Science.gov

Sample records for implanted electromagnetic transponders

  1. Bronchoscopic Implantation of a Novel Wireless Electromagnetic Transponder in the Canine Lung: A Feasibility Study

    SciTech Connect

    Mayse, Martin L.; Parikh, Parag J.; Lechleiter, Kristen M.

    2008-09-01

    Purpose: The success of targeted radiation therapy for lung cancer treatment is limited by tumor motion during breathing. A real-time, objective, nonionizing, electromagnetic localization system using implanted electromagnetic transponders has been developed (Beacon electromagnetic transponder, Calypso Medical Technologies, Inc., Seattle, WA). We evaluated the feasibility and fixation of electromagnetic transponders bronchoscopically implanted in small airways of canine lungs and compared to results using gold markers. Methods and Materials: After approval of the Animal Studies Committee, five mongrel dogs were anesthetized, intubated, and ventilated. Three transponders were inserted into the tip of a plastic catheter, passed through the working channel ofmore » a flexible bronchoscope, and implanted into small airways of a single lobe using fluoroscopic guidance. This procedure was repeated for three spherical gold markers in the opposite lung. One, 7, 14, 28, and 60 days postimplantation imaging was used to assess implant fixation. Results: Successful bronchoscopic implantation was possible for 15 of 15 transponders and 12 of 15 gold markers; 3 markers were deposited in the pleural space. Fixation at 1 day was 15 of 15 for transponders and 12 of 12 for gold markers. Fixation at 60 days was 6 of 15 for transponders and 7 of 12 for gold markers, p value = 0.45. Conclusions: Bronchoscopic implantation of both transponders and gold markers into the canine lung is feasible, but fixation rates are low. If fixation rates can be improved, implantable electromagnetic transponders may allow improved radiation therapy for lung cancer by providing real-time continuous target tracking. Developmental work is under way to improve the fixation rates and to reduce sensitivity to implantation technique.« less

  2. An accurate method to quantify breathing-induced prostate motion for patients implanted with electromagnetic transponders.

    PubMed

    Giandini, Tommaso; Panaino, Costanza M V; Avuzzi, Barbara; Morlino, Sara; Villa, Sergio; Bedini, Nice; Carabelli, Gabriele; Frasca, Sarah C; Romanyukha, Anna; Rosenfeld, Anatoly; Pignoli, Emanuele; Valdagni, Riccardo; Carrara, Mauro

    2017-03-24

    To validate and apply a method for the quantification of breathing-induced prostate motion (BIPM) for patients treated with radiotherapy and implanted with electromagnetic transponders for prostate localization and tracking. For the analysis of electromagnetic transponder signal, dedicated software was developed and validated with a programmable breathing simulator phantom. The software was then applied to 1,132 radiotherapy fractions of 30 patients treated in supine position, and to a further 61 fractions of 2 patients treated in prone position. Application of the software in phantom demonstrated reliability of the developed method in determining simulated breathing frequencies and amplitudes. For supine patients, the in vivo analysis of BIPM resulted in median (maximum) amplitudes of 0.10 mm (0.35 mm), 0.24 mm (0.66 mm), and 0.17 mm (0.61 mm) in the left-right (LR), cranio-caudal (CC), and anterior-posterior (AP) directions, respectively. Breathing frequency ranged between 7.73 and 29.43 breaths per minute. For prone patients, the ranges of the BIPM amplitudes were 0.1-0.5 mm, 0.5-1.3 mm, and 0.7-1.7 mm in the LR, CC, and AP directions, respectively. The developed method was able to detect the BIPM with sub-millimeter accuracy. While for patients treated in supine position the BIPM represents a reduced source of treatment uncertainty, for patients treated in prone position, it can be higher than 3 mm.

  3. Transperineal ultrasound-guided implantation of electromagnetic transponders in the prostatic fossa for localization and tracking during external beam radiation therapy.

    PubMed

    Garsa, Adam A; Verma, Vivek; Michalski, Jeff M; Gay, Hiram A

    2014-01-01

    To describe a transperineal ultrasound-guided technique for implantation of electromagnetic transponders into the prostatic fossa. Patients were placed in the dorsal lithotomy position, and local anesthetic was administered. On ultrasound, the bladder, urethra, vesicourethral anastomosis, rectum, and the prostatic fossa were carefully identified. Three transponders were implanted into the prostatic fossa under ultrasound guidance in a triangular configuration and implantation was verified by fluoroscopy. Patients underwent computed tomography (CT) simulation approximately 1 week later. All patients in this study were subsequently treated with intensity modulated radiation therapy (IMRT) to the prostatic fossa. From 2008 to 2012, 180 patients received transperineal implantation of electromagnetic transponders into the prostatic fossa and subsequently received IMRT. There were no cases of severe hematuria or rectal bleeding requiring intervention. There were no grade 3 or 4 toxicities. Three patients (1.7%) had a transponder missing on the subsequent CT simulation. Thirteen patients (7.3%) had transponder migration with a geometric residual that exceeded 2 mm for 3 consecutive days (5.6%) or rotation that exceeded 10 degrees for 5 consecutive days (1.7%). These patients underwent a resimulation CT scan to identify the new transponder coordinates. A transperineal technique for implantation of electromagnetic transponders into the prostatic fossa is safe and well tolerated, with no severe toxicity after implantation. There is a low rate of transponder loss or migration.

  4. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: A phantom study

    PubMed Central

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V.; Hagan, Michael; Anscher, Mitchell

    2011-01-01

    Purpose: To evaluate both the Calypso Systems’ (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal–oxide–semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters’ reading accuracy in the presence of wireless electromagnetic transponders inside a phantom.Methods: A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with∕without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with∕without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit.Results: Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum

  5. Investigations of interference between electromagnetic transponders and wireless MOSFET dosimeters: a phantom study.

    PubMed

    Su, Zhong; Zhang, Lisha; Ramakrishnan, V; Hagan, Michael; Anscher, Mitchell

    2011-05-01

    To evaluate both the Calypso Systems' (Calypso Medical Technologies, Inc., Seattle, WA) localization accuracy in the presence of wireless metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters of dose verification system (DVS, Sicel Technologies, Inc., Morrisville, NC) and the dosimeters' reading accuracy in the presence of wireless electromagnetic transponders inside a phantom. A custom-made, solid-water phantom was fabricated with space for transponders and dosimeters. Two inserts were machined with positioning grooves precisely matching the dimensions of the transponders and dosimeters and were arranged in orthogonal and parallel orientations, respectively. To test the transponder localization accuracy with/without presence of dosimeters (hypothesis 1), multivariate analyses were performed on transponder-derived localization data with and without dosimeters at each preset distance to detect statistically significant localization differences between the control and test sets. To test dosimeter dose-reading accuracy with/without presence of transponders (hypothesis 2), an approach of alternating the transponder presence in seven identical fraction dose (100 cGy) deliveries and measurements was implemented. Two-way analysis of variance was performed to examine statistically significant dose-reading differences between the two groups and the different fractions. A relative-dose analysis method was also used to evaluate transponder impact on dose-reading accuracy after dose-fading effect was removed by a second-order polynomial fit. Multivariate analysis indicated that hypothesis 1 was false; there was a statistically significant difference between the localization data from the control and test sets. However, the upper and lower bounds of the 95% confidence intervals of the localized positional differences between the control and test sets were less than 0.1 mm, which was significantly smaller than the minimum clinical localization resolution of 0

  6. The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system.

    PubMed

    Murphy, Martin J; Eidens, Richard; Vertatschitsch, Edward; Wright, J Nelson

    2008-09-01

    To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. The accuracy of the localization system is unaffected by transponder motion.

  7. SHORT-PULSE ELECTROMAGNETIC TRANSPONDER FOR HOLE-TO-HOLE USE.

    USGS Publications Warehouse

    Wright, David L.; Watts, Raymond D.; Bramsoe, Erik

    1983-01-01

    Hole-to-hole observations were made through nearly 20 m of granite using an electromagnetic transponder (an active reflector) in one borehole and a single-hole short-pulse radar in another. The transponder is inexpensive, operationally simple, and effective in extending the capability of a short-pulse borehole radar system to allow hole-to-hole operation without requiring timing cables. A detector in the transponder senses the arrival of each pulse from the radar. Each pulse detection triggers a kilovolt-amplitude pulse for retransmission. The transponder 'echo' may be stronger than that of a passive reflector by a factor of as much as 120 db. The result is an increase in range capability by a factor which depends on attenuation in the medium and hole-to-hole wavepath geometry.

  8. The first clinical implementation of electromagnetic transponder-guided MLC tracking.

    PubMed

    Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T

    2014-02-01

    We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.

  9. The first clinical implementation of electromagnetic transponder-guided MLC tracking

    PubMed Central

    Keall, Paul J.; Colvill, Emma; O’Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T.

    2014-01-01

    Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. Results: The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. Conclusions: The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy. PMID:24506591

  10. Electromagnetic transponders indicate prostate size increase followed by decrease during the course of external beam radiation therapy.

    PubMed

    King, Benjamin L; Butler, Wayne M; Merrick, Gregory S; Kurko, Brian S; Reed, Joshua L; Murray, Brian C; Wallner, Kent E

    2011-04-01

    Real-time image guidance enables more accurate radiation therapy by tracking target movement. This study used transponder positions to monitor changes in prostate volume that may be a source of dosimetric and target inaccuracy. Twenty-four men with biopsy-proven T1c-T3a prostate cancer each had three electromagnetic transponders implanted transperineally. Their coordinates were recorded by the Calypso system, and the perimeter of the triangle formed by the transponders was used to calculate prostate volumes at sequential time points throughout the course of radiation therapy to a dose of 81 Gy in 1.8-Gy fractions. There was a significant decrease in mean prostate volume of 10.9% from the first to the final day of radiation therapy. The volume loss did not occur monotonically but increased in most patients (75%) during the first several weeks to a median maximum on Day 7. The volume increased by a mean of 6.1% before decreasing by a mean maximum difference of 18.4% to nadir (p < 0.001 for both increase and decrease). Glandular shrinkage was asymmetric, with the apex to right base dimension varying more than twice that of the lateral dimension. For all dimensions, the mean change was <0.5 cm. Real-time transponder positions indicated a volume increase during the initial days of radiation therapy and then significant and asymmetric shrinkage by the final day. Understanding and tracking volume fluctuations of the prostate during radiation therapy can help real-time imaging technology perform to its fullest potential. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Body temperature measurement in mice during acute illness: implantable temperature transponder versus surface infrared thermometry.

    PubMed

    Mei, Jie; Riedel, Nico; Grittner, Ulrike; Endres, Matthias; Banneke, Stefanie; Emmrich, Julius Valentin

    2018-02-23

    Body temperature is a valuable parameter in determining the wellbeing of laboratory animals. However, using body temperature to refine humane endpoints during acute illness generally lacks comprehensiveness and exposes to inter-observer bias. Here we compared two methods to assess body temperature in mice, namely implanted radio frequency identification (RFID) temperature transponders (method 1) to non-contact infrared thermometry (method 2) in 435 mice for up to 7 days during normothermia and lipopolysaccharide (LPS) endotoxin-induced hypothermia. There was excellent agreement between core and surface temperature as determined by method 1 and 2, respectively, whereas the intra- and inter-subject variation was higher for method 2. Nevertheless, using machine learning algorithms to determine temperature-based endpoints both methods had excellent accuracy in predicting death as an outcome event. Therefore, less expensive and cumbersome non-contact infrared thermometry can serve as a reliable alternative for implantable transponder-based systems for hypothermic responses, although requiring standardization between experimenters.

  12. Increased dose near the skin due to electromagnetic surface beacon transponder.

    PubMed

    Ahn, Kang-Hyun; Manger, Ryan; Halpern, Howard J; Aydogan, Bulent

    2015-05-08

    The purpose of this study was to evaluate the increased dose near the skin from an electromagnetic surface beacon transponder, which is used for localization and tracking organ motion. The bolus effect due to the copper coil surface beacon was evaluated with radiographic film measurements and Monte Carlo simulations. Various beam incidence angles were evaluated for both 6 MV and 18 MV experimentally. We performed simulations using a general-purpose Monte Carlo code MCNPX (Monte Carlo N-Particle) to supplement the experimental data. We modeled the surface beacon geometry using the actual mass of the glass vial and copper coil placed in its L-shaped polyethylene terephthalate tubing casing. Film dosimetry measured factors of 2.2 and 3.0 enhancement in the surface dose for normally incident 6 MV and 18 MV beams, respectively. Although surface dose further increased with incidence angle, the relative contribution from the bolus effect was reduced at the oblique incidence. The enhancement factors were 1.5 and 1.8 for 6 MV and 18 MV, respectively, at an incidence angle of 60°. Monte Carlo simulation confirmed the experimental results and indicated that the epidermal skin dose can reach approximately 50% of the dose at dmax at normal incidence. The overall effect could be acceptable considering the skin dose enhancement is confined to a small area (~ 1 cm2), and can be further reduced by using an opposite beam technique. Further clinical studies are justified in order to study the dosimetric benefit versus possible cosmetic effects of the surface beacon. One such clinical situation would be intact breast radiation therapy, especially large-breasted women.

  13. Survival and tag loss in Moapa White River springfish implanted with passive integrated transponder tags

    USGS Publications Warehouse

    Dixon, Christopher J.; Mesa, Matthew G.

    2011-01-01

    We monitored survival and tag loss among Moapa White River springfish Crenichthys baileyi moapae that were surgically implanted with passive integrated transponder (PIT; 9 × 2 mm) tags. The fish used in the study ranged from 40 to 67 mm in total length and from 1.0 to 6.5 g in mass; the PIT tag: body weight ratios were 1.0–6.1%. Fish were held for 41 d in live cages within a small, warm desert stream. Survival did not differ between untagged control fish (94.5%) and tagged fish (95.6%). Survival did not appear to be influenced by fish size or PIT tag: body weight ratio, but the small number of fish that died precluded a detailed analysis. Tag retention was 100% among the 86 fish that survived over the 41 d. Our results suggest that surgically implanting 9-mm PIT tags into Moapa White River springfish as small as 40 mm is an effective method for marking them because it has minimal impacts on survival and tag retention is high. More work is needed on the effects of PIT tagging on growth and other performance metrics of springfish and other small desert fishes.

  14. Survival and growth of age-0 steelhead after surgical implantation of 23-mm passive integrated transponders

    USGS Publications Warehouse

    Bateman, D.S.; Gresswell, R.E.

    2006-01-01

    Little information is available on the effects of implanting 23-mm passive integrated transponder (PIT) tags in salmonids less than 90 mm fork length (FL). Using juvenile steelhead Oncorhynchus mykiss (range, 73–97 mm FL), we compared instantaneous growth rates and survival among three experimental groups: control, surgery with no tag, and surgery with tag. Survival rate was lower for tagged fish (86%) than for control and surgery−no tag fish (virtually 100% in each group). Approximately 90% of the mortalities occurred during days 1–3. Growth rate for the tagged group was lower for the first two 10-d measurement intervals; however, during the third 10-d interval, growth rates for tagged fish equaled or exceeded values for the other groups. These results suggest that tagged fish recovered by day 20. Growth rates for the control and surgery−no tag groups did not differ from one another during any measurement interval. Tag retention rate was 97% over the 30-d period of the study. It appears that the combination of fish length and tag size in this study resulted in short-term negative effects on growth rate and survival; however, 23-mm PIT tags may still be useful for studies of salmonids 80–90 mm FL when survival is not the parameter of interest.

  15. Evaluation of the preimplantation worksheet in determining Calypso eligibility for men prescribed postprostatectomy radiotherapy with electromagnetic transponder guidance.

    PubMed

    Hamilton, Daniel George; Jones, Kingsley; So, Kevin

    2017-01-01

    This study aimed to assess the design and performance of the preimplant suitability worksheet in determining Calypso eligibility for prostate cancer patients prescribed postprostatectomy radiotherapy with electromagnetic transponder guidance. The medical records and radiotherapy planning datasets of 75 patients prospectively recruited between June 2015 and September 2016 to a Phase 2 trial evaluating electromagnetic transponder-guided postprostatectomy radiotherapy were retrospectively examined. Correlation and differences between computed tomography (CT)-defined greater trochanter and prostatic fossa landmarks were evaluated. Receiver operating characteristic curves were also generated to assess the expected and observed accuracy of the worksheet in determining Calypso eligibility. Strong correlation was demonstrated between anterior surface to planning CT-defined greater trochanter and prostate bed center distances (r = 0.95, p <0.001), with a mean difference between measurements of 1.1 cm (95% confidence interval [CI]: 0.9 to 1.3). A similar correlation coefficient was found for surface to greater trochanter location and posterior beacon location (r = 0.92, p <0.001) but with a reduced mean difference of 0.4 cm (95% CI: 0.1 to 0.6). Performance of the worksheet as assessed by planning CT data demonstrated excellent accuracy as a test to determine eligibility (area under the curve: 0.97; 95% CI: 0.92 to 1.00); however, this was not replicated using the same data captured clinically (area under the curve 0.83; 95% CI: 0.68 to 0.98). Although the greater trochanter is a good surrogate for the prostate bed center, it is better associated with the posterior beacon location. As a result, the worksheet will underestimate the truly eligible population if performed accurately and according to manufacturer guidelines. Theoretically, the worksheet could be improved if a cut off of 20 cm is used and the greater trochanter is accurately identified; however

  16. SU-F-J-27: Segmentation of Prostate CBCT Images with Implanted Calypso Transponders Using Double Haar Wavelet Transform

    SciTech Connect

    Liu, Y; Saleh, Z; Tang, X

    Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trainedmore » expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ΔV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ΔV ranges of [0.81–0.95], [0.76–0.99], [0.83–0.94], [0.02–0.21]. For prostate, the ranges are [0.77–0.93], [0.84–0.97], [0.68–0.92], [0.1–0.46]. For rectum, the ranges are [0.72–0.93], [0.57–0.99], [0.73–0.98], [0.03–0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast

  17. Implanting 8-mm passive integrated transponder tags into small Brook Trout: Effects on growth and survival in the laboratory

    USGS Publications Warehouse

    O'Donnell, Matthew J.; Letcher, Benjamin H.

    2017-01-01

    Passive integrated transponder (PIT) tags are commonly used to investigate relationships between individual fish and their environment. The recent availability of smaller tags has provided the opportunity to tag smaller fish. In this study, we implanted 8-mm PIT tags into small Brook Trout Salvelinus fontinalis (35–50 mm FL; 0.35–1.266 g) and compared tag retention, growth rates, and survival of PIT-tagged fish with those of fish subjected to handling only or to handling plus fin clipping. We also examined how initial size at tagging affected absolute and specific growth rates of PIT-tagged individuals over time. We found that survival was 100%, tag retention was 96.7%, and fish size did not vary across treatments at 29 and 64 d posttagging. Additionally, there was no evidence that growth rate (FL or mass) was influenced by the initial size of the fish that were PIT tagged. Our results indicate that retention rates of 8-mm PIT tags surgically implanted into small Brook Trout are high and that there is no discernible effect on growth or survival in the laboratory. The ability to implant smaller PIT tags into smaller fish earlier in the season would allow researchers conducting PIT tag studies to expand demographic models to estimate survival of age-0 fish through the summer of their first year.

  18. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6300 Implantable... identification code is used to access patient identity and corresponding health information stored in a database...

  19. Reducing fungal infections and testing tag loss in juvenile Pacific lampreys implanted with passive integrated transponders.

    USGS Publications Warehouse

    Christiansen, H.E.; Gee, L.P.; Mesa, M.G.

    2012-01-01

    Pacific lamprey Entosphenus tridentatus are facing severe population declines, yet little is known about juvenile lamprey passage, life history, or adult return rates because until now, these small fish could not be tagged for unique identification of live individuals. Previously, we developed a simple and effective method for tagging juvenile lampreys with passive integrated transponder (PIT) tags and showed that tagging per se did not affect survival. Mortality in tagged and untagged control fish, however, was frequently associated with fungal infection. In this study, we addressed two outstanding issues related to handling and tagging juvenile lampreys. First, we tried to mitigate freshwater fungal infections by reducing irritation and stress from anesthesia and by treating tagged fish briefly with a prophylactic immediately after tagging. We tested four anesthetics at three concentrations each and determined that 100 mg/L MS-222 and 60 mg/L BENZOAK® (benzocaine) were the most effective for anesthetizing juvenile lampreys to handleable while minimizing irritation. We also showed that fish anesthetized with BENZOAK® may have lower rates of fungal infection than those anesthetized with MS-222 or AQUI-S® 20E (eugenol). When fish anesthetized with MS-222 or BENZOAK® were given a 30 min prophylactic treatment with Stress Coat®, hydrogen peroxide, or salt immediately after tagging, few fish presented with fungal infections. However, untreated, tagged control fish also showed few fungal infections, making it difficult to determine if the prophylactic treatments were successful. The second question we addressed was whether activity would increase tag loss in PIT-tagged lampreys. We found that active swimming did not cause tag loss if fish were first held for 20–24 h after tagging. Therefore, we recommend anesthesia with MS-222 or BENZOAK® and then tagging with a 20–24 h recovery period followed by immediate release. If field studies show that lampreys are not

  20. Tagging effects of passive integrated transponder and visual implant elastomer on the small-bodied white sands pupfish (Cyprinodon tularosa)

    USGS Publications Warehouse

    Peterson, Damon; Trantham, Randi B.; Trantham, Tulley G.; Caldwell, Colleen A.

    2018-01-01

    One of the greatest limiting factors of studies designed to obtain growth, movement, and survival in small-bodied fishes is the selection of a viable tag. The tag must be relatively small with respect to body size as to impart minimal sub-lethal effects on growth and mobility, as well as be retained throughout the life of the fish or duration of the study. Thus, body size of the model species becomes a major limiting factor; yet few studies have obtained empirical evidence of the minimum fish size and related tagging effects. The probability of surviving a tagging event was quantified in White Sands pupfish (Cyprinodon tularosa) across a range of sizes (19–60 mm) to address the hypothesis that body size predicts tagging survival. We compared tagging related mortality, individual taggers, growth, and tag retention in White Sands pupfish implanted with 8-mm passive integrated transponder (PIT), visual implant elastomer (VIE), and control (handled similarly, but no tag implantation) over a 75 d period. Initial body weight was a good predictor of the probability of survival in PIT- and VIE-tagged fish. As weight increased by 1 g, the fish were 4.73 times more likely to survive PIT-tag implantation compared to the control fish with an estimated suitable tagging size at 1.1 g (TL: 39.29 ± 0.41 mm). Likewise, VIE-tagged animals were 2.27 times more likely to survive a tagging event compared to the control group for every additional 1 g with an estimated size suitable for tagging of 0.9 g (TL: 36.9 ± 0.36 mm) fish. Growth rates of PIT- and VIE-tagged White Sands pupfish were similar to the control groups. This research validated two popular tagging methodologies in the White Sands pupfish, thus providing a valuable tool for characterizing vital rates in other small-bodied fishes.

  1. Robust plan optimization for electromagnetic transponder guided hypo-fractionated prostate treatment using volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig

    2013-11-01

    To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (∼1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust

  2. Robust plan optimization for electromagnetic transponder guided hypo-fractionated prostate treatment using volumetric modulated arc therapy.

    PubMed

    Zhang, Pengpeng; Hunt, Margie; Happersett, Laura; Yang, Jie; Zelefsky, Michael; Mageras, Gig

    2013-11-07

    To develop an optimization algorithm for volumetric modulated arc therapy which incorporates an electromagnetic tracking (EMT) guided gating strategy and is robust to residual intra-fractional motion uncertainties. In a computer simulation, intra-fractional motion traces from prior treatments with EMT were converted to a probability distribution function (PDF), truncated using a patient specific action volume that encloses allowed deviations from the planned position, and renormalized to yield a new PDF with EMT-gated interventions. In lieu of a conventional planning target volume (PTV), multiple instances of clinical target volume (CTV) and organs at risk (OARs) were replicated and displaced to extreme positions inside the action volume representing possible delivery scenarios. When optimizing the volumetric modulated arc therapy plan, doses to the CTV and OARs were calculated as a sum of doses to the replicas weighted by the PDF to account for motion. A treatment plan meeting the clinical constraints was produced and compared to the counterpart conventional margin (PTV) plan. EMT traces from a separate testing database served to simulate motion during gated delivery. Dosimetric end points extracted from dose accumulations for each motion trace were utilized to evaluate potential clinical benefit. Five prostate cases from a hypofractionated protocol (42.5 Gy in 5 fractions) were retrospectively investigated. The patient specific gating window resulted in tight anterior and inferior action levels (~1 mm) to protect rectal wall and bladder wall, and resulted in an average of four beam interruptions per fraction in the simulation. The robust-optimized plans achieved the same average CTV D95 coverage of 40.5 Gy as the PTV-optimized plans, but with reduced patient-averaged rectum wall D1cc by 2.2 Gy (range 0.7 to 4.7 Gy) and bladder wall mean dose by 2.9 Gy (range 2.0 to 3.4 Gy). Integration of an intra-fractional motion management strategy into the robust optimization

  3. Electromagnetic semi-implantable hearing device: phase I. Clinical trials.

    PubMed

    McGee, T M; Kartush, J M; Heide, J C; Bojrab, D I; Clemis, J D; Kulick, K C

    1991-04-01

    Conventional hearing aids have improved significantly in recent years; however, amplification of sound within the external auditory canal creates a number of intrinsic problems, including acoustic feedback and the need for a tight ear mold to increase usable gain. Nonacoustic alternatives which could obviate these encumbrances have not become practical due to inefficient coupling (piezoelectric techniques) or unfeasible power requirements (electromagnetic techniques). Recent technical advances, however, prompted a major clinical investigation of a new electromagnetic, semi-implantable hearing device. This study presents the details of clinical phase I, in which an electromagnetic driver was coupled with a target magnet temporarily affixed onto the lateral surface of the malleus of six hearing aid users with sensorineural losses. The results indicate that the electromagnetic hearing device provides sufficient gain and output characteristics to benefit individuals with sensorineural hearing loss. Significant improvements compared to conventional hearing aids were noted in pure-tone testing and, to a lesser degree, in speech discrimination. Subjective responses were quite favorable, indicating that the electromagnetic hearing device 1. produces no acoustic feedback; 2. works well in noisy environments; and 3. provides a more quiet, natural sound than patients' conventional hearing aids. These favorable results led to phase II of the project, in which patients with surgically amendable mixed hearing losses were implanted with the target magnet incorporated within a hydroxyapatite ossicular prosthesis. The results of this second-stage investigation were also encouraging and will be reported separately.

  4. Electromagnetic compatibility of implantable neurostimulators to RFID emitters

    PubMed Central

    2011-01-01

    Background The objective of this study is to investigate electromagnetic compatibility (EMC) of implantable neurostimulators with the emissions from radio frequency identification (RFID) emitters. Methods Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz Results The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. Conclusions The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters. PMID:21658266

  5. Electromagnetic compatibility of implantable neurostimulators to RFID emitters.

    PubMed

    Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W; Witters, Donald M; Sponberg, Curt L

    2011-06-09

    The objective of this study is to investigate electromagnetic compatibility (EMC) of implantable neurostimulators with the emissions from radio frequency identification (RFID) emitters. Six active implantable neurostimulators with lead systems were tested for susceptibility to electromagnetic fields generated by 22 RFID emitters. These medical devices have been approved for marketing in the U.S. for a number of intended uses that include: epilepsy, depression, incontinence, Parkinsonian tremor and pain relief. Each RFID emitter had one of the following carrier frequencies: 125 kHz, 134 kHz, 13.56 MHz, 433 MHz, 915 MHz and 2.45 GHz. The test results showed the output of one of the implantable neurostimulators was inhibited by 134 kHz RFID emitter at separation distances of 10 cm or less. The output of the same implantable neurostimulator was also inhibited by another 134 kHz RFID emitter at separation distances of 10 cm or less and also showed inconsistent pulsing rate at a separation distance of 15 cm. Both effects occurred during and lasted through out the duration of the exposure. The clinical significance of the effects was assessed by a clinician at the U.S. Food and Drug Administration. The effects were determined to be clinically significant only if they occurred for extended period of time. There were no observed effects from the other 5 implantable neurostimulators or during exposures from other RFID emitters.

  6. Electromagnetic interference of dental equipment with implantable cardioverter defibrillators.

    PubMed

    Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; Araújo, Marcos César Pimenta de; Moraes, Luis Gustavo Belo de; Risso, Patrícia de Andrade

    2017-11-01

    Implantable cardioverter defibrillators (ICDs) are subject to electromagnetic interference (EMI). The aim of this study was to assess both the EMI of dental equipments with ICDs and related factors. High- and low-speed handpieces, an electric toothbrush, an implant motor and two types of ultrasonic devices were tested next to an ICD with different sensitivity settings. The ICD was immersed in a saline solution with electrical resistance of 400-800 ohms to simulate the resistance of the human body. The dental equipments were tested in both horizontal (0°) and vertical (90°) positions in relation to the components of the ICD. The tests were performed with a container containing saline solution, which was placed on a dental chair in order to assess the cumulative effect of electromagnetic fields. The dental chair, high- and low-speed handpieces, electric toothbrush, implant motor and ultrasonic devices caused no EMI with the ICD, irrespective of the program set-up or positioning. No cumulative effect of electromagnetic fields was verified. The results of this study suggest that the devices tested are safe for use in patients with an ICD.

  7. The interference of electronic implants in low frequency electromagnetic fields.

    PubMed

    Silny, J

    2003-04-01

    Electronic implants such as cardiac pacemakers or nerve stimulators can be impaired in different ways by amplitude-modulated and even continuous electric or magnetic fields of strong field intensities. For the implant bearer, possible consequences of a temporary electromagnetic interference may range from a harmless impairment of his well-being to a perilous predicament. Electromagnetic interferences in all types of implants cannot be covered here due to their various locations in the body and their different sensing systems. Therefore, this presentation focuses exemplarily on the most frequently used implant, the cardiac pacemaker. In case of an electromagnetic interference the cardiac pacemaker reacts by switching to inhibition mode or to fast asynchronous pacing. At a higher disturbance voltage on the input of the pacemaker, a regular asynchronous pacing is likely to arise. In particular, the first-named interference could be highly dangerous for the pacemaker patient. The interference threshold of cardiac pacemakers depends in a complex way on a number of different factors such as: electromagnetic immunity and adjustment of the pacemaker, the composition of the applied low-frequency fields (only electric or magnetic fields or combinations of both), their frequencies and modulations, the type of pacemaker system (bipolar, unipolar) and its location in the body, as well as the body size and orientation in the field, and last but not least, certain physiological conditions of the patient (e.g. inhalation, exhalation). In extensive laboratory studies we have investigated the interference mechanisms in more than 100 cardiac pacemakers (older types as well as current models) and the resulting worst-case conditions for pacemaker patients in low-frequency electric and magnetic fields. The verification of these results in different practical everyday-life situations, e.g. in the fields of high-voltage overhead lines or those of electronic article surveillance systems is

  8. Electromagnetic interference of endodontic equipments with cardiovascular implantable electronic device.

    PubMed

    Dadalti, Manoela Teixeira de Sant'Anna; da Cunha, Antônio José Ledo Alves; de Araújo, Marcos César Pimenta; de Moraes, Luis Gustavo Belo; Risso, Patrícia de Andrade

    2016-03-01

    Assess the electromagnetic interference (EMI) of endodontic equipment with cardiovascular implantable electronic devices (CIEDs) and related factors. The laser device, electronic apex locators (EAL), optical microscope, endodontic rotary motors, gutta-percha heat carrier (GH), gutta-percha gun and ultrasonic device were tested next to CIEDs (Medtronic and Biotronik) with varied sensitivity settings and distances. CIEDs were immersed in a saline solution to simulate the electrical resistence of the human body. The endodontic equipment was tested in both horizontal and vertical positions in relation to the components of the CIED. The tests were performed on a dental chair in order to assess the cumulative effect of electromagnetic fields. It was found no EMI with the Biotronik pacemaker. EALs caused EMI with Medtronic PM at a 2 cm distance, with the NSK(®) EAL also affecting the Medtronic defibrillator. GH caused EMI at 2 cm and 5 cm from the Medtronic defibrillator. EMI occurred when devices were horizontally positioned to the CIED. In the majority of the cases, EMI occurred when the pacemaker was set to maximum sensitivity. There was cumulative effect of electromagnetic fields between GH and dental chair. EALs and GH caused EMI which ranged according to type and sensitivity setting of the CIEDs and the distance. However, no endodontic equipment caused permanent damage to the CIED. The use of GH caused a cumulative effect of electromagnetic fields. It suggests that during the treatment of patients with CIEDs, only the necessary equipments should be kept turned on. Patients with CIEDs may be subject to EMI from electronic equipment used in dental offices, as they remain turned on throughout the treatment. This is the first article assessing the cumulative effect of electromagnetic fields. Copyright © 2016. Published by Elsevier Ltd.

  9. Electromagnetic Compatibility Testing of Implantable Neurostimulators Exposed to Metal Detectors

    PubMed Central

    Seidman, Seth J; Kainz, Wolfgang; Casamento, Jon; Witters, Donald

    2010-01-01

    This paper presents results of electromagnetic compatibility (EMC) testing of three implantable neurostimulators exposed to the magnetic fields emitted from several walk-through and hand-held metal detectors. The motivation behind this testing comes from numerous adverse event reports involving active implantable medical devices (AIMDs) and security systems that have been received by the Food and Drug Administration (FDA). EMC testing was performed using three neurostimulators exposed to the emissions from 12 walk-through metal detectors (WTMDs) and 32 hand-held metal detectors (HHMDs). Emission measurements were performed on all HHMDs and WTMDs and summary data is presented. Results from the EMC testing indicate possible electromagnetic interference (EMI) between one of the neurostimulators and one WTMD and indicate that EMI between the three neurostimulators and HHMDs is unlikely. The results suggest that worst case situations for EMC testing are hard to predict and testing all major medical device modes and setting parameters are necessary to understand and characterize the EMC of AIMDs. PMID:20448818

  10. Electromagnetic Radiation Efficiency of Body-Implanted Devices

    NASA Astrophysics Data System (ADS)

    Nikolayev, Denys; Zhadobov, Maxim; Karban, Pavel; Sauleau, Ronan

    2018-02-01

    Autonomous wireless body-implanted devices for biotelemetry, telemedicine, and neural interfacing constitute an emerging technology providing powerful capabilities for medicine and clinical research. We study the through-tissue electromagnetic propagation mechanisms, derive the optimal frequency range, and obtain the maximum achievable efficiency for radiative energy transfer from inside a body to free space. We analyze how polarization affects the efficiency by exciting TM and TE modes using a magnetic dipole and a magnetic current source, respectively. Four problem formulations are considered with increasing complexity and realism of anatomy. The results indicate that the optimal operating frequency f for deep implantation (with a depth d ≳3 cm ) lies in the (108- 109 )-Hz range and can be approximated as f =2.2 ×107/d . For a subcutaneous case (d ≲3 cm ), the surface-wave-induced interference is significant: within the range of peak radiation efficiency (about 2 ×108 to 3 ×109 Hz ), the max-to-min ratio can reach a value of 6.5. For the studied frequency range, 80%-99% of radiation efficiency is lost due to the tissue-air wave-impedance mismatch. Parallel polarization reduces the losses by a few percent; this effect is inversely proportional to the frequency and depth. Considering the implantation depth, the operating frequency, the polarization, and the directivity, we show that about an order-of-magnitude efficiency improvement is achievable compared to existing devices.

  11. Electromagnetic irradiation may be a new approach to therapy for peri-implantitis.

    PubMed

    Cao, Zhensheng; Chen, Yijia; Chen, Yuxue; Zhao, Qing; Xu, Xiaomei; Chen, Yangxi

    2012-03-01

    Peri-implantitis can lead to bone destruction around a dental implant through inflammation and immune reactions caused by bacteria adhering to the surface of the implant abutment. Electromagnetic irradiation can inhibit bacterial growth, increase bone formation, decrease bone resorption and reduce the inflammatory response. Our hypothesis is that electromagnetic irradiation may be a new treatment approach for peri-implantitis and may simultaneously maintain bone mass around the dental implant. The results would be more significant when combined with other agents, because the effect of some antibiotics and anti-inflammatory drugs is strengthened by electromagnetic irradiation. This non-invasive therapy is expected to be conducted in a convenient manner, and even by patients at home, thereby facilitating the prevention and treatment of peri-implantitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Transponders as permanent identification markers for domestic ferrets, black-footed ferrets, and other wildlife

    USGS Publications Warehouse

    Fagerstone, Kathleen A.; Johns, Brad E.

    1987-01-01

    A 0.05-g transponder implanted subcutaneously was tested to see if it provided a reliable identification method. In laboratory tests 20 domestic ferrets (Mustela putorius furo) received transponders and were monitored for a minimum of 6 months. None showed signs of inflammation, and necropsies conducted at the end of the study showed no scar tissue or transponder migration. Seven of 23 transponders failed during the test because of leakage through the plastic case, and a glass case is now being manufactured that does not have the leakage problem. During mark-recapture studies in September and October 1985, transponders were implanted in 20 black-footed ferrets (M. nigripes), 11 of which were subsequently recaptured and 9 of which were brought into captivity; none showed signs of inflammation. Transponders provide a reliable new method for identifying hard-to-mark wildlife with a unique, permanent number than can be read with the animal in-hand or by remote equipment.

  13. Digital Baseband Architecture For Transponder

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Yeh, Hen-Geul

    1995-01-01

    Proposed advanced transponder for long-distance radio communication system with turnaround ranging contains carrier-signal-tracking loop including baseband digital "front end." For reduced cost, transponder includes analog intermediate-frequency (IF) section and analog automatic gain control (AGC) loop at first of two IF mixers. However, second IF mixer redesigned to ease digitization of baseband functions. To conserve power and provide for simpler and smaller transponder hardware, baseband digital signal-processing circuits designed to implement undersampling scheme. Furthermore, sampling scheme and sampling frequency chosen so redesign involves minimum modification of command-detector unit (CDU).

  14. Electromagnetic interference with cardiac pacemakers and implantable cardioverter-defibrillators from low-frequency electromagnetic fields in vivo.

    PubMed

    Tiikkaja, Maria; Aro, Aapo L; Alanko, Tommi; Lindholm, Harri; Sistonen, Heli; Hartikainen, Juha E K; Toivonen, Lauri; Juutilainen, Jukka; Hietanen, Maila

    2013-03-01

    Electromagnetic interference (EMI) can pose a danger to workers with pacemakers and implantable cardioverter-defibrillators (ICDs). At some workplaces electromagnetic fields are high enough to potentially inflict EMI. The purpose of this in vivo study was to evaluate the susceptibility of pacemakers and ICDs to external electromagnetic fields. Eleven volunteers with a pacemaker and 13 with an ICD were exposed to sine, pulse, ramp, and square waveform magnetic fields with frequencies of 2-200 Hz using Helmholtz coil. The magnetic field flux densities varied to 300 µT. We also tested the occurrence of EMI from an electronic article surveillance (EAS) gate, an induction cooktop, and a metal inert gas (MIG) welding machine. All pacemakers were tested with bipolar settings and three of them also with unipolar sensing configurations. None of the bipolar pacemakers or ICDs tested experienced interference in any of the exposure situations. The three pacemakers with unipolar settings were affected by the highest fields of the Helmholtz coil, and one of them also by the EAS gate and the welding cable. The induction cooktop did not interfere with any of the unipolarly programmed pacemakers. Magnetic fields with intensities as high as those used in this study are rare even in industrial working environments. In most cases, employees can return to work after implantation of a bipolar pacemaker or an ICD, after an appropriate risk assessment. Pacemakers programmed to unipolar configurations can cause danger to their users in environments with high electromagnetic fields, and should be avoided, if possible.

  15. Safety of Electromagnetic Articulography in Patients with Pacemakers and Implantable Cardioverter-Defibrillators

    ERIC Educational Resources Information Center

    Joglar, Jose A.; Nguyen, Carol; Garst, Diane M.; Katz, William F.

    2009-01-01

    Purpose: "Electromagnetic articulography (EMA)" uses a helmet to create alternating magnetic fields for tracking speech articulator movement. An important safety consideration is whether EMA magnetic fields interfere with the operation of speakers' pacemakers or implantable cardioverter-defibrillators (ICDs). In this investigation,…

  16. Sensor-based electromagnetic navigation to facilitate implantation of left ventricular leads in cardiac resynchronization therapy.

    PubMed

    Döring, Michael; Sommer, Philipp; Rolf, Sascha; Lucas, Johannes; Breithardt, Ole A; Hindricks, Gerhard; Richter, Sergio

    2015-02-01

    Implantation of cardiac resynchronization therapy (CRT) devices can be challenging, time consuming, and fluoroscopy intense. To facilitate placement of left ventricular (LV) leads, a novel electromagnetic navigation system (MediGuide™, St. Jude Medical, St. Paul, MN, USA) has been developed, displaying real-time 3-D location of sensor-embedded delivery tools superimposed on prerecorded X-ray cine-loops of coronary sinus venograms. We report our experience and advanced progress in the use of this new electromagnetic tracking system to guide LV lead implantation. Between January 2012 and December 2013, 71 consecutive patients (69 ± 9 years, 76% male) were implanted with a CRT device using the new electromagnetic tracking system. Demographics, procedural data, and periprocedural adverse events were gathered. The impact of the operator's experience, optimized workflow, and improved software technology on procedural data were analyzed. LV lead implantation was successfully achieved in all patients without severe adverse events. Total procedure time measured 87 ± 37 minutes and the median total fluoroscopy time (skin-to-skin) was 4.9 (2.5-7.8) minutes with a median dose-area-product of 476 (260-1056) cGy*cm(2) . An additional comparison with conventional CRT device implantations showed a significant reduction in fluoroscopy time from 8.0 (5.8; 11.5) to 4.5 (2.8; 7.3) minutes (P = 0.016) and radiation dose from 603 (330; 969) to 338 (176; 680) cGy*cm(2) , respectively (P = 0.044 ). Use of the new navigation system enables safe and successful LV lead placement with improved orientation and significantly reduced radiation exposure during CRT implantation. © 2014 Wiley Periodicals, Inc.

  17. Electromagnetic Interference in Implantable Defibrillators in Single-Engine Fixed-Wing Aircraft.

    PubMed

    de Rotte, Alexandra A J; van der Kemp, Peter; Mundy, Peter A; Rienks, Rienk; de Rotte, August A

    2017-01-01

    Little is known about the possible electromagnetic interferences (EMI) in the single-engine fixed-wing aircraft environment with implantable cardio-defibrillators (ICDs). Our hypothesis is that EMI in the cockpit of a single-engine fixed-wing aircraft does not result in erroneous detection of arrhythmias and the subsequent delivery of an inappropriate device therapy. ICD devices of four different manufacturers, incorporated in a thorax phantom, were transported in a Piper Dakota Aircraft with ICAO type designator P28B during several flights. The devices under test were programmed to the most sensitive settings for detection of electromagnetic signals from their environment. After the final flight the devices under test were interrogated with the dedicated programmers in order to analyze the number of tachycardias detected. Cumulative registration time of the devices under test was 11,392 min, with a mean of 2848 min per device. The registration from each one of the devices did not show any detectable "tachycardia" or subsequent inappropriate device therapy. This indicates that no external signals, which could be originating from electromagnetic fields from the aircraft's avionics, were detected by the devices under test. During transport in the cockpit of a single-engine fixed-wing aircraft, the tested ICDs did not show any signs of being affected by electromagnetic fields originating from the avionics of the aircraft. This current study indicates that EMI is not a potential safety issue for transportation of passengers with an ICD implanted in a single-engine fixed-wing aircraft.de Rotte AAJ, van der Kemp P, Mundy PA, Rienks R, de Rotte AA. Electromagnetic interference in implantable defibrillators in single-engine fixed-wing aircraft. Aerosp Med Hum Perform. 2017; 88(1):52-55.

  18. Low-resolution electromagnetic tomography (LORETA) in children with cochlear implants: a preliminary report.

    PubMed

    Henkin, Yael; Kishon-Rabin, Liat; Tatin-Schneider, Simona; Urbach, Doron; Hildesheimer, Minka; Kileny, Paul R

    2004-12-01

    The current preliminary report describes the utilization of low-resolution electromagnetic tomography (LORETA) in a small group of highly performing children using the Nucleus 22 cochlear implant (CI) and in normal-hearing (NH) adults. LORETA current density estimations were performed on an averaged target P3 component that was elicited by non-speech and speech oddball discrimination tasks. The results indicated that, when stimulated with tones, patients with right implants and NH adults (regardless of stimulated ear) showed enhanced activation in the right temporal lobe, whereas patients with left implants showed enhanced activation in the left temporal lobe. When stimulated with speech, patients with right implants showed bilateral activation of the temporal and frontal lobes, whereas patients with left implants showed only left temporal lobe activation. NH adults (regardless of stimulated ear) showed enhanced bilateral activation of the temporal and parietal lobes. The differences in activation patterns between patients with CI and NH subjects may be attributed to the long-term exposure to degraded input conditions which may have resulted in reorganization in terms of functional specialization. The difference between patients with right versus left implants, however, is intriguing and requires further investigation.

  19. Electromagnetic interference caused by common surgical energy-based devices on an implanted cardiac defibrillator.

    PubMed

    Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N

    2014-12-01

    Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. [Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment].

