Sample records for implanted tio2 thin

  1. Mesoporous TiO2 implants for loading high dosage of antibacterial agent

    NASA Astrophysics Data System (ADS)

    Park, Se Woong; Lee, Donghyun; Choi, Yong Suk; Jeon, Hoon Bong; Lee, Chang-Hoon; Moon, Ji-Hoi; Kwon, Il Keun

    2014-06-01

    We have fabricated mesoporous thin films composed of TiO2 nanoparticles on anodized titanium implant surfaces for loading drugs at high doses. Surface anodization followed by treatment with TiO2 paste leads to the formation of mechanically stable mesoporous thin films with controllable thickness. A series of antibacterial agents (silver nanoparticles, cephalothin, minocycline, and amoxicillin) were loaded into the mesoporous thin films and their antibacterial activities were evaluated against five bacterial species including three oral pathogens. Additionally, two agents (silver nanoparticles and minocycline) were loaded together on the thin film and tested for antibacterial effectiveness. The combination of silver nanoparticles and minocycline was found to display a wide range of effectiveness against all tested bacteria.

  2. Above room temperature ferromagnetism in Si:Mn and TiO(2-delta)Co.

    PubMed

    Granovsky, A; Orlov, A; Perov, N; Gan'shina, E; Semisalova, A; Balagurov, L; Kulemanov, I; Sapelkin, A; Rogalev, A; Smekhova, A

    2012-09-01

    We present recent experimental results on the structural, electrical, magnetic, and magneto-optical properties of Mn-implanted Si and Co-doped TiO(2-delta) magnetic oxides. Si wafers, both n- and p-type, with high and low resistivity, were used as the starting materials for implantation with Mn ions at the fluencies up to 5 x 10(16) cm(-2). The saturation magnetization was found to show the lack of any regular dependence on the Si conductivity type, type of impurity and the short post-implantation annealing. According to XMCD Mn impurity in Si does not bear any appreciable magnetic moment at room temperature. The obtained results indicate that above room temperature ferromagnetism in Mn-implanted Si originates not from Mn impurity but rather from structural defects in Si. The TiO(2-delta):Co thin films were deposited on LaAlO3 (001) substrates by magnetron sputtering in the argon-oxygen atmosphere at oxygen partial pressure of 2 x 10(-6)-2 x 10(-4) Torr. The obtained transverse Kerr effect spectra at the visible and XMCD spectra indicate on intrinsic room temperature ferromagnetism in TiO(2-delta):Co thin films at low (< 1%) volume fraction of Co.

  3. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  4. Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.

    PubMed

    Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho

    2013-04-01

    Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Synthesis of Ag metallic nanoparticles by 120 keV Ag- ion implantation in TiO2 matrix

    NASA Astrophysics Data System (ADS)

    Sharma, Himanshu; Singhal, Rahul

    2017-12-01

    TiO2 thin film synthesized by the RF sputtering method has been implanted by 120 keV Ag- ion with different doses (3 × 1014, 1 × 1015, 3 × 1015, 1 × 1016 and 3 × 1016 ions/cm2). Further, these were characterized by Rutherford back Scattering, XRD, X-ray photoelectron spectroscopy (XPS), UV-visible and fluorescence spectroscopy. Here we reported that after implantation, localized surface Plasmon resonance has been observed for the fluence 3 × 1016 ions/cm2, which was due to the formation of silver nanoparticles. Ag is in metallic form in the matrix of TiO2, which is very interestingly as oxidation of Ag was reported after implantation. Also, we have observed the interaction between nanoparticles of Ag and TiO2, which results in an increasing intensity in lower charge states (Ti3+) of Ti. This interaction is supported by XPS and fluorescence spectroscopy, which can help improve photo catalysis and antibacterial properties.

  6. Influence of microstructure and chemical composition of sputter deposited TiO2 thin films on in vitro bioactivity.

    PubMed

    Lilja, Mirjam; Genvad, Axel; Astrand, Maria; Strømme, Maria; Enqvist, Håkan

    2011-12-01

    Functionalisation of biomedical implants via surface modifications for tailored tissue response is a growing field of research. Crystalline TiO(2) has been proven to be a bone bioactive, non-resorbable material. In contact with body fluids a hydroxyapaptite (HA) layer forms on its surface facilitating the bone contact. Thus, the path of improving biomedical implants via deposition of crystalline TiO(2) on the surface is interesting to follow. In this study we have evaluated the influence of microstructure and chemical composition of sputter deposited titanium oxide thin films on the in vitro bioactivity. We find that both substrate bias, topography and the flow ratio of the gases used during sputtering affect the HA layer formed on the films after immersion in simulated body fluid at 37°C. A random distribution of anatase and rutile crystals, formed at negative substrate bias and low Ar to O(2) gas flow ratios, are shown to favor the growth of flat HA crystal structures whereas higher flow ratios and positive substrate bias induced growth of more spherical HA structures. These findings should provide valuable information when optimizing the bioactivity of titanium oxide coatings as well as for tailoring process parameters for sputtered-based production of bioactive titanium oxide implant surfaces.

  7. Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants

    PubMed Central

    Liu, Luting; Bhatia, Ritwik; Webster, Thomas J

    2017-01-01

    Titanium (Ti) and its alloys have been extensively used as implant materials in orthopedic applications. Nevertheless, implants may fail due to a lack of osseointegration and/or infection. The aim of this in vitro study was to endow an implant surface with favorable biological properties by the dual modification of surface chemistry and nanostructured topography. The application of a nanostructured titanium dioxide (TiO2) coating on Ti-based implants has been proposed as a potential way to enhance tissue-implant interactions while inhibiting bacterial colonization simultaneously due to its chemical stability, biocompatibility, and antimicrobial properties. In this paper, temperature-controlled atomic layer deposition (ALD) was introduced for the first time to provide unique nanostructured TiO2 coatings on Ti substrates. The effect of nano-TiO2 coatings with different morphology and structure on human osteoblast and fibroblast functions and bacterial activities was investigated. In vitro results indicated that the TiO2 coating stimulated osteoblast adhesion and proliferation while suppressing fibroblast adhesion and proliferation compared to uncoated materials. In addition, the introduction of nano-TiO2 coatings was shown to inhibit gram-positive bacteria (Staphylococcus aureus), gram-negative bacteria (Escherichia coli), and antibiotic-resistant bacteria (methicillin-resistant Staphylococcus aureus), all without resorting to the use of antibiotics. Our results suggest that the increase in nanoscale roughness and greater surface hydrophilicity (surface energy) together could contribute to increased protein adsorption selectively, which may affect the cellular and bacterial activities. It was found that ALD-grown TiO2-coated samples with a moderate surface energy at 38.79 mJ/m2 showed relatively promising antibacterial properties and desirable cellular functions. The ALD technique provides a novel and effective strategy to produce TiO2 coatings with delicate control of surface nanotopography and surface energy to enhance the interfacial biocompatibility and mitigate bacterial infection, and could potentially be used for improving numerous orthopedic implants. PMID:29263665

  8. Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications

    NASA Astrophysics Data System (ADS)

    Park, Jae Young; Kim, Ho-hyoung; Rana, Dolly; Jamwal, Deepika; Katoch, Akash

    2017-03-01

    Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size ˜20 nm were used. The sensor’s response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.

  9. Porous TiO2-ZrO2 thin film formed by electrochemical technique to improve the biocompatibility of titanium alloy in physiological environment

    NASA Astrophysics Data System (ADS)

    Benea, L.; Dănăilă, E.; Ponthiaux, P.

    2017-02-01

    Porous Ti and Ti alloys have received increasing research interest for bone tissue engineering, especially for dental and orthopaedic implants because they provide cell ingrowths and vascularization, improving of adhesion and osseointegration. The tribocorrosion process is encountered in orthopaedic and dentistry applications, since it is known that the implants are often exposed to simultaneous chemical/electrochemical and mechanical stresses. The purpose of this study was to carry out a systematic investigation of the tribo-electrochemical performance of porous TiO2-ZrO2 thin film formed by anodization of Ti-10Zr alloy surface in an artificial saliva solution and to compare the resulted performance with that of the untreated Ti-10Zr alloy surface in order to be applied for biomedical use. The in situ electrochemical technique used for investigation of tribo-electrochemical degradation was the open circuit potential (OCP) measurement performed before, during and after sliding tests. The results presented herein show that controlled anodic oxidation method can significantly improve the tribocorrosion and friction performances of Ti-10Zr alloy surface intended for biomedical applications.

  10. Bone Response to Surface-Modified Titanium Implants: Studies on the Early Tissue Response to Implants with Different Surface Characteristics

    PubMed Central

    Larsson Wexell, C.; Thomsen, P.; Aronsson, B.-O.; Tengvall, P.; Rodahl, M.; Lausmaa, J.; Kasemo, B.; Ericson, L. E.

    2013-01-01

    In a series of experimental studies, the bone formation around systematically modified titanium implants is analyzed. In the present study, three different surface modifications were prepared and evaluated. Glow-discharge cleaning and oxidizing resulted in a highly stoichiometric TiO2 surface, while a glow-discharge treatment in nitrogen gas resulted in implants with essentially a surface of titanium nitride, covered with a very thin titanium oxide. Finally, hydrogen peroxide treatment of implants resulted in an almost stoichiometric TiO2, rich in hydroxyl groups on the surface. Machined commercially pure titanium implants served as controls. Scanning Auger Electron Spectroscopy, Scanning Electron Microscopy, and Atomic Force Microscopy revealed no significant differences in oxide thickness or surface roughness parameters, but differences in the surface chemical composition and apparent topography were observed. After surface preparation, the implants were inserted in cortical bone of rabbits and evaluated after 1, 3, and 6 weeks. Light microscopic evaluation of the tissue response showed that all implants were in contact with bone and had a large proportion of newly formed bone within the threads after 6 weeks. There were no morphological differences between the four groups. Our study shows that a high degree of bone contact and bone formation can be achieved with titanium implants of different surface composition and topography. PMID:24174936

  11. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    NASA Astrophysics Data System (ADS)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  12. Growth of rutile TiO2 nanorods in Ti and Cu ion sequentially implanted SiO2 and the involved mechanisms

    NASA Astrophysics Data System (ADS)

    Mu, Xiaoyu; Liu, Xiaoyu; Wang, Xiaohu; Dai, Haitao; Liu, Changlong

    2018-01-01

    TiO2 in nanoscale exhibits unique physicochemical and optoelectronic properties and has attracted much more interest of the researchers. In this work, TiO2 nanostructures are synthesized in amorphous SiO2 slices by implanting Ti ions, or sequentially implanting Ti and Cu ions combined with annealing at high temperature. The morphology, structure, spatial distribution and optical properties of the formed nanostructures have been investigated in detail. Our results clearly show that the thermal growth of TiO2 nanostructures in SiO2 substrate is significantly enhanced by presence of post Cu ion implantation, which depends strongly on the applied Cu ion fluence, as well as the annealing atmosphere. Due to the formation of Cu2O in the substrate, rutile TiO2 nanorods of large size have been well fabricated in the Ti and Cu sequentially implanted SiO2 after annealing in N2 atmosphere, in which Cu2O plays a role as a catalyst. Moreover, the sample with well-fabricated TiO2 nanorods exhibits a narrowed band gap, an enhanced optical absorption in visible region, and catalase-/peroxidase-like catalytic characteristics. Our findings provide an effective route to fabricate functional TiO2 nanorods in SiO2 via ion implantation.

  13. Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis.

    PubMed

    Yoshida, Tomoko; Niimi, Satoshi; Yamamoto, Muneaki; Nomoto, Toyokazu; Yagi, Shinya

    2015-06-01

    The thickness-controlled TiO2 thin films are fabricated by the pulsed laser deposition (PLD) method. These samples function as photocatalysts under UV light irradiation and the reaction rate depends on the TiO2 thickness, i.e., with an increase of thickness, it increases to the maximum, followed by decreasing to be constant. Such variation of the reaction rate is fundamentally explained by the competitive production and annihilation processes of photogenerated electrons and holes in TiO2 films, and the optimum TiO2 thickness is estimated to be ca. 10nm. We also tried to dope nitrogen into the effective depth region (ca. 10nm) of TiO2 by an ion implantation technique. The nitrogen doped TiO2 enhanced photocatalytic activity under visible-light irradiation. XANES and XPS analyses indicated two types of chemical state of nitrogen, one photo-catalytically active N substituting the O sites and the other inactive NOx (1⩽x⩽2) species. In the valence band XPS spectrum of the high active sample, the additional electronic states were observed just above the valence band edge of a TiO2. The electronic state would be originated from the substituting nitrogen and be responsible for the band gap narrowing, i.e., visible light response of TiO2 photocatalysts. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Transparent nanostructured Fe-doped TiO2 thin films prepared by ultrasonic assisted spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Rasoulnezhad, Hossein; Hosseinzadeh, Ghader; Ghasemian, Naser; Hosseinzadeh, Reza; Homayoun Keihan, Amir

    2018-05-01

    Nanostructured TiO2 and Fe-doped TiO2 thin films with high transparency were deposited on glass substrate through ultrasonic-assisted spray pyrolysis technique and were used in the visible light photocatalytic degradation of MB dye. The resulting thin films were characterized by scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence spectroscopy, x-ray diffraction (XRD), and UV-visible absorption spectroscopy techniques. Based on Raman spectroscopy results, both of the TiO2 and Fe-doped TiO2 films have anatase crystal structure, however, because of the insertion of Fe in the structure of TiO2 some point defects and oxygen vacancies are formed in the Fe-doped TiO2 thin film. Presence of Fe in the structure of TiO2 decreases the band gap energy of TiO2 and also reduces the electron–hole recombination rate. Decreasing of the electron–hole recombination rate and band gap energy result in the enhancement of the visible light photocatalytic activity of the Fe-doped TiO2 thin film.

  15. Cytotoxicity Evaluation of Anatase and Rutile TiO2 Thin Films on CHO-K1 Cells in Vitro

    PubMed Central

    Cervantes, Blanca; López-Huerta, Francisco; Vega, Rosario; Hernández-Torres, Julián; García-González, Leandro; Salceda, Emilio; Herrera-May, Agustín L.; Soto, Enrique

    2016-01-01

    Cytotoxicity of titanium dioxide (TiO2) thin films on Chinese hamster ovary (CHO-K1) cells was evaluated after 24, 48 and 72 h of culture. The TiO2 thin films were deposited using direct current magnetron sputtering. These films were post-deposition annealed at different temperatures (300, 500 and 800 °C) toward the anatase to rutile phase transformation. The root-mean-square (RMS) surface roughness of TiO2 films went from 2.8 to 8.08 nm when the annealing temperature was increased from 300 to 800 °C. Field emission scanning electron microscopy (FESEM) results showed that the TiO2 films’ thickness values fell within the nanometer range (290–310 nm). Based on the results of the tetrazolium dye and trypan blue assays, we found that TiO2 thin films showed no cytotoxicity after the aforementioned culture times at which cell viability was greater than 98%. Independently of the annealing temperature of the TiO2 thin films, the number of CHO-K1 cells on the control substrate and on all TiO2 thin films was greater after 48 or 72 h than it was after 24 h; the highest cell survival rate was observed in TiO2 films annealed at 800 °C. These results indicate that TiO2 thin films do not affect mitochondrial function and proliferation of CHO-K1 cells, and back up the use of TiO2 thin films in biomedical science. PMID:28773740

  16. RBS, TEM and SEM Characterization of Gold Nanoclusters in TiO2(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shutthanandan, V; Zhang, Yanwen; Wang, Chong M.

    2004-05-01

    Nucleation of gold nanoclusters in TiO2(110) single crystal using ion implantation and subsequent annealing were studied by Rutherford backscattering spectrometry /channeling (RBS/C), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Approximately 1000 Au2+/nm2 was implanted at room temperature in TiO2(110) substrates. TEM and SEM measurements revel that rounded nanoclusters were formed during the implantation. In contrast subsequent annealing in air for 10 hours at 1275 K promoted the formation of faceted (rectangular shaped) Au nano structures in TiO2. RBS channeling measurements further reveled that Au atoms randomly occupied in the host TiO2 lattice during the implantation. However, some ofmore » the gold atoms were moved into the Ti lattice position after annealing.« less

  17. Experimental Study of Acid Treatment Toward Characterization of Structural, Optical, and Morphological Properties of TiO2-SnO2 Composite Thin Film

    NASA Astrophysics Data System (ADS)

    Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko

    2018-04-01

    The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.

  18. Electrical and structural properties of TiO2-δ thin film with oxygen vacancies prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Kawamura, Kinya; Suzuki, Naoya; Tsuchiya, Takashi; Shimazu, Yuichi; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    Anatase TiO2-δ thin film was prepared by RF magnetron sputtering using oxygen radical and Ti-metal target. Degrees of the TiO2-δ crystal orientation in the thin film depends of the oxygen gas pressure (P\\text{O2}) in the radical gun. The (004)- and (112)-oriented TiO2-δ thin films crystallized without postannealing have the mixed valence Ti4+/Ti3+ state. The electrical conductivities, which corresponds to n-type oxide semiconductor, is higher in the case of (004)-oriented TiO2-δ thin film containing with high concentration of oxygen vacancy. The donor band of TiO2-δ thin film is observed at ˜1.0 eV from the Fermi level (E F). The density-of-state at E F is higher in (004)-oriented TiO2-δ thin film. The above results indicate that the oxygen vacancies can control by changing the P\\text{O2} of the oxygen radical.

  19. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  20. Foldable and Cytocompatible Sol-gel TiO2 Photonics

    NASA Astrophysics Data System (ADS)

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-01

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  1. Foldable and Cytocompatible Sol-gel TiO2 Photonics

    PubMed Central

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B.; Geiger, Sarah J.; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-01-01

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices. PMID:26344823

  2. Foldable and Cytocompatible Sol-gel TiO2 Photonics.

    PubMed

    Li, Lan; Zhang, Ping; Wang, Wei-Ming; Lin, Hongtao; Zerdoum, Aidan B; Geiger, Sarah J; Liu, Yangchen; Xiao, Nicholas; Zou, Yi; Ogbuu, Okechukwu; Du, Qingyang; Jia, Xinqiao; Li, Jingjing; Hu, Juejun

    2015-09-07

    Integrated photonics provides a miniaturized and potentially implantable platform to manipulate and enhance the interactions between light and biological molecules or tissues in in-vitro and in-vivo settings, and is thus being increasingly adopted in a wide cross-section of biomedical applications ranging from disease diagnosis to optogenetic neuromodulation. However, the mechanical rigidity of substrates traditionally used for photonic integration is fundamentally incompatible with soft biological tissues. Cytotoxicity of materials and chemicals used in photonic device processing imposes another constraint towards these biophotonic applications. Here we present thin film TiO2 as a viable material for biocompatible and flexible integrated photonics. Amorphous TiO2 films were deposited using a low temperature (<250 °C) sol-gel process fully compatible with monolithic integration on plastic substrates. High-index-contrast flexible optical waveguides and resonators were fabricated using the sol-gel TiO2 material, and resonator quality factors up to 20,000 were measured. Following a multi-neutral-axis mechanical design, these devices exhibit remarkable mechanical flexibility, and can sustain repeated folding without compromising their optical performance. Finally, we validated the low cytotoxicity of the sol-gel TiO2 devices through in-vitro cell culture tests. These results demonstrate the potential of sol-gel TiO2 as a promising material platform for novel biophotonic devices.

  3. Unusual photoelectric behaviors of Mo-doped TiO2 multilayer thin films prepared by RF magnetron co-sputtering: effect of barrier tunneling on internal charge transfer

    NASA Astrophysics Data System (ADS)

    Yan, B. X.; Luo, S. Y.; Mao, X. G.; Shen, J.; Zhou, Q. F.

    2013-01-01

    Mo-doped TiO2 multilayer thin films were prepared by RF magnetron co-sputtering. Microstructures, crystallite parameters and the absorption band were investigated with atomic force microscopy, X-ray diffraction and ultraviolet-visible spectroscopy. Internal carrier transport characteristics and the photoelectric property of different layer-assemble modes were examined on an electrochemical workstation under visible light. The result indicates that the double-layer structure with an undoped surface layer demonstrated a red-shifted absorption edge and a much stronger photocurrent compared to the uniformly doped sample, signifying that the electric field implanted at the interface between particles in different layers accelerated internal charge transfer effectively. However, a heavily doped layer implanted at the bottom of the three-layer film merely brought about negative effects on the photoelectric property, mainly because of the Schottky junction existing above the substrate. Nevertheless, this obstacle was successfully eliminated by raising the Mo concentration to 1020 cm-3, where the thickness of the depletion layer fell into the order of angstroms and the tunneling coefficient manifested a dramatic increase. Under this circumstance, the Schottky junction disappeared and the strongest photocurrent was observed in the three-layer film.

  4. Ab-initio calculation and experimental observation of room temperature ferromagnetism in 50 keV nitrogen implanted rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Chakrabarti, Mahuya; Sarkar, A.; Dechoudhury, S.; Bhowmick, D.; Naik, V.; Sanyal, D.

    2018-02-01

    Room temperature magnetic properties of 50 keV N4+ ion beam implanted rutile TiO2 have been theoretically and experimentally studied. Ab-initio calculation under the frame work of density functional theory has been carried out to study the magnetic properties of the different possible nitrogen related defects in TiO2. Spin polarized density of states calculation suggests that both Ninst and NO can induce ferromagnetic ordering in rutile TiO2. In both cases the 2p orbital electrons of nitrogen atom give rise to the magnetic moment in TiO2. The possibility of the formation of N2 molecule in TiO2 system is also studied but in this case no significant magnetic moment has been observed. The magnetic measurements, using SQUID magnetometer, results a ferromagnetic ordering even at room temperature for the 50 keV N4+ ion beam implanted rutile TiO2.

  5. Electrical and structural characterization of plasma polymerized polyaniline/TiO2 heterostructure diode: a comparative study of single and bilayer TiO2 thin film electrode.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik

    2011-04-01

    A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.

  6. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    PubMed

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  7. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    PubMed Central

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  8. The synergistic effect of TiO2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats.

    PubMed

    Jiang, Nan; Du, Pinggong; Qu, Weidong; Li, Lin; Liu, Zhonghao; Zhu, Songsong

    For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP) treatment and TiO 2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM), atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO 2 -modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO 2 -modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and suppressed osteoclastogenesis with increased expression of OPG and decreased levels of RANKL. These promising results show that PRP treatment combined with a TiO 2 -nanomodified surface can improve titanium-implant biomechanical stability in ovariectomized rats, suggesting a beneficial effect to support the success of implants in osteoporotic bone.

  9. The synergistic effect of TiO2 nanoporous modification and platelet-rich plasma treatment on titanium-implant stability in ovariectomized rats

    PubMed Central

    Jiang, Nan; Du, Pinggong; Qu, Weidong; Li, Lin; Liu, Zhonghao; Zhu, Songsong

    2016-01-01

    For several decades, titanium and its alloys have been commonly utilized for endosseous implantable materials, because of their good mechanical properties, chemical resistance, and biocompatibility. But associated low bone mass, wear and loss characteristics, and high coefficients of friction have limited their long-term stable performance, especially in certain abnormal bone-metabolism conditions, such as postmenopausal osteoporosis. In this study, we investigated the effects of platelet-rich plasma (PRP) treatment and TiO2 nanoporous modification on the stability of titanium implants in osteoporotic bone. After surface morphology, topographical structure, and chemical changes of implant surface had been detected by scanning electron microscopy (SEM), atomic force microscopy, contact-angle measurement, and X-ray diffraction, we firstly assessed in vivo the effect of PRP treatment on osseointegration of TiO2-modified implants in ovariectomized rats by microcomputed tomography examinations, histology, biomechanical testing, and SEM observation. Meanwhile, the potential molecular mechanism involved in peri-implant osseous enhancement was also determined by quantitative real-time polymerase chain reaction. The results showed that this TiO2-modified surface was able to lead to improve bone implant contact, while PRP treatment was able to increase the implant surrounding bone mass. The synergistic effect of both was able to enhance the terminal force of implants drastically in biomechanical testing. Compared with surface modification, PRP treatment promoted earlier osteogenesis with increased expression of the RUNX2 and COL1 genes and suppressed osteoclastogenesis with increased expression of OPG and decreased levels of RANKL. These promising results show that PRP treatment combined with a TiO2-nanomodified surface can improve titanium-implant biomechanical stability in ovariectomized rats, suggesting a beneficial effect to support the success of implants in osteoporotic bone. PMID:27695328

  10. Antibacterial effect of visible light reactive TiO2/Ag nanocomposite thin film on the orthodontic appliances.

    PubMed

    Yun, Kwidug; Oh, Gyejeong; Vang, Mongsook; Yang, Hongso; Lim, Hyunpil; Koh, Jeongtae; Jeong, Woonjo; Yoon, Dongjoo; Lee, Kyungku; Lee, Kwangmin; Park, Sangwon

    2011-08-01

    This study evaluated the antibacterial effect of a visible light reactive TiO2/Ag nanocomposite thin film on dental orthodontic wire (STS 304 wire). The growth of S. mutans and A. actinomycetemcomitans was suppressed on the specimens coated with TiO2/Ag compared to the uncoated specimens. The antibacterial effect of the TiO2/Ag nanocomposite thin film was improved under visible light irradiation.

  11. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces.

    PubMed

    Su, E P; Justin, D F; Pratt, C R; Sarin, V K; Nguyen, V S; Oh, S; Jin, S

    2018-01-01

    The development and pre-clinical evaluation of nano-texturised, biomimetic, surfaces of titanium (Ti) implants treated with titanium dioxide (TiO 2 ) nanotube arrays is reviewed. In vitro and in vivo evaluations show that TiO 2 nanotubes on Ti surfaces positively affect the osseointegration, cell differentiation, mineralisation, and anti-microbial properties. This surface treatment can be superimposed onto existing macro and micro porous Ti implants creating a surface texture that also interacts with cells at the nano level. Histology and mechanical pull-out testing of specimens in rabbits indicate that TiO 2 nanotubes improves bone bonding nine-fold (p = 0.008). The rate of mineralisation associated with TiO 2 nanotube surfaces is about three times that of non-treated Ti surfaces. In addition to improved osseointegration properties, TiO 2 nanotubes reduce the initial adhesion and colonisation of Staphylococcus epidermidis Collectively, the properties of Ti implant surfaces enhanced with TiO 2 nanotubes show great promise. Cite this article: Bone Joint J 2018;100-B(1 Supple A):9-16. ©2018 The British Editorial Society of Bone & Joint Surgery.

  12. Immobilization of TiO 2 nanofibers on titanium plates for implant applications

    NASA Astrophysics Data System (ADS)

    Lim, Jin Ik; Yu, Bin; Woo, Kyung Mi; Lee, Yong-Keun

    2008-12-01

    Nanofibers have shown good biological performances such as improved cell adhesion and differentiation; therefore, nanofibrous modification of dental and bone implants might enhance osseo-integration. The purpose of this study was to investigate the nanofibrous modification of titanium implants. TiO 2 nanofibers were fabricated by the electrospinning method using a mixture of Ti(IV)isopropoxide and poly(vinyl pyrrolidone) (PVP) in acidic alcohol solution. Then the nanofibers were immobilized on the NaOH/HCl-treated titanium plates by inducing the alcohol condensation reaction of Ti(IV)isopropoxide with Ti-OH group on the titanium surface and subsequent calcination (500-1000 °C). The immobilized TiO 2 nanofibers were characterized by SEM, XRD and a simulated removal test. The diameter of the TiO 2 nanofibers could be controlled within the range of 20-350 nm by changing the amounts of Ti(IV)isopropoxide and PVP. Phase transformation from anatase to rutile was observed after calcination. After the simulated removal test, TiO 2 nanofibers remained on titanium surface. These TiO 2 nanofibers on titanium plates could be used for the surface modification of titanium implants to improve the osseo-integration.

  13. Observation of shift in band gap with annealing in hydrothermally synthesized TiO2-thin films

    NASA Astrophysics Data System (ADS)

    Pawar, Vani; Jha, Pardeep K.; Singh, Prabhakar

    2018-05-01

    Anatase TiO2 thin films were synthesized by hydrothermal method. The films were fabricated on a glass substrate by spin coating unit and annealed at 500 °C for 2 hours in ambient atmosphere. The effect of annealing on microstructure and optical properties of TiO2 thin films namely, just deposited and annealed thin film were investigated. The XRD data confirms the tetragonal crystalline structure of the films with space group I41/amd. The surface morphology suggests that TiO2 particles are almost homogeneous in size and annealing of the film affect the grain growth of the particles. The band gap energy increases from 2.81 to 3.34 eV. On the basis of our observation, it can be concluded that the annealing of TiO2 thin films enhances the absorption range and it may find potential application in the field of solar cells.

  14. Dip coated TiO2 nanostructured thin film: synthesis and application

    NASA Astrophysics Data System (ADS)

    Vanaraja, Manoj; Muthukrishnan, Karthika; Boomadevi, Shanmugam; Karn, Rakesh Kumar; Singh, Vijay; Singh, Pramod K.; Pandiyan, Krishnamoorthy

    2016-02-01

    TiO2 thin film was fabricated by dip coating method using titanium IV chloride as precursor and sodium carboxymethyl cellulose as thickening as well as capping agent. Structural and morphological features of TiO2 thin film were characterized by X-ray diffractometer and field emission scanning electron microscope, respectively. Crystallinity of the film was confirmed with high-intensity peak at (101) plane, and its average crystallite size was found to be 28 nm. The ethanol-sensing properties of TiO2 thin film was studied by the chemiresistive method. Furthermore, various gases were tested in order to verify the selectivity of the sensor. Among the several gases, the fabricated TiO2 sensor showed very high selectivity towards ethanol at room temperature.

  15. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  16. Micropatterning of TiO2 thin films by MOCVD and study of their growth tendency.

    PubMed

    Hwang, Ki-Hwan; Kang, Byung-Chang; Jung, Duk Young; Kim, Youn Jea; Boo, Jin-Hyo

    2015-03-23

    In this work, we studied the growth tendency of TiO2 thin films deposited on a narrow-stripe area (<10 μm). TiO2 thin films were selectively deposited on OTS patterned Si(100) substrates by MOCVD. The experimental data showed that the film growth tendency was divided into two behaviors above and below a line patterning width of 4 μm. The relationship between the film thickness and the deposited area was obtained as a function of f(x) = a[1 - e((-bx))]c. To find the tendency of the deposition rate of the TiO2 thin films onto the various linewidth areas, the relationship between the thickness of the TiO2 thin film and deposited linewidth was also studied. The thickness of the deposited TiO2 films was measured from the alpha-step profile analyses and cross-sectional SEM images. At the same time, a computer simulation was carried out to reveal the relationship between the TiO2 film thickness and deposited line width. The theoretical results suggest that the mass (velocity) flux in flow direction is directly affected to the film thickness.

  17. Degradation product analysis from the photocatalytic oxidation/reduction of 2,4-dichlorophenol in the presence of mesoporous silica encapsulated TiO2 particles and TiO2 dispersions (presentation)

    EPA Science Inventory

    Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...

  18. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2.

    PubMed

    Colon, Gabriel; Ward, Brian C; Webster, Thomas J

    2006-09-01

    Many engineers and surgeons trace implant failure to poor osseointegration (or the bonding of an orthopedic implant to juxtaposed bone) and/or bacteria infection. By using novel nanotopographies, researchers have shown that nanostructured ceramics, carbon fibers, polymers, metals, and composites enhance osteoblast adhesion and calcium/phosphate mineral deposition. However, the function of bacteria on materials with nanostructured surfaces remains largely uninvestigated. This is despite the fact that during normal surgical insertion of an orthopedic implant, bacteria from the patient's own skin and/or mucosa enters the wound site. These bacteria (namely, Staphylococcus epidermidis) irreversibly adhere to an implant surface while various physiological stresses induce alterations in the bacterial growth rate leading to biofilm formation. Because of their integral role in determining the success of orthopedic implants, the objective of this in vitro study was to examine the functions of (i) S. epidermidis and (ii) osteoblasts (or bone-forming cells) on ZnO and titania (TiO(2)), which possess nanostructured compared to microstructured surface features. ZnO is a well-known antimicrobial agent and TiO(2) readily forms on titanium once implanted. Results of this study provided the first evidence of decreased S. epidermidis adhesion on ZnO and TiO(2) with nanostructured when compared with microstructured surface features. Moreover, compared with microphase formulations, results of this study showed increased osteoblast adhesion, alkaline phosphatase activity, and calcium mineral deposition on nanophase ZnO and TiO(2). In this manner, this study suggests that nanophase ZnO and TiO(2) may reduce S. epidermidis adhesion and increase osteoblast functions necessary to promote the efficacy of orthopedic implants.

  19. Study of nitrogen ion doping of titanium dioxide films

    NASA Astrophysics Data System (ADS)

    Ramos, Raul; Scoca, Diego; Borges Merlo, Rafael; Chagas Marques, Francisco; Alvarez, Fernando; Zagonel, Luiz Fernando

    2018-06-01

    This study reports on the properties of nitrogen doped titanium dioxide (TiO2) thin films considering the application as a transparent conducting oxide (TCO). Sets of thin films were prepared by sputtering a titanium target under oxygen atmosphere on a quartz substrate at 400 or 500 °C. Films were then doped at the same temperature by 150 eV nitrogen ions. The films were prepared in Anatase phase which was maintained after doping. Up to 30 at% nitrogen concentration was obtained at the surface, as determined by in situ X-ray photoelectron spectroscopy (XPS). Such high nitrogen concentration at the surface lead to nitrogen diffusion into the bulk which reached about 25 nm. Hall measurements indicate that average carrier density reached over 1019 cm-3 with mobility in the range of 0.1-1 cm2 V-1 s-1. Resistivity about 3 · 10-1 Ω cm could be obtained with 85% light transmission at 550 nm. These results indicate that low energy implantation is an effective technique for TiO2 doping that allows an accurate control of the doping process independently from the TiO2 preparation. Moreover, this doping route seems promising to attain high doping levels without significantly affecting the film structure. Such approach could be relevant for preparation of N:TiO2 transparent conducting electrodes (TCE).

  20. Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass

    NASA Astrophysics Data System (ADS)

    Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang

    2018-03-01

    Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.

  1. Synthesis and characterization of a mixed phase of anatase TiO2 and TiO2(B) by low pressure chemical vapour deposition (LPCVD) for high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chimupala, Y.; Hyett, G.; Simpson, R.; Brydson, R.

    2014-06-01

    This project is concerned with enhancing photocatalytic activity by preparing a mixed phase of nano-sized TiO2. TiO2 thin films were synthesized by using Low Pressure Chemical Vapour Deposition (LPCVD). Titanium isopropoxide and N2 gas were used as the precursor and carrier gas respectively. The effects of reaction temperature, carrier gas flow rate and deposited area were studied. TiO2 thin films with nano-sized TiO2 particles were obtained under suitable conditions and SEM, TEM, powder XRD and Raman spectroscopy were employed to characterize the phase and physical appearance of synthesized materials. Preliminary results show that a dual phase (TiO2(B) and anatase) thin film nanopowder was successfully prepared by LPCVD with needle- and polygonal plate-shape crystallites respectively. This thin film deposit produced a preferred orientation of TiO2(B) needles in the [001] direction of average crystallite size 50-80 nm in length and 5-10 nm in width, whilst the crystallite size of anatase polygonal-plates was around 200 nm. The optimal LPCVD condition for preparing this mixed phase of TiO2 was 600°C with a 1 mL/s N2 flow rate.

  2. Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor

    NASA Astrophysics Data System (ADS)

    Huang, Chieh-Szu; Chang, Ming-Chuan; Huang, Cheng-Liang; Lin, Shih-kang

    2016-12-01

    Thin-film electroluminescent devices are promising solid-state lighting devices. Red light-emitting phosphor is the key component to be integrated with the well-established blue light-emitting diode chips for stimulating natural sunlight. However, environmentally hazardous rare-earth (RE) dopants, e.g. Eu2+ and Ce2+, are commonly used for red-emitting phosphors. Mg2TiO4 inverse spinel has been reported as a promising matrix material for "RE-free" red light luminescent material. In this paper, Mg2TiO4 inverse spinel is investigated using both experimental and theoretical approaches. The Mg2TiO4 thin films were deposited on Si (100) substrates using either spin-coating with the sol-gel process, or radio frequency sputtering, and annealed at various temperatures ranging from 600°C to 900°C. The crystallinity, microstructures, and photoluminescent properties of the Mg2TiO4 thin films were characterized. In addition, the atomistic model of the Mg2TiO4 inverse spinel was constructed, and the electronic band structure of Mg2TiO4 was calculated based on density functional theory. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal thin-film processing conditions were comprehensively reported.

  3. Osteoconductivity and Hydrophilicity of TiO2 Coatings on Ti Substrates Prepared by Different Oxidizing Processes

    PubMed Central

    Yamamoto, Dai; Kawai, Ikki; Kuroda, Kensuke; Ichino, Ryoichi; Okido, Masazumi; Seki, Azusa

    2012-01-01

    Various techniques for forming TiO2 coatings on Ti have been investigated for the improvement of the osteoconductivity of Ti implants. However, it is not clear how the oxidizing process affects this osteoconductivity. In this study, TiO2 coatings were prepared using the following three processes: anodizing in 0.1 M H3PO4 or 0.1 M NaOH aqueous solution; thermal oxidation at 673 K for 2 h in air; and a two-step process of anodizing followed by thermal oxidation. The oxide coatings were evaluated using SEM, XRD, and XPS. The water contact angle on the TiO2 coatings was measured as a surface property. The osteoconductivity of these samples was evaluated by measuring the contact ratio of formed hard tissue on the implanted samples (defined as the R B-I value) after 14 d implantation in rats' tibias. Anatase was formed by anodizing and rutile by thermal oxidation, but the difference in the TiO2 crystal structure did not influence the osteoconductivity. Anodized TiO2 coatings were hydrophilic, but thermally oxidized TiO2 coatings were less hydrophilic than anodized TiO2 coatings because they lacked in surface OH groups. The TiO2 coating process using anodizing without thermal oxidation gave effective improvement of the osteoconductivity of Ti samples. PMID:23316128

  4. Self assembled sulfur induced interconnected nanostructure TiO2 electrode for visible light photoresponse and photocatalytic application

    NASA Astrophysics Data System (ADS)

    Anitha, B.; Ravidhas, C.; Venkatesh, R.; Raj, A. Moses Ezhil; Ravichandran, K.; Subramanian, B.; Sanjeeviraja, C.

    2017-07-01

    Pristine TiO2 and sulfur doped TiO2 (S-TiO2) thin films were coated over the glass substrates by varying the concentration of sulfur source (thiourea - 2, 4, 6, 8 and 10 at%) using a cost-effective Jet nebulizer spray technique. The deposited thin films were in anatase phase with the tetragonal structure analyzed from the XRD pattern. The chemical state of the elements was determined from XPS analysis. Pristine TiO2 and S-TiO2 thin films depict the presence of spherical particles embedded over 3-D interconnected wire-like structure from SEM analysis. Optical studies revealed reduction in band gap of S-TiO2 films on increasing the sulfur concentration (3.2-2.8 eV). The sulfur incorporation in TiO2 lattice confirmed by the fall in intensity of near band edge emission as observed from room temperature PL spectra. The charge carrier dynamics of the prepared thin films were studied by means of steady state and transient photoconduction measurements. The photocatalytic performance of pristine TiO2 and S-TiO2 thin films for the degradation of malachite green dye was investigated under visible light.

  5. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  6. Gas sensing properties of very thin TiO2 films prepared by atomic layer deposition (ALD)

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Baji, Zs; Gáber, F.; Szilágyi, I. M.

    2014-11-01

    Very thin titanium dioxide (TiO2) films of less than 10 nm were deposited by atomic layer deposition (ALD) in order to study their gas sensing properties. Applying the quartz crystal microbalance (QCM) method, prototype structures with the TiO2 ALD deposited thin films were tested for sensitivity to NO2. Although being very thin, the films were sensitive at room temperature and could register low concentrations as 50-100 ppm. The sorption is fully reversible and the films seem to be capable to detect for long term. These initial results for very thin ALD deposited TiO2 films give a promising approach for producing gas sensors working at room temperature on a fast, simple and cost-effective technology.

  7. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation

    NASA Astrophysics Data System (ADS)

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-01

    The metal-oxide semiconductor TiO2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO2, but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W-1) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO2.

  8. Significantly enhanced visible light response in single TiO2 nanowire by nitrogen ion implantation.

    PubMed

    Wu, Pengcheng; Song, Xianyin; Si, Shuyao; Ke, Zunjian; Cheng, Li; Li, Wenqing; Xiao, Xiangheng; Jiang, Changzhong

    2018-05-04

    The metal-oxide semiconductor TiO 2 shows enormous potential in the field of photoelectric detection; however, UV-light absorption only restricts its widespread application. It is considered that nitrogen doping can improve the visible light absorption of TiO 2 , but the effect of traditional chemical doping is far from being used for visible light detection. Herein, we dramatically broadened the absorption spectrum of the TiO 2 nanowire (NW) by nitrogen ion implantation and apply the N-doped single TiO 2 NW to visible light detection for the first time. Moreover, this novel strategy effectively modifies the surface states and thus regulates the height of Schottky barriers at the metal/semiconductor interface, which is crucial to realizing high responsivity and a fast response rate. Under the illumination of a laser with a wavelength of 457 nm, our fabricated photodetector exhibits favorable responsivity (8 A W -1 ) and a short response time (0.5 s). These results indicate that ion implantation is a promising method in exploring the visible light detection of TiO 2 .

  9. Annealing effect on the structural, morphological and electrical properties of TiO2/ZnO bilayer thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Imran, S.; Shahnawaz; Saleem, Muhammad; Ur Rehman, Saif

    2018-03-01

    The effect of annealing temperature on the structural, morphological and electrical properties of TiO2/ZnO (TZ) thin films has been observed. Bilayer thin films of TiO2/ZnO are deposited on FTO glass substrate by spray pyrolysis method. After deposition, these films are annealed at 573 K, 723 K and 873 K. XRD shows that TiO2 is present in anatase phase only and ZnO is present in hexagonal phase. No other phases of TiO2 and ZnO are present. Also, there is no evidence of other compounds like Zn-Ti etc. It also shows that the average grain size of TiO2/ZnO films is increased by increasing annealing temperature. AFM (Atomic force microscope) showed that the average roughness of TiO2/ZnO films is decreased at temperature 573-723 K and then increased at 873 K. The calculated average sheet resistivity of thin films annealed at 573 K, 723 K and 873 K is 152.28 × 102, 75.29 × 102 and 63.34 × 102 ohm-m respectively. This decrease in sheet resistivity might be due to the increment of electron concentration with increasing thickness and the temperature of thin films.

  10. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.

  11. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    NASA Astrophysics Data System (ADS)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  12. Effect of Ti Substrate Ion Implantation on the Physical Properties of Anodic TiO2 Nanotubes

    NASA Astrophysics Data System (ADS)

    Jedi-Soltanabadi, Zahra; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-03-01

    The influence of nitrogen-ion implantation on the titanium (Ti) surface is studied. The nontreated Ti and the Ti treated with ion implantation were anodized in an ethylene-glycol-based electrolyte solution containing 0.3 wt% ammonium fluoride (NH4F) and 3 vol% deionized (DI) water at a potential of 60 V for 1 h at room temperature. The current density during the growth of the TiO2 nanotubes was monitored in-situ. The surface roughnesses of the Ti substrates before and after the ion implantation were investigated with atomic force microscopy (AFM). The surface roughness was lower for the treated Ti substrate. The morphology of the anodic TiO2 nanotubes was studied by using field-emission scanning electron microscopy (FESEM). Clearly, the titanium nanotubes grown on the treated substrate were longer. In addition, some ribs were observed on their walls. The optical band gap of the anodic TiO2 nanotubes was characterized by using a diffuse reflection spectral (DRS) analysis. The anodic TiO2 nanotubes grown on the treated Ti substrate revealed a band gap energy of approximately 3.02 eV.

  13. In vivo experimental study of anterior cervical fusion using bioactive polyetheretherketone in a canine model.

    PubMed

    Shimizu, Takayoshi; Fujibayashi, Shunsuke; Yamaguchi, Seiji; Otsuki, Bungo; Okuzu, Yaichiro; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2017-01-01

    Polyetheretherketone (PEEK) is a widely accepted biomaterial, especially in the field of spinal surgery. However, PEEK is not able to directly integrate with bone tissue, due to its bioinertness. To overcome this drawback, various studies have described surface coating approaches aimed at increasing the bioactivity of PEEK surfaces. Among those, it has been shown that the recently developed sol-gel TiO2 coating could provide PEEK with the ability to bond with bone tissue in vivo without the use of a bone graft. This in vivo experimental study using a canine model determined the efficacy of bioactive TiO2-coated PEEK for anterior cervical fusion. Sol-gel-derived TiO2 coating, which involves sandblasting and acid treatment, was used to give PEEK bone-bonding ability. The cervical interbody spacer, which was designed to fit the disc space of a beagle, was fabricated using bioactive TiO2-coated PEEK. Both uncoated PEEK (control) and TiO2-coated PEEK spacers were implanted into the cervical intervertebral space of beagles (n = 5 for each type). After the 3-month survival period, interbody fusion success was evaluated based on μ-CT imaging, histology, and manual palpation analyses. Manual palpation analyses indicated a 60% (3/5 cases) fusion (no gap between bone and implants) rate for the TiO2-coated PEEK group, indicating clear advantage over the 0% (0/5 cases) fusion rate for the uncoated PEEK group. The bony fusion rate of the TiO2-coated PEEK group was 40% according to μCT imaging; however, it was 0% of for the uncoated PEEK group. Additionally, the bone-implant contact ratio calculated using histomorphometry demonstrated a better contact ratio for the TiO2-coated PEEK group than for the uncoated PEEK group (mean, 32.6% vs 3.2%; p = 0.017). The TiO2-coated bioactive PEEK implant demonstrated better fusion rates and bone-bonding ability than did the uncoated PEEK implant in the canine anterior cervical fusion model. Bioactive PEEK, which has bone-bonding ability, could contribute to further improvements in clinical outcomes for spinal interbody fusion.

  14. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    NASA Astrophysics Data System (ADS)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  15. Optical, Electrical, and Crystal Properties of TiO2 Thin Films Grown by Atomic Layer Deposition on Silicon and Glass Substrates

    NASA Astrophysics Data System (ADS)

    Kupa, I.; Unal, Y.; Cetin, S. S.; Durna, L.; Topalli, K.; Okyay, A. K.; Ates, H.

    2018-05-01

    TiO2 thin films have been deposited on glass and Si(100) by atomic layer deposition (ALD) technique using tetrakis(diethylamido)titanium(IV) and water vapor as reactants. Thorough investigation of the properties of the TiO2/glass and TiO2/Si thin films was carried out, varying the deposition temperature in the range from 100°C to 250°C while keeping the number of reaction cycles fixed at 1000. Physical and material property analyses were performed to investigate optical and electrical properties, composition, structure, and morphology. TiO2 films grown by ALD may represent promising materials for future applications in optoelectronic devices.

  16. Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Yu, Xin; Guo, Weibo; Qiu, Jichuan; Mou, Xiaoning; Li, Aixue; Liu, Hong

    2016-04-01

    The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring.The demand for a highly sensitive and selective glucose biosensor which can be used for implantable or on-time monitoring is constantly increasing. In this work, TiO2 nanorods were synthesized in situ on the surface of graphite microfibers to yield TiO2 nanorod/graphite microfiber hybrid electrodes. The TiO2 nanorods not only retain the high activity of the immobilized glucose molecule, but also promote the direct electron transfer process on the electrode surface. As a working electrode in an electrochemical glucose biosensor in a flowing system, the microfiber hybrid electrodes exhibit high sensitivity, selectivity and stability. Due to its simplicity, low cost, high stability, and unique morphology, the TiO2 nanorod/graphite microfiber hybrid electrode is expected to be an excellent candidate for an implantable biosensor or for in situ flow monitoring. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01360k

  17. Interfacial band alignment and structural properties of nanoscale TiO2 thin films for integration with epitaxial crystallographic oriented germanium

    NASA Astrophysics Data System (ADS)

    Jain, N.; Zhu, Y.; Maurya, D.; Varghese, R.; Priya, S.; Hudait, M. K.

    2014-01-01

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO2) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO2 thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO2 thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO2/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO2 thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO2/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO2/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔEV(100) > ΔEV(111) > ΔEV(110) and a conduction band-offset relation of ΔEC(110) > ΔEC(111) > ΔEC(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO2 for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  18. Seebeck coefficient of synthesized Titanium Dioxide thin film on FTO glass substrate

    NASA Astrophysics Data System (ADS)

    Usop, R.; Hamed, N. K. A.; Megat Hasnan, M. M. I.; Ikeda, H.; Sabri, M. F. M.; Ahmad, M. K.; Said, S. M.; Salleh, F.

    2018-04-01

    In order to fabricate a thermoelectric device on glass substrate for harvesting waste heat energy through house appliances, the Seebeck coefficient of translucent TiO2 thin film was investigated. The TiO2 thin film was synthesized by using hydrothermal method with F-SnO2 coated glass as substrate. From scanning electron microscopy analysis, the synthesized TiO2 thin film was found to be in nanometer-scale rod structure with a thickness of 4 µm. The Seebeck coefficient was measured in the temperature range of 300 – 400 K. The Seebeck coefficient is found to be in negative value which shows that synthesized film is an n-type semiconductor material, and is lower than the value of bulk-size material. This reduction in Seebeck coefficient of TiO2 thin film is likely due to the low dimensional effect and the difference of carrier concentration.

  19. Effect of rapid thermal annealing on nanocrystalline TiO2 thin films synthesized by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha

    2012-08-01

    Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.

  20. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces.

    PubMed

    Wiedmer, David; Petersen, Fernanda Cristina; Lönn-Stensrud, Jessica; Tiainen, Hanna

    2017-07-01

    The chemical decontamination of infected dental implants is essential for the successful treatment of peri-implantitis. The aim of this study was to assess the antibacterial effect of a hydrogen peroxide-titanium dioxide (H 2 O 2 -TiO 2 ) suspension against Staphylococcus epidermidis biofilms. Titanium (Ti) coins were inoculated with a bioluminescent S. epidermidis strain for 8 h and subsequently exposed to H 2 O 2 with and without TiO 2 nanoparticles or chlorhexidine (CHX). Bacterial regrowth, bacterial load and viability after decontamination were analyzed by continuous luminescence monitoring, live/dead staining and scanning electron microscopy. Bacterial regrowth was delayed on surfaces treated with H 2 O 2 -TiO 2 compared to H 2 O 2 . H 2 O 2 -based treatments resulted in a lower bacterial load compared to CHX. Few viable bacteria were found on surfaces treated with H 2 O 2 and H 2 O 2 -TiO 2 , which contrasted with a uniform layer of dead bacteria for surfaces treated with CHX. H 2 O 2 -TiO 2 suspensions could therefore be considered an alternative approach in the decontamination of dental implants.

  1. Development of quantitative laser ionization mass spectrometry (LIMS). Final report, 1 Aug 87-1 Jan 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odom, R.W.

    1991-06-04

    The objective of the research was to develop quantitative microanalysis methods for dielectric thin films using the laser ionization mass spectrometry (LIMS) technique. The research involved preparation of thin (5,000 A) films of SiO2, Al2O3, MgF2, TiO2, Cr2O3, Ta2O5, Si3N4, and ZrO2, and doping these films with ion implant impurities of 11B, 40Ca, 56Fe, 68Zn, 81Br, and 121Sb. Laser ionization mass spectrometry (LIMS), secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectrometry (RBS) were performed on these films. The research demonstrated quantitative LIMS analysis down to detection levels of 10-100 ppm, and led to the development of (1) a compoundmore » thin film standards product line for the performing organization, (2) routine LIMS analytical methods, and (3) the manufacture of high speed preamplifiers for time-of-flight mass spectrometry (TOF-MS) techniques.« less

  2. The effect of TiO2 thin film thickness on self-cleaning glass properties

    NASA Astrophysics Data System (ADS)

    Mufti, Nandang; Laila, Ifa K. R.; Hartatiek; Fuad, Abdulloh

    2017-05-01

    TiO2 is one of semiconductor materials which are widely used as photocatalyst in the form of a thin film. The TiO2 thin film is prepared by using the spin coating sol-gel method. The researcher prepared TiO2 thin film with 3 coating variations and X-Ray Diffraction characterization, UV-Vis Spectrophotometer, Electron Microscopy Scanning, and examined its hydrophilic and anti-fogging properties. The result of X-Ray Diffraction showed that the phase formed is the anatase on 101crystal field. The Electron Microscopy Scanning images showed that TiO2 thin films had a homogeneous surface with the particle sizes as big as 235 nm, 179 nm, and 137 nm. The thickness of each thin film was 2.06μm, 3.33μm, and 5.20μm. The characterization of UV-Vis Spectrophotometer showed that the greatest absorption to the wavelength of visible light was in the thin film’s thickness of 3 coatings with the band-gap determined by using 3.30 eV, 3.33 eV, and 3.33 eV Plot Tuoc. These results indicated that the rate of absorption would be increased by increasing the thickness of film. The increasing thickness of the thin film makes the film hydrophilic able to be used as an anti-fogging substance.

  3. Nanostructured Gd3+-TiO2 surfaces for self-cleaning application

    NASA Astrophysics Data System (ADS)

    Saif, M.; El-Molla, S. A.; Aboul-Fotouh, S. M. K.; Ibrahim, M. M.; Ismail, L. F. M.; Dahn, Douglas C.

    2014-06-01

    Preparation of self-cleaning surfaces based on lanthanide modified titanium dioxide nanoparticles has rarely been reported. In the present work, gadolinium doped titanium dioxide thin films (x mol Gd3+-TiO2 where x = 0.000, 0.005, 0.008, 0.010, 0.020 and 0.030 mol) were synthesized by sol-gel method and deposited using doctor-blade method. These films were characterized by studying their structural, optical and electrical properties. Doping with gadolinium decreases the band gap energy and increase conductivity of thin films. The photo self-cleaning activity in term of quantitative determination of the active oxidative species (rad OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results show that, the highly active thin film is the 0.020 Gd3+-TiO2. The structural, morphology, optical, electrical and photoactivity properties of Gd3+-TiO2 thin films make it promising surfaces for self-cleaning application. Mineralization of commercial textile dye (Remazol Red RB-133, RR) and durability using 0.020Gd3+-TiO2 film surface was studied.

