithms may be affected by the induced voltage and may cause inappropriate sensing, arrhythmia detections, and eventually inappropriate ICD therapy.We performed in-vitro measurements on a saline-filled humanshaped phantom (male, 170 cm height), equipped with an MRconditional ICD able to transmit in real-time the detected cardiac activity (electrograms). A biventricular implant was reproduced and the ICD was programmed in standard operating conditions, but with the shock delivery disabled. The electrograms recorded in the atrial, left and right ventricle channels were monitored during rotational movements along the vertical axis, in close proximity of the bore. The phantom was also equipped with an accelerometer and a magnetic field probe to measure the angular velocity and the magnetic field variation during the experiment. Pacing inhibition, inappropriate detection of tachyarrhythmias and of ventricular fibrillation were observed. Pacing inhibition began at an angular velocity of about 7 rad/s, (dB/dt of about 2 T/s). Inappropriate detection of ventricular fibrillation occurred at about 8 rad/s (dB/dt of about 3 T/s). These findings highlight the need for a specific risk assessment of workers with MR-conditional ICDs, which takes into account also effects that are generally not considered relevant for patients, such as the movement around the scanner bore. PMID

  16. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  17. Elementary Implantable Force Sensor

    PubMed Central

    Wachs, Rebecca A.; Ellstein, David; Drazan, John; Healey, Colleen P.; Uhl, Richard L.; Connor, Kenneth A.

    2014-01-01

    Implementing implantable sensors which are robust enough to maintain long term functionality inside the body remains a significant challenge. The ideal implantable sensing system is one which is simple and robust; free from batteries, telemetry, and complex electronics. We have developed an elementary implantable sensor for orthopaedic smart implants. The sensor requires no telemetry and no batteries to communicate wirelessly. It has no on-board signal conditioning electronics. The sensor itself has no electrical connections and thus does not require a hermetic package. The sensor is an elementary L-C resonator which can function as a simple force transducer by using a solid dielectric material of known stiffness between two parallel Archimedean coils. The operating characteristics of the sensors are predicted using a simplified, lumped circuit model. We have demonstrated sensor functionality both in air and in saline. Our preliminary data indicate that the sensor can be reasonably well modeled as a lumped circuit to predict its response to loading. PMID:24883335

  18. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  19. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.; Ericson, Milton Nance; Baba, Justin S.; Wilgen, John B.; Evans, Boyd Mccutchen

    2016-05-10

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  20. Ion implantation in polymers

    NASA Astrophysics Data System (ADS)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  1. Peritoneal trophoblastic implant.

    PubMed

    Rachagan, S P; Kutty, K; Govindan, K S

    1997-09-01

    A case of persistent trophoblastic tissue on the pelvic peritoneum is presented. While most cases are secondary to conservative surgery for tubal ectopic pregnancy, primary implantation can also occur as highlighted by this case. A brief pathophysiology of the condition is presented. The importance of monitoring the serum for beta subunit human chorionic gonadotrophin (HCG) is emphasised.

  2. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  3. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  4. Implantable electrical device

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D. (Inventor)

    1982-01-01

    A fully implantable and self contained device is disclosed composed of a flexible electrode array for surrounding damaged nerves and a signal generator for driving the electrode array with periodic electrical impulses of nanoampere magnitude to induce regeneration of the damaged nerves.

  5. Implantable Impedance Plethysmography

    PubMed Central

    Theodor, Michael; Ruh, Dominic; Ocker, Martin; Spether, Dominik; Förster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    We demonstrate by theory, as well as by ex vivo and in vivo measurements that impedance plethysmography, applied extravascularly directly on large arteries, is a viable method for monitoring various cardiovascular parameters, such as blood pressure, with high accuracy. The sensor is designed as an implant to monitor cardiac events and arteriosclerotic progression over the long term. PMID:25123467

  6. Recent Advances in Continuous Glucose Monitoring: Biocompatibility of Glucose Sensors for Implantation in Subcutis

    PubMed Central

    Kvist, Peter H.; Jensen, Henrik E.

    2007-01-01

    Tight glycemic control slows or prevents the development of short- and long-term complications of diabetes mellitus. Continuous glucose measurements provide improved glycemic control and potentially prevent these diabetic complications. Glucose sensors, especially implantable devices, offer an alternative to classical self-monitored blood glucose levels and have shown promising glucose-sensing properties. However, the ultimate goal of implementing the glucose sensor as the glucose-sensing part of a closed loop system (artificial pancreas) is still years ahead because of malfunctions of the implanted sensor. The malfunction is partly a consequence of the subcutaneous inflammatory reaction caused by the implanted sensor. In order to improve sensor measurements and thereby close the loop, it is crucial to understand what happens at the tissue-sensor interface. PMID:19885143

  7. The reverse zygomatic implant: a new implant for maxillofacial reconstruction.

    PubMed

    Dawood, Andrew; Collier, Jonathan; Darwood, Alastair; Tanner, Susan

    2015-01-01

    This case report describes the rehabilitation of a patient who had been treated with a hemimaxillectomy, reconstruction with a latissimus dorsi vascularized free flap, and radiotherapy for carcinoma of the sinus some years previously. Limited jaw opening, difficult access through the flap to the bony site, and the very small amount of bone available in which to anchor the implant inspired the development and use of a new "reverse zygomatic" implant. For this treatment, site preparation and implant insertion were accomplished using an extraoral approach. The implant was used along with two other conventional zygomatic implants to provide support for a milled titanium bar and overdenture to rehabilitate the maxilla. Two years later, the patient continues to enjoy a healthy reconstruction. The reverse zygomatic implant appears to show promise as a useful addition to the implant armamentarium for the treatment of the patient undergoing maxillectomy. PMID:26574864

  8. Stress analysis in oral obturator prostheses over parallel and tilted implants: photoelastic imaging.

    PubMed

    Pesqueira, Aldiéris Alves; Goiato, Marcelo Coelho; dos Santos, Daniela Micheline; Nobrega, Adhara Smith; Haddad, Marcela Filié; Andreotti, Agda Marobo; Moreno, Amália

    2013-10-01

    This study aimed to evaluate the stress distribution through the photoelastic method in implant-retained palatal obturators prostheses. Two photoelastic models with bucco-sinusal communication were fabricated, one model without implants and another with two parallel implants and one tilted in the molar region. A conventional obturator prosthesis and five implant-retained obturators dentures with different attachment systems were fabricated: OR, three individualized O-rings; BC, bar clip; BOC, implants splinted by bars associated with two O-rings positioned at the center of the bar; OD, implants splinted by bars associated with two O-rings positioned in distal cantilever; and BOD, implants splinted by bars with clips associated with two O-rings positioned in distal cantilever. Each assembly (model/attachment system/prosthesis) was positioned in a circular polariscope and a load of 100 N was applied on each implant. The results were obtained by observing the photographic record of the tensions in the photoelastic models resulting from the application of load. It can be observed that a larger amount of stress fringes on BC system. It was concluded that the attachment system has a direct influence on the stress distribution of implant-retained obturator prostheses, with the three individualized O-rings exhibiting the lowest stress values, and tilted implants presented a biomechanical behavior similar to parallel implants. PMID:24129983

  9. Kalman Orbit Optimized Loop Tracking

    NASA Technical Reports Server (NTRS)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  10. Study of the Open Loop and Closed Loop Oscillator Techniques

    SciTech Connect

    Imel, George R.; Baker, Benjamin; Riley, Tony; Langbehn, Adam; Aryal, Harishchandra; Benzerga, M. Lamine

    2015-04-11

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign to measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.

  11. Anomalous shape of magnetic loops in the Rayleigh region

    NASA Astrophysics Data System (ADS)

    Seeck, St.; Lambeck, M.

    1995-11-01

    According to its congruency property, the Preisach model demands an equivalent shape of magnetic minor loops, the so-called Rayleigh loops. We measured these loops with an inductive setup and noticed a different anomalous shape of Rayleigh loops which depends on the magnetic history. Special materials (particularly recording media) show a concave-convex shape in contrast to the normal biconvex shape. This anomalous shape can be explained by combining the Preisach model with the Stoner-Wohlfarth model. It follows from this explanation that the degree of the anomaly depends on the material, especially in how far it fulfills the conditions of the Stoner-Wohlfarth model. The experiments show the effect that is expected according to the material. In this way the measurement of the anomalous Rayleigh loops can be used as a new method to test the Stoner-Wohlfarth properties of a material. This is more effective than using the Henkel plot [G. Bertotti and V. Basso, J. Appl. Phys. 73, 5827 (1993)].

  12. Medicolegal implications of dental implant therapy.

    PubMed

    Rees, Jonathan

    2013-04-01

    Despite the recent economic downturn, the dental implant market continues to grow year on year. Many more dentists are involved in the placement restoration of dental implants and dental implants are being placed in an extended range of clinical scenarios. Dental implant therapy remains a high risk area for the inexperienced interns of civil negligence claims and General Dental Council hearings. Risk can be mitigated by:• Ensuring appropriate indemnity • Complying with the published requirements for training • Maintaining detailed and extensive clinical records • Completing the initial phases of history, examination and investigations robustly • Recording a diagnosis • Providing a bespoke written treatment plan that includes details of the need for treatment, the treatment options (the risks and benefits), the phases of treatment, the costs of treatment,the expected normal sequelae of surgery, the risks and complications of implant therapy and the requirement for future maintenance. The provision of treatment that is different in nature or extent to that agreed can result in a breach of contract as well as a claim for negligence • Engaging sufficiently with the patient to obtain consent • Providing written postoperative instructions detailing emergency arrangements, patients who are anxious or in pain may not retain oral information • Making a frank disclosure of complication or collateral damage • Considering referral at an early stage particularly if reparative surgery is required. The stress of complications or failure may impair a dentist's normally sound judgement; there may be financial pressure, or concerns regarding reputation. In some cases, dentists avoid making a frank disclosure, feel obliged to undertake complicated reparative surgery, fail to make a timely referral, fail to respond appropriately to patient's concerns and in some cases attempt to alter the clinical records.However, in the best of hands and without negligence

  13. As + and Ga + implantation and the formation of buried GaAs layers in silicon

    NASA Astrophysics Data System (ADS)

    Madakson, Peter; Ganin, Eti; Karasinski, J.

    1990-05-01

    A buried layer of GaAs was formed in single-crystal silicon by dual implantation of extremely high doses of As+ plus Ga+ at 200 keV, followed by furnace annealing. The layer consists of polycrystalline grains with random orientation. Rapid thermal annealing, in the presence of oxygen, does not result in the formation of GaAs. Instead, Ga and As migrate to the surface to form an oxidized layer, which is separated from the underlying silicon by a thin layer of SiO2. Analysis of the samples with single implants of Ga+ or As+ indicates the oxides formed to be Ga2O3 and As2O2. Samples implanted with As+ alone have essentially dislocation loops after annealing, while those implanted with only Ga+ have mostly microtwins and precipitates. Up to 88% Ga and 62% As from the single implants and 31% As and Ga from the dual implants are lost during annealing. This is probably due to the migration of the implanted species to the surface and the subsequent formation of volatile oxides. However, such outward migration does not result in redistribution or broadening of the implanted species.

  14. Chronic, multisite, multielectrode recordings in macaque monkeys

    NASA Astrophysics Data System (ADS)

    Nicolelis, Miguel A. L.; Dimitrov, Dragan; Carmena, Jose M.; Crist, Roy; Lehew, Gary; Kralik, Jerald D.; Wise, Steven P.

    2003-09-01

    A paradigm is described for recording the activity of single cortical neurons from awake, behaving macaque monkeys. Its unique features include high-density microwire arrays and multichannel instrumentation. Three adult rhesus monkeys received microwire array implants, totaling 96-704 microwires per subject, in up to five cortical areas, sometimes bilaterally. Recordings 3-4 weeks after implantation yielded 421 single neurons with a mean peak-to-peak voltage of 115 ± 3 μV and a signal-to-noise ratio of better than 5:1. As many as 247 cortical neurons were recorded in one session, and at least 58 neurons were isolated from one subject 18 months after implantation. This method should benefit neurophysiological investigation of learning, perception, and sensorimotor integration in primates and the development of neuroprosthetic devices.

  15. Waves in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Wang, T. J.

    2016-02-01

    The corona is visible in the optical band only during a total solar eclipse or with a coronagraph. Coronal loops are believed to be plasma-filled closed magnetic flux anchored in the photosphere. Based on the temperature regime, they are generally classified into cool, warm, and hot loops. The magnetized coronal structures support propagation of various types of magnetohydrodynamics (MHD) waves. This chapter reviews the recent progress made in studies based on observations of four types of wave phenomena mainly occurring in coronal loops of active regions, including: flare-excited slow-mode waves; impulsively excited kink-mode waves; propagating slow magnetoacoustic waves; and ubiquitous propagating kink (Alfvénic) waves. This review not only comprehensively discusses these waves and coronal seismology but also topics that are newly emerging or hotly debated in order to provide the reader with useful guidance on further studies.

  16. Criteria for saturated magnetization loop

    NASA Astrophysics Data System (ADS)

    Harres, A.; Mikhov, M.; Skumryev, V.; Andrade, A. M. H. de; Schmidt, J. E.; Geshev, J.

    2016-03-01

    Proper estimation of magnetization curve parameters is vital in studying magnetic systems. In the present article, criteria for discrimination non-saturated (minor) from saturated (major) hysteresis loops are proposed. These employ the analysis of (i) derivatives of both ascending and descending branches of the loop, (ii) remanent magnetization curves, and (iii) thermomagnetic curves. Computational simulations are used in order to demonstrate their validity. Examples illustrating the applicability of these criteria to well-known real systems, namely Fe3O4 and Ni fine particles, are provided. We demonstrate that the anisotropy-field value estimated from a visual examination of an only apparently major hysteresis loop could be more than two times lower than the real one.

  17. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  18. Miniature implantable instrument measures and transmits heart function data

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1971-01-01

    Heart diameter is derived from measured transit time of 2.25 MHz ultrasonic pulse between two piezoelectric crystals attached to diametrically opposite heart surfaces. Miniature instrument implanted in chest telemeters information to external receiver-converter. System permits continual dimensional data recording taken from awake animals during long-term experiments.

  19. Production of Consonants by Prelinguistically Deaf Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Bouchard, Marie-Eve Gaul; Le Normand, Marie-Therese; Cohen, Henri

    2007-01-01

    Consonant production following the sensory restoration of audition was investigated in 22 prelinguistically deaf French children who received cochlear implants. Spontaneous speech productions were recorded at 6, 12, and 18 months post-surgery and consonant inventories were derived from both glossable and non-glossable phones using two acquisition…

  20. Many Ways to Loop DNA

    PubMed Central

    Griffith, Jack D.

    2013-01-01

    In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered. PMID:24005675

  1. Pediatric Cochlear Implantation: Why Do Children Receive Implants Late?

    PubMed Central

    Ham, Julia; Whittingham, JoAnne

    2015-01-01

    Objectives: Early cochlear implantation has been widely promoted for children who derive inadequate benefit from conventional acoustic amplification. Universal newborn hearing screening has led to earlier identification and intervention, including cochlear implantation in much of the world. The purpose of this study was to examine age and time to cochlear implantation and to understand the factors that affected late cochlear implantation in children who received cochlear implants. Design: In this population-based study, data were examined for all children who underwent cochlear implant surgery in one region of Canada from 2002 to 2013. Clinical characteristics were collected prospectively as part of a larger project examining outcomes from newborn hearing screening. For this study, audiologic details including age and severity of hearing loss at diagnosis, age at cochlear implant candidacy, and age at cochlear implantation were documented. Additional detailed medical chart information was extracted to identify the factors associated with late implantation for children who received cochlear implants more than 12 months after confirmation of hearing loss. Results: The median age of diagnosis of permanent hearing loss for 187 children was 12.6 (interquartile range: 5.5, 21.7) months, and the age of cochlear implantation over the 12-year period was highly variable with a median age of 36.2 (interquartile range: 21.4, 71.3) months. A total of 118 (63.1%) received their first implant more than 12 months after confirmation of hearing loss. Detailed analysis of clinical profiles for these 118 children revealed that late implantation could be accounted for primarily by progressive hearing loss (52.5%), complex medical conditions (16.9%), family indecision (9.3%), geographical location (5.9%), and other miscellaneous known (6.8%) and unknown factors (8.5%). Conclusions: This study confirms that despite the trend toward earlier implantation, a substantial number of children

  2. Piezosurgery in implant dentistry

    PubMed Central

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  3. Sterilisation of implantable devices.

    PubMed

    Matthews, I P; Gibson, C; Samuel, A H

    1994-01-01

    The pathogenesis and rates of infection associated with the use of a wide variety of implantable devices are described. The multi-factorial nature of post-operative periprosthetic infection is outlined and the role of sterilisation of devices is explained. The resistance of bacterial spores is highlighted as a problem and a full description is given of the processes of sterilisation by heat, steam, ethylene oxide, low temperature steam and formaldehyde, ionising radiation and liquid glutaraldehyde. Sterility assurance and validation are discussed in the context of biological indicators and physical/chemical indicators. Adverse effects upon the material composition of devices and problems of process control are listed. Finally, possible optimisations of the ethylene oxide process and their potential significance to the field of sterilisation of implants is explored. PMID:10172076

  4. Magnetic Recording.

    ERIC Educational Resources Information Center

    Lowman, Charles E.

    A guide to the technology of magnetic recorders used in such fields as audio recording, broadcast and closed-circuit television, instrumentation recording, and computer data systems is presented. Included are discussions of applications, advantages, and limitations of magnetic recording, its basic principles and theory of operation, and its…

  5. Implants for cranioplasty.

    PubMed

    Gladstone, H B; McDermott, M W; Cooke, D D

    1995-04-01

    As long as there have been skull defects, there has been a recognized need to cover them in some way. Cranioplasty is the surgical correction of skull defects. The two major purposes of performing a cranioplasty are to protect the brain and to provide reasonable cosmesis. The two physical requirements of the implant are strength and malleability. Originally, foreign materials such as precious metals were used. Autogenous bone grafts have also achieved successful results. Over the past quarter-century, the popularization of acrylics and radiolucent metals has favored them over bone because of their ease of use, the absence of need to harvest donor bone, and, particularly, bone's tendency to resorb or scar. Yet foreign materials can cause excessive inflammation, producing a synovial membrane at the interface between the host bone and cranioplasty construct, increasing the risk of infection. Currently, hydroxyapatite-based ceramics, which may induce bone growth into the implant, are increasingly being used. Future applications will include antibiotic-impregnated implants and computer-generated models to improve the precision of cranioplasty fit and cosmesis.

  6. [Neurotology and cochlear implants].

    PubMed

    Merchán, Miguel A

    2015-05-01

    In this review we analyse cochlear implantation in terms of the fundamental aspects of the functioning of the auditory system. Concepts concerning neuronal plasticity applied to electrical stimulation in perinatal and adult deep hypoacusis are reviewed, and the latest scientific bases that justify early implantation following screening for congenital deafness are discussed. Finally, this review aims to serve as an example of the importance of fostering the sub-specialty of neurotology in our milieu, with the aim of bridging some of the gaps between specialties and thus improving both the knowledge in the field of research on auditory pathologies and in the screening of patients. The objectives of this review, targeted above all towards specialists in the field of otorhinolaryngology, are to analyse some significant neurological foundations in order to reach a better understanding of the clinical events that condition the indications and the rehabilitation of patients with cochlear implants, as well as to use this means to foster the growth of the sub-specialty of neurotology.