    PubMed

    Ribatti, Valentina; Santini, Luca; Forleo, Giovanni B; Della Rocca, Domenico; Panattoni, Germana; Scali, Marta; Schirripa, Valentina; Danisi, Nicola; Ammirati, Fabrizio; Santini, Massimo

    2017-04-01

    In the last decades we are observing a continuous increase in the number of patients wearing cardiac implantable electronic devices (CIEDs). At the same time, we face daily with a domestic and public environment featured more and more by the presence and the utilization of new emitters and finally, more medical procedures are based on electromagnetic fields as well. Therefore, the topic of the interaction of devices with electromagnetic interference (EMI) is increasingly a real and actual problem.In the medical environment most attention is paid to magnetic resonance, nevertheless the risk of interaction is present also with ionizing radiation, electrical nerve stimulation and electrosurgery. In the non-medical environment, most studies reported in the literature focused on mobile phones, metal detectors, as well as on headphones or digital players as potential EMI sources, but many other instruments and tools may be intentional or non-intentional sources of electromagnetic fields.CIED manufacturers are more and more focusing on new technological features in order to make implantable devices less susceptible to EMI. However, patients and emitter manufacturers should be aware that limitations exist and that there is not complete immunity to EMI.

  1. Validation of the Calypso Surface Beacon Transponder.

    PubMed

    Belanger, Maxwell; Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli

    2016-07-08

    Calypso L-shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least-squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re-setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak-to-peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak-to-peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01 ± 0.04 mm and -19.65 ± 0.08 mm, respectively. No clinically significant drift was detected with drift measured as 5.1

  2. Validation of the Calypso Surface Beacon Transponder

    PubMed Central

    Saleh, Ziad; Volpe, Tom; Margiasso, Rich; Li, Xiang; Chan, Maria; Zhu, Xiaofeng; Tang, Xiaoli

    2016-01-01

    Calypso L‐shaped Surface Beacon transponder has recently become available for clinical applications. We herein conduct studies to validate the Surface Beacon transponder in terms of stability, reproducibility, orientation sensitivity, cycle rate dependence, and respiratory waveform tracking accuracy. The Surface Beacon was placed on a Quasar respiratory phantom and positioned at the isocenter with its two arms aligned with the lasers. Breathing waveforms were simulated, and the motion of the transponder was tracked. Stability and drift analysis: sinusoidal waveforms (200 cycles) were produced, and the amplitudes of phases 0% (inhale) and 50% (exhale) were recorded at each breathing cycle. The mean and standard deviation (SD) of the amplitudes were calculated. Linear least‐squares fitting was performed to access the possible amplitude drift over the breathing cycles. Reproducibility: similar setting to stability and drift analysis, and the phantom generated 100 cycles of the sinusoidal waveform per run. The Calypso system's was re‐setup for each run. Recorded amplitude and SD of 0% and 50% phase were compared between runs to assess contribution of Calypso electromagnetic array setup variation. Beacon orientation sensitivity: the Calypso tracks sinusoidal phantom motion with a defined angular offset of the beacon to assess its effect on SD and peak‐to‐peak amplitude. Rate dependence: sinusoidal motion was generated at cycle rates of 1 Hz, .33 Hz, and .2 Hz. Peak‐to‐peak displacement and SDs were assessed. Respiratory waveform tracking accuracy: the phantom reproduced recorded breathing cycles (by volunteers and patients) were tracked by the Calypso system. Deviation in tracking position from produced waveform was used to calculate SD throughout entire breathing cycle. Stability and drift analysis: Mean amplitude ± SD of phase 0% or 50% were 20.01±0.04 mm and ‐19.65±0.08 mm, respectively. No clinically significant drift was detected with drift

  3. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, R.M. Jr.; Sloan, G.R.; Spalding, R.E.

    1996-01-23

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder`s echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR. 4 figs.

  4. Risk assessment of electromagnetic fields exposure with metallic orthopedic implants: a cadaveric study.

    PubMed

    Crouzier, D; Selek, L; Martz, B-A; Dabouis, V; Arnaud, R; Debouzy, J-C

    2012-02-01

    Metallic materials are well known to strongly interact with electromagnetic fields. While biological effects of such field have been extensively studied, only few works dealt with the interactions of electromagnetic waves with passive metallic device implanted in biological system. Hence only several numerical and phantom simulation studies were focusing on this aspect, whereas no in situ anatomic experiment has been previously performed. In this study the effect of electromagnetic waves on eight different orthopaedic medical devices (six plates from 55 to 318mm length, a total knee and a total hip prosthesis) were explored on six human cadavers. To mimic a random environmental exposure resulting from the most common frequencies band used in domestic environment and medical applications (TV and radio broadcasting, cell phone communication, MRI, diathermy treatment), a multifrequency generator emitting in VHF, UHF, GSM and GCS frequency bands was used. The different medical devices were exposed to an electromagnetic field at 50W/m(2) and 100W/m(2). After 6min exposure, the temperature was measured on three points close to each medical device, and the induced currents were estimated. No significant temperature increase (<0.2°C) was finally detected; beside, a slight induced tension (up to 1.1V) was recorded but would appear too low to induce any biological side effect. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  5. Automatic transponder. [measurement of the internal delay time of a transponder

    NASA Technical Reports Server (NTRS)

    Anderson, R. E.; Brisken, A. F.; Lewis, J. R. (Inventor)

    1977-01-01

    A method and apparatus for the automatic, remote measurement of the internal delay time of a transponder at the time of operation is provided. A small portion of the transmitted signal of the transponder is converted to the receive signal frequency of the transponder and supplied to the input of the transponder. The elapsed time between the receive signal locally generated and the receive signal causing the transmission of the transmitted signal is measured, said time being representative of or equal to the internal delay time of the transponder at the time of operation.

  6. Radar transponder apparatus and signal processing technique

    DOEpatents

    Axline, Jr., Robert M.; Sloan, George R.; Spalding, Richard E.

    1996-01-01

    An active, phase-coded, time-grating transponder and a synthetic-aperture radar (SAR) and signal processor means, in combination, allow the recognition and location of the transponder (tag) in the SAR image and allow communication of information messages from the transponder to the SAR. The SAR is an illuminating radar having special processing modifications in an image-formation processor to receive an echo from a remote transponder, after the transponder receives and retransmits the SAR illuminations, and to enhance the transponder's echo relative to surrounding ground clutter by recognizing special transponder modulations from phase-shifted from the transponder retransmissions. The remote radio-frequency tag also transmits information to the SAR through a single antenna that also serves to receive the SAR illuminations. Unique tag-modulation and SAR signal processing techniques, in combination, allow the detection and precise geographical location of the tag through the reduction of interfering signals from ground clutter, and allow communication of environmental and status information from said tag to be communicated to said SAR.

  7. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification

    PubMed Central

    2013-01-01

    Background The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Methods Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125–134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. Results For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Conclusion Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to

  8. Adhoc electromagnetic compatibility testing of non-implantable medical devices and radio frequency identification.

    PubMed

    Seidman, Seth J; Guag, Joshua W

    2013-07-11

    The use of radiofrequency identification (RFID) in healthcare is increasing and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have documented that RFID can interfere with medical devices. The majority of past studies have concentrated on implantable medical devices such as implantable pacemakers and implantable cardioverter defibrillators (ICDs). This study examined EMC between RFID systems and non-implantable medical devices. Medical devices were exposed to 19 different RFID readers and one RFID active tag. The RFID systems used covered 5 different frequency bands: 125-134 kHz (low frequency (LF)); 13.56 MHz (high frequency (HF)); 433 MHz; 915 MHz (ultra high frequency (UHF])) and 2.4 GHz. We tested three syringe pumps, three infusion pumps, four automatic external defibrillators (AEDs), and one ventilator. The testing procedure is modified from American National Standards Institute (ANSI) C63.18, Recommended Practice for an On-Site, Ad Hoc Test Method for Estimating Radiated Electromagnetic Immunity of Medical Devices to Specific Radio-Frequency Transmitters. For syringe pumps, we observed electromagnetic interference (EMI) during 13 of 60 experiments (22%) at a maximum distance of 59 cm. For infusion pumps, we observed EMI during 10 of 60 experiments (17%) at a maximum distance of 136 cm. For AEDs, we observed EMI during 18 of 75 experiments (24%) at a maximum distance of 51 cm. The majority of the EMI observed was classified as probably clinically significant or left the device inoperable. No EMI was observed for all medical devices tested during exposure to 433 MHz (two readers, one active tag) or 2.4 GHz RFID (two readers). Testing confirms that RFID has the ability to interfere with critical medical equipment. Hospital staff should be aware of the potential for medical device EMI caused by RFID systems and should be encouraged to perform on-site RF immunity tests prior

  9. The NASA Spacecraft Transponding Modem

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Kayalar, Selahattin; Perret, Jonathan D.

    2000-01-01

    A new deep space transponder is being developed by the Jet Propulsion Laboratory for NASA. The Spacecraft Transponding Modem (STM) implements the standard transponder functions and the channel service functions that have previously resided in spacecraft Command/Data Subsystems. The STM uses custom ASICs, MMICs, and MCMs to reduce the active device parts count to 70, mass to I kg, and volume to 524 cc. The first STMs will be flown on missions launching in the 2003 time frame. The STM tracks an X-band uplink signal and provides both X-band and Ka-band downlinks, either coherent or non-coherent with the uplink. A NASA standard Command Detector Unit is integrated into the STM, along with a codeblock processor and a hardware command decoder. The decoded command codeblocks are output to the spacecraft command/data subsystem. Virtual Channel 0 (VC-0) (hardware) commands are processed and output as critical controller (CRC) commands. Downlink telemetry is received from the spacecraft data subsystem as telemetry frames. The STM provides the following downlink coding options: the standard CCSDS (7-1/2) convolutional coding, ReedSolomon coding with interleave depths one and five, (15-1/6) convolutional coding, and Turbo coding with rates 1/3 and 1/6. The downlink symbol rates can be linearly ramped to match the G/T curve of the receiving station, providing up to a 1 dB increase in data return. Data rates range from 5 bits per second (bps) to 24 Mbps, with three modulation modes provided: modulated subcarrier (3 different frequencies provided), biphase-L modulated direct on carrier, and Offset QPSK. Also, the capability to generate one of four non-harmonically related telemetry beacon tones is provided, to allow for a simple spacecraft status monitoring scheme for cruise phases of missions. Three ranging modes are provided: standard turn around ranging, regenerative pseudo-noise (PN) ranging, and Differential One-way Ranging (DOR) tones. The regenerative ranging provides the

  10. Electromagnetic immunity of implantable pacemakers exposed to wi-fi devices.

    PubMed

    Mattei, Eugenio; Censi, Federica; Triventi, Michele; Calcagnini, Giovanni

    2014-10-01

    The purpose of this study is to evaluate the potential for electromagnetic interference (EMI) and to assess the immunity level of implantable pacemakers (PM) when exposed to the radiofrequency (RF) field generated by Wi-Fi devices. Ten PM from five manufacturers, representative of what today is implanted in patients, have been tested in vitro and exposed to the signal generated by a Wi-Fi transmitter. An exposure setup that reproduces the actual IEEE 802.11b/g protocol has been designed and used during the tests. The system is able to amplify the Wi-Fi signal and transmits at power levels higher than those allowed by current international regulation. Such approach allows one to obtain, in case of no EMI, a safety margin for PM exposed to Wi-Fi signals, which otherwise cannot be derived if using commercial Wi-Fi equipment. The results of this study mitigate concerns about using Wi-Fi devices close to PM: none of the PM tested exhibit any degradation of their performance, even when exposed to RF field levels five times higher than those allowed by current international regulation (20 W EIRP). In conclusion, Wi-Fi devices do not pose risks of EMI to implantable PM. The immunity level of modern PM is much higher than the transmitting power of RF devices operating at 2.4 GHz.

  11. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies

    NASA Astrophysics Data System (ADS)

    Guerin, Bastien; Serano, Peter; Iacono, Maria Ida; Herrington, Todd M.; Widge, Alik S.; Dougherty, Darin D.; Bonmassar, Giorgio; Angelone, Leonardo M.; Wald, Lawrence L.

    2018-05-01

    We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a ‘virtual CT’ image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg‑1 (full model, helicoidal conductors) to 43.6 kW kg‑1 (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg‑1 (full model, straight conductors) to 73.8 kW kg‑1 (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9

  12. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies.

    PubMed

    Guerin, Bastien; Serano, Peter; Iacono, Maria Ida; Herrington, Todd M; Widge, Alik S; Dougherty, Darin D; Bonmassar, Giorgio; Angelone, Leonardo M; Wald, Lawrence L

    2018-05-04

    We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a 'virtual CT' image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg -1 (full model, helicoidal conductors) to 43.6 kW kg -1 (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg -1 (full model, straight conductors) to 73.8 kW kg -1 (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9.5% and 27.6%.

  13. Electromagnetic compatibility and safety design of a patient compliance-free, inductive implant charger.

    PubMed

    Theodoridis, Michael P; Mollov, Stefan V

    2014-10-01

    This article presents the design of a domestic, radiofrequency induction charger for implants toward compliance with the Federal Communications Commission safety and electromagnetic compatibility regulations. The suggested arrangement does not impose any patient compliance requirements other than the use of a designated bed for night sleep, and therefore can find a domestic use. The method can be applied to a number of applications; a rechargeable pacemaker is considered as a case study. The presented work has proven that it is possible to realize a fully compliant inductive charging system with minimal patient interaction, and has generated important information for consideration by the designers of inductive charging systems. Experimental results have verified the validity of the theoretical findings.

  14. Low risk of electromagnetic interference between smartphones and contemporary implantable cardioverter defibrillators.

    PubMed

    Burri, Haran; Mondouagne Engkolo, Louis Paulin; Dayal, Nicolas; Etemadi, Abdul; Makhlouf, Anne-Marie; Stettler, Carine; Trentaz, Florence

    2016-05-01

    Manufacturers of implantable cardioverter defibrillators (ICDs) recommend that cell phones be maintained at a distance of ∼15 cm from the implanted device in order to avoid risk of dysfunction due to electromagnetic interference (EMI). Data relating to this issue are outdated and do not reflect modern technology. Our aim was to evaluate whether EMI is still an issue with contemporary ICDs and smartphones. Consecutive patients implanted with a wireless-enabled ICD were tested for potential interference with two models of recent 4G smartphones in conditions intended to maximize risk of EMI. A magnet effect (due to the phone speakers) was tested by placing the smartphones in the standby mode directly over the ICD generator. The presence of EMI artefacts on the real-time electrograms was evaluated by placing the smartphones in the standby, dialling, and operating modes directly over the generator casing and over the parasternal region in the vicinity of the ventricular lead. A total of 63 patients equipped with 29 different models of single, dual, or biventricular ICDs from five major manufacturers were included. None of the patients showed any evidence of interference with the smartphones during any of the 882 tests. The risk of EMI between modern smartphones and contemporary ICDs is low. This is probably due to the filters incorporated in the ICDs and low emission by the phones, as well as the small size of the magnets in the smartphones tested. NCT02330900 (http://www.clinicaltrials.gov). Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  15. Comparison of rectal, microchip transponder, and infrared thermometry techniques for obtaining body temperature in the laboratory rabbit (Oryctolagus cuniculus).

    PubMed

    Chen, Patty H; White, Charles E

    2006-01-01

    This study compared rabbit rectal thermometry with 4 other thermometry techniques: an implantable microchip temperature transponder, an environmental noncontact infrared thermometer, a tympanic infrared thermometer designed for use on humans, and a tympanic infrared thermometer designed for use on animals. The microchip transponder was implanted between the shoulder blades; the environmental noncontact infrared thermometer recorded results from the base of the right pinna and the left inner thigh, and the tympanic infrared thermometer temperatures were taken from the right ear. Results from each technique were compared to determine agreement between the test modality and the rectal temperature. The practicality and reliability of the modalities were reviewed also. According to this study, the implantable microchip transponder measurements agreed most closely with the rectal temperature.

  16. The 30/20 Gigahertz transponder study. [wideband multichannel transponders for a communications satellite

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Design features and performance parameters are described for three types of wideband multiple channel satellite transponders for use in a 30/20 GHz communications satellite, which provides high data rate trunking service to ten ground station terminals. The three types of transponder are frequency division multiplex (FDM), time division multiplex (TDM), and a hybrid transponder using a combination of FDM and TDM techniques. The wideband multiple beam trunking concept, the traffic distribution between the trunking terminals, and system design constraints are discussed. The receiver front end design, the frequency conversion scheme, and the local oscillator design are described including the thermal interface between the transponders and the satellite. The three designs are compared with regard to performance, weight, power, cost and initial technology. Simplified block diagrams of the baseline transponder designs are included.

  17. Electromagnetic versus electrical coupling of personal frequency modulation (FM) receivers to cochlear implant sound processors.

    PubMed

    Schafer, Erin C; Romine, Denise; Musgrave, Elizabeth; Momin, Sadaf; Huynh, Christy

    2013-01-01

    Previous research has suggested that electrically coupled frequency modulation (FM) systems substantially improved speech-recognition performance in noise in individuals with cochlear implants (CIs). However, there is limited evidence to support the use of electromagnetically coupled (neck loop) FM receivers with contemporary CI sound processors containing telecoils. The primary goal of this study was to compare speech-recognition performance in noise and subjective ratings of adolescents and adults using one of three contemporary CI sound processors coupled to electromagnetically and electrically coupled FM receivers from Oticon. A repeated-measures design was used to compare speech-recognition performance in noise and subjective ratings without and with the FM systems across three test sessions (Experiment 1) and to compare performance at different FM-gain settings (Experiment 2). Descriptive statistics were used in Experiment 3 to describe output differences measured through a CI sound processor. Experiment 1 included nine adolescents or adults with unilateral or bilateral Advanced Bionics Harmony (n = 3), Cochlear Nucleus 5 (n = 3), and MED-EL OPUS 2 (n = 3) CI sound processors. In Experiment 2, seven of the original nine participants were tested. In Experiment 3, electroacoustic output was measured from a Nucleus 5 sound processor when coupled to the electromagnetically coupled Oticon Arc neck loop and electrically coupled Oticon R2. In Experiment 1, participants completed a field trial with each FM receiver and three test sessions that included speech-recognition performance in noise and a subjective rating scale. In Experiment 2, participants were tested in three receiver-gain conditions. Results in both experiments were analyzed using repeated-measures analysis of variance. Experiment 3 involved electroacoustic-test measures to determine the monitor-earphone output of the CI alone and CI coupled to the two FM receivers. The results in Experiment 1 suggested

  18. TDRS multimode transponder program. Phase 1: Design

    NASA Technical Reports Server (NTRS)

    Cnossen, R. S.

    1972-01-01

    The use of geosynchronous tracking and data relay satellites (TDRS) which can serve both low data rate users at VHF and high data rate users at other frequencies is considered. The effects of radio frequency interference from the earth and of multipath propagation due to reflections from the earth are expected to pose problems for the TDRS system at VHF. Investigations suggest several modulation techniques that offer promise to overcome these problems. This report provides a complete design of a VHF/UHF multimode transponder and its associated ground support equipment. The transponder is designed for installation aboard an aircraft and will demonstrate candidate modulation techniques to provide the required information for the design of an eventual VHF/UHF transponder suitable for installation in a user satellite, capable of operating as part of a TDRS system.

  19. iPad2(R) use in patients with implantable cardioverter defibrillators causes electromagnetic interference: the EMIT Study.

    PubMed

    Kozik, Teri M; Chien, Gianna; Connolly, Therese F; Grewal, Gurinder S; Liang, David; Chien, Walter

    2014-04-10

    Over 140 million iPads(®) have been sold worldwide. The iPad2(®), with magnets embedded in its frame and Smart Cover and 3G cellular data capability, can potentially cause electromagnetic interference in implantable cardioverter defibrillators. This can lead to potentially life-threatening situations in patients. The goal of this study was to determine whether the iPad2(®) can cause electromagnetic interference in patients with implantable cardioverter defibrillators. Twenty-seven patients with implantable cardioverter defibrillators were studied. The iPad2(®) was held at reading distance and placed directly over the device with cellular data capability activated and deactivated. The manufacturers/models of devices and the patients' body mass index were noted. The presence of electromagnetic interference was detected by using a programmer supplied by each manufacturer. Magnet mode with suspension of anti-tachycardia therapy was triggered in 9 (33%) patients. All occurred when the iPad2(®) was placed directly over the device. The cellular data status did not cause interference and no noise or oversensing was noted. There was no significant difference between the mean body mass index of the groups with or without interference. The iPad2(®) can trigger magnet mode in implantable cardioverter defibrillators when laid directly over the device. This is potentially dangerous if patients should develop life-threatening arrhythmias at the same time. As new electronic products that use magnets are produced, the potential risk to patients with implantable defibrillators needs to be addressed.

  20. Mode S data link transponder flight test results

    DOT National Transportation Integrated Search

    1997-02-01

    The Federal Aviation Administration (FAA) William J. Hughes Technical Center is : in the unique position of having the facilities designed to test Mode S radars : and transponders. A vendor supplied an early production model of a Mode S : transponder...

  1. TDRSS multimode transponder program S-band modification

    NASA Technical Reports Server (NTRS)

    Mackey, J. E.

    1975-01-01

    The S-Band TDRS multimode transponder and its associated ground support equipment is described. The transponder demonstrates candidate modulation techniques to provide the required information for the design of an eventual S-band transponder suitable for installation in a user satellite, capable of operating as part of a Tracking and Data Relay Satellite (TDRS) system.

  2. 14 CFR 99.13 - Transponder-on requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... equipped with an operable radar beacon transponder, shall operate the transponder, including altitude... designated in subpart B of this part unless that aircraft is equipped with a coded radar beacon transponder..., within, or across the contiguous U.S. ADIZ unless that aircraft is equipped with a coded radar beacon...

  3. 14 CFR 99.13 - Transponder-on requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... equipped with an operable radar beacon transponder, shall operate the transponder, including altitude... designated in subpart B of this part unless that aircraft is equipped with a coded radar beacon transponder..., within, or across the contiguous U.S. ADIZ unless that aircraft is equipped with a coded radar beacon...

  4. 14 CFR 99.13 - Transponder-on requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equipped with an operable radar beacon transponder, shall operate the transponder, including altitude... designated in subpart B of this part unless that aircraft is equipped with a coded radar beacon transponder..., within, or across the contiguous U.S. ADIZ unless that aircraft is equipped with a coded radar beacon...

  5. 14 CFR 99.13 - Transponder-on requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... equipped with an operable radar beacon transponder, shall operate the transponder, including altitude... designated in subpart B of this part unless that aircraft is equipped with a coded radar beacon transponder..., within, or across the contiguous U.S. ADIZ unless that aircraft is equipped with a coded radar beacon...

  6. 14 CFR 99.13 - Transponder-on requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... equipped with an operable radar beacon transponder, shall operate the transponder, including altitude... designated in subpart B of this part unless that aircraft is equipped with a coded radar beacon transponder..., within, or across the contiguous U.S. ADIZ unless that aircraft is equipped with a coded radar beacon...

  7. VCO PLL Frequency Synthesizers for Spacecraft Transponders

    NASA Technical Reports Server (NTRS)

    Smith, Scott; Mysoor, Narayan; Lux, James; Cook, Brian

    2007-01-01

    Two documents discuss a breadboard version of advanced transponders that, when fully developed, would be installed on future spacecraft to fly in deep space. These transponders will be required to be capable of operation on any deepspace- communications uplink frequency channel between 7,145 and 7,235 MHz, and any downlink frequency channel between 8,400 and 8,500 MHz. The document focuses on the design and operation of frequency synthesizers for the receiver and transmitter. Heretofore, frequency synthesizers in deep-space transponders have been based on dielectric resonator oscillators (DROs), which do not have the wide tuning bandwidth necessary to tune over all channels in the uplink or downlink frequency bands. To satisfy the requirement for tuning bandwidth, the present frequency synthesizers are based on voltage-controlled-oscillator (VCO) phase-locked loops (PLLs) implemented by use of monolithic microwave integrated circuits (MMICs) implemented using inGaP heterojunction bipolar transistor (HBT) technology. MMIC VCO PLL frequency synthesizers similar to the present ones have been used in commercial and military applications but, until now, have exhibited too much phase noise for use in deep-space transponders. The present frequency synthesizers contain advanced MMIC VCOs, which use HBT technology and have lower levels of flicker (1/f) phase noise. When these MMIC VCOs are used with high-speed MMIC frequency dividers, it becomes possible to obtain the required combination of frequency agility and low phase noise.

  8. System for Configuring Modular Telemetry Transponders

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2014-01-01

    A system for configuring telemetry transponder cards uses a database of error checking protocol data structures, each containing data to implement at least one CCSDS protocol algorithm. Using a user interface, a user selects at least one telemetry specific error checking protocol from the database. A compiler configures an FPGA with the data from the data structures to implement the error checking protocol.

  9. [Electromagnetic fields of mobile telephone systems--thresholds, effects and risks for cochlear implant patients and healthy people].

    PubMed

    Bischof, F; Langer, J; Begall, K

    2008-11-01

    Every day life is detectably affected by manifold natural sources of electromagnetic fields (EMF), e. g. infrared radiation, light and the terrestrial magnetic field. However, there is still uncertainty about the consequences or hazards of artificial EMF, which emerge from mobile phone or wireless network (wireless local area network [WLAN]) services, for instance. Following recommendations of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) the German Commission on Radiation Protection (SSK) defined corresponding thresholds for high frequency electromagnetic fields (HF-EMF) in 2003. By observing those thresholds HF-EMF is thought to be innocent so far. However, there is still controversial discussion about induction of cancer or neurovegetative symptoms due to inconsistent study results. Patients with cochlea implants are of particular interest within the speciality of otorhinolaryngology due to specific hazards, which arise during mobile telephone use from the distance between brain and inductive metal implants (electrode) on the one hand and the electronic system of the cochlear implant and the source of HF-EMF on the other hand. Besides many studies about the impact of HF-EMF on common welfare, there are only very few surveys (n = 6) covering the effects on patients with cochlear implants. The purpose of this paper is to overview sources, thresholds and subsequently harmful or harmless effects of HFEMF. Due to the current state of knowledge about the impact of mobile phone use on health, we assume, that HF-EMF are harmless both for healthy people and patients with cochlea implants, provided that legal thresholds are observed.

  10. Prostate tumor alignment and continuous, real-time adaptive radiation therapy using electromagnetic fiducials: clinical and cost-utility analyses.

    PubMed

    Quigley, Martin M; Mate, Timothy P; Sylvester, John E

    2009-01-01

    To evaluate the accuracy, utility, and cost effectiveness of a new electromagnetic patient positioning and continuous, real-time monitoring system, which uses permanently implanted resonant transponders in the target (Calypso 4D Localization System and Beacon transponders, Seattle, WA) to continuously monitor tumor location and movement during external beam radiation therapy of the prostate. This clinical trial studied 43 patients at 5 sites. All patients were implanted with 3 transponders each. In 41 patients, the system was used for initial alignment at each therapy session. Thirty-five patients had continuous monitoring during their radiation treatment. Over 1,000 alignment comparisons were made to a commercially available kV X-ray positioning system (BrainLAB ExacTrac, Munich, Germany). Using decision analysis and Markov processes, the outcomes of patients were simulated over a 5-year period and measured in terms of costs from a payer's perspective and quality-adjusted life years (QALYs). All patients had satisfactory transponder implantations for monitoring purposes. In over 75% of the treatment sessions, the correction to conventional positioning (laser and tattoos) directed by an electromagnetic patient positioning and monitoring system was greater than 5 mm. Ninety-seven percent (34/35) of the patients who underwent continuous monitoring had target motion that exceeded preset limits at some point during the course of their radiation therapy. Exceeding preset thresholds resulted in user intervention at least once during the therapy in 80% of the patients (28/35). Compared with localization using ultrasound, electronic portal imaging devices (EPID), or computed tomography (CT), localization with the electromagnetic patient positioning and monitoring system yielded superior gains in QALYs at comparable costs. Most patients positioned with conventional tattoos and lasers for prostate radiation therapy were found by use of the electromagnetic patient positioning

  11. Vehicle Transponder for Preemption of Traffic Lights

    NASA Technical Reports Server (NTRS)

    Foster, Conrad; Bachelder, Aaron

    2006-01-01

    The purpose of this article is to describe, in more detail, the transponder installed in each vehicle that participates in the emergency traffic-light-preemption system described in the immediately preceding article. The transponder (see figure) is a fully autonomous data--collection, data-processing, information-display, and communication subsystem that performs robustly in preemption of traffic lights and monitoring of the statuses of street intersections. This transponder monitors the condition of the emergency vehicle in which it is installed and determines when the vehicle has been placed in an emergency-response condition with its siren and/or warning lights activated. Upon detection of such a condition, the transponder collects real-time velocity and acceleration data from the onboard diagnostic (OBD) computer of the vehicle. For this purpose, the transponder contains an OBD interface circuit, including a microprocessor that determines the manufacturer and model of the vehicle and then sends the appropriate commands to the OBD computer requesting the speed and acceleration data. At the same time, data from an onboard navigation system are collected to determine the location and the heading of the vehicle. Then acceleration, speed, position, and heading data are processed and combined with a vehicle-identification number and the resulting set of data is transmitted to monitoring and control units located at all intersections within communication range. When the unit at an intersection determines that this vehicle is approaching and has priority to preempt the intersection, it transmits a signal declaring the priority and the preemption to all participating vehicles (including this one) in the vicinity. If the unit at the intersection has determined that other participating vehicles are also approaching the intersection, then this unit also transmits, to the vehicle that has priority, a message that the other vehicles are approaching the same intersection. The

  12. Electromagnetic interference from welding and motors on implantable cardioverter-defibrillators as tested in the electrically hostile work site.

    PubMed

    Fetter, J G; Benditt, D G; Stanton, M S

    1996-08-01

    This study was designed to determine the susceptibility of an implanted cardioverter-defibrillator to electromagnetic interference in an electrically hostile work site environment, with the ultimate goal of allowing the patient to return to work. Normal operation of an implanted cardioverter-defibrillator depends on reliable sensing of the heart's electrical activity. Consequently, there is concern that external electromagnetic interference from external sources in the work place, especially welding equipment or motor-generator systems, may be sensed and produce inappropriate shocks or abnormal reed switch operation, temporarily suspending detection of ventricular tachycardia or ventricular fibrillation. The effects of electromagnetic interference on the operation of one type of implantable cardioverter-defibrillator (Medtronic models 7217 and 7219) was measured by using internal event counter monitoring in 10 patients operating arc welders at up to 900 A or working near 200-hp motors and 1 patient close to a locomotive starter drawing up to 400 A. The electromagnetic interference produced two sources of potential interference on the sensing circuit or reed switch operation, respectively: 1) electrical fields with measured frequencies up to 50 MHz produced by the high currents during welding electrode activation, and 2) magnetic fields produced by the current in the welding electrode and cable. The defibrillator sensitivity was programmed to the highest (most sensitive) value: 0.15 mV (model 7219) or 0.3 mV (model 7217). The ventricular tachycardia and ventricular fibrillation therapies were temporarily turned off but the detection circuits left on. None of the implanted defibrillators tested were affected by oversensing of the electric field as verified by telemetry from the detection circuits. The magnetic field from 225-A welding current produced a flux density of 1.2 G; this density was not adequate to close the reed switch, which requires approximately 10 G

  13. Effect of 935-MHz phone-simulating electromagnetic radiation on endometrial glandular cells during mouse embryo implantation.

    PubMed

    Liu, Wenhui; Zheng, Xinmin; Qu, Zaiqing; Zhang, Ming; Zhou, Chun; Ma, Ling; Zhang, Yuanzhen

    2012-10-01

    This study examined the impact of 935MHz phone-simulating electromagnetic radiation on embryo implantation of pregnant mice. Each 7-week-old Kunming (KM) female white mouse was set up with a KM male mouse in a single cage for mating overnight after induction of ovulation. In the first three days of pregnancy, the pregnant mice was exposed to electromagnetic radiation at low-intensity (150 μW/cm(2), ranging from 130 to 200 μW/cm(2), for 2- or 4-h exposure every day), mid-intensity (570 μW/cm(2), ranging from 400 to 700 μW/cm(2), for 2- or 4-h exposure every day) or high-intensity (1400 μW/cm(2), ranging from 1200 to 1500 μW/cm(2), for 2- or 4-h exposure every day), respectively. On the day 4 after gestation (known as the window of murine embryo implantation), the endometrium was collected and the suspension of endometrial glandular cells was made. Laser scanning microscopy was employed to detect the mitochondrial membrane potential and intracellular calcium ion concentration. In high-intensity, 2- and 4-h groups, mitochondrial membrane potential of endometrial glandular cells was significantly lower than that in the normal control group (P<0.05). The calcium ion concentration was increased in low-intensity 2-h group but decreased in high-intensity 4-h group as compared with the normal control group (P<0.05). However, no significant difference was found in mitochondrial membrane potential of endometrial glandular cells between low- or mid-intensity groups and the normal control group, indicating stronger intensity of the electromagnetic radiation and longer length of the radiation are required to inflict a remarkable functional and structural damage to mitochondrial membrane. Our data demonstrated that electromagnetic radiation with a 935-MHz phone for 4 h conspicuously decreased mitochondrial membrane potential and lowered the calcium ion concentration of endometrial glandular cells. It is suggested that high-intensity electromagnetic radiation is very likely

  14. Radar transponder antenna pattern analysis for the space shuttle

    NASA Technical Reports Server (NTRS)

    Radcliff, Roger

    1989-01-01

    In order to improve tracking capability, radar transponder antennas will soon be mounted on the Shuttle solid rocket boosters (SRB). These four antennas, each being identical cavity-backed helices operating at 5.765 GHz, will be mounted near the top of the SRB's, adjacent to the intertank portion of the external tank. The purpose is to calculate the roll-plane pattern (the plane perpendicular to the SRB axes and containing the antennas) in the presence of this complex electromagnetic environment. The large electrical size of this problem mandates an optical (asymptotic) approach. Development of a specific code for this application is beyond the scope of a summer fellowship; thus a general purpose code, the Numerical Electromagnetics Code - Basic Scattering Code, was chosen as the computational tool. This code is based on the modern Geometrical Theory of Diffraction, and allows computation of scattering of bodies composed of canonical problems such as plates and elliptic cylinders. Apertures mounted on a curved surface (the SRB) cannot be accomplished by the code, so an antenna model consisting of wires excited by a method of moments current input was devised that approximated the actual performance of the antennas. The improvised antenna model matched well with measurements taken at the MSFC range. The SRB's, the external tank, and the shuttle nose were modeled as circular cylinders, and the code was able to produce what is thought to be a reasonable roll-plane pattern.

  15. [Literature review of the influences on error rates when identifying equids with transponder and hot-iron branding].

    PubMed

    Campe, Amely; Schulz, Sophia; Bohnet, Willa

    2016-01-01

    Although equids have had to be tagged with a transponder since 2009, breeding associations in Germany disagree as to which method is best suited for identification (with or without hot iron branding). Therefore, the aim of this systematic literature review was to gain an overview of how effective identification is using transponders and hot iron branding and as to which factors influence the success of identification. Existing literature showed that equids can be identified by means of transponders with a probability of 85-100%, whereas symbol brandings could be identified correctly in 78-89%, whole number brandings in 0-87% and single figures in 37-92% of the readings, respectively. The successful reading of microchips can be further optimised by a correctly operated implantation process and thorough training of the applying persons. affect identification with a scanner. The removal of transponders for manipulation purposes is virtually impossible. Influences during the application of branding marks can hardly, if at all, be standardised, but influence the subsequent readability relevantly. Therefore, identification by means of hot branding cannot be considered sufficiently reliable. Impaired quality of identification can be reduced during reading but cannot be counteracted. Based on the existing studies it can be concluded that the transponder method is the best suited of the investigated methods for clearly identifying equids, being forgery-proof and permanent. It is not to be expected that applying hot branding in addition to microchips would optimise the probability of identification relevantly.

  16. No Electromagnetic Interference Occurred in a Patient with a HeartMate II Left Ventricular Assist System and a Subcutaneous Implantable Cardioverter-Defibrillator.

    PubMed

    Raman, Ajay Sundara; Shabari, Farshad Raissi; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh

    2016-04-01

    The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance.

  17. No Electromagnetic Interference Occurred in a Patient with a HeartMate II Left Ventricular Assist System and a Subcutaneous Implantable Cardioverter-Defibrillator

    PubMed Central

    Raman, Ajay Sundara; Kar, Biswajit; Loyalka, Pranav; Hariharan, Ramesh

    2016-01-01

    The use of subcutaneous implantable cardioverter-defibrillators is a novel option for preventing arrhythmia-mediated cardiac death in patients who are at risk of endovascular-device infection or in whom venous access is difficult. However, the potential for electromagnetic interference between subcutaneous defibrillators and left ventricular assist devices is largely unknown. We report the case of a 24-year-old man in whom we observed no electromagnetic interference between a subcutaneous implanted cardioverter-defibrillator and a HeartMate II Left Ventricular Assist System, at 3 different pump speeds. To our knowledge, this is the first report of such findings in this circumstance. PMID:27127441

  18. Influence of electromagnetic interference on implanted cardiac arrhythmia devices in and around a magnetically levitated linear motor car.

    PubMed

    Fukuta, Motoyuki; Mizutani, Noboru; Waseda, Katsuhisa

    2005-01-01

    This study was designed to determine the susceptibility of implanted cardiac arrhythmia devices to electromagnetic interference in and around a magnetically levitated linear motor car [High-Speed Surface Transport (HSST)]. During the study, cardiac devices were connected to a phantom model that had similar characteristics to the human body. Three pacemakers from three manufacturers and one implantable cardioverter-defibrillator (ICD) were evaluated in and around the magnetically levitated vehicle. The system is based on a normal conductive system levitated by the attractive force of magnets and propelled by a linear induction motor without wheels. The magnetic field strength at 40 cm from the vehicle in the nonlevitating state was 0.12 mT and that during levitation was 0.20 mT. The magnetic and electric field strengths on a seat close to the variable voltage/variable frequency inverter while the vehicle was moving and at rest were 0.13 mT, 2.95 V/m and 0.04 mT, 0.36 V/m, respectively. Data recorded on a seat close to the reactor while the vehicle was moving and at rest were 0.09 mT, 2.45 V/m and 0.05 mT, 1.46 V/m, respectively. Measured magnetic and electric field strengths both inside and outside the linear motor car were too low to result in device inactivation. No sensing, pacing, or arrhythmic interactions were noted with any pacemaker or ICD programmed in either bipolar and unipolar configurations. In conclusion, our data suggest that a permanent programming change or a device failure is unlikely to occur and that the linear motor car system is probably safe for patients with one of the four implanted cardiac arrhythmia devices used in this study under the conditions tested.

  19. Comparison of Digital Rectal and Microchip Transponder Thermometry in Ferrets (Mustela putorius furo)

    PubMed Central

    Maxwell, Branden M; Brunell, Marla K; Olsen, Cara H; Bentzel, David E

    2016-01-01

    Body temperature is a common physiologic parameter measured in both clinical and research settings, with rectal thermometry being implied as the ‘gold standard.’ However, rectal thermometry usually requires physical or chemical restraint, potentially causing falsely elevated readings due to animal stress. A less stressful method may eliminate this confounding variable. The current study compared 2 types of digital rectal thermometers—a calibrated digital thermometer and a common digital thermometer—with an implantable subcutaneous transponder microchip. Microchips were implanted subcutaneously between the shoulder blades of 16 ferrets (8 male, 8 female), and temperatures were measured twice from the microchip reader and once from each of the rectal thermometers. Results demonstrated the microchip temperature readings had very good to good correlation and agreement to those from both of the rectal thermometers. This study indicates that implantable temperature-sensing microchips are a reliable alternative to rectal thermometry for monitoring body temperature in ferrets. PMID:27177569

  20. TH-B-204-01: Real-Time Tracking with Implanted Markers

    SciTech Connect

    Xu, Q.

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a

  1. TH-B-204-03: TG-199: Implanted Markers for Radiation Treatment Verification

    SciTech Connect

    Wang, Z.

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a

  2. TH-B-204-02: Application of Implanted Markers in Proton Therapy

    SciTech Connect

    Park, S.

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a

  3. TH-B-204-00: Implanted Markers for Radiation Therapy and TG 199 Update

    SciTech Connect

    NONE

    Implanted markers as target surrogates have been widely used for treatment verification, as they provide safe and reliable monitoring of the inter- and intra-fractional target motion. The rapid advancement of technology requires a critical review and recommendation for the usage of implanted surrogates in current field. The symposium, also reporting an update of AAPM TG 199 - Implanted Target Surrogates for Radiation Treatment Verification, will be focusing on all clinical aspects of using the implanted target surrogates for treatment verification and related issues. A wide variety of markers available in the market will be first reviewed, including radiopaque markers, MRImore » compatible makers, non-migrating coils, surgical clips and electromagnetic transponders etc. The pros and cons of each kind will be discussed. The clinical applications of implanted surrogates will be presented based on different anatomical sites. For the lung, we will discuss gated treatments and 2D or 3D real-time fiducial tracking techniques. For the prostate, we will be focusing on 2D-3D, 3D-3D matching and electromagnetic transponder based localization techniques. For the liver, we will review techniques when patients are under gating, shallow or free breathing condition. We will review techniques when treating challenging breast cancer as deformation may occur. Finally, we will summarize potential issues related to the usage of implanted target surrogates with TG 199 recommendations. A review of fiducial migration and fiducial derived target rotation in different disease sites will be provided. The issue of target deformation, especially near the diaphragm, and related suggestions will be also presented and discussed. Learning Objectives: Knowledge of a wide variety of markers Knowledge of their application for different disease sites Understand of issues related to these applications Z. Wang: Research funding support from Brainlab AG Q. Xu: Consultant for Accuray; Q. Xu, I am a

  4. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results

  5. Electromagnetic interference of GSM mobile phones with the implantable deep brain stimulator, ITREL-III

    PubMed Central

    Kainz, Wolfgang; Alesch, François; Chan, Dulciana Dias

    2003-01-01

    Background The purpose was to investigate mobile phone interference with implantable deep brain stimulators by means of 10 different 900 Mega Hertz (MHz) and 10 different 1800 MHz GSM (Global System for Mobile Communications) mobile phones. Methods All tests were performed in vitro using a phantom especially developed for testing with deep brain stimulators. The phantom was filled with liquid phantom materials simulating brain and muscle tissue. All examinations were carried out inside an anechoic chamber on two implants of the same type of deep brain stimulator: ITREL-III from Medtronic Inc., USA. Results Despite a maximum transmitted peak power of mobile phones of 1 Watt (W) at 1800 MHz and 2 W at 900 MHz respectively, no influence on the ITREL-III was found. Neither the shape of the pulse form changed nor did single pulses fail. Tests with increased transmitted power using CW signals and broadband dipoles have shown that inhibition of the ITREL-III occurs at frequency dependent power levels which are below the emissions of GSM mobile phones. The ITREL-III is essentially more sensitive at 1800 MHz than at 900 MHz. Particularly the frequency range around 1500 MHz shows a very low interference threshold. Conclusion These investigations do not indicate a direct risk for ITREL-III patients using the tested GSM phones. Based on the interference levels found with CW signals, which are below the mobile phone emissions, we recommend similar precautions as for patients with cardiac pacemakers: 1. The phone should be used at the ear at the opposite side of the implant and 2. The patient should avoid carrying the phone close to the implant. PMID:12773204

  6. Electromagnetic Compatibility of Transcutaneous Energy Transmission Systemfor Totally Implantable Artificial Heart

    NASA Astrophysics Data System (ADS)

    Shiba, Kenji; Koshiji, Kohji

    Transcutaneous Energy Transmission (TET) is one way of providing the energy needed to power a totally implantable artificial heart (TIAH). In the present study, an externally coupled TET system was implanted in a prototype human phantom to evaluate emission and immunity. In the emission evaluation, measurements were conducted based on CISPR Pub.11 and VDE 0871 standards, while immunity tests were based on the standards of the IEC 61000-4 series. The magnetic field of the radiated emission was measured using a loop antenna. At 0.1[MHz], we found the greatest magnetic field of 47.8 [dBμA/m], somewhat less than CISPR’s upper limit of 54 [dBμA/m]. For the conducted emission, by installing a noise filter and ferrite beads in the input section of the DC-power supply, conducted emission could be kept within the allowable limits of CISPR Pub.11 and VDE 0871. Finally, the immunity tests against radiated and conducted emission, electrostatic discharge and voltage fluctuation proved that the prototype could withstand the maximum level of disturbance. These results confirmed that the TET system implanted in a human phantom could, through modification, meet the emission and immunity standards.

  7. Electromagnetic Compatibility between Marine Automatic Identification and Public Correspondence Systems in the Maritime Mobile VHF Band.

    DOT National Transportation Integrated Search

    2000-04-01

    The Coast Guard funded the National Telecommunications and Information Administration : (NTIA) to perform electromagnetic compatibility (EMC) tests between an ITU-R M. 825-3 : (Characteristics Of a Transponder System Using Digital Selective Calling T...

  8. Transponder data processing methods and systems

    DOEpatents

    Axline, Robert M.

    2003-06-10

    This invention is a radar/tag system where pulses from a radar cause a tag (or transponder) to respond to the radar. The radar, along with its conventional pulse transmissions, sends a reference signal to the tag. The tag recovers the reference signal and uses it to shift the center frequency of the received radar pulse to a different frequency. This shift causes the frequencies of the tag response pulses to be disjoint from those of the transmit pulse. In this way, radar clutter can be eliminated from the tag responses. The radar predicts, to within a small Doppler offset, the center frequency of tag response pulses. The radar can create synthetic-aperture-radar-like images and moving-target-indicator-radar-like maps containing the signature of the tag against a background of thermal noise and greatly attenuated radar clutter. The radar can geolocate the tag precisely and accurately (to within better than one meter of error). The tag can encode status and environmental data onto its response pulses, and the radar can receive and decode this information.