  4. Effects of atomic oxygen on titanium dioxide thin film

    NASA Astrophysics Data System (ADS)

    Shimosako, Naoki; Hara, Yukihiro; Shimazaki, Kazunori; Miyazaki, Eiji; Sakama, Hiroshi

    2018-05-01

    In low earth orbit (LEO), atomic oxygen (AO) has shown to cause degradation of organic materials used in spacecrafts. Similar to other metal oxides such as SiO2, Al2O3 and ITO, TiO2 has potential to protect organic materials. In this study, the anatese-type TiO2 thin films were fabricated by a sol-gel method and irradiated with AO. The properties of TiO2 were compared using mass change, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmittance spectra and photocatalytic activity before and after AO irradiation. The results indicate that TiO2 film was hardly eroded and resistant against AO degradation. AO was shown to affects only the surface of a TiO2 film and not the bulk. Upon AO irradiation, the TiO2 films were slightly oxidized. However, these changes were very small. Photocatalytic activity of TiO2 was still maintained in spite of slight decrease upon AO irradiation, which demonstrated that TiO2 thin films are promising for elimination of contaminations outgassed from a spacecraft's materials.

  5. Gd, I-doped TiO2 thin films coated on solid waste material: synthesis, characterization, and photocatalytic activity under UV or visible light irradiation

    NASA Astrophysics Data System (ADS)

    Deng, Siwei; Yu, Jiang; Yang, Chun; Chang, Jiahua; Wang, Yizheng; Wang, Ping; Xie, Shiqian

    2017-10-01

    In this work, titanium dioxide thin films doped with different concentrations of gadolinium (Gd) and iodine (I) were synthesized using the sol-gel method and successfully coated on solid waste material (made in our lab) by dipping, resulting in the titanium dioxide thin-film-coated material (TiO2M). Then, the doped titanium dioxide thin films were characterized by X-ray diffraction (XRD), SEM, and UV-Vis spectroscopy; the optimum coating cycle was evaluated by removal rates of COD and ammonia nitrogen in raw wastewater and secondary effluent. Moreover, the photocatalytic activity was determined by degradation efficiency of methyl orange. The results showed that TiO2M had desirable reusability and the photocatalytic activity was attractive under ultraviolet light irradiation. Furthermore, it is found that the amount of dopant in TiO2 was a key parameter in increasing the photoactivity. 1% Gd-doped TiO2M exhibited the best photocatalytic activity for the degradation of methyl orange with the removal rate reaching 85.55%. The result was in good agreement with the observed smaller crystallite size and profitable crystal structure (anatase phase). Besides, the TiO2M (0.8% Gd-doped TiO2M, 1% Gd-doped TiO2M, 10% I-doped TiO2M, and 5% I-1% Gd-doped TiO2M) with desirable photocatalytic activity at ultraviolet light irradiation was selected for the visible light photocatalytic experiments with taking methyl orange as the target pollutants. The results showed that all of them exhibited the similar photocatalytic activity after 7 h of sunlight irradiation (around 90% removal effect). In general, this research developed a very effective and environmentally friendly photocatalyst for pollutant degradation.

  6. Influence of Operating Parameters on Surface Properties of RF Glow Discharge Oxygen Plasma Treated TiO2/PET Film for Biomedical Application

    EPA Science Inventory

    Thin transparent titania (TiO2) films were coated on the surface of flexible poly (ethylene terephthalate) (PET) surface using standard sol gel techniques. The TiO2/PET thin film surfaces were further modified by exposing the films to a RF glow discharge oxygen plasma. The exposu...

  7. Hydroxyapatite Coating on TiO₂ Nanotube by Sol-Gel Method for Implant Applications.

    PubMed

    Lim, Hyun-Pil; Park, Sang-Won; Yun, Kwi-Dug; Park, Chan; Ji, Min-Kyung; Oh, Gye-Jeong; Lee, Jong-Tak; Lee, Kwangmin

    2018-02-01

    The aim of this study was to determine the effect of hydroxyapatite (HA) coating on titanium dioxide (TiO2) nanotube by sol-gel process on viability of osteoblast like cell (MC3T3-E1) and bone formation in rat tibia. Specimens were divided into three groups including commercially pure titanium (control group), TiO2 nanotubes (group N), and HA coated TiO2 nanotubes (group HN). Surface characteristics were determined using field emission scanning electron microscope (FE-SEM; S-4700, Hitachi, Japan) and contact angles were measured. Cell viability was investigated in vitro after 1 day, 3 days, and 7 days of incubation. Implants (2.0 mm in diameter and 5.0 mm in length) were inserted into the tibia of rats. After 4 weeks, histomorphometric analysis was performed. Both N and HN groups showed enhanced hydrophilicity compared to control group. After 7 days of implantation, group HN showed higher cell viability with marginal significance (0.05 < P < 0.1). Bone to implant contact (BIC) ratio in the control group, group N, and group HN were 32.5%, 33.1%, and 43.8%, respectively. Results of this study showed that HA coated TiO2 nanotube using sol-gel process could be used to enhance hydrophilicity and improve osseointegration of dental implant surface.

  8. SnO2/TiO2 bilayer thin films exhibiting superhydrophilic properties

    NASA Astrophysics Data System (ADS)

    Talinungsang, Nibedita Paul; Purkayastha, Debarun Dhar

    2017-05-01

    Nanostructured thin films of TiO2, SnO2, and SnO2/TiO2 have been deposited by sol-gel method. The films are characterized by X-ray diffraction, wettability and optical properties. In the present work, we have achieved a way of converting hydrophilic to super-hydrophilic state by incorporating TiO2 buffer layer in between substrate and SnO2 film, which has its utility in anti-fogging surfaces. The decrease in contact angle of water over SnO2/TiO2 bilayer is attributed to the increase in roughness of the film as well as surface energy of the substrate.

  9. COMMUNICATION: Drug loading of nanoporous TiO2 films

    NASA Astrophysics Data System (ADS)

    Ayon, Arturo A.; Cantu, Michael; Chava, Kalpana; Mauli Agrawal, C.; Feldman, Marc D.; Johnson, Dave; Patel, Devang; Marton, Denes; Shi, Emily

    2006-12-01

    The loading of therapeutic amounts of drug on a nanoporous TiO2 surface is described. This novel drug-loading scheme on a biocompatible surface, when employed on medical implants, will benefit patients who require the deployment of drug-eluting implants. Anticoagulants, analgesics and antibiotics can be considered on the associated implants for drug delivery during the time of maximal pain or risk for patients undergoing orthopedic procedures. Therefore, this scheme will maximize the chances of patient recovery.

  10. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    PubMed Central

    Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks

    2017-01-01

    Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331

  11. Effect of laser irradiation on the structural, morphological and electrical properties of polycrystalline TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.; Ali, Asghar

    TiO2 thin film is deposited on glass substrate by sol-gel dip coating technique. After deposition, films were irradiated by continuous wave (CW) diode laser at an angle of 45°. XRD shows both the anatase and brookite phases of TiO2. Nano particles of regular and control sizes are appeared in SEM micrographs. Therefore, shape and size of nano particles can be control by using Laser irradiation. The average sheet resistivity of TiO2 thin film irradiated by 0, 2, 4 and 6 min are 6.72 × 105, 5.32 × 105, 3.44 × 105 and 4.95 × 105 (ohm-m) respectively, according to four point probe.

  12. Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Qamar, Mohammad; Drmosh, Qasem; Ahmed, Muhammad I.; Qamaruddin, Muhammad; Yamani, Zain H.

    2015-02-01

    Development of nanostructured photocatalysts for harnessing solar energy in energy-efficient and environmentally benign way remains an important area of research. Pure and WO3-surface modified thin films of TiO2 were prepared by magnetron sputtering on indium tin oxide glass, and photoelectrochemical and photocatalytic activities of these films were studied. TiO2 particles were <50 nm, while deposited WO3 particles were <20 nm in size. An enhancement in the photocurrent was observed when the TiO2 surface was modified WO3 nanoparticles. Effect of potential, WO3 amount, and radiations of different wavelengths on the photoelectrochemical activity of TiO2 electrodes was investigated. Photocatalytic activity of TiO2 and WO3-modified TiO2 for the decolorization of methyl orange was tested.

  13. Tunability of morphological properties of Nd-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Rehan, Imran; Sultana, Sabiha; Khan, Nauman; Qamar, Zahid; Rehan, Kamran

    2016-11-01

    In this work, an endeavor is made toward structural assessment and morphological variation of titanium dioxide (TiO2) thin films when doped with neodymium (Nd). The electron beam deposition technique was employed to fabricate Nd-based TiO2 thin films on n-Type Si substrates. Nd concentration was varied from 0.0 to 2.0 atomic percent (at.%) under identical growth environments. The films were deposited in an oxygen-deficient environment to cause the growth of rutile phases. Energy dispersive x-ray spectroscopy confirmed the presence and variation of Nd dopant in TiO2. X-ray diffraction analysis showed the transformation of amorphous structures of the as-grown samples to anatase polycrystalline after annealing at 500 °C, while atomic force microscopy exposed linearity in grain density in as-grown samples with doping until 1 at.%. Raman spectrums of as-grown and annealed samples revealed the growth of the anatase phase in the annealed samples. Based on these results it can be proposed that Nd doping has pronounced effects on the structural characteristics of TiO2 thin films.

  14. Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide

    NASA Astrophysics Data System (ADS)

    Kannangara, Yasun Y.; Wijesena, Ruchira; Rajapakse, R. M. G.; de Silva, K. M. Nalin

    2018-04-01

    Photocatalytic semiconductor thin films have the ability to degrade volatile organic compounds (VOCs) causing numerous health problems. The group of VOCs called "BTEX" is abundant in houses and indoor of automobiles. Anatase phase of TiO2 has a band gap of 3.2 eV and UV radiation is required for photogeneration of electrons and holes in TiO2 particles. This band gap can be decreased significantly when TiO2 is doped with nitrogen (N-TiO2). Dopants like Pd, Cd, and Ag are hazardous to human health but N-doped TiO2 can be used in indoor pollutant remediation. In this research, N-doped TiO2 nano-powder was prepared and characterized using various analytical techniques. N-TiO2 was made in sol-gel method and triethylamine (N(CH2CH3)3) was used as the N-precursor. Modified quartz cell was used to measure the photocatalytic degradation of toluene. N-doped TiO2 nano-powder was illuminated with visible light (xenon lamp 200 W, λ = 330-800 nm, intensity = 1 Sun) to cause the degradation of VOCs present in static air. Photocatalyst was coated on a thin glass plate, using the doctor-blade method, was inserted into a quartz cell containing 2.00 µL of toluene and 35 min was allowed for evaporation/condensation equilibrium and then illuminated for 2 h. Remarkably, the highest value of efficiency 85% was observed in the 1 μm thick N-TiO2 thin film. The kinetics of photocatalytic degradation of toluene by N-TiO2 and P25-TiO2 has been compared. Surface topology was studied by varying the thickness of the N-TiO2 thin films. The surface nanostructures were analysed and studied with atomic force microscopy with various thin film thicknesses.

  15. Effect of molarity on sol-gel routed nano TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lourduraj, Stephen; Williams, Rayar Victor

    The nanostructured titanium dioxide (TiO2) thin films have been prepared for the molar concentrations of titanium tetra isopropoxide (TTIP) 0.05M, 0.1M, 0.15M and 0.2M by sol-gel routed spin coating technique with calcination at 450∘C. The processing parameters such as, pH value (8), catalyst HCl (0.1ml), spin speed (3000rpm) and calcination temperature (450∘C) are optimized. The crystalline nature and surface morphology were analyzed by XRD, SEM and AFM analysis. The XRD results confirm that the films are crystalline with anatase phase, and are nanostructured. The SEM micrographs of the TiO2 film reveal the spherical nature of the particle. AFM analysis establishes that the uniformity of the TiO2 thin film was optimized at 0.2M. The optical measurements show that the transmittance depends on the molarity, and the optical band gap energy of TiO2 films is found to be inversely proportional to molarity. The I-V characteristics exhibit that the molarity strongly influences the electrical conductivity of the film. The results indicate that the significant effect of molarity on structural, optical and electrical properties of the nanostructured TiO2 thin films will be useful to photovoltaic application.

  16. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Juma, A.; Oja Acik, I.; Oluwabi, A. T.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2016-11-01

    Chemical spray pyrolysis (CSP) is a flexible deposition technique that allows for mixing of the precursor solutions in different proportions suitable for doping thin films. The CSP method was used to dope TiO2 thin films with Zr by adding zirconium(IV) acetylacetonate into a solution of titanium(IV) isopropoxide in ethanol stabilized by acetylacetone at [Zr]/[Ti] of 0, 5, 10 and 20 at%. The Zr-doped TiO2 thin films were uniform and homogeneous showing much smaller grains than the undoped TiO2 films. Zr stabilized the anatase phase to temperatures above 800 °C depending on Zr concentration in the spray solution. The concentration of Zr determined by XPS was 6.4 at% for the thin film deposited from the 20 at% solution. According to AFM studies, Zr doping decreased the root mean square roughness of TiO2 film from 5.9 to 1.1 nm. An XRD study of samples with the highest Zr amount showed the ZrTiO4 phase started forming after annealing at 800 °C. The optical band gap for TiO2 decreased from 3.3 eV to 3.0 eV after annealing at 800 °C but for the TiO2:Zr(20) film it remained at 3.4 eV. The dielectric constant increased by more than four times with Zr-doping and this was associated with the change in the bond formations caused by substitution of Ti by Zr in the lattice.

  17. Effect of sintering on transparent TiO2 18NR-T type thin films as the working electrode for transparent solar cells

    NASA Astrophysics Data System (ADS)

    Supriyanto, A.; Nandani; Wahyuningsih, S.; Ramelan, A. H.

    2018-03-01

    The working electrode based on semiconductor transparent TiO2 type 18NR-T for transparent solar cells have been grown by screen printing method. This study aim is to determine the effect of sintering on TiO2 thin films transparent as the working electrode of transparent solar cells. TiO2 films will be sintered at temperature 450°C, 500°C, 550°C and 600°C. TiO2 films optical properties were characterized using UV-Vis spectrophotometer, electrical properties were characterized using 4 point probemethods and the crystallization was characterized by X-Ray Diffraction (XRD). The lowest transmittance due to the treatment of annealing temperature variations is 550°C because the 550°C TiO2 layer is more absorbing. The peaks resulted from the annealing temperature treatment show that the high temperature the more anatase peaks. Characterization using four-point probe showed that the highest conductivity of TiO2 18NR-T thin film was 2.42 x 102 Ω-1m-1 at annealing temperature 550°C.

  18. QCM gas sensor characterization of ALD-grown very thin TiO2 films

    NASA Astrophysics Data System (ADS)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Szilágyi, I. M.

    2018-03-01

    The paper presents a technology for preparation and characterization of titanium dioxide (TiO2) thin films suitable for gas sensor applications. Applying atomic layer deposition (ALD), very thin TiO2 films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The TiO2 thin films were grown using Ti(iOPr)4 and water as precursors. The surface of the films was observed by scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) used for a composition study. The research was focused on the gas-sensing properties of the films. Films of 10-nm thickness were deposited on quartz resonators with Au electrodes and the QCMs were used to build highly sensitive gas sensors, which were tested for detecting NO2. Although very thin, these ALD-grown TiO2 films were sensitive to NO2 already at room temperature and could register as low concentrations as 50 ppm, while the sorption was fully reversible, and the sensors could be fully recovered. With the technology presented, the manufacturing of gas sensors is simple, fast and cost-effective, and suitable for energy-effective portable equipment for real-time environmental monitoring of NO2.

  19. Self-Organized Formation of Short TiO2 Nanotube Arrays By Complete Anodization of Ti Thin Films

    NASA Astrophysics Data System (ADS)

    Okada, Masahisa; Tajima, Kazuki; Yamada, Yasusei; Yoshimura, Kazuki

    We investigate the self-organized growth of short TiO2 nanotubes by complete anodization of Ti thin films deposited on Si substrates in ethylene glycol electrolytes with small addition of NH4F. During the anodization process, real-time inspection of the current transient is performed to anodize the Ti films completely. X-ray photoelectron spectroscopy and scanning electron microscopy are employed to characterize the resulting samples. We find that the length of the formed TiO2 nanotubes is governed by the thickness of Ti thin films independently of the tube diameter. Short TiO2 nanotubes are also found to be stable up to 550 °C in air atmosphere even after crystallization to rutile.

  20. Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.

    2014-02-01

    Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.

  1. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    NASA Astrophysics Data System (ADS)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  2. Sol-gel preparation of silica and titania thin films

    NASA Astrophysics Data System (ADS)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  3. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    PubMed

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO 2 ) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO 2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO 2 -coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells

    PubMed Central

    Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping

    2018-01-01

    We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612

  5. Biocorrosion studies of TiO2 nanoparticle-coated Ti-6Al-4V implant in simulated biofluids

    NASA Astrophysics Data System (ADS)

    Zaveri, Nikita; McEwen, Gerald D.; Karpagavalli, Ramji; Zhou, Anhong

    2010-06-01

    The corrosion behaviors of the TiO2 nanoparticles coated bioimplant Ti-6Al-4V exposed to three different simulated biofluids (SBF), namely, (1) NaCl solution, (2) Hank's solution, and (3) Cigada solution, were studied by using micro-Raman spectroscopy, electrochemical techniques, and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS). The different electrochemical impedance spectroscopy models were applied to fit the data obtained from the implants before and after the coating of TiO2 nanoparticles (50-100 nm). It was found that the TiO2 nanoparticle coatings increased the thickness of the pre-existing oxide layer on the Ti-6Al-4V surface, serving to improve the bioimplant corrosion resistance.

  6. Tio2-dopamine complex implanted unilaterally in the caudate nucleus improves motor activity and behavior function of rats with induced hemiparkinsonism.

    PubMed

    Vergara-Aragón, Patricia; Domínguez-Marrufo, Leonardo Eduardo; Ibarra-Guerrero, Patricia; Hernandez-Ramírez, Heidi; Hernández-Téllez, Beatriz; López-Martínez, Irma Elena; Sánchez-Cervantes, Ivonne; Santiago-Jacinto, Patricia; García-Macedo, Jorge Alberto; Valverde-Aguilar, Guadalupe; Santiago, Julio

    2011-01-01

    Parkinson's disease (PD) is characterized by malfunction of dopaminergic systems, and the current symptomatic treatment is to replace lost dopamine. For investigating mechanisms of pathogenesis and alternative treatments to compensate lack of dopamine (DA) activity in PD, the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD has been useful, these animals display apomorphine-induced contralateral rotational behavior, when they are examined after lesion. The purpose of this study was to assess Titania-dopamine (TiO2-DA) complexes implanted on the caudate nucleus for diminishing motor behavior alterations of the 6-OHDA rat model. Rats with 6-OHDA unilateral lesions received TiO2 alone or TiO2-DA implants, and were tested for open field (OF) gross motor crossing and rearing behaviors, and apomorphine-induced rotation (G) behavior. TiO2 complex have no effects on rearing OF and G behaviors, and a significant reducing effect on crossing motor behavior of normal rats compared to control non-treated rats throughout 56 days of observation. Interestingly, TiO2-DA treatment significant recovered motor crossing and rearing behaviors in 6-OHDA-lesioned rats, and diminished the G behaviors during 56 days of examination. Additionally, in the 6-OHDA-lesioned rats TiO2 treatment had a moderate recovering effect only on crossing behavior compared to lesioned non treated rats. Our results suggest that continuous release of dopamine in the caudate nucleus from TiO2-DA complex is capable of reversing gross motor deficits observed in the 6-OHDA-lesioned rat model of PD. Thistype of delivery system of DA represents a promising therapy for PD in humans.

  7. Surface-enhanced Raman scattering of amorphous TiO2 thin films by gold nanostructures: Revealing first layer effect with thickness variation

    NASA Astrophysics Data System (ADS)

    Degioanni, S.; Jurdyc, A.-M.; Bessueille, F.; Coulm, J.; Champagnon, B.; Vouagner, D.

    2013-12-01

    In this paper, amorphous titanium dioxide (TiO2) thin films have been deposited on a commercially available Klarite substrate using the sol-gel process to produce surface-enhanced Raman scattering (SERS). The substrate consists of square arrays of micrometer-sized pyramidal pits in silicon with a gold coating. Several thin TiO2 layers have been deposited on the surface to study the influence of film thickness. Ultimately, we obtained information on SERS of an amorphous TiO2 layer by gold nanostructures, whose range is less than a few nanometers. Mechanisms responsible for the enhancement are the product of concomitant chemical and electromagnetic effects with an important contribution from plasmon-induced charge transfer.

  8. The effect of TiO2 phase on the surface plasmon resonance of silver thin film

    NASA Astrophysics Data System (ADS)

    Hong, Ruijin; Jing, Ming; Tao, Chunxian; Zhang, Dawei

    2016-10-01

    A series of silver films with various thicknesses were deposited on TiO2 covered silica substrates by magnetron sputtering at room temperature. The effects of TiO2 phase on the structure, optical properties and surface plasmon resonance of silver thin films were investigated by x-ray diffraction, optical absorption and Raman scattering measurements, respectively. By adjusting the silver layer thickness, the resonance wavelength shows a redshift, which is due to a change in the electromagnetic field coupling strength from the localized surface plasmons excited between the silver thin film and TiO2 layer. Raman scattering measurement results showed that optical absorption plays an important role in surface plasmon enhancement, which is also related to different crystal phase.

  9. Synthesis and Characterization of Titanium Dioxide Thin Film for Sensor Applications

    NASA Astrophysics Data System (ADS)

    Latha, H. K. E.; Lalithamba, H. S.

    2018-03-01

    Titanium oxide (TiO2) nanoparticles (metal oxide semiconductor) are successfully synthesized using hydrothermal method for sensor application. Titanium dioxide and Sodium hydroxide are used as precursors. These reactants are mixed and calcinated at 400 °C to produce TiO2 nanoparticles. The crystalline structure, morphology of synthesized TiO2 nanoparticles are studied using x-ray diffraction (XRD), Fourier Transform Infrared (FTIR) analysis and scanning electron microscopy (SEM). XRD results revealed that the prepared TiO2 sample is highly crystalline, having Anatase crystal structure. FT-IR spectra peak at 475 cm‑1 indicated characteristic absorption bands of TiO2 nanoparticles. The XRD and FTIR result confirmed the formation of high purity of TiO2 nanoparticles. The SEM image shows that TiO2 nanoparticles prepared in this study are spherical in shape. Synthesized TiO2 nanoparticles are deposited on glass substrate at room temperature using E beam evaporation method to determine gauge factor and found to be 4.7. The deposited TiO2 thin films offer tremendous potential in the applications of electronic and magneto–electric devices.

  10. Synthesis of nanodimensional TiO2 thin films.

    PubMed

    Thakurdesai, Madhavi; Mohanty, T; John, J; Rao, T K Gundu; Raychaudhuri, Pratap; Bhattacharyya, V; Kanjilal, D

    2008-08-01

    Nanodimensional TiO2 has wide application in the field of photocatalysis, photovoltaic and photochromic devices. In present investigation TiO2 thin films deposited by pulsed laser deposition method are irradiated by 100 MeV Ag ion beam to achieve growth of nanophases. The nanostructure evolution is characterized by atomic force microscopy (AFM). The phases of TiO2 formed after irradiation are identified by glancing angle X-ray diffraction and Raman spectroscopy. The particle radius estimated by AFM varies from 10-13 nm. Anatase phase of TiO2 is formed after irradiation. The blue shift observed in UV-VIS absorption spectra indicates the nanostructure formation. The shape and size of nanoparticles formed due to high electronic excitation depend upon thickness of the film.

  11. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces.

    PubMed

    Wijesinghe, W P S L; Mantilaka, M M M G P G; Chathuranga Senarathna, K G; Herath, H M T U; Premachandra, T N; Ranasinghe, C S K; Rajapakse, R P V J; Rajapakse, R M G; Edirisinghe, Mohan; Mahalingam, S; Bandara, I M C C D; Singh, Sanjleena

    2016-06-01

    Preparation of hydroxyapatite coated custom-made metallic bone-implants is very important for the replacement of injured bones of the body. Furthermore, these bone-implants are more stable under the corrosive environment of the body and biocompatible than bone-implants made up of pure metals and metal alloys. Herein, we describe a novel, simple and low-cost technique to prepare biocompatible hydroxyapatite coated titanium metal (TiM) implants through growth of self-formed TiO2 thin-layer (SFTL) on TiM via a heat treatment process. SFTL acts as a surface binder of HA nanoparticles in order to produce HA coated implants. Colloidal HA nanorods prepared by a novel surfactant-assisted synthesis method, have been coated on SFTL via atomized spray pyrolysis (ASP) technique. The corrosion behavior of the bare and surface-modified TiM (SMTiM) in a simulated body fluid (SBF) medium is also studied. The highest corrosion rate is found to be for the bare TiM plate, but the corrosion rate has been reduced with the heat-treatment of TiM due to the formation of SFTL. The lowest corrosion rate is recorded for the implant prepared by heat treatment of TiM at 700 °C. The HA-coating further assists in the passivation of the TiM in the SBF medium. Both SMTiM and HA coated SMTiM are noncytotoxic against osteoblast-like (HOS) cells and are in high-bioactivity. The overall production process of bone-implant described in this paper is in high economic value. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition

    PubMed Central

    Zhang, Xiaochen; Zhang, Zhiyuan; Shen, Gang; Zhao, Jun

    2016-01-01

    To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs. PMID:26869786

  13. In situ photoelectrochemical/photocatalytic study of a dye discoloration in a microreactor system using TiO2 thin films.

    PubMed

    Montero-Ocampo, C; Gago, A; Abadias, G; Gombert, B; Alonso-Vante, N

    2012-11-01

    In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO(2) thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics. TiO(2) 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy. The annealed TiO(2) thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO(2) electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir-Hinshelwood model, with first-order kinetics. The feasibility of dye discoloration on TiO(2) thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E (AP)) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50 min) produced 80% discoloration with an external anodic potential of 0.931 V and a flow rate of 12.2 mL min(-1).

  14. Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor

    NASA Astrophysics Data System (ADS)

    Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.

    2018-04-01

    Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.

  15. Whiter, brighter, and more stable cellulose paper coated with TiO2 /SiO2 core/shell nanoparticles using a layer-by-layer approach.

    PubMed

    Cheng, Fei; Lorch, Mark; Sajedin, Seyed Mani; Kelly, Stephen M; Kornherr, Andreas

    2013-08-01

    To inhibit the photocatalytic degradation of organic material supports induced by small titania (TiO2 ) nanoparticles, four kinds of TiO2 nanoparticles, that is, commercial P25-TiO2 , commercial rutile phase TiO2 , rutile TiO2 nanorods and rutile TiO2 spheres, prepared from TiCl4 , were coated with a thin, but dense, coating of silica (SiO2 ) using a conventional sol-gel technique to form TiO2 /SiO2 core/shell nanoparticles. These core/shell particles were deposited and fixed as a very thin coating onto the surface of cellulose paper samples by a wet-chemistry polyelectrolyte layer-by-layer approach. The TiO2 /SiO2 nanocoated paper samples exhibit higher whiteness and brightness and greater stability to UV-bleaching than comparable samples of blank paper. There are many potential applications for this green chemistry approach to protect cellulosic fibres from UV-bleaching in sunlight and to improve their whiteness and brightness. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preparation and characterization of WO3 nanoparticles, WO3/TiO2 core/shell nanocomposites and PEDOT:PSS/WO3 composite thin films for photocatalytic and electrochromic applications

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Santos, Gustavo dos Lopes; Szżcs, Júlia; Szilágyi, Imre M.

    2016-03-01

    In this study, monoclinic WO3 nanoparticles were obtained by thermal decomposition of (NH4)xWO3 in air at 600 °C. On them by atomic layer deposition (ALD) TiO2 films were deposited, and thus core/shell WO3/TiO2 nanocomposites were prepared. We prepared composites of WO3 nanoparticles with conductive polymer as PEDOT:PSS, and deposited thin films of them on glass and ITO substrates by spin coating. The formation, morphology, composition and structure of the as-prepared pure and composite nanoparticles, as well thin films, were studied by TEM, SEM-EDX and XRD. The photocatalytic activity of both the WO3 and core/shell WO3/TiO2 nanoparticles was studied by decomposing methyl orange in aqueous solution under UV light irradiation. Cyclic voltammetry measurements were performed on the composite PEDOT:PSS/WO3 thin films, and the coloring and bleaching states were studied.

  17. Electronic and Optical Properties of Atomic Layer-Deposited ZnO and TiO2

    NASA Astrophysics Data System (ADS)

    Ates, H.; Bolat, S.; Oruc, F.; Okyay, A. K.

    2018-05-01

    Metal oxides are attractive for thin film optoelectronic applications. Due to their wide energy bandgaps, ZnO and TiO2 are being investigated by many researchers. Here, we have studied the electrical and optical properties of ZnO and TiO2 as a function of deposition and post-annealing conditions. Atomic layer deposition (ALD) is a novel thin film deposition technique where the growth conditions can be controlled down to atomic precision. ALD-grown ZnO films are shown to exhibit tunable optical absorption properties in the visible and infrared region. Furthermore, the growth temperature and post-annealing conditions of ZnO and TiO2 affect the electrical properties which are investigated using ALD-grown metal oxide as the electron transport channel on thin film field-effect devices.

  18. Synthesis and characterization of heteroleptic titanium MOCVD precursors for TiO2 thin films.

    PubMed

    Kim, Euk Hyun; Lim, Min Hyuk; Lah, Myoung Soo; Koo, Sang Man

    2018-02-13

    Heteroleptic titanium alkoxides with three different ligands, i.e., [Ti(O i Pr)(X)(Y)] (X = tridentate, Y = bidentate ligands), were synthesized to find efficient metal organic chemical vapor deposition (MOCVD) precursors for TiO 2 thin films. Acetylacetone (acacH) or 2,2,6,6-tetramethyl-3,5-heptanedione (thdH) was employed as a bidentate ligand, while N-methyldiethanolamine (MDEA) was employed as a tridentate ligand. It was expected that the oxygen and moisture susceptibility of titanium alkoxides, as well as their tendency to form oligomers, would be greatly reduced by placing multidentate and bulky ligands around the center Ti atom. The synthesized heteroleptic titanium alkoxides were characterized both physicochemically and crystallographically, and their thermal behaviors were also investigated. [Ti(O i Pr)(MDEA)(thd)] was found to be monomeric and stable against moisture; it also showed good volatility in the temperature window between volatilization and decomposition. This material was used as a single-source precursor during MOCVD to generate TiO 2 thin films on silicon wafers. The high thermal stability of [Ti(O i Pr)(MDEA)(thd)] enabled the fabrication of TiO 2 films over a wide temperature range, with steady growth rates between 500 and 800 °C.

  19. Perovskite solar cell with an efficient TiO₂ compact film.

    PubMed

    Ke, Weijun; Fang, Guojia; Wang, Jing; Qin, Pingli; Tao, Hong; Lei, Hongwei; Liu, Qin; Dai, Xin; Zhao, Xingzhong

    2014-09-24

    A perovskite solar cell with a thin TiO2 compact film prepared by thermal oxidation of sputtered Ti film achieved a high efficiency of 15.07%. The thin TiO2 film prepared by thermal oxidation is very dense and inhibits the recombination process at the interface. The optimum thickness of the TiO2 compact film prepared by thermal oxidation is thinner than that prepared by spin-coating method. Also, the TiO2 compact film and the TiO2 porous film can be sintered at the same time. This one-step sintering process leads to a lower dark current density, a lower series resistance, and a higher recombination resistance than those of two-step sintering. Therefore, the perovskite solar cell with the TiO2 compact film prepared by thermal oxidation has a higher short-circuit current density and a higher fill factor.

  20. Osteoblast responses to different oxide coatings produced by the sol-gel process on titanium substrates.

    PubMed

    Ochsenbein, Anne; Chai, Feng; Winter, Stefan; Traisnel, Michel; Breme, Jürgen; Hildebrand, Hartmut F

    2008-09-01

    In order to improve the osseointegration of endosseous implants made from titanium, the structure and composition of the surface were modified. Mirror-polished commercially pure (cp) titanium substrates were coated by the sol-gel process with different oxides: TiO(2), SiO(2), Nb(2)O(5) and SiO(2)-TiO(2). The coatings were physically and biologically characterized. Infrared spectroscopy confirmed the absence of organic residues. Ellipsometry determined the thickness of layers to be approximately 100nm. High resolution scanning electron microscopy (SEM) and atomice force microscopy revealed a nanoporous structure in the TiO(2) and Nb(2)O(5) layers, whereas the SiO(2) and SiO(2)-TiO(2) layers appeared almost smooth. The R(a) values, as determined by white-light interferometry, ranged from 20 to 50nm. The surface energy determined by the sessile-drop contact angle method revealed the highest polar component for SiO(2) (30.7mJm(-2)) and the lowest for cp-Ti and 316L stainless steel (6.7mJm(-2)). Cytocompatibility of the oxide layers was investigated with MC3T3-E1 osteoblasts in vitro (proliferation, vitality, morphology and cytochemical/immunolabelling of actin and vinculin). Higher cell proliferation rates were found in SiO(2)-TiO(2) and TiO(2), and lower in Nb(2)O(5) and SiO(2); whereas the vitality rates increased for cp-Ti and Nb(2)O(5). Cytochemical assays showed that all substrates induced a normal cytoskeleton and well-developed focal adhesion contacts. SEM revealed good cell attachment for all coating layers. In conclusion, the sol-gel-derived oxide layers were thin, pure and nanostructured; consequent different osteoblast responses to those coatings are explained by the mutual action and coadjustment of different interrelated surface parameters.

  1. An In-situ Real-Time Optical Fiber Sensor Based on Surface Plasmon Resonance for Monitoring the Growth of TiO2 Thin Films

    PubMed Central

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-01-01

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings. PMID:23881144

  2. An in-situ real-time optical fiber sensor based on surface plasmon resonance for monitoring the growth of TiO2 thin films.

    PubMed

    Tsao, Yu-Chia; Tsai, Woo-Hu; Shih, Wen-Ching; Wu, Mu-Shiang

    2013-07-23

    An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.

  3. Nanostructured TiO2-based gas sensors with enhanced sensitivity to reducing gases

    PubMed Central

    Kusior, Anna; Trenczek-Zajac, Anita

    2016-01-01

    2D TiO2 thin films and 3D flower-like TiO2-based nanostructures, also decorated with SnO2, were prepared by chemical and thermal oxidation of Ti substrates, respectively. The crystal structure, morphology and gas sensing properties of the TiO2-based sensing materials were investigated. 2D TiO2 thin films crystallized mainly in the form of rutile, while the flower-like 3D nanostructures as anatase. The sensor based on the 2D TiO2 showed the best performance for H2 detection, while the flower-like 3D nanostructures exhibited enhanced selectivity to CO(CH3)2 after sensitization by SnO2 nanoparticles. The sensor response time was of the order of several seconds. Their fast response, high sensitivity to selected gas species, improved selectivity and stability suggest that the SnO2-decorated flower-like 3D nanostructures are a promising material for application as an acetone sensor. PMID:28144521

  4. Matching characteristics of different buffer layers with VO2 thin films

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Dongping; Liu, Yi; Guan, Tianrui; Qin, Xiaonan; Zhong, Aihua; Cai, Xingmin; Fan, Ping; Lv, Weizhong

    2016-10-01

    VO2 thin films were fabricated by reactive DC magnetron sputtering on different buffer layers of MgF2, Al2O3 and TiO2, respectively. The crystallinity and orientation relationship, thickness of VO2 thin films, atoms vibrational modes, optical and electrical property, surface morphology of films were characterized by X-ray diffraction, Raman scattering microscopy, step profiler, spectrophotometer, four-probe technique, and scanning electron microscopy, respectively. XRD results investigated that the films have preferential crystalline planes VO2 (011). The crystallinity of VO2 films grown on TiO2 buffer layers are superior to VO2 directly deposited on soda-lime glass. The Raman bands of the VO2 films correspond to an Ag symmetry mode of VO2 (M). The sample prepared on 100nm TiO2 buffer layer appears nanorods structure, and exhibits remarkable solar energy modulation ability as high as 5.82% in full spectrum and 23% in near infrared spectrum. Cross-sectional SEM image of the thin films samples indicate that MgF2 buffer layer has clear interface with VO2 layer. But there are serious interdiffusion phenomenons between Al2O3, TiO2 buffer layer with VO2 layer.

  5. Preparation of anatase TiO2 thin film by low temperature annealing as an electron transport layer in inverted polymer solar cells

    NASA Astrophysics Data System (ADS)

    Noh, Hongche; Oh, Seong-Geun; Im, Seung Soon

    2015-04-01

    To prepare the anatase TiO2 thin films on ITO glass, amorphous TiO2 colloidal solution was synthesized through the simple sol-gel method by using titanium (IV) isopropoxide as a precursor. This amorphous TiO2 colloidal solution was spread on ITO glass by spin-coating, then treated at 450 °C to obtain anatase TiO2 film (for device A). For other TiO2 films, amorphous TiO2 colloidal solution was treated through solvothermal process at 180 °C to obtain anatase TiO2 colloidal solution. This anatase TiO2 colloidal solution was spread on ITO glass by spin coating, and then annealed at 200 °C (for device B) and 130 °C (for device C), respectively. The average particle size of amorphous TiO2 colloidal solution was about 1.0 nm and that of anatase TiO2 colloidal solution was 10 nm. The thickness of TiO2 films was about 15 nm for all cases. When inverted polymer solar cells were fabricated by using these TiO2 films as an electron transport layer, the device C showed the highest PCE (2.6%) due to the lack of defect, uniformness and high light absorbance of TiO2 films. The result of this study can be applied for the preparation of inverted polymer solar cell using TiO2 films as a buffer layer at low temperature on plastic substrate by roll-to roll process.

  6. Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition

    PubMed Central

    Ali, Rizwan; Saleem, Muhammad Rizwan; Pääkkönen, Pertti; Honkanen, Seppo

    2015-01-01

    We investigate the optical and thermo-optical properties of amorphous TiO2–Al2O3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples of TiO2–Al2O3 bilayers are fabricated by growing Al2O3 films of different thicknesses on the surface of TiO2 films of constant thickness (100 nm). Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO2 films. The effects of TiO2 surface defects on the films’ thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al2O3 diffusion barrier layers. Increasing the ALD-Al2O3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO2. The thermo-optic coefficients of the 100 nm-thick ALD-TiO2 film and 30 nm-thick ALD-Al2O3 film in a bilayer are (0.048 ± 0.134) × 10−4 °C−1 and (0.680 ± 0.313) × 10−4 °C−1, respectively, at a temperature T = 62 °C.

  7. Structural properties and sensing performance of high-k Nd2TiO5 thin layer-based electrolyte-insulator-semiconductor for pH detection and urea biosensing.

    PubMed

    Pan, Tung-Ming; Lin, Jian-Chi; Wu, Min-Hsien; Lai, Chao-Sung

    2009-05-15

    For high sensitive pH sensing, an electrolyte-insulator-semiconductor (EIS) device with Nd(2)TiO(5) thin layers fabricated on Si substrates by means of reactive sputtering and the subsequent post-deposition annealing (PDA) treatment was proposed. In this work, the effect of thermal annealing (600, 700, 800, and 900 degrees C) on the structural characteristics of Nd(2)TiO(5) thin layer was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and atomic force microscopy. The observed structural properties were then correlated with the resulting pH sensing performances. For enzymatic field-effect-transistors-based urea biosensing, a hybrid configuration of the proposed Nd(2)TiO(5) thin layer with urease-immobilized alginate film attached was established. Within the experimental conditions investigated, the EIS device with the Nd(2)TiO(5) thin layer annealed at 800 degrees C exhibited a higher pH detection sensitivity of 57.2 mV/pH, a lower hysteresis voltage of 2.33 mV, and a lower drift rate of 1.80 mV/h compared to those at other annealing temperatures. These results are attributed to the formation of a thinner low-k interfacial layer at the oxide/Si interface and the higher surface roughness occurred at this annealing temperature. Furthermore, the presented urea biosensor was also proved to be able to detect urea with good linearity (R(2)=0.99) and reasonable sensitivity of 9.52 mV/mM in the urea concentration range of 3-40 mM. As a whole, the present work has provided some fundamental data for the use of Nd(2)TiO(5) thin layer for EIS-based pH detection and the extended application for biosensing.

  8. Regulation of RAW 264.7 macrophages behavior on anodic TiO2 nanotubular arrays

    NASA Astrophysics Data System (ADS)

    Yao, Shenglian; Feng, Xujia; Li, Wenhao; Wang, Lu-Ning; Wang, Xiumei

    2017-12-01

    Titanium (Ti) implants with TiO2 nanotubular arrays on the surface could regulate cells adhesion, proliferation and differentiation to determine the bone integration. Additionally, the regulation of immune cells could improve osteogenesis or lead in appropriate immune reaction. Thus, we evaluate the behavior of RAW264.7 macrophages on TiO2 nanotubular arrays with a wide range diameter (from 20 to 120 nm) fabricated by an electrochemical anodization process. In this work, the proliferation, cell viability and cytokine/chemokine secretion were evaluated by CCK-8, live/dead staining and ELISA, respectively. SEM and confocal microscopy were used to observe the adhesion morphology. Results showed that the small size nanotube surface was benefit for the macrophages adhesion and proliferation, while larger size surface could reduce the inflammatory response. These findings contribute to the design of immune-regulating Ti implants surface that supports successful implantation.

  9. TiO2 coatings via atomic layer deposition on polyurethane and polydimethylsiloxane substrates: Properties and effects on C. albicans growth and inactivation process

    NASA Astrophysics Data System (ADS)

    Pessoa, R. S.; dos Santos, V. P.; Cardoso, S. B.; Doria, A. C. O. C.; Figueira, F. R.; Rodrigues, B. V. M.; Testoni, G. E.; Fraga, M. A.; Marciano, F. R.; Lobo, A. O.; Maciel, H. S.

    2017-11-01

    Atomic layer deposition (ALD) surges as an attractive technology to deposit thin films on different substrates for many advanced biomedical applications. Herein titanium dioxide (TiO2) thin films were successful obtained on polyurethane (PU) and polydimethylsiloxane (PDMS) substrates using ALD. The effect of TiO2 films on Candida albicans growth and inactivation process were also systematic discussed. TiCl4 and H2O were used as precursors at 80 °C, while the reaction cycle number ranged from 500 to 2000. Several chemical, physical and physicochemical techniques were used to evaluate the growth kinetics, elemental composition, material structure, chemical bonds, contact angle, work of adhesion and surface morphology of the ALD TiO2 thin films grown on both substrates. For microbiological analyses, yeasts of standard strains of C. albicans were grown on non- and TiO2-coated substrates. Next, the antifungal and photocatalytic activities of the TiO2 were also investigated by counting the colony-forming units (CFU) before and after UV-light treatment. Chlorine-doped amorphous TiO2 films with varied thicknesses and Cl concentration ranging from 2 to 12% were obtained. In sum, the ALD TiO2 films suppressed the yeast-hyphal transition of C. albicans onto PU, however, a high adhesion of yeasts was observed. Conversely, for PDMS substrate, the yeast adhesion did not change, as observed in control. Comparatively to control, the TiO2-covered PDMS had a reduction in CFU up to 59.5% after UV treatment, while no modification was observed to TiO2-covered PU. These results pointed out that ALD chlorine-doped amorphous TiO2 films grown on biomedical polymeric surfaces may act as fungistatic materials. Furthermore, in case of contamination, these materials may also behave as antifungal materials under UV light exposure.

  10. Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes

    PubMed Central

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity. PMID:24124484

  11. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  12. Synthesis and electronic properties of Fe 2TiO 5 epitaxial thin films

    DOE PAGES

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; ...

    2018-05-02

    Here, we investigate the growth phase diagram of pseudobrookite Fe 2TiO 5 epitaxial thin films on LaAlO 3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20–80 Ω cm, which are significantly lower than α-Fe 2O 3, making Fe 2TiO 5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe 2TiO 5 in oxide heterostructures for photocatalytic and photoelectrochemicalmore » applications.« less

  13. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  14. Combination of short-length TiO2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-07-01

    Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm-2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open-circuit voltage of 0.52 V, a short-circuit photocurrent density of 13.56 mA cm-2 and a fill factor of 0.58.

  15. Electrical response of electron selective atomic layer deposited TiO2‑x heterocontacts on crystalline silicon substrates

    NASA Astrophysics Data System (ADS)

    Ahiboz, Doğuşcan; Nasser, Hisham; Aygün, Ezgi; Bek, Alpan; Turan, Raşit

    2018-04-01

    Integration of oxygen deficient sub-stoichiometric titanium dioxide (TiO2‑x) thin films as the electron transporting-hole blocking layer in solar cell designs are expected to reduce fabrication costs by eliminating high temperature processes while maintaining high conversion efficiencies. In this paper, we conducted a study to reveal the electrical properties of TiO2‑x thin films grown on crystalline silicon (c-Si) substrates by atomic layer deposition (ALD) technique. Effect of ALD substrate temperature, post deposition annealing, and doping type of the c-Si substrate on the interface states and TiO2‑x bulk properties were extracted by performing admittance (C-V, G-V) and current-voltage (J-V) measurements. Moreover, the asymmetry in C-V and J-V measurements between the p-n type and n-n TiO2‑x-c-Si heterojunction types were examined and the electron transport selectivity of TiO2‑x was revealed.

  16. Stoichiometric titanium dioxide ion implantation in AISI 304 stainless steel for corrosion protection

    NASA Astrophysics Data System (ADS)

    Hartwig, A.; Decker, M.; Klein, O.; Karl, H.

    2015-12-01

    The aim of this study is to evaluate the applicability of highly chemically inert titanium dioxide synthesized by ion beam implantation for corrosion protection of AISI 304 stainless steel in sodium chloride solution. More specifically, the prevention of galvanic corrosion between carbon-fiber reinforced plastic (CFRP) and AISI 304 was investigated. Corrosion performance of TiO2 implanted AISI 304 - examined for different implantation and annealing parameters - is strongly influenced by implantation fluence. Experimental results show that a fluence of 5 × 1016 cm-2 (Ti+) and 1 × 1017 cm-2 (O+) is sufficient to prevent pitting corrosion significantly, while galvanic corrosion with CFRP can already be noticeably reduced by an implantation fluence of 5 × 1015 cm-2 (Ti+) and 1 × 1016 cm-2 (O+). Surface roughness, implantation energy and annealing at 200 °C and 400 °C show only little influence on the corrosion behavior. TEM analysis indicates the existence of stoichiometric TiO2 inside the steel matrix for medium fluences and the formation of a separated metal oxide layer for high fluences.

  17. Surface functionalization of TiO2 nanotubes with minocycline and its in vitro biological effects on Schwann cells.

    PubMed

    A, Lan; Xu, Wenzhou; Zhao, Jinghui; Li, Chunyan; Qi, Manlin; Li, Xue; Wang, Lin; Zhou, Yanmin

    2018-06-20

    Minocycline has been widely used in central nervous system disease. However, the effect of minocycline on the repairing of nerve fibers around dental implants had not been previously investigated. The aim of the present study was to evaluate the possibility of using minocycline for the repairing of nerve fibers around dental implants by investigating the effect of minocycline on the proliferation of Schwann cells and secretion of neurotrophic factors nerve growth factor and glial cell line-derived neurotrophic factor in vitro. TiO 2 nanotubes were fabricated on the surface of pure titanium via anodization at the voltage of 20, 30, 40 and 50 V. The nanotubes structure were characterized by scanning electron microscopy and examined with an optical contact angle. Then drug loading capability and release behavior were detected in vitro. The TiO 2 nanotubes loaded with different concentration of minocycline were used to produce conditioned media with which to treat the Schwann cells. A cell counting kit-8 assay and cell viability were both selected to study the proliferative effect of the specimens on Schwann cell. Reverse transcription-quantitative PCR and western blot analyses were used to detect the related gene/protein expression of Schwann cells. The results showed that the diameter of TiO 2 nanotubes at different voltage varied from 100 to 200 nm. The results of optical contact angle and releasing profile showed the nanotubes fabricated at the voltage of 30 V met the needs of the carrier of minocycline. In addition, the TiO 2 nanotubes loaded with the concentration of 20 μg/mL minocycline increased Schwann cells proliferation and secretion of neurotrophic factors in vitro. The results suggested that the surface functionalization of TiO 2 nanotubes with minocycline was a promising candidate biomaterial for the peripheral nerve regeneration around dental implants and has potential to be applied in improving the osseoperception of dental implant.

  18. Optical properties of titanium di-oxide thin films prepared by dip coating method

    NASA Astrophysics Data System (ADS)

    Biswas, Sayari; Rahman, Kazi Hasibur; Kar, Asit Kumar

    2018-05-01

    Titanium dioxide (TiO2) thin films were prepared by sol-gel dip coating method on ITO coated glass substrate. The sol was synthesized by hydrothermal method at 90°C. The sol was then used to make TiO2 films by dip coating. After dip coating the rest of the sol was dried at 100°C to make TiO2 powder. Thin films were made by varying the number of dipping cycles and were annealed at 500°C. XRD study was carried out for powder samples that confirms the formation of anatase phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60%. Band gap of the prepared films varies from 3.15 eV to 3.22 eV.

  19. Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants

    PubMed Central

    Sul, Young-Taeg

    2010-01-01

    TiO2 nanotubes are fabricated on TiO2 grit-blasted, screw-shaped rough titanium (ASTM grade 4) implants (3.75 × 7 mm) using potentiostatic anodization at 20 V in 1 M H3PO4 + 0.4 wt.% HF. The growth behavior and surface properties of the nanotubes are investigated as a function of the reaction time. The results show that vertically aligned nanotubes of ≈700 nm in length, with highly ordered structures of ≈40 nm spacing and ≈15 nm wall thickness may be grown independent of reaction time. The geometrical properties of nanotubes increase with reaction time (mean pore size, pore size distribution [PSD], and porosity ≈90 nm, ≈40–127 nm and 45%, respectively for 30 minutes; ≈107 nm, ≈63–140 nm and 56% for one hour; ≈108 nm, ≈58–150 nm and 60% for three hours). It is found that the fluorinated chemistry of the nanotubes of F-TiO2, TiOF2, and F-Ti-O with F ion incorporation of ≈5 at.%, and their amorphous structure is the same regardless of the reaction time, while the average roughness (Sa) gradually decreases and the developed surface area (Sdr) slightly increases with reaction time. The results of studies on animals show that, despite their low roughness values, after six weeks the fluorinated TiO2 nanotube implants in rabbit femurs demonstrate significantly increased osseointegration strengths (41 vs 29 Ncm; P = 0.008) and new bone formation (57.5% vs 65.5%; P = 0.008) (n = 8), and reveal more frequently direct bone/cell contact at the bone–implant interface by high-resolution scanning electron microscope observations as compared with the blasted, moderately rough implants that have hitherto been widely used for clinically favorable performance. The results of the animal studies constitute significant evidence that the presence of the nanotubes and the resulting fluorinated surface chemistry determine the nature of the bone responses to the implants. The present in vivo results point to potential applications of the TiO2 nanotubes in the field of bone implants and bone tissue engineering. PMID:20463928

  20. Oxygen depth profiling by resonant RBS in NiTi after plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Lindner, J. K. N.

    2006-08-01

    NiTi exhibits super-elastic as well as shape-memory properties, which results in a large potential application field in biomedical technology. Using oxygen ion implantation at elevated temperatures, it is possible to improve the biocompatibility. Resonant Rutherford backscattering spectroscopy (RRBS) is used to investigate the oxygen depth profile obtained after oxygen plasma immersion ion implantation (PIII) at 25 kV and 400-600 °C. At all temperatures, a layered structure consisting of TiO2/Ni3Ti/NiTi was found with sharp interfaces while no discernible content of oxygen inside Ni3Ti or nickel in TiO2 was found. These data are compatible with a titanium diffusion from the bulk towards the implanted oxygen.

  1. Antimicrobial effect of TiO2 doped with Ag and Cu on Escherichia coli and Pseudomonas putida

    NASA Astrophysics Data System (ADS)

    Angelov, O.; Stoyanova, D.; Ivanova, I.

    2016-10-01

    Antimicrobial effect of TiO2 doped with Ag and Cu on Gram-negative bacteria Escherichia coli and Pseudomonas putida is studied. The thin films are deposited on glass substrates without heating during the deposition by r.f. magnetron co-sputtering of TiO2 target and pieces of Ag and Cu. The studied films, thickness about 65 nm, were as deposited and annealed (5200C, 4h, N2+5%H2, 4Pa). The as deposited thin films TiO2:Ag:Cu have band gap energy of 3.56 eV little higher than the band gap of crystalline anatase TiO2 which can be explained with the quantum effect of the granular structure of r.f. magnetron sputtered films. The annealed samples have band gap of 2.52 eV due to formation of donor levels from Ag and Cu atoms near the bottom of the conduction band. The toxic effect was determined through the classical Koch's method and the optical density measurements at λ=610 nm. The as deposited TiO2:Ag:Cu thin films demonstrate stronger inhibition effect - bactericidal for P. putida and bacteriostatic for E. coli (up to the 6th hour) in comparison with the annealed samples. The both methods of study show the same trends of the bacterial growth independently of their different sensitivity which confirms the observed effect.

  2. Effect of SiO2 addition on photocatalytic activity, water contact angle and mechanical stability of visible light activated TiO2 thin films applied on stainless steel by a sol gel method

    NASA Astrophysics Data System (ADS)

    Momeni, Mansour; Saghafian, Hasan; Golestani-Fard, Farhad; Barati, Nastaran; Khanahmadi, Amirhossein

    2017-01-01

    Nanostructured N doped TiO2/20%SiO2 thin films were developed on steel surface via sol gel method using a painting airbrush. Thin films then were calcined at various temperatures in a range of 400-600 °C. The effect of SiO2 addition on phase composition and microstructural evolution of N doped TiO2 films were studied using XRD and FESEM. Optical properties, visible light photocatalytic activity, hydrophilic behavior, and mechanical behavior of the films were also investigated by DRS, methylene blue degradation, water contact angle measurements, and nanoscratch testing. Results indicated that the band gap energy of N doped TiO2/SiO2 was increased from 2.93 to 3.09 eV. Crack formation during calcination was also significantly promoted in the composite films. All composite films demonstrated weaker visible light photocatalytic activities and lower mechanical stability in comparison with N doped TiO2 films. Moreover, the N doped TiO2/SiO2 film calcined at 600 °C showed undesirable hydrophilic behavior with a water contact angle of 57° after 31 h of visible light irradiation. Outcomes of the present study reveal some different results to previous reports on TiO2/SiO2 films. In general, we believe the differences in substrate material as well as application in visible light are the main reasons for the above mentioned contradiction.

  3. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  4. Quantum-dot light-emitting diodes utilizing CdSe /ZnS nanocrystals embedded in TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul; Kim, Eui-Tae

    2008-11-01

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe /ZnS nanocrystals in TiO2 thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO2/QDs /p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO2/QDs /Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  5. Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition.