  7. Implantable microwave radiators for clinical hyperthermia

    NASA Astrophysics Data System (ADS)

    Taylor, Leonard S.; Samaras, George M.; Cheung, Augustine Y.; Salcman, Michael; Scott, Ralph M.

    1982-01-01

    We describe the design of coaxial microwave radiators suitable for localized hyperthermia of neoplasia in the esophagus, brain, and other organs which are accessible through body orifices. These radiators can be implanted surgically and are small enough to be passed through such devices as nasogastric tubes and bronchoscopes. The radiators consist of combinations of cross-switched half-wavelength coaxial sections and/or needle antenna terminations. The performance of these radiators, as determined by thermogram recordings in tissue phantoms and the results of in vivo animal tests, is described.

  8. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.

    PubMed

    Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam

    2016-02-01

    A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm(2) active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx. PMID:25667358

  9. Multicenter study on breast reconstruction outcome using Becker implants.

    PubMed

    Scuderi, Nicolò; Alfano, Carmine; Campus, Gian Vittorio; Rubino, Corrado; Chiummariello, Stefano; Puddu, Antonella; Mazzocchi, Marco

    2011-02-01

    The use of tissue expanders and implants is the simplest option for breast reconstruction following mastectomy. In the 1980s, Hilton Becker introduced a round, inflatable breast implant that could be used as a permanent implant. Since then, the original implant has been improved in both design and architecture. The new Becker device consists of an anatomical implant composed of 35% cohesive silicone gel in the outer chamber and 65% normal saline in the inner chamber. This multicenter study describes our experience with the new anatomical Becker implants in a large series of patients, in both immediate and delayed breast reconstruction. We reviewed the clinical records of 204 patients who underwent a breast reconstruction with an anatomical Becker-type implant in the sub-muscular position between November 2004 and December 2006. Data on the patients' characteristics, indications for reconstruction, operative technique, device size used, complications, and need for further operations were collected and analyzed. A total of 248 breast reconstructions were performed in 204 patients. One hundred forty-three patients (70%) underwent an immediate reconstruction; in the remaining 61 cases (30%), the breast reconstruction was performed later. The patients' age ranged from 26 to 66 years, with a median age of 47.5 years. The implant was placed unilaterally in 160 women (78.5%) and bilaterally in the remaining 44 (21.5%). Complications occurred in 85 cases (34.2%), in both the immediate and delayed reconstruction groups, and were related to wound healing, bleeding, seroma, and problems with the inflatable expanders. Iatrogenic implant rupture was documented in one case (0.4%). Inflation was impossible in 7 cases (2.8%) as a result of valve obstruction (3 cases, 1.2%) and valve displacement (4 cases, 1.6%). Implant malposition was the most troublesome complication; indeed, 34 patients (13.7%) complained of device malposition. Capsular contracture was assessed in all the

  10. Auditory input modulates sleep: an intra-cochlear-implanted human model.

    PubMed

    Velluti, Ricardo A; Pedemonte, Marisa; Suárez, Hámlet; Bentancor, Claudia; Rodríguez-Servetti, Zulma

    2010-12-01

    To properly demonstrate the effect of auditory input on sleep of intra-cochlear-implanted patients, the following approach was developed. Four implanted deaf patients were recorded during four nights: two nights with the implant OFF, with no auditory input, and two nights with the implant ON, that is, with normal auditory input, being only the common night sounds present, without any additional auditory stimuli delivered. The sleep patterns of another five deaf people were used as controls, exhibiting normal sleep organization. Moreover, the four experimental patients with intra-cochlear devices and the implant OFF also showed normal sleep patterns. On comparison of the night recordings with the implant ON and OFF, a new sleep organization was observed for the recordings with the implant ON, suggesting that brain plasticity may produce changes in the sleep stage percentages while maintaining the ultradian rhythm. During sleep with the implant ON, the analysis of the electroencephalographic delta, theta and alpha bands in the frequency domain, using the Fast Fourier Transform, revealed a diversity of changes in the power originated in the contralateral cortical temporal region. Different power shifts were observed, perhaps related to the exact position of the implant inside the cochlea and the scalp electrode location. In conclusion, this pilot study shows that the auditory input in humans can introduce changes in central nervous system activity leading to shifts in sleep characteristics, as previously demonstrated in guinea pigs. We are postulating that an intra-cochlear-implanted deaf patient may have a better recovery if the implant is maintained ON during the night, that is, during sleep. PMID:20408927

  11. Neurobiochemical changes in the vicinity of a nanostructured neural implant

    PubMed Central

    Bérces, Zsófia; Tóth, Kinga; Márton, Gergely; Pál, Ildikó; Kováts-Megyesi, Bálint; Fekete, Zoltán; Ulbert, István; Pongrácz, Anita

    2016-01-01

    Neural interface technologies including recording and stimulation electrodes are currently in the early phase of clinical trials aiming to help patients with spinal cord injuries, degenerative disorders, strokes interrupting descending motor pathways, or limb amputations. Their lifetime is of key importance; however, it is limited by the foreign body response of the tissue causing the loss of neurons and a reactive astrogliosis around the implant surface. Improving the biocompatibility of implant surfaces, especially promoting neuronal attachment and regeneration is therefore essential. In our work, bioactive properties of implanted black polySi nanostructured surfaces (520–800 nm long nanopillars with a diameter of 150–200 nm) were investigated and compared to microstructured Si surfaces in eight-week-long in vivo experiments. Glial encapsulation and local neuronal cell loss were characterised using GFAP and NeuN immunostaining respectively, followed by systematic image analysis. Regarding the severity of gliosis, no significant difference was observed in the vicinity of the different implant surfaces, however, the number of surviving neurons close to the nanostructured surface was higher than that of the microstructured ones. Our results imply that the functionality of implanted microelectrodes covered by Si nanopillars may lead to improved long-term recordings. PMID:27775024

  12. P-type Gate Electrode Formation Using B18H22 Ion Implantation

    NASA Astrophysics Data System (ADS)

    Henke, Dietmar; Jakubowski, Frank; Deichler, Josef; Venezia, Vincent C.; Ameen, M. S.; Harris, M. A.

    2006-11-01

    We have investigated the use of octadecaborane (B18H22) cluster ion implantation to form highly active p-type gate electrodes in a 90 nm CMOS process. As device dimensions scale, the influence of poly-depletion and short channel effect control on device performance continues to become more significant. Increasing gate electrode doping via high dose ion implantation is a standard method for reducing poly-depletion. Poly-silicon gate doping with the molecular ion B18H22 offers throughput advantages over monatomic B ion implantation. For instance each molecular ion introduces 18-B atoms, thereby reducing the implant dose. In addition, each B constituent of the molecular ion is implanted with 1/20th the ion energy, making it possible to achieve low energy dopant distribution while taking advantage of higher beam energy currents. In this work, B18H22 implantation conditions (energy, dose) were matched to those of the standard B+ process of record (POR) used for gate electrode doping. We show that the poly-depletion, threshold voltage, and yield of devices implanted with B18H22 are comparable to those implanted with the POR. We combine this device results with materials data to demonstrate that the high dose implants necessary to form p-type gate electrodes with minimum poly-depletion can be achieved with B18H22 ion implants without impacting the device performance.

  13. Treatment of midfacial defects using prostheses supported by ITI dental implants.

    PubMed

    Scolozzi, Paolo; Jaques, Bertrand

    2004-11-01

    The purpose of this study was to evaluate retrospectively the use of ITI dental implants used for anchoring facial prostheses in the restorative treatment of midface defects. The authors analyzed the clinical data of 26 patients with orbital defects (n = 11), orbitonasal defects (n = 4), orbitonasomaxillary defects (n = 3), and nasal defects (n = 8). Data included age, sex, primary disease, implant position, implant length, implant failure, prosthetic attachment, radiation therapy, and peri-implant skin reactions. Follow-up was at 1, 3, 6, and 12 months and then on a yearly basis. The authors noted the status of healing and complications, if any. In total, 62 implants were placed as follows: 27 (43.5 percent) for orbital prostheses, 12 (19.4 percent) for orbitonasal prostheses, 14 (22.6 percent) for orbitonasomaxillary prostheses, and nine (14.5 percent) for nasal prostheses. Thirty-eight implants (61.3 percent) were placed in previously irradiated areas in 18 patients (69.2 percent). Mild skin reactions together with mild accumulation of sebaceous crusting around implants were recorded in 14.2 percent of the skin observations. No patient experienced severe inflammation requiring administration of systemic antibiotics or surgical revision. Implant success was 100 percent in both irradiated and nonirradiated patients. In conclusion, ITI dental implants result in a high rate of success in retaining midface prostheses and offer good stability and aesthetic satisfaction.

  14. Thermodynamic effects of laser irradiation of implants placed in bone: an in vitro study.

    PubMed

    Leja, Chris; Geminiani, Alessandro; Caton, Jack; Romanos, Georgios E

    2013-11-01

    Lasers have been proposed for various applications involving dental implants, including uncovering implants and treating peri-implantitis. However, the effect of laser irradiation on the implant surface temperature is only partially known. The aim of this pilot study was to determine the effect of irradiation with diode, carbon dioxide, and Er:YAG lasers on the surface temperature of dental implants placed in bone, in vitro. For this study, one dental implant was placed in a bovine rib. A trephine bur was used to create a circumferential defect to simulate peri-implantitis, and thermocouples were placed at the coronal and apical aspect of the implant. The implant was irradiated for 60 s using four different lasers independently and change in temperature as well as time to reach a 10 °C increase in temperature were recorded. There was wide variability in results among the lasers and settings. Time for a 10 °C increase ranged from 0.9 to over 60 s for the coronal thermocouple and from 18 to over 60 s for the apical thermocouple. Maximum temperature ranged from 5.9 to 70.9 °C coronally and from 1.4 to 23.4 °C apically. During laser irradiation of dental implants, a surface temperature increase beyond the "critical threshold" of 10 °C can be reached after only 18 s.

  15. Closed-Loop Neuromorphic Benchmarks.

    PubMed

    Stewart, Terrence C; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of "minimal" simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  16. Closing the Loop with Exercises

    ERIC Educational Resources Information Center

    Altizer, Andy

    2008-01-01

    Conducting exercises provides a critical bridge between the theory of an Emergency Action Plan and its effective implementation. When conducted properly, exercises can fill the gap between training and after-action review to close the preparedness loop--before an actual emergency occurs. Often exercises are planned and conducted on campus based on…

  17. Telomeres thrown for a loop.

    PubMed

    Haber, James E

    2004-11-19

    A remarkable paper from the de Lange lab (Wang et al., 2004) in a recent issue of Cell reveals that homologous recombination can result in the abrupt shortening of telomeres in a process that appears to involve reciprocal crossing over within the t-loop structure that protects chromosome ends.

  18. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  19. Implantable pulse oximetry on subcutaneous tissue.

    PubMed

    Theodor, Michael; Ruh, Dominic; Subramanian, Sivaraman; Forster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Plachta, Dennis; Manoli, Yiannos; Zappe, Hans; Seifert, Andreas

    2014-01-01

    Blood oxygen saturation is one of the most prominent measurement parameters in daily clinical routine. However up to now, it is not possible to continuously monitor this parameter reliably in mobile patients. High-risk patients suffering from cardiovascular diseases could benefit from long-term monitoring of blood oxygen saturation. In this paper, we present a minimally invasive, implantable patient monitor which is capable of monitoring vital signs. The capability of this multimodal sensor to subcutaneously determine blood pressure, pulse and ECG has been demonstrated earlier. This paper focuses on monitoring of blood oxygen saturation. Even though the signal amplitudes are much weaker than for standard extracorporeal measurements, photoplethysmographic signals were recorded with high quality in vivo directly on subcutaneous muscle tissue. For the first time, it has been shown that blood oxygen saturation can be measured with an implantable, but extravascular sensor. The sensor was implanted for two weeks in a sheep and did not cause any complications. This opens new perspectives for home monitoring of patients with cardiovascular diseases. PMID:25570396

  20. Strains around distally inclined implants retaining mandibular overdentures with Locator attachments: an in vitro study

    PubMed Central

    Setta, Fathi Abo; Khirallah, Ahmed Samir

    2016-01-01

    PURPOSE The aim of the present study was to evaluate, by means of strain gauge analysis, the effect of different implant angulations on strains around two implants retaining mandibular overdenture with Locator attachments. MATERIALS AND METHODS Four duplicate mandibular acrylic models were constructed. Two implants were inserted in the canine regions using the following degrees of distal inclinations: group I (control); 0°, group II; 10°, group III; 20°, and group IV; 30°. Locator pink attachments were used to connect the overdenture to the implants and Locator red (designed for severely angled implants) was used for group IV (group IVred). For each group, two linear strain gauges were attached at the mesial and distal surfaces of the acrylic resin around each implant. Peri-implant strain was measured on loading and non-loading sides during bilateral and unilateral loading. RESULTS For all groups, the mesial surfaces of the implants at loading and non-loading sides experienced compressive (negative) strains, while the distal implant surfaces showed tensile (positive) strains. Group IV showed the highest strain, followed by group III, group II. Both group I and group IVred showed the lowest strain. The strain gauges at the mesial surface of the loading side recorded the highest strain, and the distal surface at non-loading side showed the lowest strain. Unilateral loading recorded significantly higher strain than bilateral loading. CONCLUSION Peri-implant strains around two implants used to retain mandibular overdentures with Locator attachments increase as distal implant inclination increases, except when red nylon inserts were used. PMID:27141255

  1. Profile of cochlear implant users of the city of Manaus

    PubMed Central

    Pedrett, Mariana dos Santos; Moreira, Sandra Costa

    2012-01-01

    Summary Introduction: The cochlear implant is a device that is intended to substitute for the function of cochlear hair cells, electrically stimulate auditory nerve fibers, and contribute to the perception of speech sounds. However, the surgical procedure alone is not enough for the user to achieve favorable results in habilitation/rehabilitation. Objective: To characterize the patients from Manaus who have received cochlear implants based on the criteria for surgery. Methods: We conducted a retrospective cross-sectional study of 15 cases and recorded etiological aspects of deafness, age, gender, duration of implant use, use of hearing aids, and participation in individual therapy. Data were recorded in a protocol designed specifically for this purpose. All patients were natives of Manaus. Results: The leading etiological aspect was ototoxicity associated with prematurity in newborns undergoing treatment in the neonatal intensive care unit. The age at surgery is carefully observed in the evaluation of implant centers, as well as if the candidate is pre-or post-lingual. In this study, 73% of patients were pre-lingual and did not benefit from hearing aids. As to the degree and type of hearing loss, 93% had audiological reports indicating profound bilateral sensorineural hearing loss and 7% had severe bilateral sensorineural hearing loss. This latter finding confirmed one of the basic principles of implant placement. Conclusion: This study allowed us to verify that there are reduced number of cochlear implant recipients in Manaus, but they have met the criteria required by implant centers located in other states of Brazil. PMID:25991973

  2. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  3. [Professional occupation after cochlear implantation].

    PubMed

    Kós, Maria-Izabel; Degive, Colette; Boëx, Colette; Maire, Raphaël; Guyot, Jean-Philippe

    2006-10-01

    This study verifies whether cochlear implants helps deaf adults to maintain or develop their professional occupations. Sixty-seven patients received a questionnaire concerning their professional activities before and after implantation. At the time of implantation 34 were professionally active. After the implantation 29 remained active, 4 of them reporting positive developments in their careers. Five patients became inactive. The previously inactive patients remained inactive. There was no difference in auditory performances between professionally active or inactive patients. Cochlear implants enable most implanted adults to maintain and even progress in their professions. However, deafness still represents an obstacle to social integration as inactive patients who searched for a job were rejected after the job interviews. PMID:17076153

  4. An implantable pressure sensing system with electromechanical interrogation scheme.

    PubMed

    Kim, Albert; Powell, C R; Ziaie, Babak

    2014-07-01

    In this paper, we report on the development of an implantable pressure sensing system that is powered by mechanical vibrations in the audible acoustic frequency range. This technique significantly enhances interrogation range, alleviates the misalignment issues commonly encountered with inductive powering, and simplifies the external receiver circuitry. The interrogation scheme consists of two phases: a mechanical vibration phase and an electrical radiation phase. During the first phase, a piezoelectric cantilever acts as an acoustic receiver and charges a capacitor by converting sound vibration harmonics occurring at its resonant frequency into electrical power. In the subsequent electrical phase, when the cantilever is not vibrating, the stored electric charge is discharged across an LC tank whose inductor is pressure sensitive; hence, when the LC tank oscillates at its natural resonant frequency, it radiates a high-frequency signal that is detectable using an external receiver and its frequency corresponds to the measured pressure. The pressure sensitive inductor consists of a planar coil (single loop of wire) with a ferrite core whose distance to the coil varies with applied pressure. A prototype of the implantable pressure sensor is fabricated and tested, both in vitro and in vivo (swine bladder). A pressure sensitivity of 1 kHz/cm H2O is achieved with minimal misalignment sensitivity (26% drop at 90° misalignment between the implanted device and acoustic source; 60% drop at 90° misalignment between the implanted device and RF receiver coil).

  5. Microstructure of Cs-implanted zirconia: Role of temperature

    SciTech Connect

    Vincent, L.; Thome, L.; Garrido, F.; Kaitasov, O.; Houdelier, F.

    2008-12-01

    The aim of this study was to identify experimentally the phase which includes cesium in yttria stabilized zirconia (YSZ). The solubility and retention of cesium in YSZ were studied at high temperature (HT). Cesium was ion implanted (at 300 keV) into YSZ at room temperature (RT), 750 deg. C, or 900 deg. C at fluences up to 5x10{sup 16} cm{sup -2}. The temperature dependence of the radiation-induced damage and of the cesium distribution in YSZ single crystals was investigated by Rutherford backscattering spectrometry and ion channeling. Transmission electron microscopy (TEM) studies were performed in order to determine the damage nature and search for a predicted ternary phase of cesium zirconate. Whatever the implantation temperature, the thickness of the damaged layer increases inwards with ion fluence. At RT, amorphization occurs, caused by the high Cs concentration (7 at. %). In situ TEM during postannealing shows recrystallization of cubic zirconia after release of cesium. A high implantation temperature has a significant influence on the nature of radiation defects and on the retained Cs concentration. At HT, dislocation loops and voids are formed but no amorphization is observed whereas polygonization occurs at high fluence. The implanted cesium concentration reaches a saturation value of 1.5 at. % above which Cs can no longer be retained in the matrix and is then released at the surface. At that concentration, cesium forms a solid solution in YSZ; no other phase is formed, neither during irradiation nor after thermal annealing.

  6. Electromagnetic interference produced by a hearing aid device on electrocardiogram recording.

    PubMed

    Baranchuk, Adrian Marco; Kang, Jaskaran; Shaw, Cathy; Witjes, Rita

    2008-01-01

    An 85-year-old male was implanted with a single-chamber permanent pacemaker because of atrial fibrillation with slow ventricular response. The patient had a chronic hearing impairment and decided to buy a hearing aid device. The MyLink device (MyLink, Phonak, Stafa, Switzerland) is a multifrequency FM transmitter/receiver (169.40-176.00 MHz and 214.00-220.00 MHz) with a neck-loop antenna that is designed to be used in combination with a second FM transmitter, which detects sound, produced by an audio source or person, and transmits this information to the MyLink wearer. These transmissions are subsequently converted by the MyLink and sent to the patient's existing hearing aids wirelessly. Given the proximity of the receiver to the left-sided pacemaker pocket, a concern about possible interaction was brought to our attention. Normal functioning of the pacemaker was observed during the test. However, potent electromagnetic interference on electrocardiogram (ECG) recording was induced when the MyLink loop antenna was placed on top or near the ECG electrodes.