  9. Wide Tuning Capability for Spacecraft Transponders

    NASA Technical Reports Server (NTRS)

    Lux, James; Mysoor, Narayan; Shah, Biren; Cook, Brian; Smith, Scott

    2007-01-01

    A document presents additional information on the means of implementing a capability for wide tuning of microwave receiver and transmitter frequencies in the development reported in the immediately preceding article, VCO PLL Frequency Synthesizers for Spacecraft Transponders (NPO- 42909). The reference frequency for a PLL-based frequency synthesizer is derived from a numerically controlled oscillator (NCO) implemented in digital logic, such that almost any reference frequency can be derived from a fixed crystal reference oscillator with microhertz precision. The frequency of the NCO is adjusted to track the received signal, then used to create another NCO frequency used to synthesize the transmitted signal coherent with, and at a specified frequency ratio to, the received signal. The frequencies can be changed, even during operation, through suitable digital programming. The NCOs and the related tracking loops and coherent turnaround logic are implemented in a field-programmable gate array (FPGA). The interface between the analog microwave receiver and transmitter circuits and the FPGA includes analog-to-digital and digital-toanalog converters, the sampling rates of which are chosen to minimize spurious signals and otherwise optimize performance. Several mixers and filters are used to properly route various signals.

  10. A Prospective Cohort Study of Gated Stereotactic Liver Radiation Therapy Using Continuous Internal Electromagnetic Motion Monitoring.

    PubMed

    Worm, Esben S; Høyer, Morten; Hansen, Rune; Larsen, Lars P; Weber, Britta; Grau, Cai; Poulsen, Per R

    2018-06-01

    Intrafraction motion can compromise the treatment accuracy in liver stereotactic body radiation therapy (SBRT). Respiratory gating can improve treatment delivery; however, gating based on external motion surrogates is inaccurate. The present study reports the use of Calypso-based internal electromagnetic motion monitoring for gated liver SBRT. Fifteen patients were included in a study of 3-fraction respiratory gated liver SBRT guided by 3 implanted electromagnetic transponders. The planning target volume was created by a 5-mm axial and 7-mm (n = 12) or 10-mm (n = 3) craniocaudal expansion of the clinical target volume (CTV) and covered with 67% of the prescribed CTV mean dose. Treatment was gated to the end-exhale phase of the respiratory cycle with beam-on when the target deviated <3 mm (left-right/anteroposterior) and 4 mm (craniocaudal) from the planned position, according to the monitored (25-Hz) transponder centroid position. The couch was adjusted remotely if baseline drifts >1 to 2 mm occurred. Log files of transponder motion were used to determine the geometric error and reconstruct the delivered CTV dose in the actual gated treatments and in simulated nongated treatments. No severe side effects were observed in relation to transponder implantation. All 45 treatment fractions were successfully guided using the Calypso system. The mean number of couch corrections during each gated fraction was 2.8 (range 0-7). The mean duty cycle during gated treatment was 62.5% (range 29.1%-84.9%). Without gating, the mean 3-dimensional geometric error during a fraction would have been 5.4 mm (range 2.7-12.1). Gating reduced this error to 2.0 mm (range 1.2-3.0). The patient mean reduction in minimum dose to 95% of the CTV relative to the planned dose was 6.0 percentage points (range 0.7-22.0) without gating and 0.8 percentage point (range 0.2-2.0) with gating. Gating using internal motion monitoring was successfully applied for liver SBRT. It markedly improved the

  11. SU-F-BRA-03: Integrating Novel Electromagnetic Tracking Hollow Needle Assistance in Permanent Implant Brachytherapy Procedures

    SciTech Connect

    Racine, E; Hautvast, G; Binnekamp, D

    Purpose: To report on the results of a complete permanent implant brachytherapy procedure assisted by an electromagnetic (EM) hollow needle possessing both 3D tracking and seed drop detection abilities. Methods: End-to-end in-phantom EM-assisted LDR procedures were conducted. The novel system consisted of an EM tracking apparatus (NDI Aurora V2, Planar Field Generator), a 3D US scanner (Philips CX50), a hollow needle prototype allowing 3D tracking and seed drop detection and a specially designed treatment planning software (Philips Healthcare). A tungsten-doped 30 cc spherical agarose prostate immersed in gelatin was used for the treatment. A cylindrical shape of 0.8 cc wasmore » carved along its diameter to mimic the urethra. An initial plan of 26 needles and 47 seeds was established with the system. The plan was delivered with the EM-tracked hollow needle, and individual seed drop locations were recorded on the fly. The phantom was subsequently imaged with a CT scanner from which seed positions and contour definitions were obtained. The DVHs were then independently recomputed and compared with those produced by the planning system, both before and after the treatment. Results: Of the 47 seeds, 45 (96%) were detected by the EM technology embedded in the hollow needle design. The executed plan (from CT analysis) differed from the initial plan by 2%, 14% and 8% respectively in terms of V100, D90 and V150 for the prostate, and by 8%, 7% and 10% respectively in terms of D5, V100 and V120 for the urethra. Conclusion: The average DVH deviations between initial and executed plans were within a 5% tolerance imposed for this proof-of-concept assessment. This relatively good concordance demonstrates the feasibility and potential benefits of combining EM tracking and seed drop detection for real-time dosimetry validation and assistance in permanent implant brachytherapy procedures. This project has been entirely funded by Philips Healthcare.« less

  12. Autonomous sensor-transponder RFID with supply energy conditioning for object navigation systems

    NASA Astrophysics Data System (ADS)

    Skoczylas, M.; Kamuda, K.; Jankowski-Mihułowicz, P.; Kalita, W.; Weglarski, Mariusz

    2014-08-01

    The properties of energy conditioning electrical circuits that are developed for powering additional functional blocks of autonomous RFID transponders working in the HF band have been analyzed and presented in the paper. The concept of autonomy is realized by implementing extra functions in the typical transponder. First of all, the autonomous system should harvest energy, e.g. from the electromagnetic field of read/write devices but also the possibility of gathering information about environment should be available, e.g. by measuring different kind of physical quantities. In such an electrical device, the crucial problem consists in energy conditioning because the output voltage-current characteristic of an front-end (antenna with matching and harvesting circuit) as well as the total and instantaneous power load generated by internal circuits are strongly dependent on a realized function but also on energy and communication conditions in the RFID interface. The properly designed solution should improve harvesting efficiency, current leakage of supply storage, matching between antenna and input circuits, in order to save energy and increase operating time in such a battery-free system. The authors present methods how to increase the autonomous operation time even at advanced measuring algorithms. The measuring system with wide spectrum of sensors dedicated for different quantities (physical, chemical, etc.) has also been presented. The results of model calculations and experimental verifications have been also discussed on the basis of investigations conducted in the unique laboratory stand of object navigation systems.

  13. TDRSS multimode transponder program. Phase 2: Equipment development

    NASA Technical Reports Server (NTRS)

    Cnossen, R. S.

    1974-01-01

    This report contains a complete description of the TDRS Multimode Transponder and its associated ground support equipment. The transponder will demonstrate candidate modulation techniques to provide the required information for the design of an eventual VHF/UHF transponder suitable for installation in a user satellite, capable of operating as part of a Tracking and Data Relay Satellite (TDRS) systems. Use of geosynchronous TDRS which can serve both low data rate users at VHF and high data rate users at other frequencies has been considered. The effects of radio frequency interference from the earth and of multipath propagation due to reflections from the earth are expected to pose problems for the TDRS system at VHF. Investigations have suggested several modulation techniques that offer promise to overcome these problems.

  14. Person-Locator System Based On Wristband Radio Transponders

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick W.; Blaes, Brent R.; Chandler, Charles W.

    1995-01-01

    Computerized system based on wristband radio frequency (RF), passive transponders is being developed for use in real-time tracking of individuals in custodial institutions like prisons and mental hospitals. Includes monitoring system that contains central computer connected to low-power, high-frequency central transceiver. Transceiver connected to miniature transceiver nodes mounted unobtrusively at known locations throughout the institution. Wristband transponders embedded in common hospital wristbands. Wristbands tamperproof: each contains embedded wire loop which, when broken or torn off and discarded, causes wristband to disappear from system, thus causing alarm. Individuals could be located in a timely fashion at relatively low cost.

  15. International business communications via Intelsat K-band transponders

    NASA Astrophysics Data System (ADS)

    Hagmann, W.; Rhodes, S.; Fang, R.

    This paper discusses how the transponder throughput and the required earth station HPA power in the Intelsat Business Services Network vary as a function of coding rate and required fade margin. The results indicate that transponder throughputs of 40 to 50 Mbit/s are achievable. A comparison of time domain simulation results with results based on a straightforward link analysis shows that the link analysis results may be fairly optimistic if the satellite traveling wave tube amplifier (TWTA) is operated near saturation; however, there is good agreement for large backoffs.

  16. Dual transponder time synchronization at C band using ATS-3.

    NASA Technical Reports Server (NTRS)

    Mazur, W. E., Jr.

    1972-01-01

    The use of artificial satellites for time synchronization of geographically distant clocks is hindered by problems due to satellite motion or equipment delay measurements. The ATS-3 satellite with its two C-band transponder channels helps solve these problems through techniques for synchronization to accuracies of tenths of microseconds. Portable cesium clocks were used to verify the accuracy of the described system.

  17. Ka-Band Transponder for Deep-Space Radio Science

    NASA Technical Reports Server (NTRS)

    Dennis, Matthew S.; Mysoor, Narayan R.; Folkner, William M.; Mendoza, Ricardo; Venkatesan, Jaikrishna

    2008-01-01

    A one-page document describes a Ka-band transponder being developed for use in deep-space radio science. The transponder receives in the Deep Space Network (DSN) uplink frequency band of 34.2 to 34.7 GHz, transmits in the 31.8- to 32.3 GHz DSN downlink band, and performs regenerative ranging on a DSN standard 4-MHz ranging tone subcarrier phase-modulated onto the uplink carrier signal. A primary consideration in this development is reduction in size, relative to other such transponders. The transponder design is all-analog, chosen to minimize not only the size but also the number of parts and the design time and, thus, the cost. The receiver features two stages of frequency down-conversion. The receiver locks onto the uplink carrier signal. The exciter signal for the transmitter is derived from the same source as that used to generate the first-stage local-oscillator signal. The ranging-tone subcarrier is down-converted along with the carrier to the second intermediate frequency, where the 4-MHz tone is demodulated from the composite signal and fed into a ranging-tone-tracking loop, which regenerates the tone. The regenerated tone is linearly phase-modulated onto the downlink carrier.

  18. Evaluation of Remote Delivery of Passive Integrated Transponder (PIT) Technology to Mark Large Mammals

    PubMed Central

    Walter, W. David; Anderson, Charles W.; VerCauteren, Kurt C.

    2012-01-01

    Methods to individually mark and identify free-ranging wildlife without trapping and handling would be useful for a variety of research and management purposes. The use of Passive Integrated Transponder technology could be an efficient method for collecting data for mark-recapture analysis and other strategies for assessing characteristics about populations of various wildlife species. Passive Integrated Transponder tags (PIT) have unique numbered frequencies and have been used to successfully mark and identify mammals. We tested for successful injection of PIT and subsequent functioning of PIT into gelatin blocks using 4 variations of a prototype dart. We then selected the prototype dart that resulted in the least depth of penetration in the gelatin block to assess the ability of PIT to be successfully implanted into muscle tissue of white-tailed deer (Odocoileus virginianus) post-mortem and long-term in live, captive Rocky Mountain elk (Cervus elaphus). The prototype dart with a 12.7 mm (0.5 inch) needle length and no powder charge resulted in the shallowest mean (± SD) penetration depth into gelatin blocks of 27.0 mm (±5.6 mm) with 2.0 psi setting on the Dan-Inject CO2-pressured rifle. Eighty percent of PIT were successfully injected in the muscle mass of white-tailed deer post-mortem with a mean (± SD) penetration depth of 22.2 mm (±3.8 mm; n = 6). We injected PIT successfully into 13 live, captive elk by remote delivery at about 20 m that remained functional for 7 months. We successfully demonstrated that PIT could be remotely delivered in darts into muscle mass of large mammals and remain functional for >6 months. Although further research is warranted to fully develop the technique, remote delivery of PIT technology to large mammals is possible using prototype implant darts. PMID:22984572

  19. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board.

    PubMed

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-05-27

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine‑bursts or by using a Qi A13 design wireless charging board (Qi‑A13‑Board) in two operating modes "power transfer" and "pinging". With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi‑A13‑Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi‑A13‑Board exceed the performance limits.

  20. Assessment of Electromagnetic Interference with Active Cardiovascular Implantable Electronic Devices (CIEDs) Caused by the Qi A13 Design Wireless Charging Board

    PubMed Central

    Seckler, Tobias; Jagielski, Kai; Stunder, Dominik

    2015-01-01

    Electromagnetic interference is a concern for people wearing cardiovascular implantable electronic devices (CIEDs). The aim of this study was to assess the electromagnetic compatibility between CIEDs and the magnetic field of a common wireless charging technology. To do so the voltage induced in CIEDs by Qi A13 design magnetic fields were measured and compared with the performance limits set by ISO 14117. In order to carry this out a measuring circuit was developed which can be connected with unipolar or bipolar pacemaker leads. The measuring system was positioned at the four most common implantation sites in a torso phantom filled with physiological saline solution. The phantom was exposed by using Helmholtz coils from 5 µT to 27 µT with 111 kHz sine-bursts or by using a Qi A13 design wireless charging board (Qi-A13-Board) in two operating modes “power transfer” and “pinging”. With the Helmholtz coils the lowest magnetic flux density at which the performance limit was exceeded is 11 µT. With the Qi-A13-Board in power transfer mode 10.8% and in pinging mode 45.7% (2.2% at 10 cm distance) of the performance limit were reached at maximum. In neither of the scrutinized cases, did the voltage induced by the Qi-A13-Board exceed the performance limits. PMID:26024360

  1. Interference between active implanted medical devices and electromagnetic field emitting devices is rare but real: results of an incidence study in a population of physicians in France.

    PubMed

    Hours, Martine; Khati, Inès; Hamelin, Joel

    2014-03-01

    Assessing the behavior of active implanted medical devices (AIMDs) in response to electromagnetic field (EMF) transmitters is a current issue of great importance. Given the numerous telecommunication systems and our lack of knowledge as to the impact of electromagnetic effects, this study investigated the reality of possible AIMD disturbance by EMFs by interviewing health professionals. A self-administered postal questionnaire was sent to almost 5,000 physicians in five specialties: cardiology; endocrinology; ears, nose, and throat; urology; and neurology. It collected data on the existence and annual number of incidents observed and the conditions under which they occurred, the EMF sources involved, and the means of managing the malfunctions. A total of 1,188 physicians agreed to participate. Sixteen percent of participants reported cases of implant failure, three-quarters of whom, mainly in cardiology, reported rates of at least one incident per year-amounting to more than 100 incidents per year in all. Severity appeared to be moderate (discomfort or transient symptoms), but frequently required resetting or, more rarely, replacing the device. Some serious incidents were, however, reported. The sources implicated were basically of two types: electronic security systems (antitheft and airport gates) and medical electromagnetic radiation devices. These incidents were poorly reported within the public health system, preventing follow-up and effective performance of alert and surveillance functions. Although minor, the risk of interference between EMF sources and AIMDs is real and calls for vigilance. It particularly concerns antitheft and airport security gates, though other sources may also cause incidents. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  2. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: First results.

    PubMed

    Poulsen, Per Rugaard; Worm, Esben Schjødt; Hansen, Rune; Larsen, Lars Peter; Grau, Cai; Høyer, Morten

    2015-01-01

    Intrafraction motion may compromise the target dose in stereotactic body radiation therapy (SBRT) of tumors in the liver. Respiratory gating can improve the treatment delivery, but gating based on an external surrogate signal may be inaccurate. This is the first paper reporting on respiratory gating based on internal electromagnetic monitoring during liver SBRT. Two patients with solitary liver metastases were treated with respiratory-gated SBRT guided by three implanted electromagnetic transponders. The treatment was delivered in end-exhale with beam-on when the centroid of the three transponders deviated less than 3 mm [left-right (LR) and anterior-posterior (AP) directions] and 4mm [cranio-caudal (CC)] from the planned position. For each treatment fraction, log files were used to determine the transponder motion during beam-on in the actual gated treatments and in simulated treatments without gating. The motion was used to reconstruct the dose to the clinical target volume (CTV) with and without gating. The reduction in D95 (minimum dose to 95% of the CTV) relative to the plan was calculated for both treatment courses. With gating the maximum course mean (standard deviation) geometrical error in any direction was 1.2 mm (1.8 mm). Without gating the course mean error would mainly increase for Patient 1 [to -2.8 mm (1.6 mm) (LR), 7.1 mm (5.8 mm) (CC), -2.6 mm (2.8mm) (AP)] due to a large systematic cranial baseline drift at each fraction. The errors without gating increased only slightly for Patient 2. The reduction in CTV D95 was 0.5% (gating) and 12.1% (non-gating) for Patient 1 and 0.3% (gating) and 1.7% (non-gating) for Patient 2. The mean duty cycle was 55%. Respiratory gating based on internal electromagnetic motion monitoring was performed for two liver SBRT patients. The gating added robustness to the dose delivery and ensured a high CTV dose even in the presence of large intrafraction motion.

  3. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings.

    PubMed

    Pijls, B G; Sanders, I M J G; Kuijper, E J; Nelissen, R G H H

    2017-05-01

    Infection of implants is a major problem in elective and trauma surgery. Heating is an effective way to reduce the bacterial load in food preparation, and studies on hyperthermia treatment for cancer have shown that it is possible to heat metal objects with pulsed electromagnetic fields selectively (PEMF), also known as induction heating. We therefore set out to answer the following research question: is non-contact induction heating of metallic implants effective in reducing bacterial load in vitro ? Titanium alloy cylinders (Ti6Al4V) were exposed to PEMF from an induction heater with maximum 2000 watts at 27 kHz after being contaminated with five different types of micro-organisms: Staphylococcus epidermidis; Staphylococcus aureus; Pseudomonas aeruginosa ; spore-forming Bacillus cereus; and yeast Candida albicans . The cylinders were exposed to incremental target temperatures (35°C, 45°C, 50°C, 55°C, 60°C, 65°C, 70°C) for up to 3.5 minutes. There was an average linear heating rate of 0.39°C per second up to the target temperature, and thereafter the target temperature was maintained until the end of the experiment. At 60°C and higher (duration 3.5 minutes), there was a 6-log reduction or higher for every micro-organism tested. At 60°C, we found that the shortest duration of effective induction heating was 1.5 minutes. This resulted in a 5-log reduction or higher for every micro-organism tested. Non-contact induction heating of a titanium disk is effective in reducing bacterial load in vitro . These promising results can be further explored as a new treatment modality for infections of metal orthopaedic implants. Cite this article : B. G. Pijls, I. M. J. G. Sanders, E. J. Kuijper, R. G. H. H. Nelissen. Non-contact electromagnetic induction heating for eradicating bacteria and yeasts on biomaterials and possible relevance to orthopaedic implant infections: In vitro findings. Bone Joint Res 2017;6:323-330. DOI: 10.1302/2046-3758.65.BJR-2016-0308.R1.

  4. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    PubMed

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  5. Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/β-catenin signaling-associated mechanism

    PubMed Central

    Jing, Da; Zhai, Mingming; Tong, Shichao; Xu, Fei; Cai, Jing; Shen, Guanghao; Wu, Yan; Li, Xiaokang; Xie, Kangning; Liu, Juan; Xu, Qiaoling; Luo, Erping

    2016-01-01

    Treatment of osseous defects remains a formidable clinical challenge. Porous titanium alloys (pTi) have been emerging as ideal endosseous implants due to the excellent biocompatibility and structural properties, whereas inadequate osseointegration poses risks for unreliable long-term implant stability. Substantial evidence indicates that pulsed electromagnetic fields (PEMF), as a safe noninvasive method, inhibit osteopenia/osteoporosis experimentally and clinically. We herein investigated the efficiency and potential mechanisms of PEMF on osteogenesis and osseointegration of pTi in vitro and in vivo. We demonstrate that PEMF enhanced cellular attachment and proliferation, and induced well-organized cytoskeleton for in vitro osteoblasts seeded in pTi. PEMF promoted gene expressions in Runx2, OSX, COL-1 and Wnt/β-catenin signaling. PEMF-stimulated group exhibited higher Runx2, Wnt1, Lrp6 and β-catenin protein expressions. In vivo results via μCT and histomorphometry show that 6-week and 12-week PEMF promoted osteogenesis, bone ingrowth and bone formation rate of pTi in rabbit femoral bone defect. PEMF promoted femoral gene expressions of Runx2, BMP2, OCN and Wnt/β-catenin signaling. Together, we demonstrate that PEMF improve osteogenesis and osseointegration of pTi by promoting skeletal anabolic activities through a Wnt/β-catenin signaling-associated mechanism. PEMF might become a promising biophysical modality for enhancing the repair efficiency and quality of pTi in bone defect. PMID:27555216

  6. Iris Transponder-Communications and Navigation for Deep Space

    NASA Technical Reports Server (NTRS)

    Duncan, Courtney B.; Smith, Amy E.; Aguirre, Fernando H.

    2014-01-01

    The Jet Propulsion Laboratory has developed the Iris CubeSat compatible deep space transponder for INSPIRE, the first CubeSat to deep space. Iris is 0.4 U, 0.4 kg, consumes 12.8 W, and interoperates with NASA's Deep Space Network (DSN) on X-Band frequencies (7.2 GHz uplink, 8.4 GHz downlink) for command, telemetry, and navigation. This talk discusses the Iris for INSPIRE, it's features and requirements; future developments and improvements underway; deep space and proximity operations applications for Iris; high rate earth orbit variants; and ground requirements, such as are implemented in the DSN, for deep space operations.

  7. Traffic-Light-Preemption Vehicle-Transponder Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    A prototype wireless data-communication and control system automatically modifies the switching of traffic lights to give priority to emergency vehicles. The system, which was reported in several NASA Tech Briefs articles at earlier stages of development, includes a transponder on each emergency vehicle, a monitoring and control unit (an intersection controller) at each intersection equipped with traffic lights, and a central monitoring subsystem. An essential component of the system is a software module executed by a microcontroller in each transponder. This module integrates and broadcasts data on the position, velocity, acceleration, and emergency status of the vehicle. The position, velocity, and acceleration data are derived partly from the Global Positioning System, partly from deductive reckoning, and partly from a diagnostic computer aboard the vehicle. The software module also monitors similar broadcasts from other vehicles and from intersection controllers, informs the driver of which intersections it controls, and generates visible and audible alerts to inform the driver of any other emergency vehicles that are close enough to create a potential hazard. The execution of the software module can be monitored remotely and the module can be upgraded remotely and, hence, automatically

  8. Letter report on a straw-man modification of an ATC transponder for discrete address use

    DOT National Transportation Integrated Search

    1974-05-01

    An experimental evaluation has been made of an RCA AVQ-65 airtraffic control transponder modified, in Mode D, so as to reply if and only if interrogated with its own preset reply code. Successful operation of the modified transponder was verified, an...

  9. Comparison of an Electromagnetic Middle Ear Implant and Hearing Aid Word Recognition Performance to Word Recognition Performance Obtained Under Earphones.

    PubMed

    Chang, C Y Joseph; Spearman, Michael; Spearman, Brian; McCraney, Anna; Glasscock, Michael E

    2017-10-01

    To report the results of patients with the Maxum middle ear implant (MEI) and compare word recognition scores (WRS) and speech perception gap (SP Gap) of Maxum versus optimally fit hearing aids (HA). Case series with chart review. Single, private otology clinic. Eleven ears, in nine adult patients (two women; average age 62.7 yr). Twelve consecutive ears with moderate to severe sensorineural hearing loss (SNHL) underwent implantation of the Maxum system. One patient was not included due to inadequate preoperative testing. Primary outcome measures included word recognition score (WRS) and SP Gap (maximum word understanding [PB max] - WRSaided) improvement compared with HAs. The average Maxum WRS was 64.7% (range, 28-94%), a 41.6% improvement (range, 10-66%) over HAs (p < 0.001). The average Maxum SP Gap was 6.6% (range, -8 to 24%), a 41.6% improvement (range, 10-66%) over HAs (p < 0.001). These data demonstrate that the Maxum provides superior WRS than HAs for patients with significant aided SP Gaps. There is a significant, very strong correlation between Maxum WRS and PB max (r = 0.85, p = 0.001). This implies that PB max may reasonably predict WRS outcomes with Maxum before implantation, and the SP Gap can reasonably predict the degree of additional potential benefit with Maxum. In advising patients who may be candidates for both a CI and MEI, PB max and SP Gap measurements will provide useful predictive information to help clinicians counsel patients on their choice of hearing technology. 4.

  10. Time code dissemination experiment via the SIRIO-1 VHF transponder

    NASA Technical Reports Server (NTRS)

    Detoma, E.; Gobbo, G.; Leschiutta, S.; Pettiti, V.

    1982-01-01

    An experiment to evaluate the possibility of disseminating a time code via the SIRIO-1 satellite, by using the onboard VHF repeater is described. The precision in the synchronization of remote clocks was expected to be of the order of 0.1 to 1 ms. The RF carrier was in the VHF band, so that low cost receivers could be used and then a broader class of users could be served. An already existing repeater, even if not designed specifically for communications could be utilized; the operation of this repeater was not intended to affect any other function of the spacecraft (both the SHF repeater and the VHF telemetry link were active during the time code dissemination via the VHF transponder).

  11. Sliceable transponders for metro-access transmission links

    NASA Astrophysics Data System (ADS)

    Wagner, C.; Madsen, P.; Spolitis, S.; Vegas Olmos, J. J.; Tafur Monroy, I.

    2015-01-01

    This paper presents a solution for upgrading optical access networks by reusing existing electronics or optical equipment: sliceable transponders using signal spectrum slicing and stitching back method after direct detection. This technique allows transmission of wide bandwidth signals from the service provider (OLT - optical line terminal) to the end user (ONU - optical network unit) over an optical distribution network (ODN) via low bandwidth equipment. We show simulation and experimental results for duobinary signaling of 1 Gbit/s and 10 Gbit/s waveforms. The number of slices is adjusted to match the lowest analog bandwidth of used electrical devices and scale from 2 slices to 10 slices. Results of experimental transmission show error free signal recovery by using post forward error correction with 7% overhead.

  12. STAR: FPGA-based software defined satellite transponder

    NASA Astrophysics Data System (ADS)

    Davalle, Daniele; Cassettari, Riccardo; Saponara, Sergio; Fanucci, Luca; Cucchi, Luca; Bigongiari, Franco; Errico, Walter

    2013-05-01

    This paper presents STAR, a flexible Telemetry, Tracking & Command (TT&C) transponder for Earth Observation (EO) small satellites, developed in collaboration with INTECS and SITAEL companies. With respect to state-of-the-art EO transponders, STAR includes the possibility of scientific data transfer thanks to the 40 Mbps downlink data-rate. This feature represents an important optimization in terms of hardware mass, which is important for EO small satellites. Furthermore, in-flight re-configurability of communication parameters via telecommand is important for in-orbit link optimization, which is especially useful for low orbit satellites where visibility can be as short as few hundreds of seconds. STAR exploits the principles of digital radio to minimize the analog section of the transceiver. 70MHz intermediate frequency (IF) is the interface with an external S/X band radio-frequency front-end. The system is composed of a dedicated configurable high-speed digital signal processing part, the Signal Processor (SP), described in technology-independent VHDL working with a clock frequency of 184.32MHz and a low speed control part, the Control Processor (CP), based on the 32-bit Gaisler LEON3 processor clocked at 32 MHz, with SpaceWire and CAN interfaces. The quantization parameters were fine-tailored to reach a trade-off between hardware complexity and implementation loss which is less than 0.5 dB at BER = 10-5 for the RX chain. The IF ports require 8-bit precision. The system prototype is fitted on the Xilinx Virtex 6 VLX75T-FF484 FPGA of which a space-qualified version has been announced. The total device occupation is 82 %.

  13. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits.

    PubMed

    Cai, J; Li, W; Sun, T; Li, X; Luo, E; Jing, D

    2018-05-01

    The effects of exogenous pulsed electromagnetic field (PEMF) stimulation on T1DM-associated osteopathy were investigated in alloxan-treated rabbits. We found that PEMF improved bone architecture, mechanical properties, and porous titanium (pTi) osseointegration by promoting bone anabolism through a canonical Wnt/β-catenin signaling-associated mechanism, and revealed the clinical potential of PEMF stimulation for the treatment of T1DM-associated bone complications. Type 1 diabetes mellitus (T1DM) is associated with deteriorated bone architecture and impaired osseous healing potential; nonetheless, effective methods for resisting T1DM-associated osteopenia/osteoporosis and promoting bone defect/fracture healing are still lacking. PEMF, as a safe and noninvasive method, have proven to be effective for promoting osteogenesis, whereas the potential effects of PEMF on T1DM osteopathy remain poorly understood. We herein investigated the effects of PEMF stimulation on bone architecture, mechanical properties, bone turnover, and its potential molecular mechanisms in alloxan-treated diabetic rabbits. We also developed novel nontoxic Ti2448 pTi implants with closer elastic modulus with natural bone and investigated the impacts of PEMF on pTi osseointegration for T1DM bone-defect repair. The deteriorations of cancellous and cortical bone architecture and tissue-level mechanical strength were attenuated by 8-week PEMF stimulation. PEMF also promoted osseointegration and stimulated more adequate bone ingrowths into the pore spaces of pTi in T1DM long-bone defects. Moreover, T1DM-associated reduction of bone formation was significantly attenuated by PEMF, whereas PEMF exerted no impacts on bone resorption. We also found PEMF-induced activation of osteoblastogenesis-related Wnt/β-catenin signaling in T1DM skeletons, but PEMF did not alter osteoclastogenesis-associated RANKL/RANK signaling gene expression. We reveal that PEMF improved bone architecture, mechanical properties, and

  14. Technical Note: Validation and implementation of a wireless transponder tracking system for gated stereotactic ablative radiotherapy of the liver

    SciTech Connect

    James, Joshua, E-mail: joshua.james@louisville.edu; Dunlap, Neal E.; Nguyen, Vi Nhan

    Purpose: Tracking soft-tissue targets has recently been cleared as a new application of Calypso, an electromagnetic wireless transponder tracking system, allowing for gated treatment of the liver based on the motion of the target volume itself. The purpose of this study is to describe the details of validating the Calypso system for wireless transponder tracking of the liver and to present the clinical workflow for using it to deliver gated stereotactic ablative radiotherapy (SABR). Methods: A commercial 3D diode array motion system was used to evaluate the dynamic tracking accuracy of Calypso when tracking continuous large amplitude motion. It wasmore » then used to perform end-to-end tests to evaluate the dosimetric accuracy of gated beam delivery for liver SABR. In addition, gating limits were investigated to determine how large the gating window can be while still maintaining dosimetric accuracy. The gating latency of the Calypso system was also measured using a customized motion phantom. Results: The average absolute difference between the measured and expected positional offset was 0.3 mm. The 2%/2 mm gamma pass rates for the gated treatment delivery were greater than 97%. When increasing the gating limits beyond the known extent of planned motion, the gamma pass rates decreased as expected. The 2%/2 mm gamma pass rate for a 1, 2, and 3 mm increase in gating limits was measured to be 97.8%, 82.9%, and 61.4%, respectively. The average gating latency was measured to be 63.8 ms for beam-hold and 195.8 ms for beam-on. Four liver patients with 17 total fractions have been successfully treated at our institution. Conclusions: Wireless transponder tracking was validated as a dosimetrically accurate way to provide gated SABR of the liver. The dynamic tracking accuracy of the Calypso system met manufacturer’s specification, even for continuous large amplitude motion that can be encountered when tracking liver tumors close to the diaphragm. The measured beam

  15. Data Link Test and Analysis System/ATCRBS Transponder Test System Technical Reference

    DOT National Transportation Integrated Search

    1990-05-01

    This document references material for personnel using or making software changes : to the Data Link Test and Analysis System (DATAS) for Air Traffic Control Radar : Beacon System (ATCRBS) transponder testing and data collection. This is one of : a se...

  16. An adaptive field detection method for bridge scour monitoring using motion-sensing radio transponders (RFIDs).

    DOT National Transportation Integrated Search

    2014-01-01

    A comprehensive field detection method is proposed that is aimed at developing advanced capability for : reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on...

  17. GEOS-C noncoherent C-band transponder test procedure for spacecraft level tests

    NASA Technical Reports Server (NTRS)

    Selser, A. R.

    1973-01-01

    Test procedures necessary for the calibration and performance verification of the noncoherent C-band transponders after spacecraft hardware integration, but prior to spacecraft/launch vehicle integration are presented.

  18. C(G)-Band and X(I)-Band Noncoherent Radar Transponder Performance Specification Standard

    DTIC Science & Technology

    2014-06-01

    transmitter with an integral power supply. The transponder must accept interrogation signals from single or multiple radar sets and provide a...the transponder receives a coded pulse interrogation from the ground radar and transmits a single pulse reply in the same frequency band. The...obtained by using either a single tracking station or several tracking stations along the flight path of the target vehicle. The accuracy gained by use

  19. C (G)-Band & X (I) - Band Noncoherent Radar Transponder Performance Specification Standard

    DTIC Science & Technology

    2002-04-01

    TRAINING RANGE NEVADA TEST SITE STANDARD 262-02 ELECTRONIC TRAJECTORY MEASUREMENTS GROUP C (G) – BAND & X (I) – BAND NONCOHERENT RADAR...Date 00 Apr 2002 Report Type N/A Dates Covered (from... to) - Title and Subtitle C (G)-Band & X (I) - Band Noncoherent Radar Transponder...Number of Pages 157 i STANDARD 262-02 C (G) – BAND & X (I) – BAND NONCOHERENT RADAR TRANSPONDER PERFORMANCE SPECIFICATION STANDARD APRIL 2002 Prepared by

  20. An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring.

    PubMed

    Cao, Hung; Landge, Vaibhav; Tata, Uday; Seo, Young-Sik; Rao, Smitha; Tang, Shou-Jiang; Tibbals, H F; Spechler, Stuart; Chiao, J-C

    2012-11-01

    In this study, a device for gastroesophageal reflux disease (GERD) monitoring has been prototyped. The system consists of an implantable, batteryless and wireless transponder with integrated impedance and pH sensors; and a wearable, external reader that wirelessly powers up the transponder and interprets the transponded radio-frequency signals. The transponder implant with the total size of 0.4 cm × 0.8 cm × 3.8 cm harvests radio frequency energy to operate dual-sensor and load-modulation circuitry. The external reader can store the data in a memory card and/or send it to a base station wirelessly, which is optional in the case of multiple-patient monitoring in a hospital or conducting large-scale freely behaving animal experiments. Tests were carried out to verify the signal transduction reliability in different situations for antenna locations and orientation. In vitro, experiments were conducted in a mannequin model by positioning the sensor capsule inside the wall of a tube mimicking the esophagus. Different liquids with known pH values were flushed through the tube creating reflux episodes and wireless signals were recorded. Live pigs under anesthesia were used for the animal models with the transponder implant attached on the esophageal wall. The reflux episodes were created while the sensor data were recorded wirelessly. The data were compared with those recorded independently by a clinically used wireless pH sensor capsule placed next to our implant transponder. The results showed that our transponder detected every episode in both acid and nonacid nature, while the commercial pH sensor missed events that had similar, repeated pH values, and failed to detect pH values higher than 10. Our batteryless transponder does not require a battery thus allowing longer diagnosis and prognosis periods to monitor drug efficacy, as well as providing accurate assessment of GERD symptoms.

  1. Methods and apparatus for switching a transponder to an active state, and asset management systems employing same

    NASA Technical Reports Server (NTRS)

    Mickle, Marlin H. (Inventor); Jones, Alex K. (Inventor); Cain, James T. (Inventor); Hawrylak, Peter J. (Inventor); Marx, Frank (Inventor); Hoare, Raymond R. (Inventor)

    2012-01-01

    A transponder that may be used as an RFID tag includes a passive circuit to eliminate the need for an "always on" active RF receiving element to anticipate a wake-up signal for the balance of the transponder electronics. This solution allows the entire active transponder to have all circuit elements in a sleep (standby) state, thus drastically extending battery life or other charge storage device life. Also, a wake-up solution that reduces total energy consumption of an active transponder system by allowing all non-addressed transponders to remain in a sleep (standby) state, thereby reducing total system or collection energy. Also, the transponder and wake-up solution are employed in an asset tracking system.

  2. Methods and apparatus for switching a transponder to an active state, and asset management systems employing same

    NASA Technical Reports Server (NTRS)

    Mickle, Marlin H. (Inventor); Jones, Alex K. (Inventor); Cain, James T. (Inventor); Hawrylak, Peter J. (Inventor); Marx, Frank (Inventor); Hoare, Raymond R. (Inventor)

    2011-01-01

    A transponder that may be used as an RFID tag includes a passive circuit to eliminate the need for an "always on" active RF receiving element to anticipate a wake-up signal for the balance of the transponder electronics. This solution allows the entire active transponder to have all circuit elements in a sleep (standby) state, thus drastically extending battery life or other charge storage device life. Also, a wake-up solution that reduces total energy consumption of an active transponder system by allowing all non-addressed transponders to remain in a sleep (standby) state, thereby reducing total system or collection energy. Also, the transponder and wake-up solution are employed in an asset tracking system.

  3. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.

    PubMed

    Booth, Jeremy T; Caillet, Vincent; Hardcastle, Nicholas; O'Brien, Ricky; Szymura, Kathryn; Crasta, Charlene; Harris, Benjamin; Haddad, Carol; Eade, Thomas; Keall, Paul J

    2016-10-01

    Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm 3 ) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Roll-to-Roll Screen Printed Radio Frequency Identification Transponder Antennas for Vehicle Tracking Systems

    NASA Astrophysics Data System (ADS)

    Zichner, Ralf; Baumann, Reinhard R.

    2013-05-01

    Vehicle tracking systems based on ultra high frequency (UHF) radio frequency identification (RFID) technology are already introduced to control the access to car parks and corporate premises. For this field of application so-called Windshield RFID transponder labels are used, which are applied to the inside of the windshield. State of the art for manufacturing these transponder antennas is the traditional lithography/etching approach. Furthermore the performance of these transponders is limited to a reading distance of approximately 5 m which results in car speed limit of 5 km/h for identification. However, to achieve improved performance compared to existing all-purpose transponders and a dramatic cost reduction, an optimized antenna design is needed which takes into account the special dielectric and in particular metallic car environment of the tag and an roll-to-roll (R2R) printing manufacturing process. In this paper we focus on the development of a customized UHF RFID transponder antenna design, which is adopted for vehicle geometry as well as R2R screen printing manufacturing processes.

  5. Underwater Acoustic Transponders Tracking While Mapping With A Multibeam Echo-Sounder

    NASA Astrophysics Data System (ADS)

    de Moustier, C. P.; Franzheim, A.; Testa, W.; Burns, J. M.; Foy, R.

    2010-12-01

    A 160 kHz multibeam echo-sounder was used to interrogate and receive the replies from custom-built miniature underwater acoustic transponders attached to the carapace of king crabs in Womens Bay, Alaska. This new application of multibeam echo-sounders combines acoustic tracking and mapping, thus providing environmental context to the tracking information. Each transponder replies with its own coded sequence that stands out from other echoes received by the sonar. Range and bearing of the replies from multiple transponders can be obtained in a single sonar ping. The king crab experiment was done in 25-35 m of water depth, and the system was successfully tested without animals at 190 m depth. Work supported by NOAA's Undersea Research Program Grant G4768, with field work support from NOAA-NMFS/AFSC/RACE and Electronic Navigation Ltd.

  6. SPS pilot signal design and power transponder analysis, volume 2, phase 3

    NASA Technical Reports Server (NTRS)

    Lindsey, W. C.; Scholtz, R. A.; Chie, C. M.

    1980-01-01

    The problem of pilot signal parameter optimization and the related problem of power transponder performance analysis for the Solar Power Satellite reference phase control system are addressed. Signal and interference models were established to enable specifications of the front end filters including both the notch filter and the antenna frequency response. A simulation program package was developed to be included in SOLARSIM to perform tradeoffs of system parameters based on minimizing the phase error for the pilot phase extraction. An analytical model that characterizes the overall power transponder operation was developed. From this model, the effects of different phase noise disturbance sources that contribute to phase variations at the output of the power transponders were studied and quantified. Results indicate that it is feasible to hold the antenna array phase error to less than one degree per power module for the type of disturbances modeled.

  7. Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder

    NASA Technical Reports Server (NTRS)

    Katzman, Vladimir

    2012-01-01

    A radiation-hard transponder was developed utilizing submicron/nanotechnology from IBM. The device consumes low power and has a low fabrication cost. This device utilizes a Plug-and-Play concept, and can be integrated into intra-satellite networks, supporting SpaceWire and Gigabit Ethernet I/O. A space-qualified, 100-pin package also was developed, allowing space-qualified (class K) transponders to be delivered within a six-month time frame. The novel, optical, radiation-tolerant transponder was implemented as a standalone board, containing the transponder ASIC (application specific integrated circuit) and optical module, with an FPGA (field-programmable gate array) friendly parallel interface. It features improved radiation tolerance; high-data-rate, low-power consumption; and advanced functionality. The transponder utilizes a patented current mode logic library of radiation-hardened-by-architecture cells. The transponder was developed, fabricated, and radhard tested up to 1 MRad. It was fabricated using 90-nm CMOS (complementary metal oxide semiconductor) 9 SF process from IBM, and incorporates full BIT circuitry, allowing a loop back test. The low-speed parallel LVCMOS (lowvoltage complementary metal oxide semiconductor) bus is compatible with Actel FPGA. The output LVDS (low-voltage differential signaling) interface operates up to 1.5 Gb/s. Built-in CDR (clock-data recovery) circuitry provides robust synchronization and incorporates two alarm signals such as synch loss and signal loss. The ultra-linear peak detector scheme allows on-line control of the amplitude of the input signal. Power consumption is less than 300 mW. The developed transponder with a 1.25 Gb/s serial data rate incorporates a 10-to-1 serializer with an internal clock multiplication unit and a 10-1 deserializer with internal clock and data recovery block, which can operate with 8B10B encoded signals. Three loop-back test modes are provided to facilitate the built-in-test functionality. The

  8. Thermal design and test of a high power spacecraft transponder platform

    NASA Technical Reports Server (NTRS)

    Stipandic, E. A.; Gray, A. M.; Gedeon, L.

    1975-01-01

    The high power transponder subsystem on board the Communications Technology Satellite (CTS) requires some unique thermal control techniques to maintain the required temperature limits throughout all mission phases. The transponder subsystem includes redundant 20-W output travelling wave tubes and a single 200-W output TWT with highly concentrated thermal dissipations of 70 W and 143 W, respectively. A thermal control system which maintains all components within the required temperature ranges has been designed and verified in thermal balance testing. Included in the design are second surface quartz mirrors on an aluminum honeycomb platform, high thermal conductivity aluminum doubler plates, commandable thermal control heaters and a Variable Conductance Heat Pipe System (VCHPS).

  9. Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer

    DOEpatents

    McEwan, T.E.

    1997-05-13

    A micropower RF transponder employs a novel adaptation of the superregenerative receiver wherein the quench oscillator is external to the regenerative transistor. The quench oscillator applies an exponentially decaying waveform rather than the usual sinewave to achieve high sensitivity at microampere current levels. Further improvements include circuit simplifications for antenna coupling, extraction of the detected signal, and a low-voltage bias configuration that allows operation with less than a 1-volt rail voltage. The inventive transponder is expected to operate as long as the battery shelf life. 13 figs.

  10. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL... identification code is used to access patient identity and corresponding health information stored in a database...

  11. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL... identification code is used to access patient identity and corresponding health information stored in a database...

  12. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL... identification code is used to access patient identity and corresponding health information stored in a database...

  13. 21 CFR 880.6300 - Implantable radiofrequency transponder system for patient identification and health information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL... identification code is used to access patient identity and corresponding health information stored in a database...

  14. Monitoring Eastern Spadefoot (Scaphiopus holbrookii) response to weather with the use of a passive integrated transponder (PIT) system

    USGS Publications Warehouse

    Ryan, Kevin J.; Calhoun, Aram J.K.; Timm, Brad C.; Zydlewski, Joseph D.

    2015-01-01

    Eastern Spadefoots (Scaphiopus holbrookii) are probably one of the least-understood amphibian species in the United States. In New England, populations are localized and it is likely that some populations go undocumented because of the species' cryptic habits. We used passive integrated transponders (PIT tags) to monitor burrow emergence with the aid of continuously running, stationary (but portable) PIT tag readers. We monitored the activity of individual Eastern Spadefoots by placing circular antennae directly over burrows of PIT tag-implanted individuals. We monitored 18 Eastern Spadefoots from 1 to 84 nights in the spring, summer, and fall of 2009–2011. Our results indicate that, on average, Eastern Spadefoots emerged on 43% of the nights that they were monitored. Nights when Eastern Spadefoots emerged were warmer and more humid than nonemergence nights. Eastern Spadefoots were also much more likely to emerge on a given night if they had emerged the night before. Our results have improved the understanding of Eastern Spadefoot burrow-emergence patterns in the northeast region. Our findings may considerably enhance the prospect of employing nocturnal visual encounter surveys as a method for monitoring known, and detecting previously undocumented, populations of this species.

  15. Tin Whisker Risk Assessment of TDRSS IV Transponder Units 101 and 102

    NASA Technical Reports Server (NTRS)

    Zellitti, Ron; Royse, Jeff; Jackson, Steve

    2000-01-01

    This report documents the plating requirements for the electrical and mechanical parts used in the TDRSS IV transponder manufactured by MOTOROLA, INC., SSG, SSSD. The intent of this report is to identify any electrical, electromechanical or mechanical part that does not have adequate requirements to prevent the use of a pure tin finish.

  16. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring.

    PubMed

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-06

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.

  17. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-01

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms.

  18. 14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...

  19. 14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...

  20. 14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...

  1. 14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...

  2. 14 CFR Appendix F to Part 43 - ATC Transponder Tests and Inspections

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false ATC Transponder Tests and Inspections F Appendix F to Part 43 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... accordance with paragraph (c)(1) when using portable test equipment. (a) Radio Reply Frequency: (1) For all...