    PubMed

    Chang, Yung-Huang; Liu, Chien-Min; Cheng, Hsyi-En; Chen, Chih

    2013-05-01

    2-Dimensional (2-D) TiO2 thin films and 1-dimensional (1-D) TiO2 nanotube arrays were fabricated on Si and quartz substrates using atomic layer deposition (ALD) with an anodic aluminum oxide (AAO) template at 400 °C. The film thickness and the tube wall thickness can be precisely controlled using the ALD approach. The intensities of the absorption spectra were enhanced by an increase in the thickness of the TiO2 thin film and tube walls. A blue-shift was observed for a decrease in the 1-D and 2-D TiO2 nanostructure thicknesses, indicating a change in the energy band gap with the change in the size of the TiO2 nanostructures. Indirect and direct interband transitions were used to investigate the change in the energy band gap. The results indicate that both quantum confinement and interband transitions should be considered when the sizes of 1-D and 2-D TiO2 nanostructures are less than 10 nm.

  6. Vacancy identification in Co+ doped rutile TiO2 crystal with positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Qin, X. B.; Zhang, P.; Liang, L. H.; Zhao, B. Z.; Yu, R. S.; Wang, B. Y.; Wu, W. M.

    2011-01-01

    Co-doped rutile TiO2 films were synthesized by ion implantation. Variable energy positron annihilation Doppler broadening spectroscopy and coincidence Doppler broadening measurements were performed for identification of the vacancies. A newly formed type of vacancy can be concluded by the S-W plot and the CDB results indicated that the oxygen vacancy (VO) complex Ti-Co-VO and/or Ti-VO are formed with Co ions implantation and the vacancy concentration is increased with increase of dopant dose.

  7. Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application

    PubMed Central

    Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi

    2016-01-01

    Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry. PMID:26846687

  8. Color tunable low cost transparent heat reflector using copper and titanium oxide for energy saving application.

    PubMed

    Dalapati, Goutam Kumar; Masudy-Panah, Saeid; Chua, Sing Teng; Sharma, Mohit; Wong, Ten It; Tan, Hui Ru; Chi, Dongzhi

    2016-02-05

    Multilayer coating structure comprising a copper (Cu) layer sandwiched between titanium dioxide (TiO2) were demonstrated as a transparent heat reflecting (THR) coating on glass for energy-saving window application. The main highlight is the utilization of Cu, a low-cost material, in-lieu of silver which is widely used in current commercial heat reflecting coating on glass. Color tunable transparent heat reflecting coating was realized through the design of multilayer structure and process optimization. The impact of thermal treatment on the overall performance of sputter deposited TiO2/Cu/TiO2 multilayer thin film on glass substrate is investigated in detail. Significant enhancement of transmittance in the visible range and reflectance in the infra-red (IR) region has been observed after thermal treatment of TiO2/Cu/TiO2 multilayer thin film at 500 °C due to the improvement of crystal quality of TiO2. Highest visible transmittance of 90% and IR reflectance of 85% at a wavelength of 1200 nm are demonstrated for the TiO2/Cu/TiO2 multilayer thin film after annealing at 500 °C. Performance of TiO2/Cu/TiO2 heat reflector coating decreases after thermal treatment at 600 °C. The wear performance of the TiO2/Cu/TiO2 multilayer structure has been evaluated through scratch hardness test. The present work shows promising characteristics of Cu-based THR coating for energy-saving building industry.

  9. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    NASA Astrophysics Data System (ADS)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre; Rocha, Luís A.; Shokuhfar, Tolou

    2017-03-01

    The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO2) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO3, Ca3(PO4)2, CaHPO4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  10. Incorporation of N-doped TiO2 nanorods in regenerated cellulose thin films fabricated from recycled newspaper as a green portable photocatalyst.

    PubMed

    Mohamed, Mohamad Azuwa; Salleh, W N W; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Jamil, Siti Munira

    2015-11-20

    In this work, an environmental friendly RC/N-TiO2 nanocomposite thin film was designed as a green portable photocatalyst by utilizing recycled newspaper as sustainable cellulose resource. Investigations on the influence of N-doped TiO2 nanorods incorporation on the structural and morphological properties of RC/N-TiO2 nanocomposite thin film are presented. The resulting nanocomposite thin film was characterized by FESEM, AFM, FTIR, UV-vis-NIR spectroscopy, and XPS analysis. The results suggested that there was a remarkable compatibility between cellulose and N-doped TiO2 nanorods anchored onto the surface of the RC/N-TiO2 nanocomposite thin film. Under UV and visible irradiation, the RC/N-TiO2 nanocomposite thin film showed remarkable photocatalytic activity for the degradation of methylene blue solution with degradation percentage of 96% and 78.8%, respectively. It is crucial to note that the resulting portable photocatalyst produced via an environmental and green technique in its fabrication process has good potential in the field of water and wastewater treatment application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior.

    PubMed

    Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K

    2011-08-01

    The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.

  12. Optimization of Al2O3/TiO2 nanolaminate thin films prepared with different oxide ratios, for use in organic light-emitting diode encapsulation, via plasma-enhanced atomic layer deposition.

    PubMed

    Kim, Lae Ho; Jeong, Yong Jin; An, Tae Kyu; Park, Seonuk; Jang, Jin Hyuk; Nam, Sooji; Jang, Jaeyoung; Kim, Se Hyun; Park, Chan Eon

    2016-01-14

    Encapsulation is essential for protecting the air-sensitive components of organic light-emitting diodes (OLEDs), such as the active layers and cathode electrodes. Thin film encapsulation approaches based on an oxide layer are suitable for flexible electronics, including OLEDs, because they provide mechanical flexibility, the layers are thin, and they are easy to prepare. This study examined the effects of the oxide ratio on the water permeation barrier properties of Al2O3/TiO2 nanolaminate films prepared by plasma-enhanced atomic layer deposition. We found that the Al2O3/TiO2 nanolaminate film exhibited optimal properties for a 1 : 1 atomic ratio of Al2O3/TiO2 with the lowest water vapor transmission rate of 9.16 × 10(-5) g m(-2) day(-1) at 60 °C and 90% RH. OLED devices that incorporated Al2O3/TiO2 nanolaminate films prepared with a 1 : 1 atomic ratio showed the longest shelf-life, in excess of 2000 hours under 60 °C and 90% RH conditions, without forming dark spots or displaying edge shrinkage.

  13. Electrospinning processed nanofibrous TiO2 membranes for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Onozuka, Katsuhiro; Ding, Bin; Tsuge, Yosuke; Naka, Takayuki; Yamazaki, Michiyo; Sugi, Shinichiro; Ohno, Shingo; Yoshikawa, Masato; Shiratori, Seimei

    2006-02-01

    We have recently fabricated dye-sensitized solar cells (DSSCs) comprising nanofibrous TiO2 membranes as electrode materials. A thin TiO2 film was pre-deposited on fluorine doped tin oxide (FTO) coated conducting glass substrate by immersion in TiF4 aqueous solution to reduce the electron back-transfer from FTO to the electrolyte. The composite polyvinyl acetate (PVac)/titania nanofibrous membranes can be deposited on the pre-deposited thin TiO2 film coated FTO by electrospinning of a mixture of PVac and titanium isopropoxide in N,N-dimethylformamide (DMF). The nanofibrous TiO2 membranes were obtained by calcining the electrospun composite nanofibres of PVac/titania as the precursor. Spectral sensitization of the nanofibrous TiO2 membranes was carried out with a ruthenium (II) complex, cis-dithiocyanate-N,N'-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) dihydrate. The results indicated that the photocurrent and conversion efficiency of electrodes can be increased with the addition of the pre-deposited TiO2 film and the adhesion treatment using DMF. Additionally, the dye loading, photocurrent, and efficiency of the electrodes were gradually increased by increasing the average thickness of the nanofibrous TiO2 membranes. The efficiency of the fibrous TiO2 photoelectrode with the average membrane thickness of 3.9 µm has a maximum value of 4.14%.

  14. A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth

    NASA Astrophysics Data System (ADS)

    Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan

    2006-11-01

    We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.

  15. Polarization-Dependent Raman Spectroscopy of Epitaxial TiO 2 (B) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokisaari, Jacob R.; Bayerl, Dylan; Zhang, Kui

    2015-12-08

    The bronze polymorph of titanium dioxide, known as TiO 2(B), has promising photochemical and electronic properties for potential applications in Li-ion batteries, photocatalysis, chemical sensing, and solar cells. In contrast to previous studies performed with powder samples, which often suffer from impurities and lattice water, here we report Raman spectra from highly crystalline TiO 2(B) films epitaxially grown on Si substrates with a thin SrTiO 3 buffer layer. The reduced background from the Si substrate significantly benefits acquisition of polarization-dependent Raman spectra collected from the high-quality thin films, which are compared to nanopowder results reported in the literature. The experimentalmore » spectra were compared with density functional theory calculations to analyze the atomic displacements associated with each Raman-active vibrational mode. These results provide a standard reference for further investigation of the crystallinity, structure, composition, and properties of TiO 2(B) materials with Raman spectroscopy.« less

  16. Mechanical characterization of thin TiO2 films by means of microelectromechanical systems-based cantilevers

    NASA Astrophysics Data System (ADS)

    Adami, A.; Decarli, M.; Bartali, R.; Micheli, V.; Laidani, N.; Lorenzelli, L.

    2010-01-01

    The measurement of mechanical parameters by means of microcantilever structures offers a reliable and accurate alternative to traditional methods, especially when dealing with thin films, which are extensively used in microfabrication technology and nanotechnology. In this work, microelectromechanical systems (MEMS)-based piezoresistive cantilevers were realized and used for the determination of Young's modulus and residual stress of thin titanium dioxide (TiO2) deposited by sputtering from a TiO2 target using a rf plasma discharge. Films were deposited at different thicknesses, ranging from a few to a hundred nanometers. Dedicated silicon microcantilevers were designed through an optimization of geometrical parameters with the development of analytical as well as numerical models. Young's modulus and residual stress of sputtered TiO2 films were assessed by using both mechanical characterization based on scanning profilometers and piezoresistive sensing elements integrated in the silicon cantilevers. Results of MEMS-based characterization were combined with the tribological and morphological properties measured by microscratch test and x-ray diffraction analysis.

  17. Dye-sensitized electron transfer from TiO 2 to oxidized triphenylamines that follows first-order kinetics

    DOE PAGES

    DiMarco, Brian N.; Troian-Gautier, Ludovic; Sampaio, Renato N.; ...

    2018-01-01

    Two sensitizers, [Ru(bpy) 2 (dcb)] 2+ ( RuC ) and [Ru(bpy) 2 (dpb)] 2+ ( RuP ), were anchored to mesoporous TiO 2 thin films and utilized to sensitize the reaction of TiO 2 electrons with oxidized triphenylamines to visible light in CH 3 CN electrolytes.

  18. Electrochemical properties of thin films of V2O5 doped with TiO2

    NASA Astrophysics Data System (ADS)

    Moura, E. A.; Cholant, C. M.; Balboni, R. D. C.; Westphal, T. M.; Lemos, R. M. J.; Azevedo, C. F.; Gündel, A.; Flores, W. H.; Gomez, J. A.; Ely, F.; Pawlicka, A.; Avellaneda, C. O.

    2018-08-01

    The paper presents a systematic study of the electrochromic properties of thin films of V2O5:TiO2 for a possible utilization as counter-electrode in electrochromic devices. The V2O5:TiO2 thin films were prepared by the sol-gel process and deposited on a substrate of fluorine-tin oxide transparent electrode (FTO) using the dip coating technique and heat treatment at 350 °C for 30 min. The films were characterized by chronocoulometry, cyclic voltammetry (CV), UV-Vis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), profilometry, and X-ray diffraction (XRD). The best results were obtained for the film of V2O5 with 7.5 mol% of TiO2, which presented highest ion storage capacity of ∼106 mC cm-2 and redox reversibility of 1. The diffusion of the Li+ ions into the thin films was modeled by solving Fick equations with appropriate boundary conditions for a plane sheet geometry. Besides that, these films showed optical modulation of 35% at 633 nm after coloration and bleaching. The XRD patterns revealed that the films have an orthorhombic crystal structure; the AFM and the profilometry confirmed roughness and thickness of 16.76 and 617 nm, respectively.

  19. Limitations of titanium dioxide and aluminum oxide as ossicular replacement materials: an evaluation of the effects of porosity on ceramic prostheses.

    PubMed

    Trabandt, Nicolaus; Brandes, Gudrun; Wintermantel, Erich; Lenarz, Thomas; Stieve, Martin

    2004-09-01

    Because the performance of titanium dioxide (TiO2) has not yet been assessed in the unique environment of the middle ear, its role as an ossicular replacement prototype in the form of a total ossicular replacement prosthesis (TORP) was tested and compared with aluminum oxide (Al2O3), once considered to be a suitable implant material. Ossiculoplasty was performed by implanting TORPs into the tympanic cavities of rabbits. After an implantation period of 28, 84, or 300 days, the petrous bones were extracted, whereby the biocompatibility of the prostheses was examined using light microscopy and scanning electron microscopy to determine morphologic changes in situ. Proper implant placement and functionality was tested via manual manipulation. Mucosa was seen covering most of the implants by day 84. Inflammatory cells were not observed in any of the specimens examined. The macroporous TiO2 TORPs were subjected to osseous infiltration, material dissolution, and fragmentation, whereas the microporous TiO2 implants were subjected to an increasing frequency of fissure formations. The Al2O3 prostheses demonstrated signs of material dissolution by producing encapsulated aggregates during the experimental trial period. Neither the macroporous nor microporous oxide ceramics were able to withstand the oscillatory stress to which they were continually subjected. Although porosity allows for the rapid integration of an implant material into a biological environment, its properties are not suited to fulfill the requirements of strength and long-term stability, which are demanded of middle ear prostheses.

  20. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO₂ nanotube layers fabricated by lyophilization following trehalose addition.

    PubMed

    Zhang, Xiaochen; Zhang, Zhiyuan; Shen, Gang; Zhao, Jun

    2016-01-01

    To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs.

  1. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors

    PubMed Central

    2013-01-01

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric. PMID:23294730

  2. Structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics for a-IGZO thin-film transistors.

    PubMed

    Chen, Fa-Hsyang; Her, Jim-Long; Shao, Yu-Hsuan; Matsuda, Yasuhiro H; Pan, Tung-Ming

    2013-01-08

    In this letter, we investigated the structural and electrical characteristics of high-κ Er2O3 and Er2TiO5 gate dielectrics on the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistor (TFT) devices. Compared with the Er2O3 dielectric, the a-IGZO TFT device incorporating an Er2TiO5 gate dielectric exhibited a low threshold voltage of 0.39 V, a high field-effect mobility of 8.8 cm2/Vs, a small subthreshold swing of 143 mV/decade, and a high Ion/Ioff current ratio of 4.23 × 107, presumably because of the reduction in the oxygen vacancies and the formation of the smooth surface roughness as a result of the incorporation of Ti into the Er2TiO5 film. Furthermore, the reliability of voltage stress can be improved using an Er2TiO5 gate dielectric.

  3. Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva.

    PubMed

    Alves, Sofia A; Rossi, André L; Ribeiro, Ana R; Toptan, Fatih; Pinto, Ana M; Shokuhfar, Tolou; Celis, Jean-Pierre; Rocha, Luís A

    2018-04-01

    After insertion into bone, dental implants may be subjected to tribocorrosive conditions resulting in the release of metallic ions and solid wear debris, which can induce to peri-implant inflammatory reactions accompanied by bone loss, and ultimately implant loosening. Despite the promising ability of TiO 2 nanotubes (NTs) to improve osseointegration and avoid infection-related failures, the understanding of their degradation under the simultaneous action of wear and corrosion (tribocorrosion) is still very limited. This study aims, for the first time, to study the tribocorrosion behavior of bio-functionalized TiO 2 NTs submitted to two-cycle sliding actions, and compare it with conventional TiO 2 NTs. TiO 2 NTs grown by anodization were doped with bioactive elements, namely calcium (Ca), phosphorous (P), and zinc (Zn), through reverse polarization anodization treatments. Characterization techniques such as scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and scanning transmission electron microscopy (STEM), were used to characterize the films. Tribocorrosion tests were carried out in artificial saliva (AS) by applying two cycles of reciprocating sliding actions. The open circuit potential (OCP) was monitored before, during, and after both cycles of sliding, during which the coefficient of friction (COF) was calculated. The resulting wear scars were analyzed by SEM and EDS, and wear volume measurements were performed by 2D profilometry. Finally, the mechanical features of TiO 2 NTs were accessed by nanoindentation. The results show that bio-functionalized TiO 2 NTs display an enhanced tribocorrosion performance, ascribed to the growth of a nano-thick oxide film at Ti/TiO 2 NTs interface, which significantly increased their adhesion strength to the substrate and consequently their hardness. Furthermore, it was discovered that during tribo-electrochemical solicitations, the formation of a P-rich tribofilm takes place, which grants both electrochemical protection and resistance to mechanical wear. This study provides fundamental and new insights for the development of multifunctional TiO 2 NTs with long-term biomechanical stability and improved clinical outcomes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. In Vitro Therapeutic Potential of Tio2 Nanoparticles Against Human Cervical Carcinoma Cells.

    PubMed

    Pandurangan, Muthuraman; Enkhtaivan, Gansukh; Young, Jung A; Hoon, Hur Ji; Lee, Hannah; Lee, SooBin; Kim, Doo Hwan

    2016-06-01

    Cellular and physiological responses to the degradation products of titanium implants are key indicators to determine the quality of biocompatibility of implant devices. The present study investigated titanium dioxide (TiO2) nanoparticle-induced cytotoxicity, apoptotic morphological modification, and apoptotic-related gene expressions in the human cervical carcinoma cells. TiO2 nanoparticle-induced cytotoxicity on cancer cells was determined by the sulphorhodamine-B assay. Apoptotic morphological modification such as nuclear fragmentation, rounding, cytoplasm shrinkage, loss of adhesion, and reduced cell volume were observed by an inverted, fluorescence, and confocal laser scanning microscope (CLSM). The DNA fragmentation study showed the occurrence of necrosis and apoptosis in nanoparticle-treated cells. The qPCR study showed the increased p53 and bax mRNA expression in the nanoparticle-treated cells compared to control. In addition, caspase 3 activity was increased in nanoparticle-treated cells, which indicates the increased auto-catalysis. Taking all these data together, it may suggest that TiO2 nanoparticle could inhibit the growth of HeLa cells.

  5. Biocompatible Nb2O5 thin films prepared by means of the sol-gel process.

    PubMed

    Velten, D; Eisenbarth, E; Schanne, N; Breme, J

    2004-04-01

    Thin biocompatible oxide films with an optimised composition and structure on the surface of titanium and its alloys can improve the implant integration. The preparation of these thin oxide layers with the intended improvement of the surface properties can be realised by means of the sol-gel process. Nb2O5 is a promising coating material for this application because of its extremely high corrosion resistance and thermodynamic stability. In this study, thin Nb2O5 layers ( < 200 nm) were prepared by spin coating of polished discs of cp-titanium with a sol consisting of a mixture of niobium ethoxide, butanol and acetylacetone. The thickness, phase composition, corrosion resistance and the wettability of the oxide layers were determined after an optimisation of the processing parameters for deposition of oxide without any organic impurities. The purity of the oxide layer is an important aspect in order to avoid a negative response to the cell adhesion. The biocompatibility of the oxide layers which was investigated by in vitro tests (morphology, proliferation rate, WST-1, cell spreading) is improved as compared to uncoated and TiO2 sol-gel coated cp-titanium concerning the spreading of cells, collagen I synthesis and wettability.

  6. Synthesis of TiO2 NRs - ZnO Composite for Dye Sensitized Solar Cell Photoanodes

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Hidayat, R.; Fadillah, G.; Munawaroh, H.; Saputri, L. N. M. Z.

    2017-07-01

    Composite of TiO2 NRs - ZnO were synthesized for DSSCs photoanode materials. TiO2 NRs was synthesized from TiO2 anatase by mechanochemical technique using ball milling process with agitation speed of 1000 rpm. While, the further hydrothermal refluxing process was conducted at 120°C under various concentration of NaOH in aqueous solution. The starting material of ZnO was prepared from ZnSO4.7H2O as a precursor. The hydrothermal treated TiO2 was added to the ZnO powder in a certain composition of 1:1, 1:2 and 2:1 (w/w), and the mixtures were then annealed at 400°C. The resulting material was characterized by X-ray diffraction (XRD), Surface area analyzer (SAA), Transmission electron microscopy (TEM), and Thermogravimetry/Differential thermal analysis (TG/DTA). The TiO2 revolution occurs from anatase phase into brookite phase. Rutile TiO2 phase was increasing when the NaOH was added at about 12 M. Nanograf of TEM showed the optimum condition for the formation of TiO2 NRs was obtained when 12 M NaOH was used. Structural transformation to 1D nanorods of TiO2 capable increase surface area up to 79 m2/g. TiO2 NRs-ZnO composite was prepared from TiO2 NRs and ZnO using comparation of TiO2 NRs: ZnO = 1:1, 1:2, dan 2:1. Anatase phase TiO2 as a single phase TiO2 was obtained in the TiO2-ZnO composite (1:1 w/w) upon heating the sample until 400°C. Difference TiO2 NRs-ZnO composite materials were investigated as good photovoltaic materials. Evaluation of the performance of DSSCs was conducted by I-V Keithley 2602A measurement indicate that photoanode built of TiO2 NRs - ZnO thin film has a higher solar cell efficiency than that of TiO2 thin film photoanode.

  7. Photocatalytic thin films containing TiO2:N nanopowders obtained by the layer-by-layer self-assembling method

    NASA Astrophysics Data System (ADS)

    Rojas-Blanco, L.; Urzúa, M. D.; Ramírez-Bon, R.; Espinoza Beltrán, F. J.

    2012-01-01

    In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.

  8. Strain Effects in Epitaxial VO2 Thin Films on Columnar Buffer-Layer TiO2/Al2O3 Virtual Substrates.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Burgess, Katherine; Charipar, Nicholas; Cheng, Shu-Fan; Stroud, Rhonda; Piqué, Alberto

    2017-01-18

    Epitaxial VO 2 /TiO 2 thin film heterostructures were grown on (100) (m-cut) Al 2 O 3 substrates via pulsed laser deposition. We have demonstrated the ability to reduce the semiconductor-metal transition (SMT) temperature of VO 2 to ∼44 °C while retaining a 4 order of magnitude SMT using the TiO 2 buffer layer. A combination of electrical transport and X-ray diffraction reciprocal space mapping studies help examine the specific strain states of VO 2 /TiO 2 /Al 2 O 3 heterostructures as a function of TiO 2 film growth temperatures. Atomic force microscopy and transmission electron microscopy analyses show that the columnar microstructure present in TiO 2 buffer films is responsible for the partially strained VO 2 film behavior and subsequently favorable transport characteristics with a lower SMT temperature. Such findings are of crucial importance for both the technological implementation of the VO 2 system, where reduction of its SMT temperature is widely sought, as well as the broader complex oxide community, where greater understanding of the evolution of microstructure, strain, and functional properties is a high priority.

  9. Ultra-fine structures of Pd-Ag-HAp nanoparticle deposition on protruded TiO2 barrier layer for dental implant

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol

    2018-02-01

    The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.

  10. Amorphous TiO 2 Compact Layers via ALD for Planar Halide Perovskite Photovoltaics

    DOE PAGES

    Kim, In Soo; Haasch, Richard T.; Cao, Duyen H.; ...

    2016-09-06

    A low temperature (< 120 °C) route to pinhole-free amorphous TiO 2 compact layers may pave the way to more efficient, flexible, and stable inverted perovskite halide device designs. Toward this end, we utilize low-temperature thermal atomic layer deposition (ALD) to synthesize ultra-thin (12 nm) compact TiO 2 underlayers for planar halide perovskite PV. While device performance with as-deposited TiO 2 films is poor, we identify room temperature UV-O 3 treatment as a route to device efficiency comparable to crystalline TiO 2 thin films synthesized by higher temperature methods. Here, we further explore the chemical, physical, and interfacial properties 2more » that might explain the improved performance through x-ray diffraction, spectroscopic ellipsometry, Raman spectroscopy, and x-ray photoelectron spectroscopy. These findings challenge our intuition about effective electron selective layers as well as point the way to a greater selection of flexible substrates and more stable inverted device designs.« less

  11. Plasmonic metamaterial-based chemical converted graphene/TiO2/Ag thin films by a simple spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Kumar, Promod; Swart, H. C.

    2018-04-01

    Graphene based hybrid nanostructures have received special attention in both the scientific and technological development due to their unique physicochemical behavior, which make them attractive in various applications such as, batteries, supercapacitors, fuel cells, solar cells, photovoltaic devices and bio-sensors. In the present study, the role of plasmonic metamaterials in light trapping photovoltaics for inorganic semiconducting materials by a simple and low cost spray pyrolysis technique has been studied. The plasmonic metamaterials thin film has been fabricated by depositing chemically converted graphene (CCG) onto TiO2-Ag nanoparticles which has a low resistivity and a low electron-hole recombination probability. The localized surface plasmon resonance at the metal-dielectric interface for the Ag nanoparticles has been observed at 403 nm after depositing chemical converted graphene (CCG) on the TiO2-Ag thin film. The results suggest that the stacking order of the CCG/TiO2/Ag plasmonic metamaterials samples did not change the band gap of TiO2 while it changed the conductivity of the film. Thus the diffusion of the noble metals in the glass and TiO2 matrices based thin films can trap the light of a particular wavelength by mean of plasmonic resonance and may be useful for superior photovoltaic and optoelectronic applications.

  12. Application of complex geometrical optics to determination of thermal, transport, and optical parameters of thin films by the photothermal beam deflection technique.

    PubMed

    Korte, Dorota; Franko, Mladen

    2015-01-01

    In this work, complex geometrical optics is, for what we believe is the first time, applied instead of geometrical or wave optics to describe the probe beam interaction with the field of the thermal wave in photothermal beam deflection (photothermal deflection spectroscopy) experiments on thin films. On the basis of this approach the thermal (thermal diffusivity and conductivity), optical (energy band gap), and transport (carrier lifetime) parameters of the semiconductor thin films (pure TiO2, N- and C-doped TiO2, or TiO2/SiO2 composites deposited on a glass or aluminum support) were determined with better accuracy and simultaneously during one measurement. The results are in good agreement with results obtained by the use of other methods and reported in the literature.

  13. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO(2-x)N(y) thin film and examination of its antimicrobial performance.

    PubMed

    Cao, Baocheng; Wang, Yuhua; Li, Na; Liu, Bin; Zhang, Yingjie

    2013-01-01

    A bracket coated with a nitrogen-doped (N-doped) TiO(2-x)N(y) thin film was prepared using the RF magnetron sputtering method. The physicochemical properties of the thin film were measured using X-ray diffraction and energy-dispersive X-ray spectrometry, while the antimicrobial activity of the bracket against common oral pathogenic microbes was assessed on the basis of colony counts. The rate of antimicrobial activity of the bracket coated with nano-TiO(2-x)N(y) thin film against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscous, and Candida albicans was 95.19%, 91.00%, 69.44%, and 98.86%, respectively. Scanning electron microscopy showed that fewer microbes adhered to the surface of this newly designed bracket than to the surface of the normal edgewise bracket. The brackets coated with the N-doped TiO(2-x)N(y) thin film showed high antimicrobial and bacterial adhesive properties against normal oral pathogenic bacterial through visible light, which is effective in prevention of enamel demineralization and gingivitis in orthodontic patients.

  14. A new room temperature gas sensor based on pigment-sensitized TiO2 thin film for amines determination.

    PubMed

    Yanxiao, Li; Xiao-bo, Zou; Xiao-wei, Huang; Ji-yong, Shi; Jie-wen, Zhao; Holmes, Mel; Hao, Limin

    2015-05-15

    A new room temperature gas sensor was fabricated with pigment-sensitized TiO2 thin film as the sensing layer. Four natural pigments were extracted from spinach (Spinacia oleracea), red radish (Raphanus sativus L), winter jasmine (Jasminum nudiflorum), and black rice (Oryza sativa L. indica) by ethanol. Natural pigment-sensitized TiO2 sensor was prepared by immersing porous TiO2 films in an ethanol solution containing a natural pigment for 24h. The hybrid organic-inorganic formed films here were firstly exposed to atmospheres containing methylamine vapours with concentrations over the range 2-10 ppm at room temperature. The films sensitized by the pigments from black-rice showed an excellent gas-sensitivity to methylamine among the four natural pigments sensitized films due to the anthocyanins. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of methylamine (r=0.931). At last, the black rice pigment sensitized TiO2 thin film was used to determine the biogenic amines generated by pork during storage. The developed films had good sensitivity to analogous gases such as putrscine, and cadaverine that will increase during storage. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hyperbranched TiO2-CdS nano-heterostructures for highly efficient photoelectrochemical photoanodes.

    PubMed

    Mezzetti, Alessandro; Balandeh, Mehrdad; Luo, Jingshan; Bellani, Sebastiano; Tacca, Alessandra; Divitini, Giorgio; Cheng, Chuanwei; Ducati, Caterina; Meda, Laura; Fan, Hongjin; Di Fonzo, Fabio

    2018-08-17

    Quasi-1D-hyperbranched TiO 2 nanostructures are grown via pulsed laser deposition and sensitized with thin layers of CdS to act as a highly efficient photoelectrochemical photoanode. The device properties are systematically investigated by optimizing the height of TiO 2 scaffold structure and thickness of the CdS sensitizing layer, achieving photocurrent values up to 6.6 mA cm -2 and reaching saturation with applied biases as low as 0.35 V RHE . The high internal conversion efficiency of these devices is to be found in the efficient charge generation and injection of the thin CdS photoactive film and in the enhanced charge transport properties of the hyperbranched TiO 2 scaffold. Hence, the proposed device represents a promising architecture for heterostructures capable of achieving high solar-to-hydrogen efficiency.

  16. Study of the Ag-Doped Effect on the LPD-TiO2 Gas Sensing Properties

    NASA Astrophysics Data System (ADS)

    Georgieva, V. B.; Stefchev, P. L.; Stefanov, P. K.; Raicheva, Z. G.; Atanassov, M. J.; Lazarov, Y. V.

    2010-01-01

    In this investigation, the gas-sensing properties of TiO2 thin layers are enhanced by Ag-doping. The TiO2 layers are prepared by the method of Liquid Phase Deposition (LPD) through a reaction between the metal fluorocomplex and boric acid in aqueous solution. The LPD-TiO2 layers are grown on AT-cut quartz resonators with gold electrodes (4 mm diameter). The prepared samples are divided in two (Ag-Doped TiO2 and un-doped TiO2) groups. The Ag-doped TiO2 thin films are created by vertically dipping in AgNO3 diluted water solution and UV irradiation with nine lamps of 6 W power each and light intensity of 0.35 mW/cm2 at room temperature. The sensing properties of two kinds of layers (Ag-doped TiO2 and un-doped TiO2) to NH3 are being studied by the method of Quartz Crystal Microbalance (QCM). The experiments are implemented at different NH3 concentrations—from 10 to 1000 ppm on a special laboratory set-up in dynamic regime. Comparing the results of measured sorbed mass of both kinds of layers show that the sensitivity of TiO2 is significantly affected by Ag presence. The role of Ag is to generate more active surface for TiO2 sorption. The obtained results show that the system QCM—LPD Ag TiO2 can be successfully applied as sensor element for NH3 registration in environment.

  17. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    PubMed

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Enhanced photovoltaic performance of novel TiO2 photoelectrode on TCO substrates for dye-sensitized solar cells.

    PubMed

    Nam, Jung Eun; Kwon, Soon Jin; Jo, Hyo Jeong; Yi, Kwang Bok; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-12-01

    In this study, we report synthesis and growth of rutile-anatase TiO2 thin film on fluorine-doped tin oxide (FTO) glass by a two-step hydrothermal method. The effects of additional treatments (i.e., TiCl4 post-treatment and seed layer formation were also studied. Photocurrent-voltage (I-V) measurement of rutile-anatase TiO2 thin film was performed under 1.5 G light illumination. Photovoltaic performance was investigated by incident photon-to-electron conversion efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent/photovoltage spectroscopy (IMVS/IMPS) and open-circuit photovoltage decay (OCVD).

  19. Nanofabrication technique based on localized photocatalytic reactions using a TiO2-coated atomic force microscopy probe

    NASA Astrophysics Data System (ADS)

    Shibata, Takayuki; Iio, Naohiro; Furukawa, Hiromi; Nagai, Moeto

    2017-02-01

    We performed a fundamental study on the photocatalytic degradation of fluorescently labeled DNA molecules immobilized on titanium dioxide (TiO2) thin films under ultraviolet irradiation. The films were prepared by the electrochemical anodization of Ti thin films sputtered on silicon substrates. We also confirmed that the photocurrent arising from the photocatalytic oxidation of DNA molecules can be detected during this process. We then demonstrated an atomic force microscopy (AFM)-based nanofabrication technique by employing TiO2-coated AFM probes to penetrate living cell membranes under near-physiological conditions for minimally invasive intracellular delivery.

  20. Tuning the Phase and Microstructural Properties of TiO2 Films Through Pulsed Laser Deposition and Exploring Their Role as Buffer Layers for Conductive Films

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Haseman, M. S.; Leedy, K. D.; Winarski, D. J.; Saadatkia, P.; Doyle, E.; Zhang, L.; Dang, T.; Vasilyev, V. S.; Selim, F. A.

    2018-04-01

    Titanium oxide (TiO2) is a semiconducting oxide of increasing interest due to its chemical and thermal stability and broad applicability. In this study, thin films of TiO2 were deposited by pulsed laser deposition on sapphire and silicon substrates under various growth conditions, and characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption spectroscopy and Hall-effect measurements. XRD patterns revealed that a sapphire substrate is more suitable for the formation of the rutile phase in TiO2, while a silicon substrate yields a pure anatase phase, even at high-temperature growth. AFM images showed that the rutile TiO2 films grown at 805°C on a sapphire substrate have a smoother surface than anatase films grown at 620°C. Optical absorption spectra confirmed the band gap energy of 3.08 eV for the rutile phase and 3.29 eV for the anatase phase. All the deposited films exhibited the usual high resistivity of TiO2; however, when employed as a buffer layer, anatase TiO2 deposited on sapphire significantly improves the conductivity of indium gallium zinc oxide thin films. The study illustrates how to control the formation of TiO2 phases and reveals another interesting application for TiO2 as a buffer layer for transparent conducting oxides.

  1. Effect of substrate type on the electrical and structural properties of TiO2 thin films deposited by reactive DC sputtering

    NASA Astrophysics Data System (ADS)

    Cheng, Xuemei; Gotoh, Kazuhiro; Nakagawa, Yoshihiko; Usami, Noritaka

    2018-06-01

    Electrical and structural properties of TiO2 thin films deposited at room temperature by reactive DC sputtering have been investigated on three different substrates: high resistivity (>1000 Ω cm) float zone Si(1 1 1), float zone Si(1 0 0) and alkali free glass. As-deposited TiO2 films on glass substrate showed extremely high resistivity of (∼5.5 × 103 Ω cm). In contrast, lower resistivities of ∼2 Ω cm and ∼5 Ω cm were obtained for films on Si(1 1 1) and Si(1 0 0), respectively. The as-deposited films were found to be oxygen-rich amorphous TiO2 for all the substrates as evidenced by X-ray photoemission spectroscopy and X-ray diffraction. Subsequent annealing led to appearance of anatase TiO2 on Si but not on glass. The surface of as-deposited TiO2 on Si was found to be rougher than that on glass. These results suggest that the big difference of electrical resistivity of TiO2 would be related with existence of more anatase nuclei forming on crystalline substrates, which is consistent with the theory of charged clusters that smaller clusters tend to adopt the substrate structure.

  2. Surface modification of TiO2 nanotubes with osteogenic growth peptide to enhance osteoblast differentiation.

    PubMed

    Lai, Min; Jin, Ziyang; Su, Zhiguo

    2017-04-01

    To investigate the influence of surface-biofunctionalized substrates on osteoblast behavior, a layer of aligned TiO 2 nanotubes with a diameter of around 70nm was fabricated on titanium surface by anodization, and then osteogenic growth peptide (OGP) was conjugated onto TiO 2 nanotubes through the intermediate layer of polydopamine. The morphology, composition and wettability of different surfaces were characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements, respectively. The effects of OGP-modified TiO 2 nanotube substrates on the morphology, proliferation and differentiation of osteoblasts were examined in vitro. Immunofluorescence staining revealed that the OGP-functionalized TiO 2 nanotubes were favorable for cell spreading. However, there was no significant difference in cell proliferation observed among the different groups. Cells grown onto OGP-functionalized TiO 2 nanotubes showed significantly higher (p<0.05 or p<0.01) levels of alkaline phosphatase (ALP) and mineralization after 4, 7 and 14days of culture, respectively. Cells grown on OGP-functionalized TiO 2 nanotubes had significantly higher (p<0.05 or p<0.01) expression of osteogenic-related genes including runt related transcription factor 2 (Runx2), ALP, collagen type I (Col I), osteopontin (OPN) and osteocalcin (OC) after 14days of culture. These data suggest that surface functionalization of TiO 2 nanotubes with OGP was beneficial for cell spreading and differentiation. This study provides a novel platform for the development and fabrication of titanium-based implants that enhance the propensity for osseointegration between the native tissue and implant interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiMarco, Brian N.; Troian-Gautier, Ludovic; Sampaio, Renato N.

    Two sensitizers, [Ru(bpy) 2 (dcb)] 2+ ( RuC ) and [Ru(bpy) 2 (dpb)] 2+ ( RuP ), were anchored to mesoporous TiO 2 thin films and utilized to sensitize the reaction of TiO 2 electrons with oxidized triphenylamines to visible light in CH 3 CN electrolytes.

  4. Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2013-11-01

    Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Influence of surfactant and annealing temperature on optical properties of sol-gel derived nano-crystalline TiO2 thin films.

    PubMed

    Vishwas, M; Sharma, Sudhir Kumar; Rao, K Narasimha; Mohan, S; Gowda, K V Arjuna; Chakradhar, R P S

    2010-03-01

    Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO(2) thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO(2) films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO(2) films was estimated by Tauc's method at different annealing temperature. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.

    2015-12-01

    We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.

  7. Si NW network by Ag nanoparticle assisted etching and TiO2/Si NWs as photodetector

    NASA Astrophysics Data System (ADS)

    Bhowmik, Kishan; Mondal, Aniruddha

    2015-03-01

    Glancing angle deposited silver (Ag) nanoparticles (NPs) were employed to fabricate the silicon (Si) nanowire (NW) network on p-type Si substrate. The Si NWs were characterized by X-ray diffraction, which shows the (311) oriented single crystalline nature. The FEG-SEM images show that the nanowire diameters are in the order of 60-180 nm. The photoluminescence emission at 525 nm was recognized from the Si NWs. The Ag-TiO2 contacts exhibit Schottky behavior and higher photoconduction was observed for TiO2-Si NW detector than that of TiO2 Thin film under illumination up to 2.5 V applied potential. A threefold enhanced photodetection for the Silicon nanowire device was observed compared to the TiO2 thin film device, under applied voltages of 0.4-1.5 V. [Figure not available: see fulltext.

  8. Absorbing TiO x thin film enabling laser welding of polyurethane membranes and polyamide fibers.

    PubMed

    Amberg, Martin; Haag, Alexander; Storchenegger, Raphael; Rupper, Patrick; Lehmeier, Frederike; Rossi, René M; Hegemann, Dirk

    2015-10-01

    We report on the optical properties of thin titanium suboxide (TiO x ) films for applications in laser transmission welding of polymers. Non-absorbing fibers were coated with TiO x coatings by reactive magnetron sputtering. Plasma process parameters influencing the chemical composition and morphology of the deposited thin films were investigated in order to optimize their absorption properties. Optical absorption spectroscopy showed that the oxygen content of the TiO x coatings is the main parameter influencing the optical absorbance. Overtreatment (high power plasma input) of the fiber surface leads to high surface roughness and loss of mechanical stability of the fiber. The study shows that thin substoichiometric TiO x films enable the welding of very thin polyurethane membranes and polyamide fibers with improved adhesion properties.

  9. Interface engineering of CsPbBr3/TiO2 heterostructure with enhanced optoelectronic properties for all-inorganic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Qian, Chong-Xin; Deng, Zun-Yi; Yang, Kang; Feng, Jiangshan; Wang, Ming-Zi; Yang, Zhou; Liu, Shengzhong Frank; Feng, Hong-Jian

    2018-02-01

    Interface engineering has become a vital method in accelerating the development of perovskite solar cells in the past few years. To investigate the effect of different contacted surfaces of a light absorber with an electron transporting layer, TiO2, we synthesize CsPbBr3/TiO2 thin films with two different interfaces (CsBr/TiO2 and PbBr2/TiO2). Both interfacial heterostructures exhibit enhanced visible light absorption, and the CsBr/TiO2 thin film presents higher absorption than the PbBr2/TiO2 interface, which is attributed to the formation of interface states and the decreased interface bandgap. Furthermore, compared with the PbBr2/TiO2 interface, CsBr/TiO2 solar devices present larger output short circuit current and shorter photoluminescence decay time, which indicates that the CsBr contacting layer with TiO2 can better extract and separate the photo-induced carriers. The first-principles calculations confirm that, due to the existence of staggered gap (type II) offset junction and the interface states, the CsBr/TiO2 interface can more effectively separate the photo-induced carriers and thus drive the electron transfer from the CsPbBr3 perovskite layer to the TiO2 layer. These results may be beneficial to exploit the potential application of all-inorganic perovskite CsPbBr3-based solar cells through the interface engineering route.

  10. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less

  11. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE PAGES

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj; ...

    2017-10-26

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO 2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H 2 plasma treatment makes TiO 2 films black, with broad-spectrum enhancementmore » of visible light absorption, and XPS analysis shows peak for Ti 3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO 2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO 2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO 2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO 2 is accompanied by significant hydrogen uptake and not just Ti 3+ generation or surface disordering.« less

  12. Hydrogen incorporation by plasma treatment gives mesoporous black TiO 2 thin films with visible photoelectrochemical water oxidation activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Syed Z.; Reed, Allen; Nagpure, Suraj

    2018-05-01

    In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible lightmore » absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.« less

  13. Electron-Selective TiO 2 Contact for Cu(In,Ga)Se 2 Solar Cells

    DOE PAGES

    Hsu, Weitse; Sutter-Fella, Carolin M.; Hettick, Mark; ...

    2015-11-03

    The non-toxic and wide bandgap material TiO 2 is explored as an n-type buffer layer on p-type Cu(In,Ga)Se 2 (CIGS) absorber layer for thin film solar cells. The amorphous TiO 2 thin film deposited by atomic layer deposition process at low temperatures shows conformal coverage on the CIGS absorber layer. Solar cells from non-vacuum deposited CIGS absorbers with TiO 2 buffer layer result in a high short-circuit current density of 38.9 mA/cm 2 as compared to 36.9 mA/cm 2 measured in the reference cell with CdS buffer layer, without compromising open-circuit voltage. The significant photocurrent gain, mainly in the UVmore » part of the spectrum, can be attributed to the low parasitic absorption loss in the ultrathin TiO 2 layer (~10 nm) with a larger bandgap of 3.4 eV compared to 2.4 eV of the traditionally used CdS. Overall the solar cell conversion efficiency was improved from 9.5% to 9.9% by substituting the CdS by TiO 2 on an active cell area of 10.5 mm2. In conclusion, optimized TiO 2/CIGS solar cells show excellent long-term stability. The results imply that TiO 2 is a promising buffer layer material for CIGS solar cells, avoiding the toxic CdS buffer layer with added performance advantage.« less

  14. Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method.

    PubMed

    Zhao, Jiao; Minegishi, Tsutomu; Zhang, Li; Zhong, Miao; Gunawan; Nakabayashi, Mamiko; Ma, Guijun; Hisatomi, Takashi; Katayama, Masao; Ikeda, Shigeru; Shibata, Naoya; Yamada, Taro; Domen, Kazunari

    2014-10-27

    Porous films of p-type CuInS2, prepared by sulfurization of electrodeposited metals, are surface-modified with thin layers of CdS and TiO2. This specific porous electrode evolved H2 from photoelectrochemical water reduction under simulated sunlight. Modification with thin n-type CdS and TiO2 layers significantly increased the cathodic photocurrent and onset potential through the formation of a p-n junction on the surface. The modified photocathodes showed a relatively high efficiency and stable H2 production under the present reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition

    PubMed Central

    Wilson, Rachel L.; Blackman, Christopher S.; Carmalt, Claire J.; Stanoiu, Adelina; Di Maggio, Francesco

    2018-01-01

    Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated. PMID:29494504

  16. TiO2/SiO2 porous composite thin films: Role of TiO2 areal loading and modification with gold nanospheres on the photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Levchuk, Irina; Sillanpää, Mika; Guillard, Chantal; Gregori, Damia; Chateau, Denis; Parola, Stephane

    2016-10-01

    The aim of the work was to study photocatalytic activity of composite TiO2/Au/SiO2 thin films. Coatings were prepared using sol-gel technique. Physicochemical parameters of coatings were characterized using UV-vis spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, tactile measurements, goniometry and diffuse reflectance measurements. The photocatalytic activity of the films was tested in batch mode using aqueous solution of formic acid. Changes of formic acid concentration were determined by means of high pressure liquid chromatography (HPLC). Increase of initial degradation rate of formic acid was detected for TiO2/Au/SiO2 films with gold nanoparticle's load 0.5 wt.% and 1.25 wt.%. However, deeper insights using more detailed characterization of these coatings demonstrated that the improvement of the photocatalytic activity is more probably attributed to an increase in the areal loading of TiO2.

  17. Study the target effect on the structural, surface and optical properties of TiO2 thin film fabricated by RF sputtering method

    NASA Astrophysics Data System (ADS)

    Vyas, Sumit; Tiwary, Rohit; Shubham, Kumar; Chakrabarti, P.

    2015-04-01

    The effect of target (Ti metal target and TiO2 target) on Titanium Dioxide (TiO2) thin films grown on ITO coated glass substrate by RF magnetron sputtering has been investigated. A comparative study of both the films was done in respect of crystalline structure, surface morphology and optical properties by using X-ray diffractometer (XRD), Atomic Force Microscopy (AFM) studies and ellipsometric measurements. The XRD results confirmed the crystalline structure and indicated that the deposited films have the intensities of anatase phase. The surface morphology and roughness values indicated that the film using Ti metal target has a smoother surface and densely packed with grains as compared to films obtained using TiO2 target. A high transmission in the visible region, and direct band gap of 3.67 eV and 3.75 eV for films derived by using Ti metal and TiO2 target respectively and indirect bandgap of 3.39 eV for the films derived from both the targets (Ti metal and TiO2 target) were observed by the ellipsometric measurements.

  18. Improved performance of Ag-doped TiO2 synthesized by modified sol-gel method as photoanode of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gupta, Arun Kumar; Srivastava, Pankaj; Bahadur, Lal

    2016-08-01

    Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol-gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor's blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density ( J sc), open-circuit voltage ( V oc), fill factor (FF) and the overall energy conversion efficiency ( η) were 1.07 mA cm-2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm-2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

  19. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    PubMed

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Self-Assembled Multilayer Structure and Enhanced Thermochromic Performance of Spinodally Decomposed TiO2-VO2 Thin Film.

    PubMed

    Sun, Guangyao; Zhou, Huaijuan; Cao, Xun; Li, Rong; Tazawa, Masato; Okada, Masahisa; Jin, Ping

    2016-03-23

    Composite films of VO2-TiO2 were deposited on sapphire (11-20) substrate by cosputtering method. Self-assembled well-ordered multilayer structure with alternating Ti- and V-rich epitaxial thin layer was obtained by thermal annealing via a spinodal decomposition mechanism. The structured thermochromic films demonstrate superior optical modulation upon phase transition, with significantly reduced transition temperature. The results provide a facile and novel approach to fabricate smart structures with excellent performance.

  1. Pyrrole-regulated precipitation of titania nanorods on polymer fabrics for photocatalytic degradation of trace toluene in air

    NASA Astrophysics Data System (ADS)

    Gu, Yi-Jie; Wen, Wei; Xu, Yang; Wu, Jin-Ming

    2018-03-01

    When compared with nanoparticulate counterparts, TiO2 thin films with vertically aligned one-dimensional (1D) nanostructures exhibit enhanced photocatalytic activity because of the highly accessible surface area. The perpendicular of the 1D nanostructure reduces the charge migration path and hence the carrier recombination rate, which also contributes to the photocatalytic activity. Furthermore, TiO2 thin films on flexible substrates are more suitable to degrade pollutants in either water or air because of its easy recovery and free-bending shape. In this study, flexible polyethylene fabrics were firstly coated with a sol-gel nanoparticulate TiO2 seed layer. Quasi-aligned TiO2 nanorods were then precipitated homogeneously under an atmospheric pressure and a low temperature not exceeding 80 °C, using a peroxy-titanium complex precursor with the additive of pyrrole. It is found that the density of TiO2 nanorods increased with the increasing amount of pyrrole monomers. The resultant TiO2 film on polyethylene fabrics exhibited a much reduced band gap of ca. 2.86 eV, which can be attributed to the surface oxygen deficiencies. When utilized to assist photocatalytic degradation of trace toluene in air under the UV light illumination, the TiO2 film exhibited a gradually increased photocatalytic activity upon the increasing cycles for up to six, because of the gradual removal of trace organics on the TiO2 surface. The highest photocatalytic efficiency is recorded to be 5 times that of TiO2 nanotube arrays, which are regarded as an excellent photocatalyst for air cleaning.

  2. Tunability of p- and n-channel TiOx thin film transistors.

    PubMed

    Peng, Wu-Chang; Chen, Yao-Ching; He, Ju-Liang; Ou, Sin-Liang; Horng, Ray-Hua; Wuu, Dong-Sing

    2018-06-18

    To acquire device-quality TiO x films usually needs high-temperature growth or additional post-thermal treatment. However, both processes make it very difficult to form the p-type TiO x even under oxygen-poor growth condition. With the aid of high energy generated by high power impulse magnetron sputtering (HIPIMS), a highly stable p-type TiO x film with good quality can be achieved. In this research, by varying the oxygen flow rate, p-type γ-TiO and n-type TiO 2 films were both prepared by HIPIMS. Furthermore, p- and n-type thin film transistors employing γ-TiO and TiO 2 as channel layers possess the field-effect carrier mobilities of 0.2 and 0.7 cm 2 /Vs, while their on/off current ratios are 1.7 × 10 4 and 2.5 × 10 5 , respectively. The first presented p-type γ-TiO TFT is a major breakthrough for fabricating the TiO x -based p-n combinational devices. Additionally, our work also confirms HIPIMS offers the possibility of growing both p- and n-type conductive oxides, significantly expanding the practical usage of this technique.

  3. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    NASA Astrophysics Data System (ADS)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  4. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation

    NASA Astrophysics Data System (ADS)

    Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng

    2016-05-01

    Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min-1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL-1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation.

  5. Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO2 Layers on the Performance of Mesoscopic Perovskite Solar Cells.

    PubMed

    Masood, Muhammad Talha; Weinberger, Christian; Sarfraz, Jawad; Rosqvist, Emil; Sandén, Simon; Sandberg, Oskar J; Vivo, Paola; Hashmi, Ghufran; Lund, Peter D; Österbacka, Ronald; Smått, Jan-Henrik

    2017-05-31

    Uniform and pinhole-free electron-selective TiO 2 layers are of utmost importance for efficient perovskite solar cells. Here we used a scalable and low-cost dip-coating method to prepare uniform and ultrathin (5-50 nm) compact TiO 2 films on fluorine-doped tin oxide (FTO) glass substrates. The thickness of the film was tuned by changing the TiCl 4 precursor concentration. The formed TiO 2 follows the texture of the underlying FTO substrates, but at higher TiCl 4 concentrations, the surface roughness is substantially decreased. This change occurs at a film thickness close to 20-30 nm. A similar TiCl 4 concentration is needed to produce crystalline TiO 2 films. Furthermore, below this film thickness, the underlying FTO might be exposed resulting in pinholes in the compact TiO 2 layer. When integrated into mesoscopic perovskite solar cells there appears to be a similar critical compact TiO 2 layer thickness above which the devices perform more optimally. The power conversion efficiency was improved by more than 50% (from 5.5% to ∼8.6%) when inserting a compact TiO 2 layer. Devices without or with very thin compact TiO 2 layers display J-V curves with an "s-shaped" feature in the negative voltage range, which could be attributed to immobilized negative ions at the electron-extracting interface. A strong correlation between the magnitude of the s-shaped feature and the exposed FTO seen in the X-ray photoelectron spectroscopy measurements indicates that the s-shape is related to pinholes in the compact TiO 2 layer when it is too thin.

  6. Thin film nano-photocatalyts with low band gap energy for gas phase degradation of p-xylene: TiO2 doped Cr, UiO66-NH2 and LaBO3 (B  =  Fe, Mn, and Co)

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Thuy Van Nguyen, Thi; Nguyen, Tri; Nguyen, Phung Anh; Hoang, Tien Cuong; Ha, Cam Anh

    2018-03-01

    By dip-coating technique the thin films of nano-photocatalysts TiO2, Cr-doped TiO2, LaBO3 perovskites (B  =  Fe, Mn, and Co) prepared by sol-gel method, and UiO66-NH2 prepared by a solvothermal were obtained and employed for gas phase degradation of p-xylene. Physicochemical characteristics of the catalysts were examined by the methods of BET, SEM, TEM, XRD, FT-IR, TGA, Raman and UV-vis spectroscopies. The thickness of film was determined by a Veeco-American Dektek 6M instrument. The activity of catalysts was evaluated in deep photooxidation of p-xylene in a microflow reactor at room temperature with the radiation sources of a UV (λ  =  365 nm) and LED lamps (λ  =  400-510 nm). The obtained results showed that TiO2 and TiO2 doped Cr thin films was featured by an anatase phase with nanoparticles of 10-100 nm. Doping TiO2 with 0.1%mol Cr2O3 led to reduce band gap energy from 3.01 down to 1.99 eV and extend the spectrum of photon absorption to the visible region (λ  =  622 nm). LaBO3 perovkite thin films were also featured by a crystal phase with average particle nanosize of 8-40 nm, a BET surface area of 17.6-32.7 m2 g-1 and band gap energy of 1.87-2.20 eV. UiO66-NH2 was obtained in the ball shape of 100-200 nm, a BET surface area of 576 m2 g-1 and a band gap energy of 2.83 eV. The low band gap energy nano-photocatalysts based on Cr-doped TiO2 and LaBO3 perovskites exhibited highly stable and active for photo-degradation of p-xylene in the gas phase under radiation of UV-vis light. Perovskite LaFeO3 and Cr-TiO2 thin films were the best photocatalysts with a decomposition yield being reached up to 1.70 g p-xylene/g cat.