  7. Noise from implantable Cooper cable.

    PubMed

    Carrington, V; Zhou, L; Donaldson, N

    2005-09-01

    Cooper cable is made for implanted devices, usually for connection to stimulating electrodes. An experiment has been performed to see whether these cables would be satisfactory for recording electroneurogram (ENG) signals from cuffs. Four cables were subjected to continuous flexion at 2 Hz while submerged in saline. The cables were connected to a low-noise amplifier, and the noise was measured using a spectrum analyser. These cables had not fractured after 184 million flexions, and the noise in the neural band (500-5000 Hz) had not increased owing to age. Noise in the ENG band increased by less than 3 dB owing to the motion. A fifth, worn cable did fail during the experiment, the conductors becoming exposed to the saline, but this was only apparent by extra noise when the cable was in motion. After 184 million flexions, the four cables were given a more severe test: instead of being connected to the amplifier reference node, two of the four cores of each cable were connected to 18V batteries. Two of the cables were then noisier, but only when in motion, presumably because of leakage between cores. Cooper cables are excellent for transmitting neural signals alone; transmission in one cable of neural signals and power supplies should be avoided if possible. PMID:16411634

  8. The Evolution of Breast Implants.

    PubMed

    Gabriel, Allen; Maxwell, G Patrick

    2015-10-01

    Breast augmentation remains one of the most common procedures performed in the United States. However, shape, feel, safety, and longevity of the implants remain important areas of research. The data provided by manufacturers show the safety and efficacy of these medical devices. Clinicians should strive to provide ongoing data and sound science to continue to improve clinical outcomes in the future. This article explores the evolution of breast implants with special emphasis on the advancement of silicone implants.

  9. A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2009-01-01

    This paper presents a standalone closed loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (MLX90121) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop fashion. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either malfunction or excessive heat dissipation. RFID transceivers are often used open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 1.48 mW over a range of 6 to 12 cm, while the transmitter power consumption changed from 0.3 W to 1.21 W. The closed loop system can also oppose voltage variations as a result of sudden changes in load current. PMID:19963595

  10. An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2010-04-01

    This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current. PMID:21179391

  11. Strain development of screw-retained implant-supported fixed restorations: procera implant bridge versus conventionally cast restorations.

    PubMed

    Karl, Matthais; Holst, Stefan

    2012-01-01

    The aim of this study was to quantify the strain development of screw-retained three-unit implant-supported Procera Implant Bridge restorations. Two groups of screw-retained implant-supported restorations (n = 10) were fabricated by means of casting or computer-aided design/computer-assisted manufacture (CAD/CAM) to fit an in vitro cast situation with two implants. During fixation of the restorations, the emerging strains were recorded using strain gauges attached to the cast material mesially and distally adjacent to the implants. Absolute mean strain development ranged from 29.35 Μm/m to 2,665.80 Μm/m at the different strain gauge locations. Fabrication method had a significant effect on strain development (multivariate analysis of variance, P = .000), with the cast restorations showing significantly higher strain levels compared to the CAD/CAM-fabricated superstructures. CAD/CAM fabrication of screw-retained implant-supported restorations provides greater passivity of fit compared to conventional fabrication methods such as casting.

  12. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems.

    PubMed

    Wright, James; Macefield, Vaughan G; van Schaik, André; Tapson, Jonathan C

    2016-01-01

    It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202

  13. A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems

    PubMed Central

    Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.

    2016-01-01

    It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202

  14. Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief.

    PubMed

    Parker, John L; Karantonis, Dean M; Single, Peter S; Obradovic, Milan; Cousins, Michael J

    2012-03-01

    Electrical stimulation of the spinal cord provides effective pain relief to hundreds of thousands of chronic neuropathic pain sufferers. The therapy involves implantation of an electrode array into the epidural space of the subject and then stimulation of the dorsal column with electrical pulses. The stimulation depolarises axons and generates propagating action potentials that interfere with the perception of pain. Despite the long-term clinical experience with spinal cord stimulation, the mechanism of action is not understood, and no direct evidence of the properties of neurons being stimulated has been presented. Here we report novel measurements of evoked compound action potentials from the spinal cords of patients undergoing stimulation for pain relief. The results reveal that Aβ sensory nerve fibres are recruited at therapeutic stimulation levels and the Aβ potential amplitude correlates with the degree of coverage of the painful area. Aβ-evoked responses are not measurable below a threshold stimulation level, and their amplitude increases with increasing stimulation current. At high currents, additional late responses are observed. Our results contribute towards efforts to define the mechanism of spinal cord stimulation. The minimally invasive recording technique we have developed provides data previously obtained only through microelectrode techniques in spinal cords of animals. Our observations also allow the development of systems that use neuronal recording in a feedback loop to control neurostimulation on a continuous basis and deliver more effective pain relief. This is one of numerous benefits that in vivo electrophysiological recording can bring to a broad range of neuromodulation therapies. PMID:22188868

  15. Implant biomaterials: A comprehensive review

    PubMed Central

    Saini, Monika; Singh, Yashpal; Arora, Pooja; Arora, Vipin; Jain, Krati

    2015-01-01

    Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about the different biomaterials used for the dental implants. This article makes an effort to summarize various dental bio-materials which were used in the past and as well as the latest material used now. PMID:25610850

  16. Professional occupation after cochlear implantation.

    PubMed

    Kos, M-I; Degive, C; Boex, C; Guyot, J-P

    2007-03-01

    The aims of this study were to verify whether cochlear implants helped profoundly deaf adults to maintain or even to develop their professional occupations, and to identify other elements that may contribute to or, on the contrary, impede such patients' professional success. All adult patients received a questionnaire concerning their professional activities before and after implantation. Demographic data, health information, hearing performance and degree of satisfaction with the implant were also considered. Sixty-seven adults had been implanted, with three different devices, since 1985. At the time of implantation, 34 had been professionally active. After implantation, 29 had remained professionally active, four of whom reported positive developments in their careers. Five patients had become professionally inactive. Those patients who had previously been professionally inactive remained so. There had been no difference in performance, either between different types of cochlear implants or between professionally active or inactive patients. The implanted patients had kept their jobs and many of them had developed their professional skills. In spite of this, cochlear implants may still be perceived as proving insufficiently satisfactory hearing to enable professionally inactive patients to reintegrate and to facilitate further learning or career developments. PMID:17052367

  17. Comparative Evaluation of Two Types of Immediately Loaded Implants Using Biomechanical and Histomorphometric Tests: An Animal Case Study

    PubMed Central

    Rismanchian, Mansour; Movahedian, Bijan; Khalighinejad, Navid; Badrian, Hamid; Mohammad Razavi, Sayed; Nekouie, Afsaneh

    2012-01-01

    Introduction. In order to minimize the required time to regain esthetic and function, immediately loaded implants were suggested. The aim of this study was to comparatively evaluate the Nisastan and XIve implants using biomechanical and histomorphometric tests. Materials and Methods. In this experimental study, 6 Nisastan one-piece immediately loaded screw type implant (OPILS) and 6 Xive implants with 3.4 mm diameter and 11 mm long were used. The implants were immediately loaded with temporary coating. After three months, the torque required to break bone-implant contact was measured and was recorded. All implants were extracted with surrounding bone and histologically were evaluated. The data were inputted into the SPSS 11.5 to run student T-test statistical analyses (α = 0.05). Results. The success rates of both types of implants was 100%, and none of them failed due to mobility or bone loss. The mean removal torque value (RTV) was 142.08 and 40 N/Cm for Xive and Nisastan implants, respectively, and their RTVs showed a significant difference between two mentioned implants (P = 0.004). None of the histomorphometric values showed significant differences between the two implants (P > 0.05). Discussion. both systems have the capability to induce osseointegration under immediate loads but that Xive implants showed higher capability for bone contact. PMID:22852091

  18. Loop quantum cosmology from quantum reduced loop gravity

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Cianfrani, Francesco

    2015-08-01

    We show how loop quantum cosmology can be derived as an effective semiclassical description of loop quantum gravity. Using the tools of QRLG, a gauge fixed version of LQG, we take the coherent states of the fundamental microscopic theory suitable to describe a Bianchi I Universe and we find a mapping between the expectation value of the Hamiltonian and the dynamics of LQC. Our results are in agreement with a lattice refinement framework for LQC, thus the so-called “old” and “improved-dynamics” regularization schemes can be reproduced. These amount to different choices of relations between local variables and the smeared ones entering the definition of the coherent states. The leading order of the fundamental theory corresponds to LQC, but we also find different inverse volume corrections, that depend on a purely quantum observable, namely the number of nodes of the states.

  19. Implantable optical-electrode device for stimulation of spinal motoneurons

    NASA Astrophysics Data System (ADS)

    Matveev, M. V.; Erofeev, A. I.; Zakharova, O. A.; Pyatyshev, E. N.; Kazakin, A. N.; Vlasova, O. L.

    2016-08-01

    Recent years, optogenetic method of scientific research has proved its effectiveness in the nerve cell stimulation tasks. In our article we demonstrate an implanted device for the spinal optogenetic motoneurons activation. This work is carried out in the Laboratory of Molecular Neurodegeneration of the Peter the Great St. Petersburg Polytechnic University, together with Nano and Microsystem Technology Laboratory. The work of the developed device is based on the principle of combining fiber optic light stimulation of genetically modified cells with the microelectrode multichannel recording of neurons biopotentials. The paper presents a part of the electrode implant manufacturing technique, combined with the optical waveguide of ThorLabs (USA).

  20. An implant-transfer technique without impression material.

    PubMed

    Assunção, Wirley Gonçalves; Gomes, Erica Alves; Aparecida Delben, Juliana; dos-Santos, Paulo Henrique; Ricardo Barão, Valentim Adelino; Tabata, Lucas Fernando

    2010-07-01

    Different transfer impression techniques for implant-supported prostheses have been suggested to obtain a working cast. This article describes and illustrates clinical and laboratory prosthodontic procedures to transfer implant positions with splinted transfer copings and without impression material to form a laboratory analog transfer template. With this technique, a preliminary cast is modified to place the analogs according to a corrected position and obtain the master cast. Although this technique does not record adjacent tissues, it is a simple procedure, less time consuming, and easily performed.

  1. Risk indicators related to peri-implant disease: an observational retrospective cohort study

    PubMed Central

    2016-01-01

    Purpose The aim of the present study was to retrospectively investigate the influence of potential risk indicators on the development of peri-implant disease. Methods Overall, 103 patients referred for implant treatment from 2000 to 2012 were randomly enrolled. The study sample consisted of 421 conventional-length (>6 mm) non-turned titanium implants that were evaluated clinically and radiographically according to pre-established clinical and patient-related parameters by a single investigator. A non-parametric Mann-Whitney U test or Kruskal-Wallis rank test and a logistic regression model were used for the statistical analysis of the recorded data at the implant level. Results The diagnosis of peri-implant mucositis and peri-implantitis was made for 173 (41.1%) and 19 (4.5%) implants, respectively. Age (≥65 years), patient adherence (professional hygiene recalls <2/year) and the presence of plaque were associated with higher peri-implant probing-depth values and bleeding-on-probing scores. The logistic regression analysis indicated that age (P=0.001), patient adherence (P=0.03), the absence of keratinized tissue (P=0.03), implants placed in pristine bone (P=0.04), and the presence of peri-implant soft-tissue recession (P=0.000) were strongly associated with the event of peri-implantitis. Conclusions Within the limitations of this study, patients aged ≥65 years and non-adherent subjects were more prone to develop peri-implant disease. Therefore, early diagnosis and a systematic maintenance-care program are essential for maintaining peri-implant tissue health, especially in older patients. PMID:27588216

  2. Comprehensive characterization of tungsten microwires in chronic neurocortical implants.

    PubMed

    Prasad, Abhishek; Xue, Qing-Shan; Sankar, Viswanath; Nishida, Toshikazu; Shaw, Gerry; Streit, Wolfgang; Sanchez, Justin C

    2012-01-01

    The long-term performance of chronic microelectrode array implants for neural ensemble recording is affected by temporal degradation in signal quality due to several factors including structural changes in the recording surface, electrical responses, and tissue immune reactivity. This study combines the information available from the temporal aggregation of both biotic and abiotic metrics to analyze and quantify the combined effects on long-term performance. Study of a 42-day implant showed there was a functional relationship between the measured impedance and the array neuronal yield. This was correlated with structural changes in the recording sites, microglial activation/degeneration, and elevation of a blood biochemical marker for axonal injury. We seek to elucidate the mechanisms of chronic microelectrode array failure through the study of the combined effects of these biotic and abiotic factors. PMID:23366002

  3. Evolution in a Braided Loop Ensemble

    NASA Video Gallery

    This braided loop has several loops near the 'base' that appear to be unwinding with significant apparent outflow. This is evidence of untwisting, and the braided structure also seeming to unwind w...

  4. Noise Performance Of A Digital Tanlock Loop

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Pomalaza-Raez, C. A.

    1988-01-01

    Slight improvement over sinusoidal phase-lock loop achieved. Report discusses theoretical studies and numerical simulations of performance of digital tangent phase-lock loop (DTL), in presence of noise.

  5. Implantable medical sensor system

    DOEpatents

    Darrow, Christopher B.; Satcher, Jr., Joe H.; Lane, Stephen M.; Lee, Abraham P.; Wang, Amy W.

    2001-01-01

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  6. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  7. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  8. Computer implants and death.

    PubMed

    Gert, Bernard

    2009-01-01

    Although a patient whose whole brain has ceased to function may have his heart, lungs, and other organs continue to function if they are connected to the appropriate machines, the patient is still dead and the machines can be disconnected. In the future, nanotechnology, or other technology, may allow putting implants in the brainstem that can keep a patient's heart, lungs and other organs functioning, even though the whole natural brain has ceased to function. It would be useful to consider how this technology might affect the criterion of death before it is actually available.

  9. Bone cement implantation syndrome.

    PubMed

    Razuin, R; Effat, O; Shahidan, M N; Shama, D V; Miswan, M F M

    2013-06-01

    Bone cement implantation syndrome (BCIS) is characterized by hypoxia, hypotension, cardiac arrhythmias, increased pulmonary vascular resistance and cardiac arrest. It is a known cause of morbidity and mortality in patients undergoing cemented orthopaedic surgeries. The rarity of the condition as well as absence of a proper definition has contributed to under-reporting of cases. We report a 59-year-old woman who sustained fracture of the neck of her left femur and underwent an elective hybrid total hip replacement surgery. She collapsed during surgery and was revived only to succumb to death twelve hours later. Post mortem findings showed multiorgan disseminated microembolization of bone marrow and amorphous cement material. PMID:23817399

  10. Fragmentation of cosmic-string loops

    NASA Technical Reports Server (NTRS)

    York, Thomas

    1989-01-01

    The fragmentation of cosmic string loops is discussed, and the results of a simulation of this process are presented. The simulation can evolve any of a large class of loops essentially exactly, including allowing fragments that collide to join together. Such reconnection enhances the production of small fragments, but not drastically. With or without reconnections, the fragmentation process produces a collection of nonself-intersecting loops whose typical length is on the order of the persistence length of the initial loop.

  11. Hard thermal loops in static external fields

    SciTech Connect

    Frenkel, J.; Takahashi, N.; Pereira, S. H.

    2009-04-15

    We examine, in the imaginary-time formalism, the high temperature behavior of n-point thermal loops in static Yang-Mills and gravitational fields. We show that in this regime, any hard thermal loop gives the same leading contribution as the one obtained by evaluating the loop integral at zero external energies and momenta.

  12. Implantable Ultralow Pulmonary Pressure Monitoring System for Fetal Surgery

    PubMed Central

    Etemadi, Mozziyar; Heller, J. Alex; Schecter, Samuel C.; Shue, Eveline H.; Miniati, Doug; Roy, Shuvo

    2015-01-01

    Congenital pulmonary hypoplasia is a devastating condition affecting fetal and newborn pulmonary physiology, resulting in great morbidity and mortality. The fetal lung develops in a fluid-filled environment. In this paper, we describe a novel, implantable pressure sensing and recording device which we use to study the pressures present in the fetal pulmonary tree throughout gestation. The system achieves 0.18 cm H2O resolution and can record for 21 days continuously at 256 Hz. Sample tracings of in vivo fetal lamb recordings are shown. PMID:22801521

  13. Microgyroscope with closed loop output

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)

    2002-01-01

    A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.

  14. The Statistical Loop Analyzer (SLA)

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.

    1985-01-01

    The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.

  15. Lock detection in Costas loops

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Hinedi, S.

    1992-01-01

    Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between samples of the phase error process. In this paper, both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the 'square law' and 'absolute value' type detectors. Results are obtained which depict the lock detection probability as a function of loop signal-to-noise ratio for a given false alarm rate. It is shown that the square law detector experiences less degradation due to phase jitter than the absolute value detector and that the degradation in detector signal-to-noise ratio is more pronounced for squarewave than for sinewave signals.

  16. Lock detection in Costas loops

    NASA Astrophysics Data System (ADS)

    Mileant, A.; Hinedi, S.

    1992-03-01

    Previous analyses of lock detector algorithms for Costas loops have ignored the effects of the inherent correlation between samples of the phase error process. In this paper, both analysis and simulations are used to quantify the effects of phase correlation on lock detection for the 'square law' and 'absolute value' type detectors. Results are obtained which depict the lock detection probability as a function of loop signal-to-noise ratio for a given false alarm rate. It is shown that the square law detector experiences less degradation due to phase jitter than the absolute value detector and that the degradation in detector signal-to-noise ratio is more pronounced for squarewave than for sinewave signals.

  17. Loop Diuretics in Clinical Practice.

    PubMed

    Oh, Se Won; Han, Sang Youb

    2015-06-01

    Diuretics are commonly used to control edema across various clinical fields. Diuretics inhibit sodium reabsorption in specific renal tubules, resulting in increased urinary sodium and water excretion. Loop diuretics are the most potent diuretics. In this article, we review five important aspects of loop diuretics, in particular furosemide, which must be considered when prescribing this medicine: (1) oral versus intravenous treatment, (2) dosage, (3) continuous versus bolus infusion, (4) application in chronic kidney disease patients, and (5) side effects. The bioavailability of furosemide differs between oral and intravenous therapy. Additionally, the threshold and ceiling doses of furosemide differ according to the particular clinical condition of the patient, for example in patients with severe edema or chronic kidney disease. To maximize the efficiency of furosemide, a clear understanding of how the mode of delivery will impact bioavailability and the required dosage is necessary.

  18. Loop Diuretics in Clinical Practice

    PubMed Central

    Oh, Se Won

    2015-01-01

    Diuretics are commonly used to control edema across various clinical fields. Diuretics inhibit sodium reabsorption in specific renal tubules, resulting in increased urinary sodium and water excretion. Loop diuretics are the most potent diuretics. In this article, we review five important aspects of loop diuretics, in particular furosemide, which must be considered when prescribing this medicine: (1) oral versus intravenous treatment, (2) dosage, (3) continuous versus bolus infusion, (4) application in chronic kidney disease patients, and (5) side effects. The bioavailability of furosemide differs between oral and intravenous therapy. Additionally, the threshold and ceiling doses of furosemide differ according to the particular clinical condition of the patient, for example in patients with severe edema or chronic kidney disease. To maximize the efficiency of furosemide, a clear understanding of how the mode of delivery will impact bioavailability and the required dosage is necessary. PMID:26240596

  19. Deconfinement and virtual quark loops

    NASA Astrophysics Data System (ADS)

    Çelik, T.; Engels, J.; Satz, H.