  3. A cooperative transponder system for improved traffic safety, localizing road users in the 5 GHz band

    NASA Astrophysics Data System (ADS)

    Schaffer, B.; Kalverkamp, G.; Chaabane, M.; Biebl, E. M.

    2012-09-01

    We present a multi-user cooperative mobile transponder system which enables cars to localize pedestrians, bicyclists and other road users in order to improve traffic safety. The system operates at a center frequency of 5.768 GHz, offering the ability to test precision localization technology at frequencies close to the newly designated automotive safety related bands around 5.9 GHz. By carrying out a roundtrip time of flight measurement, the sensor can determine the distance from the onboard localization unit of a car to a road user who is equipped with an active transponder, employing the idea of a secondary radar and pulse compression. The onboard unit sends out a pseudo noise coded interrogation pulse, which is answered by one or more transponders after a short waiting time. Each transponder uses a different waiting time in order to allow for time division multiple access. We present the system setup as well as range measurement results, achieving an accuracy up to centimeters for the distance measurement and a range in the order of hundred meters. We also discuss the effect of clock drift and offset on distance accuracy for different waiting times and show how the system can be improved to further increase precision in a multiuser environment.

  4. Design of Digital Phase-Locked Loops For Advanced Digital Transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.

    1994-01-01

    For advanced digital space transponders, the Digital Phased-Locked Loops (DPLLs) can be designed using the available analog loops. DPLLs considered in this paper are derived from the Analog Phase-Locked Loop (APLL) using S-domain mapping techniques.

  5. A zero power harmonic transponder sensor for ubiquitous wireless μL liquid-volume monitoring

    PubMed Central

    Huang, Haiyu; Chen, Pai-Yen; Hung, Cheng-Hsien; Gharpurey, Ranjit; Akinwande, Deji

    2016-01-01

    Autonomous liquid-volume monitoring is crucial in ubiquitous healthcare. However, conventional approach is based on either human visual observation or expensive detectors, which are costly for future pervasive monitoring. Here we introduce a novel approach based on passive harmonic transponder antenna sensor and frequency hopping spread spectrum (FHSS) pattern analysis, to provide a very low cost wireless μL-resolution liquid-volume monitoring without battery or digital circuits. In our conceptual demonstration, the harmonic transponder comprises of a passive nonlinear frequency multiplier connected to a metamaterial-inspired 3-D antenna designed to be highly sensitive to the liquid-volume within a confined region. The transponder first receives some FHSS signal from an interrogator, then converts such signal to its harmonic band and re-radiates through the antenna sensor. The harmonic signal is picked up by a sniffer receiver and decoded through pattern analysis of the high dimensional FHSS signal strength data. A robust, zero power, absolute accuracy wireless liquid-volume monitoring is realized in the presence of strong direct coupling, background scatters, distance variance as well as near-field human-body interference. The concepts of passive harmonic transponder sensor, metamaterial-inspired antenna sensor, and FHSS pattern analysis based sensor decoding may help establishing cost-effective, energy-efficient and intelligent wireless pervasive healthcare monitoring platforms. PMID:26732251

  6. Radar transponder operation with compensation for distortion due to amplitude modulation

    DOEpatents

    Ormesher, Richard C [Albuquerque, NM; Tise, Bertice L [Albuquerque, NM; Axline, Jr., Robert M.

    2011-01-04

    In radar transponder operation, a variably delayed gating signal is used to gate a received radar pulse and thereby produce a corresponding gated radar pulse for transmission back to the source of the received radar pulse. This compensates for signal distortion due to amplitude modulation on the retransmitted pulse.

  7. Digital pre-compensation techniques enabling high-capacity bandwidth variable transponders

    NASA Astrophysics Data System (ADS)

    Napoli, Antonio; Berenguer, Pablo Wilke; Rahman, Talha; Khanna, Ginni; Mezghanni, Mahdi M.; Gardian, Lennart; Riccardi, Emilio; Piat, Anna Chiadò; Calabrò, Stefano; Dris, Stefanos; Richter, André; Fischer, Johannes Karl; Sommerkorn-Krombholz, Bernd; Spinnler, Bernhard

    2018-02-01

    Digital pre-compensation techniques are among the enablers for cost-efficient high-capacity transponders. In this paper we describe various methods to mitigate the impairments introduced by state-of-the-art components within modern optical transceivers. Numerical and experimental results validate their performance and benefits.

  8. Evaluation of pain and inflammation associated with hot iron branding and microchip transponder injection in horses.

    PubMed

    Lindegaard, Casper; Vaabengaard, Dorte; Christophersen, Mogens T; Ekstøm, Claus T; Fjeldborg, Julie

    2009-07-01

    To compare effects of hot iron branding and microchip transponder injection regarding aversive behavioral reactions indicative of pain and inflammation in horses. 7 adult horses. In a randomized controlled clinical crossover study, behavioral reactions to hot iron branding and microchip transponder injection were scored by 4 observers. Local and systemic inflammation including allodynia were assessed and compared by use of physiologic and biochemical responses obtained repeatedly for the 168-hour study period. Serum cortisol concentration was measured repeatedly throughout the first 24 hours of the study. Sham treatments were performed 1 day before and 7 days after treatments. Hot iron branding elicited a significantly stronger aversive reaction indicative of pain than did microchip transponder injection (odds ratio [OR], 12.83). Allodynia quantified by means of skin sensitivity to von Frey monofilaments was significantly greater after hot iron branding than after microchip transponder injection (OR, 2.59). Neither treatment induced signs of spontaneously occurring pain that were observed during the remaining study period, and neither treatment induced increased serum cortisol concentrations. Comparison with sham treatments indicated no memory of an unpleasant event. The hot iron branding areas had significantly increased skin temperature and swelling (OR, 14.6). Systemic inflammation as measured via serum amyloid A concentration was not detected after any of the treatments. Microchip transponder injection induced less signs of pain and inflammation and did not seem to pose a higher long-term risk than hot iron branding. Consequently, results indicated that hot iron branding does inflict more pain and should be abandoned where possible.

  9. Using passive integrated transponder (PIT) systems for terrestrial detection of blue-spotted salamanders (Ambystoma laterale) in situ

    USGS Publications Warehouse

    Ryan, Kevin J.; Zydlewski, Joseph D.; Calhoun, Aram J.K.

    2014-01-01

    Pure-diploid Blue-spotted Salamanders (Ambystoma laterale) are the smallest members of the family Ambystomatidae which makes tracking with radio-transmitters difficult because of small battery capacity. Passive integrated transponder (PIT) tags provide another tracking approach for small fossorial animals such as salamanders. We evaluated the use of portable PIT tag readers (PIT packs) to detect PIT tag-implanted pure-diploid Blue-spotted Salamanders in situ. We also examined the detection probability of salamanders with PIT tags held in enclosures in wetland and terrestrial habitats, as well as the underground detection range of PIT packs by scanning for buried tags not implanted into salamanders. Of the 532 PIT tagged salamanders, we detected 6.84% at least once during scanning surveys. We scanned systematically within a 13.37 ha area surrounding a salamander breeding pool on 34 occasions (~119 hours of survey time) and detected PIT tags 74 times. We detected 55% of PITs in tagged salamanders and 45%were expelled tags. We were able to reliably detect buried PIT tags from 1–22cm below the ground surface. Because nearly half the locations represented expelled tags, our data suggest this technique is inappropriate for future studies of pure-diploid Blue-spotted Salamanders, although it may be suitable for polyploid Blue-spotted Salamanders and other ambystomatid species, which are larger in size and may exhibit higher tag retention rates. It may also be prudent to conduct long-term tag retention studies in captivity before tagging and releasing salamanders for in situ study, and to double-mark individuals.

  10. An Assessment of Hazards Caused by Electromagnetic Interaction on Humans Present near Short-Wave Physiotherapeutic Devices of Various Types Including Hazards for Users of Electronic Active Implantable Medical Devices (AIMD)

    PubMed Central

    Gryz, Krzysztof

    2013-01-01

    Leakage of electromagnetic fields (EMF) from short-wave radiofrequency physiotherapeutic diathermies (SWDs) may cause health and safety hazards affecting unintentionally exposed workers (W) or general public (GP) members (assisting patient exposed during treatment or presenting there for other reasons). Increasing use of electronic active implantable medical devices (AIMDs), by patients, attendants, and workers, needs attention because dysfunctions of these devices may be caused by electromagnetic interactions. EMF emitted by 12 SWDs (with capacitive or inductive applicators) were assessed following international guidelines on protection against EMF exposure (International Commission on Nonionizing Radiation Protection for GP and W, new European directive 2013/35/EU for W, European Recommendation for GP, and European Standard EN 50527-1 for AIMD users). Direct EMF hazards for humans near inductive applicators were identified at a distance not exceeding 45 cm for W or 62 cm for GP, but for AIMD users up to 90 cm (twice longer than that for W and 50% longer than that for GP because EMF is pulsed modulated). Near capacitive applicators emitting continuous wave, the corresponding distances were: 120 cm for W or 150 cm for both—GP or AIMD users. This assessment does not cover patients who undergo SWD treatment (but it is usually recommended for AIMD users to be careful with EMF treatment). PMID:24089662

  11. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter.

    PubMed

    Litzenberg, Dale W; Gallagher, Ian; Masi, Kathryn J; Lee, Choonik; Prisciandaro, Joann I; Hamstra, Daniel A; Ritter, Timothy; Lam, Kwok L

    2013-08-01

    To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm

  12. Microsystem technologies for ophtalmological implants

    NASA Astrophysics Data System (ADS)

    Mokwa, Wilfried

    2003-01-01

    Due to the low power consumption CMOS electronics is ideal for the use in implanted systems. This paper presents two projects working on ophthalmological implants. Both systems are powered by an external RF-field. One system has been developed to measure the intraocular pressure continuously which is important for the therapy of glaucoma patients. The system consists of a micro coil and an integrated pressure transponder chip built into an artificial soft lens. A second example is a very complex system for epiretinal stimulation of the nerve cells of the retina. With such a system it might be possible to give blind people that are suffering from retinitis pigmentosa some visual contact to their surrounding.

  13. Design study of a HEAO-C spread spectrum transponder telemetry system for use with the TDRSS subnet

    NASA Technical Reports Server (NTRS)

    Weathers, G.

    1975-01-01

    The results of a design study of a spread spectrum transponder for use on the HEAO-C satellite were given. The transponder performs the functions of code turn-around for ground range and range-rate determination, ground command receiver, and telemetry data transmitter. The spacecraft transponder and associated communication system components will allow the HEAO-C satellite to utilize the Tracking and Data Relay Satellite System (TDRSS) subnet of the post 1978 STDN. The following areas were discussed in the report: TDRSS Subnet Description, TDRSS-HEAO-C System Configuration, Gold Code Generator, Convolutional Encoder Design and Decoder Algorithm, High Speed Sequence Generators, Statistical Evaluation of Candidate Code Sequences using Amplitude and Phase Moments, Code and Carrier Phase Lock Loops, Total Spread Spectrum Transponder System, and Reference Literature Search.

  14. WE-A-17A-09: Exploiting Electromagnetic Technologies for Real-Time Seed Drop Position Validation in Permanent Implant Brachytherapy

    SciTech Connect

    Racine, E; Hautvast, G; Binnekamp, D

    Purpose: To report on preliminary results validating the performance of a specially designed LDR brachytherapy needle prototype possessing both electromagnetic (EM) tracking and seed drop detection abilities. Methods: An EM hollow needle prototype has been designed and constructed in collaboration with research partner Philips Healthcare. The needle possesses conventional 3D tracking capabilities, along with a novel seed drop detection mechanism exploiting local changes of electromagnetic properties generated by the passage of seeds in the needle's embedded sensor coils. These two capabilities are exploited by proprietary engineering and signal processing techniques to generate seed drop position estimates in real-time treatment delivery.more » The electromagnetic tracking system (EMTS) used for the experiment is the NDI Aurora Planar Field Generator. The experiment consisted of dropping a total of 35 seeds in a prismatic agarose phantom, and comparing the 3D seed drop positions of the EMTS to those obtained by an image analysis of subsequent micro-CT scans. Drop position error computations and statistical analysis were performed after a 3D registration of the two seed distributions. Results: Of the 35 seeds dropped in the phantom, 32 were properly detected by the needle prototype. Absolute drop position errors among the detected seeds ranged from 0.5 to 4.8 mm with mean and standard deviation values of 1.6 and 0.9 mm, respectively. Error measurements also include undesirable and uncontrollable effects such as seed motion upon deposition. The true accuracy performance of the needle prototype is therefore underestimated. Conclusion: This preliminary study demonstrates the potential benefits of EM technologies in detecting the passage of seeds in a hollow needle as a means of generating drop position estimates in real-time treatment delivery. Such tools could therefore represent a potentially interesting addition to existing brachytherapy protocols for rapid

  15. Virtual Long Baseline (VLBL) Autonomous Underwater Vehicle Navigation Using a Single Transponder

    DTIC Science & Technology

    2006-06-01

    is needed from the lbl structure for the % indicated time range lbl_sb = sext (lbl,find(lbl.t > Start_Time & lbl.t < End_Time...Take only the lbl data points from the chosen transponder which % correspond to status 5, which means good data lbl_SB = sext (lbl_sb,find...i)); L = length(Time); % Extract the data which is needed from the state structure state_SB = sext (state,find(state.t

  16. Preliminary design and implementation of the baseline digital baseband architecture for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Yeh, H.-G.

    1993-01-01

    The baseline design and implementation of the digital baseband architecture for advanced deep space transponders is investigated and identified. Trade studies on the selection of the number of bits for the analog-to-digital converter (ADC) and optimum sampling schemes are presented. In addition, the proposed optimum sampling scheme is analyzed in detail. Descriptions of possible implementations for the digital baseband (or digital front end) and digital phase-locked loop (DPLL) for carrier tracking are also described.

  17. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  18. Doppler and range determination for deep space vehicles using active optical transponders.

    PubMed

    Kinman, P W; Gagliardi, R M

    1988-11-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.

  19. Doppler and range determination for deep space vehicles using active optical transponders

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1988-01-01

    This paper describes and analyzes two types of laser system employing active transponders that could accurately determine Doppler and range to deep space vehicles from earth-orbiting satellites. The first is a noncoherent optical system in which the Doppler effect on an intensity-modulating subcarrier is measured. The second is a coherent optical system in which the Doppler effect of the optical carrier itself is measured. Doppler and range measurement errors are mathematically modeled and, for three example systems, numerically evaluated.

  20. Forecasting the impact of an 1859-caliber superstorm on geosynchronous Earth-orbiting satellites: Transponder resources

    NASA Astrophysics Data System (ADS)

    Odenwald, Sten F.; Green, James L.

    2007-06-01

    We calculate the economic impact on the existing geosynchronous Earth-orbiting satellite population of an 1859-caliber superstorm event were it to occur between 2008 and 2018 during the next solar activity cycle. From a detailed model for transponder capacity and leasing, we have investigated the total revenue loss over the entire solar cycle, as a function of superstorm onset year and intensity. Our Monte Carlo simulations of 1000 possible superstorms, of varying intensity and onset year, suggest that the minimum revenue loss could be of the order of 30 billion. The losses would be larger than this if more that 20 satellites are disabled, if future launch rates do not keep up with the expected rate of retirements, or if the number of spare transponders falls below ˜30%. Consequently, revenue losses can be significantly reduced below 30 billion if the current satellite population undergoes net growth beyond 300 units during Solar Cycle 24 and a larger margin of unused transponders is maintained.

  1. Performance of a Ka-band transponder breadboard for deep-space applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.

    1995-01-01

    This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.

  2. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  3. Electromagnetic Fields

    PubMed Central

    Ishida, Masashi; Takahashi, Kenji A.; Arai, Yuji; Kubo, Toshikazu

    2008-01-01

    Establishing a means to prevent osteonecrosis after corticosteroid administration is an important theme. We asked whether pulsed electromagnetic field stimulation, a noninvasive treatment, could prevent osteonecrosis. Ninety rabbits were divided into four treatment groups: (1) exposure of 10 hours per day to electromagnetic stimulation for 1 week, followed by injection of methylprednisolone (20 mg/kg), and exposure of 10 hours per day to electromagnetism for a further 4 weeks (n = 40); (2) methylprednisolone injection only (n = 40); (3) no treatment (n = 5); and (4) exposure of 10 hours per day to electromagnetism for 5 weeks (n = 5). After 5 weeks, we harvested and histologically examined femurs bilaterally. The frequency of osteonecrosis was lower in the steroid-electromagnetism group (15/40) than in the steroid-only group (26/40). No necrotic lesions were found in the two control groups. We observed no clear effects of electromagnetism on the number, location, extent, and repair of necrotic lesions and intramedullary fat cell size in affected rabbits. Pulsed electromagnetic field stimulation reportedly augments angiogenesis factors and dilates blood vessels; these effects may lower the frequency of osteonecrosis. Exposure to pulsed electromagnetic field stimulation before corticosteroid administration could be an effective means to reduce the risk of osteonecrosis. PMID:18350347

  4. Electromagnetic Attraction.

    ERIC Educational Resources Information Center

    Milson, James L.

    1990-01-01

    Three activities involving electromagnetism are presented. Discussed are investigations involving the construction of an electromagnet, the effect of the number of turns of wire in the magnet, and the effect of the number of batteries in the circuit. Extension activities are suggested. (CW)

  5. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-11-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  6. Electromagnetic fasteners

    DOEpatents

    Crane, Randolph W.; Marts, Donna J.

    1994-01-01

    An electromagnetic fastener for manipulating objects in space uses the matic attraction of various metals. An end effector is attached to a robotic manipulating system having an electromagnet such that when current is supplied to the electromagnet, the object is drawn and affixed to the end effector, and when the current is withheld, the object is released. The object to be manipulated includes a multiplicity of ferromagnetic patches at various locations to provide multiple areas for the effector on the manipulator to become affixed to the object. The ferromagnetic patches are sized relative to the object's geometry and mass.

  7. Tracking and Data Relay Satellite System (TDRSS) Support of User Spacecraft without TDRSS Transponders

    NASA Technical Reports Server (NTRS)

    Jackson, James A.; Marr, Greg C.; Maher, Michael J.

    1995-01-01

    NASA GSFC VNS TSG personnel have proposed the use of TDRSS to obtain telemetry and/or S-band one-way return Doppler tracking data for spacecraft which do not have TDRSS-compatible transponders and therefore were never considered candidates for TDRSS support. For spacecraft with less stable local oscillators (LO), one-way return Doppler tracking data is typically of poor quality. It has been demonstrated using UARS, WIND, and NOAA-J tracking data that the simultaneous use of two TDRSS spacecraft can yield differenced one-way return Doppler data of high quality which is usable for orbit determination by differencing away the effects of oscillator instability.

  8. Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A micropower RF transdponder employs a novel adaptation of the superregenerative receiver wherein the quench oscillator is external to the regenerative transistor. The quench oscillator applies an exponentially decaying waveform rather than the usual sinewave to achieve high sensitivity at microampere current levels. Further improvements include circuit simplifications for antenna coupling, extraction of the detected signal, and a low-voltage bias configuration that allows operation with less than a 1-volt rail voltage. The inventive transponder is expected to operate as long as the battery shelf life.

  9. High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas

    USGS Publications Warehouse

    Kazyak, David C.; Zydlewski, Joseph D.

    2012-01-01

    Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.

  10. Comparison between electromagnetic transponders and radiographic imaging for prostate localization: A pelvic phantom study with rotations and translations.

    PubMed

    Hamilton, Daniel G; McKenzie, Dean P; Perkins, Anne E

    2017-09-01

    The aim of this study was to evaluate the differences in target localization between Calypso ® , kV orthogonal imaging and cone-beam computed tomography (CBCT) for combined translations and rotations of an anthropomorphic pelvic phantom. The phantom was localized using all three systems in 50 different positions, with applied translational and rotational offsets randomly sampled from representative normal distributions of prostate motion. Lin's concordance correlation coefficient (ρc) and 95% confidence intervals were calculated to assess the agreement between the localization systems. Mean differences and difference vectors between the three systems were also calculated. Agreement between systems for lateral, vertical, and longitudinal translations was excellent, with ρc values of greater than 0.98 between all three systems in all axes. There was excellent agreement between the systems for rotations around the lateral axis (pitch) (ρc > 0.99), and around the vertical axis (yaw) (ρc > 0.97). However, somewhat poorer agreement for rotations around the longitudinal axis (roll) was observed, with the lowest correlation observed between Calypso and kV orthogonal imaging (ρc = 0.895). Mean differences between the phantom position reported by Calypso and the radiographic systems were less than 1 mm and 1° for all translations and rotations. The results for translations are consistent with the publications of previous authors. There is no comparable published data for rotations. While there is lower correlation between the three systems for roll than for the other angles, the mean differences in reported rotations are not clinically significant. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Investigation of sonar transponders for offshore wind farms: modeling approach, experimental setup, and results.

    PubMed

    Fricke, Moritz B; Rolfes, Raimund

    2013-11-01

    The installation of offshore wind farms in the German Exclusive Economic Zone requires the deployment of sonar transponders to prevent collisions with submarines. The general requirements for these systems have been previously worked out by the Research Department for Underwater Acoustics and Marine Geophysics of the Bundeswehr. In this article, the major results of the research project "Investigation of Sonar Transponders for Offshore Wind Farms" are presented. For theoretical investigations a hybrid approach was implemented using the boundary element method to calculate the source directivity and a three-dimensional ray-tracing algorithm to estimate the transmission loss. The angle-dependence of the sound field as well as the weather-dependence of the transmission loss are compared to experimental results gathered at the offshore wind farm alpha ventus, located 45 km north of the island Borkum. While theoretical and experimental results are in general agreement, the implemented model slightly underestimates scattering at the rough sea surface. It is found that the source level of 200 dB re 1 μPa at 1 m is adequate to satisfy the detectability of the warning sequence at distances up to 2 NM (≈3.7 km) within a horizontal sector of ±60° if realistic assumptions about signal-processing and noise are made. An arrangement to enlarge the angular coverage is discussed.

  12. Performance evaluation of digital phase-locked loops for advanced deep space transponders

    NASA Technical Reports Server (NTRS)

    Nguyen, T. M.; Hinedi, S. M.; Yeh, H.-G.; Kyriacou, C.

    1994-01-01

    The performances of the digital phase-locked loops (DPLL's) for the advanced deep-space transponders (ADT's) are investigated. DPLL's considered in this article are derived from the analog phase-locked loop, which is currently employed by the NASA standard deep space transponder, using S-domain to Z-domain mapping techniques. Three mappings are used to develop digital approximations of the standard deep space analog phase-locked loop, namely the bilinear transformation (BT), impulse invariant transformation (IIT), and step invariant transformation (SIT) techniques. The performance in terms of the closed loop phase and magnitude responses, carrier tracking jitter, and response of the loop to the phase offset (the difference between in incoming phase and reference phase) is evaluated for each digital approximation. Theoretical results of the carrier tracking jitter for command-on and command-off cases are then validated by computer simulation. Both theoretical and computer simulation results show that at high sampling frequency, the DPLL's approximated by all three transformations have the same tracking jitter. However, at low sampling frequency, the digital approximation using BT outperforms the others. The minimum sampling frequency for adequate tracking performance is determined for each digital approximation of the analog loop. In addition, computer simulation shows that the DPLL developed by BT provides faster response to the phase offset than IIT and SIT.

  13. Improving the range of UHF RFID transponders using solar energy harvesting under low light conditions

    NASA Astrophysics Data System (ADS)

    Ascher, A.; Lehner, M.; Eberhardt, M.; Biebl, E.

    2015-11-01

    The sensitivity of passive UHF RFID transponders (Radio Frequency Identification) is the key issue, which determines the maximum read range of an UHF RFID system. During this work the ability of improving the sensitivity using solar energy harvesting, especially for low light conditions, is shown. To use the additional energy harvested from the examined silicon and organic solar cells, the passive RFID system is changed into a semi-active one. This needs no changes on the reader hardware itself, only the used RFIC (Radio Frequency Integrated Circuit) of the transponder has to possess an additional input pin for an external supply voltage. The silicon and organic cells are evaluated and compared to each other regarding their low light performance. The different cells are examined in a shielded box, which is protected from the environmental lighting. Additionally, a demonstrator is shown, which makes the measurement of the extended read range with respect to the lighting conditions possible. If the cells are completely darkened, the sensitivity gain is ascertained using high capacity super caps. Due to the measurements an enhancement in range up to 70 % could be guaranteed even under low light conditions.

  14. A pseudo-noise transponder design for low data rate users of the tracking and data relay satellite system

    NASA Technical Reports Server (NTRS)

    Birch, J. N.

    1971-01-01

    A compromise optimum design for the low data rate users of the Tracking and Data Relay Satellite System (TDRSS) is presented. Design goals for the TDRSS are employed in this report to arrive at the transponder design. Multipath, R.F.I., antenna pattern anomolies, other user signals, and other definable degrading factors are included as trade-off parameters in the design. Synchronization, emergency voice, user stabilization, polarization diversity and error control coding are also considered and their impact on the transponder design is evaluated.

  15. Electromagnetic Propulsion

    NASA Technical Reports Server (NTRS)

    Schafer, Charles

    2000-01-01

    The design and development of an Electromagnetic Propulsion is discussed. Specific Electromagnetic Propulsion Topics discussed include: (1) Technology for Pulse Inductive Thruster (PIT), to design, develop, and test of a multirepetition rate pulsed inductive thruster, Solid-State Switch Technology, and Pulse Driver Network and Architecture; (2) Flight Weight Magnet Survey, to determine/develop light weight high performance magnetic materials for potential application Advanced Space Flight Systems as these systems develop; and (3) Magnetic Flux Compression, to enable rapid/robust/reliable omni-planetary space transportation within realistic development and operational costs constraints.

  16. 78 FR 43262 - Use of Wireless Mobile Data Devices as Transponders for the Commercial Motor Vehicle Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... Data Devices as Transponders for the Commercial Motor Vehicle Information Systems and Networks (CVISN...; announcement of policy. SUMMARY: FMCSA announces that Commercial Mobile Radio Services (CMRS) network devices... information between the driver and the inspection site as the dedicated short-range communication (DSRC...

  17. Impact analysis of the transponder time delay on radio-tracking observables

    NASA Astrophysics Data System (ADS)

    Bertone, Stefano; Le Poncin-Lafitte, Christophe; Rosenblatt, Pascal; Lainey, Valéry; Marty, Jean-Charles; Angonin, Marie-Christine

    2018-01-01

    Accurate tracking of probes is one of the key points of space exploration. Range and Doppler techniques are the most commonly used. In this paper we analyze the impact of the transponder delay, i . e . the processing time between reception and re-emission of a two-way tracking link at the satellite, on tracking observables and on spacecraft orbits. We show that this term, only partially accounted for in the standard formulation of computed space observables, can actually be relevant for future missions with high nominal tracking accuracies or for the re-processing of old missions. We present several applications of our formulation to Earth flybys, the NASA GRAIL and the ESA BepiColombo missions.

  18. Design concepts and performance of NASA X-band transponder (DST) for deep space spacecraft applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1991-01-01

    The design concepts and measured performance characteristics of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DST) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  19. An X-band spacecraft transponder for deep space applications - Design concepts and breadboard performance

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Perret, Jonathan D.; Kermode, Arthur W.

    1992-01-01

    The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  20. InSAR datum connection using GNSS-augmented radar transponders

    NASA Astrophysics Data System (ADS)

    Mahapatra, Pooja; der Marel, Hans van; van Leijen, Freek; Samiei-Esfahany, Sami; Klees, Roland; Hanssen, Ramon

    2018-01-01

    Deformation estimates from Interferometric Synthetic Aperture Radar (InSAR) are relative: they form a `free' network referred to an arbitrary datum, e.g. by assuming a reference point in the image to be stable. However, some applications require `absolute' InSAR estimates, i.e. expressed in a well-defined terrestrial reference frame, e.g. to compare InSAR results with those of other techniques. We propose a methodology based on collocated InSAR and Global Navigation Satellite System (GNSS) measurements, achieved by rigidly attaching phase-stable millimetre-precision compact active radar transponders to GNSS antennas. We demonstrate this concept through a simulated example and practical case studies in the Netherlands.

  1. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  2. Adaptive radiation therapy for postprostatectomy patients using real-time electromagnetic target motion tracking during external beam radiation therapy.

    PubMed

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M; Gay, Hiram A; Hou, Wei-Hsien; Parikh, Parag J

    2013-03-15

    Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (Dmin) with the planned Dmin to the CTV. Treatments were considered adequate if the delivered CTV Dmin is at least 95% of the planned CTV Dmin. Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: -0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Joint inversion for transponder localization and sound-speed profile temporal variation in high-precision acoustic surveys.

    PubMed

    Li, Zhao; Dosso, Stan E; Sun, Dajun

    2016-07-01

    This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency.

  4. Atmospheric Test Models and Numerical Experiments for the Simulation of the Global Distributions of Weather Data Transponders III. Horizontal Distributions

    SciTech Connect

    Molenkamp, C.R.; Grossman, A.

    1999-12-20

    A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show thatmore » reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.« less

  5. Fault isolation detection expert (FIDEX). Part 1: Expert system diagnostics for a 30/20 Gigahertz satellite transponder

    NASA Technical Reports Server (NTRS)

    Durkin, John; Schlegelmilch, Richard; Tallo, Donald

    1992-01-01

    LeRC has recently completed the design of a Ka-band satellite transponder system, as part of the Advanced Communication Technology Satellite (ACTS) System. To enhance the reliability of this satellite, NASA funded the University of Akron to explore the application of an expert system to provide the transponder with an autonomous diagnosis capability. The results of this research was the development of a prototype diagnosis expert system called FIDEX (fault-isolation and diagnosis expert). FIDEX is a frame-based expert system that was developed in the NEXPERT Object development environment by Neuron Data, Inc. It is a MicroSoft Windows version 3.0 application, and was designed to operate on an Intel i80386 based personal computer system.

  6. Quality assurance for clinical implementation of an electromagnetic tracking system.

    PubMed

    Santanam, Lakshmi; Noel, Camille; Willoughby, Twyla R; Esthappan, Jacqueline; Mutic, Sasa; Klein, Eric E; Low, Daniel A; Parikh, Parag J

    2009-08-01

    The Calypso Medical 4D localization system utilizes alternating current electromagnetics for accurate, real-time tumor tracking. A quality assurance program to clinically implement this system is described here. Testing of the continuous electromagnetic tracking system (Calypso Medical Technologies, Seattle, WA) was performed using an in-house developed four-dimensional stage and a quality assurance fixture containing three radiofrequency transponders at independently measured locations. The following tests were performed to validate the Calypso system: (a) Localization and tracking accuracy, (b) system reproducibility, (c) measurement of the latency of the tracking system, and (d) measurement of transmission through the Calypso table overlay and the electromagnetic array. The translational and rotational localization accuracies were found to be within 0.01 cm and 1.0 degree, respectively. The reproducibility was within 0.1 cm. The average system latency was measured to be within 303 ms. The attenuation by the Calypso overlay was measured to be 1.0% for both 6 and 18 MV photons. The attenuations by the Calypso array were measured to be 2% and 1.5% for 6 and 18 MV photons, respectively. For oblique angles, the transmission was measured to be 3% for 6 MV, while it was 2% for 18 MV photons. A quality assurance process has been developed for the clinical implementation of an electromagnetic tracking system in radiation therapy.

  7. What Are Electromagnetic Fields?

    MedlinePlus

    ... Alt+0 Navigation Alt+1 Content Alt+2 Electromagnetic fields (EMF) Menu EMF Home About electromagnetic fields ... Standards EMF publications & information resources Meetings What are electromagnetic fields? Definitions and sources Electric fields are created ...

  8. Efficiency of Portable Antennas for Detecting Passive Integrated Transponder Tags in Stream-Dwelling Salmonids

    PubMed Central

    Moyer, Katherine R.

    2016-01-01

    Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species. PMID:26901317

  9. Laser-Ranging Transponders for Science Investigations of the Moon and Mars

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Yijiang; Bimbaum, Kevin

    2012-01-01

    An active laser was developed ranging in real-time with two terminals, emulating interplanetary distances, and with submillimeter accuracy. In order to overcome the limitations to ranging accuracy from jitters and delay drifts within the transponders, architecture was proposed based on asynchronous paired one-way ranging with local references. A portion of the transmitted light is directed, via a reference path, to the local detector. This allows for compensation of any jitter in the timing of the emitted laser pulse. The same detector is used to measure the time of the received pulses emitted from the remote terminal. This approach removes any change in the delay caused by the detector or its electronics. Two separate terminals using commercial off-the-shelf hardware were built to emulate active laser ranging over interplanetary distances. The communication link for the command to start recording pulse arrival times and data transfer from one terminal to the other was achieved using a standard wireless link, emulating free space laser communication. The deviation is well below the goal of 1-mm precision. This leaves enough margin to achieve 1-mm precision when including the fluctuations due to atmospheric turbulence while ranging to Mars through the Earth s atmosphere. The two terminals are mounted on translation stages, which can be moved freely on rails to yield a wide range of distances with fine adjustment. The two terminals were separated by approximately 16 meters.

  10. A Gold Nanoparticle Bio-Optical Transponder to Dynamically Monitor Intracellular pH.

    PubMed

    Carnevale, Kate J F; Riskowski, Ryan A; Strouse, Geoffrey F

    2018-06-13

    A pH-sensitive bio-optical transponder (pH-BOT) capable of simultaneously reporting the timing of intracellular DNA cargo release from a gold nanoparticle (AuNP) and the evolving intracellular pH (pH i) during endosomal maturation is demonstrated. The pH-BOT is designed with a triple-dye-labeled duplex DNA appended to a 6.6 nm AuNP, utilizing pH-responsive fluorescein paired with DyLight405 as a surface energy transfer (SET) coupled dye pair to ratiometrically report the pH at and after cargo release. A non-SET-coupled dye, DyLight 700, is used to provide dynamic tracking throughout the experiment. The pH-BOT beacon of the cargo uptake, release, and processing was visualized using live-cell confocal fluorescent microscopy in Chinese hamster ovary cells, and it was observed that while maturation of endosomes carrying pH-BOT is slowed significantly, the pH-BOT is distributed throughout the endolysosomal system while remaining at pH ∼6. This observed decoupling of endosomal maturation from acidification lends support to those models that propose that pH alone is not sufficient to explain endosomal maturation and may enable greater insight into our understanding of the fundamental processes of biology.

  11. Efficiency of portable antennas for detecting passive integrated transponder tags in stream-dwelling salmonids

    USGS Publications Warehouse

    Banish, Nolan P.; Burdick, Summer M.; Moyer, Katherine R.

    2016-01-01

    Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species.

  12. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  13. Effects of injection position and transponder size on the performances of passive injectable transponders used for the electronic identification of cattle.

    PubMed

    Conill, C; Caja, G; Nehring, R; Ribó, O

    2000-12-01

    A total of 686 Tiris half-duplex passive injectable transponders (PIT) of two sizes (23 and 32 mm) were randomly injected s.c. in three positions, armpit, ear scutulum, and upper lip, in 343 fattening calves (1 to 3 mo old). Injections were performed by two trained and two untrained operators. Losses and breakages on the farm were recorded at wk 1, 3, 7, 11, and 15 in restrained animals using two types of hand-held transceivers with a stick antenna. Dynamic reading efficiency (DRE) in animals running through a raceway was also evaluated at wk 1 and 3 and monthly until slaughter, using a stationary transceiver working at 137 dB x microV x m(-1) at 3 m. The total number of PIT that fell or broke in the slaughtering line, the location method, and the recovery time were also recorded. Results on the farm showed low breakages on average (0.4%) and differences (P < 0.05) in losses according to position (armpit, 1.7%; ear, 5.2%; and lip, 14.0%). An interaction (P < 0.05) between position x size was observed, and losses were greatest using a 32-mm PIT in the lip. The DRE was affected (P < 0.05) by PIT position and size, and values were greater for the 32-mm PIT in all positions (armpit: 99.9 +/- 0.1 vs 95.8 +/- 4.9%; ear: 93.8 +/- 2.2 vs 81.9 +/- 4.6%; lip: 66.8 +/- 4.9 vs 53.4 +/- 4.7%, respectively, for 32 vs 23 mm). Recovery of PIT in the abattoir was on average 96.7, 96.7, and 99.2% for armpit, ear, and lip, respectively (P > 0.05). Most of the PIT injected in the armpit were recovered by sight or palpation, but 31.9% were recovered after cutting the muscles around the area and 10.7% were recovered on the internal side of the hide, which jeopardized carcass identification. Recovery of PIT injected in the ear was 23.4% in the hide and 76.6% in the auricular muscles of the head. The easiest recovery was in the lip, 8.9% of PIT were located in the hide and 91.1% in the head. Recovery time was affected (P < 0.05) by position: the quickest was lip (27 +/- 2 s), followed by

  14. Effect of Body Mass Index on Intrafraction Prostate Displacement Monitored by Real-Time Electromagnetic Tracking

    SciTech Connect

    Butler, Wayne M., E-mail: wbutler@wheelinghospital.org; Wheeling Jesuit University, Wheeling, West Virginia; Morris, Mallory N.

    2012-10-01

    Purpose: To evaluate, using real-time monitoring of implanted radiofrequency transponders, the intrafraction prostate displacement of patients as a function of body mass index (BMI). Methods and Materials: The motions of Beacon radiofrequency transponders (Calypso Medical Technologies, Seattle, WA) implanted in the prostate glands of 66 men were monitored throughout the course of intensity modulated radiation therapy. Data were acquired at 10 Hz from setup to the end of treatment, but only the 1.7 million data points with a 'beam on' tag were used in the analysis. There were 21 obese patients, with BMI {>=}30 and 45 nonobese patients in themore » study. Results: Mean displacements were least in the left-right lateral direction (0.56 {+-} 0.24 mm) and approximately twice that magnitude in the superior-inferior and anterior-posterior directions. The net vector displacement was larger still, 1.95 {+-} 0.47 mm. Stratified by BMI cohort, the mean displacements per patient in the 3 Cartesian axes as well as the net vector for patients with BMI {>=}30 were slightly less (<0.2 mm) but not significantly different than the corresponding values for patients with lower BMIs. As a surrogate for the magnitude of oscillatory noise, the standard deviation for displacements in all measured planes showed no significant differences in the prostate positional variability between the lower and higher BMI groups. Histograms of prostate displacements showed a lower frequency of large displacements in obese patients, and there were no significant differences in short-term and long-term velocity distributions. Conclusions: After patients were positioned accurately using implanted radiofrequency transponders, the intrafractional displacements in the lateral, superior-inferior, and anterior-posterior directions as well as the net vector displacements were smaller, but not significantly so, for obese men than for those with lower BMI.« less

  15. Electromagnetic topology: Characterization of internal electromagnetic coupling

    NASA Technical Reports Server (NTRS)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  16. Long term retention, survival, growth, and physiological indicators of salmonids marked with passive integrated transponder tags

    USGS Publications Warehouse

    Ostrand, Kenneth G.; Zydlewski, Gayle B.; Gale, William L.; Zydlewski, Joseph D.

    2011-01-01

    To track individuals in situ, over 12 million salmon and trout have been marked with passive integrated transponder (PIT) tags in the Columbia River Basin, USA. However, few studies have examined long term tag retention as well as tag effects on juvenile salmon and trout. We marked juvenile coho salmon Oncorhynchus kisutch (N = 207), steelhead (anadromous rainbow trout) O. mykiss (N = 221), cutthroat trout O. clarkii (N = 202) and bull trout Salvelinus confluentus (N = 180) with 12, 19, or 23 mm PIT tags and examined tag retention, survival, growth, and physiological performance over a six month period in a laboratory environment. PIT tag retention rates were high for coho salmon (100%), steelhead (95%), cutthroat trout (97%), and bull trout (99%), regardless of tag size. Survival was also high for coho (99%), steelhead (99%), cutthroat trout (97%), and bull trout (88%) and did not vary among tag sizes. Short term individual growth rates for coho salmon marked with 12 mm tags were significantly higher than those marked with 19 mm and 23 mm PIT tags. Likewise, steelhead trout individual growth rates were lower for fish marked with 23 mm PIT tags followed by 19 and 12 mm tags. Conversely, long-term growth rates were positive and not affected by tag size. There were no significant effects of tag size or marking on coho gill Na+, K+, -ATPase activity (µmol ADP x mg protein–1 h–1) and plasma osmolality (µmol kg–1) or bull trout hepatosomatic indices. Our study suggests that marking juvenile salmonids with PIT tags results in high retention with little effect upon their survival, growth, and important physiological indicators regardless of tag size in a laboratory environment.

  17. Cochlear Implants

    MedlinePlus

    ... newsroom@entnet.org . A cochlear implant is an electronic device that restores partial hearing to individuals with ... An internal component that consists of a small electronic device that is surgically implanted under the skin ...

  18. Goserelin Implant

    MedlinePlus

    Goserelin implant is used in combination with radiation therapy and other medications to treat localized prostate cancer ... and other symptoms) and to help with the treatment of abnormal bleeding of the uterus. Goserelin implant ...

  19. Electromagnetic launchers

    NASA Astrophysics Data System (ADS)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  20. Shock whilst gardening--implantable defibrillators & lawn mowers.

    PubMed

    Von Olshausen, G; Lennerz, C; Grebmer, C; Pavaci, H; Kolb, C

    2014-02-01

    Electromagnetic interference with implantable cardioverter defibrillators (ICDs) can cause inappropriate shock delivery or temporary inhibition of ICD functions. We present a case of electromagnetic interference between a lawn mower and an ICD resulting in an inappropriate discharge of the device due to erroneous detection of ventricular fibrillation.

  1. Electromagnetic Remote Sensing. Low Frequency Electromagnetics

    DTIC Science & Technology

    1989-01-01

    biased superconducting point - contact quantum devices", J.Appl.Phys. 41, p.1572, 1970. [40] A.Yariv and H.Winsor, "Proposal for detection of magnetic ... magnetics , electromagnetic induc- tion, electrostatics) 2. Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging) 3...Detection of submarines from aircraft or ships ( magnetics , electromagnetic induction) 4. Detection of land vehicles using buried sensors ( magnetics

  2. Passive integrated transponder tags: Review of studies on warmwater fishes with notes on additional species

    USGS Publications Warehouse

    Musselman, W. Chris; Worthington, Thomas A.; Mouser, Joshua; Williams, Desiree M.; Brewer, Shannon K.

    2017-01-01

    Although numerous studies have assessed retention and survival of passive integrated transponder (PIT) tags, data are scattered and information gaps remain for many diminutive fishes. Our study objectives were to 1) systematically review PIT tag studies and summarize retention, growth, and survival data for warmwater fishes; and 2) conduct a laboratory study to evaluate the retention, survival, and growth effects of intracoelomic-placed, half duplex PIT tags on six small-bodied species common to warmwater streams. Our systematic review suggested small sample sizes were common within PIT tag retention and survival studies (39% with n ≤ 20) and that many experiments (15%, 14 of 97) failed to use control fish as part of their evaluations. Studies focused primarily on short-term changes (15 d to 2 y) in tag retention and survival. Tag retention was equal to or greater than 90% in 85% of the experiments reviewed and median survival was 92%. Growth was reported by fishes in the majority of reviewed studies. We found similar results after PIT tagging (peritoneum tagging using 12- or 23-mm half duplex tags) adult Cardinal Shiner Luxilus cardinalis, Central Stoneroller Campostoma annomalum, Greenside Darter Etheostoma blennioides, Orangethroat Darter Etheostoma spectabile, Slender Madtom Noturus exilis, and juvenile Smallmouth Bass Micropterus dolomieu. Tag retention for all species was high, with only one tag loss recorded after 60 d. Survival was also high (≥88%) for all of our species with the exception of Orangethroat Darter (56% survival). No significant difference in mean growth between treatment and control groups was found. Both our results and the findings of the literature review suggested generally high tag retention and low mortality in tagged fishes (across 31 species reviewed). However, within our study (e.g., Orangethroat Darter) and from the literature, examples of negative effects of PIT tagging on fishes were apparent, suggesting methodological

  3. sUAS Position Estimation and Fusion in GPS-Degraded and GPS-Denied Environments using an ADS-B Transponder and Local Area Multilateration

    NASA Astrophysics Data System (ADS)

    Larson, Robert Sherman

    An Unmanned Aerial Vehicle (UAV) and a manned aircraft are tracked using ADS-B transponders and the Local Area Multilateration System (LAMS) in simulated GPS-degraded and GPS-denied environments. Several position estimation and fusion algorithms are developed for use with the Autonomous Flight Systems Laboratory (AFSL) TRansponder based Position Information System (TRAPIS) software. At the lowest level, these estimation and fusion algorithms use raw information from ADS-B and LAMS data streams to provide aircraft position estimates to the ground station user. At the highest level, aircraft position is estimated using a discrete time Kalman filter with real-time covariance updates and fusion involving weighted averaging of ADS-B and LAMS positions. Simulation and flight test results are provided, demonstrating the feasibility of incorporating an ADS-B transponder on a commercially-available UAS and maintaining situational awareness of aircraft positions in GPS-degraded and GPS-denied environments.

  4. Technical note: suppression of artifacts arising from simultaneous cone-beam imaging and RF transponder tracking in prostate radiotherapy.