  7. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    PubMed

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-09

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.

  8. Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility.

    PubMed

    Nagarajan, Srinivasan; Mohana, Marimuthu; Sudhagar, Pitchaimuthu; Raman, Vedarajan; Nishimura, Toshiyasu; Kim, Sanghyo; Kang, Yong Soo; Rajendran, Nallaiyan

    2012-10-24

    The 316 L stainless steel is one of the most commonly available commercial implant materials with a few limitations in its ease of biocompatibility and long-standing performance. Hence, porous TiO(2)/ZrO(2) nanocomposite coated over 316 L stainless steels was studied for their enhanced performance in terms of its biocompatibility and corrosion resistance, following a sol-gel process via dip-coating technique. The surface composition and porosity texture was studied to be uniform on the substrate. Biocompatibility studies on the TiO(2)/ZrO(2) nanocomposite coatings were investigated by placing the coated substrate in a simulated body fluid (SBF). The immersion procedure resulted in the complete coverage of the TiO(2)/ZrO(2) nanocomposite (coated on the surface of 316 L stainless steel) with the growth of a one-dimensional (1D) rod-like carbonate-containing apatite. The TiO(2)/ZrO(2) nanocomposite coated specimens showed a higher corrosion resistance in the SBF solution with an enhanced biocompatibility, surpassing the performance of the pure oxide coatings. The cell viability of TiO(2)/ZrO(2) nanocomposite coated implant surface was examined under human dermal fibroblasts culture, and it was observed that the composite coating enhances the proliferation through effective cellular attachment compared to pristine 316 L SS surface.

  9. The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2nanofiberphotoanodes

    PubMed Central

    2013-01-01

    High performance is expected in dye-sensitized solar cells (DSSCs) that utilize one-dimensional (1-D) TiO2 nanostructures owing to the effective electron transport. However, due to the low dye adsorption, mainly because of their smooth surfaces, 1-D TiO2 DSSCs show relatively lower efficiencies than nanoparticle-based ones. Herein, we demonstrate a very simple approach using thick TiO2 electrospun nanofiber films as photoanodes to obtain high conversion efficiency. To improve the performance of the DSCCs, anatase-rutile mixed-phase TiO2 nanofibers are achieved by increasing sintering temperature above 500°C, and very thin ZnO films are deposited by atomic layer deposition (ALD) method as blocking layers. With approximately 40-μm-thick mixed-phase (approximately 15.6 wt.% rutile) TiO2 nanofiber as photoanode and 15-nm-thick compact ZnO film as a blocking layer in DSSC, the photoelectric conversion efficiency and short-circuit current are measured as 8.01% and 17.3 mA cm−2, respectively. Intensity-modulated photocurrent spectroscopy and intensity-modulated photovoltage spectroscopy measurements reveal that extremely large electron diffusion length is the key point to support the usage of thick TiO2 nanofibers as photoanodes with very thin ZnO blocking layers to obtain high photocurrents and high conversion efficiencies. PMID:23286741

  10. Effect of Cyclic Precalcification of Nanotubular TiO2 Layer on the Bioactivity of Titanium Implant

    PubMed Central

    Park, Il Song; Yang, Eun Jin; Bae, Tae Sung

    2013-01-01

    The objective of this study is to investigate the effect of cyclic precalcification treatment to impart bioactive properties for titanium implants. Before precalcification, the titanium implants were subjected to blasting using hydroxyapatite (HAp), a resorbable blasting medium (RBM treated), and anodized using an electrolyte containing glycerol, H2O, and NH4F. Precalcification treatment was performed by two different methods, namely, continuous immersion treatment (CIT) and alternate immersion treatment (AIT). In CIT, the RBM treated and anodized titanium implants were immersed in 0.05 M NaH2PO4 solution at 80°C and saturated Ca(OH)2 solution at 100°C for 20 min, whereas during AIT, they were immersed alternatively in both solutions for 1 min for 20 cycles. Anodizing of the titanium implants enables the formation of self-organized TiO2 nanotubes. Cyclic precalcification treatment imparts a better bioactive property and enables an increase in activation level of the titanium implants. The removal torque values of the RBM treated, CIT treated, and AIT treated titanium implants are 10.8 ± 3.7 Ncm, 17.5 ± 3.5 Ncm, and 28.1 ± 2.4 Ncm, respectively. The findings of the study indicate the cyclic precalcification in an effective surface treatment method that would help accelerate osseointegration and impart bioactive property of titanium implants. PMID:24069596

  11. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Wang, Guanxi; Fan, Jiajie; Liu, Baoshun; Cao, Shaowen; Yu, Jiaguo

    2015-01-01

    Dye-sensitized solar cells (DSSCs) were fabricated by using g-C3N4 modified TiO2 nanosheets (CTS) as photoanode materials in this research. A thin layer of g-C3N4 was coated on the surface of TiO2 nanosheets by simply heating the mixture of TiO2 nanosheets and urea, which led to the formation of TiO2@g-C3N4 nanosheet heterostructure. The experimental results showed that the photoelectric conversion efficiency of DSSCs was obviously improved after modified by g-C3N4. The measurements of I-V characteristic indicated that the introduction of g-C3N4 could increase both the open circuit voltage and short-circuit photocurrent density. Along with the analysis of electrochemical impedance spectroscopy, it is considered that the thin layer of g-C3N4 can act as the blocking layer for electron backward recombination with electrolyte, which can be used as the functional material to increase the DSSC performance.

  12. Sensitive determination of the Young's modulus of thin films by polymeric microcantilevers

    NASA Astrophysics Data System (ADS)

    Colombi, Paolo; Bergese, Paolo; Bontempi, Elza; Borgese, Laura; Federici, Stefania; Sylvest Keller, Stephan; Boisen, Anja; Eleonora Depero, Laura

    2013-12-01

    A method for the highly sensitive determination of the Young's modulus of TiO2 thin films exploiting the resonant frequency shift of a SU-8 polymer microcantilever (MC) is presented. Amorphous TiO2 films with different thickness ranging from 10 to 125 nm were grown at low temperature (90 °C) with subnanometer thickness resolution on SU-8 MC arrays by means of atomic layer deposition. The resonant frequencies of the MCs were measured before and after coating and the elastic moduli of the films were determined by a theoretical model developed for this purpose. The Young's modulus of thicker TiO2 films (>75 nm) was estimated to be about 110 GPa, this value being consistent with the value of amorphous TiO2. On the other hand we observed a marked decrease of the Young's modulus for TiO2 films with a thickness below 50 nm. This behavior was found not to be related to a decrease of the film mass density, but to surface effects according to theoretical predictions on size-dependent mechanical properties of nano- and microstructures.

  13. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    PubMed

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  14. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes.

    PubMed

    Li, Chengcheng; Wang, Tuo; Zhao, Zhi-Jian; Yang, Weimin; Li, Jian-Feng; Li, Ang; Yang, Zhilin; Ozin, Geoffrey A; Gong, Jinlong

    2018-05-04

    A hundred years on, the energy-intensive Haber-Bosch process continues to turn the N 2 in air into fertilizer, nourishing billions of people while causing pollution and greenhouse gas emissions. The urgency of mitigating climate change motivates society to progress toward a more sustainable method for fixing N 2 that is based on clean energy. Surface oxygen vacancies (surface O vac ) hold great potential for N 2 adsorption and activation, but introducing O vac on the very surface without affecting bulk properties remains a great challenge. Fine tuning of the surface O vac by atomic layer deposition is described, forming a thin amorphous TiO 2 layer on plasmon-enhanced rutile TiO 2 /Au nanorods. Surface O vac in the outer amorphous TiO 2 thin layer promote the adsorption and activation of N 2 , which facilitates N 2 reduction to ammonia by excited electrons from ultraviolet-light-driven TiO 2 and visible-light-driven Au surface plasmons. The findings offer a new approach to N 2 photofixation under ambient conditions (that is, room temperature and atmospheric pressure). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Elaboration and Characterization of TiO2 and Study of the Influence of The Number of Thin Films on the Methylene Blue Adsorption Rate

    NASA Astrophysics Data System (ADS)

    Madoui, Karima; Medjahed, Aicha; Hamici, Melia; Djamila, Abdi; Boudissa, Mokhtar

    2018-05-01

    Thin films of titanium oxide (TiO2) deposited on glass substrates were fabricated by using the sol-gel route. The realization of these thin layers was made using the dip-coating technique with a solution of titanium isopropoxyde as a precursor. The samples prepared with different numbers of deposited layers were annealed at 400 ° C for 2 hours. The main purposes of this work were investigations of both the effect of the number of thin TiO2 layers on the crystal structure of the anatase form first and, their ability to adsorb the solution of methylene blue in order to make colored filters from a photocatalytic process. The deposited titanium-oxide layers were characterized by using various techniques: namely, X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM) and UV-Visible spectrometry. The result obtained by using the XRD technique showed the appearance of an anatase phase, as was confirmed by using Raman spectroscopy. The AFM surface analysis allowed the surface topography to be characterized and the surface roughness to be measured, which increased with increasing number of layers. The UV-Visible spectra showed that the TiO2 films had a good transmittance varying from 65% to 95% according to the number of layers. The gap energy varied as a function of the number of deposited layers. The as deposited TiO2 layers were tested as a photocatalyst towards the adsorption of methylene blue dye. The results obtained during this study showed that the adsorption capacity varied according to the number of deposited thin layers and the exposing duration to ultraviolet (UV) light. The maximum absorption rate of the dye was obtained for the two-layer sample. Seventy-two hours of irradiation allowed the adsorption intensity of the dye to be maximized for two-layer films.

  16. Characterization of Novel Thin-Films and Structures for Integrated Circuit and Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao

    Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer is employed. The electrical and structural characterization of hole transfer layers (HTLs) in OSCs reveals MoO3 is the compatible HTL for TAgT anode. In the end, the reactive ink printed Ag film for solar cell contact application is studied by characterizing its electromigration lifetime. A percolative model is proposed and validated for predicting the resistivity and lifetime of printed Ag thin films containing porous structure.

  17. Texture control and seeded nucleation of nanosize structures of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Muralt, Paul

    2006-09-01

    An overview is given on nucleation phenomena of Pb(Zr ,Ti)O3 (PZT) thin films on Pt(111)-based substrates. Emphasis is given on in situ growth methods, particularly in situ reactive sputtering from three metallic targets. Growth of PZT thin films is discussed from the point of view of the PbOx-TiO2 phase diagram, PbO vapor pressure, and classical nucleation theory. The role of thin TiO2 affinity layers and spots is explained in the frame of this theory. Activation energies for desorption and chemisorption are adapted to comply with the fact that nucleation rates on TiO2 are much larger than the ones on bare Pt(111). The model reproduces well the PbO surface flux from bare Pt(111) to the affinity spots in the case of PbTiO3 nucleation and the reversed tendency in the case of PZT 40/60 nucleation, explaining experimental observations. The critical size of nuclei was calculated to contain 8-10unit cells for PbTiO3/Pt nucleation and 14-17 for PZT/Pt nucleation.

  18. S180 cell growth on low ion energy plasma treated TiO 2 thin films

    NASA Astrophysics Data System (ADS)

    Dhayal, Marshal; Cho, Su-In; Moon, Jun Young; Cho, Su-Jin; Zykova, Anna

    2008-03-01

    X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (<2 eV) argon ion plasma surface modification of TiO 2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO 2 in a two-stage hybrid system had increased the proportion of surface states of TiO 2 as Ti 3+. The proportion of carbon atoms as alcohol/ether (C sbnd OX) was decreased with increase the RF power and carbon atoms as carbonyl (C dbnd O) functionality had increased for low RF power treatment. The proportion of C( dbnd O)OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO 2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO 2 surfaces which may be due to decrease in C( dbnd O)OX, increase in C dbnd O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO 2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO 2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry.

  19. Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells

    PubMed Central

    Onuma, Kunishige; Sato, Yu; Ogawara, Satomi; Shirasawa, Nobuyuki; Kobayashi, Masanobu; Yoshitake, Jun; Yoshimura, Tetsuhiko; Iigo, Masaaki; Fujii, Junichi; Okada, Futoshi

    2009-01-01

    Nanoparticles are prevalent in both commercial and medicinal products; however, the contribution of nanomaterials to carcinogenesis remains unclear. We therefore examined the effects of nano-sized titanium dioxide (TiO2) on poorly tumorigenic and nonmetastatic QR-32 fibrosarcoma cells. We found that mice that were cotransplanted subcutaneously with QR-32 cells and nano-sized TiO2, either uncoated (TiO2−1, hydrophilic) or coated with stearic acid (TiO2−2, hydrophobic), did not form tumors. However, QR-32 cells became tumorigenic after injection into sites previously implanted with TiO2−1, but not TiO2−2, and these developing tumors acquired metastatic phenotypes. No differences were observed either histologically or in inflammatory cytokine mRNA expression between TiO2−1 and TiO2−2 treatments. However, TiO2−2, but not TiO2−1, generated high levels of reactive oxygen species (ROS) in cell-free conditions. Although both TiO2−1 and TiO2−2 resulted in intracellular ROS formation, TiO2−2 elicited a stronger response, resulting in cytotoxicity to the QR-32 cells. Moreover, TiO2−2, but not TiO2−1, led to the development of nuclear interstices and multinucleate cells. Cells that survived the TiO2 toxicity acquired a tumorigenic phenotype. TiO2-induced ROS formation and its related cell injury were inhibited by the addition of antioxidant N-acetyl-l-cysteine. These results indicate that nano-sized TiO2 has the potential to convert benign tumor cells into malignant ones through the generation of ROS in the target cells. PMID:19815711

  20. Fabrication of assembled ZnO/TiO2 heterojunction thin film transistors using solution processing technique

    NASA Astrophysics Data System (ADS)

    Liau, Leo Chau-Kuang; Lin, Yun-Guo

    2015-01-01

    Ceramic-based metal-oxide-semiconductor (MOS) field-effect thin film transistors (TFTs), which were assembled by ZnO and TiO2 heterojunction films coated using solution processing technique, were fabricated and characterized. The fabrication of the device began with the preparation of ZnO and TiO2 films by spin coating. The ZnO and TiO2 films that were stacked together and annealed at 450 °C were characterized as a p-n junction diode. Two types of the devices, p-channel and n-channel TFTs, were produced using different assemblies of ZnO and TiO2 films. Results show that the p-channel TFTs (p-TFTs) and n-channel TFTs (n-TFTs) using the assemblies of ZnO and TiO2 films were demonstrated by source-drain current vs. drain voltage (IDS-VDS) measurements. Several electronic properties of the p- and n- TFTs, such as threshold voltage (Vth), on-off ratio, channel mobility, and subthreshold swing (SS), were determined by current-voltage (I-V) data analysis. The ZnO/TiO2-based TFTs can be produced using solution processing technique and an assembly approach.

  1. Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique.

    PubMed

    Ghrairi, Najla; Bouaicha, Mongi

    2012-07-01

    In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet-visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current-voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2.

  2. Structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique

    PubMed Central

    2012-01-01

    In this work, we report the structural, morphological, and optical properties of TiO2 thin films synthesized by the electro phoretic deposition technique. The TiO2 film was formed on a doped fluorine tin oxide (SnO2:F, i.e., FTO) layer and used as a photo electrode in a dye solar cell (DSC). Using spectroscopic ellipsometry measurements in the 200 to 800 nm wavelengths domain, we obtain a thickness of the TiO2 film in the range of 70 to 80 nm. Characterizations by X-ray diffraction and atomic force microscopy (AFM) show a polycrystalline film. In addition, AFM investigation shows no cracks in the formed layer. Using an ultraviolet–visible near-infrared spectrophotometer, we found that the transmittance of the TiO2 film in the visible domain reaches 75%. From the measured current–voltage or I-V characteristic under AM1.5 illumination of the formed DSC, we obtain an open circuit voltage Voc = 628 mV and a short circuit current Isc = 22.6 μA, where the surface of the formed cell is 3.14 cm2. PMID:22747886

  3. Efficient Photocatalytic Disinfection of Escherichia coli O157:H7 using C70-TiO2 Hybrid under Visible Light Irradiation

    PubMed Central

    Ouyang, Kai; Dai, Ke; Walker, Sharon L.; Huang, Qiaoyun; Yin, Xixiang; Cai, Peng

    2016-01-01

    Efficient photocatalytic disinfection of Escherichia coli O157:H7 was achieved by using a C70 modified TiO2 (C70-TiO2) hybrid as a photocatalyst under visible light (λ > 420 nm) irradiation. Disinfection experiments showed that 73% of E. coli O157:H7 died within 2 h with a disinfection rate constant of k = 0.01 min−1, which is three times that measured for TiO2. The mechanism of cell death was investigated by using several scavengers combined with a partition system. The results revealed that diffusing hydroxyl radicals play an important role in the photocatalytically initiated bacterial death, and direct contact between C70-TiO2 hybrid and bacteria is not indispensable in the photocatalytic disinfection process. Extracellular polymeric substances (EPS) of bacteria have little effect on the disinfection efficiency. Analyses of the inhibitory effect of C70-TiO2 thin films on E. coli O157:H7 showed a decrease of the bacterial concentration from 3 × 108 to 38 cfu mL−1 in the solution with C70-TiO2 thin film in the first 2 h of irradiation and a complete inhibition of the growth of E. coli O157:H7 in the later 24 h irradiation. PMID:27161821

  4. Dye sensitized solar cell applications of CdTiO3-TiO2 composite thin films deposited from single molecular complex

    NASA Astrophysics Data System (ADS)

    Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad

    2015-10-01

    A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.

  5. Immunotoxicity evaluation of novel bioactive composites in male mice as promising orthopaedic implants

    PubMed Central

    El-Bassyouni, Gehan T.; Eshak, Mariam G.; Barakat, Ibrahim A.H.

    2017-01-01

    Objective In orthopaedics, novel bioactive composites are largely needed to improve the synthetic achievement of the implants. In this work, semiconducting metal oxides such as SiO2, TiO2, and ZrO2 particles (Ps) were used individually and in different ratios to obtain different biphasic composites. The immunotoxicity of these composites was tested to inspect the potential toxicity prior to their use in further medical applications. Materials and methods In vitro mineralisation ability was inspected by soaking the composites in simulated body fluid (SBF). Additionally, in vivo experiments were performed consuming male mice using ISSR-PCR, micronucleus (MN) test, comet assay, glutathione peroxidase activity, and determination of albumin, globulin, lymphocyte population, ALT, and AST levels. Several groups of adult male albino mice were treated with 100, 200, and 400 mg/kg body weight of SiO2, TiO2, and ZrO2-Ps in pure or mixed forms. Results Our findings revealed that treatment of mice with low and medium doses of SiO2, TiO2, and ZrO2-Ps in pure or mixed form revealed values relatively similar to the control group. However, using 400 mg/kg especially from TiO2-Ps in genuine form or mixed with SiO2 showed proliferation in the toxicity rates compared with the high dose of SiO2 and ZrO2-Ps. Conclusions The results suggest that TiO2 composite induced in vivo toxicity, oxidative DNA damage, bargain of the antioxidant enzymes, and variations in the levels of albumin, globulin, lymphocyte population, ALT, and AST in a dose-dependent manner. However, SiO2, and ZrO2 composites revealed a lower toxicity in mice compared with that of TiO2. PMID:28680331

  6. Fibroblast responses and antibacterial activity of Cu and Zn co-doped TiO2 for percutaneous implants

    NASA Astrophysics Data System (ADS)

    Zhang, Lan; Guo, Jiaqi; Yan, Ting; Han, Yong

    2018-03-01

    In order to enhance skin integration and antibacterial activity of Ti percutaneous implants, microporous TiO2 coatings co-doped with different doses of Cu2+ and Zn2+ were directly fabricated on Ti via micro-arc oxidation (MAO). The structures of coatings were investigated; the behaviors of fibroblasts (L-929) as well as the response of Staphylococcus aureus (S. aureus) were evaluated. During the MAO process, a large number of micro-arc discharges forming on Ti performed as penetrating channels; O2-, Ca2+, Zn2+, Cu2+ and PO43- delivered via the channels, giving rise to the formation of doped TiO2. Surface characteristics including phase component, topography, surface roughness and wettability were almost the same for different coatings, whereas, the amount of Cu doped in TiO2 decreased with the increased Zn amount. Compared with Cu single-doped TiO2 (0.77 Wt% Cu), the co-doped with appropriate amounts of Cu and Zn, for example, 0.55 Wt% Cu and 2.53 Wt% Zn, further improved proliferation of L-929, facilitated fibroblasts to switch to fibrotic phenotype, and enhanced synthesis of collagen I as well as the extracellular collagen secretion; the antibacterial properties including contact-killing and release-killing were also enhanced. By analyzing the relationship of Cu/Zn amount in TiO2 and the behaviors of L-929 and S. aureus, it can be deduced that when the doped Zn is in a low dose (<1.79 Wt%), the behaviors of L-929 and S. aureus are sensitive to the reduced amount of Cu2+, whereas, Zn2+ plays a key role in accelerating fibroblast functions and reducing S. aureus when its dose obviously increases from 2.63 to 6.47 Wt%.

  7. Sol-gel-derived TiO(2)-SiO (2) implant coatings for direct tissue attachment. Part I: design, preparation and characterization.

    PubMed

    Aäritalo, Virpi; Areva, Sami; Jokinen, Mika; Lindén, Mika; Peltola, Timo

    2007-09-01

    A series of sol-gel derived TiO(2)-SiO(2) mixed oxide coatings were prepared by carefully controlling the process parameters to obtain silica-releasing coatings consisting of nanoparticles. These features are of paramount importance for enhanced cell adhesion and activation. To achieve both these goals the Ti-alkoxide and Si-alkoxide were first separately hydrolysed and the titania-silica mixed sol was further reacted before the dipping process to obtain the desired particle sizes resulting to the biologically favourable topographical features. Silica release was observed from all the prepared coatings and it was dependent on SiO(2) amount added to the sols, i.e., the higher the added amount the higher the release. In addition, calcium phosphate was able to nucleate on the coatings. From the obtained SiO(2) dissolution data, together with the detailed XPS peak analysis, the mixed oxide coatings are concluded to be chemically heterogeneous, consisting of TiO(2) and SiO(2) species most likely linked together by Ti-O-Si bonds. TiO(2) is chemically stable making long-term implant coating possible and the desired nanoscale dimensions were well preserved although the composition was changed as a consequence of SiO(2) dissolution under in vitro conditions.

  8. Oxygen vacancy induced phase formation and room temperature ferromagnetism in undoped and Co-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Mohanty, P.; Mishra, N. C.; Choudhary, R. J.; Banerjee, A.; Shripathi, T.; Lalla, N. P.; Annapoorni, S.; Rath, Chandana

    2012-08-01

    TiO2 and Co-doped TiO2 (CTO) thin films deposited at various oxygen partial pressures by pulsed laser deposition exhibit room temperature ferromagnetism (RTFM) independent of their phase. Films deposited at 0.1 mTorr oxygen partial pressure show a complete rutile phase confirmed from glancing angle x-ray diffraction and Raman spectroscopy. At the highest oxygen partial pressure, i.e. 300 mTorr, although the TiO2 film shows a complete anatase phase, a small peak corresponding to the rutile phase along with the anatase phase is identified in the case of CTO film. An increase in O to Ti/(Ti+Co) ratio with increase in oxygen partial pressure is observed from Rutherford backscattering spectroscopy. It is revealed from x-ray photoelectron spectroscopy (XPS) that oxygen vacancies are found to be higher in the CTO film than TiO2, while the valency of cobalt remains in the +2 state. Therefore, the CTO film deposited at 300 mTorr does not show a complete anatase phase unlike the TiO2 film deposited at the same partial pressure. We conclude that RTFM in both films is not due to impurities/contaminants, as confirmed from XPS depth profiling and cross-sectional transmission electron microscopy (TEM), but due to oxygen vacancies. The magnitude of moment, however, depends not only on the phase of TiO2 but also on the crystallinity of the films.

  9. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes.

    PubMed

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A; Wang, Lu-Ning

    2018-06-15

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO 2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO 2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  10. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A.; Wang, Lu-Ning

    2018-06-01

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  11. Optical and electrical responses of magnetron-sputtered amorphous Nb-doped TiO2 thin films annealed at low temperature

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Tien, Nguyen Thi; Thanh, Pham Van; Hieu, Nguyen Minh; Doanh, Sai Cong; Thuat, Nguyen Tran; Tuyen, Nguyen Viet; Luong, Nguyen Hoang; Hoang, Ngoc Lam Huong

    2018-03-01

    Nb-doped TiO2 (TNO) thin films were prepared by annealing at 300 °C for 30 min after a magnetron-sputter process. A laser-irradiated post-annealing Raman scattering analysis indirectly showed the possible formation of small size anatase TNO clusters within the thin film matrix Although the TNO thin films were not crystallized, oxygen vacancies were created by adding H2 into the sputter gas during the deposition process. This improved the conductivity and carrier concentration of the thin films. As the ratio of H2 in sputter gas is f(H2) = [H2/Ar+H2] = 10%, the carrier concentration of the amorphous TNO thin film reached 1022 (cm-3) with the resistivity being about 10-2 (Ω.cm). Even though a new methodology to decrease the fabrication temperature is not presented; this study demonstrates an efficient approach to shorten the annealing process, which ends prior to the crystallization of the thin films. Besides, in situ H2 addition into the sputter atmosphere is proven to be a good solution to enhance the electrical conductivity of semiconductor thin films like TNOs, despite the fact that they are not well crystallized.

  12. Effect of sheath material and reaction overpressure on Ag protrusions into the TiO2 insulation coating of Bi-2212 round wire

    NASA Astrophysics Data System (ADS)

    Hossain, I.; Jiang, J.; Matras, M.; Trociewitz, U. P.; Lu, J.; Kametani, F.; Larbalestier, D.; Hellstrom, E.

    2017-12-01

    In order to develop a high current density in coils, Bi-2212 wires must be electrically discrete in tight winding packs. It is vital to use an insulating layer that is thin, fulfils the dielectric requirements, and can survive the heat treatment whose maximum temperature reaches 890 °C in oxygen. A thin (20-30 µm) ceramic coating could be better as the insulating layer compared to alumino-silicate braided fiber insulation, which is about 150 μm thick and reacts with the Ag sheathed Bi-2212 wire during heat treatment. At present, TiO2 seems to be the most viable ceramic material for such a thin insulation because it is chemically compatible with Ag and Bi-2212 and its sintering temperature is lower than the maximum temperature used for the Bi-2212 heat treatment. However, recent tests of a large Bi-2212 coil insulated only with TiO2 showed severe electrical shorting between the wires after over pressure heat treatment (OPHT). The origin of the shorting was frequent silver protrusions into the porous TiO2 layer that electrically connected adjacent Bi-2212 wires. To understand the mechanism of this unexpected behaviour, we investigated the effect of sheath material and hydrostatic pressure on Ag protrusions. We found that Ag protrusions occur only when TiO2-insulated Ag-0.2%Mg sheathed wire (Ag(Mg) wire) undergoes OPHT at 50 bar. No Ag protrusions were observed when the TiO2-insulated Ag(Mg) wire was processed at 1 bar. The TiO2-insulated wires sheathed with pure Ag that underwent 50 bar OPHT were also free from Ag protrusions. A key finding is that the Ag protrusions from the Ag(Mg) sheath actually contain no MgO, suggesting that local depletion of MgO facilitates local, heterogeneous deformation of the sheath under hydrostatic overpressure. Our study also suggests that predensifying the Ag(Mg) wire before insulating it with TiO2 and doing the final OPHT can potentially limit Ag protrusions.

  13. Synthesis and characterization of C-doped TiO2 thin films for visible-light-induced photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Hassan, Mohamed Elfatih; Cong, Longchao; Liu, Guanglong; Zhu, Duanwei; Cai, Jianbo

    2014-03-01

    C-TiO2 thin films were synthesized by a modified sol-gel route based on the self-assembly technique exploiting Tween80 (T80) as a pore directing agent and carbon source. The effect of calcination time on the photocatalytic activity of C-doped TiO2 catalyst was studied. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared (FTIR), UV-vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). The XRD results showed that C-TiO2 sample calcined at 400 °C for various times exhibited anatase phase and no other crystal phase was identified. C-TiO2 exhibited a shift in an absorption edge of samples in the visible region than that of conventional or reference TiO2. The XPS results showed an existence of C in the TiO2 catalysts and C might be existed as Csbnd Osbnd Ti group. Moreover, the C-TiO2 thin film calcined at 400 °C for 30 min showed the lowest PL intensity due to a decrease in the recombination rate of photogenerated electrons and holes under UV light irradiation. Also the photocatalytic activity of synthesized catalyst was evaluated by decomposition of methyl orange (MO) under visible light irradiation. The results showed that the optimum preparations of C-TiO2 thin films were found to be under calcination temperature of 400, calcination time of 30 min, and with preparation 9 layers film.

  14. Dose-Dependent Effects of CeO2 on Microstructure and Antibacterial Property of Plasma-Sprayed TiO2 Coatings for Orthopedic Application

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobing; Liu, Gaopeng; Zheng, Hai; Cao, Huiliang; Liu, Xuanyong

    2015-02-01

    Titanium and its alloys have been used extensively for orthopedic and dental implants. Although these devices have achieved high rates of success, two major complications may be encountered: the lack of osseointegration and the biomaterial-related infection. Accordingly, cerium oxide (CeO2)-doped titanium oxide (TiO2) materials were coated on titanium by an atmospheric plasma spraying (APS) technique. The phase structures, morphologies, and surface chemical states of the obtained coatings were characterized by x-ray diffraction, scanning electron microscopy, and x-ray photoelectron spectroscopy techniques. The in vitro antibacterial and cytocompatibility of the materials were studied with Staphylococcus aureus ( S. aureus, ATCC25923) and osteoblast precursor cell line MC3T3-E1. The results indicated that the addition of CeO2 shifts slightly the diffraction peaks of TiO2 matrix to low angles but does not change its rutile phase structure. In addition, the CeO2/TiO2 composite coatings possess dose-dependent corrosion resistance and antimicrobial properties. And doping of 10 wt.% CeO2 exhibits the highest activity against S. aureus, improved corrosion resistance, and competitive cytocompatibility, which argues a promising option for balancing the osteogenetic and antibacterial properties of titanium implants.

  15. The effect of heat treatment on superhydrophilicity of TiO2 nano thin films

    NASA Astrophysics Data System (ADS)

    Ashkarran, A. A.; Mohammadizadeh, M. R.

    2007-11-01

    TiO2 thin films were synthesized by the sol-gel method and spin coating process. The calcination temperature was changed from 100 to 550°C. XRD patterns show increasing the content of polycrystalline anatase phase with increasing the calcination temperature. The AFM results indicate granular morphology of the films, which particle size changes from 22 to 166nm by increasing the calcination temperature. The RBS, EDX and Raman spectroscopy of the films show the ratio of Ti:O ~0.5, and diffusion of sodium ions from substrate into the layer, by increasing the calcination temperature. The UV-vis spectroscopy of the films indicates a red shift by increasing the calcination temperature. The contact angle meter experiment shows that superhydrophilicity of the films depends on the formation of anatase crystal structure and diffused sodium content from substrate to the layer. The best hydrophilicity property was observed at 450°C calcination temperature, where the film is converted to a superhydrophilic surface after 10min under 2mW/cm2 UV irradiation. Water droplet on TiO2 thin film on Si(111), Si(100), and quartz substrates is spread to smaller angles rather than glass and polycrystalline Si substrates under UV irradiation.

  16. Suppressing the Photocatalytic Activity of TiO2 Nanoparticles by Extremely Thin Al2O3 Films Grown by Gas-Phase Deposition at Ambient Conditions

    PubMed Central

    Guo, Jing; Valdesueiro, David; Yuan, Shaojun; Liang, Bin; van Ommen, J. Ruud

    2018-01-01

    This work investigated the suppression of photocatalytic activity of titanium dioxide (TiO2) pigment powders by extremely thin aluminum oxide (Al2O3) films deposited via an atomic-layer-deposition-type process using trimethylaluminum (TMA) and H2O as precursors. The deposition was performed on multiple grams of TiO2 powder at room temperature and atmospheric pressure in a fluidized bed reactor, resulting in the growth of uniform and conformal Al2O3 films with thickness control at sub-nanometer level. The as-deposited Al2O3 films exhibited excellent photocatalytic suppression ability. Accordingly, an Al2O3 layer with a thickness of 1 nm could efficiently suppress the photocatalytic activities of rutile, anatase, and P25 TiO2 nanoparticles without affecting their bulk optical properties. In addition, the influence of high-temperature annealing on the properties of the Al2O3 layers was investigated, revealing the possibility of achieving porous Al2O3 layers. Our approach demonstrated a fast, efficient, and simple route to coating Al2O3 films on TiO2 pigment powders at the multigram scale, and showed great potential for large-scale production development. PMID:29364840

  17. Bioactivity of sol-gel-derived TiO2 coating on polyetheretherketone: In vitro and in vivo studies.

    PubMed

    Shimizu, Takayoshi; Fujibayashi, Shunsuke; Yamaguchi, Seiji; Yamamoto, Koji; Otsuki, Bungo; Takemoto, Mitsuru; Tsukanaka, Masako; Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-04-15

    A polyetheretherketone (PEEK) surface was modified using a sol-gel-derived TiO2 coating in order to confer bone-bonding ability. To enhance the bonding strength of the coating layer, pretreatment with either O2 plasma or sandblasting was performed prior to sol-gel coating. Additionally, post-treatment with acid was carried out to confer apatite (calcium phosphate)-forming ability to the surface. Biomechanical and histological analyses performed using an in vivo rabbit tibia model showed that PEEK surfaces modified with sol-gel-derived TiO2 and acid post-treatment had better bone-bonding properties than uncoated PEEK surfaces. These modified surfaces also performed well in terms of their in vitro cell responses due to their modified surface chemistries and topographies. Although O2 plasma or sandblasting treatment were, for the most part, equivocal in terms of performance, we conclude that sol-gel-derived TiO2 coating followed by acid post-treatment significantly improves the bone bonding ability of PEEK surfaces, thus rendering them optimal for their use in surgical implants. The role of polyetheretherketone (PEEK) as an alternative biomaterial to conventional metallic implant materials has become increasingly important. However, its low bone bonding ability is yet to be resolved. This in vivo and in vitro investigation on the functionalization of PEEK surfaces highlights the utility of this material in clinical interventions that require implants, and may extend range of applications of PEEK. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.

    PubMed

    Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H

    2015-04-29

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.

  19. Fluorine-doping in titanium dioxide by ion implantation technique

    NASA Astrophysics Data System (ADS)

    Yamaki, T.; Umebayashi, T.; Sumita, T.; Yamamoto, S.; Maekawa, M.; Kawasuso, A.; Itoh, H.

    2003-05-01

    We implanted 200 keV F + in single crystalline titanium dioxide (TiO 2) rutile at a nominal fluence of 1 × 10 16 to 1 × 10 17 ions cm -2 and then thermally annealed the implanted sample in air. The radiation damage and its recovery process during the annealing were analyzed by Rutherford backscattering spectrometry in channeling geometry and variable-energy positron annihilation spectroscopy. The lattice disorder was completely recovered at 1200 °C by the migration of point defects to the surface. According to secondary ion mass spectrometry analysis, the F depth profile was shifted to a shallower region along with the damage recovery and this resulted in the formation of an F-doped layer where the impurity concentration steadily increased toward the surface. The F doping proved to provide a modification to the conduction-band edge of TiO 2, as assessed by theoretical band calculations.

  20. Synthesis, characterization, antibacterial activity in dark and in vitro cytocompatibility of Ag-incorporated TiO2 microspheres with high specific surface area.

    PubMed

    Weng, Shengxin; Zhao, Xu; Liu, Guomin; Guan, Yuefeng; Wu, Fanglong; Luo, Yungang

    2018-04-23

    Postoperative infection associated with medical implants is a devastating complication of orthopedic surgery. Considering the difficulties for the diagnosis and treatment of infection, coating the implant material with antibacterial substances is a promising protocol by which to avoid such an adverse reaction. Nanoparticles (NPs) constructed of anatase microspheres, one form of titanium dioxide (TiO 2 ), with a high specific surface area are fabricated in this study in a facile one-step process using homogeneous precipitation at 90 °C under atmospheric pressure using titanium sulfate (Ti[SO 4 ] 2 ) and urea as the titanium source and precipitant, respectively. The molar ratio of silver (Ag) to TiO 2 can be changed by varying the amount of silver nitrate (AgNO 3 ). The high specific surface area of the TiO 2 microspheres combined with Ag particles (Ag/TiO 2 ) exhibit excellent antibacterial properties against both Staphylococcus aureus and Escherichia coli. In addition, the Ag/TiO 2 material in this work possesses satisfactory biological performance on MC3T3-E1 cells. The high specific surface area of Ag/TiO 2 together with good antibacterial properties and cytocompatibility provide promising applications in dentistry, orthopedics, and other fields of medicine that use biomedical devices.

  1. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.

    2015-10-01

    Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.

  2. Instability of Hydrogenated TiO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandasiri, Manjula I.; Shutthanandan, V.; Manandhar, Sandeep

    2015-11-06

    Hydrogenated TiO2 (H-TiO2) is toted as a viable visible light photocatalyst. We report a systematic study on the thermal stability of H-implanted TiO2 using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Protons (40 keV) implanted at a ~2 atom % level within a ~120 nm wide profile of rutile TiO2(110) were situated ~300 nm below the surface. NRA revealed that this H-profile broadened preferentially toward the surface after annealing at 373 K, dissipated out of the crystal into vacuum at 473 K, and was absent within the beam sampling depthmore » (~800 nm) at 523 K. Photoemission showed that the surface was reduced in concert with these changes. Similar anneals had no effect on pristine TiO2(110). The facile bulk diffusivity of H in rutile, as well as its activity toward interfacial reduction, significantly limits the utilization of H-TiO2 as a photocatalyst. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.« less

  3. Multivalent Mn-doped TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Lin, C. Y. W.; Channei, D.; Koshy, P.; Nakaruk, A.; Sorrell, C. C.

    2012-07-01

    Thin films of TiO2 doped with Mn were deposited on F-doped SnO2-coated glass using spin coating. The concentration of the dopant was in the range 0-7 wt% Mn (metal basis). The films were examined in terms of the structural, chemical, and optical properties. Glancing angle X-ray diffraction data show that the films consisted of the anatase polymorph of TiO2, without any contaminant phases. The X-ray photoelectron spectroscopy data indicate the presence of Mn3+ and Mn4+ in the doped films as well as atomic disorder and associated structural distortion. Ultraviolet-visible spectrophotometry data show that the optical indirect band gap of the films decreased significantly with increasing manganese doping, from 3.32 eV for the undoped composition to 2.90 eV for that doped with 7 wt% Mn.

  4. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    PubMed

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  5. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    NASA Astrophysics Data System (ADS)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  6. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating

    PubMed Central

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2016-01-01

    The primary objective of this research was to evaluate the extent of mechanical degradation on TiO2 nanotubes on Ti with and without nano-particulate silver coating using two different lengths of TiO2 nanotubes- 300nm and ~ 1µm, which were fabricated on commercially pure Titanium (cp-Ti) rods using anodization method using two different electrolytic mediums - (1) deionized (DI) water with 1% HF, and (2) ethylene glycol with 1% HF, 0.5 wt%. NH4F and 10% DI water. Nanotubes fabricated rods were implanted into equine cadaver bone to evaluate mechanical damage at the surface. Silver was electrochemically deposited on these nanotubes and using a release study, silver ion concentrations were measured before and after implantation, followed by surface characterization using a Field Emission Scanning Electron Microscope (FESEM). In vitro cell-material interaction study was performed using human fetal osteoblast cells (hFOB) to understand the effect of silver coating using an MTT assay for proliferation and to determine any cytotoxic effect on the cells and to study its biocompatibility. No significant damage due to implantation was observed for nanotubes up to ~1 µm length under current experimental conditions. Cell-materials interaction showed no cytotoxic effects on the cells due to silver coating and anodization of samples. PMID:27017285

  7. Titanium dioxide-based carbon monoxide gas sensors: Effects of crystallinity and chemistry on sensitivity

    NASA Astrophysics Data System (ADS)

    Seeley, Zachary Mark

    Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films. Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO. Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average of the layers; however, electrical and gas response studies revealed that the majority of the conductivity and gas-surface reactions took place on the outer layer of the film. Further research is necessary to understand the influence of p-n junctions on the gas sensing behavior.

  8. Synergistic effects of graphene quantum dot sensitization and nitrogen doping of ordered mesoporous TiO2 thin films for water splitting photocatalysis(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.; Wanninayake, Namal; Reed, Allen D.; Kim, Doo-Young; Rankin, Stephen E.

    2016-10-01

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, we prepared ordered mesoporous TiO2 films co-modified by graphene quantum dot sensitization and nitrogen doping (GQD-N-TiO2) for hydrogen production from photoelectrochemical water splitting under visible light irradiation. First, cubic ordered mesoporous TiO2 films were prepared by a surfactant templated sol-gel method. Then, TiO2 films were treated with N2/Ar plasma for the incorporation of substitutional N atoms into the lattice of TiO2. GQDs were prepared by chemically oxidizing carbon nano-onions. The immobilization of GQDs was accomplished by reacting carboxyl groups of GQDs with amine groups of N-TiO2 developed by the prior immobilization of (3-aminopropyl)triethoxysilane (APTES). Successful immobilization of GQDs onto N-TiO2 was probed by UV-Vis, FT-IR, and scanning electron microscopy. Further, zeta potential and contact angle measurements showed enhanced surface charge and hydrophilicity, confirming the successful immobilization of GQDs. The GQD-N-TiO2, N-TiO2 and GQD-TiO2 films showed 400 times, 130 times and 8 times photocurrent enhancement, respectively, compared to TiO2 films for water splitting with a halogen bulb light source. This outstanding enhancement is attributed to the high surface area of mesoporous films and synergistic effects of nitrogen doping and GQD sensitization resulting in enhanced visible light absorption, efficient charge separation and transport.

  9. Influence of Zr doping on structure and morphology of TiO2 nanorods prepared using hydrothermal method

    NASA Astrophysics Data System (ADS)

    Muslimin, Masliana; Jumali, Mohammad Hafizuddin; Tee, Tan Sin; Beng, Lee Hock; Hui, Tan Chun; Chin, Yap Chi

    2018-04-01

    The aim of this work is to investigate the effect of Zr doping on TiO2 nanostructure. TiO2 nanorods thin films with different Zr-doping concentrations (6 × 10-3 M, 13 × 10-3 M and 25 × 10-3 M) were successfully prepared using a simple hydrothermal method. The structural and morphological properties of the samples were evaluated using XRD and FESEM respectively. The XRD results revealed that the TiO2 in all samples stabilized as rutile phase. The FESEM micrographs confirmed that TiO2 exist as square like nanorods with blunt tips. Although the crystallographic nature remains unchanged, the introduction of Zr has altered the surface density, structure and morphology of TiO2 which subsequently will have significant effect on its properties.

  10. Epitaxial growth and dielectric properties of Pb0.4Sr0.6TiO3 thin films on (00l)-oriented metallic Li0.3Ni0.7O2 coated MgO substrates

    NASA Astrophysics Data System (ADS)

    Li, X. T.; Du, P. Y.; Mak, C. L.; Wong, K. H.

    2007-06-01

    Highly (00l)-oriented Li0.3Ni0.7O2 thin films have been fabricated on (001) MgO substrates by pulsed laser deposition. The Pb0.4Sr0.6TiO3 (PST40) thin film deposited subsequently also shows a significant (00l)-oriented texture. Both the PST40 and Li0.3Ni0.7O2 have good epitaxial behavior. The epitaxial growth of the PST40 thin film is more perfect with the Li0.3Ni0.7O2 buffer layer due to the less distortion in the film. The dielectric tunability of the PST40 thin film with Li0.3Ni0.7O2 buffer layer therefore reaches 70%, which is 75% higher than that without Li0.3Ni0.7O2 buffer layer, and the dielectric loss of the PST40 thin film is 0.06.

  11. Effect of inflammatory conditions and H2O2 on bare and coated Ti-6Al-4V surfaces: Corrosion behavior, metal ion release and Ca-P formation under long-term immersion in DMEM

    NASA Astrophysics Data System (ADS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-12-01

    The surface oxide film and calcium-phosphate (Ca-P) formation on Ti-6Al-4V during long-term immersion in biological environments play a decisive role for the biocompatibility of the implant. Hence, the aim of the study was to evaluate the corrosion resistance, metal ion release and Ca-P formation in DMEM under physiological conditions at pH values of 7.4 and in comparison under simulated inflammatory conditions with pH 5 and in presence of H2O2. Furthermore, the influence of the immersion conditions was investigated on different surface treatments: on bare Ti-6Al-4V, after anodization, and for TiO2 nanoparticle (NP) and hydroxyapatite (HA)-incorporated TiO2-NP coatings. In the absence of H2O2, the impedance response indicated a stable thin oxide film and Ca-P formation after 28 days or 56 days depending on the coating, while under inflammatory conditions the Ca-P formation on the surface is time-delayed and dissolution of the anodized oxide layer as well as selective etching of the β-phase and phase boundaries in case of the bare alloy occur. Electrochemical impedance spectroscopy (EIS), however, indicates a good general corrosion behavior in all cases. The quantities of Ti, Al and V released from the bare and coated Ti-6Al-4V alloy markedly increased with decreasing pH (pH ≤ 5). Although the rapid increase of metal release was observed for all samples at pH 5, the quantities were significantly higher for the bare and anodized alloy than after coating with TiO2-NP or HA.

  12. Structural and optical properties of glancing angle deposited TiO2 nanowires array.

    PubMed

    Chinnamuthu, P; Mondal, A; Singh, N K; Dhar, J C; Das, S K; Chattopadhyay, K K

    2012-08-01

    TiO2 nanowires (NWs) have been synthesized by glancing angle deposition technique using e-beam evaporator. The average length 490 nm and diameter 80 nm of NWs were examined by field emission-scanning electron microscopy. Transmission electron microscopy emphasized that the NWs were widely dispersed at the top. X-ray diffraction has been carried out on the TiO2 thin film (TF) and NW array. A small blue shift of 0.03 eV was observed in Photoluminescence (PL) main band emission for TiO2 NW as compared to TiO2 TF. The high temperature annealing at 980 degrees C partially removed the oxygen vacancy from the sample, which was investigated by PL and optical absorption measurements.

  13. A cost- and time-saving strategy of spraying TiO2 self-cleaning coatings in tubular substrates by air cold plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Lujie; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-11-01

    In this study, using an atmospheric pressure air plasma jet generated by a dielectric barrier structure with hollow electrodes (HEDBS), we developed an ultrafast process for spraying TiO2 self-cleaning films inside tubular substrates. Importantly, SEM images showed that the TiO2 particles were dispersed evenly in the tubular substrates. Furthermore, Raman and XRD pattern indicated the anatase structure of the HEDBS-spayed TiO2 coating after heating at 270 °C. Further results of the self cleaning test suggested that the proposed cost- and time-saving HEDBS approach with air working gas could provide a feasible way for synthesizing thin TiO2 nanofilms.

  14. Experimental study of the visible-light photocatalytic activity of oxygen-deficient TiO2 prepared with Ar/H2 plasma surface treatment

    NASA Astrophysics Data System (ADS)

    Nakano, Takuma; Yazawa, Shota; Araki, Shota; Kogoshi, Sumio; Katayama, Noboru; Kudo, Yusuke; Nakanishi, Tetsuya

    2015-01-01

    Oxygen-deficient TiO2 (TiO2-x) has been proposed as a visible-light-responsive photocatalyst. TiO2-x thin films were prepared by Ar/H2 plasma surface treatment, applying varying levels of microwave input power and processing times. The highest visible light photocatalytic activity was observed when using an input power of 200 W, a plasma processing time of 10 min, and a 1:1 \\text{Ar}:\\text{H}2 ratio, conditions that generate an electron temperature of 5.7(±1.0) eV and an electron density of 8.5 × 1010 cm-3. The maximum formaldehyde (HCHO) removal rate of the TiO2-x film was 2.6 times higher than that obtained from a TiO2-xNx film under the same test conditions.

  15. The fabrication of visible light responsive Ag-SiO2 co-doped TiO2 thin films by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Dam Le, Duy; Dung Dang, Thi My; Thang Chau, Vinh; Chien Dang, Mau

    2010-03-01

    In this study we have successfully deposited Ag-SiO2 co-doped TiO2 thin films on glass substrates by the sol-gel method. After being coated by a dip coating method, the film was transparent, smooth and had strong adhesion on the glass surface. The deposited film was characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), a scanning electron microscope (SEM) and atomic force microscope (AFM) to investigate its crystallization, transmittance and surface structure. The antifogging ability is explained by the contact angle of water on the surface of the glass substrates under visible-light. The obtained results show that Ag-SiO2 co-doped TiO2 film has potential applications for self cleaning and anti-bacterial ceramic tiles.

  16. Ultrasonic tissue characterization for monitoring nanostructured TiO2-induced bone growth

    NASA Astrophysics Data System (ADS)

    Rus, G.; García-Martínez, J.

    2007-07-01

    The use of bioactive nanostructured TiO2 has recently been proposed for improving orthopaedic implant adhesion due to its improved biocompatibility with bone, since it induces: (i) osteoblast function, (ii) apatite nucleation and (iii) protein adsorption. The present work focuses on a non-ionizing radiation emitting technique for quantifying in real time the improvement in terms of mechanical properties of the surrounding bone due to the presence of the nanostructured TiO2 prepared by controlled precipitation and acid ageing. The mechanical strength is the ultimate goal of a bone implant and is directly related to the elastic moduli. Ultrasonics are high frequency mechanical waves and are therefore suited for characterizing elastic moduli. As opposed to echographic techniques, which are not correlated to elastic properties and are not able to penetrate bone, a low frequency ultrasonic transmission test is proposed, in which a P-wave is transmitted through the specimen and recorded. The problem is posed as an inverse problem, in which the unknown is a set of parameters that describe the mechanical constants of the sequence of layers. A finite element numerical model that depends on these parameters is used to predict the transformation of the waveform and compare to the measurement. The parameters that best describe the real tissue are obtained by minimizing the discrepancy between the real and numerically predicted waveforms. A sensitivity study to the uncertainties of the model is performed for establishing the feasibility of using this technique to investigate the macroscopic effect on bone growth of nanostructured TiO2 and its beneficial effect on implant adhesion.

  17. Fabrication of band gap engineered nanostructured tri-metallic (Mn-Co-Ti) oxide thin films

    NASA Astrophysics Data System (ADS)

    Mansoor, Muhammad Adil; Yusof, Farazila Binti; Nay-Ming, Huang

    2018-04-01

    In continuation of our previous studies on photoelectrochemical (PEC) properties of titanium based composite oxide thin films, an effort is made to develop thin films of 1:1:2 manganese-cobalt-titanium oxide composite, Mn2O3-Co2O3-4TiO2 (MCT), using Co(OAc)2 and a bimetallic manganese-titanium complex, [Mn2Ti4(TFA)8(THF)6(OH)4(O)2].0.4THF (1), where OAc = acetato, TFA = trifluoroacetato and THF = tetrahydrofuran, via aerosol-assisted chemical vapour deposition (AACVD) technique. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) spectroscopic analyses confirmed formation of thin film of Mn2O3-Co2O3-4TiO2 composite material with uniformly distributed agglomerated particles. The average size of 39.5 nm, of the particles embedded inside agglomerates, was estimated by Scherer's equation. Further, UV-Vis spectroscopy was used to estimate the band gap of 2.62 eV for MCT composite thin film.

  18. Pulsed photoinitiated fabrication of inkjet printed titanium dioxide/reduced graphene oxide nanocomposite thin films.

    PubMed

    Bourgeois, Briley; Luo, Sijun; Riggs, Brian; Ji, Yaping; Adireddy, Shiva; Schroder, Kurt; Farnsworth, Stan; Chrisey, Douglas; Escarra, Matthew

    2018-08-03

    This work reports a new technique for scalable and low-temperature processing of nanostructured TiO 2 thin films, allowing for practical manufacturing of TiO 2 -based devices such as perovskite solar cells at low-temperature or on flexible substrates. Dual layers of dense and mesoporous TiO 2 /graphitic oxide nanocomposite films are synthesized simultaneously using inkjet printing and pulsed photonic irradiation. Investigation of process parameters including precursor concentration (10-20 wt%) and exposure fluence (4.5-8.5 J cm -2 ) reveals control over crystalline quality, graphitic oxide phase, film thickness, dendrite density, and optical properties. Raman spectroscopy shows the E g peak, characteristic of anatase phase titania, increases in intensity with higher photonic irradiation fluence, suggesting increased crystallinity through higher fluence processing. Film thickness and dendrite density is shown to increase with precursor concentration in the printed ink. The dense base layer thickness was controlled between 20 and 80 nm. The refractive index of the films is determined by ellipsometry to be 1.92 ± 0.08 at 650 nm. Films exhibit an energy weighted optical transparency of 91.1%, in comparison to 91.3% of a thermally processed film, when in situ carbon materials were removed. Transmission and diffuse reflectance are used to determine optical band gaps of the films ranging from 2.98 to 3.38 eV in accordance with the photonic irradiation fluence and suggests tunability of TiO 2 phase composition. The sheet resistance of the synthesized films is measured to be 14.54 ± 1.11 Ω/□ and 28.90 ± 2.24 Ω/□ for films as-processed and after carbon removal, respectively, which is comparable to high temperature processed TiO 2 thin films. The studied electrical and optical properties of the light processed films show comparable results to traditionally processed TiO 2 while offering the distinct advantages of scalable manufacturing, low-temperature processing, simultaneous bilayer fabrication, and in situ formation of removable carbon nanocomposites.

  19. Titanium dioxide thin films by atomic layer deposition: a review

    NASA Astrophysics Data System (ADS)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  20. The development of Ti6Al4V based anti bacterial dental implant modified with TiO2 nanotube arrays doped silver metal (Ag)

    NASA Astrophysics Data System (ADS)

    Slamet, Bachtiar, B. M.; Wulan, P. P. D. K.; Setiadi, Sari, D. P.