    1983-12-01

    We calculate paer Monte Carlo evaluation on an 83 × 3 lattice the energy density ɛG of the gluon sector of QCD, including virtual quark loops up to the fourth power in the hopping parameter expansion. For light quarks of one flavour, we observe at T/ΛL 95 +/- 10 a rapid variation of ɛG in T, accompanied by strong fluctuations from iteration to iteration. as clear signal of the deconfinement transition.

  20. DNA Looping, Supercoiling and Tension

    NASA Astrophysics Data System (ADS)

    Finzi, Laura

    2007-11-01

    In complex organisms, activation or repression of gene expression by proteins bound to enhancer or silencer elements located several kilobases away from the promoter is a well recognized phenomenon. However, a mechanistic understanding of any of these multiprotein interactions is still incomplete. Part of the difficulty in characterizing long-range interactions is the complexity of the regulatory systems and also an underestimation of the effect of DNA supercoiling and tension. Supercoiling is expected to promote interactions between DNA sites because it winds the DNA into compact plectonemes in which distant DNA segments more frequently draw close. The idea that DNA is also under various levels of tension is becoming more widely accepted. Forces that stretch the double helix in vivo are the electrostatic repulsion among the negatively charged phosphate groups along the DNA backbone, the action of motor enzymes perhaps acting upon a topologically constrained sequence of DNA or chromosome segregation during cell mitosis following DNA replication. Presently, little is known about the tension acting on DNA in vivo, but characterization of how physiological regulatory processes, such as loop formation, depend on DNA tension in vitro will indicate the stretching force regimes likely to exist in vivo. In this light, the well studied CI protein of bacteriophage l, which was recently found to cause a of 3.8 kbp loop in DNA, is an ideal system in which to characterize long-range gene regulation. The large size of the loop lends itself to single-molecule techniques, which allow characterization of the dynamics of CI-mediated l DNA looping under controlled levels of supercoiling and tension. Such experiments are being used to discover the principles of long-range interactions in l and in more complex systems.

  1. Quantum reduced loop gravity and the foundation of loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Cianfrani, Francesco

    2016-06-01

    Quantum reduced loop gravity is a promising framework for linking loop quantum gravity and the effective semiclassical dynamics of loop quantum cosmology. We review its basic achievements and its main perspectives, outlining how it provides a quantum description of the Universe in terms of a cuboidal graph which constitutes the proper framework for applying loop techniques in a cosmological setting.

  2. Quality control loop for 3D laser beam cutting

    NASA Astrophysics Data System (ADS)

    Spitznagel, Juergen

    1996-08-01

    Existing systems for computer integrated manufacturing are based on the principle of the process chain: The product runs through different production sections as design, work planning and manufacturing in a sequential order. The data generated by a production sequence are transferred via interface to the following production sequence. These tightly-packed production sequences leave little scope for responding to quality deviations. This deficit is highlighted particularly in 3D laser cutting processes. In order to achieve an optimum machining result, a series of preliminary tests is required. Quality control loops play an important role in restricting the scope of necessary testing to a minimum. The represented control loop contains a CAD- system to design the workpiece, an offline-programming system to develop working strategies and NC/RC-programs as well as a shop-floor oriented tool to record quality data of the workpiece. The systems are coupled by an integrated product model. The control loop feeds quality data back to Operations Planning in the form of rules for processing strategies and technological data, so that the quality of the production process is enhanced. It is intended to supply optimum process parameters, so that the number of preliminary tests can be reduced. On the other hand the control loop contributes quality enhancement measures which serve as rules for the designers.

  3. The Implantable Cardiac Pacemaker

    PubMed Central

    Trimble, A. S.; Heimbecker, R. O.; Bigelow, W. G.

    1964-01-01

    The transistorized implanted pacemaker is proving to be an effective and reliable method for long-term pacing of the heart. All patients suffering from Stokes-Adams seizures were first given a trial period of conservative therapy, including isoproterenol (Isuprel), ephedrine, atropine and steroids. Twenty-four pacemaker implants were performed on 23 patients over a 21-month period. The preoperative insertion of a pacemaker cardiac catheter was a very valuable safety precaution. In this way the heart could be safely and reliably paced during the period of preoperative assessment and during the critical periods of anesthetic induction and thoracotomy. Infection did not occur, probably because of careful gas sterilization of the units. Various models of pacemakers are compared, and the reasons for two pacemaker failures are presented. There were two early deaths and one late death in the series. The relationship of progressive coronary disease to recent infarction is stressed. Patients having intermittent heart block frequently showed the picture of “competing pacemakers” postoperatively, but without deleterious effect. Twenty patients, between 54 and 88 years of age, are alive and well at the time of reporting, with excellent pacemaker response and no further Stokes-Adams attacks. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:14118681

  4. Transcatheter aortic valve implantation.

    PubMed

    Kapadia, Samir R; Tuzcu, E Murat

    2009-12-01

    Aortic stenosis is the most important valvular heart disease affecting the elderly population. Surgical aortic valve replacement is the mainstay of treatment, although a substantial number of patients are considered high risk for surgery. Many of these patients do not undergo surgery and have poor outcomes from medically treated symptomatic, severe aortic stenosis. Transcatheter aortic valve implantation (TAVI) provides a promising treatment option for some of these patients. Several devices are under investigation. The Edwards Sapien valve (Edwards Lifesciences, Irvine, CA) and the CoreValve (Medtronic, Minneapolis, MN) have the largest human experience to date. Initial data suggest that these devices have an acceptable safety profile and provide excellent hemodynamic relief of aortic stenosis. The Edwards Sapien valve is currently under investigation in the United States in the PARTNER (Placement of Aortic Transcatheter Valve) trial in high-risk surgical or inoperable patients; TAVI is available for clinical use in both Canada and Europe. TAVI is not used in low- or intermediate-risk surgical patients; however, future studies may prove its applicability in these subsets. The major complications of TAVI include access site-related problems and device malpositioning/migration. There are several new-generation prosthetic valves and delivery systems designed to be low profile and repositionable. Technical advances and refinement of the implantation methods may make TAVI even safer and ultimately a better treatment option, not only for patients with high surgical risk but also for those with moderate or low risk.

  5. Two-loop quantum gravity

    NASA Astrophysics Data System (ADS)

    van de Ven, Anton E. M.

    1992-07-01

    We prove the existence of a nonrenormalizable infinity in the two-loop effective action of perturbative quantum gravity by means of an explicit calculation. Our final result agrees with that obtained by earlier authors. We use the background-field method in coordinate space, combined with dimensional regularization and a heat kernel representation for the propagators. General covariance is manifestly preserved. Only vacuum graphs in the presence of an on-shell background metric need to be calculated. We extend the background covariant harmonic gauge to include terms nonlinear in the quantum gravitational fields and allow for general reparametrizations of those fields. For a particular gauge choice and field parametrization only two three-graviton and six four-graviton vertices are present in the action. Calculational labor is further reduced by restricting to backgrounds, which are not only Ricci-flat, but satisfy an additional constraint bilinear in the Weyl tensor. To handle the still formidable amount of algebra, we use the symbolic manipulation program FORM. We checked that the on-shell two-loop effective action is in fact independent of all gauge and field redefinition parameters. A two-loop analysis for Yang-Mills fields is included as well, since in that case we can give full details as well as simplify earlier analyses.

  6. Loops in inflationary correlation functions

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Urakawa, Yuko

    2013-12-01

    We review the recent progress regarding the loop corrections to the correlation functions in the inflationary universe. A naive perturbation theory predicts that the loop corrections generated during inflation suffer from various infrared (IR) pathologies. Introducing an IR cutoff by hand is neither satisfactory nor enough to fix the problem of a secular growth, which may ruin the predictive power of inflation models if the inflation lasts sufficiently long. We discuss the origin of the IR divergences and explore the regularity conditions of the loop corrections for the adiabatic perturbation, the iso-curvature perturbation, and the tensor perturbation, in turn. These three kinds of perturbations have qualitative differences, but in discussing the IR regularity there is a feature common to all cases, which is the importance of the proper identification of observable quantities. Genuinely, observable quantities should respect the gauge invariance from the view point of a local observer. Interestingly, we find that the requirement of the IR regularity restricts the allowed quantum states.

  7. Porous metal for orthopedics implants

    PubMed Central

    Matassi, Fabrizio; Botti, Alessandra; Sirleo, Luigi; Carulli, Christian; Innocenti, Massimo

    2013-01-01

    Summary Porous metal has been introduced to obtain biological fixation and improve longevity of orthopedic implants. The new generation of porous metal has intriguing characteristics that allows bone healing and high osteointegration of the metallic implants. This article gives an overview about biomaterials properties of the contemporary class of highly porous metals and about the clinical use in orthopaedic surgery. PMID:24133527

  8. Implant Maintenance: A Clinical Update

    PubMed Central

    Gulati, Minkle; Govila, Vivek; Anand, Vishal; Anand, Bhargavi

    2014-01-01

    Introduction. The differences in the supporting structure of the implant make them more susceptible to inflammation and bone loss when plaque accumulates as compared to the teeth. Therefore, a comprehensive maintenance protocol should be followed to ensure the longevity of the implant. Material and Method. A research to provide scientific evidence supporting the feasibility of various implant care methods was carried out using various online resources to retrieve relevant studies published since 1985. Results. The electronic search yielded 708 titles, out of which a total of 42 articles were considered appropriate and finally included for the preparation of this review article. Discussion. A typical maintenance visit for patients with dental implants should last 1 hour and should be scheduled every 3 months to evaluate any changes in their oral and general history. It is essential to have a proper instrument selection to prevent damage to the implant surface and trauma to the peri-implant tissues. Conclusion. As the number of patients opting for dental implants is increasing, it becomes increasingly essential to know the differences between natural teeth and implant care and accept the challenges of maintaining these restorations. PMID:27437506

  9. Awake transapical aortic valve implantation.

    PubMed

    Petridis, Francesco Dimitri; Savini, Carlo; Castelli, Andrea; Di Bartolomeo, Roberto

    2012-05-01

    Transapical aortic valve implantation is being employed as a less invasive alternative to open heart surgery in high-risk patients with severe aortic stenosis. Here we report the case of an awake transapical aortic valve implantation in a patient with severe chronic obstructive pulmonary disease.

  10. Photonic technologies for visual implants

    NASA Astrophysics Data System (ADS)

    Buss, Ruediger; Praemassing, F.; Puettjer, D.; Stawski, N.; Jaeger, Dieter

    2003-02-01

    In this paper two applications of photonic technologies for visual implants in the field of medicine are presented. Both are technical systems working as vision aid for people suffering from blindness due to damages in their visual system. The first system is a retinal implant (RI), the second an intraocular vision aid (IoVA) for people with opaque cornea.

  11. Regenerative Surgical Treatment of Peri-implantitis

    ClinicalTrials.gov

    2016-08-31

    Failure of Dental Implant Due to Infection; Infection; Inflammation; Peri-implantitis; Bacterial Infections; Bleeding of Subgingival Space; Molecular Sequence Variation; Periodontal Diseases; Mouth Diseases

  12. Gravitational radiation from realistic cosmic string loops

    NASA Astrophysics Data System (ADS)

    Casper, Paul; Allen, Bruce

    1995-10-01

    We examine the rates at which energy and momentum are radiated into gravitational waves by a large set of realistic cosmic string loops. The string loops are generated by numerically evolving parent loops with different initial conditions forward in time until they self-intersect, fragmenting into two child loops. The fragmentation of the child loops is followed recursively until only non-self-intersecting loops remain. The properties of the final non-self-intersecting loops are found to be independent of the initial conditions of the parent loops. We have calculated the radiated energy and momentum for a total of 11 625 stable child loops. We find that the majority of the final loops do not radiate significant amounts of spatial momentum. The velocity gained due to the rocket effect is typically small compared to the center-of-mass velocity of the fragmented loops. The distribution of gravitatoinal radiation rates in the center of mass frame of the loops, γ0≡(Gμ2)-1ΔE/Δτ, is strongly peaked in the range γ0=45-55 however, there are no loops found with γ0<40. Because the radiated spatial momentum is small, the distribution of gravitational radiation rates appears roughly the same in any reference frame. We conjecture that in the center-of-mass frame there is a lower bound γ0min>0 for the radiation rate from cosmic string loops. In a second conjecture, we identify a candidate for the loop with the minimal radiation rate and suggest that γ0min~=39.003.

  13. [Dental implants in tooth grinders].

    PubMed

    Lobbezoo, F; Brouwers, J E; Cune, M S; Naeije, M

    2004-03-01

    Bruxism (tooth grinding and clenching) is generally considered a contraindication for dental implants, although the evidence is usually based on clinical experience only. So far, studies to the possible cause-and-effect relationship between bruxism and implant failure do not yield consistent and specific outcomes. This is partly due to the large variation in the technical and the biological aspects of the investigations. Although there is still no proof that bruxism causes overload of dental implants and their suprastructures, a careful approach is recommended. Practical advices as to minimize the chance of implant failure are given. Besides the recommendation to reduce or eliminate bruxism itself, these advices concern the number and dimensions of the implants, the design of the occlusion and articulation patterns, and the use of a hard nightguard. PMID:15058243

  14. Use of implantable telemetry systems for study of cardiovascular phenomena.

    NASA Technical Reports Server (NTRS)

    Sandler, H.; Fryer, T. B.; Westbrook, R. M.; Stone, H. L.

    1972-01-01

    Preliminary observations of cardiovascular function have been made in four chimpanzees using multichannel implantable units. Measurements of right- and left-sided pressures were periodically made in these animals over a four-month period, including continuous observations for selected 24-hour periods. Pressures recorded with animals in an awake, unanesthetized, unrestrained state were much lower than pressures reported for restrained animals in similar situations. Diurnal variations of pressure tended to occur, but were not as clear-cut as those reported to occur for humans. The ability to implant a transmitter chronically and receive useful multichannel information in the chimpanzee encourages the future use of such implant devices as part of the control system for an artificial heart or directly for use in man.

  15. Premeasured Chordal Loops for Mitral Valve Repair.

    PubMed

    Gillinov, Marc; Quinn, Reed; Kerendi, Faraz; Gaudiani, Vince; Shemin, Richard; Barnhart, Glenn; Raines, Edward; Gerdisch, Marc W; Banbury, Michael

    2016-09-01

    Premeasured expanded polytetrafluoroethylene chordal loops with integrated sutures for attachment to the papillary muscle and leaflet edges facilitate correction of mitral valve prolapse. Configured as a group of 3 loops (length range 12 to 24 mm), the loops are attached to a pledget that is passed through the papillary muscle and tied. Each of the loops has 2 sutures with attached needles; these needles are passed through the free edge of the leaflet and then the sutures are tied to each other, securing the chordal loop to the leaflet. PMID:27549563

  16. Simulations of magnetic hysteresis loops at high temperatures

    SciTech Connect

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J.; Ek, J. van; Mercer, J. I.

    2014-09-28

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  17. The impact of a modified cutting flute implant design on osseointegration.

    PubMed

    Jimbo, R; Tovar, N; Marin, C; Teixeira, H S; Anchieta, R B; Silveira, L M; Janal, M N; Shibli, J A; Coelho, P G

    2014-07-01

    Information concerning the effects of the implant cutting flute design on initial stability and its influence on osseointegration in vivo is limited. This study evaluated the early effects of implants with a specific cutting flute design placed in the sheep mandible. Forty-eight dental implants with two different macro-geometries (24 with a specific cutting flute design - Blossom group; 24 with a self-tapping design - DT group) were inserted into the mandibular bodies of six sheep; the maximum insertion torque was recorded. Samples were retrieved and processed for histomorphometric analysis after 3 and 6 weeks. The mean insertion torque was lower for Blossom implants (P<0.001). No differences in histomorphometric results were observed between the groups. At 3 weeks, P=0.58 for bone-to-implant contact (BIC) and P=0.52 for bone area fraction occupied (BAFO); at 6 weeks, P=0.55 for BIC and P=0.45 for BAFO. While no histomorphometric differences were observed, ground sections showed different healing patterns between the implants, with better peri-implant bone organization around those with the specific cutting flute design (Blossom group). Implants with the modified cutting flute design had a significantly reduced insertion torque compared to the DT implants with a traditional cutting thread, and resulted in a different healing pattern. PMID:24583140

  18. A pilot study in the recovery and recognition of non-osseointegrated dental implants following cremation.

    PubMed

    Berketa, J; James, H; Marino, V

    2011-12-01

    Minimal dimensional changes in free standing dental implants when incinerated in a kiln to a temperature of 1125°C have been reported previously. However, in the same study colour changes were observed between commercially pure titanium and titanium alloy type of implants, with speculation that this change may be a useful distinguishing tool in cases requiring forensic identification. The present study was instigated to determine what changes occur following cremation to bone-supported dental implants placed within mandibles of sheep. A selection of dental implants was photographed and radiographed. They were then surgically placed in sheep mandibles and the entire sheep heads cremated in a commercial cremator. There was detachment of the dental implants from the mandible, which could have implications for scene recovery. Following retrieval and re-irradiating of the implants, image subtraction evaluation of the radiographs was recorded using Adobe(®) Photoshop.(®) As with the previous study there was slight oxidation of the implant surfaces leading to minor alteration of the images. There was, however, no gold crust colour change in the commercially pure titanium. Photography within the retrieved implants revealed the batch number within the Straumann™ implant was still visible, which could significantly add weight to the identification of deceased persons.

  19. The impact of a modified cutting flute implant design on osseointegration.

    PubMed

    Jimbo, R; Tovar, N; Marin, C; Teixeira, H S; Anchieta, R B; Silveira, L M; Janal, M N; Shibli, J A; Coelho, P G

    2014-07-01

    Information concerning the effects of the implant cutting flute design on initial stability and its influence on osseointegration in vivo is limited. This study evaluated the early effects of implants with a specific cutting flute design placed in the sheep mandible. Forty-eight dental implants with two different macro-geometries (24 with a specific cutting flute design - Blossom group; 24 with a self-tapping design - DT group) were inserted into the mandibular bodies of six sheep; the maximum insertion torque was recorded. Samples were retrieved and processed for histomorphometric analysis after 3 and 6 weeks. The mean insertion torque was lower for Blossom implants (P<0.001). No differences in histomorphometric results were observed between the groups. At 3 weeks, P=0.58 for bone-to-implant contact (BIC) and P=0.52 for bone area fraction occupied (BAFO); at 6 weeks, P=0.55 for BIC and P=0.45 for BAFO. While no histomorphometric differences were observed, ground sections showed different healing patterns between the implants, with better peri-implant bone organization around those with the specific cutting flute design (Blossom group). Implants with the modified cutting flute design had a significantly reduced insertion torque compared to the DT implants with a traditional cutting thread, and resulted in a different healing pattern.