    PubMed

    Poludniowski, Gavin; Webb, Steve; Evans, Philip M

    2012-03-01

    Artifacts in treatment-room cone-beam reconstructions have been observed at the authors' center when cone-beam acquisition is simultaneous with radio frequency (RF) transponder tracking using the Calypso 4D system (Calypso Medical, Seattle, WA). These artifacts manifest as CT-number modulations and increased CT-noise. The authors present a method for the suppression of the artifacts. The authors propose a three-stage postprocessing technique that can be applied to image volumes previously reconstructed by a cone-beam system. The stages are (1) segmentation of voxels into air, soft-tissue, and bone; (2) application of a 2D spatial-filter in the axial plane to the soft-tissue voxels; and (3) normalization to remove streaking along the axial-direction. The algorithm was tested on patient data acquired with Synergy XVI cone-beam CT systems (Elekta, Crawley, United Kingdom). The computational demands of the suggested correction are small, taking less than 15 s per cone-beam reconstruction on a desktop PC. For a moderate loss of spatial-resolution, the artifacts are strongly suppressed and low-contrast visibility is improved. The correction technique proposed is fast and effective in removing the artifacts caused by simultaneous cone-beam imaging and RF-transponder tracking.

  5. Federal Communications Commission (FCC) Transponder Loading Data Conversion Software. User's guide and software maintenance manual, version 1.2

    NASA Technical Reports Server (NTRS)

    Mallasch, Paul G.

    1993-01-01

    This volume contains the complete software system documentation for the Federal Communications Commission (FCC) Transponder Loading Data Conversion Software (FIX-FCC). This software was written to facilitate the formatting and conversion of FCC Transponder Occupancy (Loading) Data before it is loaded into the NASA Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS). The information that FCC supplies NASA is in report form and must be converted into a form readable by the database management software used in the GSOSTATS application. Both the User's Guide and Software Maintenance Manual are contained in this document. This volume of documentation passed an independent quality assurance review and certification by the Product Assurance and Security Office of the Planning Research Corporation (PRC). The manuals were reviewed for format, content, and readability. The Software Management and Assurance Program (SMAP) life cycle and documentation standards were used in the development of this document. Accordingly, these standards were used in the review. Refer to the System/Software Test/Product Assurance Report for the Geosynchronous Satellite Orbital Statistics Database System (GSOSTATS) for additional information.

  6. Applicator modeling for electromagnetic thermotherapy of cervix cancer.

    PubMed

    Rezaeealam, Behrooz

    2015-03-01

    This report proposes an induction heating coil design that can be used for producing strong magnetic fields around ferromagnetic implants located in the cervix of uterus. The effect of coil design on the uniformity and extent of heat generation ability is inspected. Also, a numerical model of the applicator is developed that includes the ferromagnetic implants, and is coupled to the bioheat transfer model of the body tissue. Then, the ability of the proposed applicator for electromagnetic thermotherapy is investigated.

  7. Aircraft Electromagnetic Compatibility.

    DTIC Science & Technology

    1987-06-01

    Human Exposure to Radio Frequency Electromagnetic Fields , 300 KiloHertz to 100 GigaHertz." 6. ARINC 429-8, "Digital Information Transfer System (DITS...142 V EXECUTIVE SUMMARY The Aircraft Electromagnetic Compatibility guidelines document deals with electromagnetic compatibility in a... electromagnetic interference paths (figure EI. TYPE PATH 400 Hz Electrostatic MagneticCharge Electric Field Transients 5 R d t Coupling 150/i 300o Wire

  8. Electromagnetic Education in India

    ERIC Educational Resources Information Center

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  9. Detection probability of an in-stream passive integrated transponder (PIT) tag detection system for juvenile salmonids in the Klamath River, northern California, 2011

    USGS Publications Warehouse

    Beeman, John W.; Hayes, Brian; Wright, Katrina

    2012-01-01

    A series of in-stream passive integrated transponder (PIT) detection antennas installed across the Klamath River in August 2010 were tested using tagged fish in the summer of 2011. Six pass-by antennas were constructed and anchored to the bottom of the Klamath River at a site between the Shasta and Scott Rivers. Two of the six antennas malfunctioned during the spring of 2011 and two pass-through antennas were installed near the opposite shoreline prior to system testing. The detection probability of the PIT tag detection system was evaluated using yearling coho salmon implanted with a PIT tag and a radio transmitter and then released into the Klamath River slightly downstream of Iron Gate Dam. Cormack-Jolly-Seber capture-recapture methods were used to estimate the detection probability of the PIT tag detection system based on detections of PIT tags there and detections of radio transmitters at radio-telemetry detection systems downstream. One of the 43 PIT- and radio-tagged fish released was detected by the PIT tag detection system and 23 were detected by the radio-telemetry detection systems. The estimated detection probability of the PIT tag detection system was 0.043 (standard error 0.042). Eight PIT-tagged fish from other studies also were detected. Detections at the PIT tag detection system were at the two pass-through antennas and the pass-by antenna adjacent to them. Above average river discharge likely was a factor in the low detection probability of the PIT tag detection system. High discharges dislodged two power cables leaving 12 meters of the river width unsampled for PIT detections and resulted in water depths greater than the read distance of the antennas, which allowed fish to pass over much of the system with little chance of being detected. Improvements in detection probability may be expected under river discharge conditions where water depth over the antennas is within maximum read distance of the antennas. Improvements also may be expected if

  10. Body Implanted Medical Device Communications

    NASA Astrophysics Data System (ADS)

    Yazdandoost, Kamya Yekeh; Kohno, Ryuji

    The medical care day by day and more and more is associated with and reliant upon concepts and advances of electronics and electromagnetics. Numerous medical devices are implanted in the body for medical use. Tissue implanted devices are of great interest for wireless medical applications due to the promising of different clinical usage to promote a patient independence. It can be used in hospitals, health care facilities and home to transmit patient measurement data, such as pulse and respiration rates to a nearby receiver, permitting greater patient mobility and increased comfort. As this service permits remote monitoring of several patients simultaneously it could also potentially decrease health care costs. Advancement in radio frequency communications and miniaturization of bioelectronics are supporting medical implant applications. A central component of wireless implanted device is an antenna and there are several issues to consider when designing an in-body antenna, including power consumption, size, frequency, biocompatibility and the unique RF transmission challenges posed by the human body. The radiation characteristics of such devices are important in terms of both safety and performance. The implanted antenna and human body as a medium for wireless communication are discussed over Medical Implant Communications Service (MICS) band in the frequency range of 402-405MHz.

  11. Wirelessly powering miniature implants for optogenetic stimulation

    NASA Astrophysics Data System (ADS)

    Yeh, Alexander J.; Ho, John S.; Tanabe, Yuji; Neofytou, Evgenios; Beygui, Ramin E.; Poon, Ada S. Y.

    2013-10-01

    Conventional methods for in vivo optogenetic stimulation require optical fibers or mounted prosthesis. We present an approach for wirelessly powering implantable stimulators using electromagnetic midfield. By exploiting the properties of the midfield, we demonstrate the ability to generate high intensity light pulses in a freely moving animal.

  12. Breast Implants

    MedlinePlus

    ... sale in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. They vary in size, shell thickness, ... implant them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a ...

  13. In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links

    NASA Astrophysics Data System (ADS)

    Takenaka, Hideki; Koyama, Yoshisada; Akioka, Maki; Kolev, Dimitar; Iwakiri, Naohiko; Kunimori, Hiroo; Carrasco-Casado, Alberto; Munemasa, Yasushi; Okamoto, Eiji; Toyoshima, Morio

    2016-03-01

    Research and development of space optical communications is conducted in the National Institute of Information and Communications Technology (NICT). The NICT developed the Small Optical TrAnsponder (SOTA), which was embarked on a 50kg-class satellite and launched into a low earth orbit (LEO). The space-to-ground laser communication experiments have been conducted with the SOTA. Atmospheric turbulence causes signal fadings and becomes an issue to be solved in satellite-to-ground laser communication links. Therefore, as error-correcting functions, a Reed-Solomon (RS) code and a Low-Density Generator Matrix (LDGM) code are implemented in the communication system onboard the SOTA. In this paper, we present the in-orbit verification results of SOTA including the characteristic of the functions, the communication performance with the LDGM code via satellite-to-ground atmospheric paths, and the link budget analysis and the comparison between theoretical and experimental results.

  14. Design concepts and performance of NASA X-band (7162 MHz/8415 MHz) transponder for deep-space spacecraft applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Perret, J. D.; Kermode, A. W.

    1991-01-01

    The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB.

  15. Implant ethics

    PubMed Central

    Hansson, S

    2005-01-01

    Implant ethics is defined here as the study of ethical aspects of the lasting introduction of technological devices into the human body. Whereas technological implants relieve us of some of the ethical problems connected with transplantation, other difficulties arise that are in need of careful analysis. A systematic approach to implant ethics is proposed. The major specific problems are identified as those concerning end of life issues (turning off devices), enhancement of human capabilities beyond normal levels, mental changes and personal identity, and cultural effects. PMID:16131553

  16. Penile Implants

    MedlinePlus

    ... ED that's situational, the result of a relationship conflict or potentially reversible An infection, such as a ... your partner in the discussion with your doctor. Types of penile implants There are two main types ...

  17. Cochlear Implants

    MedlinePlus

    ... learn or relearn the sense of hearing. Not everyone performs at the same level with this device. The decision to receive an implant should involve discussions with medical specialists, including an experienced ...

  18. Carmustine Implant

    MedlinePlus

    ... works by slowing or stopping the growth of cancer cells in your body. ... are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while receiving carmustine implant, call your doctor. Carmustine may harm the fetus.

  19. Electromagnetic Interference Tests

    DTIC Science & Technology

    1994-05-31

    for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields (300 kHz - 100 GHz), American National Standards Institute...Respect to Human Exposure to Radio Frequency Electromagnetic Fields (300 kHz - 100 GHz), American National Standards Institute, C95.1-1982, 30 July 1980...II il~l I!I 11 lll i 13. ABSTkACT (Waxlrnun 200woruh) This TOP is a general guideline for electromagnetic interference testing of electronic

  20. Joint Electromagnetic Spectrum Management Operations

    DTIC Science & Technology

    2012-03-20

    electromagnetic radiation to ordnance ( HERO ), hazards of electromagnetic radiation to fuels (HERF), and natural phenomena effects of lightning and...fuels HERO hazards of electromagnetic radiation to ordnance HERP hazards of electromagnetic radiation to personnel HF high frequency HN host... electromagnetic pulse (EMP); hazards of EM radiation to personnel, ordnance ,

  1. Electromagnetic Modeling of Human Body Using High Performance Computing

    NASA Astrophysics Data System (ADS)

    Ng, Cho-Kuen; Beall, Mark; Ge, Lixin; Kim, Sanghoek; Klaas, Ottmar; Poon, Ada

    Realistic simulation of electromagnetic wave propagation in the actual human body can expedite the investigation of the phenomenon of harvesting implanted devices using wireless powering coupled from external sources. The parallel electromagnetics code suite ACE3P developed at SLAC National Accelerator Laboratory is based on the finite element method for high fidelity accelerator simulation, which can be enhanced to model electromagnetic wave propagation in the human body. Starting with a CAD model of a human phantom that is characterized by a number of tissues, a finite element mesh representing the complex geometries of the individual tissues is built for simulation. Employing an optimal power source with a specific pattern of field distribution, the propagation and focusing of electromagnetic waves in the phantom has been demonstrated. Substantial speedup of the simulation is achieved by using multiple compute cores on supercomputers.

  2. Wireless Power Transfer Strategies for Implantable Bioelectronics.

    PubMed

    Agarwal, Kush; Jegadeesan, Rangarajan; Guo, Yong-Xin; Thakor, Nitish V

    2017-01-01

    Neural implants have emerged over the last decade as highly effective solutions for the treatment of dysfunctions and disorders of the nervous system. These implants establish a direct, often bidirectional, interface to the nervous system, both sensing neural signals and providing therapeutic treatments. As a result of the technological progress and successful clinical demonstrations, completely implantable solutions have become a reality and are now commercially available for the treatment of various functional disorders. Central to this development is the wireless power transfer (WPT) that has enabled implantable medical devices (IMDs) to function for extended durations in mobile subjects. In this review, we present the theory, link design, and challenges, along with their probable solutions for the traditional near-field resonant inductively coupled WPT, capacitively coupled short-ranged WPT, and more recently developed ultrasonic, mid-field, and far-field coupled WPT technologies for implantable applications. A comparison of various power transfer methods based on their power budgets and WPT range follows. Power requirements of specific implants like cochlear, retinal, cortical, and peripheral are also considered and currently available IMD solutions are discussed. Patient's safety concerns with respect to electrical, biological, physical, electromagnetic interference, and cyber security from an implanted neurotech device are also explored in this review. Finally, we discuss and anticipate future developments that will enhance the capabilities of current-day wirelessly powered implants and make them more efficient and integrable with other electronic components in IMDs.

  3. Electromagnetically Operated Counter

    DOEpatents

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  4. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, R.D.; Deis, G.A.

    1992-03-24

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles. 14 figs.

  5. Introducing Electromagnetic Field Momentum

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2012-01-01

    I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…

  6. Tunability enhanced electromagnetic wiggler

    DOEpatents

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  7. Breast reconstruction - implants

    MedlinePlus

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... it harder to find a tumor if your breast cancer comes back. Getting breast implants does not take ...

  8. Vertical electromagnetic profiling (VEMP)

    SciTech Connect

    Lytle, R.J.

    1984-08-01

    Vertical seismic profiling (VSP) is based upon reception measurements performed in a borehole with a source near the ground surface. This technology has seen a surge in application and development in the last decade. The analogous concept of vertical electromagnetic profiling (VEMP) consists of reception measurements performed in a borehole with a source near the ground surface. Although the electromagnetic concept has seen some application, this technology has not been as systematically developed and applied as VSP. Vertical electromagnetic profiling provides distinct and complementary data due to sensing different physical parameters than seismic profiling. Certain of the advantages of VEMPmore » are presented. 28 references, 7 figures.« less

  9. Comparison of Microchip Transponder and Noncontact Infrared Thermometry with Rectal Thermometry in Domestic Swine (Sus scrofa domestica)

    PubMed Central

    Jara, Amanda L; Hanson, Jarod M; Gabbard, Jon D; Johnson, Scott K; Register, Emery T; He, Biao

    2016-01-01

    During disease outbreaks, core temperature is a useful health metric in swine, due to the presence of pyrexia especially during the acute phase of infection. Despite technologic advances in other facets of swine production and health management, rectal thermometry continues to be the ‘gold standard’ for measuring core body temperature. However, for various reasons, collecting rectal temperatures can be difficult and unsafe depending on the housing modality. In addition, the delay between insertion of the rectal thermometer and obtaining a reading can affect measurement accuracy, especially when the pig requires physical restraint. Clearly safer, faster, and more accurate and precise temperature acquisition methods that necessitate minimal or no handling of swine are needed. We therefore compared rectal thermometers, subcutaneous microchips, and an inexpensive handheld infrared thermometer by measuring the core body temperature of 24 male castrated piglets at random intervals over a 5-wk period. The core body temperature (mean ± 1 SD) was 39.3 ± 0.5 °C by rectal thermometry, 39.0 ± 0.7 °C by microchip transponder, and 34.3 ± 1.0 °C by infrared thermometry; these 3 values differed significantly. Although the readings obtain by using infrared thermometry were numerically lower than those from the other methods, it is arguably the safest method for assessing the core temperature of swine and showed strong relative correlation with rectal temperature. PMID:27657715

  10. Designing a Ring-VCO for RFID Transponders in 0.18 μm CMOS Process

    PubMed Central

    Jalil, Jubayer; Reaz, Mamun Bin Ibne; Bhuiyan, Mohammad Arif Sobhan; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    In radio frequency identification (RFID) systems, performance degradation of phase locked loops (PLLs) mainly occurs due to high phase noise of voltage-controlled oscillators (VCOs). This paper proposes a low power, low phase noise ring-VCO developed for 2.42 GHz operated active RFID transponders compatible with IEEE 802.11 b/g, Bluetooth, and Zigbee protocols. For ease of integration and implementation of the module in tiny die area, a novel pseudodifferential delay cell based 3-stage ring oscillator has been introduced to fabricate the ring-VCO. In CMOS technology, 0.18 μm process is adopted for designing the circuit with 1.5 V power supply. The postlayout simulated results show that the proposed oscillator works in the tuning range of 0.5–2.54 GHz and dissipates 2.47 mW of power. It exhibits a phase noise of −126.62 dBc/Hz at 25 MHz offset from 2.42 GHz carrier frequency. PMID:24587731

  11. A model for estimating passive integrated transponder (PIT) tag antenna efficiencies for interval-specific emigration rates

    USGS Publications Warehouse

    Horton, G.E.; Dubreuil, T.L.; Letcher, B.H.

    2007-01-01

    Our goal was to understand movement and its interaction with survival for populations of stream salmonids at long-term study sites in the northeastern United States by employing passive integrated transponder (PIT) tags and associated technology. Although our PIT tag antenna arrays spanned the stream channel (at most flows) and were continuously operated, we are aware that aspects of fish behavior, environmental characteristics, and electronic limitations influenced our ability to detect 100% of the emigration from our stream site. Therefore, we required antenna efficiency estimates to adjust observed emigration rates. We obtained such estimates by testing a full-scale physical model of our PIT tag antenna array in a laboratory setting. From the physical model, we developed a statistical model that we used to predict efficiency in the field. The factors most important for predicting efficiency were external radio frequency signal and tag type. For most sampling intervals, there was concordance between the predicted and observed efficiencies, which allowed us to estimate the true emigration rate for our field populations of tagged salmonids. One caveat is that the model's utility may depend on its ability to characterize external radio frequency signals accurately. Another important consideration is the trade-off between the volume of data necessary to model efficiency accurately and the difficulty of storing and manipulating large amounts of data.

  12. Tag loss and short-term mortality associated with passive integrated transponder tagging of juvenile Lost River suckers

    USGS Publications Warehouse

    Burdick, Summer M.

    2011-01-01

    Passive integrated transponder (PIT) tags are commonly used to mark small catostomids, but tag loss and the effect of tagging on mortality have not been assessed for juveniles of the endangered Lost River sucker Deltistes luxatus. I evaluated tag loss and short-term (34-d) mortality associated with the PIT tagging of juvenile Lost River suckers in the laboratory by using a completely randomized design and three treatment groups (PIT tagged, positive control, and control). An empty needle was inserted into each positive control fish, whereas control fish were handled but not tagged. Only one fish expelled its PIT tag. Mortality rate averaged 9.8 ± 3.4% (mean ± SD) for tagged fish; mortality was 0% for control and positive control fish. All tagging mortalities occurred in fish with standard lengths of 71 mm or less, and most of the mortalities occurred within 48 h of tagging. My results indicate that 12.45- × 2.02-mm PIT tags provide a viable method of marking juvenile Lost River suckers that are 72 mm or larger.

  13. Hepatic heat shock protein 70 and plasma cortisol levels in rainbow trout after tagging with a passive integrated transponder

    USGS Publications Warehouse

    Feldhaus, J.W.; Heppell, S.A.; Mesa, M.G.; Li, H.

    2008-01-01

    This study examined the potentially stressful effects of tagging juvenile rainbow trout Oncorhynchus mykiss with passive integrated transponder (PIT) tags by measuring short-term (<120-h) changes in plasma concentrations of cortisol and hepatic heat shock protein 70 (hsp70). In a laboratory experiment, plasma cortisol levels were measured in fish before they were tagged (0 h) and at 2, 6, 24, and 120 h after being tagged. Hepatic hsp70 levels were measured at 0, 24, and 120 h. All results were compared with those for fish that were handled but not tagged. Plasma cortisol levels were significantly higher in both treatment groups (tagged and handled but not tagged) at 2 h than in the pretreatment groups (0 h). Plasma cortisol levels in the treatment groups returned to near pretreatment levels by 6 h. However, there was a significant difference in plasma cortisol levels between treatment groups at 6 h. There were no significant differences in hepatic hsp70 levels among the two treatment groups, and hepatic hsp70 levels did not change through time. Our results suggest that PIT tagging is a low-impact tagging procedure for juvenile salmonids. ?? Copyright by the American Fisheries Society 2008.

  14. Measuring Relative Motions Across a Fault Using Seafloor Transponders Installed at Close Range to each Other Based on Differential GPS/Acoustic Technique

    NASA Astrophysics Data System (ADS)

    Kido, M.; Ashi, J.; Tsuji, T.; Tomita, F.

    2016-12-01

    Seafloor geodesy based on acoustic ranging technique is getting popular means to reveal crustal deformation beneath the ocean. GPS/acoustic technique can be applied to monitoring regional deformation or absolute position, while direct-path acoustic ranging can be applied to detecting localized strain or relative motion in a short distance ( 1-10 km). However the latter observation sometimes fails to keep the clearance of an acoustic path between the seafloor transponders because of topographic obstacle or of downward bending nature of the path due to vertical gradient of sound speed in deep-ocean. Especially at steep fault scarp, it is almost impossible to keep direct path between the top and bottom of the fault scarp. Even in such a situation, acoustic path to the sea surface might be always clear. Then we propose a new approach to monitor the relative motion of across a fault scarp using "differential" GPS/acoustic measurement, which account only for traveltime differences among the transponders. The advantages of this method are that: (1) uncertainty in sound speed in shallow water is almost canceled; (2) possible GPS error is also canceled; (3) picking error in traveltime detection is almost canceled; (4) only a pair of transponders can fully describe relative 3-dimensional motion. On the other hand the disadvantages are that: (5) data is not continuous but only campaign; (6) most advantages are only effective only for very short baseline (< 100-300 m). Our target being applied this method is a steep fault scarp near the Japan trench, which is expected as a surface expression of back thrust, in where time scale of fault activity is still controversial especially after the Tohoku earthquake. We have carefully installed three transponders across this scarp using a NSS system, which can remotely navigate instrument near the seafloor from a mother vessel based on video camera image. Baseline lengths among the transponders are 200-300 m at 3500 m depth. Initial

  15. Electromagnetically Tunable Fields

    DTIC Science & Technology

    2008-07-01

    constitutive material properties (electrical permittivity, magnetic permeability, and electrical conductivity) of electromagnetically tunable fluids ( ETFs ... trade -offs and operational perspectives of a dielectric coated spherical inverted-F antenna," accepted for IEEE/URSI Int. Symp. Antennas and Propag

  16. Broadband Electromagnetic Technology

    DOT National Transportation Integrated Search

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  17. Electromagnetism in the Movies.

    ERIC Educational Resources Information Center

    Everitt, Lori R.; Patterson, Evelyn T.

    1999-01-01

    Describes how the authors used portions of popular movies to help students review concepts related to electromagnetism. Movies used and concepts covered in the review are listed, and a sample activity is described. (WRM)

  18. Concurrent electromagnetic scattering analysis

    NASA Technical Reports Server (NTRS)

    Patterson, Jean E.; Cwik, Tom; Ferraro, Robert D.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Parker, Jay

    1989-01-01

    The computational power of the hypercube parallel computing architecture is applied to the solution of large-scale electromagnetic scattering and radiation problems. Three analysis codes have been implemented. A Hypercube Electromagnetic Interactive Analysis Workstation was developed to aid in the design and analysis of metallic structures such as antennas and to facilitate the use of these analysis codes. The workstation provides a general user environment for specification of the structure to be analyzed and graphical representations of the results.

  19. Purely electromagnetic spacetimes

    SciTech Connect

    Ivanov, B. V.

    The Rainich's program of describing metrics induced by pure electromagnetic fields is implemented in a simpler way by using the Ernst formalism and increasing the symmetry of spacetime. Stationary metrics possessing one, two or three Killing vectors are studied and classified. Three branches of solutions exist. Electromagnetically induced mass terms appear in two of them, including a class of solutions in harmonic functions. The static subcase is discussed too. Relations to other well-known electrovacuum metrics are elucidated.

  20. Identifying Electromagnetic Attacks against Airports

    NASA Astrophysics Data System (ADS)

    Kreth, A.; Genender, E.; Doering, O.; Garbe, H.

    2012-05-01

    This work presents a new and sophisticated approach to detect and locate the origin of electromagnetic attacks. At the example of an airport, a normal electromagnetic environment is defined, in which electromagnetic attacks shall be identified. After a brief consideration of the capabilities of high power electromagnetic sources to produce high field strength values, this contribution finally presents the approach of a sensor network, realizing the identification of electromagnetic attacks.

  1. Electromagnetic cellular interactions.

    PubMed

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  3. Physiological and behavioural responses of young horses to hot iron branding and microchip implantation.

    PubMed

    Erber, R; Wulf, M; Becker-Birck, M; Kaps, S; Aurich, J E; Möstl, E; Aurich, C

    2012-02-01

    Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (P<0.001) and heart rate variability (P<0.01). Branding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Short Implants: New Horizon in Implant Dentistry.

    PubMed

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  5. Short Implants: New Horizon in Implant Dentistry

    PubMed Central

    Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-01-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598

  6. SU-E-J-257: Image Artifacts Caused by Implanted Calypso Beacons in MRI Studies

    SciTech Connect

    Amro, H; Chetty, I; Gordon, J

    2014-06-01

    Purpose: The presence of Calypso Beacon-transponders in patients can cause artifacts during MRI imaging studies. This could be a problem for post-treatment follow up of cancer patients using MRI studies to evaluate metastasis and for functional imaging studies.This work assesses (1) the volume immediately surrounding the transponders that will not be visualized by the MRI due to the beacons, and (2) the dependence of the non-visualized volume on beacon orientation, and scanning techniques. Methods: Two phantoms were used in this study (1) water filled box, (2) and a 2300 cc block of pork meat. Calypso beacons were implanted in themore » phantoms both in parallel and perpendicular orientations with respect to the MR scanner magnetic field. MR image series of the phantom were obtained with on a 1.0T high field open MR-SIM with multiple pulse sequences, for example, T1-weighted fast field echo and T2-weighted turbo spin echo. Results: On average, a no-signal region with 2 cm radius and 3 cm length was measured. Image artifacts are more significant when beacons are placed parallel to scanner magnetic field; the no-signal area around the beacon was about 0.5 cm larger in orthogonal orientation. The no-signal region surrounding the beacons slightly varies in dimension for the different pulse sequences. Conclusion: The use of Calypso beacons can prohibit the use of MRI studies in post-treatment assessments, especially in the immediate region surrounding the implanted beacon. A characterization of the MR scanner by identifying the no-signal regions due to implanted beacons is essential. This may render the use of Calypso beacons useful for some cases and give the treating physician a chance to identify those patients prior to beacon implantation.« less

  7. Analysis of Microhabitat Use for Two Trout Species Using a Combination of Remote Sensing and Passive Integrated transponder Tags

    NASA Astrophysics Data System (ADS)

    Lokteff, R.; Wheaton, J. M.; Roper, B.; DeMeurichy, K.; Randall, J.

    2011-12-01

    The Logan River and its tributaries in northern Utah sustain a significant population of the imperiled Bonneville cutthroat trout (Oncorhynchus clarki Utah) as well as invasive brown trout (Salmo trutta). In general, the upper reaches of the system are populated by cutthroat trout and the lower reaches by brown trout. Spawn Creek is a unique tributary in that it supports both of these species throughout the year. The purpose of this study is to identify differences in fine-scale microhabitat that explain utilization patterns of each species of fish. Passive integrated transponder (PIT) tags have been placed in trout over the last 3 years throughout Spawn Creek. Repeat GPS observations of these fish in their habitat during both spawning and non-spawning periods have been acquired over the last 4 years. Non-spawning activity has been captured using mobile PIT tag antennae. GPS observations of cutthroat trout spawning locations have also been recorded. From these observations both spawning and non-spawning "hotspots" have emerged, which appear to be highly correlated with specific microhabitat characteristics. The entire 2.5 km study reach on lower Spawn Creek has been scanned using ground-based light detection and ranging (LiDAR) which covers all observed "hotspots." LiDAR data provides sub-centimeter resolution point clouds from which detailed geometric measurements and topographic analyses can be used to reveal specific aspects of trout habitat. Where bathymetric data is needed, total station bathymetric surveys have been completed at sub-meter resolution. The combination of these data types at known "hotspot" locations provides an opportunity to quantify aspects of the physical environment at a uniquely fine scale relevant to individual fish. New metrics, as well as old metrics resolved at finer scales, will be presented to explain species and life-stage specific habitat "hotspots" in mountain streams.

  8. Survival and growth of juvenile Pacific lampreys tagged with passive integrated transponders (PIT) in freshwater and seawater

    USGS Publications Warehouse

    Mesa, Matthew G.; Copeland, Elizabeth S.; Christiansen, Helena E.; Gregg, Jacob L.; Roon, Sean R.; Hershberger, Paul K.

    2012-01-01

    Tagging methods are needed for both adult and juvenile life stages of Pacific lampreys Lampetra tridentata to better understand their biology and factors contributing to their decline. We developed a safe and efficient technique for tagging juvenile Pacific lampreys with passive integrated transponder (PIT) tags. We tested the short-term survival of PIT-tagged juvenile lampreys in freshwater at four temperatures (9, 12, 15, and 18°C) and their long-term growth and survival in seawater. For both experiments there was little to no tag loss, and juvenile lampreys in freshwater showed high survival at all temperatures at 7 d (95–100%) and 14 d (88–100%) posttagging. Prolonged holding (40 d) resulted in significantly lower survival (28–79%) at warmer temperatures (12–18°C). For juvenile lampreys tagged in freshwater and then transitioned to seawater, survival was 97% for tagged fish until day 94, and at the end of 6 months, survival was about 58% for both tagged and control fish. About half of the tagged and control fish that survived in seawater grew, but there was no difference in growth between the two groups. In freshwater, but not in seawater, most fish that died had an aquatic fungal infection. In both experiments, survival increased with increasing fish length at tagging. Our results indicate that tags similar in size to a 9-mm PIT tag are a feasible option for tagging metamorphosed juvenile lampreys migrating downstream and that when fungal infections are mitigated—as in seawater—long-term (at least 6 months) survival of tagged juvenile lampreys is high.

  9. Estimating movement and survival rates of a small saltwater fish using autonomous antenna receiver arrays and passive integrated transponder tags

    USGS Publications Warehouse

    Rudershausen, Paul J.; Buckel, Jeffery A.; Dubreuil, Todd; O'Donnell, Matthew J.; Hightower, Joseph E.; Poland, Steven J.; Letcher, Benjamin H.

    2014-01-01

    We evaluated the performance of small (12.5 mm long) passive integrated transponder (PIT) tags and custom detection antennas for obtaining fine-scale movement and demographic data of mummichog Fundulus heteroclitus in a salt marsh creek. Apparent survival and detection probability were estimated using a Cormack Jolly Seber (CJS) model fitted to detection data collected by an array of 3 vertical antennas from November 2010 to March 2011 and by a single horizontal antenna from April to August 2011. Movement of mummichogs was monitored during the period when the array of vertical antennas was used. Antenna performance was examined in situ using tags placed in wooden dowels (drones) and in live mummichogs. Of the 44 tagged fish, 42 were resighted over the 9 mo monitoring period. The in situ detection probabilities of the drone and live mummichogs were high (~80-100%) when the ambient water depth was less than ~0.8 m. Upstream and downstream movement of mummichogs was related to hourly water depth and direction of tidal current in a way that maximized time periods over which mummichogs utilized the intertidal vegetated marsh. Apparent survival was lower during periods of colder water temperatures in December 2010 and early January 2011 (median estimate of daily apparent survival = 0.979) than during other periods of the study (median estimate of daily apparent survival = 0.992). During late fall and winter, temperature had a positive effect on the CJS detection probability of a tagged mummichog, likely due to greater fish activity over warmer periods. During the spring and summer, this pattern reversed possibly due to mummichogs having reduced activity during the hottest periods. This study demonstrates the utility of PIT tags and continuously operating autonomous detection systems for tracking fish at fine temporal scales, and improving estimates of demographic parameters in salt marsh creeks that are difficult or impractical to sample with active fishing gear.

  10. SU-G-JeP1-06: Correlation of Lung Tumor Motion with Tumor Location Using Electromagnetic Tracking

    SciTech Connect

    Muccigrosso, D; Maughan, N; Parikh, P

    Purpose: It is well known that lung tumors move with respiration. However, most measurements of lung tumor motion have studied long treatment times with intermittent imaging; those populations may not necessarily represent conventional LINAC patients. We summarized the correlation between tumor motion and location in a multi-institutional trial with electromagnetic tracking, and identified the patient cohort that would most benefit from respiratory gating. Methods: Continuous electromagnetic transponder data (Varian Medical, Seattle, WA) of lung tumor motion was collected from 14 patients (214 total fractions) across 3 institutions during external beam radiation therapy in a prospective clinical trial (NCT01396551). External interventionmore » from the clinician, such as couch shifts, instructed breath-holds, and acquisition pauses, were manually removed from the 10 Hz tracking data according to recorded notes. The average three-dimensional displacement from the breathing cycle’s end-expiratory to end-inhalation phases (peak-to-peak distance) of the transponders’ isocenter was calculated for each patient’s treatment. A weighted average of each isocenter was used to assess the effects of location on motion. A total of 14 patients were included in this analysis, grouped by their transponders’ location in the lung: upper, medial, and lower. Results: 8 patients had transponders in the upper lung, and 3 patients each in the medial lobe and lower lung. The weighted average ± standard deviation of all peak-to-peak distances for each group was: 1.04 ± 0.39 cm in the lower lung, 0.56 ± 0.14 cm in the medial lung, and 0.30 ± 0.06 cm in the upper lung. Conclusion: Tumors in the lower lung are most susceptible to excessive motion and daily variation, and would benefit most from continuous motion tracking and gating. Those in the medial lobe might be at moderate risk. The upper lobes have limited motion. These results can guide different motion management

  11. Electromagnetic attachment mechanism

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr. (Inventor)

    1992-01-01

    An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.

  12. Electromagnetic Interference in a Private Swimming Pool: Case report.

    PubMed

    Iskandar, Sandia; Lavu, Madhav; Atoui, Moustapha; Lakkireddy, Dhanunjaya

    2015-01-01

    Although current lead design and filtering capabilities have greatly improved, Electromagnetic Interference (EMI) from environmental sources has been increasingly reported in patients with Cardiac Implantable Electronic Device (CIED) [1]. Few cases of inappropriate intracardiac Cardioverter Defibrillator (ICD) associated with swimming pool has been described [2]. Here we present a case of 64 year old male who presented with an interesting EMI signal that was subsequently identified to be related to AC current leak in his swimming pool.

  13. Electromagnetic fields and their impacts

    NASA Astrophysics Data System (ADS)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  14. Aircraft electromagnetic compatibility

    NASA Technical Reports Server (NTRS)

    Clarke, Clifton A.; Larsen, William E.

    1987-01-01

    Illustrated are aircraft architecture, electromagnetic interference environments, electromagnetic compatibility protection techniques, program specifications, tasks, and verification and validation procedures. The environment of 400 Hz power, electrical transients, and radio frequency fields are portrayed and related to thresholds of avionics electronics. Five layers of protection for avionics are defined. Recognition is given to some present day electromagnetic compatibility weaknesses and issues which serve to reemphasize the importance of EMC verification of equipment and parts, and their ultimate EMC validation on the aircraft. Proven standards of grounding, bonding, shielding, wiring, and packaging are laid out to help provide a foundation for a comprehensive approach to successful future aircraft design and an understanding of cost effective EMC in an aircraft setting.

  15. Metamaterial electromagnetic wave absorbers.

    PubMed

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improved Electromagnetic Brake

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  17. Electromagnetic propulsion test facility

    NASA Technical Reports Server (NTRS)

    Gooder, S. T.

    1984-01-01

    A test facility for the exploration of electromagnetic propulsion concept is described. The facility is designed to accommodate electromagnetic rail accelerators of various lengths (1 to 10 meters) and to provide accelerating energies of up to 240 kiloJoules. This accelerating energy is supplied as a current pulse of hundreds of kiloAmps lasting as long as 1 millisecond. The design, installation, and operating characteristics of the pulsed energy system are discussed. The test chamber and its operation at pressures down to 1300 Pascals (10 mm of mercury) are described. Some aspects of safety (interlocking, personnel protection, and operating procedures) are included.

  18. MEMS-Based Power Generation Techniques for Implantable Biosensing Applications

    PubMed Central

    Lueke, Jonathan; Moussa, Walied A.

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient. PMID:22319362

  19. MEMS-based power generation techniques for implantable biosensing applications.

    PubMed

    Lueke, Jonathan; Moussa, Walied A

    2011-01-01

    Implantable biosensing is attractive for both medical monitoring and diagnostic applications. It is possible to monitor phenomena such as physical loads on joints or implants, vital signs, or osseointegration in vivo and in real time. Microelectromechanical (MEMS)-based generation techniques can allow for the autonomous operation of implantable biosensors by generating electrical power to replace or supplement existing battery-based power systems. By supplementing existing battery-based power systems for implantable biosensors, the operational lifetime of the sensor is increased. In addition, the potential for a greater amount of available power allows additional components to be added to the biosensing module, such as computational and wireless and components, improving functionality and performance of the biosensor. Photovoltaic, thermovoltaic, micro fuel cell, electrostatic, electromagnetic, and piezoelectric based generation schemes are evaluated in this paper for applicability for implantable biosensing. MEMS-based generation techniques that harvest ambient energy, such as vibration, are much better suited for implantable biosensing applications than fuel-based approaches, producing up to milliwatts of electrical power. High power density MEMS-based approaches, such as piezoelectric and electromagnetic schemes, allow for supplemental and replacement power schemes for biosensing applications to improve device capabilities and performance. In addition, this may allow for the biosensor to be further miniaturized, reducing the need for relatively large batteries with respect to device size. This would cause the implanted biosensor to be less invasive, increasing the quality of care received by the patient.

  20. Electromagnetic structure of light nuclei

    DOE PAGES

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  1. Electromagnetic structure of light nuclei

    SciTech Connect

    Pastore, Saori

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  2. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  3. "Hearing" Electromagnetic Waves

    ERIC Educational Resources Information Center

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  4. Electromagnetic radiation detector

    DOEpatents

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  5. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  6. Electromagnetic Navigation Diagnostic Bronchoscopy

    PubMed Central

    Gildea, Thomas R.; Mazzone, Peter J.; Karnak, Demet; Meziane, Moulay; Mehta, Atul C.

    2006-01-01

    Rationale: Electromagnetic navigation bronchoscopy using superDimension/Bronchus System is a novel method to increase diagnostic yield of peripheral and mediastinal lung lesions. Objectives: A prospective, open label, single-center, pilot study was conducted to determine the ability of electromagnetic navigation bronchoscopy to sample peripheral lung lesions and mediastinal lymph nodes with standard bronchoscopic instruments and demonstrate safety. Methods: Electromagnetic navigation bronchoscopy was performed using the superDimension/Bronchus system consisting of electromagnetic board, position sensor encapsulated in the tip of a steerable probe, extended working channel, and real-time reconstruction of previously acquired multiplanar computed tomography images. The final distance of the steerable probe to lesion, expected error based on the actual and virtual markers, and procedure yield was gathered. Measurements: 60 subjects were enrolled between December 2004 and September 2005. Mean navigation times were 7 ± 6 min and 2 ± 2 min for peripheral lesions and lymph nodes, respectively. The steerable probe tip was navigated to the target lung area in all cases. The mean peripheral lesions and lymph nodes size was 22.8 ± 12.6 mm and 28.1 ± 12.8 mm. Yield was determined by results obtained during the bronchoscopy per patient. Results: The yield/procedure was 74% and 100% for peripheral lesions and lymph nodes, respectively. A diagnosis was obtained in 80.3% of bronchoscopic procedures. A definitive diagnosis of lung malignancy was made in 74.4% of subjects. Pneumothorax occurred in two subjects. Conclusion: Electromagnetic navigation bronchoscopy is a safe method for sampling peripheral and mediastinal lesions with high diagnostic yield independent of lesion size and location. PMID:16873767

  7. Computational Electronics and Electromagnetics

    SciTech Connect

    DeFord, J.F.

    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust areamore » fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.« less

  8. Bilayer Implants

    PubMed Central

    Schagemann, Jan C.; Rudert, Nicola; Taylor, Michelle E.; Sim, Sotcheadt; Quenneville, Eric; Garon, Martin; Klinger, Mathias; Buschmann, Michael D.; Mittelstaedt, Hagen

    2016-01-01

    Objective To compare the regenerative capacity of 2 distinct bilayer implants for the restoration of osteochondral defects in a preliminary sheep model. Methods Critical sized osteochondral defects were treated with a novel biomimetic poly-ε-caprolactone (PCL) implant (Treatment No. 2; n = 6) or a combination of Chondro-Gide and Orthoss (Treatment No. 1; n = 6). At 19 months postoperation, repair tissue (n = 5 each) was analyzed for histology and biochemistry. Electromechanical mappings (Arthro-BST) were performed ex vivo. Results Histological scores, electromechanical quantitative parameter values, dsDNA and sGAG contents measured at the repair sites were statistically lower than those obtained from the contralateral surfaces. Electromechanical mappings and higher dsDNA and sGAG/weight levels indicated better regeneration for Treatment No. 1. However, these differences were not significant. For both treatments, Arthro-BST revealed early signs of degeneration of the cartilage surrounding the repair site. The International Cartilage Repair Society II histological scores of the repair tissue were significantly higher for Treatment No. 1 (10.3 ± 0.38 SE) compared to Treatment No. 2 (8.7 ± 0.45 SE). The parameters cell morphology and vascularization scored highest whereas tidemark formation scored the lowest. Conclusion There was cell infiltration and regeneration of bone and cartilage. However, repair was incomplete and fibrocartilaginous. There were no significant differences in the quality of regeneration between the treatments except in some histological scoring categories. The results from Arthro-BST measurements were comparable to traditional invasive/destructive methods of measuring quality of cartilage repair. PMID:27688843

  9. Endocardial Energy Harvesting by Electromagnetic Induction.

    PubMed

    Zurbuchen, Adrian; Haeberlin, Andreas; Bereuter, Lukas; Pfenniger, Alois; Bosshard, Simon; Kernen, Micha; Philipp Heinisch, Paul; Fuhrer, Juerg; Vogel, Rolf

    2018-02-01

    cardiac pacemakers require regular medical follow-ups to ensure proper functioning. However, device replacements due to battery depletion are common and account for ∼25% of all implantation procedures. Furthermore, conventional pacemakers require pacemaker leads which are prone to fractures, dislocations or isolation defects. The ensuing surgical interventions increase risks for the patients and costs that need to be avoided. in this study, we present a method to harvest energy from endocardial heart motions. We developed a novel generator, which converts the heart's mechanical into electrical energy by electromagnetic induction. A mathematical model has been introduced to identify design parameters strongly related to the energy conversion efficiency of heart motions and fit the geometrical constraints for a miniaturized transcatheter deployable device. The implemented final design was tested on the bench and in vivo. the mathematical model proved an accurate method to estimate the harvested energy. For three previously recorded heart motions, the model predicted a mean output power of 14.5, 41.9, and 16.9 μW. During an animal experiment, the implanted device harvested a mean output power of 0.78 and 1.7 μW at a heart rate of 84 and 160 bpm, respectively. harvesting kinetic energy from endocardial motions seems feasible. Implanted at an energetically favorable location, such systems might become a welcome alternative to extend the lifetime of cardiac implantable electronic device. the presented endocardial energy harvesting concept has the potential to turn pacemakers into battery- and leadless systems and thereby eliminate two major drawbacks of contemporary systems.

  10. Design and analysis of a low-loss linear analog phase modulator for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Mueller, R. O.

    1991-01-01

    This article summarizes the design concepts, analyses, and development of an X-band (8145 MHz) transponder low-loss linear phase modulator for deep space spacecraft applications. A single-section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. A linear phase deviation of 92 deg with a linearity tolerance of +/- 8 percent was measured for this modulator from 8257 MHz to 8634 MHz over the temperature range -20 to 75 C. The measured insertion loss and the static delay variation with temperature were 2 +/- 0.3 dB and 0.16 psec/ C, respectively. Based on this design, cascaded sections have been modeled, and simulations were performed to provide an X-band deep space transponder (DST) phase modulator with +/- 2.5 radians (+/- 143 deg) of peak phase deviation to accommodate downlink signal modulation with composite telemetry data and ranging, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase-modulator requirements and show excellent agreement with the predicted results.

  11. Individual titanium zygomatic implant

    NASA Astrophysics Data System (ADS)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.

    2018-03-01

    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  12. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C C

    The Computational Electronics and Electromagnetics thrust area serves as the focal point for Engineering R and D activities for developing computer-based design and analysis tools. Representative applications include design of particle accelerator cells and beamline components; design of transmission line components; engineering analysis and design of high-power (optical and microwave) components; photonics and optoelectronics circuit design; electromagnetic susceptibility analysis; and antenna synthesis. The FY-97 effort focuses on development and validation of (1) accelerator design codes; (2) 3-D massively parallel, time-dependent EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; andmore » (5) development of beam control algorithms coupled to beam transport physics codes. These efforts are in association with technology development in the power conversion, nondestructive evaluation, and microtechnology areas. The efforts complement technology development in Lawrence Livermore National programs.« less

  13. ELECTROMAGNETIC RELEASE MECHANISM

    DOEpatents

    Michelson, C.

    1960-09-13

    An electromagnetic release mechanism is offered that may be used, for example, for supporting a safety rod for a nuclear reactor. The release mechanism is designed to have a large excess holding force and a rapid, uniform, and dependable release. The fast release is accomplished by providing the electromagnet with slotttd polts separated by an insulating potting resin, and by constructing the poles with a ferro-nickel alloy. The combination of these two features materially reduces the eddy current power density whenever the magnetic field changes during a release operation. In addition to these features, the design of the armature is such as to provide ready entrance of fluid into any void that might tend to form during release of the armature. This also improves the release time for the mechanism. The large holding force for the mechanism is accomplished by providing a small, selected, uniform air gap between the inner pole piece and the armature.

  14. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  15. Electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  16. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  17. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  18. Banded electromagnetic stator core

    DOEpatents

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  19. Banded electromagnetic stator core

    DOEpatents

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  20. Electromagnetic tornadoes in space

    SciTech Connect

    Chang, T.; Crew, G.B.; Retterer, J.M.