    2017-05-01

    The development of Ti6Al4V based anti bacterial dental implant, modified with dopanted silver metal (Ag) TiO2 nanotube arrays (TiNTAs), is studied in this research. The condition inside the mouth is less foton energy, the dental implant material need to be modified with silver metal (Ag) dopanted TiNTAs. Modified TiNTAs used silver metal dopanted with Photo Assisted Deposition (PAD) method can be used as an electron trapper and produced hydroxyl radical, therefore it has antibacterial properties. The verification of antibacterial properties developed with biofilm static test using Streptococcus mutans bacteria model within 3 and 16 hours incubation, was characterized with XRD and SEM-EDX. Properties test result that resisting the biofilm growth effectively is TiNTAs/Ag/0,15, with 97,62 % disinfection bacteria sampel.

  1. Photoinduced underwater superoleophobicity of TiO2 thin films.

    PubMed

    Sawai, Yusuke; Nishimoto, Shunsuke; Kameshima, Yoshikazu; Fujii, Eiji; Miyake, Michihiro

    2013-06-11

    The photoinduced wettabilities of water, n-hexadecane, dodecane, and n-heptane on a flat TiO2 surface prepared by a sol-gel method-based coating were investigated. An amphiphilic surface produced by UV irradiation exhibited underwater superoleophobicity with an extremely high static oil contact angle (CA) of over 160°. The TiO2 surface almost completely repelled the oil droplet in water. A robust TiO2 surface with no fragile nanomicrostructure was fabricated on a Ti mesh with a pore size of approximately 150 μm. The fabricated mesh was found to be applicable as an oil/water separation filter.

  2. Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.

    PubMed

    Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin

    2010-05-01

    Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.

  3. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    PubMed

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    NASA Astrophysics Data System (ADS)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas; Fadil, Ahmed; Syväjärvi, Mikael; Petersen, Paul Michael; Ou, Haiyan

    2016-07-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface for TiO2 deposition, a three-step cleaning procedure was introduced after RIE etching. The morphology of anatase TiO2 indicates that the nano-textured substrate has a much higher surface nucleated grain density than a flat substrate at the beginning of the deposition process. The corresponding reflectance increases with TiO2 thickness due to increased surface diffuse reflection. The passivation effect of ALD TiO2 thin film on the nano-textured fluorescent 6H-SiC sample was also investigated and a PL intensity improvement of 8.05% was obtained due to the surface passivation.

  5. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    NASA Astrophysics Data System (ADS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  6. Study on the Effect of Various Sol-Gel Concentration to the Electrical, Structural and Optical Properties of the Nanostructured Titanium Dioxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ahmad, M. K.; Rusop, M.

    2009-06-01

    Nanostructured Titanium Dioxide (TiO2) thin film with various sol-gel concentration has been successfully prepared using sol-gel spin coating method. The sol-gel concentration of nanostructured TiO2 thin films are varied at 0.1 M, 0.2 M, 0.3 M and 0.4 M, respectively. The effects of different sol-gel concentration of nanostructured TiO2 thin film structural, electrical and optical properties have been studied. The effects of these properties were characterized using X-Ray Diffractometer (XRD), 2-point probe I-V measurement and UV-Vis-NIR Spectrophotometer. For electrical properties, 0.2 M of sol-gel concentration gives the lowest sheet resistance among other concentrated sol-gels. As for structural properties, 0.1 M of concentration gives very weak peak, and continues stronger as in comes to 0.2 M until 0.4 M. It is due to amount of solute (i.e Titanium Isopropoxide) increases in the solution and therefore the intensity of (101) planes become higher. The optical transmission in the visible region (450-1000 nm) for 0.1 M and 0.2 M are the highest (>80%), indicating that the films are transparent in the visible region. The transmission decreases sharply near the ultraviolet region due to the band gap absorption.

  7. Surface plasmon resonance effect of silver nanoparticles on a TiO2 electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jung, Haeng-Yun; Yeo, In-Seon; Kim, Tae-Un; Ki, Hyun-Chul; Gu, Hal-Bon

    2018-02-01

    In this study, we exploit local surface plasmon resonance (LSPR) in order to improve the efficiency of dye-sensitized solar cells (DSSCs). In order to investigate the effect of LSPR, Ag nanoparticles of several sizes were formed using electro-beam equipment; sizes were varied by changing the annealing time. DSSCs were fabricated by coating Ag nanoparticles onto a TiO2 thin film. Finally, TiO2 nanoparticles were layered onto the Ag nanoparticles via a titanium tetra-isopropoxide (TTIP) treatment. This study used nanoparticle-coated TiO2 thin films as photoelectrodes, and manufactured the cell in the unit of the DSSCs. We compared the behavior of the electrical properties of DSSCs depending on the presence or absence of Ag nanoparticles, as well as on the nanoparticle size. The Ag particles did not affect dye adsorption because the content of Ag particles is very low (0.13%) compared to that in TiO2 in the photoelectrode. The DSSCs with LSPR showed increased electric current density compared to those without LSPR, and improved the solar conversion efficiency (η) by 24%. The current density of the DSSCs increased because the light absorption of the dye increased. Therefore, we determined that LSPR affects the electrical properties of DSSCs.

  8. Semiconducting and quartz microbalance (QCM) humidity sensor properties of TiO2 by sol gel calcination method

    NASA Astrophysics Data System (ADS)

    Yakuphanoglu, Fahrettin

    2012-06-01

    Titanium dioxide (TiO2) material was synthesized using the sol gel calcination method. The structural properties of the TiO2 semiconductor were investigated by atomic force microscopy. The electrical conductivity of the TiO2 was measured as a function of temperature and TiO2 exhibits a conductivity of 2.55 × 10-6 S/m at room temperature with activation energy of 104 meV. The electrical conductivity of the TiO2 at room temperature is higher than that of nanocrystalline TiO2 (3 × 10-7 S/m) and TiO2 thin film in air (5 × 10-9 S/m) and in vacuum (8.8 × 10-10 S/m). It was found that the electrical transport mechanism of the TiO2 is controlled by thermally activated mechanism. The optical band gap of the TiO2 powder sample was determined to be 3.17 eV, which is good in agreement with the bulk TiO2 (Eg = 3.2 eV). Up to our knowledge, there is no any reported data about the band gap of TiO2 nanopowder based on the diffused reflectance calculation. Quartz crystal microbalance (QCM) TiO2 humidity sensor was prepared. The sensor indicates a large frequency change with an interaction occurred between TiO2 and humidity molecules. The sensor exhibits a good repeatability when it was exposed to the moist air of 65% RH.

  9. Effect of deflocculation on photo induced thin layer titanium dioxide disintegration of dairy waste activated sludge for cost and energy efficient methane production.

    PubMed

    Sharmila, V Godvin; Dhanalakshmi, P; Rajesh Banu, J; Kavitha, S; Gunasekaran, M

    2017-11-01

    In the present study, the deflocculated sludge was disintegrated through thin layer immobilized titanium dioxide (TiO 2 ) as photocatalyst under solar irradiation. The deflocculation of sludge was carried out by 0.05g/g SS of sodium citrate aiming to facilitate more surface area for subsequent TiO 2 mediated disintegration. The proposed mode of disintegration was investigated by varying TiO 2 dosage, pH and time. The maximum COD solubilization of 18.4% was obtained in the optimum 0.4g/L of TiO 2 dosage with 5.5 pH and exposure time of 40min. Anaerobic assay of disintegrated samples confirms the role of deflocculation as methane yield was found to be higher in deflocculated (235.6mL/gVS) than the flocculated sludge (146.8mL/gVS). Moreover, the proposed method (Net cost for control - Net cost for deflocculation) saves sludge management cost of about $132 with 53.8% of suspended solids (SS) reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    PubMed

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Growth and structure of Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5TiO 3 thin films prepared by pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Lu, Lei; Xiao, Dingquan; Lin, Dunmin; Zhang, Yongbin; Zhu, Jianguo

    2009-02-01

    Bi 0.5(Na 0.7K 0.2Li 0.1) 0.5TiO 3 (BNKLT) thin films were prepared on Pt/Ti/SiO 2/Si substrates by pulsed laser deposition (PLD) technique. The films prepared were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effects of the processing parameters, such as oxygen pressure, substrate temperature and laser power, on the crystal structure, surface morphology, roughness and deposition rates of the thin films were investigated. It was found that the substrate temperature of 600 °C and oxygen pressure of 30 Pa are the optimized technical parameters for the growth of textured film, and all the thin films prepared have granular structure, homogeneous grain size and smooth surfaces.

  12. Optical properties of dip coated titanium-di-oxide (TiO2) thin films annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Biswas, Sayari; Kar, Asit Kumar

    2018-02-01

    Titanium dioxide (TiO2) thin films were synthesized by hydrothermal assisted sol-gel dip coating method on quartz substrate. The sol was prepared by hydrothermal method at 90 °C. Dip coating method was used to deposit the thin films. Later films were annealed at four different temperatures -600 °C, 800 °C, 1000 °C and 1200 °C. XRD study showed samples annealed at 600 °C are almost amorphous. At 800 °C, film turns into anatase phase and with further increment of annealing temperature they turn into rutile phase. Transmission spectra of thin films show sharp rise in the violet-ultraviolet transition region and a maximum transmittance of ˜60% was observed in the visible region for the sample annealed at the lowest temperature. Band gap of the prepared films varies from 2.9 eV to 3.5 eV.

  13. Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Wenwu; Zhang, Huanyu; Wang, Hui-gang; Zhang, Mei; Guo, Min

    2017-11-01

    Ti-mesh supported TiO2 nanowire arrays (NWAs)/upconversion luminescence Er3+-Yb3+ codoped TiO2 nanoparticles (UC-EY-TiO2 NPs) composite structured photoanodes for fully flexible dye sensitized solar cells (DSSCs) were firstly constructed via a hydrothermal and spin coating process. UV-vis-NIR absorption spectra of the TiO2 NWAs/UC-EY-TiO2 NPs composites exhibited strong absorption around near infrared (NIR) 980 nm. The composites excited by 980 nm NIR laser could emit upconversion fluorescence at 489, 526, 549 and 658 nm, which expanded the spectral response range and sunlight capturing capability of formed flexible DSSCs. Moreover, the TiO2 NWAs/UC-EY-TiO2 NPs was coated with an Nb2O5 thin layer to further suppress electron recombination losses. The complete flexible DSSCs based on Nb2O5 coated TiO2 NWAs/2.0 mol% Er3+-1.0 mol% Yb3+ codoped TiO2 NPs photoanode and Pt/ITO-PEN counter electrode exhibited an enhanced photon to current conversion efficiency of 8.10%, a 68% improvement compared to TiO2 NWAs/undoped TiO2 NPs based DSSCs (4.82%).

  14. TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse.

    PubMed

    Gao, Yanyan; Xu, Jianping; Shi, Shaobo; Dong, Hong; Cheng, Yahui; Wei, Chengtai; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2018-04-04

    The self-powered ultraviolet photodetectors (UV PDs) have attracted increasing attention due to their potential applications without consuming any external power. It is important to obtain the high-performance self-powered UV PDs by a simple method for the practical application. Herein, TiO 2 nanorod arrays (NRs) were synthesized by hydrothermal method, which were integrated with p-type NiO nanoflakes to realize a high performance pn heterojunction for the efficient UV photodetection. TiO x thin film can improve the morphological and carrier transport properties of TiO 2 NRs and decrease the surface and defect states, resulting in the enhanced photocurrent of the devices. NiO/TiO 2 nanostructural heterojunctions show excellent rectifying characteristics (rectification ratio of 2.52 × 10 4 and 1.45 × 10 5 for NiO/TiO 2 NRs and NiO/TiO 2 NRs/TiO x , respectively) with a very low reverse saturation current. The PDs based on the heterojunctions exhibit good spectral selectivity, high photoresponsivity, and fast response and recovery speeds without external applied bias under the weak light radiation. The devices demonstrate good stability and repeatability under UV light radiation. The self-powered performance could be attributed to the proper built-in electric field of the heterojunction. TiO 2 NRs and NiO nanoflakes construct the well-aligned energy-band structure. The enhanced responsivity and detectivity for the devices with TiO x thin films is related to the increased interfacial charge separation efficiency, reduced carrier recombination, and relatively good electron transport of TiO 2 NRs.

  15. High-fraction brookite films from amorphous precursors.

    PubMed

    Haggerty, James E S; Schelhas, Laura T; Kitchaev, Daniil A; Mangum, John S; Garten, Lauren M; Sun, Wenhao; Stone, Kevin H; Perkins, John D; Toney, Michael F; Ceder, Gerbrand; Ginley, David S; Gorman, Brian P; Tate, Janet

    2017-11-09

    Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2 , where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2 , a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating the previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.

  16. A micro oxygen sensor based on a nano sol-gel TiO2 thin film.

    PubMed

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-09-03

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10(-4) and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required.

  17. Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination

    NASA Astrophysics Data System (ADS)

    Hunge, Y. M.; Yadav, A. A.; Mahadik, M. A.; Bulakhe, R. N.; Shim, J. J.; Mathe, V. L.; Bhosale, C. H.

    2018-02-01

    The need to utilize TiO2 based metal oxide hetero nanostructures for the degradation of environmental pollutants like Rhodamine B and reactive red 152 from the wastewater using stratified WO3/TiO2 catalyst under sunlight illumination. WO3, TiO2 and stratified WO3/TiO2 catalysts were prepared by a spray pyrolysis method. It was found that the stratified WO3/TiO2 heterostructure has high crystallinity, no mixed phase formation occurs, strong optical absorption in the visible region of the solar spectrum, and large surface area. The photocatalytic activity was tested for degradation of Rhodamine B (Rh B) and reactive red 152 in an aqueous medium. TiO2 layer in stratified WO3/TiO2 catalyst helps to extend its absorption spectrum in the solar light region. Rh B and Reactive red 152is eliminated up to 98 and 94% within the 30 and 40 min respectively at optimum experimental condition by stratified WO3/TiO2. Moreover, stratified WO3/TiO2 photoelectrode has good stability and reusability than individual TiO2 and WO3 thin film in the degradation of Rh B and reactive red 152. The photoelectrocatalytic experimental results indicate that stratified WO3/TiO2 photoelectrode is a promising material for dye removal.

  18. Microscopic observations of osteoblast growth on micro-arc oxidized β titanium

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Te; Chung, Chi-Jen; Yang, Tsai-Ching; Tang, Chin-Hsin; He, Ju-Liang

    2013-02-01

    Titanium alloys are widely used in orthopedic and dental implants, owing to their excellent physical properties and biocompatibility. By using the micro-arc oxidation (MAO), we generated anatase-rich (A-TiO2) and rutile-rich (R-TiO2) titanium dioxide coatings, individually on β-Ti alloy, in which the latter achieved an enhanced in vitro and in vivo performance. Thoroughly elucidating how the osteoblasts interact with TiO2 coatings is of worthwhile interest. This study adopts the focused ion beam (FIB) to section off the TiO2 coated samples for further scanning electron microscope (SEM) and transmission electron microscope (TEM) observation. The detailed crystal structures of the TiO2 coated specimens are also characterized. Experimental results indicate osteoblasts adhered more tenaciously and grew conformably with more lamellipodia extent on the R-TiO2 specimen than on the A-TiO2 and raw β-Ti specimens. FIB/SEM cross-sectional images of the cell/TiO2 interface revealed micro gaps between the cell membrane and contact surface of A-TiO2 specimen, while it was not found on the R-TiO2 specimen. Additionally, the number of adhered and proliferated cells on the R-TiO2 specimen was visually greater than the others. Closely examining EDS line scans and elemental mappings of the FIB/TEM cross-sectional images of the cell/TiO2 interface reveals both the cell body and interior space of the TiO2 coating contain nitrogen and sulfur (the biological elements in cell). This finding supports the assumption that osteoblast can grow into the porous structure of TiO2 coatings and demonstrating that the R-TiO2 coating formed by MAO serves the best for β-Ti alloys as orthopedic and dental implants.

  19. Three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei

    2015-07-01

    In this study, three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth are synthesized by a combination of the hydrothermal method for ZnO nanorods and a subsequent SnO2 and TiO2 thin film coating with atomic layer deposition (ALD). The as-prepared SnO2@TiO2 double-shell nanotubes are further tested as a flexible anode for Li ion batteries. The SnO2@TiO2 double-shell nanotubes/carbon cloth electrode exhibited a high initial discharge capacity (e.g. 778.8 mA h g-1 at a high current density of 780 mA g-1) and good cycling performance, which could be attributed to the 3D double-layer nanotube structure. The interior space of the stable TiO2 hollow tube can accommodate the large internal stress caused by volume expansion of SnO2 and protect SnO2 from pulverization and exfoliation.

  20. Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification.

    PubMed

    Ungureanu, Camelia; Dumitriu, Cristina; Popescu, Simona; Enculescu, Monica; Tofan, Vlad; Popescu, Marian; Pirvu, Cristian

    2016-02-01

    Implant-associated infections are a major cause of morbidity and mortality. This study was performed using titanium samples coated by anodization with a titanium dioxide (TiO2) shielded nanotube layer. TiO2/Ti surface was modified by simple immersion in torularhodin solution and by using a mussel-inspired method based on polydopamine as bio adhesive for torularhodin immobilization. SEM analysis revealed tubular microstructures of torularhodin and the PDA ability to function as a catchy anchor between torularhodin and TiO2 surface. Corrosion resistance was associated with TiO2 barrier oxide layer and nano-organized oxide layer and the torularhodin surface modification does not bring significant changes in resistance of the oxide layer. Our results demonstrated that the torularhodin modified TiO2/Ti surface could effectively prevent adhesion and proliferation of Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa. The new modified titanium surface showed good biocompatibility and well-behaved haemocompatibility. This biomaterial with enhanced antimicrobial activity holds great potential for future biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Investigating the structure and biocompatibility of niobium and titanium oxides as coatings for orthopedic metallic implants.

    PubMed

    Pradhan, D; Wren, A W; Misture, S T; Mellott, N P

    2016-01-01

    Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Atomic layer deposition of TIO{sub 2} thin films on nanoporous alumina templates : medical applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R. J.; Monteiro-Riviere, N. A.; Brigmon, R. L.

    2009-06-01

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of a nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Neither the 20 nm nor the 100 nm TiO{sub 2}-coated nanoporous alumina membranes exhibited statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Nanostructured materialsmore » prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.« less

  3. Photocatalytic production of hydrogen from fixed titanium dioxide thin film

    NASA Astrophysics Data System (ADS)

    Okoye, Njideka Helen

    This thesis is focused on further developing of an efficient method for the photocatalytic hydrogen production. The research aimed to use thin films deposited with TiO2 and doped with Pt in order to substitute slurry solutions that are currently being used. A new depositing experimental approach to manufacture the thin films was proposed and tested for both physical properties and chemical reactivity. Therefore, the experiment was designed into two parts: The first part was on the manufacturing and the physical characterization of titanium dioxide deposited on glass surfaces and the second part was focused on the ability of the thin film to produce hydrogen. For the second part, a photochemical reactor vessel was used to properly place the glass slides to UV-irradiation. This was yielded by a mercury lamp located at the centre of the reactor. The thesis is organized into five different chapters including introduction, literature review, characterization of TiO2 coated surface, experimental design and hydrogen production, finally conclusive observations and future work. Hydrogen production by photodecomposition of water into H2 and O2 has a very low efficiency due to rapid reverse reaction and, as mentioned above, it usually requires a slurry type of solution. This needs additional processing steps such as filtration and recycling of particles. Therefore, it is important to develop an efficient process for hydrogen production. TiO2 coated surfaces could be an excellent technological alternative. In this study, a sol-gel method was used to produce a transparent TiO 2 thin film which was deposited on a glass substrate by using a new coating technique introduced in this work for H2 production. The TiO2 deposited film on a glass substrate by using the spraying method of coating was characterized for physical analysis (surface characteristics, size of nanoparticles and distribution, etc.) by using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UV-Visible optical fiber spectrophotometer. Platinum was deposited on the coated thin film by adsorption from aqueous solutions containing Na 2PtCl4 followed by calcination at 500o C. The chemical reactivity of the new coated thin film for H2 production was tested by examining the effect of different ethanol concentrations and surface area available to hydrogen production rate by using a mercury lamp in a bench scale photo reactor with ethanol and water as the reactants. It was observed over a period of two hr interval that increase in ethanol concentration investigated in this work showed substantial increase in the hydrogen production rate as well as when increasing the surface area.

  4. Optical, electrical and dielectric properties of TiO2-SiO2 films prepared by a cost effective sol-gel process.

    PubMed

    Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S

    2011-12-01

    Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films

    PubMed Central

    2014-01-01

    This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements. PMID:25313302

  6. Photocatalytic activity of Cr-doped TiO2 nanoparticles deposited on porous multicrystalline silicon films.

    PubMed

    Hajjaji, Anouar; Trabelsi, Khaled; Atyaoui, Atef; Gaidi, Mounir; Bousselmi, Latifa; Bessais, Brahim; El Khakani, My Ali

    2014-01-01

    This work deals with the deposition of Cr-doped TiO2 thin films on porous silicon (PS) prepared from electrochemical anodization of multicrystalline (mc-Si) Si wafers. The effect of Cr doping on the properties of the TiO2-Cr/PS/Si samples has been investigated by means of X-ray diffraction (XRD), atomic force microcopy (AFM), photoluminescence, lifetime, and laser beam-induced current (LBIC) measurements. The photocatalytic activity is carried out on TiO2-Cr/PS/Si samples. It was found that the TiO2-Cr/PS/mc-Si type structure degrades an organic pollutant (amido black) under ultraviolet (UV) light. A noticeable degradation of the pollutant is obtained for a Cr doping of 2 at. %. This result is discussed in light of LBIC and photoluminescence measurements.

  7. Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae

    Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.

  8. Studies on transient characteristics of unipolar resistive switching processes in TiO2 thin film grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sahu, Vikas Kumar; Das, Amit K.; Ajimsha, R. S.; Misra, P.

    2018-05-01

    The transient characteristics of resistive switching processes have been investigated in TiO2 thin films grown by atomic layer deposition (ALD) to study the temporal evolution of the switching processes and measure the switching times. The reset and set switching times of unipolar Au/TiO2/Pt devices were found to be ~250 µs and 180 ns, respectively in the voltage windows of 0.5–0.9 V for reset and 1.9–4.8 V for set switching processes, obtained from quasi-static measurements. The reset switching time decreased exponentially with increasing amplitude of applied reset voltage pulse, while the set switching time remained insensitive to the amplitude of the set voltage pulse. A fast reset process with a switching time of ~400 ns was achieved by applying a reset voltage of ~1.8 V, higher than that of the quasi-static reset voltage window but below the set voltage window. The sluggish reset process in TiO2 thin film and the dependence of the reset switching time on the amplitude of the applied voltage pulse was understood on the basis of a self-accelerated thermal dissolution model of conducting filaments (CFs), where a higher temperature of the CFs owing to enhanced Joule heating at a higher applied voltage imposes faster diffusion of oxygen vacancies, resulting in a shorter reset switching time. Our results clearly indicate that fast resistive switching with switching times in hundreds of nanoseconds can be achieved in ALD-grown TiO2 thin films. This may find applications in fast non-volatile unipolar resistive switching memories.

  9. Characteristics of TiO2/ZnO bilayer film towards pH sensitivity prepared by different spin coating deposition process

    NASA Astrophysics Data System (ADS)

    Rahman, Rohanieza Abdul; Zulkefle, Muhammad Al Hadi; Abdullah, Wan Fazlida Hanim; Rusop, M.; Herman, Sukreen Hana

    2016-07-01

    In this study, titanium dioxide (TiO2) and zinc oxide (ZnO) bilayer film for pH sensing application will be presented. TiO2/ZnO bilayer film with different speed of spin-coating process was deposited on Indium Tin Oxide (ITO), prepared by sol-gel method. This fabricated bilayer film was used as sensing membrane for Extended Gate Field-Effect Transistor (EGFET) for pH sensing application. Experimental results indicated that the sensor is able to detect the sensitivity towards pH buffer solution. In order to obtained the result, sensitivity measurement was done by using the EGFET setup equipment with constant-current (100 µA) and constant-voltage (0.3 V) biasing interfacing circuit. TiO2/ZnO bilayer film which the working electrode, act as the pH-sensitive membrane was connected to a commercial metal-oxide semiconductor FET (MOSFET). This MOSFET then was connected to the interfacing circuit. The sensitivity of the TiO2 thin film towards pH buffer solution was measured by dipping the sensing membrane in pH4, pH7 and pH10 buffer solution. These thin films were characterized by using Field Emission Scanning Electron Microscope (FESEM) to obtain the surface morphology of the composite bilayer films. In addition, I-V measurement was done in order to determine the electrical properties of the bilayer films. According to the result obtained in this experiment, bilayer film that spin at 4000 rpm, gave highest sensitivity which is 52.1 mV/pH. Relating the I-V characteristic of the thin films and sensitivity, the sensing membrane with higher conductivity gave better sensitivity.

  10. Development of photocatalyst coated fluoropolymer based microreactor using ultrasound for water remediation.

    PubMed

    Colmenares, Juan Carlos; Nair, Vaishakh; Kuna, Ewelina; Łomot, Dariusz

    2018-03-01

    Formation of thin layers of photocatalyst in photo-microreactor is a challenging work considering the properties of both catalyst and the microchannel material. The deposition of semiconductor materials on fluoropolymer based microcapillary requires the use of economical methods which are also less energy dependent. The current work introduces a new method for depositing nanoparticles of TiO 2 on the inner walls of a hexafluoropropylene tetrafluoroethylene microtube under mild conditions using ultrasound technique. During the ultrasonication process, changes in the polymer surface were observed and characterized using Attenuated Total Reflectance spectroscopy, Scanning Electron Microscopy and Confocal Microscopy. The rough patches form sites for catalyst deposition resulting in the formation of thin layer of TiO 2 nanoparticles in the inner walls of the microtube. The photocatalytic activity of the TiO 2 coated fluoropolymer based microcapillary was evaluated for removal of phenol present in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of ZnO:TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique

    NASA Astrophysics Data System (ADS)

    Sutanto, Heri; Nurhasanah, Iis; Hidayanto, Eko; Wibowo, Singgih; Hadiyanto

    2015-12-01

    In this work, (ZnO)x:(TiO2)1-x nano composites thin films, with x = 1, 0.75, 0.5, 0.25, and 0, have been prepared by sol-gel spray coating technique onto glass substrate. Pure TiO2 and ZnO thin films were synthesized from titanium isopropoxide-based and zinc acetate-based precursor solutions, respectively, whereas the composite films were obtained from the mixture of these solutions at the specific % vol ratios. The properties and performance of nano composite ZnO, TiO2 and ZnO:TiO2 thin films at different composition have been investigated. Ultraviolet - Visible (UV-Vis) Spectrophotometer and Scanning Electron Microscopy (SEM) were employed in order to get morphology and transmittance of thin films. Testing the ability of photocatalytic activity of obtained films was conducted on photodegradation of methylene blue (MB) dye and organic pollutants of wastewater under a 30 watt UV light irradiation, then testing BOD, COD and TPC were conducted. Using the Tauc model, the band-gap energy decreased from 3.12 eV to 3.02 eV for the sample with x = 1 and 0, respectively. This decrease occured along with the replacement of percentage of ZnO by TiO2 on the films. This decrease also reduced the minimum energy that required for electron excitation. Obtained thin films had nanoscale roughness level with range 3.64 to 17.30 nm. The film with x= 0 has the biggest removal percentage on BOD, COD and TPC mesurements with percentage 54.82%, 62.73% and 99.88%, respectively.

  12. Proline adsorption on TiO 2(1 1 0) single crystal surface: A study by high resolution photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fleming, G. J.; Adib, K.; Rodriguez, J. A.; Barteau, M. A.; Idriss, H.

    2007-12-01

    The surface chemistry and binding of DL-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO 2(1 1 0) single crystal surfaces. TiO 2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that DL-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO 2 surface. On TiO 2(1 1 0) surfaces reduced by Ar + sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.

  13. Thin Bioactive Zn Substituted Hydroxyapatite Coating Deposited on Ultrafine Grained Titanium Substrate: Structure Analysis

    NASA Astrophysics Data System (ADS)

    Prosolov, Konstantin A.; Belyavskaya, Olga A.; Muehle, Uwe; Sharkeev, Yurii P.

    2018-02-01

    Nanocrystalline Zn substituted hydroxyapatite coatings were deposited by radiofrequency magnetron sputtering on the surface of ultrafine-grained titanium substrates. Cross section transmission electron microscopy provided information about the morphology and texture of the thin film while in-column energy dispersive X-ray analysis confirmed the presence of Zn in the coating. The Zn substituted hydroxyapatite coating was formed by an equiaxed polycrystalline grain structure. Effect of substrate crystallinity on the structure of deposited coating is discussed. An amorphous TiO2 sublayer of 8 nm thickness was detected in the interface between the polycrystalline coating and the Ti substrate. Its appearance in the amorphous state is attributed to prior to deposition etching of the substrate and subsequent condensation of oxygen-containing species sputtered from the target. This layer contributes to the high coating-to-substrate adhesion. The major P-O vibrational modes of high intensity were detected by Raman spectroscopy. The Zn substituted hydroxyapatite could be a material of choice when antibacterial osteoconductive coating with a possibility of withstanding mechanical stress during implantation and service is needed.

  14. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cheng, Hsyi-En; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-01

    Immobilized or deposited thin film TiO2 photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO2 can be effectively improved by the SnO2-TiO2 core-shell nanopillar-array structure which combines the benefits of SnO2/TiO2 heterojunction and high reaction surface area. The SnO2-TiO2 core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO2 film was 45% improved by introducing a SnO2 film between TiO2 and ITO glass substrate and was 300% improved by using the SnO2-TiO2 core-shell nanopillar-array structure. The 45% improvement by the SnO2 interlayer is attributed to the SnO2/TiO2 heterojunction which separates the photogenerated electron-hole pairs in TiO2 for MB degradation, and the high photocatalytic activity of the SnO2-TiO2 core-shell nanopillar-array films is attributed to the three dimensional SnO2/TiO2 heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  15. Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization

    PubMed Central

    Minagar, Sepideh; Berndt, Christopher C.; Wen, Cuie

    2015-01-01

    Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5), niobia (Nb2O5), zirconia (ZrO2) and titania (TiO2) in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD) analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants. PMID:25837724

  16. MEMS-Based Gas Sensor Using PdO-Decorated TiO2 Thin Film for Highly Sensitive and Selective H2 Detection with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon

    2018-03-01

    We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.

  17. MEMS-Based Gas Sensor Using PdO-Decorated TiO2 Thin Film for Highly Sensitive and Selective H2 Detection with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon

    2018-05-01

    We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.

  18. Structural, Morphological, Optical and Photocatalytic Properties of Y, N-Doped and Codoped TiO2 Thin Films

    PubMed Central

    Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa

    2017-01-01

    Pure TiO2, Y-N single-doped and codoped TiO2 powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO2 was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms. PMID:28772962

  19. Fabrication of a pure TiO2 thin film using a self-polymeric titania nano-sol and its properties.

    PubMed

    Park, Won-Kyu; Song, Jeong-Hwan; Kim, Soo-Ryong; Kim, Tae-Hyun; Iwasaki, Mitusnobo

    2012-02-01

    A pure TiO2 thin film without adding any organic binder was fabricated by using a self-polymeric titania nano-sol (14 mass%), which was prepared by the acid peptization method. The particle size distribution in the 14 mass% TiO2 sol, in which almost of particles had a size below 10.2 nm and the crystal phase confirmed by X-ray diffraction analysis was anatase. The diluted nano-sol had a capability to form a thin film at a low temperature (100-400 degrees C) on the slide glass by dipping method. The average thickness of a coating film was measured to be about 0.25-0.30 microm. A coated film had a high refractive index over 1.88 at least irrespective of the heat-treatment even at room temperature drying and showed a super-hydrophilicity (< 5 degrees) after 20 minutes under Ultra Violet light irradiation, and it sustained in the darkness during a long period over 7 days depending on the heat-treatment conditions. Atomic Force Microscopic observation shows that the morphology of a heat-treated film had a relationship with the long-term hydrophilicity in the darkness.

  20. Photoelectronic Sensor with Gold Nanoparticle Plasmon Antenna

    DTIC Science & Technology

    2016-07-20

    on glass substrate, GNP is absorbed on the film. After removing outer protein by UV ozone, TiO2 is deposited again and annealed. As optical... SiO2 Thin Films by CO2 Laser Annealing for Polycrystalline Silicon Thin Film Transistors”, AMD8-3L, The International Display Workshops Volume 21

  1. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.

    PubMed

    Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2014-04-23

    The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.

  2. Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Cao, Shuai; Liu, Bo; Fan, Lingying; Yue, Ziqi; Liu, Bin; Cao, Baocheng

    2014-08-01

    In this study, the radio frequency (RF) magnetron sputtering method was used to prepare a TiO2 thin film on the surface of stainless steel brackets. Eighteen groups of samples were made according to the experimental parameters. The crystal structure and surface morphology were characterized by X-ray diffraction, and scanning electron microscopy, respectively. The photocatalytic properties under visible light irradiation were evaluated by measuring the degradation ratio of methylene blue. The sputtering temperature was set at 300 °C, and the time was set as 180 min, the ratio of Ar to N was 30:1, and annealing temperature was set at 450 °C. The thin films made under these parameters had the highest visible light photocatalytic activity of all the combinations of parameters tested. Antibacterial activities of the selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. The results demonstrated the thin film prepared under the parameters above showed the highest antibacterial activity.

  3. Orientation effect on microwave dielectric properties of Si-integrated Ba0.6Sr0.4TiO3 thin films for frequency agile devices

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul

    2006-07-01

    The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.

  4. Ultrasound-Assisted Synthesis of Titania Nanoparticles, Characterization of Their Thin Films, and Activity in Photooxidation of β-Naphthol

    NASA Astrophysics Data System (ADS)

    Hurain, Syyeda Sana; Habib, Amir; Hussain, Syed Muzammil; Ul-Haq, Noaman

    2015-11-01

    Nanosized titania (TiO2) films and powders were prepared from titanium isopropoxide by ultrasonication then ultrasonic aerosol-assisted chemical vapor deposition (UAACVD). X-ray diffraction (XRD), used to study the crystal structure, phase, and crystallite size of TiO2 samples annealed at 500°C, revealed anatase was the main crystalline phase. Scanning electron microscopy and atomic force microscopy revealed the quasi-spherical morphology of the TiO2 nanoparticles; average size distribution was in the range 20-35 nm. Ultraviolet-visible spectroscopy was used to evaluate the photocatalytic activity of the anatase TiO2, on the basis of efficiency of degradation of β-naphthol. Pure TiO2 nanoparticles synthesized by use of sonication-UAACVD then calcination at 500°C enabled effective photodegradation under UV light. This method of synthesis of TiO2 is superior to the reflux-UAACVD method with titanium isopropoxide as precursor.

  5. Defective TiO 2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells

    DOE PAGES

    Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; ...

    2016-08-18

    Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO 2 thin film as the electron transport layer. TiO 2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO 2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO 2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiencymore » of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO 2 layer leads to enhanced long-Term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.« less

  6. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    NASA Astrophysics Data System (ADS)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  7. Influence of TiO2(110) surface roughness on growth and stability of thin organic films.

    PubMed

    Szajna, K; Kratzer, M; Wrana, D; Mennucci, C; Jany, B R; Buatier de Mongeot, F; Teichert, C; Krok, F

    2016-10-14

    We have investigated the growth and stability of molecular ultra-thin films, consisting of rod-like semiconducting para-hexaphenyl (6P) molecules vapor deposited on ion beam modified TiO 2 (110) surfaces. The ion bombarded TiO 2 (110) surfaces served as growth templates exhibiting nm-scale anisotropic ripple patterns with controllable parameters, like ripple depth and length. In turn, by varying the ripple depth one can tailor the average local slope angle and the local step density/terrace width of the stepped surface. Here, we distinguish three types of substrates: shallow, medium, and deep rippled surfaces. On these substrates, 6P sub-monolayer deposition was carried out in ultra-high vacuum by organic molecular beam evaporation (OMBE) at room temperature leading to the formation of islands consisting of upright standing 6P molecules, which could be imaged by scanning electron microscopy and atomic force microscopy (AFM). It has been found that the local slope and terrace width of the TiO 2 template strongly influences the stability of OMBE deposited 6P islands formed on the differently rippled substrates. This effect is demonstrated by means of tapping mode AFM, where an oscillating tip was used as a probe for testing the stability of the organic structures. We conclude that by increasing the local slope of the TiO 2 (110) surface the bonding strength between the nearest neighbor standing molecules is weakened due to the presence of vertical displacement in the molecular layer in correspondence to the TiO 2 atomic step height.

  8. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-04-01

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m2 g-1) than that of Co0.85Se nanofilms (55.17 m2 g-1) and TiO2 nanoparticles (19.49 m2 g-1). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.

  9. The structure and photocatalytic activity of TiO2 thin films deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yang, W. J.; Hsu, C. Y.; Liu, Y. W.; Hsu, R. Q.; Lu, T. W.; Hu, C. C.

    2012-12-01

    This paper seeks to determine the optimal settings for the deposition parameters, for TiO2 thin film, prepared on non-alkali glass substrates, by direct current (dc) sputtering, using a ceramic TiO2 target in an argon gas environment. An orthogonal array, the signal-to-noise ratio and analysis of variance are used to analyze the effect of the deposition parameters. Using the Taguchi method for design of a robust experiment, the interactions between factors are also investigated. The main deposition parameters, such as dc power (W), sputtering pressure (Pa), substrate temperature (°C) and deposition time (min), were optimized, with reference to the structure and photocatalytic characteristics of TiO2. The results of this study show that substrate temperature and deposition time have the most significant effect on photocatalytic performance. For the optimal combination of deposition parameters, the (1 1 0) and (2 0 0) peaks of the rutile structure and the (2 0 0) peak of the anatase structure were observed, at 2θ ˜ 27.4°, 39.2° and 48°, respectively. The experimental results illustrate that the Taguchi method allowed a suitable solution to the problem, with the minimum number of trials, compared to a full factorial design. The adhesion of the coatings was also measured and evaluated, via a scratch test. Superior wear behavior was observed, for the TiO2 film, because of the increased strength of the interface of micro-blasted tools.

  10. Surface Structure and Photocatalytic Activity of Nano-TiO2 Thin Film

    EPA Science Inventory

    Controlled titanium dioxide (TiO2) thin films were deposited on stainless steel surfaces using flame aerosol synthetic technique, which is a one-step coating process, that doesn’t require further calcination. Solid state characterization of the coatings was conducted by different...

  11. CORONA DISCHARGE REACTOR FOR SELECTIVE OXIDATION OF ALCOHOLS AND HYDROCARBONS USING OZONATION AND PHOTOXIDATION OF OVER TIO2

    EPA Science Inventory

    We have developed a process that combines the use of surface corona for the production of ozone by passing air or oxygen through a high voltage electrical discharge and the emitted UV is being used to activate a photocatalyst. A thin film of nanostructured TiO2 with primary part...

  12. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    PubMed

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  13. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    NASA Astrophysics Data System (ADS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  14. A Micro Oxygen Sensor Based on a Nano Sol-Gel TiO2 Thin Film

    PubMed Central

    Wang, Hairong; Chen, Lei; Wang, Jiaxin; Sun, Quantao; Zhao, Yulong

    2014-01-01

    An oxygen gas microsensor based on nanostructured sol-gel TiO2 thin films with a buried Pd layer was developed on a silicon substrate. The nanostructured titania thin films for O2 sensors were prepared by the sol-gel process and became anatase after heat treatment. A sandwich TiO2 square board with an area of 350 μm × 350 μm was defined by both wet etching and dry etching processes and the wet one was applied in the final process due to its advantages of easy control for the final structure. A pair of 150 nm Pt micro interdigitated electrodes with 50 nm Ti buffer layer was fabricated on the board by a lift-off process. The sensor chip was tested in a furnace with changing the O2 concentration from 1.0% to 20% by monitoring its electrical resistance. Results showed that after several testing cycles the sensor's output becomes stable, and its sensitivity is 0.054 with deviation 2.65 × 10−4 and hysteresis is 8.5%. Due to its simple fabrication process, the sensor has potential for application in environmental monitoring, where lower power consumption and small size are required. PMID:25192312

  15. Optical properties of rhodamine 6G-doped TiO2 sol-gel films

    NASA Astrophysics Data System (ADS)

    Tomás, S. A.; Stolik, S.; Palomino, R.; Lozada, R.; Persson, C.; Ahuja, R.; Pepe, I.; Ferreira da Silva, A.

    2005-06-01

    The optical properties of titania (TiO2) thin films prepared by the sol-gel process and doped with rhodamine 6G were studied by Photoacoustic Spectroscopy. Rhodamine 6G-doping was achieved by adding 0.01%, 0.02%, 0.05% y 0.1% mol rhodamine to a solution that contained titanium isopropoxide as precursor. Two absorption regions were distinguished in the absorption spectrum of a typical rhodamine 6G-doped TiO2 film. A shift of these bands occured as a function of rhodamine 6G-doping concentration. In addition, the optical absorption and band gap energy for rutile-phase TiO2 films were calculated employing the full-potential linearized augmented plane wave method. A comparison of these calculations with experimental data of TiO2 films prepared by sol-gel at room temperature was performed.

  16. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice.

    PubMed

    Zhang, Lu; Xie, Xingxing; Zhou, Yigang; Yu, Dainan; Deng, Yu; Ouyang, Jiexiu; Yang, Bei; Luo, Dan; Zhang, Dalei; Kuang, Haibin

    2018-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have recently found applications in a wide variety of consumer goods. TiO 2 NPs exposure significantly increases fetal deformities and mortality. However, the potential toxicity of TiO 2 NPs on the growth and development of placenta has been rarely studied during mice pregnancy. The objective of this study was to investigate the effects of maternal exposure of TiO 2 NPs on the placentation. Mice were administered TiO 2 NPs by gavage at 0, 1 and 10 mg/kg/day from gestational day (GD) 1 to GD 13. Uteri and placentas from these mice were collected and counted the numbers of implanted and resorbed embryo and measured the placental weight on GD 13. Placental morphometry was observed by hematoxylin and eosin staining. The levels of Hand1, Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA were assessed by qRT-PCR. Uterine NK (uNK) cells were detected by using DBA lectin. Laminin immunohistochemical staining was to identify fetal vessels. Western blotting and transmission electron micrograph (TEM) were used to assess the apoptosis of placenta. No treatment-related difference was observed in the numbers of implanted and resorbed embryos and weight of placenta between the groups. However, 1 mg/kg/day TiO 2 NPs treatment significantly reduced the ratio of placenta/body weight on GD 13. The proportion of spongiotrophoblast in the 10 mg/kg/day dose group became higher than that in the control group, yet that of labyrinth was significantly lower in 10 mg/kg/day mice. The expression levels of Hand1 , Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA markedly decreased in TiO 2 NP treated placentas. Furthermore, TiO 2 NPs treatment impaired the formation of intricate networks of fetal vessels and reduced the number of uNK cells, and inhibited proliferation and induced apoptosis of placenta by nuclear pyknosis, the activation of caspase-3 and upregulation of Bax protein and downregulation of Bcl-2 protein on GD 13. Gestational exposure to TiO 2 NPs significantly impairs the growth and development of placenta in mice, with a mechanism that seems to be involved in the dysregulation of vascularization, proliferation and apoptosis. Therefore, our results suggested the need for great caution while handling of the nanomaterials by workers and specially pregnant consumers.

  17. Electrochromic TiO2 Thin Film Prepared by Dip-Coating Technique

    NASA Astrophysics Data System (ADS)

    Suriani, S.; Kamisah, M. M.

    2002-12-01

    Titanium dioxide (TiO2) thin films were prepared by using sol-gel dip coating technique. The coating solutions were prepared by reacting titanium isopropoxide as precursors and ethanol as solvent. The films were formed on transparent ITO-coated glass by a dip coating technique and final dried at various temperatures up to 600 °C for 30 minutes. The films were characterized with the UV-Vis-NIR Spectrometer, Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD). XRD results show that the films dried at 600 °C form anatase structure. From the spectroscopic studies, the sample shows electrochromic property.

  18. Block copolymers from ionic liquids for the preparation of thin carbonaceous shells

    PubMed Central

    Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang

    2017-01-01

    This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials. PMID:28904612

  19. Block copolymers from ionic liquids for the preparation of thin carbonaceous shells.

    PubMed

    Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Zentel, Rudolf

    2017-01-01

    This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO 2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO 2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.

  20. High-fraction brookite films from amorphous precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haggerty, James E. S.; Schelhas, Laura T.; Kitchaev, Daniil A.

    2017-11-09

    Structure-specific synthesis processes are of key importance to the growth of polymorphic functional compounds such as TiO 2, where material properties strongly depend on structure as well as chemistry. The robust growth of the brookite polymorph of TiO 2, a promising photocatalyst, has been difficult in both powder and thin-film forms due to the disparity of reported synthesis techniques, their highly specific nature, and lack of mechanistic understanding. In this work, we report the growth of high-fraction (~95%) brookite thin films prepared by annealing amorphous titania precursor films deposited by pulsed laser deposition. We characterize the crystallization process, eliminating themore » previously suggested roles of substrate templating and Na helper ions in driving brookite formation. Instead, we link phase selection directly to film thickness, offering a novel, generalizable route to brookite growth that does not rely on the presence of extraneous elements or particular lattice-matched substrates. In addition to providing a new synthesis route to brookite thin films, our results take a step towards resolving the problem of phase selection in TiO 2 growth, contributing to the further development of this promising functional material.« less

  1. Effect of precursor concentration and film thickness deposited by layer on nanostructured TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Sol-gel spin coating method is used in the production of nanostructured TiO2 thin film. The surface topology and morphology was observed using the Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The electrical properties were investigated by using two probe current-voltage (I-V) measurements to study the electrical resistivity behavior, hence the conductivity of the thin film. The solution concentration will be varied from 14.0 to 0.01wt% with 0.02wt% interval where the last concentration of 0.02 to 0.01wt% have 0.01wt% interval to find which concentrations have the highest conductivity then the optimized concentration's sample were chosen for the thickness parameter based on layer by layer deposition from 1 to 6 layer. Based on the result, the lowest concentration of TiO2, the surface becomes more uniform and the conductivity will increase. As the result, sample of 0.01wt% concentration have conductivity value of 1.77E-10 S/m and will be advanced in thickness parameter. Whereas in thickness parameter, the 3layer deposition were chosen as its conductivity is the highest at 3.9098E9 S/m.

  2. TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique

    NASA Astrophysics Data System (ADS)

    Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.

    2018-06-01

    Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.

  3. Enhancement of plasmon-induced charge separation efficiency by coupling silver nanocubes with a thin gold film

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu

    2016-10-01

    Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.

  4. Electronic properties of Cr-N codoped rutile TiO2(110) thin films

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengwang; Zhang, Lili; Dong, Shihui; Ma, Xiaochuan; Ju, Huanxin; Zhu, Junfa; Cui, Xuefeng; Zhao, Jin; Wang, Bing

    2017-12-01

    We report our investigation on the electronic properties of Cr-N codoped rutile TiO2(110) single crystal thin films, homoepitaxially grown by pulsed-laser-deposition method, and characterized using scanning tunneling microscopy and spectroscopy (STM/STS), X-ray/ultraviolet photoemission spectroscopy (XPS/UPS), in combination with first-principles calculations. Our results show that the bandgap reduction of the TiO2(110) surface is mainly contributed by the delocalized states whose position is at 2.0 eV below the Fermi level, introduced by the substitutional codoped Cr-2N pair, which is evidenced by the accordance of the results between the STS spectra and the calculated DOS. The codoped Cr-N pair contributes the gap state at about 0.8 eV below the Fermi level, in consistent with the theoretical calculations. While, the monodoped Cr contributes the states either close to the valence band maximum or the conduction band minimum, which should not contribute to the bandgap reduction too much. Our experimental results joint with theoretical calculations provide an atomic view of the bandgap reduction of the rutile TiO2(110) surface, which indicates that the excess substitutional N atoms should be important to efficiently narrow the bandgap by introducing the Cr-2N pairs.

  5. Control of Interfacial Phenomena in Artificial Oxide Heterostructures

    DTIC Science & Technology

    2015-09-01

    heterostructures using the field effect to control superconductivity, magnetism, and metal‐insulator transitions. We also identify the existence of double TiO2 ...double TiO2 layers play a crucial role in determining the superconducting states of monolayer FeSe/SrTiO3. 15. SUBJECT TERMS Thin films, conductor...development of oxide‐based electronic devices.  We also identify the existence of double  TiO2   layers at the surface of SrTiO3 in the recently

  6. Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Li, Juan; Zhang, Min; Li, Qiuye; Yang, Jianjun

    2017-01-01

    Direct contact Z-scheme g-C3N4-TiO2 nanocomposites without an electron mediator are prepared via simple annealing the mixture of bulk g-C3N4 and nanotube titanic acid (NTA) in air at 600 °C for 2 h. In the process of annealing, the bulk g-C3N4 transformed to ultra-thin g-C3N4 nanosheets, and NTA converted to a novel anatase TiO2, then the two components formed a close interaction. The XPS result reveals that some amount of nitrogen is doped into this novel-TiO2, and g-C3N4 nanosheets exist in the composites. The results of XRD, TEM and TG indicate that the thickness of g-C3N4 nanosheets is very thin. The ESR spectrum shows the existence of Ti3+ and single-electron-trapped oxygen vacancy in the 30%g-C3N4-TiO2 composites. In photocatalytic activity test, the 30%g-C3N4-TiO2 nanocomposites showed an excellent photo-oxidation activity of propylene under visible light irradiation (λ≥ 420 nm), and the removal efficiency of propylene reached as high as 56.6%, and the activity kept nearly 82% after four consecutive recycles. Photoluminescence (PL) result using terephthalic acid (TA) as a probe molecule indicated that the g-C3N4-TiO2 nanocomposites displayed a Z-sheme photocatalytic reaction system and this should be the main reason for the high photocatalytic activity. A possible photocatalytic mechanism was proposed on the basis of PL result and transient photocurrent-time curves.

  7. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

    PubMed Central

    2012-01-01

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure. PMID:22546416

  8. Dye-Sensitized Solar Cells (DSSCs) reengineering using TiO2 with natural dye (anthocyanin)

    NASA Astrophysics Data System (ADS)

    Subodro, Rohmat; Kristiawan, Budi; Ramelan, Ari Handono; Wahyuningsih, Sayekti; Munawaroh, Hanik; Hanif, Qonita Awliya; Saputri, Liya Nikmatul Maula Zulfa

    2017-01-01

    This research on Dye-Sensitized Solar Cells (DSSCs) reengineering was carried out using TiO2 with natural dye (anthocyanin). The fabrication of active carbon layer/TiO2 DSSC solar cell was based on natural dye containing anthocyanins such as mangosteen peel, red rose flower, black glutinous rice, and purple eggplant peel. DSSC was prepared with TiO2 thin layer doped with active carbon; Natural dye was analyzed using UV-Vis and TiO2 was analyzed using X-ray diffractometer (XRD), meanwhile scanning electron microscope (SEM) was used to obtain the size of the crystal. Keithley instrument test was carried out to find out I-V characteristics indicating that the highest efficiency occurred in DSSCs solar cell with 24-hour soaking with mangosteen peel 0.00047%.

  9. Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Shen, Yu-Lin; Chen, Shih-Yun; Song, Jenn-Ming; Chen, In-Gann

    2012-06-01

    In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the great potential as the active anode in direct methanol fuel cells. The electrochemical results indicate that TiO2 is capable of transforming CO-like poisoning species on the Pt surface during methanol oxidation and contributes to a high CO tolerance of this Pt nanowire/TiO2 hybrid structure.

  10. Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions

    NASA Astrophysics Data System (ADS)

    Feng, Qi

    Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.

  11. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    NASA Astrophysics Data System (ADS)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  12. Photocatalytic properties of nano-structured TiO2-carbon films obtained by means of electrophoretic deposition.

    PubMed

    Peralta-Hernández, J M; Manríquez, J; Meas-Vong, Y; Rodríguez, Francisco J; Chapman, Thomas W; Maldonado, Manuel I; Godínez, Luis A

    2007-08-17

    Recent studies have shown that the light-absorption and photocatalytic efficiencies of TiO2 can be improved by coupling TiO2 nano-particles with nonmetallic dopants, such as carbon. In this paper, we describe the electrophoretic preparation of a novel TiO2-carbon nano-composite photocatalyst on a glass indium thin oxide (ITO) substrate. The objective is to take better advantage of the (e-/h+) pair generated by photoexcitation of semiconducting TiO2 particles. The transfer of electrons (e-) into adjacent carbon nano-particles promotes reduction of oxygen to produce hydrogen peroxide (H2O2) which, in the presence of iron ions, can subsequently form hydroxyl radicals (*OH) via the Fenton reaction. At the same time, *OH is formed from water by the (h+) holes in the TiO2. Thus, the *OH oxidant is produced by two routes. The efficiency of this photolytic-Fenton process was tested with a model organic compound, Orange-II (OG-II) azo dye, which is employed in the textile industry.

  13. Synthesis of Ag-TiO2 composite nano thin film for antimicrobial application

    NASA Astrophysics Data System (ADS)

    Yu, Binyu; Leung, Kar Man; Guo, Qiuquan; Lau, Woon Ming; Yang, Jun

    2011-03-01

    TiO2 photocatalysts have been found to kill cancer cells, bacteria and viruses under mild UV illumination, which offers numerous potential applications. On the other hand, Ag has long been proved as a good antibacterial material as well. The advantage of Ag-TiO2 nanocomposite is to expand the nanomaterial's antibacterial function to a broader range of working conditions. In this study neat TiO2 and Ag-TiO2 composite nanofilms were successfully prepared on silicon wafer via the sol-gel method by the spin-coating technique. The as-prepared composite Ag-TiO2 and TiO2 films with different silver content were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) to determine the topologies, microstructures and chemical compositions, respectively. It was found that the silver nanoparticles were uniformly distributed and strongly attached to the mesoporous TiO2 matrix. The morphology of the composite film could be controlled by simply tuning the molar ratio of the silver nitrate aqueous solution. XPS results confirmed that the Ag was in the Ag0 state. The antimicrobial effect of the synthesized nanofilms was carried out against gram-negative bacteria (Escherichia coli ATCC 29425) by using an 8 W UV lamp with a constant relative intensity of 0.6 mW cm - 2 and in the dark respectively. The synthesized Ag-TiO2 thin films showed enhanced bactericidal activities compared to the neat TiO2 nanofilm both in the dark and under UV illumination.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Yu; Liu, Bin; Lu, Junling

    The effect of residue chlorine on the synthesis of well-dispersed Pd nanoparticles on TiO2 supports using Pd atomic layer deposition (ALD) was investigated. The dispersion of Pd nanoparticles was compared over chlorine-containing and chlorine-free TiO2 supports prepared by selecting proper precursors. The detailed X-ray photoelectron spectroscopy and scanning transmission electron microscopy characterizations showed that higher dispersion of Pd nanoparticles was achieved on the chlorine-containing TiO2 surface than the chlorine-free TiO2. The preparation of TiO2 thin films and Pd nanoparticles was characterized by in situ FT-IR. The temperature required for complete deligation of palladium hexafluoroacetylacetonate decreased from 175 to 100 degreesmore » C with the presence of chlorine on the TiO2 surface. Density functional theory calculations confirm that Pdligand bond strength could be weakened as Pd binds to the Cl sites. The water-gas-shift reaction was chosen as the model reaction, and the catalytic performance of the ALD Pd catalysts was discussed. Compared to reported catalysts, the Pd nanocatalysts supported by TiO2/SiO2 mixed oxides showed promising performance in the low-temperature water-gas-shift reaction.« less

  15. Exploring a new phenomenon in the bactericidal response of TiO2 thin films by Fe doping: Exerting the antimicrobial activity even after stoppage of illumination

    NASA Astrophysics Data System (ADS)

    Naghibi, Sanaz; Vahed, Shohreh; Torabi, Omid; Jamshidi, Amin; Golabgir, Mohammad Hossein

    2015-02-01

    Antibacterial properties of Fe-doped TiO2 thin films prepared on glass by the sol-gel hot-dipping technique were studied. The films were characterized by X-ray diffraction, field emission scanning electron microscopy, scanning probe microscopy and X-ray photoelectron spectroscopy. The photocatalytic activities were evaluated by measuring the decomposition rate of methylene blue under ultra violet and visible light. The antibacterial properties of the coatings were investigated against Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisia and Aspergillus niger. The principle of incubation methods was also discussed. The results indicated that Fe doping of thin films eventuated in high antibacterial properties under visible light and this performance remained even after stoppage of illumination. This article tries to provide some explanation for this fact.