  20. A pilot study in the recovery and recognition of non-osseointegrated dental implants following cremation.

    PubMed

    Berketa, J; James, H; Marino, V

    2011-12-01

    Minimal dimensional changes in free standing dental implants when incinerated in a kiln to a temperature of 1125°C have been reported previously. However, in the same study colour changes were observed between commercially pure titanium and titanium alloy type of implants, with speculation that this change may be a useful distinguishing tool in cases requiring forensic identification. The present study was instigated to determine what changes occur following cremation to bone-supported dental implants placed within mandibles of sheep. A selection of dental implants was photographed and radiographed. They were then surgically placed in sheep mandibles and the entire sheep heads cremated in a commercial cremator. There was detachment of the dental implants from the mandible, which could have implications for scene recovery. Following retrieval and re-irradiating of the implants, image subtraction evaluation of the radiographs was recorded using Adobe(®) Photoshop.(®) As with the previous study there was slight oxidation of the implant surfaces leading to minor alteration of the images. There was, however, no gold crust colour change in the commercially pure titanium. Photography within the retrieved implants revealed the batch number within the Straumann™ implant was still visible, which could significantly add weight to the identification of deceased persons. PMID:22717912

  1. Treatment of atrophic maxilla with zygomatic implants in 29 consecutives patients

    PubMed Central

    Rodríguez-Chessa, Jaime G; Olate, Sergio; Netto, Henrique Duque; Shibli, Jamil; de Moraes, Márcio; Mazzonetto, Renato

    2014-01-01

    Atrophic maxilla is a common condition in older population; some treatments are proposed with bone reconstruction or zygomatic implant. Long-term follow up show the efficiencies of zygomatic implant but limited data are associated to consecutive patient. The aim of this study was to evaluate retrospectively the zygomatic implants performed consecutively in 29 patients. Data from clinical records of 29 patients treated with zygomatic implants were analyzed; were include patient with at least 10 month of prosthetic function. Four surgeons realized all surgeries using local anesthesia with a slot technique on local anesthesia; the variables analyzed were implant survival, complications, prosthetic load and satisfaction of patient; data collection was analyzed by descriptive statistic and chi-square test with p<0.05 for significance statistical. 67 zygomatic implants and 84 conventional implants were installed in patients between 35 and 69 year old being 18 (62%) female and 11 (38%) male.The main indication was the case of severe alveolar resorption in 21 cases (72.41%), followed by failures in maxillary reconstruction with bone graft in 4 (13.79%). The implant success was 79.1% and the immediate or delayed load was not associated to statistical difference (p=0.104). The main complication was the loss of osseointegration and mucositis. Analogue Visual Scale (AVS) for satisfaction show acceptable esthetic and function. Finally we conclude that zygomatic implant present adequate survivor and a good response of patient; important complication can be present in a learn curve for this surgery. PMID:24600500

  2. Success rate of the EVL evolution implants (SERF): a five-year longitudinal multicenter study.

    PubMed

    Duminil, Gérard; Muller-Bolla, Michèle; Brun, Jean-Pierre; Leclercq, Philippe; Bernard, Jean-Pierre; Dohan Ehrenfest, David M

    2008-01-01

    The purpose of this study was to evaluate the success rate of the SERF EVL evolution implants (Décines, France) through a 5-year longitudinal multicentric study. Patients from 3 clinicians working in 3 different private practices (Grenoble, Nice, and Paris) and familiar with this implant system were included in this study; 413 patients and 1198 implants were followed over 5 years. The implant sites and implant types were recorded at the time of placement. The patients were followed yearly and controlled at the end of the study. The criterion for treatment evaluation or success was a qualitative variable related to 4 possible treatment outcomes: success, failure, ailing, and lost (dropout patients). Different variables (sex, bone quantity and quality at the implant site, location) were submitted to the chi-square test. A survival curve was established over 5 years according to the Kaplan Meyer method. The clinical follow-up was 3.1 +/- 1.2 years (ie, 1 to 6 years). At the end of this follow-up period, 1163 implants were classified as successful, 19 as failures, 12 as ailing, and 4 as lost (dropout). This implant system thus presented an overall success rate of 97.08%, over 5 years, independent of implant location, and for patient indications commonly encountered in private practice.

  3. Intracortical recording interfaces: current challenges to chronic recording function.

    PubMed

    Gunasekera, Bhagya; Saxena, Tarun; Bellamkonda, Ravi; Karumbaiah, Lohitash

    2015-01-21

    Brain Computer Interfaces (BCIs) offer significant hope to tetraplegic and paraplegic individuals. This technology relies on extracting and translating motor intent to facilitate control of a computer cursor or to enable fine control of an external assistive device such as a prosthetic limb. Intracortical recording interfaces (IRIs) are critical components of BCIs and consist of arrays of penetrating electrodes that are implanted into the motor cortex of the brain. These multielectrode arrays (MEAs) are responsible for recording and conducting neural signals from local ensembles of neurons in the motor cortex with the high speed and spatiotemporal resolution that is required for exercising control of external assistive prostheses. Recent design and technological innovations in the field have led to significant improvements in BCI function. However, long-term (chronic) BCI function is severely compromised by short-term (acute) IRI recording failure. In this review, we will discuss the design and function of current IRIs. We will also review a host of recent advances that contribute significantly to our overall understanding of the cellular and molecular events that lead to acute recording failure of these invasive implants. We will also present recent improvements to IRI design and provide insights into the futuristic design of more chronically functional IRIs.

  4. Intracortical recording interfaces: current challenges to chronic recording function.

    PubMed

    Gunasekera, Bhagya; Saxena, Tarun; Bellamkonda, Ravi; Karumbaiah, Lohitash

    2015-01-21

    Brain Computer Interfaces (BCIs) offer significant hope to tetraplegic and paraplegic individuals. This technology relies on extracting and translating motor intent to facilitate control of a computer cursor or to enable fine control of an external assistive device such as a prosthetic limb. Intracortical recording interfaces (IRIs) are critical components of BCIs and consist of arrays of penetrating electrodes that are implanted into the motor cortex of the brain. These multielectrode arrays (MEAs) are responsible for recording and conducting neural signals from local ensembles of neurons in the motor cortex with the high speed and spatiotemporal resolution that is required for exercising control of external assistive prostheses. Recent design and technological innovations in the field have led to significant improvements in BCI function. However, long-term (chronic) BCI function is severely compromised by short-term (acute) IRI recording failure. In this review, we will discuss the design and function of current IRIs. We will also review a host of recent advances that contribute significantly to our overall understanding of the cellular and molecular events that lead to acute recording failure of these invasive implants. We will also present recent improvements to IRI design and provide insights into the futuristic design of more chronically functional IRIs. PMID:25587704

  5. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.

  6. Chemical Looping Technology: Oxygen Carrier Characteristics.

    PubMed

    Luo, Siwei; Zeng, Liang; Fan, Liang-Shih

    2015-01-01

    Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies. PMID:25898071

  7. Hyperstaticity and loops in frictional granular packings

    NASA Astrophysics Data System (ADS)

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  8. Transcatheter aortic valve implantation.

    PubMed

    Nielsen, Hans Henrik Møller

    2012-12-01

    Transcatheter aortic valve implantation (TAVI) was introduced experimentally in 1989, based on a newly developed heart valve prosthesis - the stentvalve. The valve was invented by a Danish cardiologist named Henning Rud Andersen. The new valve was revolutionary. It was foldable and could be inserted via a catheter through an artery in the groin, without the need for heart lung machine. This allowed for a new valve implantation technique, much less invasive than conventional surgical aortic valve replacement (SAVR). Surgical aortic valve replacement is safe and improves symptoms along with survival. However, up to 1/3 of patients with aortic valve stenosis cannot complete the procedure due to frailty. The catheter technique was hoped to provide a new treatment option for these patients. The first human case was in 2002, but more widespread clinical use did not begin until 2006-2010. Today, in 2011, more than 40,000 valves have been implanted worldwide. Initially, because of the experimental character of the procedure, TAVI was reserved for patients who could not undergo SAVR due to high risk. The results in this group of patients were promising. The procedural safety was acceptable, and the patients experienced significant improvements in their symptoms. Three of the papers in this PhD-thesis are based on the outcome of TAVI at Skejby Hospital, in this high-risk population [I, II and IV]. Along with other international publications, they support TAVI as being superior to standard medical treatment, despite a high risk of prosthetic regurgitation. These results only apply to high-risk patients, who cannot undergo SAVR. The main purpose of this PhD study has been to investigate the quality of TAVI compared to SAVR, in order to define the indications for this new procedure. The article attached [V] describes a prospective clinical randomised controlled trial, between TAVI to SAVR in surgically amenable patients over 75 years of age with isolated aortic valve stenosis

  9. Effect of helix stability on the formation of loop-loop complexes.

    PubMed

    Sehdev, Preeti; Crews, Gordon; Soto, Ana Maria

    2012-12-01

    Kissing loop complexes are loop-loop complexes where two RNA hairpins interact through their complementary loops. In this work, we have investigated the role of the helical stems on the ability of hairpins derived from the ColE1 plasmid to associate as kissing loop complexes in the presence and absence of divalent cations. Our results show that although kissing loop complexes form more readily in the presence of Mg(2+), they are able to form in the presence of 850 mM NaCl, as long as their stems contain at least six base-pairs. Formation of the Na(+) loop-loop complexes is facilitated by changing the sequence at the stem-loop interface to include less stable AU base pairs. We suggest that the conformation at the stem-loop interface is critical in the formation of kissing loop complexes and that in the absence of Mg(2+) the conformation at the stem-loop interface is packed more loosely than with Mg(2+), to allow for a lower charge density. Consistent with this hypothesis, shortening the stems to five base pairs results in unfolding of the hairpins and formation of an extended duplex rather than a kissing loop complex because the short stems are not stable enough to tolerate the necessary conformation at the stem-loop interface to allow the formation of a kissing loop complex. PMID:23094588

  10. Spatial Channel Interactions in Cochlear Implants

    PubMed Central

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-01-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis for its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same 5 modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured voltage distribution as a function of electrode position in the cochlea in response to stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of electrode position in response to stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or lower in all measures. Several quantitative channel interaction indexes were developed to define and compare the width, slope, and symmetry of the spatial excitation patterns derived from these physical, physiological, and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing wider half-width and shallower slope than the basal side. On the contrary, the evoked

  11. Does tunica anatomy matter in penile implant?

    PubMed Central

    Chen, Heng-Shuen; Huang, Sheng-Jean

    2015-01-01

    Background Overall prosthesis survival is important in penile implant, which remains the final viable solution to many patients with refractory erectile dysfunction (ED). This paper is to retrospectively study the role of the anatomy of tunica albuginea (TA). Methods From March 1987 to March 1991 while the TA was regarded as a circumferential single layer, 21 organically ED men, aged from 27 to 77, received penile prosthesis implantation and were allocated to conventional group. From August 1992 to March 2013 while the tip of Hegar’s dilator was categorically directed medial-dorsally during corporal dilatation derived from newfound TA as a bi-layered structure with a 360° complete inner circular layer and a 300° incomplete outer longitudinal coat, 196 ED males, aged from 35 to 83, underwent penile implant and were categorized to advanced group. The model of prosthesis was recorded. Prosthesis loss rate and survival time were analyzed and the follow up period ranged from 22.4-26.4 (average 24.3) years and 0.4-20.6 (average 15.8) years to the conventional and advanced group respectively. Results To the conventional and advanced group, the number of inflatable and rigid type prosthesis used were 2, 19 and 15, 181 respectively, whereas the prosthesis loss was encountered in 50.0% (1/2), 15.8% (3/19) and 0.0% (0/15), 0.6% (1/181) respectively. And the prosthesis survival time were 5.1-6.3 (5.7) years, 1.3-26.4 (15.2) years and 6.1-16.2 (11.2) years, 0.4-20.6 (15.3) years to the conventional and advanced group respectively. Statistical significance was noted on prosthesis loss in groups (P=0.01) while the Mentor Acuform stood out in prosthesis survival. Conclusions Anatomy-based managing maneuver appears to deliver better surgery success in penile implant. Tunica anatomy is significant in performing implant surgery. PMID:26816839

  12. Spatial channel interactions in cochlear implants.

    PubMed

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  13. Spatial channel interactions in cochlear implants

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  14. Computer-aided recognition of dental implants in X-ray images

    NASA Astrophysics Data System (ADS)

    Morais, Pedro; Queirós, Sandro; Moreira, António H. J.; Ferreira, Adriano; Ferreira, Ernesto; Duque, Duarte; Rodrigues, Nuno F.; Vilaça, João. L.

    2015-03-01

    Dental implant recognition in patients without available records is a time-consuming and not straightforward task. The traditional method is a complete user-dependent process, where the expert compares a 2D X-ray image of the dental implant with a generic database. Due to the high number of implants available and the similarity between them, automatic/semi-automatic frameworks to aide implant model detection are essential. In this study, a novel computer-aided framework for dental implant recognition is suggested. The proposed method relies on image processing concepts, namely: (i) a segmentation strategy for semi-automatic implant delineation; and (ii) a machine learning approach for implant model recognition. Although the segmentation technique is the main focus of the current study, preliminary details of the machine learning approach are also reported. Two different scenarios are used to validate the framework: (1) comparison of the semi-automatic contours against implant's manual contours of 125 X-ray images; and (2) classification of 11 known implants using a large reference database of 601 implants. Regarding experiment 1, 0.97±0.01, 2.24±0.85 pixels and 11.12±6 pixels of dice metric, mean absolute distance and Hausdorff distance were obtained, respectively. In experiment 2, 91% of the implants were successfully recognized while reducing the reference database to 5% of its original size. Overall, the segmentation technique achieved accurate implant contours. Although the preliminary classification results prove the concept of the current work, more features and an extended database should be used in a future work.

  15. Suppression of scarring in peripheral nerve implants by drug elution

    NASA Astrophysics Data System (ADS)

    FitzGerald, James J.

    2016-04-01

    Objective. Medical implants made of non-biological materials provoke a chronic inflammatory response, resulting in the deposition of a collagenous scar tissue (ST) layer on their surface, that gradually thickens over time. This is a critical problem for neural interfaces. Scar build-up on electrodes results in a progressive decline in signal level because the scar tissue gradually separates axons away from the recording contacts. In regenerative sieves and microchannel electrodes, progressive scar deposition will constrict and may eventually choke off the sieve hole or channel lumen. Interface designs need to address this issue if they are to be fit for long term use. This study examines a novel method of inhibiting the formation and thickening of the fibrous scar. Approach. Research to date has mainly focused on methods of preventing stimulation of the foreign body response by implant surface modification. In this paper a pharmacological approach using drug elution to suppress chronic inflammation is introduced. Microchannel implants made of silicone doped with the steroid drug dexamethasone were implanted in the rat sciatic nerve for periods of up to a year. Tissue from within the microchannels was compared to that from control devices that did not release any drug. Main results. In the drug eluting implants the scar layer was significantly thinner at all timepoints, and unlike the controls it did not continue to thicken after 6 months. Control implants supported axon regeneration well initially, but axon counts fell rapidly at later timepoints as scar thickened. Axon counts in drug eluting devices were initially much lower, but increased rather than declined and by one year were significantly higher than in controls. Significance. Drug elution offers a potential long term solution to the problem of performance degradation due to scarring around neural implants.

  16. Outcome of Capsular Tension Ring (CTR) Implant in Complicated Cataracts

    PubMed Central

    Sahai, Anshu; Kumar, Pukhrambam Ratan

    2015-01-01

    Introduction Surgery in the presence of zonular weakness or subluxated lens was a great surgical challenge and included intracapsular cataract extraction with anterior chamber IOL implantation or pars plana lensectomy and vitrectomy with a sutured (IOL). Modern surgical approache involves placement of endocapsular flexible PMMA ring that prevents iatrogenic loss of zonular support, minimizing vitreous loss and enables placement of in the bag IOL. Aim To evaluate frequency and indications of capsular tension ring (CTR) implant and analyse the visual and anatomical outcome in various complicated cataract surgeries. Materials and Methods Retrospective screening of database of 6000 consecutive cataract surgeries was done. BCVA, complete ocular examination with SLEx, intraocular pressure, direct ophthalmoscope, fundus examination with +78/+90D were noted. CTR was implanted in cases where Zonular dialysis of > 3 clock hours was present or capsular bag instability was detected during capsulorhexis or subsequent intraoperative maneuvers. In cases with capsulorrhexis extension, CTR was not implanted. Records were analysed for indication of CTR implant and clinical outcome on Day 1, 1 month and 6 month follow up. Results In this series CTR implant was done in 45 cases. The indications were hypermature senile cataract in 9 cases, hypermature senile cataract with lens induced glaucoma in 9 cases, pseudoexfoliation syndrome in 9 cases, post blunt injury traumatic cataract in 6 cases, iridochoroidal coloboma in 6 cases, hypermature cataract with pseudoexfoliation and marfan syndrome in 3 cases respectively. Decision of CTR implant was intraoperative in 42 patients. At 6 month follow up, 39 patients had best corrected visual acuity ≥6/12. IOL decentration was detected in only 3 cases, but without any subjective visual complaints. Conclusion As per the results CTR was used very infrequently (0.75%) but remains useful in cataract surgeries with difficult pre and intraoperative

  17. Retention and release mechanisms of deuterium implanted into beryllium

    NASA Astrophysics Data System (ADS)

    Oberkofler, M.; Reinelt, M.; Linsmeier, Ch.

    2011-06-01

    The fraction of deuterium (D) that is retained upon irradiation of beryllium (Be) as well as the temperatures at which implanted D is released are of importance for the international fusion experiment ITER, where Be will be used as an armor material. The influence of single parameters on retention and release is investigated in laboratory experiments performed under well defined conditions with the aim to identify dominant underlying mechanisms and thus be able to predict the behavior of the Be wall in ITER. Recent progress in the quantification of retained fractions and release temperatures as well as in the understanding of the governing mechanisms is presented. The retained fraction upon implantation of D at 1 keV into Be(1 1 2¯ 0) to fluences far below the saturation threshold of 10 21 m -2 is almost 95%, the remaining 5% being attributed to reflection at the surface. At these low fluences, no dependence of the retained fractions on implantation energy is observed. At fluences of the order of 10 21 m -2 and higher, saturation of the irradiated material affects the retention, leading to lower retained fractions. Furthermore, at these fluences the retained fractions decrease with decreasing implantation energies. Differences in the retained fractions from implanted Be(1 1 2¯ 0) and polycrystalline Be are explained by anisotropic diffusion of interstitials during implantation, leading to an amount of surviving D-trap complexes that depends on surface-orientation. Temperature-programmed desorption (TPD) spectra are recorded after implantation of fluences of the order of 10 19 m -2 at various energies and simulated by means of a newly developed code based on coupled reaction-diffusion systems (CRDS). The asymmetric shape of the TPD peaks is reproduced by introducing a local D accumulation process into the model.

  18. Percutaneous Pulmonary Valve Implantation

    PubMed Central

    Lee, Hyoung-Doo

    2012-01-01

    Pulmonary regurgitation (PR) is a frequent sequelae after repair of tetralogy of Fallot, pulmonary atresia, truncus arteriosus, Rastelli and Ross operation. Due to patient growth and conduit degeneration, these conduits have to be changed frequently due to regurgitation or stenosis. However, morbidity is significant in these repeated operations. To prolong conduit longevity, bare-metal stenting in the right ventricular outflow tract (RVOT) obstruction has been performed. Stenting the RVOT can reduce the right ventricular pressure and symptomatic improvement, but it causes PR with detrimental effects on the right ventricle function and risks of arrhythmia. Percutaneous pulmonary valve implantation has been shown to be a safe and effective treatment for patients with pulmonary valve insufficiency, or stenotic RVOTs. PMID:23170091

  19. Transcatheter Aortic Valve Implantation.

    PubMed

    Malaisrie, S Chris; Iddriss, Adam; Flaherty, James D; Churyla, Andrei

    2016-05-01

    Severe aortic stenosis (AS) is a life-threatening condition when left untreated. Aortic valve replacement (AVR) is the gold standard treatment for the majority of patients; however, transcatheter aortic valve implantation/replacement (TAVI/TAVR) has emerged as the preferred treatment for high-risk or inoperable patients. The concept of transcatheter heart valves originated in the 1960s and has evolved into the current Edwards Sapien and Medtronic CoreValve platforms available for clinical use. Complications following TAVI, including cerebrovascular events, perivalvular regurgitation, vascular injury, and heart block have decreased with experience and evolving technology, such that ongoing trials studying TAVI in lower risk patients have become tenable. The multidisciplinary team involving the cardiac surgeon and cardiologist plays an essential role in patient selection, procedural conduct, and perioperative care.