    1988-01-01

    The exotic phenomenon of energetic-ion conic formation by plasma waves in the magnetosphere is considered. Two particular transverse heating mechanisms are reviewed in detail; lower-hybrid energization of ions in the boundary layer of the plasma sheet and electromagnetic ion cyclotron resonance heating in the central region of the plasma sheet. Mean particle calculations, plasma simulations and analytical treatments of the heating processes are described.

  1. Electromagnetism; Problems and solutions

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina C.; Schrecengost, Zachariah S.

    2016-11-01

    Electromagnetism: Problems and solutions is an ideal companion book for the undergraduate student-sophomore, junior, or senior-who may want to work on more problems and receive immediate feedback while studying. Each chapter contains brief theoretical notes followed by the problem text with the solution and ends with a brief bibliography. Also presented are problems more general in nature, which may be a bit more challenging.

  2. Carter separable electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, D.

    2000-02-01

    The purely electromagnetic analogue in flat space of Kerr's metric in general relativity is only rarely considered. Here we carry out in flat space a programme similar to Carter's investigation of metrics in general relativity in which the motion of a charged particle is separable. We concentrate on the separability of the motion (be it classical, relativistic or quantum) of a charged particle in electromagnetic fields that lie in planes through an axis of symmetry. In cylindrical polar coordinates (t,R,φ,z) the four-vector potential takes the form [formmu2] is the unit toroidal vector. The forms of the functions Φ(R,z) and A(R,z) are sought that allow separable motion. This occurs for relativistic motion only when AR,Φ and A2-Φ2 are all of the separable form ζ(λ)-η(μ)]/(λ-μ), where ζ and η are arbitrary functions, and λ and μ are spheroidal coordinates or degenerations thereof. The special forms of A and Φ that allow this are deduced. They include the Kerr metric analogue, with E+iB=-∇{q[(r-ia).(r-ia)]-1/2}. Rather more general electromagnetic fields allow separation when the motion is non-relativistic. The investigation is extended to fields that lie in parallel planes. Connections to Larmor's theorem are remarked upon.

  3. Nuclear Electromagnetic Pulse Review

    NASA Astrophysics Data System (ADS)

    Dinallo, Michael

    2011-04-01

    Electromagnetic Pulse (EMP) from nuclear detonations have been observed for well over half a century. Beginning in the mid-to-late 1950s, the physics and modeling of EMP has been researched and will continue into the foreseeable future. The EMP environment propagates hundreds of miles from its origins and causes interference for all types of electronic instrumentation. This includes military, municipal and industry based electronic infrastructures such as power generation and distribution, command and control systems, systems used in financial and emergency services, electronic monitoring and communications networks, to mention some key infrastructure elements. Research into EMP has included originating physics, propagation and electromagnetic field coupling analyses and measurement-sensor development. Several methods for calculating EMP induced transient interference (voltage and current induction) will be briefly discussed and protection techniques reviewed. These methods can be mathematically simple or involve challenging boundary value solution techniques. A few illustrative calculations will demonstrate the concern for electronic system operability. Analyses such as the Wunsch-Bell model for electronic upset or damage, and the Singularity Expansion Method (SEM) put forth by Dr. Carl Baum, will facilitate the concern for EMP effects. The SEM determines the voltages and currents induced from transient electromagnetic fields in terms of natural modes of various types of electronic platforms (aerospace vehicles or land-based assets - fixed or mobile). Full-scale facility and laboratory simulation and response measurement approaches will be discussed. The talk will conclude with a discussion of some present research activities.

  4. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  5. Investigating fish hydraulic habitat preferences using a passive integrated transponder antenna network: Scope on spatial scales and individual mobility

    NASA Astrophysics Data System (ADS)

    Roy, M. L.; Roy, A. G.

    2009-12-01

    Flow velocity is a major feature of fluvial fish habitat. It affects swimming energy expenditures, resource distribution and efficiency of prey capture, thus exerting a major influence on fish distribution. Preferences of juvenile salmonids for ranges of flow velocity are well documented. Preference curves are usually generated by comparing velocities measured at the precise location of captured fish (nose velocity) with velocities measured at random locations where fish are absent. However, these preferences tend to be specific to sites and rivers and show important variability with time. Recent biotelemetry studies have revealed that juvenile salmonids are more mobile than previously assumed and use larger home ranges and multiple micro-habitats. Therefore, fish might select habitats based on the characteristics of a microhabitat, but also based on the properties of the surrounding area. Furthermore, mobile fish could present temporal variability in their habitat preferences. Recent advances in biotelemetry provide new ways to monitor fish locations and to obtain habitat preferences both at the individual and the population levels at high temporal and spatial resolutions for extended periods. In this study, we seek to identify the most relevant spatial scales defining habitat preferences of juvenile Atlantic salmon. We emphasize both the group and individual temporal variability in hydraulic habitat preferences. During a three month period, we monitored the location and movements of 61 juveniles marked with 23-mm passive integrated transponders (PIT) using a network of 186 antennas buried into the bed of a natural river reach in Saguenay, Canada. Each antenna was scanned every 33 seconds to detect and record the presence or absence of tagged fish. The reach was 70 m long and 9 m wide on average and presented a very clear morphological sequence consisting of two pools separated by a riffle. Mean flow velocity and turbulent flow properties were measured at 3500

  6. Electromagnetic Meissner-Effect Launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1990-01-01

    Proposed electromagnetic Meissner-effect launching apparatus differs from previous electromagnetic launchers; no need for electromagnet coil on projectile. Result, no need for brush contacts and high-voltage commutation equipment to supply current directly to projectile coil, or for pulse circuitry to induce current in projectile coil if brush contacts not used. Compresses magnetic field surrounding rear surface of projectile, creating gradient of magnetic pressure pushing projectile forward.

  7. Electromagnetic Environmental Effects System Testing

    DTIC Science & Technology

    2009-09-02

    Procedure (TOP) 1-2-511 Electromagnetic Environmental Effects System Testing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...airborne, sea, space, and ground systems , including associated ordnance, as stated in military standard (MIL-STD)-464A “Electromagnetic Environmental...Effects Requirement for Systems ”, as well as ADS-37A-PRF “Aeronautical Design Standard for the Electromagnetic Environmental Effects (E3) Performance and

  8. High-Altitude Electromagnetic Pulse (HEMP) Testing

    DTIC Science & Technology

    2015-07-09

    Electromagnetic Pulse Horizontal Electromagnetic Pulse Advanced Fast Electromagnetic Pulse Nuclear Weapons Effect Testing and Environments 16. SECURITY... Weapons of Mass Destruction Agency (USANCA). In order to effectively determine criteria compliance, the TO/PE must thoroughly understand the...ELECTROMAGNETIC ENVIRONMENT AND EFFECTS. A.1 The electromagnetic environment produced by a nuclear weapon consists of the ionization of the atmosphere and

  9. Electromagnetic Spectrum Test and Evaluation Process

    DTIC Science & Technology

    2010-01-01

    HERO , hazards of electromagnetic radiation to ordnance ; HERP, hazards of electromagnetic radiation to personnel; HERF, hazards of electromagnetic ... electromagnetic pulse (EMP); electronic protection; electrostatic dis- charge (ESD); hazards of electromagnetic radi- ation to personnel (HERP), ordnance ...including ordnance containing electrically initiated devices, to be mutually compatible in their intended

  10. Tiny Electromagnetic Explosions

    NASA Astrophysics Data System (ADS)

    Thompson, Christopher

    2017-08-01

    This paper considers electromagnetic transients of a modest total energy ({ E }≳ {10}40 erg) and small initial size ({ R }≳ {10}-1 cm). They could be produced during collisions between relativistic field structures (e.g., macroscopic magnetic dipoles) that formed around or before cosmic electroweak symmetry breaking. The outflowing energy has a dominant electromagnetic component; a subdominant thermal component (temperature > 1 GeV) supplies inertia in the form of residual {e}+/- . A thin shell forms, expanding subluminally and attaining a Lorentz factor ˜ {10}6{--7} before decelerating. Drag is supplied by the reflection of an ambient magnetic field and deflection of ambient free electrons. Emission of low-frequency (GHz-THz) superluminal waves takes place through three channels: (I) reflection of the ambient magnetic field; (II) direct linear conversion of the embedded magnetic field into a superluminal mode; and (III) excitation outside the shell by corrugation of its surface. The escaping electromagnetic pulse is very narrow (a few wavelengths), so the width of the detected transient is dominated by propagation effects. GHz radio transients are emitted from (I) the dark matter halos of galaxies and (II) the near-horizon regions of supermassive black holes that formed via direct gas collapse and now accrete slowly. Brighter and much narrower 0.01-1 THz pulses are predicted at a rate at least comparable to fast radio bursts, experiencing weaker scattering and absorption. The same explosions also accelerate protons up to ˜ {10}19 eV, and heavier nuclei up to 1020-21 eV.

  11. Peri-implantitis.

    PubMed

    Schwarz, Frank; Derks, Jan; Monje, Alberto; Wang, Hom-Lay

    2018-06-01

    This narrative review provides an evidence-based overview on peri-implantitis for the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. A literature review was conducted addressing the following topics: 1) definition of peri-implantitis; 2) conversion from peri-implant mucositis to peri-implantitis, 3) onset and pattern of disease progression, 4) characteristics of peri-implantitis, 5) risk factors/indicators for peri-implantitis, and 6) progressive crestal bone loss in the absence of soft tissue inflammation. 1)Peri-implantitis is a pathological condition occurring in tissues around dental implants, characterized by inflammation in the peri-implant connective tissue and progressive loss of supporting bone. 2)The histopathologic and clinical conditions leading to the conversion from peri-implant mucositis to peri-implantitis are not completely understood. 3)The onset of peri-implantitis may occur early during follow-up and the disease progresses in a non-linear and accelerating pattern. 4a)Peri-implantitis sites exhibit clinical signs of inflammation and increased probing depths compared to baseline measurements. 4b)At the histologic level, compared to periodontitis sites, peri-implantitis sites often have larger inflammatory lesions. 4c)Surgical entry at peri-implantitis sites often reveals a circumferential pattern of bone loss. 5a)There is strong evidence that there is an increased risk of developing peri-implantitis in patients who have a history of chronic periodontitis, poor plaque control skills, and no regular maintenance care after implant therapy. Data identifying "smoking" and "diabetes" as potential risk factors/indicators for peri-implantitis are inconclusive. 5b)There is some limited evidence linking peri-implantitis to other factors such as: post-restorative presence of submucosal cement, lack of peri-implant keratinized mucosa and positioning of implants that make it difficult to perform oral hygiene

  12. Electromagnetic pump stator coil

    DOEpatents

    Fanning, A.W.; Dahl, L.R.

    1996-06-25

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom. 9 figs.

  13. Electromagnetic pump stator coil

    DOEpatents

    Fanning, Alan W.; Dahl, Leslie R.

    1996-01-01

    An electrical stator coil for an electromagnetic pump includes a continuous conductor strip having first and second terminals at opposite ends thereof and an intermediate section disposed therebetween. The strip is configured in first and second coil halves, with the first coil half including a plurality of windings extending from the first terminal to the intermediate section, and the second coil half including a plurality of windings extending from the second terminal to the intermediate section. The first and second coil halves are disposed coaxially, and the first and second terminals are disposed radially inwardly therefrom with the intermediate section being disposed radially outwardly therefrom.

  14. Electromagnetic Meissner effect launcher

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A. (Inventor)

    1991-01-01

    An electromagnetic projectile launcher provides acceleration of a superconducting projectile through the diamagnetic repulsion of the superconducting projectile. A superconducting layer is provided aft of the projectile, either directly on the projectile or on a platform upon which the projectile is carried, and a traveling magnetic field is caused to propagate along a magnetic field drive coil in which the projectile is disposed. The resulting diamagnetic repulsion between the superconducting projectile and the traveling magnetic field causes the projectile to be propelled along the coil. In one embodiment, a segmented drive coil is used to generate the traveling magnetic field.

  15. Interactive electromagnetic launcher simulation

    NASA Astrophysics Data System (ADS)

    Young, F. J.; Howland, H. R.; Hughes, W. F.; Fikse, D. A.

    1982-01-01

    The mathematical model, usage, and documentation of an interactive computer simulation for an electromagnetic launcher is presented. The launcher is modeled as an electrical circuit. Three slight variations of the program permit studies of a launcher with (1) rail skin effects, (2) rail skin effects and approximated storage coil skin effects, or (3) neither of these effects. Usage of the program as currently implemented on the Westinghouse R&D Univac 1106 is described, with a sample session shown. The implementation of the program permits rapid scoping of the effects of parameter changes.

  16. Design and implementation of a hybrid digital phase-locked loop with a TMS320C25: An application to a transponder receiver breadboard

    NASA Technical Reports Server (NTRS)

    Yeh, H.-G.; Nguyen, T. M.

    1994-01-01

    Design, modeling, analysis, and simulation of a phase-locked loop (PLL) with a digital loop filter are presented in this article. A TMS320C25 digital signal processor (DSP) is used to implement this digital loop filter. In order to keep the compatibility, the main design goal was to replace the analog PLL (APLL) of the Deep-Space Transponder (DST) receiver breadboard's loop filter with a digital loop filter without changing anything else. This replacement results in a hybrid digital PLL (HDPLL). Both the original APLL and the designed HDPLL are Type I second-order systems. The real-time performance of the HDPLL and the receiver is provided and evaluated.

  17. Design and analysis of low-loss linear analog phase modulator for deep space spacecraft X-band transponder (DST) application

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Mueller, Robert O.

    1991-01-01

    This paper summarizes the design concepts, analyses, and the development of an X-band transponder low-loss linear phase modulator for deep space spacecraft applications. A single section breadboard circulator-coupled reflection phase modulator has been analyzed, fabricated, and evaluated. Two- and three-cascaded sections have been modeled and simulations performed to provide an X-band DST phase modulator with +/- 2.5 radians of peak phase deviation to accommodate down-link signal modulation with composite telemetry data and ranging with a deviation linearity tolerance +/- 8 percent and insertion loss of less than 10 +/- 0.5 dB. A two-section phase modulator using constant gamma hyperabrupt varactors and an efficient modulator driver circuit was breadboarded. The measured results satisfy the DST phase modulator requirements, and excellent agreement with the predicted results.

  18. About Implantable Contraception

    MedlinePlus

    ... Health Food & Fitness Diseases & Conditions Infections Drugs & Alcohol School & Jobs Sports Expert Answers (Q&A) Staying Safe Videos for Educators Search English Español About Implantable Contraception KidsHealth / For Parents / About Implantable Contraception Print What ...

  19. Electromagnetic δ -function sphere

    NASA Astrophysics Data System (ADS)

    Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Brevik, Iver

    2017-10-01

    We develop a formalism to extend our previous work on the electromagnetic δ -function plates to a spherical surface. The electric (λe) and magnetic (λg) couplings to the surface are through δ -function potentials defining the dielectric permittivity and the diamagnetic permeability, with two anisotropic coupling tensors. The formalism incorporates dispersion. The electromagnetic Green's dyadic breaks up into transverse electric and transverse magnetic parts. We derive the Casimir interaction energy between two concentric δ -function spheres in this formalism and show that it has the correct asymptotic flat-plate limit. We systematically derive expressions for the Casimir self-energy and the total stress on a spherical shell using a δ -function potential, properly regulated by temporal and spatial point splitting, which are different from the conventional temporal point splitting. In the strong-coupling limit, we recover the usual result for the perfectly conducting spherical shell but in addition there is an integrated curvature-squared divergent contribution. For finite coupling, there are additional divergent contributions; in particular, there is a familiar logarithmic divergence occurring in the third order of the uniform asymptotic expansion that renders it impossible to extract a unique finite energy except in the case of an isorefractive sphere, which translates into λg=-λe.

  20. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT), were developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters were flown in space, though only PPT's were used on operational satellites. The performance of operational PPT's is quite poor, providing only approximately 8 percent efficiency at approximately 1000 s specific impulse. However, laboratory PPT's yielding 34 percent efficiency at 2000 s specific impulse were extensively tested, and peak performance levels of 53 percent efficiency at 5170 s specific impulse were demonstrated. MPD thrusters were flown as experiments on the Japanese MS-T4 spacecraft and the Space Shuttle and were qualified for a flight in 1994. The flight MPD thrusters were pulsed, with a peak performance of 22 percent efficiency at 2500 s specific impulse using ammonia propellant. Laboratory MPD thrusters were demonstrated with up to 70 percent efficiency and 700 s specific impulse using lithium propellant. While the PIT thruster has never been flown, recent performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 to 8000 s. The fundamental operating principles, performance measurements, and system level design for the three types of electromagnetic thrusters are reviewed, and available data on flight tests are discussed for the PPT and MPD thrusters.

  1. The HPS electromagnetic calorimeter

    DOE PAGES

    Balossino, I.; Baltzell, N.; Battaglieri, M.; ...

    2017-02-22

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  2. The HPS electromagnetic calorimeter

    SciTech Connect

    Balossino, I.; Baltzell, N.; Battaglieri, M.

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less

  3. The HPS electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Balossino, I.; Baltzell, N.; Battaglieri, M.; Bondì, M.; Buchanan, E.; Calvo, D.; Celentano, A.; Charles, G.; Colaneri, L.; D'Angelo, A.; Napoli, M. De; Vita, R. De; Dupré, R.; Egiyan, H.; Ehrhart, M.; Filippi, A.; Garçon, M.; Gevorgyan, N.; Girod, F.-X.; Guidal, M.; Holtrop, M.; Iurasov, V.; Kubarovsky, V.; Livingston, K.; McCarty, K.; McCormick, J.; McKinnon, B.; Osipenko, M.; Paremuzyan, R.; Randazzo, N.; Rauly, E.; Raydo, B.; Rindel, E.; Rizzo, A.; Rosier, P.; Sipala, V.; Stepanyan, S.; Szumila-Vance, H.; Weinstein, L. B.

    2017-05-01

    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon." Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.

  4. Electromagnetic Field Penetration Studies

    NASA Technical Reports Server (NTRS)

    Deshpande, M.D.

    2000-01-01

    A numerical method is presented to determine electromagnetic shielding effectiveness of rectangular enclosure with apertures on its wall used for input and output connections, control panels, visual-access windows, ventilation panels, etc. Expressing EM fields in terms of cavity Green's function inside the enclosure and the free space Green's function outside the enclosure, integral equations with aperture tangential electric fields as unknown variables are obtained by enforcing the continuity of tangential electric and magnetic fields across the apertures. Using the Method of Moments, the integral equations are solved for unknown aperture fields. From these aperture fields, the EM field inside a rectangular enclosure due to external electromagnetic sources are determined. Numerical results on electric field shielding of a rectangular cavity with a thin rectangular slot obtained using the present method are compared with the results obtained using simple transmission line technique for code validation. The present technique is applied to determine field penetration inside a Boeing-757 by approximating its passenger cabin as a rectangular cavity filled with a homogeneous medium and its passenger windows by rectangular apertures. Preliminary results for, two windows, one on each side of fuselage were considered. Numerical results for Boeing-757 at frequencies 26 MHz, 171-175 MHz, and 428-432 MHz are presented.

  5. Metamaterials beyond electromagnetism

    NASA Astrophysics Data System (ADS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  6. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  7. Knots in electromagnetism

    NASA Astrophysics Data System (ADS)

    Arrayás, M.; Bouwmeester, D.; Trueba, J. L.

    2017-01-01

    Maxwell equations in vacuum allow for solutions with a non-trivial topology in the electric and magnetic field line configurations at any given moment in time. One example is a space filling congruence of electric and magnetic field lines forming circles lying on the surfaces of nested tori. In this example the electric, magnetic and Poynting vector fields are orthogonal everywhere. As time evolves the electric and magnetic fields expand and deform without changing the topology and energy, while the Poynting vector structure remains unchanged while propagating with the speed of light. The topology is characterized by the concept of helicity of the field configuration. Helicity is an important fundamental concept and for massless fields it is a conserved quantity under conformal transformations. We will review several methods by which linked and knotted electromagnetic (spin-1) fields can be derived. A first method, introduced by A. Rañada, uses the formulation of the Maxwell equations in terms of differential forms combined with the Hopf map from the three-sphere S3 to the two-sphere S2. A second method is based on spinor and twistor theory developed by R. Penrose in which elementary twistor functions correspond to the family of electromagnetic torus knots. A third method uses the Bateman construction of generating null solutions from complex Euler potentials. And a fourth method uses special conformal transformations, in particular conformal inversion, to generate new linked and knotted field configurations from existing ones. This fourth method is often accompanied by shifting singularities in the field to complex space-time points. Of course the various methods must be closely related to one another although they have been developed largely independently and they suggest different directions in which to expand the study of topologically non-trivial field configurations. It will be shown how the twistor formulation allows for a direct extension to massless

  8. Implantable apparatus for localized heating of tissue

    DOEpatents

    Doss, James D.

    1987-01-01

    With the object of repetitively treating deep-seated, inoperable tumors by hyperthermia as well as locally heating other internal tissue masses repetitively, a receiving antenna, transmission line, and electrode arrangment are implanted completely within the patient's body, with the receiving antenna just under the surface of the skin and with the electrode arrangement being located so as to most effectively heat the tissue to be treated. An external, transmitting antenna, driven by an external radio-frequency energy source, is closely coupled to the implanted receiving antenna so that the energy coupled across the air-skin interface provides electromagnetic energy suitable for heating the tissue in the vicinity of the implanted electrodes. The resulting increase in tissue temperature may be estimated by an indirect measurement of the decrease in tissue resistivity in the heated region. This change in resistivity appears as a change in the loading of the receiving antenna which can be measured by either determining the change in the phase relationship between the voltage and the current appearing on the transmitting antenna or by measuring the change in the magnitude of the impedance thereof. Optionally, multiple electrode arrays may be activated or inactivated by the application of magnetic fields to operate implanted magnetic reed switches.

  9. Implantable apparatus for localized heating of tissue

    DOEpatents

    Doss, J.D.

    1985-05-20

    With the object of repetitively treating deep-seated, inoperable tumors by hyperthermia as well as locally heating other internal tissue masses repetitively, a receiving antenna, transmission line and electrode arrangement are implanted completely within the patient's body, with the receiving antenna just under the surface of the skin and with the electrode arrangement being located so as to most effectively heat the tissue to be treated. An external, transmitting antenna, driven by an external radio-frequency energy source, is closely coupled to the implanted receiving antenna so that the energy coupled across the air-skin interface provides electromagnetic energy suitable for heating the tissue in the vicinity of the implanted electrodes. The resulting increase in tissue temperature may be estimated by an indirect measurement of the decrease in tissue resistivity in the heat region. This change in resistivity appears as a change in the loading of the receiving antenna which can be measured by either determining the change in the phase relationship between the voltage and the current appearing on the transmitting antenna or by measuring the change in the magnitude of the impedance thereof. Optionally, multiple electrode arrays may be activated or inactivated by the application of magnetic fields to operate implanted magnetic reed swtiches. 5 figs.

  10. Exploration of the Electromagnetic Environment

    ERIC Educational Resources Information Center

    Fullekrug, M.

    2009-01-01

    The electromagnetic environment is composed of electric and magnetic fields which result from man-made and natural sources. An elementary experiment is described to explore the electromagnetic environment by measuring electric fields in the frequency range from approximately equal to 10 to 24 000 Hz. The equipment required to conduct the…

  11. Gravitational scattering of electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  12. Capacity of dental equipment to interfere with cardiac implantable electrical devices.

    PubMed

    Lahor-Soler, Eduard; Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Sabaté de la Cruz, Xavier

    2015-06-01

    Patients with cardiac implantable electrical devices should take precautions when exposed to electromagnetic fields. Possible interference as a result of proximity to electromagnets or electricity flow from electronic tools employed in clinical odontology remains controversial. The objective of this study was to examine in vitro the capacity of dental equipment to provoke electromagnetic interference in pacemakers and implantable cardioverter defibrillators. Six electronic dental instruments were tested on three implantable cardioverter defibrillators and three pacemakers from different manufacturers. A simulator model, submerged in physiological saline, with elements that reproduced life-size anatomic structures was used. The instruments were analyzed at differing distances and for different time periods of application. The dental instruments studied displayed significant differences in their capacity to trigger electromagnetic interference. Significant differences in the quantity of registered interference were observed with respect to the variables manufacturer, type of cardiac implant, and application distance but not with the variable time of application. The electronic dental equipment tested at a clinical application distance (20 cm) provoked only slight interference in the pacemakers and implantable cardioverter defibrillators employed, irrespective of manufacturer. © 2015 Eur J Oral Sci.

  13. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  14. Trends in cochlear implants.

    PubMed

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.

  15. Electromagnetically Clean Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  16. Electromagnetic inverse scattering

    NASA Technical Reports Server (NTRS)

    Bojarski, N. N.

    1972-01-01

    A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.

  17. Electromagnetic Waves and Lasers

    NASA Astrophysics Data System (ADS)

    Kimura, Wayne D.

    2017-11-01

    This book reviews basic electromagnetic (EM) wave theory and applies it specifically to lasers to give the reader not only tangible examples of how the theory is manifested in real life, but also practical knowledge about lasers, and their operation and usage. The latter can be useful for those involved with using lasers. As a short treatise on this subject matter, this book is not intended to delve deeply into the details of EM waves nor lasers. A bibliography is provided for those who wish to explore in more depth the topics covered in this book. Rather, the aim of this book is to offer a quick overview, which will allow the reader to gain a competent general understanding of EM waves and lasers.

  18. Electromagnetic propulsion for spacecraft

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.

    1993-01-01

    Three electromagnetic propulsion technologies, solid propellant pulsed plasma thrusters (PPT), magnetoplasmadynamic (MPD) thrusters, and pulsed inductive thrusters (PIT) have been developed for application to auxiliary and primary spacecraft propulsion. Both the PPT and MPD thrusters have been flown in space, though only PPTs have been used on operational satellites. The performance of operational PPTs is quite poor, providing only about 8 percent efficiency at about 1000 sec specific impulse. Laboratory PPTs yielding 34 percent efficiency at 5170 sec specific impulse have been demonstrated. Laboratory MPD thrusters have been demonstrated with up to 70 percent efficiency and 7000 sec specific impulse. Recent PIT performance measurements using ammonia and hydrazine propellants are extremely encouraging, reaching 50 percent efficiency for specific impulses between 4000 and 8000 sec.

  19. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1971-01-01

    Experimental data were combined with one-dimensional conservation relations to yield information on the energy deposition ratio in a parallel-plate accelerator, where the downstream flow was confined to a constant area channel. Approximately 70% of the total input power was detected in the exhaust flow, of which only about 20% appeared as directed kinetic energy, thus implying that a downstream expansion to convert chamber enthalpy into kinetic energy must be an important aspect of conventional high power MPD arcs. Spectroscopic experiments on a quasi-steady MPD argon accelerator verified the presence of A(III) and the absence of A(I), and indicated an azimuthal structure in the jet related to the mass injection locations. Measurements of pressure in the arc chamber and impact pressure in the exhaust jet using a piezocrystal backed by a Plexiglas rod were in good agreement with the electromagnetic thrust model.

  20. VHF electromagnetic wave propagation

    NASA Astrophysics Data System (ADS)

    Gole, P.

    Theoretical and experimental study of large-scale VHF propagation characteristics is presented. Certain phenomena that are difficult to model, such as the effects of ground near the antenna, are examined from a purely experimental point of view. The characteristics of electromagnetic waves over a spherical surface and through a medium having a certain refractive index, such as is the case for waves propagated over the earth's surface, are analytically described. Two mathematical models are used, one for the case of the receiver being within the radioelectric horizon of the transmitter and the other for when it is not. Propagation phenomena likely to increase the false alarm probability of an air surveillance radar are briefly considered.

  1. Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.

    PubMed

    Jun, Xu; Luming, Li; Hongwei, Hao

    2009-01-01

    With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.

  2. [Electromagnetic pollution (electrosmog)--potential hazards of our electromagnetic future].

    PubMed

    Nowak, D; Radon, K

    2004-02-26

    The term electromagnetic environment encompasses the totality of all electric, magnetic and electromagnetic fields generated by natural and technical sources. A differentiation is made between low- and high-frequency electromagnetic fields. Typical sources of the former are domestic electricity Exposure to the latter is, for example, associated with the sue of mobile telephones. Studies on the health-related effects of electromagnetic fields are available in particular for the low-frequency range, based on an appropriate estimation of exposure. A number of these studies reveal an association between exposure to this type of electromagnetic fields and the occurrence of infantile leukemia in the highest exposure category. For high-frequency electromagnetic fields the number of epidemiological studies is limited. An increased risk of an accident occurring through the use of a cellular phone while driving has consistently been shown. Against the background of our limited knowledge about possible adverse effects of exposure to mobile phone transmitters, and the inability of the public to influence such exposure, transparency in the communication of the risks involved is of great importance.

  3. [An implantable microphone for electronic hearing aids].

    PubMed

    Leysieffer, H; Müller, G; Zenner, H P

    1997-10-01

    Fully implantable hearing aids and cochlea implants of the future require an implantable microphone. A hermetically sealed implantable microphone based on the idea of a microphone implanted in the posterior wall of the auditory canal, as suggested by Ohno et al. in 1988, is presented. Through consistent technological and clinical design optimization, it was possible to achieve a membrane diameter of only 4.5 mm (as opposed to 8 mm in the Japanese system) and a significant volume reduction of nearly 50%. The microphone weights only 0.4 g. In spite of this miniaturization, the performance characteristics of the microphone equal those of the Japanese model or are superior. The sound-pressure transfer function shows a very small ripple and the bandwidth amounts to approximately 10 kHz. Because of its high tuning and high no-load resonance frequency, the microphone is mostly insensitive to post-operational changes to the loading mass on the microphone membrane initiated by the covering skin of the auditory canal. The sound-pressure transfer factor at 1000 Hz is approximately 1.5 mV/Pa. Using different manufacturing technologies, this value can be increased in the range of 6-8 dB with a corresponding reduction in bandwidth. Due to the small mass, the microphone is highly insensitive to environmental mechanical disturbances. The module is made of pure titanium and is hermetically sealed according to Mil-Std 883 D. Full metal encapsulation and additional internal electronic components protect the microphone well against environmental electromagnetic influences (EMC).

  4. Electromagnetic Showers at High Energy

    ERIC Educational Resources Information Center

    Loos, J. S.; Dawson, S. L.

    1978-01-01

    Some of the properties of electromagnetic showers observed in an experimental study are illustrated. Experimental data and results from quantum electrodynamics are discussed. Data and theory are compared using computer simulation. (BB)

  5. Conical electromagnetic radiation flux concentrator

    NASA Technical Reports Server (NTRS)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  6. Vertical Electromagnetic Pulse (VEMP) Testing

    DTIC Science & Technology

    2009-09-11

    3) MIL-STD-2169B: High Altitude Electromagnetic Pulse ( HEMP ) Environment. The final survivability analysis of the baseline system...Electromagnetic Pulse ( HEMP ). The first EMP situation, SREMP, occurs within the atmosphere at an altitude of less than 40 km above sea level, and possesses an...The second EMP situation, HEMP , occurs at an altitude greater than 40 km above sea level, and possesses a large electric and magnetic field over a

  7. Implant technology and usability.

    PubMed

    Meadows, Paul M

    2008-08-01

    Implanted electrical stimulation technology has changed greatly in the roughly five decades of its existence. Many factors determine the viability of the technology and whether the systems and products developed ultimately go on to help the target patient population. This article describes the successful introduction of an implanted system and the challenges to implanted system development, acceptance, and usability of these systems by the patient and clinical communities.

  8. Computational electronics and electromagnetics

    SciTech Connect

    Shang, C. C.

    The Computational Electronics and Electromagnetics thrust area at Lawrence Livermore National Laboratory serves as the focal point for engineering R&D activities for developing computer-based design, analysis, and tools for theory. Key representative applications include design of particle accelerator cells and beamline components; engineering analysis and design of high-power components, photonics, and optoelectronics circuit design; EMI susceptibility analysis; and antenna synthesis. The FY-96 technology-base effort focused code development on (1) accelerator design codes; (2) 3-D massively parallel, object-oriented time-domain EM codes; (3) material models; (4) coupling and application of engineering tools for analysis and design of high-power components; (5) 3-D spectral-domainmore » CEM tools; and (6) enhancement of laser drilling codes. Joint efforts with the Power Conversion Technologies thrust area include development of antenna systems for compact, high-performance radar, in addition to novel, compact Marx generators. 18 refs., 25 figs., 1 tab.« less

  9. Mapping Earth's electromagnetic dimensionality

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  10. Electromagnetic Navigational Bronchoscopy

    PubMed Central

    Port, Jeffrey; Harrison, Sebron

    2013-01-01

    Despite advances in technology and treatment options, lung cancer remains a deadly disease. National screening programs are being instituted in an attempt to discover lung cancer in high-risk individuals at an earlier stage. Such screening programs invariably discover small peripheral nodules that previously would not have been clinically apparent; the management of such lesions can be challenging. Current diagnostic options such as percutaneous biopsy are effective; however, they are hindered by their risk of morbidity such as pneumothorax. Electromagnetic bronchoscopy (ENB) is an emerging technology that allows the practitioner the ability to both sample and treat small peripheral pulmonary lesions. In experienced centers, ENB provides high rates of diagnostic yield for small lesions and a complication rate significantly lower than that of more conventional diagnostic modalities. Although there are current barriers to its widespread utilization (cost, specialized imaging, technical training), these obstacles will handled similarly to any other emerging technology and will likely not be long-term impediments to its use. PMID:24436528

  11. Electromagnetism of Bacterial Growth

    NASA Astrophysics Data System (ADS)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  12. Pulsed electromagnetic gas acceleration

    NASA Technical Reports Server (NTRS)

    Jahn, R. G.; Vonjaskowsky, W. F.; Clark, K. E.

    1974-01-01

    Detailed measurements of the axial velocity profile and electromagnetic structure of a high power, quasi-steady MPD discharge are used to formulate a gasdynamic model of the acceleration process. Conceptually dividing the accelerated plasma into an inner flow and an outer flow, it is found that more than two-thirds of the total power in the plasma is deposited in the inner flow, accelerating it to an exhaust velocity of 12.5 km/sec. The outer flow, which is accelerated to a velocity of only 6.2 km/sec, appears to provide a current conduction path between the inner flow and the anode. Related cathode studies have shown that the critical current for the onset of terminal voltage fluctuations, which was recently shown to be a function of the cathode area, appears to reach an asymptote for cathodes of very large surface area. Detailed floating potential measurements show that the fluctuations are confined to the vicinity of the cathode and hence reflect a cathode emission process rather than a fundamental limit on MPD performance.

  13. Electromagnetically driven peristaltic pump

    DOEpatents

    Marshall, Douglas W.

    2000-01-01

    An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.

  14. Environmental impact of the use of radiofrequency electromagnetic fields in physiotherapeutic treatment.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2014-01-01

    Electromagnetic fields used in physiotherapeutic treatment affect not only patients, but also physiotherapists, patients not undergoing treatment and electronic medical equipment. The aim of the work was to study the parameters of the electromagnetic fields of physiotherapeutic devices with respect to requirements regarding the protection of electronic devices, including medical implants, against electromagnetic intererence, and the protection of the general public (patients not undergoing treatment and bystanders), as well as medical personnel, against the health hazards caused by electromagnetic exposure. The spatial distribution of electric and magnetic field strength was investigated near 3 capacitive short-wave and 3 long-wave diathermies and 3 ultrasound therapy units, as along with the capacitive electric currents caused by electromagnetic field interaction in the upper limbs of the physiotherapists operating these devices. The physiotherapists' exposure to electromagnetic fields depends on the spatial organisation of the workspace and their location during treatment. Electric fields able to interfere with the function of electronic medical implants and in whic anyone not undergoing treatment should not be present were measured up to 150-200 cm away from active applicators of short-wave diathermy, and up to 40-45 cm away from long-wave diathermy ones. Electric fields in which workers should not be present were measured up to 30-40 cm away from the applicators and cables of active short-wave diathermy devices. A capacitive electric current with a strength exceeding many times the international recommendations regarding workers protection was measured in the wrist while touching applicators and cables of active short-wave diathermy devices. The strongest environmental electromagnetic hazards occur near short-wave diathermy devices, and to a lesser degree near long-wave diathermy devices, but were not found near ultrasound therapy units.

  15. Cochlear implant magnet retrofit.

    PubMed

    Cohen, N L; Breda, S D; Hoffman, R A

    1988-06-01

    An implantable magnet is now available for patients who have received the standard Nucleus 22-channel cochlear implant and who are not able to wear the headband satisfactorily. This magnet is attached in piggy-back fashion to the previously implanted receiver/stimulator by means of a brief operation under local anesthesia. Two patients have received this magnet retrofit, and are now wearing the headset with greater comfort and satisfaction. It is felt that the availability of this magnet will increase patient compliance in regard to hours of implant usage.

  16. Implanted Miniaturized Antenna for Brain Computer Interface Applications: Analysis and Design

    PubMed Central

    Zhao, Yujuan; Rennaker, Robert L.; Hutchens, Chris; Ibrahim, Tamer S.

    2014-01-01

    Implantable Brain Computer Interfaces (BCIs) are designed to provide real-time control signals for prosthetic devices, study brain function, and/or restore sensory information lost as a result of injury or disease. Using Radio Frequency (RF) to wirelessly power a BCI could widely extend the number of applications and increase chronic in-vivo viability. However, due to the limited size and the electromagnetic loss of human brain tissues, implanted miniaturized antennas suffer low radiation efficiency. This work presents simulations, analysis and designs of implanted antennas for a wireless implantable RF-powered brain computer interface application. The results show that thin (on the order of 100 micrometers thickness) biocompatible insulating layers can significantly impact the antenna performance. The proper selection of the dielectric properties of the biocompatible insulating layers and the implantation position inside human brain tissues can facilitate efficient RF power reception by the implanted antenna. While the results show that the effects of the human head shape on implanted antenna performance is somewhat negligible, the constitutive properties of the brain tissues surrounding the implanted antenna can significantly impact the electrical characteristics (input impedance, and operational frequency) of the implanted antenna. Three miniaturized antenna designs are simulated and demonstrate that maximum RF power of up to 1.8 milli-Watts can be received at 2 GHz when the antenna implanted around the dura, without violating the Specific Absorption Rate (SAR) limits. PMID:25079941

  17. Energy harvesting for the implantable biomedical devices: issues and challenges.

    PubMed

    Hannan, Mahammad A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-06-20

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries.

  18. Energy harvesting for the implantable biomedical devices: issues and challenges

    PubMed Central

    2014-01-01

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. PMID:24950601

  19. An implantable nerve cooler for the exercising dog.

    PubMed

    Borgdorff, P; Versteeg, P G

    1984-01-01

    An implantable nerve cooler has been constructed to block cervical vago-sympathetic activity in the exercising dog reversibly. An insulated gilt brass container implanted around the nerve is perfused with cooled alcohol via silicone tubes. The flow of alcohol is controlled by an electromagnetic valve to keep nerve temperature at the required value. Nerve temperature is measured by a thermistor attached to the housing and in contact with the nerve. It is shown that, during cooling, temperature at this location differs less than 2 degrees C from nerve core temperature. Measurement of changes in heart rate revealed that complete vagal block in the conscious animal is obtained at a nerve temperature of 2 degrees C and can be achieved within 50 s. During steady-state cooling in the exercising animal nerve temperature varied less than 0.5 degree C. When the coolers after 2 weeks of implantation were removed they showed no oxydation and could be used again.

  20. Assessing movement and sources of mortality of juvenile catostomids using passive integrated transponder tags, Upper Klamath Lake, Oregon - Summary of 2012 effort

    USGS Publications Warehouse

    Burdick, Summer M.

    2013-01-01

    Survival of juvenile endangered Lost River and shortnose suckers is thought to limit recruitment into the adult populations and ultimately limit the recovery of these species in Upper Klamath Lake, Oregon. Although many hypotheses exist about the sources of mortality, the contribution of each speculated source of mortality has not been examined. To examine causes of mortality, validate estimated age to maturity, and examine movement patterns for juvenile suckers in Upper Klamath Lake, passive integrated transponder (PIT) tags and remote tag detection systems were used. Age-1 suckers were opportunistically tagged in 2009 and 2010 during another study on juvenile sucker distribution. After the distribution study concluded in 2010, USGS redirected sampling efforts to target age-1 suckers for tagging. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican (Pelecanus erythrorhynchos), double-crested cormorant (Phalacrocorax auritus), and Forster’s tern (Sterna forsteri) breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of juvenile sucker movement. Sucker PIT tag detections in the Sprague and Williamson Rivers in mid-summer and in autumn indicate tagged juvenile suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds was a cause of mortality.

  1. LEO-to-ground optical communications using SOTA (Small Optical TrAnsponder) - Payload verification results and experiments on space quantum communications

    NASA Astrophysics Data System (ADS)

    Carrasco-Casado, Alberto; Takenaka, Hideki; Kolev, Dimitar; Munemasa, Yasushi; Kunimori, Hiroo; Suzuki, Kenji; Fuse, Tetsuharu; Kubo-Oka, Toshihiro; Akioka, Maki; Koyama, Yoshisada; Toyoshima, Morio

    2017-10-01

    Free-space optical communications have held the promise of revolutionizing space communications for a long time. The benefits of increasing the bitrate while reducing the volume, mass and energy of the space terminals have attracted the attention of many researchers for a long time. In the last few years, more and more technology demonstrations have been taking place with participants from both the public and the private sector. The National Institute of Information and Communications Technology (NICT) in Japan has a long experience in this field. SOTA (Small Optical TrAnsponder) was the last NICT space lasercom mission, designed to demonstrate the potential of this technology applied to microsatellites. Since the beginning of SOTA mission in 2014, NICT regularly established communication using the Optical Ground Stations (OGS) located in the Headquarters at Koganei (Tokyo) to receive the SOTA signals, with over one hundred successful links. All the goals of the SOTA mission were fulfilled, including up to 10-Mbit/s downlinks using two different wavelengths and apertures, coarse and fine tracking of the OGS beacon, space-to-ground transmission of the on-board-camera images, experiments with different error correcting codes, interoperability with other international OGS, and experiments on quantum communications. The SOTA mission ended on November 2016, more than doubling the designed lifetime of 1-year. In this paper, the SOTA characteristics and basic operation are explained, along with the most relevant technological demonstrations.

  2. Tagging age-1 Lost River and shortnose suckers with passive integrated transponders, Upper Klamath Lake, Oregon–Summary of 2009–11 effort

    USGS Publications Warehouse

    Burdick, Summer M.

    2012-01-01

    A passive integrated transponder (PIT) tagging study was initiated in 2009 for age-1 endangered Lost River and shortnose suckers in Upper Klamath Lake, Oregon, for the purpose of examining causes of mortality, validating estimated age to maturity, and examining movement patterns. This study, which was done opportunistically in 2009 and 2010, received funding in 2011 for a directed tagging effort. Tags were redetected using an existing infrastructure of remote PIT tag readers and tag scanning surveys at American white pelican and double-crested cormorant breeding and loafing areas. Individual fish histories are used to describe the distance, direction, and timing of age-1 sucker movement. Sucker PIT tag detections in the Sprague and Williamson rivers in mid-summer and in autumn indicate age-1 suckers use these tributaries outside of the known spring spawning season. PIT tags detected in bird habitats indicate predation by birds may have been a cause of mortality in 2009. Field conditions prevented scanning bird breeding and loafing areas in Upper Klamath Wildlife National Refuge for tags in 2011, however, limiting our ability to make inferences about bird predation in those years.

  3. Megawatt Electromagnetic Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Gilland, James; Lapointe, Michael; Mikellides, Pavlos

    2003-01-01

    The NASA Glenn Research Center program in megawatt level electric propulsion is centered on electromagnetic acceleration of quasi-neutral plasmas. Specific concepts currently being examined are the Magnetoplasmadynamic (MPD) thruster and the Pulsed Inductive Thruster (PIT). In the case of the MPD thruster, a multifaceted approach of experiments, computational modeling, and systems-level models of self field MPD thrusters is underway. The MPD thruster experimental research consists of a 1-10 MWe, 2 ms pulse-forming-network, a vacuum chamber with two 32 diffusion pumps, and voltage, current, mass flow rate, and thrust stand diagnostics. Current focus is on obtaining repeatable thrust measurements of a Princeton Benchmark type self field thruster operating at 0.5-1 gls of argon. Operation with hydrogen is the ultimate goal to realize the increased efficiency anticipated using the lighter gas. Computational modeling is done using the MACH2 MHD code, which can include real gas effects for propellants of interest to MPD operation. The MACH2 code has been benchmarked against other MPD thruster data, and has been used to create a point design for a 3000 second specific impulse (Isp) MPD thruster. This design is awaiting testing in the experimental facility. For the PIT, a computational investigation using MACH2 has been initiated, with experiments awaiting further funding. Although the calculated results have been found to be sensitive to the initial ionization assumptions, recent results have agreed well with experimental data. Finally, a systems level self-field MPD thruster model has been developed that allows for a mission planner or system designer to input Isp and power level into the model equations and obtain values for efficiency, mass flow rate, and input current and voltage. This model emphasizes algebraic simplicity to allow its incorporation into larger trajectory or system optimization codes. The systems level approach will be extended to the pulsed inductive

  4. Electromagnetic interference in cardiac rhythm management devices.

    PubMed

    Sweesy, Mark W; Holland, James L; Smith, Kerry W

    2004-01-01

    Clinicians caring for cardiac device patients with implanted pacemakers or cardioverter defibrillators (ICDs) are frequently asked questions by their patients concerning electromagnetic interference (EMI) sources and the devices. EMI may be radiated or conducted and may be present in many different forms including (but not limited to) radiofrequency waves, microwaves, ionizing radiation, acoustic radiation, static and pulsed magnetic fields, and electric currents. Manufacturers have done an exemplary job of interference protection with device features such as titanium casing, signal filtering, interference rejection circuits, feedthrough capacitors, noise reversion function, and programmable parameters. Nevertheless, EMI remains a real concern and a potential danger. Many factors influence EMI including those which the patient can regulate (eg, distance from and duration of exposure) and some the patient cannot control (eg, intensity of the EMI field, signal frequency). Potential device responses are many and range from simple temporary oversensing to permanent device damage Several of the more common EMI-generating devices and their likely effects on cardiac devices are considered in the medical, home, and daily living and work environments.