  16. Nanoporous Aluminum Oxide Membranes Coated with Atomic Layer Deposition-Grown Titanium Dioxide for Biomedical Applications: An In Vitro Evaluation.

    PubMed

    Petrochenko, Peter E; Kumar, Girish; Fu, Wujun; Zhang, Qin; Zheng, Jiwen; Liang, Chengdu; Goering, Peter L; Narayan, Roger J

    2015-12-01

    The surface topographies of nanoporous anodic aluminum oxide (AAO) and titanium dioxide (TiO2) membranes have been shown to modulate cell response in orthopedic and skin wound repair applications. In this study, we: (1) demonstrate an improved atomic layer deposition (ALD) method for coating the porous structures of 20, 100, and 200 nm pore diameter AAO with nanometer-thick layers of TiO2 and (2) evaluate the effects of uncoated AAO and TiO2-coated AAO on cellular responses. The TiO2 coatings were deposited on the AAO membranes without compromising the openings of the nanoscale pores. The 20 nm TiO2-coated membranes showed the highest amount of initial protein adsorption via the micro bicinchoninic acid (micro-BCA) assay; all of the TiO2-coated membranes showed slightly higher protein adsorption than the uncoated control materials. Cell viability, proliferation, and inflammatory responses on the TiO2-coated AAO membranes showed no adverse outcomes. For all of the tested surfaces, normal increases in proliferation (DNA content) of L929 fibroblasts were observed over from 4 hours to 72 hours. No increases in TNF-alpha production were seen in RAW 264.7 macrophages grown on TiO2-coated AAO membranes compared to uncoated AAO membranes and tissue culture polystyrene (TCPS) surfaces. Both uncoated AAO membranes and TiO2-coated AAO membranes showed no significant effects on cell growth and inflammatory responses. The results suggest that TiO2-coated AAO may serve as a reasonable prototype material for the development of nanostructured wound repair devices and orthopedic implants.

  17. Apatite-forming PEEK with TiO2 surface layer coating.

    PubMed

    Kizuki, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi

    2015-01-01

    Polyetheretherketone (PEEK) is widely used in orthopedic implants, such as spinal fusion devices, because of its moderate elastic modulus, as well as relatively high mechanical strength. However, it does not bond to living bone, and hence it needs autograft to be fixed to the bone. In this study, we attempted to add bone-bonding properties to PEEK by coating with TiO2 synthesized by the sol-gel process. When a TiO2 sol solution consisting of titanium isopropoxide, water, ethanol, and nitric acid was deposited on a PEEK substrate without any pretreatment, the formed TiO2 gel layer was easily peeled off after subsequent treatments. However, when the same solution was deposited on PEEK that was preliminarily subjected to UV or O2 plasma treatment, the deposited TiO2 gel layer strongly adhered to the substrate even after subsequent treatments. The strong adhesion was attributed to the interaction among the C-O, C=O, and O-C=O groups on the PEEK owing to the UV or O2 plasma treatment and the Ti-O bond of the TiO2 gel. Apatite did not form on the as-formed TiO2 gel layer in a simulated body fluid (SBF) even within 3 days; however, apatite formed after soaking in 0.1 M HCl solution at 80 °C for 24 h. This apatite formation was attributed to positive surface charge of the TiO2 gel layer induced by the acid treatment. The PEEK with the TiO2 gel layer coating formed by the proposed process is expected to bond to living bone, because a positively charged titanium oxide which facilitates the formation of apatite in SBF within a short period is known to bond to living bone.

  18. Fabrication and characterization of TiO2/SiO2 based Bragg reflectors for light trapping applications

    NASA Astrophysics Data System (ADS)

    Dubey, R. S.; Ganesan, V.

    Distributed Bragg reflectors (DBRs) have received an intensive attention due to their increasing demand in optoelectronic and photonic devices. Such reflectors are capable to prohibit the light propagation within the specified wavelength range of interest. In this paper, we present the fabrication of TiO2/SiO2 stacks based Bragg reflectors by using a simple and in-expensive sol-gel spin coating technique. The prepared single-layer thin films of TiO2 and SiO2 onto glass substrates were characterized for their optical constants. By tuning the process parameters, one-seven DBR stacks of TiO2/SiO2 were prepared. The corresponding shift of the Bragg reflection peak was observed with the increased number of DBR stacks and as much as about 90% reflectance is observed from the 7DBR stacks. The experimentally measured reflectance was compared with the simulated one, which showed good in agreement. FESEM measurement has confirmed the formation of bright and dark strips of TiO2 and SiO2 films with their thicknesses 80 and 115 nm respectively. The simulation study was explored to a design of thin film silicon solar cell using 7DBR stacks. An enhancement in light absorption in the visible wavelength range is observed which coincides with the experimental result of the reflectance. The use of DBR at the bottom of the solar cell could felicitate the better light harvesting with the occurrence of Fabry-Perot resonances in the absorbing layer.

  19. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  20. Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates

    NASA Astrophysics Data System (ADS)

    Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2009-12-01

    In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.

  1. TiO2 nanorods thin-films embedded with gold nanoparticles for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Raval, Dhyey; Jani, Margi; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    This article reports on the gold nanoparticle (Au-NP) induced absorption enhancement in the hydrothermally grown titanium dioxide nanorods (TiO2-NRs). The localized surface plasmon resonance (LSPR) and transfer of electron from Au-NPs attached to the TiO2-NR have been related to their photocatalytic response. The photocurrent enhancement observed in the studies of IPCE has been explained on the basis of electrons in the conduction band of TiO2-NR. The electrons from the Au-NP to the conduction band of TiO2-NR with respect to the wavelength of the incident spectrum shows an increase in efficiency over pristine TiO2-NRs sample. Further, to investigate the role of Au-NP, an absorption spectra with its incident wavelength shows an increase in the visible spectrum in the present study. This provides an explanation for the response to the absorption of the wide bandgap semiconductor oxide which gives an opportunity to develop a hybrid structure on the transparent substrates. The better response of Au-NPs/TiO2-NRs system can be used in photocatalytic processes.

  2. Tunable growth of TiO2 nanostructures on Ti substrates

    NASA Astrophysics Data System (ADS)

    Peng, Xinsheng; Wang, Jingpeng; Thomas, Dan F.; Chen, Aicheng

    2005-10-01

    A simple and facile method is described to directly synthesize TiO2 nanostructures on titanium substrates by oxidizing Ti foil using small organic molecules as the oxygen source. The effect of reaction temperature and oxygen source on the formation of the TiO2 nanostructures has been studied using scanning electron microscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy and water contact angle measurement. Polycrystalline grains are formed when pure oxygen and formic acid are used as the oxygen source; elongated micro-crystals are produced when water vapour is used as the oxygen source; oriented and aligned TiO2 nanorod arrays are synthesized when ethanol, acetaldehyde or acetone are used as the oxygen source. The growth mechanism of the TiO2 nanostructures is discussed. The diffusion of Ti atoms to the oxide/gas interface via the network of the grain boundaries of the thin oxide layer is the determining factor for the formation of well-aligned TiO2 nanorod arrays. The wetting properties of the TiO2 nanostructured surfaces formed are dictated by their structure, varying from a hydrophilic surface to a strongly hydrophobic surface as the surface structure changes from polycrystalline grains to well-aligned nanorod arrays. This tunable growth of TiO2 nanostructures is desirable for promising applications of TiO2 nanostructures in the development of optical devices, sensors, photo-catalysts and self-cleaning coatings.

  3. A fast-reliable methodology to estimate the concentration of rutile or anatase phases of TiO2

    NASA Astrophysics Data System (ADS)

    Zanatta, A. R.

    2017-07-01

    Titanium-dioxide (TiO2) is a low-cost, chemically inert material that became the basis of many modern applications ranging from, for example, cosmetics to photovoltaics. TiO2 exists in three different crystal phases - Rutile, Anatase and, less commonly, Brookite - and, in most of the cases, the presence or relative amount of these phases are essential to decide the TiO2 final application and its related efficiency. Traditionally, X-ray diffraction has been chosen to study TiO2 and provides both the phases identification and the Rutile-to-Anatase ratio. Similar information can be achieved from Raman scattering spectroscopy that, additionally, is versatile and involves rather simple instrumentation. Motivated by these aspects this work took into account various TiO2 Rutile+Anatase powder mixtures and their corresponding Raman spectra. Essentially, the method described here was based upon the fact that the Rutile and Anatase crystal phases have distinctive phonon features, and therefore, the composition of the TiO2 mixtures can be readily assessed from their Raman spectra. The experimental results clearly demonstrate the suitability of Raman spectroscopy in estimating the concentration of Rutile or Anatase in TiO2 and is expected to influence the study of TiO2-related thin films, interfaces, systems with reduced dimensions, and devices like photocatalytic and solar cells.

  4. Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact

    NASA Astrophysics Data System (ADS)

    Chinnamuthu, P.; Dhar, J. C.; Mondal, A.; Bhattacharyya, A.; Singh, N. K.

    2012-04-01

    The glancing angle deposition technique has been employed to synthesize TiO2 nanowire (NW) arrays which have been characterized by x-ray diffraction, field emission-scanning electron microscopy and high resolution transmission electron microscopy. Optical absorption measurements show the absorption edge at 3.42 eV and 3.48 eV for TiO2 thin film (TF) and NW, respectively. The blue shift in absorption band is attributed to quantum confinement in NW structures. Photoluminescence measurement revealed oxygen-defect-related emission at 425 nm (˜2.9 eV). Ag/TiO2 (NW) and Ag/TiO2 (TF) contacts exhibit Schottky behaviour, and a higher turn-on voltage (˜6.5 V) was observed for NW devices than that of TF devices (˜5.25 V) under dark condition. In addition, TiO2-NW-based devices show twofold improvement in photodetection efficiency in the UV region, compared with TiO2-TF-based devices.

  5. Dose reduction of bone morphogenetic protein-2 for bone regeneration using a delivery system based on lyophilization with trehalose.

    PubMed

    Zhang, Xiaochen; Yu, Quan; Wang, Yan-An; Zhao, Jun

    2018-01-01

    To induce sufficient new bone formation, high doses of bone morphogenetic protein-2 (BMP-2) are applied in regenerative medicine that often induce serious side effects. Therefore, improved treatment strategies are required. Here, we investigate whether the delivery of BMP-2 lyophilized in the presence of trehalose reduced the dose of BMP-2 required for bone regeneration. A new growth factor delivery system was fabricated using BMP-2-loaded TiO 2 nanotubes by lyophilization with trehalose (TiO 2 -Lyo-Tre-BMP-2). We measured BMP-2 release characteristics, bioactivity, and stability, and determined the effects on the osteogenic differentiation of bone marrow stromal cells in vitro. Additionally, we evaluated the ability of this formulation to regenerate new bone around implants in rat femur defects by micro-computed tomography (micro-CT), sequential fluorescent labelling, and histological analysis. Compared with absorbed BMP-2-loaded TiO 2 nanotubes (TiO 2 -BMP-2), TiO 2 -Lyo-Tre-BMP-2 exhibited sustained release, consistent bioactivity, and higher stability of BMP-2, and resulted in greater osteogenic differentiation of BMSCs. Eight weeks post-operation, TiO 2 -Lyo-Tre-BMP-2 nanotubes, with various dosages of BMP-2, regenerated larger amounts of new bone than TiO 2 -BMP-2 nanotubes. Our findings indicate that delivery of BMP-2 lyophilized with trehalose may be a promising method to reduce the dose of BMP-2 and avoid the associated side effects.

  6. Effect of Doping on beta-Tricalcium Phosphate Bioresorbable Bulk Material and Thin Film Coatings

    NASA Astrophysics Data System (ADS)

    Abdalla, Suhaila

    Magnesium has emerged as a revolutionary biodegradable metal for use as an orthopedic material, it has several advantages over the current metallic materials in use, including eliminating the effects of stress shielding, improving biocompatibility and inhibiting degradation rates, thus removing the requirement of a second surgery for implant removal. Due to the rapid degradation of magnesium, it is necessary to control the corrosion rates of the materials to match the rates of bone healing. This dissertation reports on the effect of doping on the properties of beta-tricalcium phosphate (beta-TCP). It also reports on its application as a thin film coating on magnesium alloys for implant applications. Adding various dopants to beta-TCP significantly influences critical properties. In this study, discs were fabricated in two compositions: (i) undoped beta-TCP, (ii) beta-TCP doped with 1.0 wt % MgO, 0.5 wt % ZnO, and 1.0 wt % TiO2. Films were fabricated from these compositions using the pulsed laser deposition (PLD) technique. These coatings were then characterized for corrosive, hardness, and cytocompatibility. The XRD patterns of the coating confirm the amorphous nature of the films. The presence of the metal oxides in beta-TCP improved ceramic densification. The application of these doped coatings was also found to increase the hardness by 88 %, the modulus of elasticity by 66 %, and improve corrosion resistance of the magnesium alloy substrate; with a 2.4 % improvement in Ecorr and 95 % decrease in icorr. Cell viability was studied using an osteoblast precursor cell line MC3T3-E1 to assure that the biocompatibility of these ceramics was not altered due to the dopants. Long-term biodegradation studies were conducted by measuring weight change and surface microstructure as a function of time in simulated body fluid. The results suggest that these coatings could be used for bioresorbable implants with improved corrosion resistance and increased hardness.

  7. Estimated solar wind-implanted helium-3 distribution on the Moon

    USGS Publications Warehouse

    Johnson, J. R.; Swindle, T.D.; Lucey, P.G.

    1999-01-01

    Among the solar wind-implanted volatiles present in the lunar regolith, 3 He is possibly the most valuable resource because of its potential as a fusion fuel. The abundance of 3 He in the lunar regolith at a given location depends on surface maturity, the amount of solar wind fluence, and titanium content, because ilmenite (FeTiO3) retains helium much better than other major lunar minerals. Surface maturity and TiO2 maps from Clementine multispectral data sets are combined here with a solar wind fluence model to produce a 3He abundance map of the Moon. Comparison of the predicted 3He values to landing site observations shows good correlation. The highest 3He abundances occur in the farside maria (due to greater solar wind fluence received) and in higher TiO2 nearside mare regions.

  8. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    PubMed

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  9. A pressure tuned stop-flow atomic layer deposition process for MoS2 on high porous nanostructure and fabrication of TiO2/MoS2 core/shell inverse opal structure

    NASA Astrophysics Data System (ADS)

    Li, Xianglin; Puttaswamy, Manjunath; Wang, Zhiwei; Kei Tan, Chiew; Grimsdale, Andrew C.; Kherani, Nazir P.; Tok, Alfred Iing Yoong

    2017-11-01

    MoS2 thin films are obtained by atomic layer deposition (ALD) in the temperature range of 120-150 °C using Mo(CO)6 and dimethyl disulfide (DMDS) as precursors. A pressure tuned stop-flow ALD process facilitates the precursor adsorption and enables the deposition of MoS2 on high porous three dimensional (3D) nanostructures. As a demonstration, a TiO2/MoS2 core/shell inverse opal (TiO2/MoS2-IO) structure has been fabricated through ALD of TiO2 and MoS2 on a self-assembled multilayer polystyrene (PS) structure template. Due to the self-limiting surface reaction mechanism of ALD and the utilization of pressure tuned stop-flow ALD processes, the as fabricated TiO2/MoS2-IO structure has a high uniformity, reflected by FESEM and FIB-SEM characterization. A crystallized TiO2/MoS2-IO structure can be obtained through a post annealing process. As a 3D photonic crystal, the TiO2/MoS2-IO exhibits obvious stopband reflecting peaks, which can be adjusted through changing the opal diameters as well as the thickness of MoS2 layer.

  10. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold.

    PubMed

    Han, Yong; Zhou, Jianhong; Zhang, Lan; Xu, Kewei

    2011-07-08

    We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2+, Sr2+ and PO4(3-) ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2+, Sr2+ and PO4(3-) ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.

  11. A multi-scaled hybrid orthopedic implant: bone ECM-shaped Sr-HA nanofibers on the microporous walls of a macroporous titanium scaffold

    NASA Astrophysics Data System (ADS)

    Han, Yong; Zhou, Jianhong; Zhang, Lan; Xu, Kewei

    2011-07-01

    We report here, for the first time, a novel multi-scaled hybrid orthopedic implant material consisting of a macroporous Ti scaffold, whose macropores' walls have a microporous titania layer which is fully covered with nanofibers of Sr-doped hydroxyapatite (Sr-HA). The microporous titania layer is formed on and within the Ti scaffold by micro-arc oxidation, which firmly binds to the Ti substrate and contains Ca2 + , Sr2 + and PO43 - ions. It is then hydrothermally treated to form Sr-HA nanofibers. During the hydrothermal treatment, Sr-HA nanoprisms nucleate from Ca0.5Sr0.5TiO3 pre-formed on the TiO2 and grow in length to nanofibers at the expense of Ca2 + , Sr2 + and PO43 - ions that migrate from the TiO2. These Sr-HA nanofibers construct a network structure similar to the hierarchical organization of bone extracellular matrix (ECM), and the resulting nanofibrous surface displays a firm adhesion to substrate, superhydrophilicity and apatite-inducing ability. The induced apatite prefers to nucleate on the basal-faceted surfaces of Sr-HA nanofibers. The nanofiber-walled scaffold has a great potential for load-bearing orthotopic use.

  12. Structural and surface property characterization of titanium dioxide nanotubes for orthopedic implants

    NASA Astrophysics Data System (ADS)

    Shokuhfar, Tolou

    This research focused on the to modification of the surface structure of titanium implants with nanostructured morphology of TiO2 nanotubes and studied the interaction of nanotubes with osteoblast cells to understand the parameters that affect the cell growth. The electrical, mechanical, and structural properties of TiO2 nanotubes were characterized to establish a better understanding on the properties of such nanoscale morphological structures. To achieve the objectives of this research work I transformed the titanium and its alloys, either in bulk sheet form, bulk machined form, or thin film deposited on another substrate into a surface of titania nanotubes using a low cost and environmentally friendly process. The process requires only a simple electrolyte, low cost electrode, and a DC power supply. With this simple approach of scalable nanofabrication, a typical result is nanotubes that are each approximately 100nm in diameter and have a wall thickness of about 20nm. By changing the fabrication parameters, independent nanotubes can be fabricated with open volume between them. Titanium in this form is termed onedimensional since electron transport is narrowly confined along the length of the nanotube. My Ph.D. accomplishments have successfully shown that osteoblast cells, the cells that are the precursors to bone, have a strong tendency to attach to the inside and outside of the titanium nanotubes onto which they are grown using their filopodia -- cell's foot used for locomotion -- anchored to titanium nanotubes. In fact it was shown that the cell prefers to find many anchoring sites. These sites are critical for cell locomotion during the first several weeks of maturity and upon calcification as a strongly anchored bone cell. In addition I have shown that such a surface has a greater cell density than a smooth titanium surface. My work also developed a process that uses a focused and controllably rastered ion beam as a nano-scalpel to cut away sections of the osteoblast cells to probe the attachment beneath the main cell body. Ultimately the more rapid growth of osteoblasts, coupled with a stronger cell-surface interface, could provide cost reduction, shorter rehabilitation, and fewer follow-on surgeries due to implant loosening.

  13. Effects of annealing on the optical, structural, and chemical properties of TiO2 and MgF2 thin films prepared by plasma ion-assisted deposition.

    PubMed

    Woo, Seouk-Hoon; Hwangbo, Chang Kwon

    2006-03-01

    Effects of thermal annealing at 400 degrees C on the optical, structural, and chemical properties of TiO2 single-layer, MgF2 single-layer, and TiO2/MgF2 narrow-bandpass filters deposited by conventional electron-beam evaporation (CE) and plasma ion-assisted deposition (PIAD) were investigated. In the case of TiO2 films, the results show that the annealing of both CE and PIAD TiO2 films increases the refractive index slightly and the extinction coefficient and surface roughness greatly. Annealing decreases the thickness of CE TiO2 films drastically, whereas it does not vary that of PIAD TiO2 films. For PIAD MgF2 films, annealing increases the refractive index and decreases the extinction coefficient drastically. An x-ray photoelectron spectroscopy analysis suggests that an increase in the refractive index and a decrease in the extinction coefficient for PIAD MgF2 films after annealing may be related to the enhanced concentration of MgO in the annealed PIAD MgF2 films and the changes in the chemical bonding states of Mg 2p, F 1s, and O is. It is found that (TiO2/MgF2) multilayer filters, consisting of PIAD TiO2 and CE MgF2 films, are as deposited without microcracks and are also thermally stable after annealing.

  14. Ambiguous Role of Growth-Induced Defects on the Semiconductor-to-Metal Characteristics in Epitaxial VO2/TiO2 Thin Films.

    PubMed

    Mihailescu, Cristian N; Symeou, Elli; Svoukis, Efthymios; Negrea, Raluca F; Ghica, Corneliu; Teodorescu, Valentin; Tanase, Liviu C; Negrila, Catalin; Giapintzakis, John

    2018-04-25

    Controlling the semiconductor-to-metal transition temperature in epitaxial VO 2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO 2 epitaxial thin films grown on TiO 2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V 4+ -V 4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO 2 /TiO 2 multilayer structures.

  15. Preparation and Characterization of Ni-Doped TiO2 Materials for Photocurrent and Photocatalytic Applications

    PubMed Central

    Ganesh, Ibram; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.; Padmanabham, G.; Sundararajan, G.

    2012-01-01

    Different amounts of Ni-doped TiO2 (Ni = 0.1 to 10%) powders and thin films were prepared by following a conventional coprecipitation and sol-gel dip coating techniques, respectively, at 400 to 800°C, and were thoroughly characterized by means of XRD, FT-IR, FT-Raman, DRS, UV-visible, BET surface area, zeta potential, flat band potential, and photocurrent measurement techniques. Photocatalytic abilities of Ni-doped TiO2 powders were evaluated by means of methylene blue (MB) degradation reaction under simulated solar light. Characterization results suggest that as a dopant, Ni stabilizes TiO2 in the form of anatase phase, reduces its bandgap energy, and adjusts its flat band potentials such that this material can be employed for photoelectrochemical (PEC) oxidation of water reaction. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of Ni in TiO2. The kinetic studies revealed that the MB degradation reaction follows the Langmuir-Hinshelwood first-order reaction relationship. PMID:22619580

  16. Room-Temperature Processing of TiOx Electron Transporting Layer for Perovskite Solar Cells.

    PubMed

    Deng, Xiaoyu; Wilkes, George C; Chen, Alexander Z; Prasad, Narasimha S; Gupta, Mool C; Choi, Joshua J

    2017-07-20

    In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO 2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiO x layer that performs as well as the high temperature TiO 2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiO x is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO 2 . Flexible perovskite solar cells that employ a room-temperature TiO x layer with a power conversion efficiency of 14.3% are demonstrated.

  17. Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis.

    PubMed

    Pecnik, Christina Martina; Courty, Diana; Muff, Daniel; Spolenak, Ralph

    2015-07-01

    Improving the esthetics of Ti-based dental implants is the last challenge remaining in the optimization process. The optical issues were recently solved by the application of highly and selectively reflective coatings on Ti implants. This work focuses on the mechanical durability of these esthetic ceramic based coating systems (with and without adhesion layers). The coating systems (Ti-ZrO2, Ti-Al-ZrO2, Ti-Ti-Al-ZrO2, Ti-Ag-ZrO2, Ti-Ti-Ag-ZrO2, Ti-Bragg and Ti-TiO2-Bragg) were subjected to nanoindentation experiments and examined using scanning electron microscopy and focused ion beam cross sectional analysis. Three coating systems contained adhesion layers (10nm of Ti or 60nm of TiO2 layers). The fracture toughness of selected samples was assessed applying two different models from literature, a classical for bulk materials and an energy-based model, which was further developed and adjusted. The ZrO2 based coating systems (total film thickness<200nm) followed a circumferential cracking behavior in contrast to Bragg coated samples (total film thickness around 1.5μm), which showed radial cracking emanating from the indent corners. For Ti-ZrO2 samples, a fracture toughness between 2.70 and 3.70MPam(1/2) was calculated using an energy-based model. The classical model was applied to Bragg coated samples and their fracture toughness ranged between 0.70 and 0.80MPam(1/2). Furthermore, coating systems containing an additional layer (Ti-Ti-Al-ZrO2, Ti-Ti-Ag-ZrO2 and Ti-TiO2-Bragg) showed an improved adhesion between the substrate and the coating. The addition of a Ti or TiO2 layer improved the adhesion between substrate and coating. The validity of the models for the assessment of the fracture toughness depended on the layer structure and fracture profile of the samples investigated here (classical model for thick coatings and energy-based model for thin coatings). Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. SiO2/TiO2/Ag multilayered microspheres: Preparation, characterization, and enhanced infrared radiation property

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoyun; Cai, Shuguang; Zheng, Chan; Xiao, Xueqing; Hua, Nengbin; Huang, Yanyi

    2015-08-01

    SiO2/TiO2/Ag core-shell multilayered microspheres were successfully synthesized by the combination of anatase of TiO2 modification on the surfaces of SiO2 spheres and subsequent Ag nanoparticles deposition and Ag shell growth with face-centered cubic (fcc) Ag. The composites were characterized by TEM, FT-IR, UV-vis, Raman spectroscopy and XRD, respectively. The infrared emissivity values during 8-14 μm wavelengths of the composites were measured. The results revealed that TiO2 thin layers with the thickness of ∼10 nm were coated onto the SiO2 spheres of ∼220 nm in diameter. The thickness of the TiO2 layers was controlled by varying the amount of TBOT precursor. Homogeneous Ag nanoparticles of ∼20 nm in size were successfully deposited by ultrasound on the surfaces of SiO2/TiO2 composites, followed by complete covering of Ag shell. The infrared emissivity value of the SiO2/TiO2 composites was decreased than that of pure SiO2. Moreover, the introduction of the Ag brought the remarkably lower infrared emissivity value of the SiO2/TiO2/Ag multilayered microspheres with the lowest value down to 0.424. Strong chemical effects in the interface of SiO2/TiO2 core-shell composites and high reflection performance of the metal Ag are two decisive factors for the improved infrared radiation performance of the SiO2/TiO2/Ag multilayered microspheres.

  19. Effect of growth time on the structure, morphology and optical properties of hydrothermally synthesized TiO2 nanorod thin films

    NASA Astrophysics Data System (ADS)

    Mohapatra, A. K.; Nayak, J.

    2018-05-01

    Titanium dioxide (TiO2) nanorod thin films were deposited on fluorine doped tin oxide coated glass substrates by a single step rapid hydrothermal process. The concentration of the precursor, the temperature of the reaction mixture were optimized in order to enhance the rate of deposition. Unlike the previously reported hydrothermal treatment for 24 - 48 h, the deposition of well aligned titanium dioxide nanorods was achieved in a short time such as 3 - 8 h. The crystal structure of the films were investigated by X-rays diffraction. The morphology of the nanorod films were studied with scanning electron microscopy. The optical properties were studied by photoluminescence spectroscopy.

  20. Structure and optical properties of TiO2 thin films deposited by ALD method

    NASA Astrophysics Data System (ADS)

    Szindler, Marek; Szindler, Magdalena M.; Boryło, Paulina; Jung, Tymoteusz

    2017-12-01

    This paper presents the results of study on titanium dioxide thin films prepared by atomic layer deposition method on a silicon substrate. The changes of surface morphology have been observed in topographic images performed with the atomic force microscope (AFM) and scanning electron microscope (SEM). Obtained roughness parameters have been calculated with XEI Park Systems software. Qualitative studies of chemical composition were also performed using the energy dispersive spectrometer (EDS). The structure of titanium dioxide was investigated by X-ray crystallography. A variety of crystalline TiO2 was also confirmed by using the Raman spectrometer. The optical reflection spectra have been measured with UV-Vis spectrophotometry.

  1. Development of mirrors for precision laser gyros

    NASA Astrophysics Data System (ADS)

    Schmitt, Dirk-Roger

    1987-11-01

    Substrate polishing and interference-layer deposition techniques for the preparation of laser-gyro mirrors to operate at laser wavelength 633 nm and incidence angle 30 deg are investigated experimentally. The importance of high reflectivity and low backscatter for accurate laser-gyro angular-velocity measurement is explained, and the methods used to measure these parameters are outlined. Results for uncoated quartz glass, Zerodur, and Si monocrystal; thin Ag layers; alternate layers of SiO2 and TiO2, and Ag with a thin layer of SiO2 are presented in graphs and micrographs and characterized in detail. It is predicted that further improvements in polishing, the use of ion-beam deposition techniques, and perhaps the replacement of TiO2 with Ta2O5 will give mirrors with lower backscatter values.

  2. Dual functional porous anti-reflective coatings with a photocatalytic effect based on a single layer system

    NASA Astrophysics Data System (ADS)

    Jilavi, M. H.; Mousavi, S. H.; Müller, T. S.; de Oliveira, P. W.

    2018-05-01

    Anti-reflection and photocatalytic properties are desirable for improving the optical properties of electronic devices. We describe a method of fabrication a single-layer, anti-reflective (AR) thin film with an additional photocatalytic property. The layer is deposited on glass substrates by means of a low-cost dip-coating method using a SiO2-TiO2 solution. A comparative study was undertaken to investigate the effects of TiO2 concentrations on the photocatalytic properties of the film and to determine the optimal balance between transmittance and photocatalysis. The average transmittance increases from T = 90.51% to T = 95.46 ± 0.07% for the wavelengths between 380 and 1200 nm. The structural characterization indicated the formation of thin, porous SiO2-TiO2 films with a roughness of less than 7.5 nm. The quality of the samples was evaluated by a complete test program of the mechanical, chemical and accelerated weathering stability. This results open up new possibilities for cost-effective AR coatings for the glass and solar cell industries.

  3. A blue optical filter for narrow-band imaging in endoscopic capsules

    NASA Astrophysics Data System (ADS)

    Silva, M. F.; Ghaderi, M.; Goncalves, L. M.; de Graaf, G.; Wolffenbuttel, R. F.; Correia, J. H.

    2014-05-01

    This paper presents the design, simulation, fabrication, and characterization of a thin-film Fabry-Perot resonator composed of titanium dioxide (TiO2) and silicon dioxide (SiO2) thin-films. The optical filter is developed to be integrated with a light emitting diode (LED) for enabling narrow-band imaging (NBI) in endoscopy. The NBI is a high resolution imaging technique that uses spectrally centered blue light (415 nm) and green light (540 nm) to illuminate the target tissue. The light at 415 nm enhances the imaging of superficial veins due to their hemoglobin absorption, while the light at 540 nm penetrates deeper into the mucosa, thus enhances the sub-epithelial vessels imaging. Typically the endoscopes and endoscopic capsules use white light for acquiring images of the gastrointestinal (GI) tract. However, implementing the NBI technique in endoscopic capsules enhances their capabilities for the clinical applications. A commercially available blue LED with a maximum peak intensity at 404 nm and Full Width Half Maximum (FWHM) of 20 nm is integrated with a narrow band blue filter as the NBI light source. The thin film simulations show a maximum spectral transmittance of 36 %, that is centered at 415 nm with FWHM of 13 nm for combined the blue LED and a Fabry Perot resonator system. A custom made deposition scheme was developed for the fabrication of the blue optical filter by RF sputtering. RF powered reactive sputtering at 200 W with the gas flows of argon and oxygen that are controlled for a 5:1 ratio gives the optimum optical conditions for TiO2 thin films. For SiO2 thin films, a non-reactive RF sputtering at 150 W with argon gas flow at 15 sccm results in the best optical performance. The TiO2 and SiO2 thin films were fully characterized by an ellipsometer in the wavelength range between 250 nm to 1600 nm. Finally, the optical performance of the blue optical filter is measured and presented.

  4. TiO2 fotokatalyse in de gasfase van morfologisch ontwerp tot plasmoneffecten

    NASA Astrophysics Data System (ADS)

    Verbruggen, Sammy

    In this PhD TiO2 gas phase photocatalysis is investigated in all its facets. Work has been done on the level of the reactor as well as the catalyst and structural as well as electronic improvements have been proposed. Apart from actual experiments, also theoretical models and a techno-economic assessment have been carried out. The first main achievement is the development of a cost and material-efficient immobilization method and testing procedure. The design, based on glass bead supports packed around a lamp in a cylindrical glass reactor tube, offers the advantages of good immobilization, efficient light utilization, intimate contact with gaseous pollutants and a catalyst weight gain by a factor of 25 compared to self-supporting pellets. The reactor is used for performing a cost effectiveness analysis on six different commercial photocatalytic materials. The second achievement is the fundamental insight that is gathered in the driving factors for gas phase photocatalytic reactions. Structural properties such as large surface area and accessible pores seem to dominate over electronic properties. This knowledge is exploited in the development of well-immobilized, spacious T1O2 thin films. These films are prepared by depositing a thin, conformal TiO2 layer onto sacrificial carbonaceous templates by means of atomic layer deposition. After calcination, the sacrificial template is removed, TiO2 is crystallized into the anatase phase and the as-deposited continuous TiO2 layer has transformed into an interconnected network of nanoparticles. This way open thin films are prepared with surface area enhancement factors of up to 260 with regard to a dense, flat TiO 2 film. Thus obtained films exhibit superior photocatalytic activity compared to a commercial reference film. The final achievement is the extension of TiO2 photoactivity toward the visible light region of the spectrum. This is done by exploiting surface plasmon resonance effects of gold-silver alloy nanoparticles. Surface plasmon resonance can be regarded as a collective oscillation of free electrons in a metal. This way incident (visible) light energy can be 'captured' in the resonance and subsequently transferred to T1O2. First, a theoretical model is established that enables to predict the plasmon resonance wavelength of such alloy nanoparticles, based on the combined effect of particle size and alloy composition. It is shown that the feature of alloying presents high wavelength tunability of the visible light response. Next, alloy nanoparticles are deposited on TiO2. Thus obtained plasmonic photocatalysts are tested towards their self-cleaning performance in the degradation of stearic acid located at the catalyst-air interface. The highest quantum efficiency is obtained when the resonance wavelength of the plasmonic catalyst exactly matches that of the incident light. This is demonstrated for the case of Au 0.3Ag0.7, nanoparticles on TiO2 under 490 nm illumination, provided by LEDs.

  5. SaOS-2 cell response to macro-porous boron-incorporated TiO2 coating prepared by micro-arc oxidation on titanium.

    PubMed

    Huang, Qianli; Elkhooly, Tarek A; Liu, Xujie; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO2 coating (B-TiO2 coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO2 coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO2 coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO2 coating. The spreading of SaOS-2 cells on B-TiO2 coating was faster than that on TiO2 coating. The proliferation rate of SaOS-2 cells cultured on B-TiO2 decreased after 5days of culture compared to that on TiO2 coating. SaOS-2 cells cultured on B-TiO2 coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO2 coating. The present findings suggest that B-TiO2 coating is a promising candidate surface for orthopedic implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Thermophysical properties study of micro/nanoscale materials

    NASA Astrophysics Data System (ADS)

    Feng, Xuhui

    Thermal transport in low-dimensional structure has attracted tremendous attentions because micro/nanoscale materials play crucial roles in advancing micro/nanoelectronics industry. The thermal properties are essential for understanding of the energy conversion and thermal management. To better investigate micro/nanoscale materials and characterize the thermal transport, pulse laser-assisted thermal relaxation 2 (PLTR2) and transient electrothermal (TET) are both employed to determine thermal property of various forms of materials, including thin films and nanowires. As conducting polymer, Poly(3-hexylthiophene) (P3HT) thin film is studied to understand its thermal properties variation with P3HT weight percentage. 4 P3HT solutions of different weight percentages are compounded to fabricate thin films using spin-coating technique. Experimental results indicate that weight percentage exhibits impact on thermophysical properties. When percentage changes from 2% to 7%, thermal conductivity varies from 1.29 to 1.67 W/m·K and thermal diffusivity decreases from 10-6 to 5×10-7 m2/s. Moreover, PLTR2 technique is applied to characterize the three-dimensional anisotropic thermal properties in spin-coated P3HT thin films. Raman spectra verify that the thin films embrace partially orientated P3HT molecular chains, leading to anisotropic thermal transport. Among all three directions, lowest thermal property is observed along out-of-plane direction. For in-plane characterization, anisotropic ratio is around 2 to 3, indicating that the orientation of the molecular chains has strong impact on the thermal transport along different directions. Titanium dioxide (TiO2) thin film is synthesized by electrospinning features porous structure composed by TiO2 nanowires with random orientations. The porous structure caused significant degradation of thermal properties. Effective thermal diffusivity, conductivity, and density of the films are 1.35˜3.52 × 10-6 m2/s, 0.06˜0.36 W/m·K, and 25.8˜373 kg/m3, respectively, much lower than bulk values. Then single anatase TiO2 nanowire is synthesized to understand intrinsic thermophysical properties and secondary porosity. Thermal diffusivity of nanowires varies from 1.76 to 5.08 × 10-6 m 2/s, while thermal conductivity alters from 1.38 to 6.01 W/m·K. SEM image of TiO2 nanowire shows secondary porous surface structure. In addition, nonlinear effects are also observed with experimental data. Two methods, generalized function analysis and direct capacitance derivation, are developed to suppress nonlinear effects. Effective thermal diffusivities from both modified analysis agree well with each other.

  7. Characterization of poly(Sodium Styrene Sulfonate) Thin Films Grafted from Functionalized Titanium Surfaces

    PubMed Central

    Zorn, Gilad; Baio, Joe E.; Weidner, Tobias; Migonney, Veronique; Castner, David G.

    2011-01-01

    Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multi-technique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9±0.2nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO2 layer that was at least 10nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules were successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings. PMID:21892821

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.

    Here, we investigate the growth phase diagram of pseudobrookite Fe 2TiO 5 epitaxial thin films on LaAlO 3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20–80 Ω cm, which are significantly lower than α-Fe 2O 3, making Fe 2TiO 5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe 2TiO 5 in oxide heterostructures for photocatalytic and photoelectrochemicalmore » applications.« less

  9. A thin porous substrate using bonded particles for reverse-emulsion electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Ahumada, M.; Bryning, M.; Cromer, R.; Hartono, M.; Lee, S. J.

    2012-03-01

    A thin porous layer of bonded ceramic microparticles has been developed to provide structural integrity and a stationary matrix for use in reflective-mode reverse-emulsion electrophoretic displays (REED), based on self-assembled nanodroplets dispersed in a non-polar liquid. REED ink uses low-cost materials and manufacturing processes, yet is capable of video speed and low voltage operation below 10 V. Porous layers of titanium dioxide (TiO2) are prepared as thin as 10 microns by fluidizing the particles in a water-based slurry with polymeric adhesive. The slurry is distributed between glass shear plates, one of which serves as the substrate for the working device. Particle morphology is examined using scanning electron microscopy and layer uniformity is characterized by opacity measurements using a throughbeam fiber optic sensor. Performance of the bonded matrix with REED ink is compared to baseline performance of a paste mixture, comprised of the same ink and unbonded TiO2 particles. Results show that at 25% volume fraction, the bonded substrate improves image bistability and is better able to maintain both light and dark intensity after extensive switching. The same bonded substrate also improves image bistability when power is disconnected, even compared to a paste with 40% volume fraction of TiO2.

  10. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  11. Photocatalytic degradation of polystyrene plastic under fluorescent light.

    PubMed

    Shang, Jing; Chai, Ming; Zhu, Yongfa

    2003-10-01

    Plastic is used widely all over the world, due to the fact that it is low cost, is easily processable, and has lightweight properties. However, the hazard of discarding waste plastic, so-called "white pollution", is becoming more and more severe. In this paper, solid-phase photocatalytic degradation of polystyrene (PS) plastic, one of the most common commercial plastics, over copper phthalocyanine (CuPc) sensitized TiO2 photocatalyst (TiO2/CuPc) has been investigated under fluorescent light irradiation in the air. UV-vis spectra show that TiO2/CuPc extends its photoresponse range to visible light, contrasting to only UV light absorption of pure TiO2. The PS photodegradation experiments exhibit that higher PS weight loss rate, lower PS average molecular weight, less amount of volatile organic compounds, and more CO2 can be obtained in the system of PS-(TiO2/CuPc), in comparison with the PS-TiO2 system. Therefore, PS photodegradation over TiO2 CuPc composite is more complete and efficient than over pure TiO2, suggesting the potential application of dye-sensitized TiO2 catalyst in the thorough photodegradation of PS plastic under fluorescent light. During the photodegradation of PS plastic, the reactive oxygen species generated on TiO2 or TiO2/CuPc particle surfaces play important roles in chain scission. The present study demonstrates that the combination of polymer plastic with dye-sensitized TiO2 catalyst in the form of thin film is a practical and useful way to photodegrade plastic contaminants in the sunlight.

  12. Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Chao; Li, Pengwei; Zhang, Yiqiang; Gu, Hao; Cai, Qingbin; Liu, Xiaotao; Wang, Jiefei; Wen, Hua; Shao, Guosheng

    2017-12-01

    TiO2 is extensively used as electron-transporting material on perovskite solar cells (PSCs). However, traditional TiO2 processing method needs high annealing temperature (>450 °C) and pure TiO2 suffers from low electrical mobility and poor conductivity. In this study, a general one-pot solution-processed method is devised to grow uniform crystallized metal-doped TiO2 thin film as large as 15 × 15 cm2. The doping process can be controlled effectively via a series of doping precursors from niobium (V), tin (IV), tantalum (V) to tungsten (VI) chloride. As far as we know, this is so far the lowest processing temperature for metal-doped TiO2 compact layers, as low as 70 °C. The overall performance of PSCs employing the metal-doped TiO2 layers is significantly improved in term of hysteresis effect, short circuit current, open-circuit voltage, fill factor, power conversion efficiency, and device stability. With the insertion of metal ions into TiO2 lattice, the corresponding CH3NH3PbI3 PSC leads to a ∼25% improved PCE of over 16% under irradiance of 100 mW cm-2 AM1.5G sunlight, compared with control device. The results indicate that this mild solution-processed metal-doped TiO2 is an effective industry-scale way for fabricating hysteresis-less and high-performance PSCs.

  13. Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye.

    PubMed

    Stambolova, Irina; Shipochka, Capital Em Cyrillicaria; Blaskov, Vladimir; Loukanov, Alexandrе; Vassilev, Sasho

    2012-12-05

    Spray pyrolysis procedure for preparation of nanostructured TiO(2) films with higher photocatalytic effectiveness and longer exploitation life is presented in this study. Thin films of active nanocrystalline TiO(2) were obtained from titanium isopropoxide, stabilized with acetyl acetone and characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The activity of sprayed nanostructured TiO(2) is tested for photocatalytic degradation of Reactive Black 5 dye with concentrations up to 80 ppm. Interesting result of the work is the reduction of toxicity after photocatalytic treatment of RB5 with TiO(2), which was confirmed by the lower percentage of mortality of Artemia salina. It was proved that the film thickness, conditions of post deposition treatment and the type of the substrate affected significantly the photocatalytic reaction. Taking into account that the parameters are interdependent, it is necessary to optimize the preparation conditions in order to synthesize photocatalytic active films. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Versatility of Evaporation-Induced Self-Assembly (EISA) Method for Preparation of Mesoporous TiO2 for Energy and Environmental Applications

    PubMed Central

    Mahoney, Luther; Koodali, Ranjit T.

    2014-01-01

    Evaporation-Induced Self-Assembly (EISA) method for the preparation of mesoporous titanium dioxide materials is reviewed. The versatility of EISA method for the rapid and facile synthesis of TiO2 thin films and powders is highlighted. Non-ionic surfactants such as Pluronic P123, F127 and cationic surfactants such as cetyltrimethylammonium bromide have been extensively employed for the preparation of mesoporous TiO2. In particular, EISA method allows for fabrication of highly uniform, robust, crack-free films with controllable thickness. Eleven characterization techniques for elucidating the structure of the EISA prepared mesoporous TiO2 are discussed in this paper. These many characterization methods provide a holistic picture of the structure of mesoporous TiO2. Mesoporous titanium dioxide materials have been employed in several applications that include Dye Sensitized Solar Cells (DSSCs), photocatalytic degradation of organics and splitting of water, and batteries. PMID:28788590

  15. Formation of thin film like assembly of exfoliated C3N4 nanoflakes by solvent non-evaporative method using centrifuge

    NASA Astrophysics Data System (ADS)

    Tejasvi, Ravi; Basu, Suddhasatwa

    2017-12-01

    A simple method for depositing a thin film of nanomaterial on a substrate using centrifugation technique has been developed, whereby solvent evaporation is prevented and solvent reuse is possible. The centrifuge technique of deposition yields uniform, smooth thin film irrespective of substrate surface texture. The deposited TiO2/eC3N4 film studied, through field emission scanning electron microscope, atomic force microscope, and optical surface profilometer, shows variation in surface roughness on the basis of centrifugation speeds. Initially film coverage improves and surface roughness decreases with the increase in rpm of the centrifuge and the surface roughness slightly increases with further increase in rpm. The photoelectrochemical studies of TiO2/eC3N4 films suggest that the centrifuge technique forms better heterojunctions compared to that by spin coating technique leading to enhanced photoelectrochemical water splitting.

  16. He+ ion irradiation response of Fe–TiO2 multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderoglu, O.; Zhou, M. J.; Zhang, J.

    2013-04-01

    The accumulation of radiation-induced defect clusters and He bubble formation in He+ ion irradiated nanocrystalline TiO2 and Fe–TiO2 multilayer thin films were investigated using transmission electron microscopy (TEM). Prior to ion irradiation it was found that the crystallinity of TiO2 layers depends on the individual layer thickness: While all TiO2 layers are amorphous at 5 nm individual layer thickness, at 100 nm they are crystalline with a rutile polymorph. After He+ irradiation up to ~6 dpa at room temperature, amorphization of TiO2 layers was not observed in both nanocrystalline TiO2 single layers and Fe–TiO2 multilayers. The suppression of radiation-induced amorphizationmore » in TiO2 is interpreted in terms of a high density of defect sinks in these nano-composites in the form of Fe–TiO2 interphase boundaries and columnar grains within each layer with nano-scale intercolumnar porosity. In addition, a high concentration of He is believed to be trapped at these interfaces in the form of sub-nanometer-scale clusters retarding the formation of relatively larger He bubbles that can be resolved in TEM.« less

  17. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    NASA Astrophysics Data System (ADS)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  18. Modulation of Crystal Surface and Lattice by Doping: Achieving Ultrafast Metal-Ion Insertion in Anatase TiO2.

    PubMed

    Wang, Hsin-Yi; Chen, Han-Yi; Hsu, Ying-Ya; Stimming, Ulrich; Chen, Hao Ming; Liu, Bin

    2016-10-26

    We report that an ultrafast kinetics of reversible metal-ion insertion can be realized in anatase titanium dioxide (TiO 2 ). Niobium ions (Nb 5+ ) were carefully chosen to dope and drive anatase TiO 2 into very thin nanosheets standing perpendicularly onto transparent conductive electrode (TCE) and simultaneously construct TiO 2 with an ion-conducting surface together with expanded ion diffusion channels, which enabled ultrafast metal ions to diffuse across the electrolyte/solid interface and into the bulk of TiO 2 . To demonstrate the superior metal-ion insertion rate, the electrochromic features induced by ion intercalation were examined, which exhibited the best color switching speed of 4.82 s for coloration and 0.91 s for bleaching among all reported nanosized TiO 2 devices. When performed as the anode for the secondary battery, the modified TiO 2 was capable to deliver a highly reversible capacity of 61.2 mAh/g at an ultrahigh specific current rate of 60 C (10.2 A/g). This fast metal-ion insertion behavior was systematically investigated by the well-controlled electrochemical approaches, which quantitatively revealed both the enhanced surface kinetics and bulk ion diffusion rate. Our study could provide a facile methodology to modulate the ion diffusion kinetics for metal oxides.

  19. Influence of Ta doping in resistive switching behavior of TiO2

    NASA Astrophysics Data System (ADS)

    Barman, Arabinda; Saini, Chetan P.; Deshmukh, Sujit; Dhar, Sankar; Kanjilal, Aloke

    An approach has been made to understand the resistive switching behavior in Ta-doped TiO2 films on Pt substrates. Prior to thin film deposition, Ta-doped TiO2 powder has been synthesized chemically using Ta and Ti precursor solutions. However, the Ta doping has seriously been affected by increasing Ta concentration above 1 at% due to the segregation of Ta2O5 phase. The Ta-doped TiO2 targets have been prepared for pulsed laser deposition of the films on Pt substrates using an excitation wavelength of 248 nm. The structural and chemical properties of the Ta-doped TiO2 films have been investigated in details with the help of XRD, SIMS, XAS and XPS. The stoichiometry of the Ta-doped TiO2 films with increasing depth has been verified initially by SIMS. The electrical study of the corresponding device structures further suggests that the optimized resistive switching effect can be accomplished up to a threshold Ta-doping of 1 at%. Nevertheless, a highly conducting behavior has been shown when the TiO2 films are doped with 2 at% Ta. These results will be discussed in details in the light of defect induced resistive switching phenomenon.

  20. Properties of TiO2 thin films and a study of the TiO2-GaAs interface

    NASA Technical Reports Server (NTRS)

    Chen, C. Y.; Littlejohn, M. A.

    1977-01-01

    Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C.

  1. Optical and electrical properties of sol-gel spin coated titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Sahoo, Anusuya; Jayakrishnan, A. R.; Kamakshi, K.; Silva, J. P. B.; Sekhar, K. C.; Gomes, M. J. M.

    2017-08-01

    In this work; TiO2 thin films were deposited on glass and stainless steel substrates by sol-gel spin coating method. The films deposited on glass were annealed at different temperatures (Ta) in the range of 200 to 500 0C and that are deposited on steel substrate were annealed at 800 0C. The optical properties of TiO2 thin films were studied by using UV-VIS spectroscopy and photoluminescence (PL) spectroscopy. The transmittance on the average was found to ≥ 80 % and is found to sensitive to Ta. The PL spectra exhibited the strong emission band associated with band- to- band transition around 390 nm and the two weak bands at 480 and 510 nm associated to the oxygen defects and surface defects respectively. The current-voltage (I-V) characteristics of the Al/TiO2/steel capacitors were studied and analysed with application of various current mechanisms. Analysis reveals that the conduction in Al/TiO2/steel capacitors is governed by Poole-Frenkel mechanism.

  2. Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Sarma, M. P.; Kalita, J. M.; Wary, G.

    2018-03-01

    A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.

  3. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate

    NASA Astrophysics Data System (ADS)

    Szkoda, Mariusz; Lisowska-Oleksiak, Anna; Grochowska, Katarzyna; Skowroński, Łukasz; Karczewski, Jakub; Siuzdak, Katarzyna

    2016-09-01

    In a significant amount of cases, the highly ordered TiO2 nanotube arrays grow through anodic oxidation of a titanium metal plate immersed in electrolyte containing fluoride ions. However, for some practical applications, e.g. solar cells or electrochromic windows, the semi-transparent TiO2 formed directly on the transparent, conductive substrate is very much desired. This work shows that high-quality Ti coating could be formed at room temperature using an industrial magnetron sputtering system within 50 min. Under optimized conditions, the anodization process was performed on 2 μm titanium films deposited onto the FTO (fluorine-tin-oxide) support. Depending on the electrolyte type, highly ordered tubular or porous titania layers were obtained. The fabricated samples, after their thermal annealing, were investigated using scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy in order to investigate their morphology, crystallinity and absorbance ability. The photocurrent response curves indicate that materials are resistant to the photocorrosion process and their activity is strongly connected to optical properties. The most transparent TiO2 films were fabricated when Ti was anodized in water electrolyte, whereas the highest photocurrent densities (12 μA cm-2) were registered for titania received after Ti anodization in ethylene glycol solution. The obtained results are of significant importance in the production of thin, semi-transparent titania nanostructures on a commercial scale.

  4. Thermal Vapor Deposition and Characterization of Polymer-Ceramic Nanoparticle Thin Films and Capacitors

    NASA Astrophysics Data System (ADS)

    Iwagoshi, Joel A.

    Research on alternative energies has become an area of increased interest due to economic and environmental concerns. Green energy sources, such as ocean, wind, and solar power, are subject to predictable and unpredictable generation intermittencies which cause instability in the electrical grid. This problem could be solved through the use of short term energy storage devices. Capacitors made from composite polymer:nanoparticle thin films have been shown to be an economically viable option. Through thermal vapor deposition, we fabricated dielectric thin films composed of the polymer polyvinylidine fluoride (PVDF) and the ceramic nanoparticle titanium dioxide (TiO2). Fully understanding the deposition process required an investigation of electrode and dielectric film deposition. Film composition can be controlled by the mass ratio of PVDF:TiO2 prior to deposition. An analysis of the relationship between the ratio of PVDF:TiO2 before and after deposition will improve our understanding of this novel deposition method. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy were used to analyze film atomic concentrations. The results indicate a broad distribution of deposited TiO2 concentrations with the highest deposited amount at an initial mass concentration of 17% TiO2. The nanoparticle dispersion throughout the film is analyzed through atomic force microscopy and energy dispersive x-ray spectroscopy. Images from these two techniques confirm uniform TiO2 dispersion with cluster size less than 300 nm. These results, combined with spectroscopic analysis, verify control over the deposition process. Capacitors were fabricated using gold parallel plates with PVDF:TiO 2 dielectrics. These capacitors were analyzed using the atomic force microscope and a capacohmeter. Atomic force microscope images confirm that our gold films are acceptably smooth. Preliminary capacohmeter measurements indicate capacitance values of 6 nF and break down voltages of 2.4 V. Our research on the deposition process will contribute to the understanding of PVDF/TiO2 composite thin films. These results will lead to further investigation of PVDF/TiO2 high density energy storage capacitors. These capacitors can potentially increase the efficiency of alternative energy sources already in use.