  20. Implantable, multifunctional, bioresorbable optics

    PubMed Central

    Tao, Hu; Kainerstorfer, Jana M.; Siebert, Sean M.; Pritchard, Eleanor M.; Sassaroli, Angelo; Panilaitis, Bruce J. B.; Brenckle, Mark A.; Amsden, Jason J.; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L.; Omenetto, Fiorenzo G.

    2012-01-01

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  1. Implantable, multifunctional, bioresorbable optics.

    PubMed

    Tao, Hu; Kainerstorfer, Jana M; Siebert, Sean M; Pritchard, Eleanor M; Sassaroli, Angelo; Panilaitis, Bruce J B; Brenckle, Mark A; Amsden, Jason J; Levitt, Jonathan; Fantini, Sergio; Kaplan, David L; Omenetto, Fiorenzo G

    2012-11-27

    Advances in personalized medicine are symbiotic with the development of novel technologies for biomedical devices. We present an approach that combines enhanced imaging of malignancies, therapeutics, and feedback about therapeutics in a single implantable, biocompatible, and resorbable device. This confluence of form and function is accomplished by capitalizing on the unique properties of silk proteins as a mechanically robust, biocompatible, optically clear biomaterial matrix that can house, stabilize, and retain the function of therapeutic components. By developing a form of high-quality microstructured optical elements, improved imaging of malignancies and of treatment monitoring can be achieved. The results demonstrate a unique family of devices for in vitro and in vivo use that provide functional biomaterials with built-in optical signal and contrast enhancement, demonstrated here with simultaneous drug delivery and feedback about drug delivery with no adverse biological effects, all while slowly degrading to regenerate native tissue. PMID:23150544

  2. Implants in disabled patients: A review and update

    PubMed Central

    Romero-Pérez, María J.; Mang-de la Rosa, María R.; López-Jimenez, Julián; Fernández-Feijoo, Javier

    2014-01-01

    The range of indications for dental implants has broadened enormously owing to their predictability and the improvement of patient satisfaction in terms of stability, comfort, aesthetics and functionality. The aim of this article is to review those indications in patients with mental or physical disabilities as the difficulty to cope with oral hygiene often leads to teeth extraction, adding edentulousness to the impairments already present. Following that goal, available literature in Pubmed database, Scopus, Web of Knowledge and The Cochrane Library database about dental implants placement in these patients has been reviewed, assessing the variables of each study: number of patients, sex, average age, oral hygiene, parafunctional habits, impairment, bone quality, protocol of implant surgery, necessity of deep intravenous sedation or general anesthesia, follow-up period and number of failures. The comparison with studies involving other patient populations without mental or physical impediments did not show statistically significant differences in terms of the failure rate recorded. Although there is not much literature available, the results of this review seem to suggest that osseointegrated oral implants could be a therapeutic option in patients who suffer from any physical or psychological impairment. The success of an oral rehabilitation depends mainly on an adequate selection of the patients. Key words:Implants, disabled, sedation. PMID:24608221

  3. Cephalad lead migration following spinal cord stimulation implantation.

    PubMed

    McGreevy, Kai; Williams, Kayode A; Christo, Paul J

    2012-01-01

    Lead migration (LM) is the most common complication after spinal cord stimulation (SCS). Although multiple reports of caudad LM have been described, cephalad LM has not been reported. Here we describe a case in which a stimulator lead migrates in the cephalad direction. A 60-year-old male with failed back surgery syndrome underwent SCS lead implantation via a dual lead approach to the top of vertebral body (VB) T9. A standard strain relief loop was used for each lead in the paramedian pocket. Postoperative testing revealed 100% paresthesia coverage of the painful areas. For the first 4 days, the patient continued to have excellent coverage; however, by the seventh day, the paresthesias ascended to above the nipple line. At the 2-week follow-up, cephalad migration of the left lead to the top of VB T1 was confirmed on fluoroscopy. The patient underwent successful lead revision in which a single paramedian incision technique was used to place extra sutures and a "figure-of-eight" strain relief loop. We provide the first case report of significant cephalad LM following SCS lead implantation. This migration can occur despite the use of current standard anchoring techniques. Additional investigation into the mechanism of such LM and lead-securing techniques is warranted. PMID:22270751

  4. Panoramic radiographs underestimate extensions of the anterior loop and mandibular incisive canal

    PubMed Central

    Nejaim, Yuri; de Freitas, Deborah Queiroz; de Oliveira Santos, Christiano

    2016-01-01

    Purpose The purpose of this study was to detect the anterior loop of the mental nerve and the mandibular incisive canal in panoramic radiographs (PAN) and cone-beam computed tomography (CBCT) images, as well as to determine the anterior/mesial extension of these structures in panoramic and cross-sectional reconstructions using PAN and CBCT images. Materials and Methods Images (both PAN and CBCT) from 90 patients were evaluated by 2 independent observers. Detection of the anterior loop and the incisive canal were compared between PAN and CBCT. The anterior/mesial extension of these structures was compared between PAN and both cross-sectional and panoramic CBCT reconstructions. Results In CBCT, the anterior loop and the incisive canal were observed in 7.7% and 24.4% of the hemimandibles, respectively. In PAN, the anterior loop and the incisive canal were detected in 15% and 5.5% of cases, respectively. PAN presented more difficulties in the visualization of structures. The anterior/mesial extensions ranged from 0.0 mm to 19.0 mm on CBCT. PAN underestimated the measurements by approximately 2.0 mm. Conclusion CBCT appears to be a more reliable imaging modality than PAN for preoperative workups of the anterior mandible. Individual variations in the anterior/mesial extensions of the anterior loop of the mental nerve and the mandibular incisive canal mean that is not prudent to rely on a general safe zone for implant placement or bone surgery in the interforaminal region. PMID:27672611

  5. Panoramic radiographs underestimate extensions of the anterior loop and mandibular incisive canal

    PubMed Central

    Nejaim, Yuri; de Freitas, Deborah Queiroz; de Oliveira Santos, Christiano

    2016-01-01

    Purpose The purpose of this study was to detect the anterior loop of the mental nerve and the mandibular incisive canal in panoramic radiographs (PAN) and cone-beam computed tomography (CBCT) images, as well as to determine the anterior/mesial extension of these structures in panoramic and cross-sectional reconstructions using PAN and CBCT images. Materials and Methods Images (both PAN and CBCT) from 90 patients were evaluated by 2 independent observers. Detection of the anterior loop and the incisive canal were compared between PAN and CBCT. The anterior/mesial extension of these structures was compared between PAN and both cross-sectional and panoramic CBCT reconstructions. Results In CBCT, the anterior loop and the incisive canal were observed in 7.7% and 24.4% of the hemimandibles, respectively. In PAN, the anterior loop and the incisive canal were detected in 15% and 5.5% of cases, respectively. PAN presented more difficulties in the visualization of structures. The anterior/mesial extensions ranged from 0.0 mm to 19.0 mm on CBCT. PAN underestimated the measurements by approximately 2.0 mm. Conclusion CBCT appears to be a more reliable imaging modality than PAN for preoperative workups of the anterior mandible. Individual variations in the anterior/mesial extensions of the anterior loop of the mental nerve and the mandibular incisive canal mean that is not prudent to rely on a general safe zone for implant placement or bone surgery in the interforaminal region.

  6. Microsystems Technology for Retinal Implants

    NASA Astrophysics Data System (ADS)

    Weiland, James

    2005-03-01

    The retinal prosthesis is targeted to treat age-related macular degeneration, retinitis pigmentosa, and other outer retinal degenerations. Simulations of artificial vision have predicted that 600-1000 individual pixels will be needed if a retinal prosthesis is to restore function such as reading large print and face recognition. An implantable device with this many electrode contacts will require microsystems technology as part of its design. An implantable retinal prosthesis will consist of several subsystems including an electrode array and hermetic packaging. Microsystems and microtechnology approaches are being investigated as possible solutions for these design problems. Flexible polydimethylsiloxane (PDMS) substrate electrode arrays and silicon micromachined electrode arrays are under development. Inactive PDMS electrodes have been implanted in 3 dogs to assess mechanical biocompatibility. 3 dogs were followed for 6 months. The implanted was securely fastened to the retina with a single retinal tack. No post-operative complications were evident. The array remained within 100 microns of the retinal surface. Histological evaluation showed a well preserved retina underneath the electrode array. A silicon device with electrodes suspended on micromachined springs has been implanted in 4 dogs (2 acute implants, 2 chronic implants). The device, though large, could be inserted into the eye and positioned on the retina. Histological analysis of the retina from the spring electrode implants showed that spring mounted posts penetrated the retina, thus the device will be redesigned to reduce the strength of the springs. These initial implants will provide information for the designers to make the next generation silicon device. We conclude that microsystems technology has the potential to make possible a retinal prosthesis with 1000 individual contacts in close proximity to the retina.

  7. Restoration of immediately placed implants in 3 appointments: from surgical placement to definitive prostheses.

    PubMed

    Ercoli, Carlo; Romano, Paul R; Al Mardini, Majd; Cordaro, Luca

    2006-09-01

    This article describes a comprehensive approach that enables the clinician to place dental implants, and fabricate a provisional prosthesis and a definitive metal-acrylic resin or metal-ceramic fixed complete denture in 3 appointments. This technique allows the practitioner to immediately load the implants with a provisional fixed complete denture at the time of implant placement, to record the relative positions of the implants and soft tissues, the occlusal vertical dimension, maxillomandibular relationship, and tooth position at the second appointment by using the information provided by the provisional fixed denture, and to insert the definitive prosthesis at the third appointment. This technique reduces chair time for both the patient and the clinician, and could ultimately reduce the cost of implant treatment and potentially increase treatment acceptance.

  8. School failure in students who are normal-hearing or deaf: with or without cochlear implants.

    PubMed

    Duarte, Ivone; Santos, Cristina Costa; Rego, Guilhermina; Nunes, Rui

    2016-01-01

    To evaluate the impact of cochlear implants on the school failure of deaf who attend mainstream classes by comparing them to their normal-hearing peers as well as deaf without cochlear implants. This case-control study included participants aged 8-18 years. The number of school years failed was obtained from school records. The greatest differences in achievement levels were found between hearing students and those who were deaf without cochlear implants. Cochlear implants provide educational opportunities for hearing-impaired students, yet those without cochlear implants remain at a great disadvantage. These findings suggest that measures promoting greater equity and quality for all deaf students allow achievement levels closer to those of the not impaired. PMID:27026931

  9. Capillary pumped loop application guide

    NASA Astrophysics Data System (ADS)

    Cullimore, Brent A.

    Capillary pumped loops (CPLs) have undergone extensive development since the late 1970's, and represent a maturing technology that is beginning to appear in spacecraft designs. Perhaps because most CPL literature is intended for CPL and heat pipe dedvelopers, or perhaps because of the myriad of component design and layout options available, many thermal control designers are either unfamiliar with the capabilities offered by CPLs, or are confused about their limitations. This survey paper is targeted toward thermal control designers who must decide when and where to use CPLs, or having chosen a CPL solution, must deal with system-level integration and test issues.

  10. Cygnus Loop: A double bubble?

    NASA Astrophysics Data System (ADS)

    West, J.; Safi-Harb, S.; Reichardt, I.; Stil, J.; Kothes, R.; Jaffe, T.; Galfacts Team

    2016-06-01

    The Cygnus Loop is a well-studied supernova remnant (SNR) that has been observed across the electromagnetic spectrum. Although widely believed to be an SNR shell with a blow-out region in the south, we consider the possibility that this object is two SNRs projected along the same line-of-sight by using multi-wavelength images and modelling. Our results show that a model of two objects including some overlap region/interaction between the two objects has the best match to the observed data.

  11. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  12. Closed-Loop Neuroscience and Non-Invasive Brain Stimulation: A Tale of Two Loops.

    PubMed

    Zrenner, Christoph; Belardinelli, Paolo; Müller-Dahlhaus, Florian; Ziemann, Ulf

    2016-01-01

    Closed-loop neuroscience is receiving increasing attention with recent technological advances that enable complex feedback loops to be implemented with millisecond resolution on commodity hardware. We summarize emerging conceptual and methodological frameworks that are available to experimenters investigating a "brain in the loop" using non-invasive brain stimulation and briefly review the experimental and therapeutic implications. We take the view that closed-loop neuroscience in fact deals with two conceptually quite different loops: a "brain-state dynamics" loop, used to couple with and modulate the trajectory of neuronal activity patterns, and a "task dynamics" loop, that is the bidirectional motor-sensory interaction between brain and (simulated) environment, and which enables goal-directed behavioral tasks to be incorporated. Both loops need to be considered and combined to realize the full experimental and therapeutic potential of closed-loop neuroscience. PMID:27092055

  13. Hardness of ion implanted ceramics

    SciTech Connect

    Oliver, W.C.; McHargue, C.J.; Farlow, G.C.; White, C.W.

    1985-01-01

    It has been established that the wear behavior of ceramic materials can be modified through ion implantation. Studies have been done to characterize the effect of implantation on the structure and composition of ceramic surfaces. To understand how these changes affect the wear properties of the ceramic, other mechanical properties must be measured. To accomplish this, a commercially available ultra low load hardness tester has been used to characterize Al/sub 2/O/sub 3/ with different implanted species and doses. The hardness of the base material is compared with the highly damaged crystalline state as well as the amorphous material.

  14. Turned Implants in Vertical Augmented Bone: A Retrospective Study with 13 to 21 Years Follow-Up.

    PubMed

    Simion, Massimo; Ferrantino, Luca; Idotta, Eleonora; Zarone, Fernando

    2016-01-01

    The aim of this retrospective clinical trial was to evaluate the performance of 91 turned implants placed in vertically augmented ridges in 33 patients by means of guided bone regeneration techniques after a mean follow-up of 15 years. A total of 88 implants were in function (97% survival rate), whereas 9 showed peri-implantitis (9.9%). A mean radiographic bone loss of 1.02 mm between the baseline evaluation (1 year after loading) and the final visit (13 to 21 years later) was recorded. In conclusion, turned implants placed in vertically augmented bone seem to remain stable after many years of function. PMID:27100800

  15. Cool transition region loops observed by the Interface Region Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Xia, L.; Li, B.; Madjarska, M. S.

    2015-12-01

    An important class of loops in the solar atmosphere, cool transition region loops, have received little attention mainly due to instrumental limitations. We analyze a cluster of these loops in the on-disk active region NOAA 11934 recorded in a Si IV 1402.8 Å spectral raster and 1400Å slit-jaw (SJ) images taken by the Interface Region Imaging Spectrograph. We divide these loops into three groups and study their dynamics, evolution and interaction.The first group comprises geometrically relatively stable loops, which are finely scaled with 382~626 km cross-sections. Siphon flows in these loops are suggested by the Doppler velocities gradually changing from -10 km/s (blue-shifts) in one end to 20 km/s (red-shifts) in the other. Nonthermal velocities from 15 to 25 km/s were determined. The obtained physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of 1015 Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two active footpoints rooted in mixed-magnetic-polarity regions. Magnetic reconnection in both footpoints is suggested by explosive-event line profiles with enhanced wings up to 200 km/s and magnetic cancellation with a rate of ~1015 Mx/s. In the third group, an interaction between two cool loop systems is observed. Mixed-magnetic polarities are seen in their conjunction area where explosive-event line profiles and magnetic cancellation with a rate of 3×1015 Mx/s are found. This is a clear indication that magnetic reconnection occurs between these two loop systems. Our observations suggest that the cool transition region loops are heated impulsively most likely by sequences of magnetic reconnection events.

  16. Implant overdenture impressions using a dynamic impression concept

    PubMed Central

    Lee, Byung-Kil; Park, Sang-Hun; Lee, Cheong-Hee

    2014-01-01

    A dynamic impression is a functional impression that records the functional movement of the patient's own muscle and muscle attachment. This process reduces the number of random factors. This article describes a method for making a special tray using a dynamic impression concept that was made from provisional dentures used for implant healing. The individual tray is used to make a wash-impression to record the features of the mucosa in detail. The main advantage of this technique is that it provides a functional relationship of the implant components to the supporting tissues without overextension because provisional denture had been used for 2 months and the border length of individual tray was nearly the same as that of provisional denture. The delivery of the prosthesis constructed using this impression technique is time-saving because there is no need for border molding and there are fewer post-insertion appliance adjustments. PMID:24605209

  17. Evaluation of a closed loop inductive power transmission system on an awake behaving animal subject.

    PubMed

    Kiani, Mehdi; Kwon, Ki Yong; Zhang, Fei; Oweiss, Karim; Ghovanloo, Maysam

    2011-01-01

    This paper presents in vivo experimental results for a closed loop wireless power transmission system to implantable devices on an awake behaving animal subject. In this system, wireless power transmission takes place across an inductive link, controlled by a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (TRF7960) operating at 13.56 MHz. Induced voltage on the implantable secondary coil is rectified, digitized by a 10-bit analog to digital converter, and transmitted back to the primary via back telemetry. Transmitter (Tx) and receiver (Rx) circuitry were mounted on the back of an adult rat with a nominal distance of ~7 mm between their coils. Our experiments showed that the closed loop system was able to maintain the Rx supply voltage at the designated 3.8 V despite changes in the coils' relative distance and alignment due to animal movements. The Tx power consumption changed between 410 ~ 560 mW in order to deliver 27 mW to the receiver. The open loop system, on the other hand, showed undesired changes in the Rx supply voltage while the Tx power consumption was constant at 660 mW. PMID:22256112

  18. A 36-month follow-up prospective cohort study on peri-implant bone loss of Morse Taper connection implants with platform switching.

    PubMed

    Cassetta, Michele; Di Mambro, Alfonso; Giansanti, Matteo; Brandetti, Giulia; Calasso, Sabrina

    2016-01-01

    A prospective cohort study was designed to measure marginal bone level changes at 36-month follow-up and to evaluate the influence of biologically relevant, anatomic and stress-related variables. STROBE guidelines were followed. Totally, 748 implants were inserted into 350 patients. Standardized periapical radiographs were taken at 2- (stage-two surgery), 12-, 24-, and 36-month follow-ups. Descriptive statistics were used and inter- and intra-examiner reliability were determined. A mixed-model was used to evaluate predictor variables. Statistical analysis was performed at implant level (statistical significance: P < 0.05). A total of 34 (4.5%) implants failed; of the 34 implants, 6 were early failures (0.8%) and 28 were late failures (3.7%). A total of 576 implants reached 36-month follow-up (mean follow-up: 25.58 months; SD: 10.32). Mean marginal bone remodeling was -0.56 mm. (SD: 1.30; range: -6.80 ± 3.65). A statistically significant, higher marginal bone loss was found for subcrestal implants and subcrestal implants inserted into the maxilla, for implants inserted into patients aged over 50 years, and for early-delayed implants inserted into patients aged over 50 years. In conclusion, a low, mean crestal bone loss at 36-month follow-up was recorded but implant positioning in the apico-occlusal dimension was found to be the most significant variable that influenced bone loss. (J Oral Sci 58, 49-57, 2016).