  5. Degradable Implantate: Entwicklungsbeispiele

    NASA Astrophysics Data System (ADS)

    Ruffieux, Kurt; Wintermantel, Erich

    Resorbierbare Implantate werden seit mehreren Jahrzehnten in der Implantologie eingesetzt. Bekannt wurden diese Biomaterialien mit dem Aufkommen von sich selbst auflösenden Nahtfäden auf der Basis von synthetisch hergestellten Polylactiden und Polyglycoliden in den 70er Jahren. In einem nächsten Schritt wurden Implantate wie Platten und Schrauben zur Gewebefixation aus den gleichen Biomaterialien hergestellt.

  6. Urinary incontinence - injectable implant

    MedlinePlus

    ... injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a weak urinary sphincter. ... choose to have implants. Women who have urine leakage and want a ... procedure to control the problem may choose to have an implant ...

  7. Guideline on cochlear implants.

    PubMed

    Manrique, Manuel; Ramos, Ángel; de Paula Vernetta, Carlos; Gil-Carcedo, Elisa; Lassaleta, Luis; Sanchez-Cuadrado, Isabel; Espinosa, Juan Manuel; Batuecas, Ángel; Cenjor, Carlos; Lavilla, María José; Núñez, Faustino; Cavalle, Laura; Huarte, Alicia

    2018-03-26

    In the last decade numerous hospitals have started to work with patients who are candidates for a cochlear implant (CI) and there have been numerous and relevant advances in the treatment of sensorineural hearing loss that extended the indications for cochlear implants. To provide a guideline on cochlear implants to specialists in otorhinolaryngology, other medical specialities, health authorities and society in general. The Scientific Committees of Otology, Otoneurology and Audiology from the Spanish Society of Otolaryngology and Head and Neck Surgery (SEORL-CCC), in a coordinated and agreed way, performed a review of the current state of CI based on the existing regulations and in the scientific publications referenced in the bibliography of the document drafted. The clinical guideline on cochlear implants provides information on: a) Definition and description of Cochlear Implant; b) Indications for cochlear implants; c) Organizational requirements for a cochlear implant programme. A clinical guideline on cochlear implants has been developed by a Committee of Experts of the SEORL-CCC, to help and guide all the health professionals involved in this field of CI in decision-making to treathearing impairment. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Batteryless implanted echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.

    1977-01-01

    Miniature ultrasonic echosonometer implanted within laboratory animals obtains energy from RF power oscillator that is electronically transduced via induction loop to power receiving loop located just under animal's skin. Method of powering device offers significant advantages over those in which battery is part of implanted package.

  9. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  10. Information Security due to Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Hidenori; Seto, Shinji

    Generally, active electronic devices emit slightly unintentional electromagnetic noise. From long ago, electromagnetic emission levels have been regulated from the aspect of electromagnetic compatibility (EMC). Also, it has been known the electromagnetic emissions have been generated from the ON/OFF of signals in the device. Recently, it becomes a topic of conversation on the information security that the ON/OFF on a desired signal in the device can be reproduced or guessed by receiving the electromagnetic emission. For an example, a display image on a personal computer (PC) can be reconstructed by receiving and analyzing the electromagnetic emission. In sum, this fact makes known information leakage due to electromagnetic emission. “TEMPEST" that has been known as a code name originated in the U. S. Department of Defense is to prevent the information leakage caused by electromagnetic emissions. This paper reports the brief summary of the information security due to electromagnetic emissions from information technology equipments.

  11. AANA Journal Course: update for nurse anesthetists. Arrhythmia management devices and electromagnetic interference.

    PubMed

    Mattingly, Emily

    2005-04-01

    The technological complexity of implantable arrhythmia management devices, specifically pacemakers and defibrillators, has increased dramatically since their introduction only a few decades ago. Patients with such devices are encountered much more frequently in hospitals and surgery centers, yet anesthesia provider knowledge of safe and proper management is often incomplete. Anesthesia textbooks and references may provide only short paragraphs on arrhythmia management devices that do not address important perioperative management strategies for this ever-growing patient population. It is no longer satisfactory to simply place a magnet over an implanted device during surgery and assume that this action protects the patient from harm due to electromagnetic interference from inappropriate device function. This AANA Journal course serves as a concise review of basic device function, the sources and effects of electromagnetic interference in the operative setting, and patient management recommendations from current literature.

  12. Number of implants for mandibular implant overdentures: a systematic review

    PubMed Central

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross

    2012-01-01

    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  13. Combined use of transcranial magnetic stimulation and metal electrode implants: a theoretical assessment of safety considerations

    NASA Astrophysics Data System (ADS)

    Golestanirad, Laleh; Rouhani, Hossein; Elahi, Behzad; Shahim, Kamal; Chen, Robert; Mosig, Juan R.; Pollo, Claudio; Graham, Simon J.

    2012-12-01

    This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.

  14. Binary black holes' effects on electromagnetic fields.

    PubMed

    Palenzuela, Carlos; Anderson, Matthew; Lehner, Luis; Liebling, Steven L; Neilsen, David

    2009-08-21

    In addition to producing gravitational waves, the dynamics of a binary black hole system could induce emission of electromagnetic radiation by affecting the behavior of plasmas and electromagnetic fields in their vicinity. We here study how the electromagnetic fields are affected by a pair of orbiting black holes through the merger. In particular, we show how the binary's dynamics induce a variability in possible electromagnetically induced emissions as well as a possible enhancement of electromagnetic fields during the late-merge and merger epochs. These time dependent features will likely leave their imprint in processes generating detectable emissions and can be exploited in the detection of electromagnetic counterparts of gravitational waves.

  15. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures.

    PubMed

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu

    2016-01-01

    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  16. Personal medical electronic devices and walk-through metal detector security systems: assessing electromagnetic interference effects.

    PubMed

    Guag, Joshua; Addissie, Bisrat; Witters, Donald

    2017-03-20

    There have been concerns that Electromagnetic security systems such as walk-through metal detectors (WTMDs) can potentially cause electromagnetic interference (EMI) in certain active medical devices including implantable cardiac pacemakers and implantable neurostimulators. Incidents of EMI between WTMDs and active medical devices also known as personal medical electronic devices (PMED) continue to be reported. This paper reports on emission measurements of sample WTMDs and testing of 20 PMEDs in a WTMD simulation system. Magnetic fields from sample WTMD systems were characterized for emissions and exposure of certain PMEDs. A WTMD simulator system designed and evaluated by FDA in previous studies was used to mimic the PMED exposures to the waveform from sample WTMDs. The simulation system allows for controlled PMED exposure enabling careful study with adjustable magnetic field strengths and exposure duration, and provides flexibility for PMED exposure at elevated levels in order to study EMI effects on the PMED. The PMED samples consisted of six implantable cardiac pacemakers, six implantable cardioverter defibrillators (ICD), five implantable neurostimulators, and three insulin pumps. Each PMED was exposed in the simulator to the sample WTMD waveforms using methods based on appropriate consensus test standards for each of the device type. Testing the sample PMEDs using the WTMD simulator revealed EMI effects on two implantable pacemakers and one implantable neurostimulator for exposure field strength comparable to actual WTMD field strength. The observed effects were transient and the PMEDs returned to pre-exposure operation within a few seconds after removal from the simulated WTMD exposure fields. No EMI was observed for the sample ICDs or insulin pumps. The findings are consistent with earlier studies where certain sample PMEDs exhibited EMI effects. Clinical implications were not addressed in this study. Additional studies are needed to evaluate potential PMED

  17. Electromagnetic fields and public health.

    PubMed Central

    Aldrich, T E; Easterly, C E

    1987-01-01

    A review of the literature is provided for the topic of health-related research and power frequency electromagnetic fields. Minimal evidence for concern is present on the basis of animal and plant research. General observation would accord with the implication that there is no single and manifest health effect as the result of exposure to these fields. There are persistent indications, however, that these fields have biologic activity, and consequently, there may be a deleterious component to their action, possibly in the presence of other factors. Power frequency electromagnetic field exposures are essentially ubiquitous in modern society, and their implications in the larger perspective of public health are unclear at this time. Electromagnetic fields represent a methodological obstacle for epidemiologic studies and a quandary for risk assessment; there is need for more data. PMID:3319560

  18. Dipole-Induced Electromagnetic Transparency

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, Raiju; Sukharev, Maxim; Atabek, Osman; Charron, Eric

    2014-10-01

    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that, in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a dipole-induced electromagnetic transparency (DIET) regime, similar to electromagnetically induced transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows us to achieve narrow transmission windows in, otherwise, completely opaque media. We analyze in detail this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed.

  19. Electron microscopy of electromagnetic waveforms.

    PubMed

    Ryabov, A; Baum, P

    2016-07-22

    Rapidly changing electromagnetic fields are the basis of almost any photonic or electronic device operation. We report how electron microscopy can measure collective carrier motion and fields with subcycle and subwavelength resolution. A collimated beam of femtosecond electron pulses passes through a metamaterial resonator that is previously excited with a single-cycle electromagnetic pulse. If the probing electrons are shorter in duration than half a field cycle, then time-frozen Lorentz forces distort the images quasi-classically and with subcycle time resolution. A pump-probe sequence reveals in a movie the sample's oscillating electromagnetic field vectors with time, phase, amplitude, and polarization information. This waveform electron microscopy can be used to visualize electrodynamic phenomena in devices as small and fast as available. Copyright © 2016, American Association for the Advancement of Science.

  20. Electromagnetic micropores: fabrication and operation.

    PubMed

    Basore, Joseph R; Lavrik, Nickolay V; Baker, Lane A

    2010-12-21

    We describe the fabrication and characterization of electromagnetic micropores. These devices consist of a micropore encompassed by a microelectromagnetic trap. Fabrication of the device involves multiple photolithographic steps, combined with deep reactive ion etching and subsequent insulation steps. When immersed in an electrolyte solution, application of a constant potential across the micropore results in an ionic current. Energizing the electromagnetic trap surrounding the micropore produces regions of high magnetic field gradients in the vicinity of the micropore that can direct motion of a ferrofluid onto or off of the micropore. This results in dynamic gating of the ion current through the micropore structure. In this report, we detail fabrication and characterize the electrical and ionic properties of the prepared electromagnetic micropores.

  1. Un-renormalized classical electromagnetism

    SciTech Connect

    Ibison, Michael

    2006-02-15

    This paper follows in the tradition of direct-action versions of electromagnetism having the aim of avoiding a balance of infinities wherein a mechanical mass offsets an infinite electromagnetic mass so as to arrive at a finite observed value. However, the direct-action approach ultimately failed in that respect because its initial exclusion of self-action was later found to be untenable in the relativistic domain. Pursing the same end, this paper examines instead a version of electromagnetism wherein mechanical action is excluded and self-action is retained. It is shown that the resulting theory is effectively interacting due to the presence of infinitemore » forces. A vehicle for the investigation is a pair of classical point charges in a positronium-like arrangement for which the orbits are found to be self-sustaining and naturally quantized.« less

  2. Dental Implant Systems

    PubMed Central

    Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036

  3. Implants for orthodontic anchorage

    PubMed Central

    Zheng, Xiaowen; Sun, Yannan; Zhang, Yimei; Cai, Ting; Sun, Feng; Lin, Jiuxiang

    2018-01-01

    Abstract Implantanchorage continues to receive much attention as an important orthodontic anchorage. Since the development of orthodontic implants, the scope of applications has continued to increase. Although multiple reviews detailing implants have been published, no comprehensive evaluations have been performed. Thus, the purpose of this study was to comprehensively evaluate the effects of implants based on data published in review articles. An electronic search of the Cochrane Library, Medline, Embase, Ebsco and Sicencedirect for reviews with “orthodontic” and “systematic review or meta analysis” in the title, abstract, keywords, or full text was performed. A subsequent manual search was then performed to identify reviews concerning orthodontic implants. A manual search of the orthodontic journals American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), European Journal of Orthodontics (EJO), and Angle Othodontist was also performed. Such systematic reviews that evaluated the efficacy and safety of orthodontic implants were used to indicate success rates and molar movements. A total of 23 reviews were included in the analysis. The quality of each review was assessed using a measurement tool for Assessment of Multiple Systematic Reviews (AMSTAR), and the review chosen to summarize outcomes had a quality score of >6. Most reviews were less than moderate quality. Success rates of implants ranged in a broad scope, and movement of the maxillary first molar was superior with implants compared with traditional anchorage. PMID:29595673

  4. Gauge invariant fractional electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lazo, Matheus Jatkoske

    2011-09-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.

  5. Electromagnetic Gun With Commutated Coils

    NASA Technical Reports Server (NTRS)

    Elliott, David G.

    1991-01-01

    Proposed electromagnetic gun includes electromagnet coil, turns of which commutated in sequence along barrel. Electrical current fed to two armatures by brushes sliding on bus bars in barrel. Interaction between armature currents and magnetic field from coil produces force accelerating armature, which in turn, pushes on projectile. Commutation scheme chosen so magnetic field approximately coincides and moves with cylindrical region defined by armatures. Scheme has disadvantage of complexity, but in return, enables designer to increase driving magnetic field without increasing armature current. Attainable muzzle velocity increased substantially.

  6. Electromagnetic fields in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Tsagas, Christos G.

    2005-01-01

    We consider the evolution of electromagnetic fields in curved spacetimes and calculate the exact wave equations for the associated electric and magnetic components. Our analysis is fully covariant, applies to a general spacetime and isolates all the sources that affect the propagation of these waves. Among others, we explicitly show how the different components of the gravitational field act as driving sources of electromagnetic disturbances. When applied to perturbed Friedmann Robertson Walker cosmologies, our results argue for a superadiabatic-type amplification of large-scale cosmological magnetic fields in Friedmann models with open spatial curvature.

  7. Nanotechnology for dental implants.

    PubMed

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  8. Implants for elderly patients.

    PubMed

    Schimmel, Martin; Müller, Frauke; Suter, Valérie; Buser, Daniel

    2017-02-01

    In the developed world, the large birth cohorts of the so-called baby boomer generation have arrived in medical and dental practices. Often, elderly patients are 'young-old' baby boomers in whom partial edentulism is the predominant indication for implant therapy. However, the generation 85+ years of age represents a new challenge for the dental profession, as their lives are frequently dominated by dependency, multimorbidity and frailty. In geriatric implant dentistry, treatment planning is highly individualized, as interindividual differences become more pronounced with age. Nevertheless, there are four typical indications for implant therapy: (i) avoidance of removable partial prostheses; (ii) preservation of existing removable partial prostheses; (iii) stabilization of Kennedy Class I removable partial prostheses; and (iv) stabilization of complete prostheses. From a surgical point of view, two very important aspects must be considered when planning implant surgery in elderly patients: first, the consistent strive to minimize morbidity; and, second, the fact that coexisting medical risk factors are significantly more common in elderly patients. Modern three-dimensional cone beam computed tomography imaging is often indicated in order to plan minimally invasive implant surgery. Computer-assisted implant surgery might allow flapless implant surgery, which offers a low level of postoperative morbidity and a minimal risk of postsurgical bleeding. Short and reduced-diameter implants are now utilized much more often than a decade ago. Two-stage surgical procedures should be avoided in elderly patients. Implant restorations for elderly patients should be designed so that they can be modified to become low-maintenance prostheses, or even be removed, as a strategy to facilitate oral hygiene and comfort in the final stage of life. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    NASA Astrophysics Data System (ADS)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  10. Optimization of dental implantation

    NASA Astrophysics Data System (ADS)

    Dol, Aleksandr V.; Ivanov, Dmitriy V.

    2017-02-01

    Modern dentistry can not exist without dental implantation. This work is devoted to study of the "bone-implant" system and to optimization of dental prostheses installation. Modern non-invasive methods such as MRI an 3D-scanning as well as numerical calculations and 3D-prototyping allow to optimize all of stages of dental prosthetics. An integrated approach to the planning of implant surgery can significantly reduce the risk of complications in the first few days after treatment, and throughout the period of operation of the prosthesis.

  11. Electromagnetic Fields and Public Health: Mobile Phones

    MedlinePlus

    ... Ebola virus disease » Home / News / Fact sheets / Detail Electromagnetic fields and public health: mobile phones 8 October ... fixed antennas called base stations. Radiofrequency waves are electromagnetic fields, and unlike ionizing radiation such as X- ...

  12. Electromagnetic Compatibility Design of the Computer Circuits

    NASA Astrophysics Data System (ADS)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  13. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation.

    PubMed

    Zimbelman, Eloise G; Keefe, Robert F

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts.

  14. Real-time positioning in logging: Effects of forest stand characteristics, topography, and line-of-sight obstructions on GNSS-RF transponder accuracy and radio signal propagation

    PubMed Central

    2018-01-01

    Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts. PMID:29324794

  15. DEALING WITH DENTAL IMPLANT FAILURES

    PubMed Central

    Levin, Liran

    2008-01-01

    An implant-supported restoration offers a predictable treatment for tooth replacement. Reported success rates for dental implants are high. Nevertheless, failures that mandate immediate implant removal do occur. The consequences of implant removal jeopardize the clinician's efforts to accomplish satisfactory function and esthetics. For the patient, this usually involves further cost and additional procedures. The aim of this paper is to describe different methods and treatment modalities to deal with dental implant failure. The main topics for discussion include identifying the failing implant, implants replacing failed implants at the exact site, and the use of other restorative options. When an implant fails, a tailor made treatment plan should be provided to each patient according to all relevant variables. Patients should be informed regarding all possible treatment modalities following implant failure and give their consent to the most appropriate treatment option for them. PMID:19089213

  16. Potential for Personal Digital Assistant interference with implantable cardiac devices.

    PubMed

    Tri, Jeffrey L; Trusty, Jane M; Hayes, David L

    2004-12-01

    To determine whether the wireless local area network (WLAN) technology, specifically the Personal Digital Assistant (PDA), interferes with implantable cardiac pacemakers and defibrillators. Various pacemakers and defibrillators were tested in vitro at the Mayo Clinic in Rochester, Minn, between March 6 and July 30, 2003. These cardiac devices were exposed to an HP Compaq IPAQ PDA fitted with a Cisco Aironet WLAN card. Initial testing was designed to show whether the Aironet card radiated energy in a consistent pattern from the antenna of the PDA to ensure that subsequent cardiac device testing would not be affected by the orientation of the PDA to the cardiac device. Testing involved placing individual cardiac devices in a simulator and uniformly exposing each device at its most sensitive programmable value to the WLAN card set to maximum power. During testing with the Cisco WLAN Aironet card, all devices programmed to the unipolar or bipolar configuration single- or dual-chamber mode had normal pacing and sensing functions and exhibited no effects of electromagnetic interference except for 1 implantable cardioverter-defibrillator (ICD). This aberration was determined to relate to the design of the investigators' testing apparatus and not to the output of the PDA. The ICD device appropriately identified and labeled the electromagnetic aberration as "noise." We documented no electromagnetic interference caused by the WLAN technology by using in vitro testing of pacemakers and ICDs; however, testing ideally should be completed in vivo to confirm the lack of any clinically important interactions.

  17. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-03

    SUPPLEMENTARY NOTES 14. ABSTRACT The overall objective of the project is to design , build and demonstrate an underwater advanced time -domain...Description The overall objective of the project is to design , build and demonstrate an underwater advanced time - domain electromagnetic (TEM) system...Electromagnetic System Design (July, 2015), and in the Underwater Advanced Time -Domain Electromagnetic System Evaluation Plan (October, 2016). A

  18. New Concepts in Electromagnetic Materials and Antennas

    DTIC Science & Technology

    2015-01-01

    Bae-Ian Wu Antennas & Electromagnetics Technology Branch Multispectral Sensing & Detection Division JANUARY 2015 Final Report...Signature// //Signature// BRADLEY A. KRAMER, Program Manager TONY C. KIM, Branch Chief Antenna & Electromagnetic Technology ...Branch Antenna & Electromagnetic Technology Branch Multispectral Sensing & Detection Division Multispectral Sensing & Detection Division

  19. Some Student Conceptions of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Thong, Wai Meng; Gunstone, Richard

    2008-01-01

    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students' conceptions of electromagnetism, to investigate to what extent the results from the present…

  20. Dental Implant Surgery

    MedlinePlus

    ... supplements. If you have certain heart conditions or orthopedic implants, your doctor may prescribe antibiotics before surgery ... trademarks of Mayo Foundation for Medical Education and Research. © 1998-2018 Mayo Foundation for Medical Education and ...

  1. Cochlear Implants (For Parents)

    MedlinePlus

    ... nerve, and send it to the brain. The cochlear implant package is made up of: a receiver-stimulator that contains all of the electronic circuits that control the flow of electrical pulses into the ear an antenna ...

  2. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  3. Breast Reconstruction with Implants

    MedlinePlus

    ... implants is a complex procedure performed by a plastic surgeon. The breast reconstruction process can start at ... doctor may recommend that you meet with a plastic surgeon. Consult a plastic surgeon who's board certified ...

  4. Implantable cardioverter defibrillator - discharge

    MedlinePlus

    ... defibrillation. This device can also work as a pacemaker. What to Expect at Home When you leave ... pubmed/23265327 . Swerdlow CD, Wang PL, Zipes DP. Pacemakers and implantable cardioverter-defibrillators. In: Mann DL, Zipes ...

  5. Objects of Maximum Electromagnetic Chirality

    NASA Astrophysics Data System (ADS)

    Fernandez-Corbaton, Ivan; Fruhnert, Martin; Rockstuhl, Carsten

    2016-07-01

    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. Reciprocal objects attain the upper bound if and only if they are transparent for all the fields of one polarization handedness (helicity). Additionally, electromagnetic duality symmetry, i.e., helicity preservation upon interaction, turns out to be a necessary condition for reciprocal objects to attain the upper bound. We use these results to provide requirements for the design of such extremal objects. The requirements can be formulated as constraints on the polarizability tensors for dipolar objects or on the material constitutive relations for continuous media. We also outline two applications for objects of maximum electromagnetic chirality: a twofold resonantly enhanced and background-free circular dichroism measurement setup, and angle-independent helicity filtering glasses. Finally, we use the theoretically obtained requirements to guide the design of a specific structure, which we then analyze numerically and discuss its performance with respect to maximal electromagnetic chirality.

  6. Explanations, Education, and Electromagnetic Fields.

    ERIC Educational Resources Information Center

    Friedman, Sharon M.

    Explaining complex scientific and environmental subjects in the mass media is difficult to do, particularly under such constraints as short deadlines and lack of space or time. When a scientific controversy and human health risk are involved, this becomes an even harder task to accomplish. The subject of electromagnetic fields (EMF) involves…

  7. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  8. Earthquake prediction with electromagnetic phenomena

    SciTech Connect

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp; Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo; Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQsmore » prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.« less

  9. A Hamiltonian electromagnetic gyrofluid model

    NASA Astrophysics Data System (ADS)

    Waelbroeck, F. L.; Hazeltine, R. D.; Morrison, P. J.

    2009-03-01

    An isothermal truncation of the electromagnetic gyrofluid model of Snyder and Hammett [Phys. Plasmas 8, 3199 (2001)] is shown to be Hamiltonian. The corresponding noncanonical Lie-Poisson bracket and its Casimir invariants are presented. The invariants are used to obtain a set of coupled Grad-Shafranov equations describing equilibria and propagating coherent structures.

  10. Nanocomposites for electromagnetic radiation protection

    SciTech Connect

    Petrunin, V. F., E-mail: VFPetrunin@mephi.ru

    Specific features that characterize nanoparticles and which are due to their small size and allow one to enhance the interaction between the electromagnetic radiation and nanostructured materials and to develop the effective protection of man and equipment against harmful uncontrolled radiation are reported. Examples of the development of nanocomposite radar absorbing materials that can be used for protection of man and equipment are presented.

  11. Electromagnetic Levitation of a Disc

    ERIC Educational Resources Information Center

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  12. Heat Radiators for Electromagnetic Pumps

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Report proposes use of carbon/carbon composite radiators in electromagnetic coolant pumps of nuclear reactors on spacecraft. Carbon/carbon composite materials function well at temperatures in excess of 2,200 K. Aluminum has melting temperature of only 880 K.

  13. New electromagnetic mode in graphene.

    PubMed

    Mikhailov, S A; Ziegler, K

    2007-07-06

    A new, weakly damped, transverse electromagnetic mode is predicted in graphene. The mode frequency omega lies in the window 1.667<[see text]omega/micro < 2, where micro is the chemical potential, and can be tuned from radio waves to the infrared by changing the density of charge carriers through a gate voltage.

  14. Electromagnetic Environmental Effects System Testing

    DTIC Science & Technology

    2013-11-20

    battery packs or air turbine power generators. The sensitivity of the entire instrumentation system should be taken into consideration from the sensor ...Electromagnetic Radiation to Ordnance (HERO) sensors , pneumatic switching, and those equipments associated with fiber optic technology. c. Test...Field probes to determine environment -Thermal heating sensors (e.g., FISO or Metricor systems) used to detect bridgewire heating induced by

  15. Proposed electromagnetic wave energy converter

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.

    1973-01-01

    Device converts wave energy into electric power through array of insulated absorber elements responsive to field of impinging electromagnetic radiation. Device could also serve as solar energy converter that is potentially less expensive and fragile than solar cells, yet substantially more efficient.

  16. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  17. Health hazards and electromagnetic fields.

    PubMed

    Saunders, T

    2003-11-01

    Biological rhythms, physical wellbeing and mental states are dependent on our electrical brainwave system interacting with the extremely weak electromagnetic fields generated by the Earth's telluric and Cosmic radiations. In a single generation, since the evolution of humankind over millions of years, we are exposed to a wide range of powerful, artificially generated electromagnetic radiation which adversely affects the subtle balance in nature's energy fields and has become the source of so-called 'diseases of civilization'. This also includes electromagnetic sensitivity. Generally, there is a lack of awareness and understanding of the impact electromagnetic fields can have upon health and wellbeing.Our ancestors were acutely aware that certain locations, were perceived to have a positive energy field which was beneficial to health and vitality. Over time, these areas are now referred to as sacred sites for spiritual ceremony and as healing centres. In contrast, there are other geographical locations that can have a negative effect upon health and these are known as geopathic stress zones. It is believed that such zones can interfere with the brain's normal function that inhibits the release of melatonin and other endocrine secretions needed to replenish the immune system. Geopathic stress can affect animals and plant life as well as human beings and significantly contributes to sick building syndrome (SBS). Whilst there is an increasing body of opinion amongst eminent researchers and scientists who are addressing these issues, the establishment professions are slow to change. However, very gradually, modern allopathic medicine and attitudes are beginning to recognise the extraordinary wisdom and efficacy of ancient traditions such as acupuncture, light, colour and other therapies based on the understanding and treatment of the interaction of a person's electromagnetic subtle body and the immediate environment. These and many other 'complementary' therapies may

  18. Short dental implants: an emerging concept in implant treatment.

    PubMed

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah

    2014-06-01

    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  19. Effect of radiofrequency energy emitted from monopolar "Bovie" instruments on cardiac implantable electronic devices.

    PubMed

    Robinson, Thomas N; Varosy, Paul D; Guillaume, Girard; Dunning, James E; Townsend, Nicole T; Jones, Edward L; Paniccia, Alessandro; Stiegmann, Greg V; Weyer, Christopher; Rozner, Marc A

    2014-09-01

    The monopolar "Bovie" instrument emits radiofrequency energy that can disrupt the function of other implanted electronic devices through a phenomenon termed electromagnetic interference. The purpose of this study was to quantify the electromagnetic interference occurring on cardiac implantable devices (CIEDs) resulting from monopolar instrument use in common, modifiable clinical scenarios. Three anesthetized pigs underwent CIED placement (1 pacemaker and 2 defibrillators). Electromagnetic interference was quantified when changing the monopolar instrument parameters of generator power, generator mode, surgical technique, orientation of active electrode cord, pathway of current vector, and proximity of active electrode to the CIED. Monopolar instrument parameters that decreased the electromagnetic interference occurring on the CIED included decreasing generator power from 60 W to 30 W (p < 0.001), using cut mode rather than coag mode (p < 0.001), using desiccation technique rather than fulguration technique (p < 0.001), orienting the active electrode cord from the feet rather than across the chest wall (p < 0.001), and avoiding the current vector from crossing the CIED system (p < 0.001). Increasing the distance between the active electrode tool and the CIED system decreased electromagnetic interference occurring on the CIED in a dose-response fashion up to a distance of 10 cm (ANOVA, p < 0.001), after which the magnitude of electromagnetic interference remained constant. Electromagnetic interference occurring on CIEDs resulting from monopolar instruments is minimized by decreasing generator power, using cut mode, using desiccation technique, orienting the active electrode cord from the feet, avoiding the current vector for crossing the CIED system, and increasing the distance between the active electrode and the CIED. Surgeons and operating room staff can minimize electromagnetic interference on CIEDs during monopolar instrument use by accounting for these

  20. [Effect of electromagnetic radiation on discharge activity of neurons in the hippocampus CA1 in rats].

    PubMed

    Tong, Jun; Chen, Su; Liu, Xiang-Ming; Hao, Dong-Mei

    2013-09-01

    In order to explore effect of electromagnetic radiation on learning and memory ability of hippocampus neuron in rats, the changes in discharge patterns and overall electrical activity of hippocampus neuron after electromagnetic radiation were observed. Rat neurons discharge was recorded with glass electrode extracellular recording technology and a polygraph respectively. Radiation frequency of electromagnetic wave was 900 MHZ and the power was 10 W/m2. In glass electrode extracellular recording, the rats were separately irradiated for 10, 20, 30, 40, 50 and 60 min, every points repeated 10 times and updated interval of 1h, observing the changes in neuron discharge and spontaneous discharge patterns after electromagnetic radiation. In polygraph recording experiments, irradiation group rats for five days a week, 6 hours per day, repeatedly for 10 weeks, memory electrical changes in control group and irradiation group rats when they were feeding were repeatedly monitored by the implanted electrodes, observing the changes in peak electric digits and the largest amplitude in hippocampal CA1 area, and taking some electromagnetic radiation sampling sequence for correlation analysis. (1) Electromagnetic radiation had an inhibitory role on discharge frequency of the hippocampus CA1 region neurons. After electromagnetic radiation, discharge frequency of the hippocampus CA1 region neurons was reduced, but the changes in scale was not obvious. (2) Electromagnetic radiation might change the spontaneous discharge patterns of hippocampus CA1 region neurons, which made the explosive discharge pattern increased obviously. (3) Peak potential total number within 5 min in irradiation group was significantly reduced, the largest amplitude was less than that of control group. (4) Using mathematical method to make the correlation analysis of the electromagnetic radiation sampling sequence, that of irradiation group was less than that of control group, indicating that there was a tending

  1. A new device for improving dental implants anchorage: a histological and micro-computed tomography study in the rabbit.

    PubMed

    Barak, Shlomo; Neuman, Moshe; Iezzi, Giovanna; Piattelli, Adriano; Perrotti, Vittoria; Gabet, Yankel

    2016-08-01

    In the present study, a new healing cap that could generate a pulsed electromagnetic field (PEMF) around titanium implants to stimulate peri-implant osteogenesis was tested in the rabbit model. A total of 22 implants were inserted in the proximal tibial metaphysis of 22 rabbits. A healing cap containing the active device was inserted in half of the implants (11 test implants); an "empty" healing cap was inserted in the other ones (11 control implants). The animals were euthanized after 2 and 4 weeks, and the samples were processed for micro-computed tomography and histology. The peri-implant volume was divided into coronal (where the PEMF was the strongest) and apical regions. Most of the effects of the tested device were confined to the coronal region. Two weeks post-implantation, test implants showed a significant 56% higher trabecular bone fraction (BV/TV), associated with enhanced trabecular number (Tb.N, +37%) and connectivity density (Conn.D, +73%) as compared to the control group; at 4 weeks, the PEMF induced a 69% increase in BV/TV and 34% increase of Tb.N. There was no difference in the trabecular thickness (Tb.Th) at either time point. Furthermore, we observed a 48% higher bone-to-implant contact (BIC) in the test implants vs. controls after 2 weeks; this increase tended to remain stable until the fourth week. Mature trabecular and woven bone were observed in direct contact with the implant surface with no gaps or connective tissue at the bone-implant interface. These results indicate that the PEMF device stimulated early bone formation around dental implants resulting in higher peri-implant BIC and bone mass already after 2 weeks which suggests an acceleration of the osseointegration process by more than three times. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads.

    PubMed

    Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W

    2011-10-21

    Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on

  3. Analysis of induced electrical currents from magnetic field coupling inside implantable neurostimulator leads

    PubMed Central

    2011-01-01

    Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter was not significant to

  4. Strong permanent magnet-assisted electromagnetic undulator

    DOEpatents

    Halbach, Klaus

    1988-01-01

    This invention discloses an improved undulator comprising a plurality of electromagnet poles located along opposite sides of a particle beam axis with alternate north and south poles on each side of the beam to cause the beam to wiggle or undulate as it travels generally along the beam axis and permanent magnets spaced adjacent the electromagnetic poles on each side of the axis of said particle beam in an orientation sufficient to reduce the saturation of the electromagnet poles whereby the field strength of the electromagnet poles can be increased beyond the normal saturation levels of the electromagnetic poles.

  5. A comparison of implantation methods for large PIT tags or injectable acoustic transmitters in juvenile Chinook salmon

    SciTech Connect

    Cook, Katrina V.; Brown, Richard S.; Deng, Zhiqun

    The miniaturization of acoustic transmitters may allow greater flexibility in terms of the size and species of fish available to tag. New downsized injectable acoustic tags similar in shape to passive integrated transponder tags can be rapidly injected rather than surgically implanted through a sutured incision, as is current practice. Before wide-scale field use of these injectable transmitters, standard protocols to ensure the most effective and least damaging methods of implantation must be developed. Three implantation methods were tested in various sizes of juvenile Chinook salmon Oncorhynchus tschawytscha. Methods included a needle bevel-down injection, a needle bevel-up injection with amore » 90-degree rotation, and tag implantation through an unsutured incision. Tagged fish were compared to untagged control groups. Weight and wound area were measured at tagging and every week for 3 weeks; holding tanks were checked daily for mortalities and tag losses. No differences among treatments were found in growth, tag loss, or survival, but wound area was significantly reduced among incision-treated fish. The bevel-up injection had the worst results in terms of tag loss and wound area and also had high mortality. Implantation through an incision resulted in the lowest tag loss but the highest mortality. Fish from the bevel-down treatment group had the least mortality; wound areas also were smaller than the bevel-up treatment group. Cumulatively, the data suggest that the unsutured incision and bevel-down injection methods were the most effective; the drawbacks of both methods are described in detail. However, we further recommend larger and longer studies to find more robust thresholds for tagging size that include more sensitive measures.« less

  6. SciTech Connect

    Butler, W; Merrick, G; Kurko, B

    Purpose: To quantify the effect of metal hip prosthesis on the ability to track and localize electromagnetic transponders. Methods: Three Calypso transponders were implanted into two prostate phantoms. The geometric center of the transponders were identified on computed tomography and set as the isocenter. With the phantom stationary on the treatment table and the tracking array 14-cm above the isocenter, data was acquired by the Calypso system at 10 Hz to establish the uncertainty in measurements. Transponder positional data was acquired with unilateral hip prostheses of different metallic compositions and then with bilateral hips placed at variable separation from themore » phantom. Results: Regardless of hip prosthesis composition, the average vector displacement in the presence of a unilateral prosthesis was < 0.5 mm. The greatest contribution to overall vector displacement occurred in the lateral dimension. With bilateral hip prosthesis, the average vector displacement was 0.3 mm. The displacement in the lateral dimension was markedly reduced compared with a unilateral hip, suggesting that there was a countervailing effect with bilateral hip prosthesis. The greatest average vector displacement was 0.6 mm and occurred when bilateral hip prostheses were placed within 4 cm of the detector array. Conclusion: Unilateral and bilateral hip prostheses did not have any meaningful effect on the ability to accurately track electromagnetic transponders implanted in a prostate phantom. At clinically realistic distances between the hip and detection array, the average tracking error is negligible.« less

  7. Thoracic surgery in patients with an implanted neurostimulator device.

    PubMed

    Meyring, Kristina; Zehnder, Adrian; Schmid, Ralph A; Kocher, Gregor J

    2017-10-01

    Movement disorders such as Parkinson's disease are increasingly treated with deep brain stimulators. Being implanted in a subcutaneous pocket in the chest region, thoracic surgical procedures can interfere with such devices, as they are sensible to external electromagnetic forces. Monopolar electrocautery can lead to dysfunction of the device or damage of the brain tissue caused by heat. We report a series of 3 patients with deep brain stimulators who underwent thoracic surgery. By turning off the deep brain stimulators before surgery and avoiding the use of monopolar cautery, electromagnetic interactions were avoided in all patients. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  8. [Bilateral cochlear implants].

    PubMed

    Müller, J

    2017-07-01

    Cochlear implants (CI) are standard for the hearing rehabilitation of severe to profound deafness. Nowadays, if bilaterally indicated, bilateral implantation is usually recommended (in accordance with German guidelines). Bilateral implantation enables better speech discrimination in quiet and in noise, and restores directional and spatial hearing. Children with bilateral CI are able to undergo hearing-based hearing and speech development. Within the scope of their individual possibilities, bilaterally implanted children develop faster than children with unilateral CI and attain, e.g., a larger vocabulary within a certain time interval. Only bilateral implantation allows "binaural hearing," with all the benefits that people with normal hearing profit from, namely: better speech discrimination in quiet and in noise, as well as directional and spatial hearing. Naturally, the developments take time. Binaural CI users benefit from the same effects as normal hearing persons: head shadow effect, squelch effect, and summation and redundancy effects. Sequential CI fitting is not necessarily disadvantageous-both simultaneously and sequentially fitted patients benefit in a similar way. For children, earliest possible fitting and shortest possible interval between the two surgeries seems to positively influence the outcome if bilateral CI are indicated.

  9. Falling Magnets and Electromagnetic Braking

    NASA Astrophysics Data System (ADS)

    Culbreath, Christopher; Palffy-Muhoray, Peter

    2009-03-01

    The slow fall of a rare earth magnet through a copper pipe is a striking example of electromagnetic braking; this remarkable phenomenon has been the subject of a number of scientific paper s [1, 2]. In a pipe having radius R and wall thickness D, the terminal velocity of the falling magnet is proportional to (R̂4)/D. It is interesting to ask what happens in the limit as D becomes very large. We report our experimental observations and theoretical predictions of the dependence of the terminal velocity on pipe radius R for large D. [1] Y. Levin, F.L. da Silveira, and F.B. Rizzato, ``Electromagnetic braking: A simple quantitative model''. American Journal of Physics, 74(9): p. 815-817 (2006). [2] J.A. Pelesko, M. Cesky, and S. Huertas, Lenz's law and dimensional analysis. American Journal of Physics, 3(1): p. 37-39. 2005.

  10. Magnetic correlates in electromagnetic consciousness.

    PubMed

    Liboff, A R

    2016-01-01

    We examine the hypothesis that consciousness is a manifestation of the electromagnetic field, finding supportive factors not previously considered. It is not likely that traditional electrophysiological signaling modes can be readily transmitted throughout the brain to properly enable this field because of electric field screening arising from the ubiquitous distribution of high dielectric lipid membranes, a problem that vanishes for low-frequency magnetic fields. Many reports over the last few decades have provided evidence that living tissue is robustly sensitive to ultrasmall (1-100 nT) ELF magnetic fields overlapping the γ-frequency range often associated with awareness. An example taken from animal behavior (coherent bird flocking) lends support to the possibility of a disembodied electromagnetic consciousness. In contrast to quantum consciousness hypotheses, the present approach is open to experimental trial.

  11. Asymptotic symmetries and electromagnetic memory

    NASA Astrophysics Data System (ADS)

    Pasterski, Sabrina

    2017-09-01

    Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called "memories". Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.

  12. electromagnetics, eddy current, computer codes

    SciTech Connect

    Gartling, David

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  13. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, A.W.

    1995-08-08

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference. This pump is used in nuclear fission reactors. 19 figs.

  14. Laminated electromagnetic pump stator core

    DOEpatents

    Fanning, Alan W.

    1995-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially abutting tapered laminations extending radially outwardly from a centerline axis to collectively define a radially inner bore and a radially outer circumference. Each of the laminations includes radially inner and outer edges and has a thickness increasing from the inner edge toward the outer edge to provide a substantially continuous path adjacent the circumference.

  15. [Electromagnetic fields and people's health].

    PubMed

    Grigor'ev, Iu G

    2003-01-01

    A lot of data has been presently accumulated on an unfavorable effect produced by electromagnetic fields (EMF) of various frequencies on human organism. However, the mechanisms of the low-intensity EMF biological actions or the possibility of development of remote consequences are not clear until now. Due to this, the WHO formulated a so-called warning concept. The prerequisites of the mentioned recommendations as well as their topicality and possible application are under discussion.

  16. Electromagnetic brake/clutch device

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1994-01-01

    An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.

  17. Electromagnetism on anisotropic fractal media

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  18. [Return to work of a pacemaker bearing worker: the relationship between health problems and electromagnetic interferences].

    PubMed

    Taino, G; Frigerio, F

    2004-01-01

    The potential effects of electromagnetic fields is a problem that interest the public opinion, as the modern society expose all people to electromagnetic non ionizing radiations. The problem has a particular and important meaning facing the return to normal life and work conditions of a cardiopatic subject bearing a pacemaker (PM) or implantable cardioverter defibrillator (ICD). Electromagnetic interferences can produce temporary or permanent malfunctions in these devices. Checking for the absence of electromagnetic interferences is necessary considering that correct functioning of these medical devices is essential for the life of the bearer. Precautions normally adopted by these subjects are generally adequate to ensure protection from interferences present in life environment; for occupational environment, there is often lack of adequate information, also due to late involving of the doctor specialist in occupational health. This work intends to study in depth a specific job, a carpentry-workshop with welding activities, starting with a case of a PM bearer who asked a doctor specialist in occupational health to evaluate the problems involved in his return to work. Electric and magnetic fields produced by equipments present in the workshop were measured and compared to data supplied by the literature to evaluate the possibility of interactions in the normally functioning of implanted electronic devices. On the basis of our experience, we have found some criterions for specific risk assessement to adopt for the definition of operative protocols for return to work of PM or ICD carriers, also considering the lack of specific procedures and indications for the doctor specialist in occupational health. The collected information and data from the literature suggest that welding can be a risk for a subject with PM; as observed in experimental conditions, electromagnetic radiations can alter particular sensitive devices and those with uncorrected settings.

  19. Silicone Gel-Filled Breast Implants

    MedlinePlus

    ... and Medical Procedures Implants and Prosthetics Breast Implants Silicone Gel-Filled Breast Implants Share Tweet Linkedin Pin ... sharing options Linkedin Pin it Email Print Description: Silicone gel-filled breast implants have a silicone outer ...

  20. Implantable biomedical devices on bioresorbable substrates

    SciTech Connect

    Rogers, John A.; Kim, Dae-Hyeong; Omenetto, Fiorenzo

    Provided herein are implantable biomedical devices and methods of administering implantable biomedical devices, making implantable biomedical devices, and using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment.

  1. Complications in implant dentistry

    PubMed Central

    Hanif, Ayesha; Qureshi, Saima; Sheikh, Zeeshan; Rashid, Haroon

    2017-01-01

    After tooth loss, an individual may seek tooth replacement so that his/her function and esthetics could be restored. Clinical prosthodontics, during the past decade, has significantly improved and developed according to the advancements in the science and patient's demands and needs. Conventional options in prosthodontics for substituting a missing single tooth include the removable partial denture, partial and full coverage bridgework, and resin-bonded bridgework. Dental implants have gained increasing popularity over the years as they are capable of restoring the function to near normal in both partial and completely edentulous arches. With substantial evidence available, fixed implant-supported prosthesis are fully acknowledged as a reliable treatment option for the replacement of single or multiple missing teeth nowadays. While dental implants are increasingly becoming the choice of replacement for missing teeth, the impediments associated with them are progressively emerging too. PMID:28435381

  2. Dental Implant Complications.

    PubMed

    Liaw, Kevin; Delfini, Ronald H; Abrahams, James J

    2015-10-01

    Dental implants have increased in the last few decades thus increasing the number of complications. Since many of these complications are easily diagnosed on postsurgical images, it is important for radiologists to be familiar with them and to be able to recognize and diagnose them. Radiologists should also have a basic understanding of their treatment. In a pictorial fashion, this article will present the basic complications of dental implants which we have divided into three general categories: biomechanical overload, infection or inflammation, and other causes. Examples of implant fracture, loosening, infection, inflammation from subgingival cement, failure of bone and soft tissue preservation, injury to surround structures, and other complications will be discussed as well as their common imaging appearances and treatment. Lastly, we will review pertinent dental anatomy and important structures that are vital for radiologists to evaluate in postoperative oral cavity imaging. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Dental implants: A review.

    PubMed

    Guillaume, B

    2016-12-01

    A high number of patients have one or more missing tooth and it is estimated that one in four American subjects over the age of 74 have lost all their natural teeth. Many options exist to replace missing teeth but dental implants have become one of the most used biomaterial to replace one (or more) missing tooth over the last decades. Contemporary dental implants made with titanium have been proven safe and effective in large series of patients. This review considers the main historical facts concerned with dental implants and present the different critical factors that will ensure a good osseo-integration that will ensure a stable prosthesis anchorage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Current trends in dental implants

    PubMed Central

    Gaviria, Laura; Salcido, John Paul; Guda, Teja

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants. PMID:24868501

  5. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.