  5. Sol-gel derived antireflective structures for applications in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Karasiński, Paweł; Skolik, Marcin

    2016-12-01

    This work presents theoretical and experimental results of antireflective coatings (ARCs) obtained for applications in silicon solar cells. ARCs were derived from sol-gel process and dip-coated using silica (SiO2) and titania (TiO2). Theoretical results were obtained using 2×2 transfer matrix calculation method. Technological process of SiO2 and TiO2 thin film fabrication as well as measurement techniques are described in this paper. Strong correlation between theoretical and experimental data is demonstrated. It is shown, that weighted average reflection from a substrate can be reduced ten times with the use of SiO2/TiO2/Si double layer ARCs, when compared to a bare silica substrate.

  6. Synthesis and energy applications of mesoporous titania thin films

    NASA Astrophysics Data System (ADS)

    Islam, Syed Z.

    The optical and electronic properties of TiO2 thin films provide tremendous opportunities in several applications including photocatalysis, photovoltaics and photoconductors for energy production. Despite many attractive features of TiO2, critical challenges include the innate inability of TiO2 to absorb visible light and the fast recombination of photoexcited charge carriers. In this study, mesoporous TiO2 thin films are modified by doping using hydrogen and nitrogen, and sensitization using graphene quantum dot sensitization. For all of these modifiers, well-ordered mesoporous titania films were synthesized by surfactant templated sol-gel process. Two methods: hydrazine and plasma treatments have been developed for nitrogen and hydrogen doping in the mesoporous titania films for band gap reduction, visible light absorption and enhancement of photocatalytic activity. The hydrazine treatment in mesoporous titania thin films suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti3+ into the lattice of surfactant-templated TiO2 films and enhanced visible light photoactivity, but that the benefits are limited by gradual mesostructure deterioration. The plasma treated nitrogen doped mesoporous titania showed about 240 times higher photoactivity compared to undoped film in hydrogen production from photoelectrochemical water splitting under visible light illumination. Plasma treated hydrogen doped mesoporous titania thin films has also been developed for enhancement of visible light absorption. Hydrogen treatment has been shown to turn titania (normally bright white) black, indicating vastly improved visible light absorption. The cause of the color change and its effectiveness for photocatalysis remain open questions. For the first time, we showed that a significant amount of hydrogen is incorporated in hydrogen plasma treated mesoporous titania films by neutron reflectometry measurements. In addition to the intrinsic modification of titania by doping, graphene quantum dot sensitization in mesoporous titania film was also investigated for visible light photocatalysis. Graphene quantum dot sensitization and nitrogen doping of ordered mesoporous titania films showed synergistic effect in water splitting due to high surface area, band gap reduction, enhanced visible light absorption, and efficient charge separation and transport. This study suggests that plasma based doping and graphene quantum dot sensitization are promising strategies to reduce band gap and enhance visible light absorption of high surface area surfactant templated mesoporous titania films, leading to superior visible-light driven photoelectrochemical hydrogen production. The results demonstrate the importance of designing and manipulating the energy band alignment in composite nanomaterials for fundamentally improving visible light absorption, charge separation and transport, and thereby photoelectrochemical properties.

  7. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    NASA Astrophysics Data System (ADS)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-05-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  8. The Effect of Titanium Dioxide (TiO2) Nanoparticles on Hydroxyapatite (HA)/TiO2 Composite Coating Fabricated by Electrophoretic Deposition (EPD)

    NASA Astrophysics Data System (ADS)

    Amirnejad, M.; Afshar, A.; Salehi, S.

    2018-04-01

    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF), coating's dissolution rate in physiological solution and bond strength to the substrate. The results showed that the higher amount of TiO2 in the composite coating led to increase in bond strength of coating to stainless steel substrate from 3 MPa for HA coating to 5.5 MPa for HA-20 wt.% TiO2 composite coating. In addition, it caused to reduction of corrosion current density of samples in the SBF solution from 18.92 μA/cm2 for HA coating to 6.35 μA/cm2 for HA-20 wt.% TiO2 composite coating.

  9. Calcification capacity of porous pHEMA-TiO₂ composite hydrogels.

    PubMed

    Li, Chao; Zheng, Yu-Feng; Lou, Xia

    2009-11-01

    Many investigations have been attempted to promote calcification of synthetic polymers for applications as orthopaedic and dental implants. In this study, novel titanium dioxide (TiO(2)) reinforced porous poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels were synthesized. Calcification capacity of the composite polymers was examined using light microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy after incubation of the materials in a simulated body fluid up to 53 days. Mechanical strength, porosity and in vitro cytotoxicity were also investigated. Calcification capacity of porous pHEMA was significantly enhanced by the addition of TiO(2) particulates. Infiltration of calcium phosphate, up to 1000 mum, was observed. The diffusion capacity of calcium ions was affected by the porosity and the interconnectivity of pores in the hydrogel polymers which were influenced by the presence of TiO(2) and the monomer concentration. Cell viability tests indicated that porous hydrogels containing 7.5% TiO(2) were not toxic to 3T3 fibroblast cells. These results demonstrate that incorporating TiO(2) nanoparticulates can promote enhanced formation of calcium phosphate whilst maintaining the porosity and interconnectivity of the hydrogel polymers and would be very useful for the development of orthopaedic tissue engineering scaffolds.

  10. Synthesis of TiO₂-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition.

    PubMed

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-04-08

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m(2) g(-1)) than that of Co0.85Se nanofilms (55.17 m(2) g(-1)) and TiO2 nanoparticles (19.49 m(2) g(-1)). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.

  11. Enhancing of Osseointegration with Propolis-Loaded TiO2 Nanotubes in Rat Mandible for Dental Implants

    PubMed Central

    Somsanith, Nithideth; Jang, Young-Seok; Lee, Young-Hee; Yi, Ho-Keun; Kim, Kyoung-A; Bae, Tae-Sung; Lee, Min-Ho

    2018-01-01

    TiO2 nanotubes (TNT) formation is beneficial for improving bone cell–material interaction and drug delivery for Ti dental implants. Among the natural drugs to be installed in TNT, selected propolis has antibacterial and anti-inflammatory properties. It is a resinous natural product which is collected by the honeybees from the various types of plants with their salivary enzymes. This study concludes that TNT loaded with a propolis (PL-TNT-Ti) dental implant has the ability to improve osseointegration. The propolis particles were embedded within the TNT or adhered to the top. In a cytotoxicity test using osteoblast, PL-TNT-Ti group exhibited an increased cell proliferation and differentiation. A Sprague Dawley rat mandibular model was used to evaluate the osseointegration and bone bonding of TNT or PL-TNT-Ti. From the µ-CT and hematoxylin and eosin (HE) histological results after implantation at 1 and 4 weeks to rat mandibular, an increase in the extent of new bone formation and mineral density around the PL-TNT-Ti implant was confirmed. The Masson’s trichrome staining showed the expression of well-formed collagenous for bone formation on the PL-TNT-Ti. Immunohistochemistry staining indicate that bone morphogenetic proteins (BMP-2 and BMP-7) around the PL-TNT-Ti increased the expression of collagen fibers and of osteogenic differentiation whereas the expression of inflammatory cytokine such as interleukin-1 beta (IL-1ß) and tumor necrosis factor-alpha (TNF-α) is decreased. PMID:29301269

  12. Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Paik, Hanjong; Moyer, Jarrett A.; Spila, Timothy; Tashman, Joshua W.; Mundy, Julia A.; Freeman, Eugene; Shukla, Nikhil; Lapano, Jason M.; Engel-Herbert, Roman; Zander, Willi; Schubert, Jürgen; Muller, David A.; Datta, Suman; Schiffer, Peter; Schlom, Darrell G.

    2015-10-01

    We report the growth of (001)-oriented VO2 films as thin as 1.5 nm with abrupt and reproducible metal-insulator transitions (MIT) without a capping layer. Limitations to the growth of thinner films with sharp MITs are discussed, including the Volmer-Weber type growth mode due to the high energy of the (001) VO2 surface. Another key limitation is interdiffusion with the (001) TiO2 substrate, which we quantify using low angle annular dark field scanning transmission electron microscopy in conjunction with electron energy loss spectroscopy. We find that controlling island coalescence on the (001) surface and minimization of cation interdiffusion by using a low growth temperature followed by a brief anneal at higher temperature are crucial for realizing ultrathin VO2 films with abrupt MIT behavior.

  13. A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method

    PubMed Central

    Kim, Kwang-Su; Baek, Woon-Hyuk; Kim, Jung-Min; Yoon, Tae-Sik; Lee, Hyun Ho; Kang, Chi Jung; Kim, Yong-Sang

    2010-01-01

    Toluene gas was successfully measured at room temperature using a device microfabricated by a nanoimprinting method. A highly uniform nanoporous thin film was produced with a dense array of titania (TiO2) pores with a diameter of 70∼80 nm using this method. This thin film had a Pd/TiO2 nanoporous/SiO2/Si MIS layered structure with Pd-TiO2 as the catalytic sensing layer. The nanoimprinting method was useful in expanding the TiO2 surface area by about 30%, as confirmed using AFM and SEM imaging. The measured toluene concentrations ranged from 50 ppm to 200 ppm. The toluene was easily detected by changing the Pd/TiO2 interface work function, resulting in a change in the I–V characteristics. PMID:22315567

  14. Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: interest for titanium biomedical applications.

    PubMed

    Guillemot, F; Porté, M C; Labrugère, C; Baquey, Ch

    2002-11-01

    Because of the Ti(3+) defects responsibility for dissociative adsorption of water onto TiO(2) surfaces and due to the hydroxyls influence on the biological behavior of titanium, controlling the Ti(3+) surface defects density by means of low-temperature vacuum annealing is proposed to improve the bone/implant interactions. Experiments have been carried out on Ti-6Al-4V alloys exhibiting a porous surface generated primarily by chemical treatment. XPS investigations have shown that low-temperature vacuum annealing can create a controlled number of Ti(3+) defects (up to 21% Ti(3+)/Ti(4+) at 573 K). High Ti(3+) defect concentration is linked to surface porosity. Such surfaces, exhibiting high hydrophilicity and microporosity, would confer to titanium biomaterials a great ability to interact with surrounding proteins and cells and hence would favor the bone anchorage of as-treated implants.

  15. Ready fabrication of thin-film electrodes from building nanocrystals for micro-supercapacitors.

    PubMed

    Chen, Zheng; Weng, Ding; Wang, Xiaolei; Cheng, Yanhua; Wang, Ge; Lu, Yunfeng

    2012-04-18

    Thin-film pseudocapacitor electrodes with ultrafast lithium storage kinetics, high capacitance and excellent cycling stability were fabricated from monodispersed TiO(2) building nanocrystals, providing a novel approach towards next-generation micro-supercapacitor applications. This journal is © The Royal Society of Chemistry 2012

  16. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development.

    PubMed

    Rollerova, E; Tulinska, J; Liskova, A; Kuricova, M; Kovriznych, J; Mlynarcikova, A; Kiss, A; Scsukova, S

    2015-04-01

    Nanosized titanium dioxide (TiO2) particles belong to the most widely manufactured nanoparticles (NPs) on a global scale because of their photocatalytic properties and the related surface effects. TiO2 NPs are in the top five NPs used in consumer products. Ultrafine TiO2 is widely used in the number of applications, including white pigment in paint, ceramics, food additive, food packaging material, sunscreens, cosmetic creams, and, component of surgical implants. Data evidencing rapid distribution, slow or ineffective elimination, and potential long-time tissue accumulation are especially important for the human risk assessment of ultrafine TiO2 and represent new challenges to more responsibly investigate potential adverse effects by the action of TiO2 NPs considering their ubiquitous exposure in various doses. Transport of ultrafine TiO2 particles in systemic circulation and further transition through barriers, especially the placental and blood-brain ones, are well documented. Therefore, from the developmental point of view, there is a raising concern in the exposure to TiO2 NPs during critical windows, in the pregnancy or the lactation period, and the fact that human mothers, women and men in fertile age and last but not least children may be exposed to high cumulative doses. In this review, toxicokinetics and particularly toxicity of TiO2 NPs in relation to the developing processes, oriented mainly on the development of the central nervous system, are discussed Keywords: nanoparticles, nanotoxicity, nanomaterials, titanium dioxide, reproductive toxicity, developmental toxicity, blood brain barrier, placental barrier.

  17. Photosensitivity enhancement with TiO2 in semitransparent light-sensitive skins of nanocrystal monolayers.

    PubMed

    Akhavan, Shahab; Yeltik, Aydan; Demir, Hilmi Volkan

    2014-06-25

    We propose and demonstrate light-sensitive nanocrystal skins that exhibit broadband sensitivity enhancement based on electron transfer to a thin TiO2 film grown by atomic layer deposition. In these photosensors, which operate with no external bias, photogenerated electrons remain trapped inside the nanocrystals. These electrons generally recombine with the photogenerated holes that accumulate at the top interfacing contact, which leads to lower photovoltage buildup. Because favorable conduction band offset aids in transferring photoelectrons from CdTe nanocrystals to the TiO2 layer, which decreases the exciton recombination probability, TiO2 has been utilized as the electron-accepting material in these light-sensitive nanocrystal skins. A controlled interface thickness between the TiO2 layer and the monolayer of CdTe nanocrystals enables a photovoltage buildup enhancement in the proposed nanostructure platform. With TiO2 serving as the electron acceptor, we observed broadband sensitivity improvement across 350-475 nm, with an approximately 22% enhancement. Furthermore, time-resolved fluorescence measurements verified the electron transfer from the CdTe nanocrystals to the TiO2 layer in light-sensitive skins. These results could pave the way for engineering nanocrystal-based light-sensing platforms, such as smart transparent windows, light-sensitive walls, and large-area optical detection systems.

  18. A novel perovskite solar cell design using aligned TiO2 nano-bundles grown on a sputtered Ti layer and a benzothiadiazole-based, dopant-free hole-transporting material.

    PubMed

    Ameen, Sadia; Nazim, M; Akhtar, M Shaheer; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik

    2017-11-16

    This work highlights the utilization of a novel hole-transporting material (HTM) derived from benzothiadiazole: 4-(3,5-bis(trifluoromethyl)phenyl)-7-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo[c][1,2,5]thiadiazole (CF-BTz-ThR) and aligned TiO 2 nano-bundles (TiO 2 NBs) as the electron transporting layer (ETL) for perovskite solar cells (PSCs). The aligned TiO 2 NBs were grown on titanium (Ti)-coated FTO substrates using a facile hydrothermal method. The newly designed CF-BTz-ThR molecule with suitable highest occupied molecular orbital (HOMO) favored the effective hole injection from perovskite deposited aligned TiO 2 NBs thin film. The PSCs demonstrated a power conversion efficiency (PCE) of ∼15.4% with a short circuit current density (J sc ) of ∼22.42 mA cm -2 and an open circuit voltage (V oc ) of ∼1.02 V. The efficiency data show the importance of proper molecular engineering whilst highlighting the advantages of dopant-free HTMs in PSCs.

  19. Physics and applications of electrochromic devices

    NASA Astrophysics Data System (ADS)

    Pawlicka, Agnieszka; Avellaneda, Cesar O.

    2003-07-01

    Solid state electrochromic devices (ECD) are of considerable technological and commercial interest because of their controllable transmission, absorption and/or reflectance. For instance, a major application of these devices is in smart windows that can regulate the solar gains of buildings and also in glare attenuation in automobile rear view mirrors. Other applications include solar cells, small and large area flat panel displays, satellite temperature control, food monitoring, and document authentication. A typical electrochromic device has a five-layer structure: GS/TC/EC/IC/IS/TC/GS, where GS is a glass substrate, TC is a transparent conductor, generally ITO (indium tin oxide) or FTO (fluorine tin oxide), EC is an electrochromic coating, IC is an ion conductor (solid or liquid electrolyte) and IS is an ion storage coating. Generally, the EC and IS layers are deposited separately on the TC coatings and then jointed with the IC and sealed. The EC and IS are thin films that can be deposited by sputtering, CVD, sol-gel precursors, etc. There are different kinds of organic, inorganic and organic-inorganic films that can be used to make electrochromic devices. Thin electrochromic films can be: WO3, Nb2O5, Nb2O5:Li+ or Nb2O5-TiO2 coatings, ions storage films: CeO2-TiO2, CeO2-ZrO2 or CeO2-TiO2-ZrO2 and electrolytes like Organically Modified Electrolytes (Ormolytes) or polymeric films also based on natural polymers like starch or cellulose. These last are very interesting due to their high ionic conductivity, high transparency and good mechanical properties. This paper describes construction and properties of different thin oxide and polymeric films and also shows the optical response of an all sol-gel electrochromic device with WO3/Ormolyte/CeO2-TiO2 configuration.

  20. Neural Implants, Packaging for Biocompatible Implants, and Improving Fabricated Capacitors

    NASA Astrophysics Data System (ADS)

    Agger, Elizabeth Rose

    We have completed the circuit design and packaging procedure for an NIH-funded neural implant, called a MOTE (Microscale Optoelectronically Transduced Electrode). Neural recording implants for mice have greatly advanced neuroscience, but they are often damaging and limited in their recording location. This project will result in free-floating implants that cause less damage, provide rapid electronic recording, and increase range of recording across the cortex. A low-power silicon IC containing amplification and digitization sub-circuits is powered by a dual-function gallium arsenide photovoltaic and LED. Through thin film deposition, photolithography, and chemical and physical etching, the Molnar Group and the McEuen Group (Applied and Engineering Physics department) will package the IC and LED into a biocompatible implant approximately 100microm3. The IC and LED are complete and we have begun refining this packaging procedure in the Cornell NanoScale Science & Technology Facility. ICs with 3D time-resolved imaging capabilities can image microorganisms and other biological samples given proper packaging. A portable, flat, easily manufactured package would enable scientists to place biological samples on slides directly above the Molnar group's imaging chip. We have developed a packaging procedure using laser cutting, photolithography, epoxies, and metal deposition. Using a flip-chip method, we verified the process by aligning and adhering a sample chip to a holder wafer. In the CNF, we have worked on a long-term metal-insulator-metal (MIM) capacitor characterization project. Former Fellow and continuing CNF user Kwame Amponsah developed the original procedure for the capacitor fabrication, and another former fellow, Jonilyn Longenecker, revised the procedure and began the arduous process of characterization. MIM caps are useful to clean room users as testing devices to verify electronic characteristics of their active circuitry. This project's objective is to determine differences in current-voltage (IV) and capacitor-voltage (CV) relationships across variations in capacitor size and dielectric type. This effort requires an approximately 20-step process repeated for two-to-six varieties (dependent on temperature and thermal versus plasma options) of the following dielectrics: HfO2, SiO2, Al2O3, TaOx, and TiO2.

  1. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films

    NASA Astrophysics Data System (ADS)

    Khan, Asif Islam; Yu, Pu; Trassin, Morgan; Lee, Michelle J.; You, Long; Salahuddin, Sayeef

    2014-07-01

    We study the effects of strain relaxation on the dielectric properties of epitaxial 40 nm Pb(Zr0.2Ti0.8)TiO3 (PZT) films. A significant increase in the defect and dislocation density due to strain relaxation is observed in PZT films with tetragonality c/a < 1.07 grown on SrTiO3 (001) substrates, which results in significant frequency dispersion of the dielectric constant and strong Rayleigh type behavior in those samples. This combined structural-electrical study provides a framework for investigating strain relaxation in thin films and can provide useful insights into the mechanisms of fatigue in ferroelectric materials.

  2. Electrochemical corrosion, wear and cell behavior of ZrO2/TiO2 alloyed layer on Ti-6Al-4V.

    PubMed

    Li, Jianfang; He, Xiaojing; Zhang, Guannan; Hang, Ruiqiang; Huang, Xiaobo; Tang, Bin; Zhang, Xiangyu

    2018-06-01

    Ti-6Al-4V (TC4) has received increasing attention as biomaterial but also raised concerns about the long-term safety of releasing of metal ions and poor wear resistance. In this work, an ZrO 2 /TiO 2 alloyed layer was prepared on TC4 by plasma surface alloying with Zr and subsequently annealed in the air for improved corrosion and wear resistant. To assess the corrosion performance of the alloyed layer, the specimens were measured by open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid solution. The result shows that the ZrO 2 /TiO 2 alloyed layer exhibits strikingly high polarization resistance, wide passive region and very low current density, indicating the excellent corrosion resistance. The layer also displays significant improvement of wear resistance. Furthermore, the alloyed layer restricts cell adhesion and spreading. We infer that the ZrO 2 /TiO 2 alloyed layer might be potentially useful implanted devices such as biosensors, bioelectronics or drug delivery devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant

    NASA Astrophysics Data System (ADS)

    Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.

    2017-06-01

    Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.

  4. Observation of interacting polaronic gas behavior in Ta-doped TiO2 thin films via terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Chia, Elbert; Cheng, Liang; Lourembam, James; Wu, S. G.; Motapothula, Mallikarjuna R.; Sarkar, Tarapada; Venkatesan, Venky

    Using terahertz time-domain spectroscopy (THz-TDS), we obtained the complex optical conductivity [ σ (ω) ] of Ta-doped TiO2 thin films - a transparent conducting oxide (TCO), in the frequency range 0.3-2.7 THz, temperature range 10-300 K and various Ta dopings. Our results reveal the existence of an interacting polaronic gas in these TCOs, and suggest that their large conductivity is caused by the combined effects of large carrier density and small electron-phonon coupling constant due to Ta doping. NUSNNI-NanoCore, NRF-CRP (NRF2008NRF-CRP002-024), NUS cross-faculty Grant and FRC (ARF Grant No. R-144-000-278-112), MOE Tier 1 (RG123/14), SinBeRISE CREATE.

  5. Local induction of calcium phosphate formation on TiO2 coatings on titanium via surface treatment with a CO2 laser.

    PubMed

    Moritz, N; Jokinen, M; Peltola, T; Areva, S; Yli-Urpo, A

    2003-04-01

    Sol-gel-derived TiO(2) coatings are known to promote bonelike hydroxyapatite formation on their surfaces in vitro and in vivo. Hydroxyapatite integrates into bone tissue. In some clinical applications, the surface of an implant is simultaneously interfaced with soft and hard tissues, so it should match the properties of both. A new method is introduced for treating the coatings locally in a controlled manner. The local densification of sol-gel-derived titania coatings on titanium substrates with a CO(2) laser was studied in terms of the in vitro calcium phosphate-inducting properties. CO(2)-laser-treated multilayer coatings were compared with furnace-fired coatings prepared with the same recipe and previously shown to be bioactive. Additionally, local areas of furnace-fired multilayer coatings (previously shown to be bioactive in vitro) were further laser-treated to achieve various properties in the same implant. Topological surface properties were examined with atomic force microscopy. The formation of hydroxyapatite was studied with Fourier transform infrared and scanning electron microscopy energy-dispersive X-ray analysis. The results show that calcium phosphate formation can be adjusted locally by laser treatment. Calcium phosphate is a bonelike hydroxyapatite. The local treatment of sol-gel-derived coatings with a CO(2) laser is a promising technique for creating implants with various properties to interface different tissues and a possible way of coating implants that do not tolerate furnace firing. Copyright 2003 Wiley Periodicals, Inc.

  6. Hydroxyapatite-TiO2-SiO2-Coated 316L Stainless Steel for Biomedical Application

    NASA Astrophysics Data System (ADS)

    Sidane, Djahida; Khireddine, Hafit; Bir, Fatima; Yala, Sabeha; Montagne, Alex; Chicot, Didier

    2017-07-01

    This study investigated the effectiveness of titania (TiO2) as a reinforcing phase in the hydroxyapatite (HAP) coating and silica (SiO2) single layer as a bond coat between the TiO2-reinforced hydroxyapatite (TiO2/HAP) top layer and 316L stainless steel (316L SS) substrate on the corrosion resistance and mechanical properties of the underlying 316L SS metallic implant. Single layer of SiO2 film was first deposited on 316L SS substrate and studied separately. Water contact angle measurements, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrophotometer analysis were used to evaluate the hydroxyl group reactivity at the SiO2 outer surface. The microstructural and morphological results showed that the reinforcement of HAP coating with TiO2 and SiO2 reduced the crystallite size and the roughness surface. Indeed, the deposition of 50 vol pct TiO2-reinforced hydroxyapatite layer enhanced the hardness and the elastic modulus of the HAP coating, and the introduction of SiO2 inner layer on the surface of the 316L SS allowed the improvement of the bonding strength and the corrosion resistance as confirmed by scratch studies, nanoindentation, and cyclic voltammetry tests.

  7. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    PubMed

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Kéri, Orsolya; Bárdos, Péter; Firkala, Tamás; Gáber, Fanni; Nagy, Zsombor K.; Baji, Zsófia; Takács, Máté; Szilágyi, Imre M.

    2017-12-01

    In the present work, core TiO2 and ZnO oxide nanofibers were prepared by electrospinning, then shell oxide (ZnO, TiO2) layers were deposited on them by atomic layer deposition (ALD). The aim of preparing ZnO and TiO2 nanofibers, as well as ZnO/TiO2 and TiO2/ZnO nanocomposites is to study the interaction between the oxide materials when a pure oxide fiber is covered with thin film of the other oxide, and explore the influence of exchanging the core and shell materials on their photocatalytic and gas sensing properties. The composition, structure and morphology of the pure and composite nanofibers were studied by SEM-EDX, TEM, XRD, FTIR, UV-vis and Raman. The photocatalytic activity of the as-prepared materials was analyzed by UV-vis spectroscopy through decomposing aqueous methyl orange under UV irradiation. The gas sensing of the nanofibers was investigated by detecting 100 ppm NH3 at 150 and 220 °C using interdigital electrode based sensors.

  9. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units

    NASA Astrophysics Data System (ADS)

    Lin, Luchan; Zou, Guisheng; Liu, Lei; Duley, Walt W.; Zhou, Y. Norman

    2016-05-01

    We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO2 structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO2 resulting in the modification of both surfaces and an increase in wettability of TiO2, facilitating the interconnection of Ag and TiO2 nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO2 in the contact region between the Ag and TiO2 nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO2 nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.

  10. Synthesis and Characterization of TiO2/SiO2 Thin Film via Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Halin, D. S. C.; Abdullah, M. M. A. B.; Mahmed, N.; Malek, S. N. A. Abdul; Vizureanu, P.; Azhari, A. W.

    2017-06-01

    TiO2/SiO2 thin films were prepared by sol-gel spin coating method. Structural, surface morphology and optical properties were investigated for different annealing temperatures at 300°C, 400°C and 500°C. X-ray diffraction pattern show that brookite TiO2 crystalline phase with SiO2 phase presence at 300°C. At higher temperatures of 400-500°C, the only phase presence was brookite. The surface morphology of film was characterized by scanning electron microscopy (SEM). The films annealed at 300°C shows an agglomeration of small flaky with crack free. When the temperature of annealing increase to 400-500°C, the films with large flaky and large cracks film were formed which was due to surface tension between the film and the air during the drying process. The UV-Vis spectroscopy shows that the film exhibits a low transmittance around 30% which was due to the substrate is inhomogeneously covered by the films. In order to improve the coverage of the film on the substrate, it has to repeatable the spin coating to ensure the substrate is fully covered by the films.

  11. Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water

    NASA Astrophysics Data System (ADS)

    Szkoda, Mariusz; Siuzdak, Katarzyna; Lisowska-Oleksiak, Anna

    2016-10-01

    Titanium dioxide is a well-known photoactive semiconductor with a variety of possible applications. The procedure of pollutant degradation is mainly performed using TiO2 powder suspension. It can also be exploited an immobilized catalyst on a solid support. Morphology and chemical doping have a great influence on TiO2 activity under illumination. Here we compare photoactivity of titania nanotube arrays doped with non-metal atoms: nitrogen, iodine and boron applied for photodegradation of organic dye - methylene blue and terephtalic acid. The doped samples act as a much better photocatalyst in the degradation process of methylene blue and lead to the formation of much higher amount of hydroxyl radicals (•OH) than undoped TiO2 nanotube arrays. The use of a catalyst active under solar light illumination in the form of thin films on a stable substrate can be scaled up for an industrial application.

  12. Wastewater treatment by sonophotocatalysis using PEG modified TiO2 film in a circular Photocatalytic-Ultrasonic system.

    PubMed

    Hu, Xiaohong; Zhu, Qi; Gu, Zhibin; Zhang, Nan; Liu, Na; Stanislaus, Mishma S; Li, Dawei; Yang, Yingnan

    2017-05-01

    TiO 2 photocatalyst film recently has been utilized as the potential candidate for the wastewater treatment, due to its high stability and low toxicity. In order to further increase the photocatalytic ability and stability, different molecular weight of polyethylene glycol (PEG) were used to modify TiO 2 structure to synthesize porous thin film used in the developed Photocatalytic-Ultrasonic system in this work. The results showed that PEG2000 modified TiO 2 calcinated under 450°C for 2h exhibited the highest photocatalytic activity, attributed to the smallest crystallite size and optimal particle size. Over 95.0% of rhodamine B (Rh B) was photocatalytically degraded by optimized PEG 2000 -TiO 2 film after 60min of UV irradiation, while only about 50.8% of Rh B was decolored over pure TiO 2 film. Furthermore, optimized PEG 2000 -TiO 2 film was used in a circular Photocatalytic-Ultrasonic system, and the obtained synergy (0.6519) of sonophotocatalysis indicated its extremely high efficiency for Rh B degradation. In this Photocatalytic-Ultrasonic system, larger amount of PEG 2000 -TiO 2 coated glass beads, stronger ultrasonic power and longer experimental time could result to higher degradation efficiency of Rh B. In addition, repetitive experiments showed that about 97.2% of Rh B were still degraded in the fifth experiment by sonophotocatalysis using PEG 2000 -TiO 2 film. Therefore, PEG 2000 -TiO 2 film used in Photocatalytic-Ultrasonic system has promising potential for wastewater treatment, due to its excellent photocatalytic activity and high stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Preparation of TiO2/boron-doped diamond/Ta multilayer films and use as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Shi, Chao; Li, Hongji; Li, Cuiping; Li, Mingji; Qu, Changqing; Yang, Baohe

    2015-12-01

    We report nanostructured TiO2/boron-doped diamond (BDD)/Ta multilayer films and their electrochemical performances as supercapacitor electrodes. The BDD films were grown on Ta substrates using electron-assisted hot filament chemical vapor deposition. Ti metal layers were deposited on the BDD surfaces by radio frequency magnetron sputtering, and nanostructured TiO2/BDD/Ta thin films were prepared by electrochemical etching and thermal annealing. The successful formation of TiO2 and Ta layered nanostructures was demonstrated using scanning electron and transmission electron microscopies. The electrochemical responses of these electrodes were evaluated by examining their use as electrical double-layer capacitors, using cyclic voltammetry, and galvanostatic charge/discharge and impedance measurements. When the TiO2/BDD/Ta film was used as the working electrode with 0.1 M Na2SO4 as the electrolyte, the capacitor had a specific capacitance of 5.23 mF cm-2 at a scan rate of 5 mV s-1 for a B/C ratio of 0.1% w/w. Furthermore, the TiO2/BDD/Ta film had improved electrochemical stability, with a retention of 89.3% after 500 cycles. This electrochemical behavior is attributed to the quality of the BDD, the surface roughness and electrocatalytic activities of the TiO2 layer and Ta nanoporous structures, and the synergies between them. These results show that TiO2/BDD/Ta films are promising as capacitor electrodes for special applications.

  14. Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Lim, Herianto; Stavrias, Nikolas; Johnson, Brett C.; Marvel, Robert E.; Haglund, Richard F.; McCallum, Jeffrey C.

    2014-03-01

    Vanadium dioxide (VO2) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator-to-metal transition, the phase transition in VO2 can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO2 with erbium ions (Er3+) and observe their combined properties. The first excited-state luminescence of Er3+ lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er3+ into VO2 could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO2 thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO2 by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ˜800 °C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO2 thin films. We conclude that Er-implanted VO2 can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO2.

  15. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO2-δ Films.

    PubMed

    Cortie, David L; Khaydukov, Yury; Keller, Thomas; Sprouster, David J; Hughes, Jacob S; Sullivan, James P; Wang, Xiaolin L; Le Brun, Anton P; Bertinshaw, Joel; Callori, Sara J; Aughterson, Robert; James, Michael; Evans, Peter J; Triani, Gerry; Klose, Frank

    2017-03-15

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming the pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0 , with a minor fraction of Co 2+ . The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund's rules for Co 0 , which is unusual because the transition metal's magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.

  16. Orientation dependence of ferroelectric and piezoelectric properties of Bi3.15Nd0.85Ti3O12 thin films on Pt(100)/TiO2/SiO2/Si substrates

    NASA Astrophysics Data System (ADS)

    Hu, G. D.

    2006-11-01

    Bi3.15Nd0.85Ti3O12 (BNT0.85) thin films with (100) [α(100)=87.8%], (117) [α(117)=77.1%], and (001) [α(001)=98.8%] preferred orientations were deposited on Pt(100)/TiO2/SiO2/Si substrates using a metal organic decomposition process. The remanent polarization of (100)-predominant BNT0.85 film is about 50% and three times larger than those of (117)-preferred and (001)-oriented films, respectively, suggesting that the major polarization vector of BNT0.85 is close to the a axis rather than the c axis. This result can be further demonstrated by the piezoelectric measurements using an atomic force microscope in the piezoresponse mode.

  17. Two-Functional Direct Current Sputtered Silver-Containing Titanium Dioxide Thin Films

    NASA Astrophysics Data System (ADS)

    Musil, J.; Louda, M.; Cerstvy, R.; Baroch, P.; Ditta, I. B.; Steele, A.; Foster, H. A.

    2009-04-01

    The article reports on structure, mechanical, optical, photocatalytic and biocidal properties of Ti-Ag-O films. The Ti-Ag-O films were reactively sputter-deposited from a composed Ti/Ag target at different partial pressures of oxygen p_{O2} on unheated glass substrate held on floating potential U fl. It was found that addition of 2 at.% of Ag into TiO2 film has no negative influence on UV-induced hydrophilicity of TiO2 film. Thick ( 1,500 nm) TiO2/Ag films containing (200) anatase phase exhibit the best hydrophilicity with water droplet contact angle (WDCA) lower than 10° after UV irradiation for 20 min. Thick ( 1,500 nm) TiO2/Ag films exhibited a better UV-induced hydrophilicity compared to that of thinner ( 700 nm) TiO2/Ag films. Further it was found that hydrophilic TiO2/Ag films exhibit a strong biocidal effect under both the visible light and the UV irradiation with 100% killing efficiency of Escherichia coli ATCC 10536 after UV irradiation for 20 min. Reported results show that single layer of TiO2 with Ag distributed in its whole volume exhibits, after UV irradiation, simultaneously two functions: (1) excellent hydrophilicity with WDCA < 10° and (2) strong power to kill E. coli even under visible light due to direct toxicity of Ag.

  18. Remote compositional mapping of lunar titanium and surface maturity

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Larson, S. M.; Singer, Robert B.

    1991-01-01

    Lunar ilmenite (FeTiO3) is a potential resource capable of providing oxygen for life support and spacecraft propellant for future lunar bases. Estimates of TiO2 content in mature mare soils can be made using an empirical relation between the 400/500 nm reflectance ratio and TiO2 wt percent. A TiO2 abundance map was constructed for the entire near-side lunar maria accurate to + or - 2 wt percent TiO2 using CCD images obtained at the Tumamoc Hill 0.5 m telescope in Tucson, employing bandpass filters centered at 400 and 560 nm. Highest TiO2 regions in the maria are located in western Mare Tranquillitatis. Greater contrast differences between regions on the lunar surface can be obtained using 400/730 nm ratio images. The relation might well be refined to accommodate this possibly more sensitive indicator of TiO2 content. Another potential lunar resource is solar wind-implanted He-3 which may be used as a fuel for fusion reactors. Relative soil maturity, as determined by agglutinate content, can be estimated from 950/560 nm ration images. Immature soils appear darker in this ratio since such soils contain abundant pyroxene grains which cause strong absorption centered near 950 nm due Fe(2+) crystal field transitions. A positive correlation exists between the amount of He-3 and TiO2 content in lunar soils, suggesting that regions high in TiO2 should also be high in He-3. Reflectance spectrophotometry in the region 320 to 870 nm was also obtained for several regions. Below about 340 nm, these spectra show variations in relative reflectance that are caused by as yet unassigned near-UV absorptions due to compositional differences.

  19. Low-temperature electrodeposition approach leading to robust mesoscopic anatase TiO2 films

    NASA Astrophysics Data System (ADS)

    Patra, Snehangshu; Andriamiadamanana, Christian; Tulodziecki, Michal; Davoisne, Carine; Taberna, Pierre-Louis; Sauvage, Frédéric

    2016-02-01

    Anatase TiO2, a wide bandgap semiconductor, likely the most worldwide studied inorganic material for many practical applications, offers unequal characteristics for applications in photocatalysis and sun energy conversion. However, the lack of controllable, cost-effective methods for scalable fabrication of homogeneous thin films of anatase TiO2 at low temperatures (ie. < 100 °C) renders up-to-date deposition processes unsuited to flexible plastic supports or to smart textile fibres, thus limiting these wearable and easy-to-integrate emerging technologies. Here, we present a very versatile template-free method for producing robust mesoporous films of nanocrystalline anatase TiO2 at temperatures of/or below 80 °C. The individual assembly of the mesoscopic particles forming ever-demonstrated high optical quality beads of TiO2 affords, with this simple methodology, efficient light capture and confinement into the photo-anode, which in flexible dye-sensitized solar cell technology translates into a remarkable power conversion efficiency of 7.2% under A.M.1.5G conditions.

  20. Low-temperature electrodeposition approach leading to robust mesoscopic anatase TiO2 films

    PubMed Central

    Patra, Snehangshu; Andriamiadamanana, Christian; Tulodziecki, Michal; Davoisne, Carine; Taberna, Pierre-Louis; Sauvage, Frédéric

    2016-01-01

    Anatase TiO2, a wide bandgap semiconductor, likely the most worldwide studied inorganic material for many practical applications, offers unequal characteristics for applications in photocatalysis and sun energy conversion. However, the lack of controllable, cost-effective methods for scalable fabrication of homogeneous thin films of anatase TiO2 at low temperatures (ie. < 100 °C) renders up-to-date deposition processes unsuited to flexible plastic supports or to smart textile fibres, thus limiting these wearable and easy-to-integrate emerging technologies. Here, we present a very versatile template-free method for producing robust mesoporous films of nanocrystalline anatase TiO2 at temperatures of/or below 80 °C. The individual assembly of the mesoscopic particles forming ever-demonstrated high optical quality beads of TiO2 affords, with this simple methodology, efficient light capture and confinement into the photo-anode, which in flexible dye-sensitized solar cell technology translates into a remarkable power conversion efficiency of 7.2% under A.M.1.5G conditions. PMID:26911529

  1. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  2. Complex damage distribution behaviour in cobalt implanted rutile TiO2 (1 1 0) lattice

    NASA Astrophysics Data System (ADS)

    Joshi, Shalik Ram; Padmanabhan, B.; Chanda, Anupama; Ojha, Sunil; Kanjilal, D.; Varma, Shikha

    2017-11-01

    The present work investigates the radiation damage, amorphization and structural modifications that are produced by ion-solid interactions in TiO2 crystals during 200 keV Cobalt ion implantation. RBS/C and GIXRD have been utilized to evaluate the damage in the host lattice as a function of ion fluence. Multiple scattering formalism has been applied to extract the depth dependent damage distributions in TiO2(1 1 0). The results have been compared with the MC simulations performed using SRIM-2013. RBS/C results delineate a buried amorphous layer at a low fluence. Surprisingly, ion induced dynamic activation produces a recovery in this damage at higher fluences. This improvement interestingly occurs only in deep regions (60-300 nm) where a systematic lowering in damage with fluence is observed. Formation of Co-Ti-O phases and generation of stress in TiO2 lattice can also be responsible for this improvement in deep regions. In contrast, surface region (0-60 nm) indicates a gradual increase in damage with fluence. Such a switch in the damage behavior creates a cross point in damage profiles at 60 nm. Surface region is a sink of vacancies whereas deep layers are interstitial rich. However, these regions are far separated from each other resulting in an intermediate (100-150 nm) region with a significant dip (valley) in damage which can be characterized by enhanced recombination of point defects. The damage profiles thus indicate a very complex behavior. MC simulations, however, present very different results. They depict a damage profile that extends to a depth of only 150 nm, which is only about half of the damage- width observed here via RBS/C. Moreover, MC simulations do not indicate presence of any valley like structure in the damage profile. The complex nature of damage distribution observed here via RBS/C may be related to the high ionic nature of the chemical bonds in the TiO2 lattice.

  3. Synthesis of capped TiO2 nanocrystals of controlled shape and their use with MEH-PPV conjugated polymer to develop nanocomposite films for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mighri, F.; Duong, Vu Thi Thuy; On, Do Trong; Ajji, A.

    2014-05-01

    This study presents the synthesis details of titanium dioxide (TiO2) nanoparticles (NPs) of different shapes (nanospheres, nanorods and nanorhombics) using oleic acid (OA) and oleyl amine (OM) as capping agents. In order to develop nanocomposite thin films for photovoltaic cells, these TiO2 NPs were carefully dispersed in 2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene (MEH-PPV) matrix. The properties of synthesized TiO2 NPs and MEH-PPV/TiO2 nanocomposites were characterized using transmission electron microscopy (TEM), thermogravimetric analysis (TGA), UV-Visible spectroscopy, and Photoluminescence technique. It was found that the shape of NPs and the amount of OA and OM surfactants capped on their surface have an effect on their energy bandgap and also on the dispersion quality of MEH-PPV/TiO2 nanocomposites. Even though there was no evidence of chemical bonding between MEH-PPV matrix and TiO2 dispersed NPs, MEH-PPV/TiO2 nanocomposites showed very promising results for light absorption properties and charge transfer at the interface of the conjugated MEH-PPV matrix and TiO2 dispersed NPs, which are two main characteristics for photovoltaic materials.

  4. A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation.

    PubMed

    Wang, Peifang; Guo, Xiang; Rao, Lei; Wang, Chao; Guo, Yong; Zhang, Lixin

    2018-05-10

    A TiO 2 /g-C 3 N 4 composite photocatalytic film was prepared by in situ synthesis method and its photocatalytic capability under weak-visible-light condition was studied. The co-precursor with different ratio of melamine and TiO 2 sol-gel precursor were treated using ultrasonic mixing, physical deposition, and co-sintering method to form the smooth, white-yellow, and compact TiO 2 /g-C 3 N 4 composite films. The prepared TiO 2 /g-C 3 N 4 materials were characterized by SEM, TEM, EDS, XRD, BET, VBXPS, and UV-vis diffuse reflectance spectra. The results of composite showed that TiO 2 and g-C 3 N 4 have close interfacial connections which are favorable to charge transfer between these two semiconductors with suitable band structure, g-C 3 N 4 retard the anatase-to-rutile phase transition of TiO 2 significantly, the specific surface area were increased with g-C 3 N 4 ratio raised. Under weak-light irradiation, composite films photocatalytic experiments exhibited RhB removal efficiency approaching 90% after three recycles. Powders suspension degradation experiments revealed the removal efficiency of TiO 2 /g-C 3 N 4 (90.8%) was higher than pure TiO 2 (52.1%) and slightly lower than pure g-C 3 N 4 (96.6%). By control experiment, the enhanced photocatalysis is ascribed to the combination of TiO 2 and g-C 3 N 4 , which not only produced thin films with greater stability but also formed heterojunctions that can be favorable to charge transfer between these two semiconductors with suitable band structure. This study presents the potential application of photocatalytic film in the wastewater treatment under weak-light situation.

  5. Reduced Ensemble Plasmon Line Widths and Enhanced Two-Photon Luminescence in Anodically Formed High Surface Area Au-TiO2 3D Nanocomposites.

    PubMed

    Farsinezhad, Samira; Banerjee, Shyama Prasad; Bangalore Rajeeva, Bharath; Wiltshire, Benjamin D; Sharma, Himani; Sura, Anton; Mohammadpour, Arash; Kar, Piyush; Fedosejevs, Robert; Shankar, Karthik

    2017-01-11

    Localized surface plasmon resonances (LSPR) in TiO 2 nanorod and nanotube arrays decorated by gold nanoparticles can be exploited to improve photocatalytic activity, enhance nonlinear optical coefficients, and increase light harvesting in solar cells. However, the LSPR typically has a low quality factor, and the resonance is often obscured by the Urbach tail of the TiO 2 band gap absorption. Attempts to increase the LSPR extinction intensity by increasing the density of gold nanoparticles on the surface of the TiO 2 nanostructures invariably produce peak broadening due to the effects of either agglomeration or polydispersity. We present a new class of hybrid nanostructures containing gold nanoparticles (NPs) partially embedded in nanoporous/nanotubular TiO 2 by performing the anodization of cosputtered Ti-Au thin films containing a relatively high ratio of Au:Ti. Our method of anodizing thin film stacks containing alternate layers of Ti and TiAu results in very distinctive LSPR peaks with quality factors as high as 6.9 and ensemble line widths as small as 0.33 eV even in the presence of an Urbach tail. Unusual features in the anodization of such films are observed and explained, including oscillatory current transients and the observation of coherent heterointerfaces between the Au NPs and anatase TiO 2 . We further show that such a plasmonic NP-embedded nanotube structure dramatically outperforms a plasmonic NP-decorated anodic nanotube structure in terms of the extinction coefficient, and achieves a strongly enhanced two-photon fluorescence due to the high density of gold nanoparticles in the composite film and the plasmonic local field enhancement.

  6. Reducing cross-sensitivity of TiO2-(B) nanowires to humidity using ultraviolet illumination for trace explosive detection.

    PubMed

    Wang, Danling; Chen, Antao; Jen, Alex K-Y

    2013-04-14

    Environmental humidity is an important factor that can influence the sensing performance of a metal oxide. TiO2-(B) in the form of nanowires has been demonstrated to be a promising material for the detection of explosive gases such as 2,4,6-trinitrotoluene (TNT). However, the elimination of cross-sensitivity of the explosive detectors based on TiO2-(B) toward environmental humidity is still a major challenge. It was found that the cross-sensitivity could be effectively modulated when the thin film of TiO2-(B) nanowires was exposed to ultraviolet (UV) light during the detection of explosives under operating conditions. Such a modulation of sensing responses of TiO2-(B) nanowires to explosives by UV light was attributed to a photocatalytic effect, with which the water adsorbed on the TiO2-(B) nanowire surface was split and therefore the sensor response performance was less affected. It was revealed that the cross-sensitivity could be suppressed up to 51% when exposed to UV light of 365 nm wavelength with an intensity of 40 mW cm(-2). This finding proves that the reduction of cross-sensitivity to humidity through UV irradiation is an effective approach that can improve the performance of a sensor based on TiO2-(B) nanowires for the detection of explosive gas.

  7. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Nemaga, Abirdu Woreka; Mallet, Jeremy; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2018-07-01

    The development of high energy density Li-ion batteries requires to look for electrode materials with high capacity while keeping their stability upon cycling. In this study, amorphous silicon (a-Si) thin film deposited on self-organized TiO2 nanotubes is investigated as negative electrode for Li-ion batteries. Nanostructured composite negative electrodes were fabricated by a two-step cost effective electrochemical process. Firstly, self-organized TiO2 nanotube arrays were synthesised by anodizing of Ti foil. Subsequently, thanks to the use of room temperature ionic liquid, conformal Si layer was electrodeposited on the TiO2 nanotubes to achieve the synthesis of nanostructured a-Si/TiO2 nanotube composite negative electrodes. The influence of the Si loading as well as the crystallinity of the TiO2 nanotubes have been studied in terms of capacity and cyclic stability. For an optimized a-Si loading, it is shown that the amorphous state for the TiO2 nanotubes enables to get stable lithiation and delithiation with a total areal charge capacity of about 0.32 mA h cm-2 with improved capacity retention of about 84% after 50 cycles, while a-Si on crystalline TiO2 nanotubes shows poor cyclic stability independently from the Si loading.

  8. Engineering Interface Structure to Improve Efficiency and Stability of Organometal Halide Perovskite Solar Cells.

    PubMed

    Qiu, Longbin; Ono, Luis K; Jiang, Yan; Leyden, Matthew R; Raga, Sonia R; Wang, Shenghao; Qi, Yabing

    2018-01-18

    The rapid rise of power conversion efficiency (PCE) of low cost organometal halide perovskite solar cells suggests that these cells are a promising alternative to conventional photovoltaic technology. However, anomalous hysteresis and unsatisfactory stability hinder the industrialization of perovskite solar cells. Interface engineering is of importance for the fabrication of highly stable and hysteresis free perovskite solar cells. Here we report that a surface modification of the widely used TiO 2 compact layer can give insight into interface interaction in perovskite solar cells. A highest PCE of 18.5% is obtained using anatase TiO 2 , but the device is not stable and degrades rapidly. With an amorphous TiO 2 compact layer, the devices show a prolonged lifetime but a lower PCE and more pronounced hysteresis. To achieve a high PCE and long lifetime simultaneously, an insulating polymer interface layer is deposited on top of TiO 2 . Three polymers, each with a different functional group (hydroxyl, amino, or aromatic group), are investigated to further understand the relation of interface structure and device PCE as well as stability. We show that it is necessary to consider not only the band alignment at the interface, but also interface chemical interactions between the thin interface layer and the perovskite film. The hydroxyl and amino groups interact with CH 3 NH 3 PbI 3 leading to poor PCEs. In contrast, deposition of a thin layer of polymer consisting of an aromatic group to prevent the direct contact of TiO 2 and CH 3 NH 3 PbI 3 can significantly enhance the device stability, while the same time maintaining a high PCE. The fact that a polymer interface layer on top of TiO 2 can enhance device stability, strongly suggests that the interface interaction between TiO 2 and CH 3 NH 3 PbI 3 plays a crucial role. Our work highlights the importance of interface structure and paves the way for further optimization of PCEs and stability of perovskite solar cells.

  9. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide.

    PubMed

    Li, Tao; Wang, Na; Chen, Su; Lu, Ran; Li, Hongyi; Zhang, Zhenting

    2017-01-01

    Prevention of implant-associated infections at an early stage of surgery is highly desirable for the long-term efficacy of implants in dentistry and orthopedics. Infection prophylaxis using conventional antibiotics is becoming less effective due to the development of bacteria resistant to multiple antibiotics. An ideal strategy to conquer bacterial infections is the local delivery of antibacterial agents. Therefore, antimicrobial peptide (AMP) eluting coatings on implant surfaces is a promising alternative. In this study, the feasibility of utilizing TiO 2 nanotubes (TNTs), processed using anodization, as carriers to deliver a candidate AMP on titanium surfaces for the prevention of implant-associated infections is assessed. The broad-spectrum GL13K (GKIIKLKASLKLL-CONH2) AMP derived from human parotid secretory protein was selected and immobilized to TNTs using a simple soaking technique. Field emission scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectrometry analyses confirmed the successful immobilization of GL13K to anatase TNTs. The drug-loaded coatings demonstrated a sustained and slow drug release profile in vitro and eradicated the growth of Fusobacterium nucleatum and Porphyromonas gingivalis within 5 days of culture, as assessed by disk-diffusion assay. The GL13K-immobilized TNT (GL13K-TNT) coating demonstrated greater biocompatibility, compared with a coating produced by incubating TNTs with equimolar concentrations of metronidazole. GL13K-TNTs produced no observable cytotoxicity to preosteoblastic cells (MC3T3-E1). The coating may also have an immune regulatory effect, in support of rapid osseointegration around implants. Therefore, the combination of TNTs and AMP GL13K may achieve simultaneous antimicrobial and osteoconductive activities.

  10. Some studies on TiO2 films deposited by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Narasimha Rao, K.; Vishwas, M.; Kumar Sharma, Sudhir; Arjuna Gowda, K. V.

    2008-08-01

    TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.

  11. Structure and Properties of VO2 and Titanium Dioxide Based Epitaxial Heterostructures Integrated with Silicon and Sapphire Substrates

    NASA Astrophysics Data System (ADS)

    Bayati, Mohammad Reza

    The main focus of this study was placed on structure-property correlation in TiO2 and VO2 based epitaxial heterostructures where the photochemical and electrical properties were tuned through microstructural engineering. In the framework of domain matching epitaxy, epitaxial growth of TiO2 and VO2 heterostructures on different substrates were explained. The theta-2theta and ϕ scan X-ray diffraction measurements and detailed high resolution electron microscopy studies corroborated our understanding of the epitaxial growth and the crystallographic arrangement across the interfaces. The influence of the laser and substrate variables on structural characteristics of the films was investigated using X-ray photoelectron spectroscopy, room temperature photoluminescence spectroscopy, and UV-Vis spectrophotometry. In addition, morphological studies were performed by atomic force microscopy. Photochemical properties of the heterostructures were assessed through measuring surface wettability characteristics and photocatalytic reaction rate constant of degradation of 4-chlorophenol under ultraviolet and visible irradiations. We also studied electrical properties employing 4-probe measurement technique. The effect of post treatment processes, such as vacuum annealing and laser treatment, on structure and properties was investigated as well. The role of point defects and deviation from the stoichiometry on photochemical and electrical properties was addressed. In this research, TiO2 epilayers with controlled phase structure, defect content, and crystallographic alignments were grown on sapphire and silicon substrates. Integration with silicon was achieved using cubic and tetragonal yttria-stabilized zirconia buffer layers. I was able to tune the phase structure of the TiO2 based heterostructures from pure rutile to pure anatase and establish an epitaxial relationship across the interfaces in each case. These heterostructures were used for two different purposes. First, their application in environmental remediation was taken into account. The photochemical efficiency of the samples was evaluated under ultraviolet and visible illuminations. I was able to establish a correlation between the growth conditions and the photocatalytic activity of single crystalline TiO 2 thin films. Visible-light-responsive TiO2 films were fabricated via vacuum annealing of the samples where point defects, namely oxygen vacancies and titanium interstitial, are surmised to play a critical role. An ultrafast switching was observed in wetting characteristics of the single crystalline rutile TiO2 films from a hydrophobic state to a superhydrophilic state by single pulsed excimer laser annealing. It was observed that the laser annealing almost doubles the photocatalytic efficiency of the anatase epitaxial thin films. I was able to measure the photochemical properties of the rutile and the anatase TiO2 heterostructures in a controlled way due to the single crystalline nature of the films. Second, the rutile TiO2 epilayers with different out-of-plane orientations were deposited and used as a platform for VO2 based epitaxial heterostructures with the aim of manipulating of microstructure and electrical properties of the VO 2 films. Vanadium dioxide (VO2) is an interesting material due to the abrupt change in electrical resistivity and infrared transmittance at about 68 °C. The transition temperature can be tuned through microstructural engineering. It was the idea behind using rutile TiO2 with different crystallographic orientations as a template to tune the semiconductor to metal transition characteristics of the VO2 top layer. I successfully grew VO2(001), VO2(100), and VO2(2¯01) epitaxial thin films on TiO2(100)/c-sapphire, TiO2(101)/r-sapphire, and TiO2(001)/ m-sapphire platforms, respectively. It was observed that tetragonal phase of VO2 was stabilized at lower temperatures leading to a significant decrease in the semiconductor to metal transition temperature. In other words, we were able to tune the transition temperature of the VO 2 epitaxial heterostructures. This achievement introduces the VO 2 based single crystalline heterostructures as a promising candidate for a wide range of applications where different transition temperatures are required. The epitaxial relationships were established and atomic arrangement across the interfaces was studied in detail.