  19. [Imaging in silicone breast implantation].

    PubMed

    Gielens, Maaike P M; Koolen, Pieter G L; Hermens, Roland A E C; Rutten, Matthieu J C M

    2013-01-01

    Recently, there have been concerns regarding the use of breast implants from Poly Implant Prothèse (PIP, Seyne sur Mer, France) for breast augmentation due to their tendency to rupture and the possibility of having toxic contents. MRI using a specific silicone-sensitive sequence has proven to be the most sensitive and specific technique in the detection of intra- and extracapsular implant rupture. However, given its high costs, it is important that this technique is used sparingly. In this clinical lesson, we compare the sensitivity and specificity of mammography, ultrasound, CT and MRI for the detection of breast implant rupture. Based on two cases, a diagnostic approach is given in order to reduce health care costs. PMID:24252405

  20. Implants for draining neovascular glaucoma.

    PubMed Central

    Molteno, A C; Van Rooyen, M M; Bartholomew, R S

    1977-01-01

    The implant design, surgical technique, and pharmacological methods of controlling bleb fibrosis, used to treat neovascular glaucoma, are described, together with the results of 14 operations performed on 12 eyes. Images PMID:843508

  1. Wilson loop from a Dyson equation

    SciTech Connect

    Pak, M.; Reinhardt, H.

    2009-12-15

    The Dyson equation proposed for planar temporal Wilson loops in the context of supersymmetric gauge theories is critically analyzed thereby exhibiting its ingredients and approximations involved. We reveal its limitations and identify its range of applicability in nonsupersymmetric gauge theories. In particular, we show that this equation is applicable only to strongly asymmetric planar Wilson loops (consisting of a long and a short pair of loop segments) and as a consequence the Wilsonian potential can be extracted only up to intermediate distances. By this equation the Wilson loop is exclusively determined by the gluon propagator. We solve the Dyson equation in Coulomb gauge for the temporal Wilson loop with the instantaneous part of the gluon propagator and for the spatial Wilson loop with the static gluon propagator obtained in the Hamiltonian approach to continuum Yang-Mills theory and on the lattice. In both cases we find a linearly rising color potential.

  2. Does the presence of an implant including expander with internal port alter radiation dose? An ex vivo model

    PubMed Central

    Strang, Barbara; Murphy, Kyla; Seal, Shane; Cin, Arianna Dal

    2013-01-01

    BACKGROUND: There is a lack of literature examining the dosimetric implications of irradiating breast implants and expanders with internal ports inserted at the time of mastectomy. OBJECTIVE: To determine whether the presence of breast expanders with port in saline or silicone implants affect the dose uniformity across the breast when irradiated with various photon and electron energies. METHODS: One tissue-equivalent torso phantom with overlying tissue expanders in saline or silicone implants were irradiated using tangential fields with 6 MV and 18 MV photons and 9 MeV and 12 MeV electrons. All dose measurements were performed using thermoluminescent dosimeters (TLDs). The TLDs were arranged around the port and the perimeters of either the expander, or saline or silicone implant. Comparisons of measured radiation doses, and between the expected and measured doses of radiation from the TLDs on each prosthesis, were performed. Data were analyzed using two-tailed t tests. RESULTS: There were no differences in TLD measurements between the expander and the saline implant for all energy modalities, and for the expected versus actual measurements for the saline implant. Higher than anticipated measurements were recorded for a significant number of TLD positions around the silicone implants. CONCLUSIONS: Radiation doses around saline implants or expanders with internal port were unaltered, whereas dose recordings for silicone implants were higher than predicted in the present laboratory/ex vivo study. PMID:24431935

  3. Prosthodontic maintenance requirements of implant-retained overdentures using the locator attachment system.

    PubMed

    Vere, Joe; Hall, Derek; Patel, Raj; Wragg, Phillip

    2012-01-01

    The aim of this study was to investigate the prosthodontic maintenance requirements of patients rehabilitated with maxillary and mandibular implant-retained overdentures using the Locator Attachment System by retrospectively reviewing case records. Fifty patients made 112 unplanned return visits over a 3-year period. The most common reasons for returning were denture adjustments (n = 45), inadequate retention (n = 39), and loosening of the implant abutments (n = 14). Implant-retained overdentures using the Locator Attachment System have comparable prosthodontic maintenance requirements to other attachment systems. Problems associated with these prostheses are usually simple to resolve chairside.

  4. Dental-Implantate und ihre Werkstoffe

    NASA Astrophysics Data System (ADS)

    Newesely, Heinrich

    1983-07-01

    Some new trends in materials for dental implants, which also effect in the operative techniques and implant design, are described. Advantages and shortcomings of the different material types are exemplified and correlated with their bioinert resp. bioactive functions. The practical interest in metallic implants focussed in titanium resp. oxide ceramics in the ceramic field, whereas the special goal of implant research follows from the improvement of the bioactive principle with loaded calcium phosphate implants.

  5. Laser-Modified Surface Enhances Osseointegration and Biomechanical Anchorage of Commercially Pure Titanium Implants for Bone-Anchored Hearing Systems

    PubMed Central

    Omar, Omar; Simonsson, Hanna; Palmquist, Anders; Thomsen, Peter

    2016-01-01

    Osseointegrated implants inserted in the temporal bone are a vital component of bone-anchored hearing systems (BAHS). Despite low implant failure levels, early loading protocols and simplified procedures necessitate the application of implants which promote bone formation, bone bonding and biomechanical stability. Here, screw-shaped, commercially pure titanium implants were selectively laser ablated within the thread valley using an Nd:YAG laser to produce a microtopography with a superimposed nanotexture and a thickened surface oxide layer. State-of-the-art machined implants served as controls. After eight weeks’ implantation in rabbit tibiae, resonance frequency analysis (RFA) values increased from insertion to retrieval for both implant types, while removal torque (RTQ) measurements showed 153% higher biomechanical anchorage of the laser-modified implants. Comparably high bone area (BA) and bone-implant contact (BIC) were recorded for both implant types but with distinctly different failure patterns following biomechanical testing. Fracture lines appeared within the bone ~30–50 μm from the laser-modified surface, while separation occurred at the bone-implant interface for the machined surface. Strong correlations were found between RTQ and BIC and between RFA at retrieval and BA. In the endosteal threads, where all the bone had formed de novo, the extracellular matrix composition, the mineralised bone area and osteocyte densities were comparable for the two types of implant. Using resin cast etching, osteocyte canaliculi were observed directly approaching the laser-modified implant surface. Transmission electron microscopy showed canaliculi in close proximity to the laser-modified surface, in addition to a highly ordered arrangement of collagen fibrils aligned parallel to the implant surface contour. It is concluded that the physico-chemical surface properties of laser-modified surfaces (thicker oxide, micro- and nanoscale texture) promote bone bonding

  6. Assessment of the anterior loop of the mandibular canal: A study using cone-beam computed tomography

    PubMed Central

    do Nascimento, Eduarda Helena Leandro; dos Anjos Pontual, Maria Luiza; dos Anjos Pontual, Andréa; da Cruz Perez, Danyel Elias; Figueiroa, José Natal; Frazão, Marco Antônio Gomes

    2016-01-01

    Purpose Sufficient area in the interforaminal region is required for dental implant placement, and the anterior loop of the mandibular canal is located within the limits of this area. The aim of this study was to evaluate the prevalence and extent of the anterior loop in a Brazilian sample population using cone-beam computed tomography (CBCT). Materials and Methods CBCT images from 250 patients (500 hemimandibles) obtained for various clinical indications were randomly selected and evaluated to determine the presence and length of the anterior loop. The length of the anterior loop was then compared based on gender, age, and the side of the mandible. The data were analyzed using the Pearson chi-square test and linear regression analysis. Results An anterior loop was identified in 41.6% of the cases, and its length ranged from 0.25 mm to 4.00 mm (mean, 1.1±0.8 mm). The loop had a greater mean length and was significantly more prevalent in males (p=0.014). No significant differences were found between the right and left sides regarding length (p=0.696) or prevalence (p=0.650). Conclusion In this study, a high prevalence of the anterior loop of the mandibular canal was found, and although its length varied greatly, in most cases it was less than 1 mm long. Although this is a prevalent anatomical variation, safety limits for the placement of implants in this region cannot be established before an accurate evaluation using imaging techniques in order to identify and preserve the neurovascular bundles. PMID:27358813

  7. Cochlear implants in young children.

    PubMed

    Niparko, John K; Blankenhorn, Rebecca

    2003-01-01

    The cochlear implant is best characterized as a device that provides access to the sound environment. The device enables the hearing pathway to respond to environmental and speech sounds, providing informational cues from the surroundings and from others that may escape visual detection. As the developmental effects of a profound hearing loss are multiple, cochlear implants have been applied to ever younger children in an attempt to promote a more normal level of developmental learning through audition. In deafness, transducer elements of the inner ear fail to trigger auditory nerve afferent nerves in the presence of sound input. However, large reserves of afferent fibers exist even in the auditory nerve of a profoundly deaf patient. Furthermore, these nerve fibers retain the ability to respond to prosthetic activation. Through developmental learning in the early, formative years, auditory centers of the brain appear capable of processing information from the implant to provide speech comprehension and oral language development. Multichannel implants have replaced original single channel designs. multichannel devices enable larger percentages of recipients to recognize the spoken word without visual cues because they provide spectral information in addition to temporal and intensity cues. Testing under conditions of auditory (implant)-only input reveals significant open-set speech understanding capabilities in more than 75% of children after three years of device use. The benefit provided by implants may vary with a number of conditions including: hearing history, age of deafness onset, age at implantation, etiology of deafness, linguistic abilities, and the presence of a motivated system of support of oral language development. Patient variables should be given individual consideration in judging candidacy for a cochlear implant and in planning rehabilitative and education services after surgery and activation of the device.

  8. Precipitation of Kr after implantation into Al

    SciTech Connect

    Birtcher, R.C.; Jaeger, W.

    1985-09-01

    Transmission electron microscopy (TEM) was used to perform a systematic study of the microstructural evolution in Al as a function of the fluence received during 65 keV Kr/sup +/ ion implantation at room temperature. At the lower fluences (2 x 10/sup 16/ to 2 x 10/sup 19/ Kr/sup +/m/sup -2/), isolated dislocation loops and the evolution of a dislocation network was observed by TEM. Above fluences of 10/sup 19/ Kr/sup +/m/sup -2/, the microstructure is dominated by a high density of Kr bubbles whose average size increases with dose. The appearance of additional electron diffraction reflections indicates that the majority of the bubbles contain solid fcc Kr that is epitaxially aligned with the fcc Al matrix. Above fluences of 2 x 10/sup 20/ Kr/sup +/m/sup -2/ an increasing fraction of the Kr is in a liquid or gas-like phase. The thermal stability of the microstructure, characteristic of the different fluence regimes, was investigated up to 640/sup 0/C by in situ TEM annealing experiments.

  9. Loop anomalies in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2015-01-01

    We consider gauge models in the causal approach and study one-loop contributions to the chronological products and the anomalies they produce. We prove that in order greater than 4 there are no one-loop anomalies. Next we analyze one-loop anomalies in the second- and third-order of the perturbation theory. We prove that the even parity contributions (with respect to parity) do not produce anomalies; for the odd parity contributions we reobtain the well-known result.

  10. Magnetic monopole in the loop representation

    SciTech Connect

    Leal, Lorenzo; Lopez, Alexander

    2006-01-15

    We quantize, within the Loop Representation formalism, the electromagnetic field in the presence of a static magnetic pole. It is found that the loop-dependent physical wave functionals of the quantum Maxwell theory become multivalued, through a topological phase factor depending on the solid angle subtended at the monopole by a surface bounded by the loop. It is discussed how this fact generalizes what occurs in ordinary quantum mechanics in multiply connected spaces.

  11. Costas loop analysis for coherent optical receivers

    NASA Astrophysics Data System (ADS)

    Hodgkinson, T. G.

    1986-03-01

    A homodyne Costas loop receiver is analyzed taking both shot and laser phase noise sources into acount. The reciever performance is compared with that of a heterodyne receiver using an electrical Costas loop and that of a coherent receiver using a pilot carrier phase-locked loop. It is shown that, to avoid large performance penalties, beat linewidth to bit-rate ratios smaller than 0.05 percent and 0.5 percent are needed for PSK homodyne and heterodyne systems, respectively.

  12. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  13. Wilson loops in open string theory

    SciTech Connect

    Shiraishi, K.

    1988-02-01

    Wilson loop elements on torus are introduced into the partition function of open strings as Polyakov's path integral at one-loop level. Mass spectra from compactification and expected symmetry breaking are illustrated by choosing the correct weight for the contributions from annulus and Mobius strip. The authors show that Jacobi's imaginary transformation connects the mass spectra with the Wilson loops. The application to thermo-partition function and cosmological implications are briefly discussed.

  14. Peripheral neural activity recording and stimulation system.

    PubMed

    Loi, D; Carboni, C; Angius, G; Angotzi, G N; Barbaro, M; Raffo, L; Raspopovic, S; Navarro, X

    2011-08-01

    This paper presents a portable, embedded, microcontroller-based system for bidirectional communication (recording and stimulation) between an electrode, implanted in the peripheral nervous system, and a host computer. The device is able to record and digitize spontaneous and/or evoked neural activities and store them in data files on a PC. In addition, the system has the capability of providing electrical stimulation of peripheral nerves, injecting biphasic current pulses with programmable duration, intensity, and frequency. The recording system provides a highly selective band-pass filter from 800 Hz to 3 kHz, with a gain of 56 dB. The amplification range can be further extended to 96 dB with a variable gain amplifier. The proposed acquisition/stimulation circuitry has been successfully tested through in vivo measurements, implanting a tf-LIFE electrode in the sciatic nerve of a rat. Once implanted, the device showed an input referred noise of 0.83 μVrms, was capable of recording signals below 10 μ V, and generated muscle responses to injected stimuli. The results demonstrate the capability of processing and transmitting neural signals with very low distortion and with a power consumption lower than 1 W. A graphic, user-friendly interface has been developed to facilitate the configuration of the entire system, providing the possibility to activate stimulation and monitor recordings in real time.

  15. A digital wireless system for closed-loop inhibition of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.

    2012-10-01

    Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.

  16. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  17. Orbital implants: potential new directions.

    PubMed

    Hicks, Celia R; Morrison, David; Lou, Xia; Crawford, Geoffrey J; Gadjatsy, Adam; Constable, Ian J

    2006-11-01

    This article reviews orbital implants used to replace an eye after enucleation or evisceration. Advantages of implant placement are described, with discussion of implant and wrap material, and design features that affect clinical outcomes. Implants may be porous or nonporous, pegged for linkage with a cosmetic shell or unpegged, and may be wrapped with a covering material or tissue or unwrapped. Device shape, volume and material qualities affect tissue tolerance and the risk of exposure or extrusion. Limitations of currently available devices are discussed, with factors affecting surgeon and patient choice. Ideally, a device should be easy to insert, avoid the need for wrapping or adjunctive tissues, be light, biointegratable, comfortable after implantation and provide satisfactory orbital volume replacement, movement and cosmesis without requiring further surgery or pegging. This review briefly discusses developments in implant design and aspects of design that affect function, but is not a detailed clinical review; rather, it aims to stimulate thought on optimal design and discusses recent developments. Novel technology in the form of a prototype device with a soft, biointegratable anterior surface is described as an example of newer approaches.

  18. Nanostructured Surfaces of Dental Implants

    PubMed Central

    Bressan, Eriberto; Sbricoli, Luca; Guazzo, Riccardo; Tocco, Ilaria; Roman, Marco; Vindigni, Vincenzo; Stellini, Edoardo; Gardin, Chiara; Ferroni, Letizia; Sivolella, Stefano; Zavan, Barbara

    2013-01-01

    The structural and functional fusion of the surface of the dental implant with the surrounding bone (osseointegration) is crucial for the short and long term outcome of the device. In recent years, the enhancement of bone formation at the bone-implant interface has been achieved through the modulation of osteoblasts adhesion and spreading, induced by structural modifications of the implant surface, particularly at the nanoscale level. In this context, traditional chemical and physical processes find new applications to achieve the best dental implant technology. This review provides an overview of the most common manufacture techniques and the related cells-surface interactions and modulation. A Medline and a hand search were conducted to identify studies concerning nanostructuration of implant surface and their related biological interaction. In this paper, we stressed the importance of the modifications on dental implant surfaces at the nanometric level. Nowadays, there is still little evidence of the long-term benefits of nanofeatures, as the promising results achieved in vitro and in animals have still to be confirmed in humans. However, the increasing interest in nanotechnology is undoubted and more research is going to be published in the coming years. PMID:23344062

  19. Biomechanics of Corneal Ring Implants

    PubMed Central

    2015-01-01

    Purpose: To evaluate the biomechanics of corneal ring implants by providing a related mathematical theory and biomechanical model for the treatment of myopia and keratoconus. Methods: The spherical dome model considers the inhomogeneity of the tunica of the eye, dimensions of the cornea, lamellar structure of the corneal stroma, and asphericity of the cornea. It is used in this study for calculating a strengthening factor sf for the characterization of different ring-shaped corneal implant designs. The strengthening factor is a measure of the amount of strengthening of the cornea induced by the implant. Results: For ring segments and incomplete rings, sf = 1.0, which indicates that these implants are not able to strengthen the cornea. The intracorneal continuous complete ring (MyoRing) has a strengthening factor of up to sf = 3.2. The MyoRing is, therefore, able to strengthen the cornea significantly. Conclusions: The result of the presented biomechanical analysis of different ring-shaped corneal implant designs can explain the different postoperative clinical results of different implant types in myopia and keratoconus. PMID:26312619

  20. [Implant-associated infections - Diagnostics].

    PubMed

    Renz, N; Müller, M; Perka, C; Trampuz, A

    2016-10-01

    The diagnosis of implant-associated infections is challenging as chronic low-grade infections often only manifest as subtle clinical symptoms. Clinical evaluation, patient history, imaging, histopathological and microbiological examinations build the cornerstones of the diagnostics for implant-associated infections. New onset of pain at rest, local symptoms at the surgical site and early loosening of the prosthesis or pseudarthrosis should raise suspicion for an infection and prompt further evaluation. Percutaneous sinus tracts, purulent wound secretions and skin erosions with exposure of the implant are certain signs of implant-associated infections. Elevated C‑reactive protein levels in blood support the diagnosis of infection but are neither sufficient sensitive nor specific to confirm or exclude infection. Preoperative antibiotic therapy interferes with the diagnostic evaluation and should be avoided. In periprosthetic joint infections, joint aspiration with determination of the leukocyte count and microbiological examination is a crucial first diagnostic step. Through microbiological and histopathological examinations of intraoperative tissue samples, as well as sonication of explanted implants, the causative pathogen can be identified in most cases. In osteosynthesis-associated infections imaging plays a key role to detect non-union, infection callus, sequester, peri-implant osteolysis and extraosseous and intramedullary pathologies. In prosthetic joint infections imaging provides information about the position and stability of the prosthesis. In case of hematogenic infection seeding from a distant focus, blood cultures should be sampled, followed by a meticulous investigation of potential primary focus of infection, depending on the causative agent.