  6. Implanted near-infrared spectroscopy for cardiac monitoring

    NASA Astrophysics Data System (ADS)

    Bhunia, Sourav K.; Cinbis, Can

    2011-02-01

    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (p<0.0001) between NSR and VF rhythms for both the fresh and scar tissue pockets. Therefore implanted NIRS may be useful for preventing inappropriate detection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  7. Two-stage implant systems.

    PubMed

    Fritz, M E

    1999-06-01

    Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of

  8. Manager's Role in Electromagnetic Interference (EMI) Control

    NASA Technical Reports Server (NTRS)

    Sargent, Noel B.; Lewis, Catherine C.

    2013-01-01

    This presentation captures the essence of electromagnetic compatibility (EMC) engineering from a project manager's perspective. It explains the basics of EMC and the benefits to the project of early incorporation of EMC best practices. The EMC requirement products during a project life cycle are identified, along with the requirement verification methods that should be utilized. The goal of the presentation is to raise awareness and simplify the mystique surrounding electromagnetic compatibility for managers that have little or no electromagnetics background

  9. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  10. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  11. Thin sheet casting with electromagnetic pressurization

    DOEpatents

    Walk, Steven R.; Slepian, R. Michael; Nathenson, Richard D.; Williams, Robert S.

    1991-01-01

    An apparatus, method and system for the casting of thin strips or strips of metal upon a moving chill block that includes an electromagnet located so that molten metal poured from a reservoir onto the chill block passes into the magnetic field produced by the electromagnet. The electromagnet produces a force on the molten metal on said chill block in the direction toward said chill block in order to enhance thermal contact between the molten metal and the chill block.

  12. The dissipation of electromagnetic waves in plasmas

    NASA Astrophysics Data System (ADS)

    Basov, N. G.

    The present anthology includes articles concerning the experimental study of the interaction of high power electromagnetic waves with collisionless plasmas and with electrons. Among the topics covered are the nonlinear dissipation of electromagnetic waves in inhomogeneous collisionless plasmas, the collisionless absorption of electromagnetic waves in plasmas and 'slow' nonlinear phenomena, the nonlinear effects of electron plasma waves propagating in an inhomogeneous plasma layer, and secondary-emission microwave discharges having large electron transit angles.

  13. Data Analysis of Airborne Electromagnetic Bathymetry.

    DTIC Science & Technology

    1985-04-01

    7 AD-R 58 889 DATA ANALYSIS OF AIRBORNE ELECTROMAGNETIC BRTHYMETRY i/i (U) NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY NSTL STRTION MS R ZOLLINGER...Naval Ocean Research and Development Activity NSTL, Mississippi 39529 NORDA Report 93 April 1985 AD-A158 809 - Data Analysis of Airborne Electromagnetic ...8217 - Foreword CI Airborne electromagnetic (AEM) systems have traditionally been used for detecting anomalous conductors in the

  14. International classification of reliability for implanted cochlear implant receiver stimulators.

    PubMed

    Battmer, Rolf-Dieter; Backous, Douglas D; Balkany, Thomas J; Briggs, Robert J S; Gantz, Bruce J; van Hasselt, Andrew; Kim, Chong Sun; Kubo, Takeshi; Lenarz, Thomas; Pillsbury, Harold C; O'Donoghue, Gerard M

    2010-10-01

    To design an international standard to be used when reporting reliability of the implanted components of cochlear implant systems to appropriate governmental authorities, cochlear implant (CI) centers, and for journal editors in evaluating manuscripts involving cochlear implant reliability. The International Consensus Group for Cochlear Implant Reliability Reporting was assembled to unify ongoing efforts in the United States, Europe, Asia, and Australia to create a consistent and comprehensive classification system for the implanted components of CI systems across manufacturers. All members of the consensus group are from tertiary referral cochlear implant centers. None. A clinically relevant classification scheme adapted from principles of ISO standard 5841-2:2000 originally designed for reporting reliability of cardiac pacemakers, pulse generators, or leads. Standard definitions for device failure, survival time, clinical benefit, reduced clinical benefit, and specification were generated. Time intervals for reporting back to implant centers for devices tested to be "out of specification," categorization of explanted devices, the method of cumulative survival reporting, and content of reliability reports to be issued by manufacturers was agreed upon by all members. The methodology for calculating Cumulative survival was adapted from ISO standard 5841-2:2000. The International Consensus Group on Cochlear Implant Device Reliability Reporting recommends compliance to this new standard in reporting reliability of implanted CI components by all manufacturers of CIs and the adoption of this standard as a minimal reporting guideline for editors of journals publishing cochlear implant research results.

  15. Immediate direct-to-implant breast reconstruction using anatomical implants.

    PubMed

    Kim, Sung-Eun; Jung, Dong-Woo; Chung, Kyu-Jin; Lee, Jun Ho; Kim, Tae Gon; Kim, Yong-Ha; Lee, Soo Jung; Kang, Su Hwan; Choi, Jung Eun

    2014-09-01

    In 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience. From November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction. The mean breast resection volume was 240 mL (range, 83-540 mL). The mean size of the breast implants was 217 mL (range, 125-395 mL). Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen. By using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  16. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  17. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intelmore » product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.« less

  18. Remote actuated valve implant

    SciTech Connect

    McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  19. Sowing seeds: transperineal implantation.

    PubMed

    Amerine, E; Nagle, G M; Bollinger, J R

    2000-02-01

    Prostate cancer, the second leading cause of male deaths in the United States, has increased by 126% since 1987 (Stephenson, 1998). Early diagnosis is attributed to public awareness and technologic advances. Multiple options for definitive treatment with equally positive outcomes dramatically influence the patient's decision-making process. One popular option for these patients is transperineal implantation of radioactive seeds into the prostate.

  20. Electromagnetic interference with pacemakers caused by portable media players.

    PubMed

    Thaker, Jay P; Patel, Mehul B; Jongnarangsin, Krit; Liepa, Valdis V; Thakur, Ranjan K

    2008-04-01

    Electromagnetic fields generated by electrical devices may cause interference with permanent pacemakers. Media players are becoming a common mode of portable entertainment. The most common media players used worldwide are iPods. These devices are often carried in a shirt chest pocket, which may place the devices close to an implanted pacemaker. The purpose of this study was to determine if iPods cause interference with pacemakers. In this prospective, single-blinded study, 100 patients who had cardiac pacemakers were tested with four types of iPods to assess for interference. Patients were monitored by a single-channel ECG monitor as well as the respective pacemaker programmer via the telemetry wand. iPods were tested by placing them 2 inches anterior to the pacemaker and wand for up to 10 seconds. To simulate actual use, standard-issue headphones were plugged into the iPods. To maintain consistency, the volume was turned up maximally, and the equalizer was turned off. A subset of 25 patients underwent testing on 2 separate days to assess for reproducibility of interference. Pacemaker interference was categorized as type I or type II telemetry interference. Type I interference was associated with atrial and/or ventricular high rates on rate histograms. Type II interference did not affect pacemaker rate counters. Electromagnetic emissions from the four iPods also were evaluated in a Faraday cage to determine the mechanism of the observed interference. One hundred patients (63 men and 37 women; mean age 77.1 +/- 7.6 years) with 11 single-chamber pacemakers and 89 dual-chamber pacemakers underwent 800 tests. The incidence of any type of interference was 51% of patients and 20% of tests. Type I interference was seen in 19% of patients and type II in 32% of patients. Reproducibility testing confirmed that interference occurred regardless of pacing configuration (unipolar or bipolar), pacing mode (AAI, VVI, or DDD), and from one day to the next. Electromagnetic emissions

  1. Double valve replacement in a patient with implantable cardioverter defibrillator with severe left ventricular dysfunction.

    PubMed

    Manjunath, Girish; Rao, Prakash; Prakash, Nagendra; Shivaram, B K

    2016-01-01

    Recent data from landmark trials suggest that the indications for cardiac pacing and implantable cardioverter defibrillators (ICDs) are set to expand to include heart failure, sleep-disordered breathing, and possibly routine implantation in patients with myocardial infarction and poor ventricular function.[1] This will inevitably result in more patients with cardiac devices undergoing surgeries. Perioperative electromagnetic interference and their potential effects on ICDs pose considerable challenges to the anesthesiologists.[2] We present a case of a patient with automatic ICD with severe left ventricular dysfunction posted for double valve replacement.

  2. Inappropriate Implantable Cardioverter-Defibrillator Shocks Attributed to Alternating-Current Leak in a Swimming Pool

    PubMed Central

    Makaryus, John N.; Angert-Gilman, Julia; Yacoub, Mena; Patel, Apoor

    2014-01-01

    Implantable cardioverter-defibrillators (ICDs) are the standard of care for preventing sudden cardiac death in patients who are predisposed to malignant ventricular arrhythmias. Causes of inappropriate ICD shock include equipment malfunction, improper arrhythmia evaluation, misinterpretation of myopotentials, and electromagnetic interference. As the number of implanted ICDs has increased, other contributors to inappropriate therapy have become known, such as minimal electrical current leaks that mimic ventricular fibrillation. We present the case of a 63-year-old man with a biventricular ICD who received 2 inappropriate shocks, probably attributable to alternating-current leaks in a swimming pool. In addition, we discuss ICD sensitivity and offer recommendations to avoid similar occurrences. PMID:24512403

  3. Hypothesis on how to measure electromagnetic hypersensitivity.

    PubMed

    Tuengler, Andreas; von Klitzing, Lebrecht

    2013-09-01

    Electromagnetic hypersensitivity (EHS) is an ill-defined term to describe the fact that people who experience health symptoms in the vicinity of electromagnetic fields (EMFs) regard them as causal for their complaints. Up to now most scientists assume a psychological cause for the suffering of electromagnetic hypersensitive individuals. This paper addresses reasons why most provocation studies could not find any association between EMF exposure and EHS and presents a hypothesis on diagnosis and differentiation of this condition. Simultaneous recordings of heart rate variability, microcirculation and electric skin potentials are used for classification of EHS. Thus, it could be possible to distinguish "genuine" electromagnetic hypersensitive individuals from those who suffer from other conditions.

  4. Electromagnetic Compatibility for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  5. Design and simulation of printed spiral coil used in wireless power transmission systems for implant medical devices.

    PubMed

    Wu, Wei; Fang, Qiang

    2011-01-01

    Printed Spiral Coil (PSC) is a coil antenna for near-field wireless power transmission to the next generation implant medical devices. PSC for implant medical device should be power efficient and low electromagnetic radiation to human tissues. We utilized a physical model of printed spiral coil and applied our algorithm to design PSC operating at 13.56 MHz. Numerical and electromagnetic simulation of power transfer efficiency of PSC in air medium is 77.5% and 71.1%, respectively. The simulation results show that the printed spiral coil which is optimized for air will keep 15.2% power transfer efficiency in human subcutaneous tissues. In addition, the Specific Absorption Ratio (SAR) for this coil antenna in subcutaneous at 13.56 MHz is below 1.6 W/Kg, which suggests this coil is implantable safe based on IEEE C95.1 safety guideline.

  6. Electromagnetic launcher for heavy projectiles

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Kotov, A. V.; Polistchook, V. P.; Shurupov, A. V.; Shurupov, M. A.

    2017-11-01

    In this paper, we present the electromagnetic launcher with capacitive power source of 4.8 MJ. Our installation allows studying of the projectile acceleration in railgun in two regimes: with a solid armature and with a plasma piston. The experiments with plasma piston were performed in the railgun with the length of barrel of 0.7-1.0 m and its inner diameter of 17-24 mm. The velocities of lexan projectiles with weight of 5-15 g were in a range of 2.5-3.5 km/s. The physical mechanisms that limit speed of throwing in railgun are discussed.

  7. Does UV disinfection compromise sutures? An evaluation of tissue response and suture retention in salmon surgically implanted with transmitters

    SciTech Connect

    Walker, Ricardo W.; Brown, Richard S.; Deters, Katherine A.

    Ultraviolet radiation (UVR) can be used as a tool to disinfect surgery tools used for implanting transmitters into fish. However, the use of UVR could possibly degrade monofilament suture material used to close surgical incisions. This research examined the effect of UVR on monofilament sutures to determine if they were compromised and negatively influenced tag and suture retention, incision openness, or tissue reaction. Eighty juvenile Chinook salmon Oncorhynchus tshawytscha were surgically implanted with an acoustic transmitter and a passive integrated transponder. The incision was closed with a single stitch of either a suture exposed to 20 doses of UV radiationmore » (5 minute duration per dose) or a new, sterile suture. Fish were then held for 28 d and examined under a microscope at day 7, 14, 21 and 28 for incision openness, ulceration, redness, and the presence of water mold. There was no significant difference between treatments for incision openness, redness, ulceration or the presence of water mold on any examination day. On day 28 post-surgery, there were no lost sutures; however, 2 fish lost their transmitters (one from each treatment). The results of this study do not show any differences in negative influences such as tissue response, suture retention or tag retention between a new sterile suture and a suture disinfected with UVR.« less

  8. MRI induced torque and demagnetization in retention magnets for a bone conduction implant.

    PubMed

    Jansson, Karl-Johan Fredén; Håkansson, Bo; Reinfeldt, Sabine; Taghavi, Hamidreza; Eeg-Olofsson, Måns

    2014-06-01

    Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% ± 2.5% and 0.20 ± 0.01 Nm, respectively and 71.4% ± 19.1% and 0.18 ± 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple.

  9. Cochlear implants in children implanted in Jordan: A parental overview.

    PubMed

    Alkhamra, Rana A

    2015-07-01

    Exploring the perspective of parents on the cochlear implant process in Jordan. Sixty parents of deaf children were surveyed on the information gathering process prior to cochlear implant surgery, and their implant outcome expectations post-surgery. Whether child or parent characteristics may impact parents' post-surgical expectations was explored. Although parents used a variety of information sources when considering a cochlear implant, the ear, nose and throat doctor comprised their major source of information (60%). Parents received a range of information prior to cochlear implant but agreed (93.3%) on the need for a multidisciplinary team approach. Post-surgically, parents' expected major developments in the areas of spoken language (97%), and auditory skills (100%). Receiving education in mainstream schools (92%) was expected too. Parents perceived the cochlear implant decision as the best decision they can make for their child (98.3%). A significant correlation was found between parents contentment with the cochlear implant decision and expecting developments in the area of reading and writing (r=0.7). Child's age at implantation and age at hearing loss diagnosis significantly affected parents' post-implant outcome expectations (p<0.05). Despite the general satisfaction from the information quantity and quality prior to cochlear implant, parents agree on the need for a comprehensive multidisciplinary team approach during the different stages of the cochlear implant process. Parents' education about cochlear implants prior to the surgery can affect their post-surgical outcome expectations. The parental perspective presented in this study can help professionals develop better understanding of parents' needs and expectations and henceforth improve their services and support during the different stages of the cochlear implant process. Copyright © 2015. Published by Elsevier Ireland Ltd.

  10. Electromagnets 1: Turn on the Power. Science in a Box.

    ERIC Educational Resources Information Center

    Whitman, Betsy Blizard

    1992-01-01

    The article presents inexpensive activities to teach elementary school students about electromagnets. Students learn to make an electromagnet with a battery, nail, and wire, then different activities help them explore the difference between permanent magnets and electromagnets. (SM)

  11. Flipping the Electromagnetic Theory classroom

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.

    2017-08-01

    Electromagnetic Theory is a required junior-year course for Optics majors at the University of Rochester. This foundational course gives students their first rigorous exposure to electromagnetic vector fields, dipole radiation patterns, Fresnel reflection/transmission coefficients, waveguided modes, Jones vectors, waveplates, birefringence, and the Lorentz model of refractive index. To increase the percentage of class time devoted to student-centered conceptual reasoning and instructor feedback, this course was recently "flipped". Nearly all of the mathematically-intensive derivations were converted to narrated screencasts ("Khan Academy" style) and made available to students through the course's learning management system. On average, the students were assigned two 10-15 minute videos to watch in advance of each lecture. An electronic survey after each tutorial encouraged reflection and counted towards the student's participation grade. Over the past three years, students have consistently rated the videos as being highly valuable. This presentation will discuss the technical aspects of creating tutorial videos and the educational tradeoffs of flipping a mathematically-intensive upper-level course. The most important advantage is the instructor's increased ability to identify and respond to student confusion, via activities that would consume too much time in a lecture-centered course. Several examples of such activities will be given. Two pitfalls to avoid are the temptation for the instructor not to update the videos from year to year and the tendency of students not to take lecture notes while watching the videos.

  12. Electromagnetic field effects in explosives

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  13. Electromagnetic Methods of Lightning Detection

    NASA Astrophysics Data System (ADS)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  14. Transient electromagnetic sounding for groundwater

    USGS Publications Warehouse

    Fitterman, David V.; Stewart, Mark T.

    1986-01-01

    The feasibility of using the transient electromagnetic sounding (TS or TDEM) method for groundwater exploration can be studied by means of numerical models. As examples of its applicability to groundwater exploration, we study four groundwater exploration problems: (1) mapping of alluvial fill and gravel zones over bedrock; (2) mapping of sand and gravel lenses in till; (3) detection of salt or brackish water interfaces in freshwater aquifers; and (4) determination of hydrostratigraphy. These groundwater problems require determination of the depth to bedrock; location of resistive, high‐porosity zones associated with fresh water; determination of formation resistivity to assess water quality; and determination of lithology and geometry, respectively. The TS method is best suited for locating conductive targets, and has very good vertical resolution. Unlike other sounding techniques where the receiver‐transmitter array must be expanded to sound more deeply, the depth of investigation for the TS method is a function of the length of time the transient is recorded. Present equipment limitations require that exploration targets with resistivities of 50 Ω ⋅ m or more be at least 50 m deep to determine their resistivity. The maximum depth of exploration is controlled by the geoelectrical section and background electromagnetic (EM) noise. For a particular exploration problem, numerical studies are recommended to determine if the target is detectable.

  15. Electromagnetic hypersensitivity: fact or fiction?

    PubMed

    Genuis, Stephen J; Lipp, Christopher T

    2012-01-01

    As the prevalence of wireless telecommunication escalates throughout the world, health professionals are faced with the challenge of patients who report symptoms they claim are connected with exposure to some frequencies of electromagnetic radiation (EMR). Some scientists and clinicians acknowledge the phenomenon of hypersensitivity to EMR resulting from common exposures such as wireless systems and electrical devices in the home or workplace; others suggest that electromagnetic hypersensitivity (EHS) is psychosomatic or fictitious. Various organizations including the World Health Organization as well as some nation states are carefully exploring this clinical phenomenon in order to better explain the rising prevalence of non-specific, multi-system, often debilitating symptoms associated with non-ionizing EMR exposure. As well as an assortment of physiological complaints, patients diagnosed with EHS also report profound social and personal challenges, impairing their ability to function normally in society. This paper offers a review of the sparse literature on this perplexing condition and a discussion of the controversy surrounding the legitimacy of the EHS diagnosis. Recommendations are provided to assist health professionals in caring for individuals complaining of EHS. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Electromagnetic wave energy conversion research

    NASA Technical Reports Server (NTRS)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  17. [Nonionizing radiation and electromagnetic fields].

    PubMed

    Bernhardt, J H

    1991-01-01

    Nonionising radiation comprises all kinds of radiation and fields of the electromagnetic spectrum where biological matter is not ionised, as well as mechanical waves such as infrasound and ultrasound. The electromagnetic spectrum is subdivided into individual sections and includes: Static and low-frequency electric and magnetic fields including technical applications of energy with mains frequency, radio frequency fields, microwaves and optic radiation (infrared, visible light, ultraviolet radiation including laser). The following categories of persons can be affected by emissions by non-ionising radiation: Persons in the environment and in the household, workers, patients undergoing medical diagnosis or treatment. If the radiation is sufficiently intense, or if the fields are of appropriate strength, a multitude of effects can occur (depending on the type of radiation), such as heat and stimulating or irritating action, inflammations of the skin or eyes, changes in the blood picture, burns or in some cases cancer as a late sequel. The ability of radiation to penetrate into the human body, as well as the types of interaction with biological tissue, with organs and organisms, differs significantly for the various kinds of nonionising radiation. The following aspects of nonionising radiation are discussed: protection of humans against excessive sunlight rays when sunbathing and when exposed to UV radiation (e.g. in solaria); health risks of radio and microwaves (safety of microwave cookers and mobile radio units); effects on human health by electric and magnetic fields in everyday life.

  18. BETA (Bitter Electromagnet Testing Apparatus)

    NASA Astrophysics Data System (ADS)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.

    2017-10-01

    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  19. Interpreting Electromagnetic Reflections In Glaciology

    NASA Astrophysics Data System (ADS)

    Eisen, O.; Nixdorf, U.; Wilhelms, F.; Steinhage, D.; Miller, H.

    Electromagnetic reflection (EMR) measurements are active remote sensing methods that have become a major tool for glaciological investigations. Although the basic pro- cesses are well understood, the unambiguous interpretation of EMR data, especially internal layering, still requires further information. The Antacrtic ice sheet provides a unique setting for investigating the relation between physical­chemical properties of ice and EMR data. Cold ice, smooth surface topography, and low accumulation facilitates matters to use low energy ground penetrating radar (GPR) devices to pene- trate several tens to hundreds of meters of ice, covering several thousands of years of snow deposition history. Thus, sufficient internal layers, primarily of volcanic origin, are recorded to enable studies on a local and regional scale. Based on dated ice core records, GPR measurements at various frequencies, and airborne radio-echo sound- ing (RES) from Dronning Maud Land (DML), Antarctica, combined with numerical modeling techniques, we investigate the influence of internal layering characteristics and properties of the propagating electromagnetic wave on EMR data.

  20. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. Copyright © 2012 Wiley Periodicals, Inc.

  1. Electromagnetic code for naval applications

    NASA Astrophysics Data System (ADS)

    Crescimbeni, F.; Bessi, F.; Chiti, S.

    1988-12-01

    The use of an increasing number of electronic apparatus became vital to meet the high performance required for military Navy applications. Thus the number of antennas to be mounted on shipboard greatly increased. As a consequence of the high antenna density, of the complexity of the shipboard environment and of the powers used for communication and radar systems, the EMC (Electro-Magnetic Compatibility) problem is playing a leading role in the design of the topside of a ship. The Italian Navy has acquired a numerical code for the antenna siting and design. This code, together with experimental data measured at the Italian Navy test range facility, allows for the evaluation of optimal sitings for antenna systems on shipboard, and the prediction of their performances in the actual environment. The structure of this code, named Programma Elettromagnetico per Applicazioni Navali, (Electromagnetic Code for Naval Applications) is discussed, together with its capabilities and applications. Also the results obtained in some examples are presented and compared with the measurements.

  2. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  3. Rupture of poly implant prothèse silicone breast implants: an implant retrieval study.

    PubMed

    Swarts, Eric; Kop, Alan M; Nilasaroya, Anastasia; Keogh, Catherine V; Cooper, Timothy

    2013-04-01

    Poly Implant Prothèse implants were recalled in Australia in April of 2010 following concerns of higher than expected rupture rates and the use of unauthorized industrial grade silicone as a filler material. Although subsequent investigations found that the gel filler material does not pose a threat to human health, the important question of what caused a relatively modern breast implant to have such a poor outcome compared with contemporary silicone breast implants is yet to be addressed. From a cohort of 27 patients, 19 ruptured Poly Implant Prothèse breast implants were subjected to a range of mechanical tests and microscopic/macroscopic investigations to evaluate possible changes in properties as a result of implantation. New Poly Implant Prothèse implants were used as controls. All samples, explanted and controls, complied with the requirements for shell integrity as specified in the International Organization for Standardization 14607. Compression testing revealed rupture rates similar to those reported in the literature. Shell thickness was highly variable, with most shells having regions below the minimum thickness of 0.57 mm that was specified by the manufacturer. Potential regions of stress concentration were observed on the smooth inner surfaces and outer textured surfaces. The high incidence of Poly Implant Prothèse shell rupture is most likely a result of inadequate quality control, with contributory factors being shell thickness variation and manufacturing defects on both inner and outer surfaces of the shell. No evidence of shell degradation with implantation time was determined.

  4. Deep inspiration breath hold with electromagnetic confirmation of chest wall position for adjuvant therapy of left-sided breast cancer: Technique and accuracy.

    PubMed

    Kathpal, Madeera; Tinnel, Brent; Sun, Kelly; Ninneman, Stephanie; Malmer, Cynthia; Wendt, Stacie; Buff, Sheena; Valentich, David; Gossweiler, Marisa; Macdonald, Dusten

    2016-01-01

    With most patients now living long after their breast cancer diagnosis, minimizing long-term side effects of breast cancer treatment, such as reducing late cardiac and pulmonary side effects of radiation therapy (RT), is particularly important. It is now possible to use an electromagnetic tracking system to allow real-time tracking of chest wall (CW) position during the delivery of RT. Here, we report our experience using electromagnetic surface transponders as an added measure of CW position during deep inspiration breath hold (DIBH). We conducted a single-institution institutional review board-approved retrospective review of 15 female left-sided breast cancer patients treated between July 2012 and June 2013 with conventional whole breast radiation. We compared daily port films with treatment planning digitally reconstructed radiographs to establish daily setup accuracy, then used Calypso tracings to compare the position of the CW during the daily port film with the position of the CW during that day's treatment to determine the reproducibility of the breath hold position. Finally, we created competing treatment plans not using DIBH and used a paired t test to compare mean heart (MH) and left anterior descending (LAD) coronary artery dose between the 2 techniques. Mean total error (inter- and intrafraction) was dominated by interfraction error and was greatest in the longitudinal direction with a mean of 2.13 mm and 2 standard deviations of 8.2 mm. DIBH significantly reduced MH and LAD dose versus free breathing plans (MH, 1.26 Gy vs 2.84 Gy, P ≤ .001; LAD, 5.49 Gy vs 18.15 Gy, P ≤ .001). This study demonstrates that DIBH with electromagnetic confirmation of CW position is feasible, and allows potential improvement in the accurate delivery of adjuvant RT therapy for breast cancer. Published by Elsevier Inc.

  5. Upper High School Students' Understanding of Electromagnetism

    ERIC Educational Resources Information Center

    Saglam, Murat; Millar, Robin

    2006-01-01

    Although electromagnetism is an important component of upper secondary school physics syllabuses in many countries, there has been relatively little research on students' understanding of the topic. A written test consisting of 16 diagnostic questions was developed and used to survey the understanding of electromagnetism of upper secondary school…

  6. Research Studies on Electromagnetically Induced Transparency

    DTIC Science & Technology

    2010-01-20

    allowing the same simple equations to be used to simulate nonlinear and quantum optics with the N-photon states generated in this regime. One...induced transparency, photon interactions with atoms, nonclassical states of the electromagnetic field, including entangled photon states , quantum ...them. This is important because optical nonlinearities when produced using electromagnetically induced transparency continue to increase in the

  7. Assessment and control of spacecraft electromagnetic interference

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods.

  8. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  9. Science 101: Can Electromagnetic Waves Affect Emotions?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2017-01-01

    The answer to this month's question, "Can electromagnetic waves affect emotions," is yes. Wherever there are electromagnetic (EM) waves (basically everywhere!), there is the potential for them directly or indirectly to affect the emotions. But what about the likely motivation behind the originally-posed question? Can EM waves affect your…

  10. University Students' Understanding of Electromagnetic Induction

    ERIC Educational Resources Information Center

    Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina

    2013-01-01

    This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that…

  11. ELECTROMAGNETIC APPARATUS FOR MOVING A ROD

    DOEpatents

    Young, J.N.

    1957-08-20

    An electromagnetic device for moving an object in a linear path by increments is described. The device is specifically adapted for moving a neutron absorbing control rod into and out of the core of a reactor and consists essentially of an extension member made of magnetic material connected to one end of the control rod and mechanically flexible to grip the walls of a sleeve member when flexed, a magnetic sleeve member coaxial with and slidable between limit stops along the flexible extension, electromagnetic coils substantially centrally located with respect to the flexible extension to flex the extension member into gripping engagement with the sleeve member when ener gized, moving electromagnets at each end of the sleeve to attract the sleeve when energized, and a second gripping electromagnet positioned along the flexible extension at a distance from the previously mentioned electromagnets for gripping the extension member when energized. In use, the second gripping electromagnet is deenergized, the first gripping electromagnet is energized to fix the extension member in the sleeve, and one of the moving electromagnets is energized to attract the sleeve member toward it, thereby moving the control rod.

  12. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  13. NASA Applications for Computational Electromagnetic Analysis

    NASA Technical Reports Server (NTRS)

    Lewis, Catherine C.; Trout, Dawn H.; Krome, Mark E.; Perry, Thomas A.

    2011-01-01

    Computational Electromagnetic Software is used by NASA to analyze the compatibility of systems too large or too complex for testing. Recent advances in software packages and computer capabilities have made it possible to determine the effects of a transmitter inside a launch vehicle fairing, better analyze the environment threats, and perform on-orbit replacements with assured electromagnetic compatibility.

  14. Advanced Composite Aircraft Electromagnetic Design and Synthesis

    DTIC Science & Technology

    1980-05-01

    Naval Air Systems Command, July 1978. 9. J.L. Bogdanor , R.A. Pearlman, and M.D. Siegel, Intrasystem Electromagnetic Compatibility Analysis Program...F30602-72-C-0277, RADC-TR-74-342, December 1974. 11. J.L. Bogdanor , R.A. Pearlman, and M.D. Siegel, Intrasystem Electromagnetic Comptibility Analysis

  15. Unifying electromagnetism and gravitation without curvature

    SciTech Connect

    Schuetze, D.

    1985-10-01

    This paper is devoted to a five-dimensional unification of the gravitational theory of Hayashi and Shirafuji with electromagnetism. Interference effects are found between gravitational contributions of matter spin and electromagnetism. This unification becomes the classical Kaluza--Klein theory if contributions of the torsion tensor related with spin are neglected.

  16. [Mechanisms of electromagnetic radiation damaging male reproduction].

    PubMed

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  17. Electromagnetic bonding of plastics to aluminum

    NASA Technical Reports Server (NTRS)

    Sheppard, A. T.; Silbert, L.

    1980-01-01

    Electromagnetic curing is used to bond strain gage to aluminum tensile bar. Electromagnetic energy heats only plastic/metal interface by means of skin effect, preventing degradation of heat-treated aluminum. Process can be easily applied to other metals joined by high-temperature-curing plastic adhesives.

  18. Quantization of Electromagnetic Fields in Cavities

    NASA Technical Reports Server (NTRS)

    Kakazu, Kiyotaka; Oshiro, Kazunori

    1996-01-01

    A quantization procedure for the electromagnetic field in a rectangular cavity with perfect conductor walls is presented, where a decomposition formula of the field plays an essential role. All vector mode functions are obtained by using the decomposition. After expanding the field in terms of the vector mode functions, we get the quantized electromagnetic Hamiltonian.

  19. Project Physics Tests 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 4 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of light and electromagnetism are examined on charges, reflection, electrostatic forces, electric potential, speed of light, electromagnetic waves and radiations, Oersted's and Faraday's work,…

  20. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-01

    distribution statement initially submitted with AD1042986, entitled Underwater Advanced Time Domain Electromagnetic System (MR-201313), has been appealed...Advanced Time -Domain Electromagnetic System ESTCP Project MR-201313 MARCH 2017 Mr. Steve Saville CH2M Distribution Statement D: Distribution...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

  1. The Teaching of Electromagnetism at University Level

    ERIC Educational Resources Information Center

    Houldin, J. E.

    1974-01-01

    Discusses different kinds of material presentation in the teaching of electromagnetism at the university level, including three "classical" approaches and the Keller personalized proctorial system. Indicates that a general introduction to generators and motors may be useful in an electromagnetism course. (CC)

  2. Electromagnetic Concepts in Mathematical Representation of Physics.

    ERIC Educational Resources Information Center

    Albe, Virginie; Venturini, Patrice; Lascours, Jean

    2001-01-01

    Addresses the use of mathematics when studying the physics of electromagnetism. Focuses on common electromagnetic concepts and their associated mathematical representation and arithmetical tools. Concludes that most students do not understand the significant aspects of physical situations and have difficulty using relationships and models specific…

  3. Electromagnetic Induction Rediscovered Using Original Texts.

    ERIC Educational Resources Information Center

    Barth, Michael

    2000-01-01

    Describes a teaching unit on electromagnetic induction using historic texts. Uses some of Faraday's diary entries from 1831 to introduce the phenomenon of electromagnetic induction and teach about the properties of electricity, of taking conclusions from experiment, and scientific methodology. (ASK)

  4. Hormonal control of implantation.

    PubMed

    Sandra, Olivier

    2016-06-01

    In mammals, implantation represents a key step of pregnancy and its progression conditions not only the success of pregnancy but health of the offspring. Implantation requires a complex and specific uterine tissue, the endometrium, whose biological functions are tightly regulated by numerous signals, including steroids and polypeptide hormones. Endometrial tissue is endowed with dynamic properties that associate its ability to control the developmental trajectory of the embryo (driver property) and its ability to react to embryos displaying distinct capacities to develop to term (sensor property). Since dynamical properties of the endometrium can be affected by pre- and post-conceptional environment, determining how maternal hormonal signals and their biological actions are affected by environmental factors (e.g. nutrition, stress, infections) is mandatory to reduce or even to prevent their detrimental effects on endometrial physiology in order to preserve the optimal functionality of this tissue. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. [Fully implantable hearing systems].

    PubMed

    Maurer, J

    2009-03-01

    As yet comparatively little experience has been gained with fully implantable hearing systems, as the two systems available at present have only recently received CE permission for Europe and the FDA permissions are still pending in the USA. Additionally the technology is expensive and usually not covered by insurance companies. However, it could be shown that by careful patient selection and very careful surgical techniques, good results can be achieved with this highly sensitive technology, often with better patient satisfaction and hearing quality than with conventional hearing aids. To spread the technology further, the systems must also show reliable results on a broad application. Further surgery to change the batteries should not be necessary more frequently than with cardiac pacemakers. Not all technical problems are finally solved. However, it is to be foreseen that fully implantable hearing systems will be a good long-term alternative to conventional hearing aids for some patients.

  6. Piezosurgery in implant dentistry

    PubMed Central

    Stübinger, Stefan; Stricker, Andres; Berg, Britt-Isabelle

    2015-01-01

    Piezosurgery, or the use of piezoelectric devices, is being applied increasingly in oral and maxillofacial surgery. The main advantages of this technique are precise and selective cuttings, the avoidance of thermal damage, and the preservation of soft-tissue structures. Through the application of piezoelectric surgery, implant-site preparation, bone grafting, sinus-floor elevation, edentulous ridge splitting or the lateralization of the inferior alveolar nerve are very technically feasible. This clinical overview gives a short summary of the current literature and outlines the advantages and disadvantages of piezoelectric bone surgery in implant dentistry. Overall, piezoelectric surgery is superior to other methods that utilize mechanical instruments. Handling of delicate or compromised hard- and soft-tissue conditions can be performed with less risk for the patient. With respect to current and future innovative surgical concepts, piezoelectric surgery offers a wide range of new possibilities to perform customized and minimally invasive osteotomies. PMID:26635486

  7. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, David M.; Haynes, Howard D.; Casada, Donald A.

    1993-01-01

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  8. Noninvasive valve monitor using alternating electromagnetic field

    DOEpatents

    Eissenberg, D.M.; Haynes, H.D.; Casada, D.A.

    1993-03-16

    One or more electrical coils are carefully located on the outside of a valve body. An alternating current passing through the coil(s) results in an alternating electromagnetic field being transmitted into the valve body and valve internals. The electromagnetic field varies in intensity and polarity in the valve. As the position of a valve internal part is changed, the electromagnetic field throughout the valve body and its internals is altered. A passive receiver coil carefully located on the outside of the valve body detects the intensity of the electromagnetic field at that location as an induced electrical voltage in the coil. With the change in position of the valve internal part, there is a corresponding change in the induced voltage as a result of the alteration in the alternating electromagnetic field at that location. Changes in the voltage provide an indication of the position and motion of valve internals.

  9. Limits on new forces coexisting with electromagnetism

    SciTech Connect

    Kloor, H.; Fischbach, E.; Talmadge, C.

    1994-02-15

    We consider the limits arising from different electromagnetic systems on the existence of a possible new electromagnetic analogue of the fifth force. Although such a force may have no intrinsic connection to electromagnetism (or gravity), its effects could be manifested through various anomalies in electromagnetic systems, for appropriate values of the coupling strength and range. Our work generalizes that of Bartlett and Loegl (who considered the case of a massive vector field coexisting with massless electrodynamics) to encompass a broad class of phenomenological interactions mediated by both scalar and vector exchanges. By combining data from both gravitational and electromagnetic systems,more » one can eventually set limits on a new force whose range [lambda] extends from the subatomic scale ([lambda][approx]10[sup [minus]15] m) to the astrophysical scale ([lambda][approx]10[sup 12] m).« less

  10. Electromagnetic moments of 22F

    NASA Astrophysics Data System (ADS)

    Mihara, M.; Matsuta, K.; Komurasaki, J.; Hirano, H.; Nishimura, D.; Momota, S.; Ohtsubo, T.; Izumikawa, T.; Shimbara, Y.; Kubo, T.; Kameda, D.; Zhou, Dongmei; Zheng, Yongnan; Yuan, Daqing; Zhu, Shengyun; Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S.; Nagatomo, T.; Matsumiya, R.; Ishikawa, D.; Fukuda, M.; Minamisono, T.; Nojiri, Y.; Alonso, J. R.; Crebs, G. F.; Symons, T. J. M.

    2010-03-01

    The magnetic dipole (μ) and electric quadrupole (Q) moments of short-lived nucleus 22F (Iπ=4+, T=4.2s) have been measured for the first time by means of the β-NMR technique. A spin polarized 22F beam was produced through the charge exchange reaction of 22Ne and was implanted into single crysltals of NaF and MgF2 for μ and Q measurements, respectively. As a result, |μ(F22)|=(2.69443±0.00039)μ and |Q(F22)|=(3±2)mb was obtained. These values are well reproduced by the shell model calculations.

  11. The breast implant controversy.

    PubMed

    Cook, R R; Harrison, M C; LeVier, R R

    1994-02-01

    The breast implant issue is a "bad news/good news" story. For many women with implants, the controversy has caused a fair degree of anxiety which may or may not be resolved as further information becomes available. It has also taken its toll on Dow Corning. Whole lines of medical products have been eliminated or are being phase out. The development of new medical applications has been terminated. As a consequence, employees have lost their jobs. What the effect will be on the biomedical industry as a whole remains to be seen (11). While silicones have been an important component in various medical devices, it is likely that other materials can be used as replacements. However, suppliers of non-silicone materials are also reevaluating their role in this market. For example, Du Pont, the nation's largest chemical company, has determined that the unpredictable and excessive costs of doing business with manufacturers of implantable medical devices no longer justifies the unrestricted sale of standard raw materials into this industry. Other companies are quietly following suit. On the up side, it is possible that the research being driven by this controversy will result in a greater understanding of the immunologic implications of xenobiotics, of the importance of nonbiased observations, of the need for ready access to valid data sets, and of the opportunity for valid scientific information to guide legal decisions. Only time will tell.

  12. On electromagnetic and quantum invisibility

    NASA Astrophysics Data System (ADS)

    Mundru, Pattabhiraju Chowdary

    The principle objective of this dissertation is to investigate the fundamental properties of electromagnetic wave interactions with artificially fabricated materials i.e., metamaterials for application in advanced stealth technology called electromagnetic cloaking. The main goal is to theoretically design a metamaterial shell around an object that completely eliminates the dipolar and higher order multipolar scattering, thus making the object invisible. In this context, we developed a quasi-effective medium theory that determines the optical properties of multi-layered-composites beyond the quasi-static limit. The proposed theory exactly reproduces the far-field scattering/extinction cross sections through an iterative process in which mode-dependent quasi-effective impedances of the composite system are introduced. In the large wavelength limit, our theory is consistent with Maxwell-Garnett formalism. Possible applications in determining the hybridization particle resonances of multi-shell structures and electromagnetic cloaking are identified. This dissertation proposes a multi-shell generic cloaking system. A transparency condition independent of the object's optical and geometrical properties is proposed in the quasi-static regime of operation. The suppression of dipolar scattering is demonstrated in both cylindrically and spherically symmetric systems. A realistic tunable low-loss shell design is proposed based on the composite metal-dielectric shell. The effects due to dissipation and dispersion on the overall scattering cross-section are thoroughly evaluated. It is shown that a strong reduction of scattering by a factor of up to 103 can be achieved across the entire optical spectrum. Full wave numerical simulations for complex shaped particle are performed to validate the analytical theory. The proposed design does not require optical magnetism and is generic in the sense that it is independent of the object's material and geometrical properties. A generic

  13. Sub-meninges implantation reduces immune response to neural implants.

    PubMed

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L

    2013-04-15

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.

  14. Sub-meninges Implantation Reduces Immune Response to Neural Implants

    PubMed Central

    Markwardt, Neil T.; Stokol, Jodi; Rennaker, Robert L.

    2013-01-01

    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. PMID:23370311

  15. Measurement of fish movements at depths to 6000 m using a deep-ocean lander incorporating a short base-line sonar utilizing miniature code-activated transponder technology

    NASA Astrophysics Data System (ADS)

    Bagley, P. M.; Bradley, S.; Priede, I. G.; Gray, P.

    1999-12-01

    Most research on animal behaviour in the deep ocean (to depths of 6000 m) is restricted to the capture of dead specimens or viewing activity over small areas of the sea floor by means of cameras or submersibles. This paper describes the use of a miniature acoustic code-activated transponder (CAT) tag and short base-line sonar to track the movements of deep-sea fish in two dimensions over an area 1 km in diameter centred on a lander platform. The CAT tags and sonar are transported to the deep-sea floor by means of a subsea mooring which is ballasted so that it lands and remains on the sea floor for the duration of the tracking experiment (the lander). A description of the CAT, lander and short base-line sonar is given. Results are presented to illustrate the operation of the system.

  16. Electromagnetic Induction with Neodymium Magnets

    NASA Astrophysics Data System (ADS)

    Wood, Deborah; Sebranek, John

    2013-09-01

    In April 1820, Hans Christian Ørsted noticed that the needle of a nearby compass deflected briefly from magnetic north each time the electric current of the battery he was using for an unrelated experiment was turned on or off. Upon further investigation, he showed that an electric current flowing through a wire produces a magnetic field. In 1831 Michael Faraday and Joseph Henry separately expanded on Ørsted's discovery by showing that a changing magnetic field produces an electric current. Heinrich Lenz found in 1833 that an induced current has the opposite direction from the electromagnetic force that produced it. This paper describes an experiment that can help students to develop an understanding of Faraday's law and Lenz's law by studying the emf generated as a magnet drops through a set of coils having increasing numbers of turns.

  17. Healthcare vulnerabilities to electromagnetic pulse.

    PubMed

    Ross, Lenard H; Mihelic, F Matthew

    2008-01-01

    The U.S. healthcare system is particularly vulnerable to the effects of electromagnetic pulse (EMP) attack because of the system's technological sophistication, but while national defense planners prepare for the considerable threat that EMP poses, there has been little or no recognition of this threat within the US healthcare community, and neither has there been any significant healthcare planning to deal with such an eventuality. Recognition of the risk presented by EMP, and advance institution of appropriate strategies to mitigate its effects on the healthcare system, could enable the preservation of much of that system's function in the face of EMP-related disruptions, and will greatly further all-hazards disaster preparations.

  18. Tracking Electromagnetic Energy With SQUIDs

    NASA Technical Reports Server (NTRS)

    2005-01-01

    A superconducting quantum interference device (SQUID) is a gadget used to measure extremely weak signals, specifically magnetic flux. It can detect subtle changes in energy, up to 100 billion times weaker than the electromagnetic energy required to move a compass needle. SQUIDs are used for a variety of testing procedures where extreme sensitivity is required and where the test instrument need not come into direct contact with the test subject. NASA uses SQUIDs for remote, noncontact sensing in a variety of venues, including monitoring the Earth s magnetic field and tracking brain activity of pilots. Scientists at NASA s Goddard Space Flight Center have been making extensive use of this technology, from astrophysical research, to tracking the navigational paths of bees in flight to determine if they are using internal compasses. These very sensitive measurement devices have a wide variety of uses within NASA and even more uses within the commercial realm.

  19. A Hamiltonian electromagnetic gyrofluid model

    NASA Astrophysics Data System (ADS)

    Waelbroeck, F. L.; Hazeltine, R. D.; Morrison, P. J.

    2009-11-01

    An isothermal truncation of the electromagnetic gyrofluid model of Snyder and Hammett [Phys. Plasmas 8, 3199 (2001)] is shown to be Hamiltonian. The corresponding noncanonical Lie-Poisson bracket and its Casimir invariants are presented. The model describes the evolution of the density, the electrostatic potential, and the component of the vector potential along a strong background field. This makes it suitable for describing such phenomena as the propagation of kinetic-Alfv'en modons, the nonlinear saturation of drift-tearing modes, and the diamagnetic stabilization of the internal kink. The invariants are used to obtain a set of coupled Grad-Shafranov equations describing equilibria and propagating coherent structures. They also lead to a Lagrangian formulation of the equations of motion that is well suited to solution with the PIC method.

  20. Efficient transformer for electromagnetic waves

    DOEpatents

    Miller, R.B.

    A transformer structure for efficient transfer of electromagnetic energy from a transmission line to an unmatched load provides voltage multiplication and current division by a predetermined constant. Impedance levels are transformed by the square of that constant. The structure includes a wave splitter, connected to an input transmission device and to a plurality of output transmission devices. The output transmission devices are effectively connected in parallel to the input transmission device. The output transmission devices are effectively series connected to provide energy to a load. The transformer structure is particularly effective in increasing efficiency of energy transfer through an inverting convolute structure by capturing and transferring energy losses from the inverter to the load.