  1. Retinal implants: a systematic review.

    PubMed

    Chuang, Alice T; Margo, Curtis E; Greenberg, Paul B

    2014-07-01

    Retinal implants present an innovative way of restoring sight in degenerative retinal diseases. Previous reviews of research progress were written by groups developing their own devices. This systematic review objectively compares selected models by examining publications describing five representative retinal prostheses: Argus II, Boston Retinal Implant Project, Epi-Ret 3, Intelligent Medical Implants (IMI) and Alpha-IMS (Retina Implant AG). Publications were analysed using three criteria for interim success: clinical availability, vision restoration potential and long-term biocompatibility. Clinical availability: Argus II is the only device with FDA approval. Argus II and Alpha-IMS have both received the European CE Marking. All others are in clinical trials, except the Boston Retinal Implant, which is in animal studies. Vision restoration: resolution theoretically correlates with electrode number. Among devices with external cameras, the Boston Retinal Implant leads with 100 electrodes, followed by Argus II with 60 electrodes and visual acuity of 20/1262. Instead of an external camera, Alpha-IMS uses a photodiode system dependent on natural eye movements and can deliver visual acuity up to 20/546. Long-term compatibility: IMI offers iterative learning; Epi-Ret 3 is a fully intraocular device; Alpha-IMS uses intraocular photosensitive elements. Merging the results of these three criteria, Alpha-IMS is the most likely to achieve long-term success decades later, beyond current clinical availability. PMID:24403565

  2. Retention of Implant Supported Metal Crowns Cemented with Different Luting Agents: A Comparative Invitro Study

    PubMed Central

    Singh, Kavipal; Kaur, Simrat; Arora, Aman

    2016-01-01

    Introduction To overcome limitations of screw-retained prostheses, cement-retained prostheses have become the restoration of choice now a days. Selection of the cement hence becomes very critical to maintain retrievability of the prostheses. Aim The purpose of this study was to assess and compare the retention of base metal crowns cemented to implant abutments with five different luting cements. Materials and Methods Ten implant analogs were secured in five epoxy resin casts perpendicular to the plane of cast in right first molar and left first molar region and implant abutments were screwed. Total of 100 metal copings were fabricated and cemented. The cements used were zinc phosphate, resin modified glass ionomer cement, resin cement, non-eugenol acrylic based temporary implant cement & non-eugenol temporary resin cement implant cement. Samples were subjected to a pull-out test using an Instron universal testing machine at a crosshead speed of 0.5mm/min. The load required to de-cement each coping was recorded and mean values for each group calculated and put to statistical analysis. Results The results showed that resin cement has the highest retention value 581.075N followed by zinc phosphate luting cement 529.48N, resin modified glass ionomer cement 338.095 N, non-eugenol acrylic based temporary implant cement 249.045 N and non-eugenol temporary resin implant cement 140.49N. Conclusion Within the limitations of study, it was concluded that non-eugenol acrylic based temporary implant cement and non-eugenol temporary resin implant cement allow for easy retrievability of the prosthesis in case of any failure in future. These are suitable for cement retained implant restorations. The results provide a possible preliminary ranking of luting agents based on their ability to retain an implant-supported prosthesis and facilitate easy retrieval. PMID:27190954

  3. Unified framework for systematic loop transformations

    SciTech Connect

    Lu, L.C.; Chen, M.

    1990-10-01

    This paper presents a formal mathematical framework which unifies the existing loop transformations. This framework also includes more general classes of loop transformations, which can extract more parallelism from a class of programs than the existing techniques. We classify schedules into three classes: uniform, subdomain-variant, and statement-variant. Viewing from the degree of parallelism to be gained by loop transformation, the schedules can also be classified as single-sequential level, multiple-sequential level, and mixed schedules. We also illustrate the usefulness of the more general loop transformation with an example program.

  4. Conservation law for linked cosmic string loops

    NASA Astrophysics Data System (ADS)

    Bekenstein, Jacob D.

    1992-05-01

    Taking a cue from the connection between fluid helicity and the linkage between closed vortices in ordinary turbulent flow, we examine topological restrictions on the linkage of cosmic string loops (or superfluid quantum vortex rings). The analog of helicity in these cases vanishes, but loops (and vortex rings) can link together, the extent of linkage (knotting included) being related to the contorsion of the loops or rings by a topological conservation law. This law is respected by intercommunication. One consequence is that total loop contorsion is quantized in integers.

  5. Multi-instrument observations of coronal loops

    NASA Astrophysics Data System (ADS)

    Scott, Jason Terrence

    This document exhibits results of analysis from data collected with multiple EUV satellites (SOHO, TRACE, STEREO, Hinode, and SDO). The focus is the detailed observation of coronal loops using multiple instruments, i.e. filter imagers and spectrometers. Techniques for comparing the different instruments and deriving loop parameters are demonstrated. Attention is given to the effects the different instruments may introduce into the data and their interpretation. The assembled loop parameters are compared to basic energy balance equations and scaling laws. Discussion of the blue-shifted, asymmetric, and line broadened spectral line profiles near the footpoints of coronal loops is made. The first quantitative analysis of the anti-correlation between intensity and spectral line broadening for isolated regions along loops and their footpoints is presented. A magnetic model of an active region shows where the separatrices meet the photospheric boundary. At the boundary, the spectral data reveal concentrated regions of increased blue-shifted outflows, blue wing asymmetry, and line broadening. This is found just outside the footpoints of bright loops. The intensity and line broadening in this region are anti-correlated. A comparison of the similarities in the spectroscopic structure near the footpoints of the arcade loops and more isolated loops suggests the notion of consistent structuring for the bright loops forming an apparent edge of an active region core.

  6. Double dither loop for pseudonoise code tracking

    NASA Technical Reports Server (NTRS)

    Hopkins, P. M.

    1977-01-01

    A new type of phase detector for pseudonoise code tracking is introduced and analyzed in comparison with the delay lock loop (DLL) and tau-dither loop (TDL) configurations. It is shown that the double dither loop (DDL) combines the best features of the DLL and the TDL in that the DDL is insensitive to gain and offset imbalances and does not suffer the 3-dB degradation in noise performance typically associated with the TDL. The double dither concept is applicable to other dual channel detectors such as in a Costas-type carrier tracking loop.

  7. Analysis Of Lock Detection In Costas Loops

    NASA Technical Reports Server (NTRS)

    Mileant, Alexander; Hinedi, Sami M.

    1991-01-01

    Report presents analysis of detection of phase lock in Costas loops, used in coherent binary-phase-shift-keying communication systems to track both subcarrier and suppressed carrier signals. Detection of phase lock important part of operation and monitoring of operation of Costas or other tracking loop, provides insight into behavior of loop in real time. Focuses on effects of phase jitter and correlation between samples of phase error in all-digital Costas loop, in which lock detection implemented via algorithm. Applicable to both sinusoidal and square-law carrier signals, incorporates new mathematical models of square-law and absolute-value detectors.

  8. Screened perturbation theory to three loops

    SciTech Connect

    Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2001-05-15

    The thermal physics of a massless scalar field with a {phi}{sup 4} interaction is studied within screened perturbation theory (SPT). In this method the perturbative expansion is reorganized by adding and subtracting a mass term in the Lagrangian. We consider several different mass prescriptions that generalize the one-loop gap equation to two-loop order. We calculate the pressure and entropy to three-loop order and the screening mass to two-loop order. In contrast with the weak-coupling expansion, the SPT-improved approximations appear to converge even for rather large values of the coupling constant.

  9. Poly Implant Prothèse™ (PIP) experience in the United Kingdom: A prospective cohort study into the accuracy of diagnostic imaging findings in comparison to operative findings of 1029 implants.

    PubMed

    Leckenby, Jonathan; Chana, Jagdeep; Harrison, Douglas; Grobbelaar, Adriaan

    2016-04-01

    The Poly Implant Prosthèse™ (PIP) implants were withdrawn from market use in the United Kingdom on 31st March 2010 following Government issued advice. In June 2012 a final Government report was issued and during this period the majority of patients elected to have their prostheses removed. This study presents the operative findings of three surgeons. 517 patients were identified retrospectively from the implant database as having received PIP implants with a total of 1029 implants. 62 patients (124 implants) declined explantation after consultation and imaging. The data was recorded prospectively for all patients and included the clinical, imaging and operative findings. A total of 905 implants were removed of which 129 were ruptured at the time of explantation (14.25%). 27 implants were intact but the presence of liquid surrounding the prosthesis was noted. 93 implants were reported as being ruptured after diagnostic imaging but were intact operatively resulting in a test sensitivity of 0.82 and a specificity of 0.92 yielding a positive predictive value of 0.59 and a negative predictive value of 0.97 overall. Capsule formation was noted in 27 breasts (3%). Our study showed that the prevalence of PIP ruptures is comparable to other manufacturers. The prevalence of implant rupture predictably increased over time and the prevalence of abnormal capsule formation was similar to other manufacturers. PMID:26936318

  10. Wireless microsensor network solutions for neurological implantable devices

    NASA Astrophysics Data System (ADS)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.

    2005-05-01

    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  11. Assessment and Evaluation of Quality of Life (OHRQoL) of Patients with Dental Implants Using the Oral Health Impact Profile (OHIP-14) - A Clinical Study

    PubMed Central

    2016-01-01

    Introduction Peri-implant tissue health is a requisite for success of dental implant therapy. Plaque accumulation leads to initiation of gingivitis around natural teeth and peri-implantitis around dental implants. Peri-implantitis around dental implants may result in implant placement failure. For obtaining long-term success, timely assessment of dental implant site is mandatory. Aim To assess and evaluate Quality of Life (OHRQoL) of individuals with dental implants using the Oral Health Impact Profile (OHIP-14). Materials and Methods Total 92 patients were evaluated for assessment of the health of peri-implant tissues by recording, Plaque Index (PI), Probing Pocket Depth (PD), Bleeding On Probing (BOP) and Probing Attachment Level (PAL) as compared to contra-lateral natural teeth (control). In the same patients Quality of Life Assessment was done by utilizing Oral Health Impact Profile Index (OHIP-14). Results The mean plaque index around natural teeth was more compared to implants and it was statistically significant. Other three dimensions mean bleeding on probing; mean probing attachment level and mean pocket depth around both natural teeth and implant surfaces was found to be not statistically significant. OHIP-14 revealed that patients with dental implants were satisfied with their Oral Health-Related Quality of Life (OHRQoL). Conclusion Similar inflammatory conditions are present around both natural teeth and implant prostheses as suggested by results of mean plaque index, mean bleeding on probing, mean pocket depth and mean probing attachment level, hence reinforcing the periodontal health maintenance both prior to and after incorporation of dental implants. Influence of implant prostheses on patient’s oral health related quality of life (as depicted by OHIP-14) and patients’ perceptions and expectations may guide the clinician in providing the best implant services. PMID:27190953

  12. Transient enhanced diffusion and gettering of dopants in ion implanted silicon

    SciTech Connect

    Pennycook, S.J.; Narayan, J.; Culbertson, R.J.

    1984-01-01

    We have studied in detail the transient enhanced diffusion observed during furnace or rapid-thermal-annealing of ion-implanted Si. We show that the effect originates in the trapping of Si atoms by dopant atoms during implantation, which are retained during solid-phase-epitaxial (SPE) growth but released by subsequent annealing to cause a transient dopant precipitation or profile broadening. The interstitials condense to form a band of dislocation loops located at the peak of the dopant profile, which may be distinct from the band formed at the original amorphous/crystalline interface. The band can develop into a network and effectively getter the dopant. We discuss the conditions under which the various effects may or may not be observed, and discuss conflicting observations on As/sup +/ implanted Si.

  13. Do we need keratinized mucosa for a healthy peri-implant soft tissue?

    PubMed

    Esfahanizadeh, Nasrin; Daneshparvar, Niloufar; Motallebi, Sara; Akhondi, Nasrin; Askarpour, Farinaz; Davaie, Sotudeh

    2016-01-01

    The presence of keratinized mucosa plays a fundamental role in peri-implant soft tissue health. This study assessed the impact of the width of keratinized mucosa (WKM) on peri-implant soft tissue parameters. A cross-sectional study was conducted on 110 bone-level implants in 36 patients. A minimum of 6 months had passed since the loading of implants, and the patients had at least 1 implant in 1 quadrant at the molar or premolar site restored with a single crown or fixed partial denture. The health of peri-implant soft tissue was assessed with a modified bleeding index (MBI), modified plaque index (MPI), and modified gingival index (MGI). Probing depth (PD), gingival recession (GR), and WKM were also measured. History of smoking and oral hygiene methods were recorded. A significant inverse correlation existed between WKM and the parameters MBI, MPI, MGI, and GR (P < 0.05). Values of MBI, MPI, MGI, and GR were significantly lower in areas with WKM ≥ 2 mm and higher in areas with WKM < 2 mm (P < 0.05). The WKM was greatest in subjects using the vibratory toothbrushing technique and narrowest in those using the horizontal toothbrushing technique (P < 0.05). The mean WKM was significantly greater in smokers than in nonsmokers (P < 0.05). Results of this study indicate that an association exists between WKM and peri-implant soft tissue health. A minimum of 2 mm of keratinized mucosa around implants is recommended. PMID:27367634

  14. Maintenance requirements associated with mandibular implant overdentures: clinical results after first year of service.

    PubMed

    Bilhan, Hakan; Geckili, Onur; Mumcu, Emre; Bilmenoglu, Caglar

    2011-12-01

    The aim of this clinical study was to evaluate the prosthodontic maintenance requirements during the first year of service of mandibular overdentures supported by interforaminal implants and to assess the influence of attachment type, implant number, and bite force on these requirements. Fifty-nine patients treated with mandibular implant overdentures between the years 2004 and 2009 and appearing in the 12th-month recall were included in this study. The overdentures constituted 4 groups: 2 single interforaminal implants (1 group with locator and 1 group with ball attachments), 3 single interforaminal implants, 3 splinted interforaminal implants (bar), and 4 splinted interforaminal implants (bar). During the examination, prosthetic parameters such as occlusion, tissue adaptation, condition of the retentive mechanism (matrice and patrice), and the condition of the denture-bearing tissues were evaluated and recorded. No statistically significant relation was found between attachment type, bite force values, implant number, and the occurring complications except the need for relining, which was found significantly more in the ball attachments than in other attachment groups (P  =  .03). After 12 months following the overdenture insertion, there seems to be no relation between occurring complications and patient-related factors, such as maximum bite force, age, and gender, as well as factors related to the overdentures such as number and type of attachments.

  15. Mandibular single crystal sapphire implants: changes in crestal bone levels over three years.

    PubMed

    Fartash, B; Eliasson, S; Arvidson, K

    1995-09-01

    A total of 190 single crystal sapphire implants, 85 short (4S9S) and 105 long (4S9L), were monitored with panoramic and intraoral radiographs for 3 years. The implants were used as abutments for overdentures in edentulous mandibles in 51 patients. Within the first year, 2 patients lost one implant each due to pain and lack of osseointegration. Neither was replaced and the superstructures remained stable. At baseline registration, i.e., immediately after the prosthetic installation, the bone height relative to the length of the implant was calculated. The mean bone implant score (BIS) was 63.55 +/- 1.34% (mean +/- SE). BIS decreased during the first year 62.18 +/- 1.51%. At the 2- and 3-year recordings, the mean BIS were 61.81 +/- 1.58% and 61.73 +/- 1.63%, respectively. There were no statistically significant differences in BIS changes over the 3-year period or between men and women. The decrease in mean BIS was greater for implants in the premolar region than in the incisor region and for short implants than for long implants.

  16. The clinical prognosis of implants that are placed against super-erupted opposing dentition

    PubMed Central

    2016-01-01

    Objectives If teeth are missing, super-eruption of teeth in the opposing arch can occur in the area and can change the occlusal plane. When missing teeth are replaced with implants, the oral surgeon must determine whether or not the super-erupted teeth need to be treated in order to normalize the occlusal plane. In this study, we evaluated the clinical prognosis of dentition after implant placement and prosthetic treatment were completed in an occlusal plane altered by super-erupted teeth in the opposing arch without additional treatment of the super-erupted teeth. Materials and Methods Twenty-two patients (9 males, 13 females) were treated with implants and prosthetics without addressing the super-erupted opposing dentition from April 2004 to August 2012 at Seoul National University Bundang Hospital. A total of 33 implants were placed. Values of crestal bone loss, survival rates, and surgical and prosthetic complications for an average of 29.6 months after prosthetic loading were recorded. Results In one case, the cover screw was exposed after implant surgery. The mean crestal bone loss was 0.09±0.30 mm. Of the 33 implants, 31 survived, a survival rate of 93.94%. A prosthetic complication occurred in one case but functioned well after correction. Conclusion Favorable clinical results from prosthetic complications, crestal bone loss, and implant survival rates were exhibited in implants next to a super-erupted opposing tooth. PMID:27429935

  17. [Implantable hemodynamic monitoring devices].

    PubMed

    Seifert, M; Butter, C

    2015-11-01

    Heart failure is one of the most frequent diagnoses in hospital admissions in Germany. In the majority of these admissions acute decompensation of an already existing chronic heart failure is responsible. New mostly wireless and remote strategies for monitoring, titration, adaptation and optimization are the focus for improvement of the treatment of heart failure patients and the poor prognosis. The implantation of hemodynamic monitoring devices follows the hypothesis that significant changes in hemodynamic parameters occur before the occurrence of acute decompensation requiring readmission. Three different hemodynamic monitoring devices have so far been investigated in clinical trials employing right ventricular pressure, left atrial pressure and pulmonary artery pressure monitoring. Only one of these systems, the CardioMENS™ HF monitoring system, demonstrated a significant reduction of hospitalization due to heart failure over 6 months in the CHAMPION trial. The systematic adaptation of medication in the CHAMPION trial significantly differed from the usual care of the control arm over 6 months. This direct day to day management of diuretics is currently under intensive investigation; however, further studies demonstrating a positive effect on mortality are needed before translation of this approach into guidelines. Without this evidence a further implementation of pressure monitoring into currently used devices and justification of the substantial technical and personnel demands are not warranted.

  18. Imaging of common breast implants and implant-related complications: A pictorial essay

    PubMed Central

    Shah, Amisha T; Jankharia, Bijal B

    2016-01-01

    The number of women undergoing breast implant procedures is increasing exponentially. It is, therefore, imperative for a radiologist to be familiar with the normal and abnormal imaging appearances of common breast implants. Diagnostic imaging studies such as mammography, ultrasonography, and magnetic resonance imaging are used to evaluate implant integrity, detect abnormalities of the implant and its surrounding capsule, and detect breast conditions unrelated to implants. Magnetic resonance imaging of silicone breast implants, with its high sensitivity and specificity for detecting implant rupture, is the most reliable modality to asses implant integrity. Whichever imaging modality is used, the overall aim of imaging breast implants is to provide the pertinent information about implant integrity, detect implant failures, and to detect breast conditions unrelated to the implants, such as cancer. PMID:27413269

  19. Why are mini-implants lost: The value of the implantation technique!

    PubMed Central

    Romano, Fabio Lourenço; Consolaro, Alberto

    2015-01-01

    The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss. PMID:25741821

  20. Radio diagnostic of loop oscillations with wavy zebra patterns

    NASA Astrophysics Data System (ADS)

    Zlotnik, E. Ya.; Zaitsev, V. V.; Aurass, H.

    The possible reasons for the wave-like frequency drift of zebra stripes in solar radio emission are analysed. For the event of October 25, 1994 recorded by the radio spectrograph of the Astrophysical Institute Potsdam (AIP) it is shown that if the zebra pattern is due to the effect of the double plasma resonance in an inhomogeneous coronal loop, then the oscillating change of zebra stripes frequencies may be associated with fast magneto-sonic (FMS) oscillations of the magnetic flux tube. Such a conclusion is based on the agreement of the theoretically predicted FMS-mode period and its dependence on the harmonic number with the observed values.