  12. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

    PubMed Central

    2017-01-01

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942

  13. Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers

    NASA Astrophysics Data System (ADS)

    Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun

    2017-04-01

    Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.

  14. Strong light extraction enhancement using TiO2 nanoparticles-based microcone arrays embossed on III-Nitride light emitting diodes

    NASA Astrophysics Data System (ADS)

    Désières, Yohan; Chen, Ding Yuan; Visser, Dennis; Schippers, Casper; Anand, Srinivasan

    2018-06-01

    Colloidal TiO2 nanoparticles were used for embossing of composite microcone arrays on III-Nitride vertical-thin-film blue light emitting diodes (LEDs) as well as on silicon, glass, gallium arsenide, and gallium nitride surfaces. Ray tracing simulations were performed to optimize the design of microcones for light extraction and to explain the experimental results. An optical power enhancement of ˜2.08 was measured on III-Nitride blue LEDs embossed with a hexagonal array of TiO2 microcones of ˜1.35 μm in height and ˜2.6 μm in base width, without epoxy encapsulation. A voltage increase in ˜70 mV at an operating current density of ˜35 A/cm2 was measured for the embossed LEDs. The TiO2 microcone arrays were embossed on functioning LEDs, using low pressures (˜100 g/cm2) and temperatures ≤100 °C.

  15. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    NASA Astrophysics Data System (ADS)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  16. Deposition of functional nanoparticle thin films by resonant infrared laser ablation.

    NASA Astrophysics Data System (ADS)

    Haglund, Richard; Johnson, Stephen; Park, Hee K.; Appavoo, Kannatessen

    2008-03-01

    We have deposited thin films containing functional nanoparticles, using tunable infrared light from a picosecond free-electron laser (FEL). Thin films of the green light-emitting molecule Alq3 were first deposited by resonant infrared laser ablation at 6.68 μm, targeting the C=C ring mode of the Alq3. TiO2 nanoparticles 50-100 nm diameter were then suspended in a water matrix, frozen, and transferred by resonant infrared laser ablation at 2.94 μm through a shadow mask onto the Alq3 film. Photoluminescence was substantially enhanced in the regions of the film covered by the TiO2 nanoparticles. In a second experiment, gold nanoparticles with diameters in the range of 50-100 nm were suspended in the conducting polymer and anti-static coating material PEDOT:PSS, which was diluted by mixing with N-methyl pyrrolidinone (NMP). The gold nanoparticle concentration was 8-10% by weight. The mixture was frozen and then ablated by tuning the FEL to 3.47 μm, the C-H stretch mode of NMP. Optical spectroscopy of the thin film deposited by resonant infrared laser ablation exhibited the surface-plasmon resonance characteristic of the Au nanoparticles. These experiments illustrate the versatility of matrix-assisted resonant infrared laser ablation as a technique for depositing thin films containing functionalized nanoparticles.

  17. Preparation of atomically flat rutile TiO 2(001) surfaces for oxide film growth

    DOE PAGES

    Wang, Yang; Lee, Shinbuhm; Vilmercati, P.; ...

    2016-01-01

    The availability of low-index rutile TiO 2 single crystal substrates with atomically flat surfaces is essential for enabling epitaxialgrowth of rutile transition metal oxide films. The high surface energy of the rutile (001) surface often leads to surface faceting, which precludes the sputter and annealing treatment commonly used for the preparation of clean and atomically flat TiO 2(110) substrate surfaces. In this work, we reveal that stable and atomically flat rutile TiO 2(001) surfaces can be prepared with an atomically ordered reconstructedsurface already during a furnace annealing treatment in air. We tentatively ascribe this result to the decrease in surfacemore » energy associated with the surface reconstruction, which removes the driving force for faceting. Despite the narrow temperature window where this morphology can initially be formed, we demonstrate that it persists in homoepitaxialgrowth of TiO 2(001) thin films. The stabilization of surface reconstructions that prevent faceting of high-surface-energy crystal faces may offer a promising avenue towards the realization of a wider range of high quality epitaxial transition metal oxide heterostructures.« less

  18. Investigation of the in vitro photocatalytic antibacterial activity of nanocrystalline TiO2 and coupled TiO2/Ag containing copolymer on the surface of medical grade titanium.

    PubMed

    Györgyey, Ágnes; Janovák, László; Ádám, András; Kopniczky, Judit; Tóth, Krisztián L; Deák, Ágota; Panayotov, Ivan; Cuisinier, Frédéric; Dékány, Imre; Turzó, Kinga

    2016-07-01

    Antibacterial surfaces have been in the focus of research for years, driven by an unmet clinical need to manage an increasing incidence of implant-associated infections. The use of silver has become a topic of interest because of its proven broad-spectrum antibacterial activity and track record as a coating agent of soft tissue implants and catheters. However, for the time being, the translation of these technological achievements for the improvement of the antibacterial property of hard tissue titanium (Ti) implants remains unsolved. In our study, we focused on the investigation of the photocatalysis mediated antibacterial activity of silver (Ag), and Ti nanoparticles instead of their pharmacological effects. We found that the photosensitisation of commercially pure titanium discs by coating them with an acrylate-based copolymer that embeds coupled Ag/Ti nanoparticles can initiate the photocatalytic decomposition of adsorbed S. salivarius after the irradiation with an ordinary visible light source. The clinical isolate of S. salivarius was characterised with MALDI-TOF mass spectrometer, while the multiplication of the bacteria on the surface of the discs was followed-up by MTT assay. Concerning practical relevance, the infected implant surfaces can be made accessible and irradiated by dental curing units with LED and plasma arc light sources, our research suggests that photocatalytic copolymer coating films may offer a promising solution for the improvement of the antibacterial properties of dental implants. © The Author(s) 2016.

  19. Micro-topography and reactivity of implant surfaces: an in vitro study in simulated body fluid (SBF).

    PubMed

    Gandolfi, M G; Taddei, P; Siboni, F; Perrotti, V; Iezzi, G; Piattelli, A; Prati, C

    2015-02-01

    The creation of micro-textured dental implant surfaces possessing a stimulating activity represents a challenge in implant dentistry; particularly, the formation of a thin, biologically active, calcium-phosphate layer on their surface could help to strengthen the bond to the surrounding bone. The aim of the present study was to characterize in terms of macrostructure, micro-topography and reactivity in simulated body fluid (SBF), the surface of titanium (Ti) implants blasted with TiO2 particles, acid etched with hydrofluoric acid, and activated with Ca and Mg-containing nanoparticles. Sandblasted and acid-etched implants were analyzed by ESEM-EDX (environmental scanning electron microscope with energy dispersive X-ray system) to study the micromorphology of the surface and to perform elemental X-ray microanalysis (microchemical analyses) and element mapping. ESEM-EDX analyses were performed at time 0 and after a 28-day soaking period in SBF Hank's balanced salt solution (HBSS) following ISO 23317 (implants for surgery—in vitro evaluation for apatite-forming ability of implant materials). Microchemical analyses (weight % and atomic %) and element mapping were carried out to evaluate the relative element content, element distribution, and calcium/phosphorus (Ca/P) atomic ratio. Raman spectroscopy was used to assess the possible presence of impurities due to manufacturing and to investigate the phases formed upon HBSS soaking. Micro-morphological analyses showed a micro-textured, highly rough surface with microgrooves. Microchemical analyses showed compositional differences among the apical, middle, and distal thirds. The micro-Raman analyses of the as-received implant showed the presence of amorphous Ti oxide and traces of anatase, calcite, and a carbonaceous material derived from the decomposition of an organic component of lipidic nature (presumably used as lubricant). A uniform layer of Ca-poor calcium phosphates (CaPs) (Ca/P ratio <1.47) was observed after soaking in HBSS; the detection of the 961 cm⁻¹ Raman band confirms this finding. These implants showed a micro-textured surface supporting the formation of CaPs when immersed in SBF. These properties may likely favor bone anchorage and healing by stimulation of mineralizing cells.

  20. A facile method to synthesize nitrogen and fluorine co-doped TiO2 nanoparticles by pyrolysis of (NH4)2TiF6

    NASA Astrophysics Data System (ADS)

    Chen, Daimei; Jiang, Zhongyi; Geng, Jiaqing; Zhu, Juhong; Yang, Dong

    2009-02-01

    The nitrogen and fluorine co-doped TiO2 (N-F-TiO2) nanoparticles of anatase crystalline structure were prepared by a facile method of (NH4)2TiF6 pyrolysis, and characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet visible (UV-Vis) spectroscopy etc. With the increase of calcination temperature, (NH4)2TiF6 decomposed into TiOF2 and NH4TiOF3 at first, and then formed anatase-type TiO2 with thin sheet morphology. H3BO3 as oxygen source can promote the formation of anatase TiO2, but decrease the F content in the N-F-TiO2 materials due to the formation of volatile BF3 during the precursor decomposition. The photocatalytic activity of the obtained N-F-TiO2 samples was evaluated by the methylene blue degradation under visible light, and all the samples exhibited much higher photocatalytic activity than P25. Moreover, the merits and disadvantages of this proposed method to prepare doped TiO2 are discussed.

  1. Fabrication of ion bombardment induced rippled TiO2 surfaces to influence subsequent organic thin film growth.

    PubMed

    Kratzer, Markus; Szajna, Konrad; Wrana, Domink; Belza, Wojciech; Krok, Franciszek; Teichert, Christian

    2018-05-23

    Control over organic thin film growth is a central issue in the development of organic electronics. The anisotropy and extended size of the molecular building blocks introduce a high degree of complexity within the formation of thin films. This complexity can be even increased for substrates with induced, sophisticated morphology and anisotropy. Thus, targeted structuring like ion beam mediated modification of substrates in order to create ripples, pyramids, or pit structures provides a further degree of freedom in manipulating the growth morphology of organic thin films. We provide a comprehensive review of recent work on para-hexaphenyl (C36H26, 6P) as a typical representative of the class of small, rod-like conjugated molecules and rutile TiO2(110) as an example for a transparent oxide electrode to demonstrate the effect of ion beam induced nanostructuring on organic thin film growth. Starting from molecular growth on smooth, atomically flat TiO2(110) (11) surfaces, we investigate the influence of the ripple size on the resulting 6P thin films. The achieved 6P morphologies are either crystalline nano-needles composed of flat lying molecules or islands consisting of upright standing 6P, which are elongated in ripple direction. The islands' length to width ratio can be controlled by tuning of the ripples' shape. © 2018 IOP Publishing Ltd.

  2. Structural and Optical Properties of Core-Shell TiO2/CdS Prepared by Chemical Bath Deposition

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.

    2017-10-01

    Titanium dioxide (TiO2) nanorod arrays (NRAs) sensitized with cadmium sulfide (CdS) nanoparticles (NPs) were deposited by chemical bath deposition (CBD). TiO2 NRAs were also obtained by using the same method on glass substrates coated with fluorine-doped tin oxide (FTO). The structure of the FTO/TiO2/CdS core-shell was characterized by x-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, ultraviolet-visible (UV-Vis) absorption spectroscopy, photoluminescence, and photoelectrocatalysis of FTO/TiO2 and FTO/TiO2/CdS. The FTO/TiO2 conformed to anatase and rutile phase structures for different pH values and also with annealing. XRD patterns of the FTO/TiO2/CdS sample exhibited two peaks corresponding to hexagonal (100) and (101) for CdS. Scanning electron micrographs showed nanorod structures for the TiO2 thin films deposited at a pH value equal 0.7. Optical results showed the CdS deposited on nanorod TiO2 exhibited increased absorption ability in the visible light, indicating an increased photocatalytic activity for TiO2/CdS core-shell nanorods in the visible light. When illuminated with a UV-Vis light source, the TiO2/CdS core-shell films displayed high responses. A composite exists between the TiO2 nanostructure and CdS NPs because the film absorbs the incident light located in both the visible and UV-Vis regions. A higher response to UV-Vis light was attained with the use of TiO2 NRAs/CdS NPs films prepared by CBD. This approach offers a technique for fabricating photoelectrodes.

  3. Photocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-Doped SnO 2 /TiO 2

    PubMed Central

    Sikong, Lek; Niyomwas, Sutham; Rachpech, Vishnu

    2014-01-01

    Both N-doped and undoped thin films of 3SnO2/TiO2 composite were prepared, by sol-gel and dip-coating methods, and then calcined at 600°C for 2 hours. The films were characterized by FTIR, XRD, UV-Vis, SEM, and XPS, and their photocatalytic activities to degrade methylene blue in solution were determined, expecting these activities to correlate with the inactivation of bacteria, which was confirmed. The doped and undoped films were tested for activities against Gram-negative Escherichia coli (E. coli) and Salmonella typhi (S. typhi), and Gram-positive Staphylococcus aureus (S. aureus). The effects of doping on these composite films included reduced energy band gap, high crystallinity of anatase phase, and small crystallite size as well as increased photocatalytic activity and water disinfection efficiency. PMID:24693250

  4. Core-shell titanium dioxide-titanium nitride nanotube arrays with near-infrared plasmon resonances

    NASA Astrophysics Data System (ADS)

    Farsinezhad, Samira; Shanavas, Thariq; Mahdi, Najia; Askar, Abdelrahman M.; Kar, Piyush; Sharma, Himani; Shankar, Karthik

    2018-04-01

    Titanium nitride (TiN) is a ceramic with high electrical conductivity which in nanoparticle form, exhibits localized surface plasmon resonances (LSPRs) in the visible region of the solar spectrum. The ceramic nature of TiN coupled with its dielectric loss factor being comparable to that of gold, render it attractive for CMOS polarizers, refractory plasmonics, surface-enhanced Raman scattering and a whole host of sensing applications. We report core-shell TiO2-TiN nanotube arrays exhibiting LSPR peaks in the range 775-830 nm achieved by a simple, solution-based, low cost, large area-compatible fabrication route that does not involve laser-writing or lithography. Self-organized, highly ordered TiO2 nanotube arrays were grown by electrochemical anodization of Ti thin films on fluorine-doped tin oxide-coated glass substrates and then conformally coated with a thin layer of TiN using atomic layer deposition. The effects of varying the TiN layer thickness and thermal annealing on the LSPR profiles were also investigated. Modeling the TiO2-TiN core-shell nanotube structure using two different approaches, one employing effective medium approximations coupled with Fresnel coefficients, resulted in calculated optical spectra that closely matched the experimentally measured spectra. Modeling provided the insight that the observed near-infrared resonance was not collective in nature, and was mainly attributable to the longitudinal resonance of annular nanotube-like TiN particles redshifted due to the presence of the higher permittivity TiO2 matrix. The resulting TiO2-TiN core-shell nanotube structures also function as visible light responsive photocatalysts, as evidenced by their photoelectrochemical water-splitting performance under light emitting diode illumination using 400, 430 and 500 nm photons.

  5. Characterization of the thin layer photocatalysts TiO2 and V2O5- and Fe2O3- doped TiO2 prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Loc Luu, Cam; Nguyen, Quoc Tuan; Thoang Ho, Si; Nguyen, Tri

    2013-09-01

    The catalysts TiO2 and TiO2 doped with Fe and V were prepared using the sol-gel method. TiO2-modified samples were obtained in the form of a thick film on pyrex glass sticks and tubes and were used as catalysts in the gas phase photo-oxidation of p-xylene. The physico-chemical characteristics of the catalysts were determined using the methods of Brunauer-Emmett-Teller adsorption, x-ray diffraction, and infrared, ultraviolet and visible and Raman spectroscopies. The experimental results show that the introduction of V did not expand the region of light absorption, but slightly reduced the size of the TiO2 particles, and reduced the number of OH-groups, which should decrease the photocatalytic activity and efficiency of the obtained catalysts compared to those of pure TiO2. The Fe-doped TiO2 samples, in contrast, are characterized by an extension of the spectrum of photon absorption to the visible region with wavenumbers λ up to 464 nm and the values of their band gap energy decreased to lower quantities (up to 2.67 eV), therefore they should have higher catalytic activity and conversion efficiency of p-xylene in the visible region than the original sample. For these catalysts, a combined utilization of radiation by ultraviolet (λ = 365 nm) and visible (λ = 470 nm) light increased the activity and the yield in p-xylene conversion by a factor of around 2-3, as well as making these quantities more stable in comparison with those of TiO2-P25 Degussa.

  6. Facile electrochemical synthesis of antimicrobial TiO2 nanotube arrays

    PubMed Central

    Zhao, Yu; Xing, Qi; Janjanam, Jagadeesh; He, Kun; Long, Fei; Low, Ke-Bin; Tiwari, Ashutosh; Zhao, Feng; Shahbazian-Yassar, Reza; Friedrich, Craig; Shokuhfar, Tolou

    2014-01-01

    Infection-related complications have been a critical issue for the application of titanium orthopedic implants. The use of Ag nanoparticles offers a potential approach to incorporate antimicrobial properties into the titanium implants. In this work, a novel and simple method was developed for synthesis of Ag (II) oxide deposited TiO2 nanotubes (TiNTs) using electrochemical anodization followed by Ag electroplating processes in the same electrolyte. The quantities of AgO nanoparticles deposited in TiNT were controlled by selecting different electroplating times and voltages. It was shown that AgO nanoparticles were crystalline and distributed throughout the length of the nanotubes. Inductively coupled plasma mass spectrometry tests showed that the quantities of released Ag were less than 7 mg/L after 30 days at 37°C. Antimicrobial assay results show that the AgO-deposited TiNTs can effectively kill the Escherichia coli bacteria. Although the AgO-deposited TiNTs showed some cytotoxicity, it should be controllable by optimization of the electroplating parameters and incorporation of cell growth factor. The results of this study indicated that antimicrobial properties could be added to nanotextured medical implants through a simple and cost effective method. PMID:25429214

  7. Oxygen-implanted induced formation of oxide layer enhances blood compatibility on titanium for biomedical applications.

    PubMed

    Hung, Wei-Chiang; Chang, Fang-Mo; Yang, Tzu-Sen; Ou, Keng-Liang; Lin, Che-Tong; Peng, Pei-Wen

    2016-11-01

    Titanium dioxide (TiO2) layers were prepared on a Ti substrate by using oxygen plasma immersion ion implantation (oxygen PIII). The surface chemical states, structure, and morphology of the layers were studied using X-ray photoelectron spectroscopy, X-ray diffraction, Raman microscopy, atomic force microscopy and scanning electron microscope. The mechanical properties, such as the Young's modulus and hardness, of the layers were investigated using nanoindentation testing. The Ti(4+) chemical state was determined to be present on oxygen-PIII-treated surfaces, which consisted of nanocrystalline TiO2 with a rutile structure. Compared with Ti substrates, the oxygen-PIII-treated surfaces exhibited decreased Young's moduli and hardness. Parameters indicating the blood compatibility of the oxygen-PIII-treated surfaces, including the clotting time and platelet adhesion and activation, were studied in vitro. Clotting time assays indicated that the clotting time of oxygen-PIII-treated surfaces was longer than that of the Ti substrate, which was associated with decreased fibrinogen adsorption. In conclusion, the surface characteristics and the blood compatibility of Ti implants can be modified and improved using oxygen PIII. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Sol-gel synthesis and optical properties of titanium dioxide thin film

    NASA Astrophysics Data System (ADS)

    Ullah, Irfan; Khattak, Shaukat Ali; Ahmad, Tanveer; Saman; Ludhi, Nayab Ali

    2018-03-01

    The titanium dioxide (TiO2) is synthesized by sol-gel method using titanium-tetra-iso-propoxide (TTIP) as a starting material, and deposited on the pre-cleaned glass substrate using spin coating technique at optimized parameters. Energy dispersive X-ray (EDX) spectroscopy confirms successful TiO2 growth. The optical properties concerning the transmission and absorption spectra show 85% transparency and 3.28 eV wide optical band gap for indirect transition, calculated from absorbance. The exponential behavior of absorption edge is observed and attributed to the localized states electronic transitions, curtailed in the indirect band gap of the thin film. The film reveals decreasing refractive index with increasing wavelength. The photoluminescence (PL) study ascertains that luminescent properties are due to the surface defects.

  9. TiO2 brookite nanostructured thin layer on magneto-optical surface plasmon resonance transductor for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Colombelli, A.; Rella, R.; Caricato, A.; Cozzoli, P. D.; Martino, M.; Vasanelli, L.

    2012-09-01

    The sensing performance comparisons presented in this work were carried out by exploiting a suitable magneto-plasmonic sensor in both the traditional surface plasmon resonance configuration and the innovative magneto-optic surface plasmon resonance one. The particular multilayer transducer was functionalized with TiO2 Brookite nanorods layers deposited by matrix assisted pulsed laser evaporation, and its sensing capabilities were monitored in a controlled atmosphere towards different concentrations of volatile organic compounds mixed in dry air.

  10. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells.

    PubMed

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO 2 ) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO 2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO 2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue.

  11. Synthesis, characterization and application of Co doped TiO2 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Khan, M. I.

    2018-06-01

    To use the visible portion of solar light, 2% cobalt doped TiO2 (Co: TiO2) multilayer thin films having 1, 2, 3 and 4 stacked layers have been deposited on FTO substrates using spray pyrolysis technique. XRD results show that 1 and 2 layers of films have anatase phase. Brookite phase has been appeared at the 3 and 4 layered films. The average grain size of 1, 2, 3 and 4 layers of films are 14.4, 23.5, 29.7 and 33.6 nm respectively. UV-Vis results show that 4th layer film has high absorption in the visible region. The calculated Eg of 1, 2, 3 and 4 layers is 3.54, 3.42, 3.30 and 3.03 eV respectively. The calculated average sheet resistivity of 1, 2, 3 and 4 layers of films is 7.68 × 104, 4.54 × 104, 8.85 × 103 and 7.95 × 102 (ohm-m) respectively, according to four point probe technique. Solar simulator results show that highest solar conversion efficiency (5.6%) has been obtained by using 3 stacked layers photoanode. This new structure in the form of stack layers provides a way to improve the efficiency of optoelectronic devices.

  12. Surface analysis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium alloy implants.

    PubMed

    Advincula, Maria C; Petersen, Don; Rahemtulla, Firoz; Advincula, Rigoberto; Lemons, Jack E

    2007-01-01

    Surfaces of biocompatible alloys used as implants play a significant role in their osseointegration. Surface sol-gel processing (SSP), a variant of the bulk sol-gel technique, is a relatively new process to prepare bioreactive nanostructured titanium oxide for thin film coatings. The surface topography, roughness, and composition of sol-gel processed Ti6Al4V titanium alloy coatings was investigated by atomic force microscopy (AFM) and X-ray electron spectroscopy (XPS). This was correlated with corrosion properties, adhesive strength, and bioreactivity in simulated body fluids (SBF). Electroimpedance spectroscopy (EIS) and polarization studies indicated similar advantageous corrosion properties between sol-gel coated and uncoated Ti6Al4V, which was attributed to the stable TiO2 composition, topography, and adhesive strength of the sol-gel coating. In addition, inductive coupled plasma (ICP) and scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) analysis of substrates immersed in SBF revealed higher deposition of calcium and phosphate and low release rates of alloying elements from the sol-gel modified alloys. The equivalent corrosion behavior and the definite increase in nucleation of calcium apatite indicate the potential of the sol-gel coating for enhanced bioimplant applications. 2006 Wiley Periodicals, Inc.

  13. Electrical-pulse-induced resistivity modulation in Pt/TiO2-δ/Pt multilayer device related to nanoionics-based neuromorphic function

    NASA Astrophysics Data System (ADS)

    Kawamura, Kinya; Tsuchiya, Takashi; Takayanagi, Makoto; Terabe, Kazuya; Higuchi, Tohru

    2017-06-01

    Resistivity modulation behavior in Pt/TiO2-δ/Pt multilayer devices was investigated in terms of nanoionics-based neuromorphic function. The current relaxation behavior, which corresponds to short-term and long-term memorization in neuromorphic function, was analyzed using electrical pulses. In contrast to the huge difference in ionic conductivity for bulk crystal materials of TiO2-δ and WO3, the difference in the relaxation behavior was small. Rutherford backscattering spectrometry and hydrogen forward scattering spectrometry revealed that the TiO2-δ thin film contained 5.6 at. % of protons. This indicates that the neuromorphic function in TiO2-δ-based devices is caused by extrinsic proton transport, presumably through the grain boundary.

  14. A Designed TiO2 /Carbon Nanocomposite as a High-Efficiency Lithium-Ion Battery Anode and Photocatalyst.

    PubMed

    Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu

    2015-10-12

    Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The immunomodulatory effects of Zn-incorporated micro/nanostructured coating in inducing osteogenesis.

    PubMed

    Zhang, Ranran; Liu, Xujie; Xiong, Zhiyuan; Huang, Qianli; Yang, Xing; Yan, Hao; Ma, Jing; Feng, Qingling; Shen, Zhijian

    2018-03-08

    Micro/nanostructured TiO 2 /ZnO coating has been shown to possess multiple functions, including antibacterial activity and bioactivity. Osteoblast-like SaOS-2 cells were employed for evaluating the in vitro osteogenic capacity of this coating and positive results were obtained. However, traditional principles of osseointegration focus only on the osteogenic differentiation alone. The effects of immunomodulation on the osteogenic activity have been largely ignored. In this study, the inflammatory responses of macrophages on the micro/nanostructured TiO 2 /ZnO coating were investigated. The extract media of macrophage cell line RAW264.7 cultured on the TiO 2 /ZnO coating were collected as indirect co-culture conditioned media. The osteogenic activity of SaOS-2 cells in the conditioned media was investigated. Adhesion, ALP activity and extracellular mineralization of cells grown in the conditioned media extracted from the micro/nanostructured TiO 2 /ZnO coating were found to be enhanced, compared to those grown in the conditioned media extracted from the macroporous TiO 2 coating. The immune microenvironment produced by the micro/nanostructured TiO 2 /ZnO coating showed excellent capacity to promote osteogenesis, indicating that this coating could be a promising candidate for implant surface modification in orthopaedic and dental applications. Furthermore, this work could help us understand the interplay between the host immune system and the osteoimmunomodulatory properties of the biomaterials, and optimize the design for coating biomaterials.

  16. Dye-sensitized electron transfer from TiO2 to oxidized triphenylamines that follows first-order kinetics

    PubMed Central

    DiMarco, Brian N.; Troian-Gautier, Ludovic; Sampaio, Renato N.

    2017-01-01

    Two sensitizers, [Ru(bpy)2(dcb)]2+ (RuC) and [Ru(bpy)2(dpb)]2+ (RuP), where bpy is 2,2′-bipyridine, dcb is 4,4′-dicarboxylic acid-2,2′-bipyridine and dpb is 4,4′-diphosphonic acid-2,2′-bipyridine, were anchored to mesoporous TiO2 thin films and utilized to sensitize the reaction of TiO2 electrons with oxidized triphenylamines, TiO2(e–) + TPA+ → TiO2 + TPA, to visible light in CH3CN electrolytes. A family of four symmetrically substituted triphenylamines (TPAs) with formal Eo(TPA+/0) reduction potentials that spanned a 0.5 eV range was investigated. Surprisingly, the reaction followed first-order kinetics for two TPAs that provided the largest thermodynamic driving force. Such first-order reactivity indicates a strong Coulombic interaction between TPA+ and TiO2 that enables the injected electron to tunnel back in one concerted step. The kinetics for the other TPA derivatives were non-exponential and were modelled with the Kohlrausch–William–Watts (KWW) function. A Perrin-like reaction sphere model is proposed to rationalize the kinetic data. The activation energies were the same for all of the TPAs, within experimental error. The average rate constants were found to increase with the thermodynamic driving force, consistent with electron transfer in the Marcus normal region. PMID:29629161

  17. Application of thin dielectric films in low coherence fiber-optic Fabry-Pérot sensing interferometers: comparative study

    NASA Astrophysics Data System (ADS)

    Hirsch, Marzena; Wierzba, Paweł; Jedrzejewska-Szczerska, Małgorzata

    2016-11-01

    We examine the application of selected thin dielectric films, deposited by atomic layer deposition (ALD), in a low coherence fiber-optic Fabry-Pérot interferometer designed for sensing applications. Such films can be deposited on the end-face of a single mode optical fiber (SMF-28) in order to modify the reflectivity of the Fabry-Pérot cavity, to provide protection of the fibers from aggressive environments or to create a multi-cavity interferometric sensor. Spectral reflectance of films made from zinc oxide (ZnO), titanium dioxide (TiO2), aluminum oxide (Al2O3) and boron nitride (BN) was calculated for various thickness of the films and compared. The results show that the most promising materials for use in fiber-optic Fabry-Pérot interferometer are TiO2 and ZnO, although Al2O3 is also suitable for this application.

  18. In vitro study of electrodeposited fluoridated hydroxyapatite coating on G-II titanium with a nanostructured TiO2 interlayer.

    PubMed

    Lin, Jin-Shyong; Tsai, Tzung-Bau; Say, Wen-Ching; Chiu, Chun; Chen, Shih-Hsun

    2017-04-04

    Titanium and its alloys have been widely used as orthopedic and dental implants for several decades due to their superior mechanical properties, corrosion resistance and biocompatibility. Recently, many researches revealed that the hydroxyapatite coatings on biomedical materials can further improve their biocompatibility and bioactivity. However, hydroxyapatite coatings are easily decomposed, weakening the bonding between implants and bone tissues and resulting in a high dissolution rate in the biological environment. Prolonging the lifetime of hydroxyapatite in implants is valuable for improving postoperative quality. Hydroxyapatite is the primary inorganic component of bones and teeth. A suitable amount of fluoride ions would be beneficial for the formation of fluoridated hydroxyapatite, which can enhance bone-cell response and the acid resistance of enamel. In this study, G-II titanium substrate was anodized to form a TiO 2 interlayer with a nanotube structure. An electrolyte composed of fluoride, calcium and phosphorus ions was prepared for electroplating fluoridated hydroxyapatite (FHA) coatings onto anodized G-II titanium substrates at a constant voltage. The obtained coatings were examined for their microstructure, mechanical properties; moreover, the changes of apatite structure, surface morphology and corrosion resistance were further investigated after immersion in simulated body fluid (SBF) for a number of weeks. The results show that FHA coatings have a higher surface roughness and hardness than plain hydroxyapatite. After immersion in SBF, the FHA coatings induced the nucleation and growth of apatite on the surface and increased their crystallinity. In a potentiodynamic polarization test, FHA coatings exhibited a better anti-corrosion ability than bare G-II titanium substrate in SBF. Additionally, the anodized TiO 2 nanotube improved the adhesion and corrosion resistance of FHA as well.

  19. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications.

  20. Preparation and evaluation of the cytotoxic nature of TiO2 nanoparticles by direct contact method

    PubMed Central

    Chellappa, M; Anjaneyulu, U; Manivasagam, Geetha; Vijayalakshmi, U

    2015-01-01

    The purpose of this study is to prepare and evaluate the effect of synthesized titanium dioxide (TiO2) nanoparticles for their biocompatibility on physiological body fluids and the effect of cell toxicity to produce osteointegration when used as implantable materials. For the past few decades, the number of researches done to understand the importance of the biocompatibility of bioceramics, metals, and polymers and their effect on clinical settings of biomedical devices has increased. Hence, the total concept of biocompatibility encourages researchers to actively engage in the investigation of the most compatible materials in living systems by analyzing them using suitable physical, chemical, and biological (bioassay) methods. The ceramic material nano TiO2 was prepared by sol-gel method and analyzed for its functional group and phase formation by Fourier transform infrared spectroscopy and powder X-ray diffraction. Furthermore, the particle size, shape, surface topography, and morphological behavior were analyzed by dynamic light scattering, zeta potential, scanning electron microscopy–energy dispersive X-ray analysis, and transmission electron microscopy analysis. In addition to this, the cytotoxicity and cytocompatibility were determined on MG63 cell lines with varying doses of concentrations such as 1 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL with different time periods such as 24 hours and 48 hours. The results have not shown any toxicity, whereas, it improved the cell viability/proliferation at various concentrations. Hence, these findings indicate that the nano TiO2 material acts as a good implantable material when used in the biomedical field as a prime surface-modifying agent. PMID:26491305

  1. Fabrication of Double Layered Hybrid Solar Cells Consisting of Low-Temperature Anatase Titanium Oxide and Conducting Polymer

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Takamizawa, Yuta; Miyairi, Keiichi

    2008-01-01

    We have prepared a photovoltaic device consisting of poly[2-methoxy,5-(2'-ethyl-hexyloxy)-p-phenylenevinylene] (MEHPPV) and an n-type crystalline TiO2 (anatase) thin film by high-temperature process and low-temperature process at a temperature lower than 150 °C by sol-gel techniques. The refluxed sol of titanium-tetraisopropoxide (TTI) with water and nitric acid formed anatase phase TiO2 without requiring the high-temperature process, and the wettability of sol is successfully improved by diluting sol with ethanol. The short circuit current JSC, fill factor, and the power conversion efficiency increase with the heat-treatment temperature of TiO2, which is attributed to the improvement of series resistance of the TiO2 film. On the other hand, the open circuit voltage remains almost constant (ca. 1.0 V) with the change in heat-treatment temperature between 60 and 120 °C, whereas it decreases to 0.76 V in the device prepared on the TiO2 film sintered at 500 °C, probably owing to the change in crystallinity. The origin of open circuit voltage in indium tin oxide (ITO)/TiO2/MEHPPV/Au is also discussed. The open circuit voltage corresponds well to the energy difference of the conduction band edge of TiO2 and the highest occupied molecular orbital (HOMO) of MEHPPV (ca. 1 eV) in the device consisting of the ITO/low-temperature TiO2/MEHPPV/Au system.

  2. Characterization of TiO2 films obtained by a wet chemical process

    NASA Astrophysics Data System (ADS)

    Sedik, Asma; Ferraria, Ana M.; Carapeto, Ana P.; Bellal, Bouzid; Trari, Mohamed; Outemzabet, Ratiba

    2017-12-01

    TiO2 has an easily tunable bandgap and a great absorption dye ability being widely used in many fields and in a number of fascinating applications. In this study, a wet chemical route, particularly a sol gel method using spin-coating is adopted to deposit TiO2 thin films onto soda lime glass and silicon substrates. TiO2 films were prepared by using an alcoholic solution of analytical reagent grade TiCl4 as titanium precursor at various experimental conditions. The accent was put on the conditions of preparation (spin time, spin speed, precursor concentration, number of coating layers etc), doping and on the post-deposit treatment namely the drying and the crystallization. The results showed a strong dependence on the drying temperature and on the temperature and duration of the crystallization. We found that the solution preparation and its color are important for getting a reproducible final product. The Raman spectra recorded at room temperature, showed the characteristic peaks of anatase which appear at 143 and around 396 cm-1. These peaks confirm the presence of TiO2. The X-ray diffraction (XRD) was used to identify the crystalline characteristic of TiO2 while the chemical states and relative amounts of the main elements existing in the samples were investigated by X-ray Photoelectron Spectroscopy (XPS). The morphology of the samples was visualized by AFM. We show by this work the feasibility to obtain different nanostructured TiO2 by changing the concentration of the solution. Photocatalytic activity of TiO2 films was evaluated. Rhodamine B is a recalcitrant dye and TiO2 was successfully tested for its oxidation. An abatement of 60% was obtained under sunlight for an initial concentration of 10 mg/l.

  3. Remote sensing of potential lunar resources. I - Near-side compositional properties

    NASA Technical Reports Server (NTRS)

    Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1991-01-01

    Using telescopic CCD multispectral images of the lunar near side and the results of 330-870 nm spectroscopy of selected regions, the compositional differences relevant to the locations of potential lunar resources (such as ilmenite, FeTiO3, and solar-wind-implanted He-3 and H) are estimated. The 400/560 nm CCD ratio images were converted to weight percent TiO2, and the values were used to construct a new TiO2 abundance map which can be used to estimate the areas potentially rich in ilmenite. A 950/560 nm CCD ratio mosaic of the full moon provides estimates of relative surface maturity. Since high He-3 concentrations correlate with mature ilmenite-rich soils, a combination of relative surface maturity maps and the TiO2 abundance maps can be used to estimate distributions of He-3 (and possibly H) on local scales.

  4. The Effects of Biopolymers Composite Based Waste Cooking Oil and Titanium Dioxide Fillers as Superhydrophobic Coatings.

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Rus, A. Z. M.

    2017-08-01

    This project presents the effect of biopolymer composite surface coating on TiO2 fillers by analysing the static water contact angle, SEM micrographs, porosity, density and refractive index of biopolymer doped with different loading of TiO2. The different ratio loading of 0.5, 1.0, 1.5, 2.0 and 2.5 (wt/wt%) TiO2 can be used to improve the material properties in practical use for outdoor application especially to enhance the stability of surface coating. It is found that the smooth surfaces with a low ratio loading of TiO2 fillers on biopolymer composite surface coating increases the static water contact angle up to 162.29°. It is interpreted with respect to nano- features existing on the surface of the water repellent creates a thin superhydrphobic layer. The relationship between porosity and density is indirectly proportional where the higher the loading of TiO2 filler produce the lower porosity up to 0.86% of the surface coating. The movement from shorter to longer of wavelength was observed before and after exposure indicates that there are optimization of absorption of UV-B radiation as the amount of delocalisation.

  5. Solute redistribution and phase stability at FeCr/TiO 2–x interfaces under ion irradiation

    DOE PAGES

    Xu, Y.; Aguiar, J. A.; Yadav, S. K.; ...

    2015-02-26

    Cr diffusion in trilayer thin films of 100 nm Fe–18Cr/125 nm TiO 2–x/100 nm Fe–18Cr deposited on MgO substrates at 500 °C was studied by either annealing at 500 °C or Ni 3+ ion irradiation at 500 °C. Microchemistry and microstructure evolution at the metal/oxide interfaces were investigated using (high-resolution) transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. Diffusion of Cr into the O-deficient TiO 2 layer, with negligible segregation to the FeCr/TiO 2–x interface itself, was observed under both annealing and irradiation. Cr diffusion into TiO 2–x was enhanced in ion-irradiated samples as compared to annealed.more » Irradiation-induced voids and amorphization of TiO 2–x was also observed. The experimental results are rationalized using first-principles calculations that suggest an energetic preference for substituting Ti with Cr in sub-stoichiometric TiO 2. Furthermore, the implications of these results on the irradiation stability of oxide-dispersed ferritic alloys are discussed.« less

  6. Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film.

    PubMed

    Yao, Yanyan; Ohko, Yoshihisa; Sekiguchi, Yuki; Fujishima, Akira; Kubota, Yoshinobu

    2008-05-01

    Ag/titanium dioxide (TiO(2))-coated silicon catheters were easily fabricated with Ag nanoparticles deposition on both the inside wall and the outside wall of TiO(2)-coated catheters by TiO(2) photocatalysis. This is an application of the silicon catheters coated with TiO(2), which possess a self-sterilizing and self-cleaning property combining with UV light illumination (Ohko et al., J Biomed Mater Res: Appl Biomater 2001;58:97). Ag/TiO(2)-coated silicon catheters exhibited a strong bactericidal effect even in the dark. When the 2-5 x 10(5) of colony-forming units of Escherichia coli, Pseudomonas aeruginosa, or Staphylococcus aureus were respectively applied to the surface of the Ag/TiO(2) catheters, which were loaded with approximately 15 nmol cm(-2) of Ag, 99% effective sterilization occurred in a very short time: 20 min for E. coli, 60 min for P. aeruginosa, and 90 min for S. aureus. Additionally, the Ag/TiO(2)-coated catheters possessed a strong self-cleaning property. Using UV illumination, the photocatalytic decomposition rate of methylene blue dye representing the self-cleaning capability, on an Ag/TiO(2) catheter which was loaded with 2 nmol cm(-2) of Ag, was approximately 1.2 times higher (at maximum) than that on TiO(2) coating alone. Furthermore, the Ag nanoparticles can be pre-eminently and uniformly deposited onto the TiO(2) coating, and the amount of Ag was easily controllable from a few nanomoles per square centimeter to approximately 70 nmol cm(-2) by changing the UV illumination time for TiO(2) photocatalysis. This type of catheter shows a great promise in lowering the incidence of catheter-related bacterial infections. Copyright 2007 Wiley Periodicals, Inc.

  7. Epitaxial Ferroelectric Ba(0.5)Sr(0.5)TiO3 Thin Films for Room-Temperature High-Frequency Tunable Element Applications

    NASA Technical Reports Server (NTRS)

    Chen, C. L.; Feng, H. H.; Zhang, Z.; Brazdeikis, A.; Miranda, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Huang, Z. J.; Liou, Y.; Chu, W. K.; hide

    1999-01-01

    Perovskite Ba(0.5)SR(0.5)TiO3 thin films have been synthesized on (001) LaAl03 substrates by pulsed laser ablation. Extensive X-ray diffraction, rocking curve, and pole-figure studies suggest that the films are c-axis oriented and exhibit good in-plane relationship of <100>(sub BSTO)//<100>(sub LAO). Rutherford Backscattering Spectrometry studies indicate that the epitaxial films have excellent crystalline quality with an ion beam minimum yield chi(sub min) Of only 2.6 %. The dielectric property measurements by the interdigital technique at 1 MHz show room temperature values of the relative dielectric constant, epsilon(sub r), and loss tangent, tan(sub delta), of 1430 and 0.007 with no bias, and 960 and 0.001 with 35 V bias, respectively. The obtained data suggest that the as-grown Ba(0.5)SR(0.5)TiO3 films can be used for development of room-temperature high-frequency tunable elements.

  8. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO2 films

    NASA Astrophysics Data System (ADS)

    Chen, T. L.; Furubayashi, Y.; Hirose, Y.; Hitosugi, T.; Shimada, T.; Hasegawa, T.

    2007-10-01

    Nb0.06SnxTi0.94-xO2 (x <= 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of λ = 500 nm is estimated to be 12.4% for Nb0.06Sn0.3 Ti0.64O2 thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO2. Low resistivity on the order of 10-4 Ω cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb0.06Snx Ti0.94-xO2 thin films (x <= 0.2). Optical and transport analyses demonstrate that doping Sn into Nb0.06 Ti0.94O2 can reduce the refractivity while maintaining low resistivity and high transparency.

  9. Preparation, stabilization and characterization of TiO(2) on thin polyethylene films (LDPE). Photocatalytic applications.

    PubMed

    Zhiyong, Yu; Mielczarski, E; Mielczarski, J; Laub, D; Buffat, Ph; Klehm, U; Albers, P; Lee, K; Kulik, A; Kiwi-Minsker, L; Renken, A; Kiwi, J

    2007-02-01

    An innovative way to fix preformed nanocrystalline TiO(2) on low-density polyethylene film (LDPE-TiO(2)) is presented. The LDPE-TiO(2) film was able to mediate the complete photodiscoloration of Orange II using about seven times less catalyst than a TiO(2) suspension and proceeded with a photonic efficiency of approximately 0.02. The catalyst shows photostability over long operational periods during the photodiscoloration of the azo dye Orange II. The LDPE-TiO(2) catalyst leads to full dye discoloration under simulated solar light but only to a 30% TOC reduction since long-lived intermediates generated in solution seem to preclude full mineralization of the dye. Physical insight is provided into the mechanism of stabilization of the LDPE-TiO(2) composite during the photocatalytic process by X-ray photoelectron spectroscopy (XPS). The adherence of TiO(2) on LDPE is investigated by electron microscopy (EM) and atomic force microscopy (AFM). The thickness of the TiO(2) film is seen to vary between 1.25 and 1.69 microm for an unused LDPE-TiO(2) film and between 1.31 and 1.50 microm for a sample irradiated 10h during Orange II discoloration pointing out to a higher compactness of the TiO(2) film after the photocatalysis.

  10. Engineering the Band Gap States of the Rutile TiO2 (110) Surface by Modulating the Active Heteroatom.

    PubMed

    Yu, Yaoguang; Yang, Xu; Zhao, Yanling; Zhang, Xiangbin; An, Liang; Huang, Miaoyan; Chen, Gang; Zhang, Ruiqin

    2018-04-19

    Introducing band gap states to TiO 2 photocatalysts is an efficient strategy for expanding the range of accessible energy available in the solar spectrum. However, few approaches are able to introduce band gap states and improve photocatalytic performance simultaneously. Introducing band gap states by creating surface disorder can incapacitate reactivity where unambiguous adsorption sites are a prerequisite. An alternative method for introduction of band gap states is demonstrated in which selected heteroatoms are implanted at preferred surface sites. Theoretical prediction and experimental verification reveal that the implanted heteroatoms not only introduce band gap states without creating surface disorder, but also function as active sites for the Cr VI reduction reaction. This promising approach may be applicable to the surfaces of other solar harvesting materials where engineered band gap states could be used to tune photophysical and -catalytic properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of top-down nanomachining on electrical conduction properties of TiO2 nanostructure-based chemical sensors.

    PubMed

    Francioso, L; De Pascali, C; Capone, S; Siciliano, P

    2012-03-09

    The present research was motivated by the growing interest of the scientific community towards the understanding of basic gas-surface interaction mechanisms in 1D nanostructured metal oxide semiconductors, whose significantly enhanced chemical detection sensitivity is known. In this work, impedance spectroscopy (IS) was used to evaluate how a top-down patterning of the sensitive layer can modulate the electrical properties of a gas sensor based on a fully integrated nanometric array of TiO(2) polycrystalline strips. The aim of the study was supported by comparative experimental activity carried out on different thin film gas sensors based on identical TiO(2) polycrystalline sensitive thin films. The impedance responses of the investigated devices under dry air (as the reference environment) and ethanol vapors (as the target gas) were fitted by a complex nonlinear least-squares method using LEVM software, in order to find an appropriate equivalent circuit describing the main conduction processes involved in the gas/semiconductor interactions. Two different equivalent circuit models were identified as completely representative of the TiO(2) thin film and the TiO(2) nanostructure-based gas sensors, respectively. All the circuit parameters were quantified and the related standard deviations were evaluated. The simulated results well approximated the experimental data as indicated by the small mean errors of the fits (in the range of 10(-4)) and the small standard deviations of the circuit parameters. In addition to the substrate capacitance, three different contributions to the overall conduction mechanism were identified for both equivalent circuits: bulk conductivity, intergrain contact and semiconductor-electrode contact, electrically represented by an ideal resistor R(g), a parallel R(gb)C(gb) block and a parallel R(c)-CPE(c) combination, respectively. In terms of equivalent circuit modeling, the sensitive layer patterning introduced an additional parameter in parallel connection with the whole circuit block. Such a circuit element (an ideal inductor, L) has an average value of about 125 μH and exhibits no direct dependence on the analyte gas concentration. Its presence could be due to complex mutual inductance effects occurring both between all the adjacent nanostrips (10 µm spaced) and between the nanostrips and the n-type-doped silicon substrate underneath the thermal oxide (wire/plate effect), where a two order of magnitude higher magnetic permeability of silicon can give L values comparable with those estimated by the fitting procedure. Slightly modified experimental models confirmed that the theoretical background, regulating thin film devices based on metal oxide semiconductors, is also valid for nanopatterned devices.

  12. Fabrication of Al2O3 coated 2D TiO2 nanoparticle photonic crystal layers by reverse nano-imprint lithography and plasma enhanced atomic layer deposition.

    PubMed

    Kim, Ki-Kang; Ko, Ki-Young; Ahn, Jinho

    2013-10-01

    This paper reports simple process to enhance the extraction efficiency of photoluminescence (PL) from Eu-doped yttrium oxide (Y2O3:Eu3+) thin-film phosphor (TFP). Two-dimensional (2D) photonic crystal layer (PCL) was fabricated on Y2O3:Eu3+ phosphor films by reverse nano-imprint method using TiO2 nanoparticle solution as a nano-imprint resin and a 2D hole-patterned PDMS stamp. Atomic scale controlled Al2O3 deposition was performed onto this 2D nanoparticle PCL for the optimization of the photonic crystal pattern size and stabilization of TiO2 nanoparticle column structure. As a result, the light extraction efficiency of the Y2O3:Eu3+ phosphor film was improved by 2.0 times compared to the conventional Y2O3:Eu3+ phosphor film.

  13. Photocatalytic Anatase TiO2 Thin Films on Polymer Optical Fiber Using Atmospheric-Pressure Plasma.

    PubMed

    Baba, Kamal; Bulou, Simon; Choquet, Patrick; Boscher, Nicolas D

    2017-04-19

    Due to the undeniable industrial advantages of low-temperature atmospheric-pressure plasma processes, such as low cost, low temperature, easy implementation, and in-line process capabilities, they have become the most promising next-generation candidate system for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In the work detailed in this article, photocatalytic anatase TiO 2 thin films were deposited at a low temperature on polymer optical fibers using an atmospheric-pressure plasma process. This method overcomes the challenge of forming crystalline transition metal oxide coatings on polymer substrates by using a dry and up-scalable method. The careful selection of the plasma source and the titanium precursor, i.e., titanium ethoxide with a short alkoxy group, allowed the deposition of well-adherent, dense, and crystalline TiO 2 coatings at low substrate temperature. Raman and XRD investigations showed that the addition of oxygen to the precursor's carrier gas resulted in a further increase of the film's crystallinity. Furthermore, the films deposited in the presence of oxygen exhibited a better photocatalytic activity toward methylene blue degradation assumedly due to their higher amount of photoactive {101} facets.

  14. Enhanced Magnetization of Cobalt Defect Clusters Embedded in TiO 2-δ Films

    DOE PAGES

    Cortie, David L.; Khaydukov, Yury; Keller, Thomas; ...

    2017-02-23

    High magnetizations are desirable for spintronic devices that operate by manipulating electronic states using built-in magnetic fields. However, the magnetic moment in promising dilute magnetic oxide nanocomposites is very low, typically corresponding to only fractions of a Bohr magneton for each dopant atom. In this study, we report a large magnetization formed by ion implantation of Co into amorphous TiO 2-δ films, producing an inhomogeneous magnetic moment, with certain regions producing over 2.5 μ B per Co, depending on the local dopant concentration. Polarized neutron reflectometry was used to depth-profile the magnetization in the Co:TiO 2-δ nanocomposites, thus confirming themore » pivotal role of the cobalt dopant profile inside the titania layer. X-ray photoemission spectra demonstrate the dominant electronic state of the implanted species is Co 0, with a minor fraction of Co 2+. The detected magnetizations have seldom been reported before and lie near the upper limit set by Hund’s rules for Co 0, which is unusual because the transition metal’s magnetic moment is usually reduced in a symmetric 3D crystal-field environment. Low-energy positron annihilation lifetime spectroscopy indicates that defect structures within the titania layer are strongly modified by the implanted Co. We propose that a clustering motif is promoted by the affinity of the positively charged implanted species to occupy microvoids native to the amorphous host. This provides a seed for subsequent doping and nucleation of nanoclusters within an unusual local environment.« less

  15. Improved metal-insulator-transition characteristics of ultrathin VO2 epitaxial films by optimized surface preparation of rutile TiO2 substrates

    NASA Astrophysics Data System (ADS)

    Martens, Koen; Aetukuri, Nagaphani; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.

    2014-02-01

    Key to the growth of epitaxial, atomically thin films is the preparation of the substrates on which they are deposited. Here, we report the growth of atomically smooth, ultrathin films of VO2 (001), only ˜2 nm thick, which exhibit pronounced metal-insulator transitions, with a change in resistivity of ˜500 times, at a temperature that is close to that of films five times thicker. These films were prepared by pulsed laser deposition on single crystalline TiO2(001) substrates that were treated by dipping in acetone, HCl and HF in successive order, followed by an anneal at 700-750 °C in flowing oxygen. This pretreatment removes surface contaminants, TiO2 defects, and provides a terraced, atomically smooth surface.

  16. Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications

    NASA Astrophysics Data System (ADS)

    Castro, António G. B.; Bastos, Alexandre C.; Galstyan, Vardan; Faglia, Guido; Sberveglieri, Giorgio; Salvado, Isabel M. Miranda

    2014-09-01

    Metallic implants and devices are widely used in the orthopedic and orthodontic clinical areas. However, several problems regarding their adhesion with the living tissues and inflammatory responses due to the release of metallic ions to the medium have been reported. The modification of the metallic surfaces and the use of biocompatible protective coatings are two approaches to solve such issues. In this study, in order to improve the adhesion properties and to increase the corrosion resistance of metallic Ti substrates we have obtained a hybrid structure based on TiO2 nanotubular arrays and PDMS-TEOS films. TiO2 nanotubes have been prepared with two different diameters by means of electrochemical anodization. PDMS-TEOS films have been prepared by the sol-gel method. The morphological and the elemental analysis of the structures have been investigated by scanning electron microscopy and energy dispersive spectroscopy (EDS). Electrochemical impedance spectroscopy (EIS) and polarization curves have been performed during immersion of the samples in Kokubo’s simulated body fluid (SBF) at 37 °C to study the effect of structure layers and tube diameter on the protective properties. The obtained results show that the modification of the surface structure of TiO2 and the application of PDMS-TEOS film is a promising strategy for the development of implant materials.

  17. Adherence of oral streptococci to nanostructured titanium surfaces.

    PubMed

    Narendrakumar, Krunal; Kulkarni, Mukta; Addison, Owen; Mazare, Anca; Junkar, Ita; Schmuki, Patrik; Sammons, Rachel; Iglič, Aleš

    2015-12-01

    Peri-implantitis and peri-mucositis pose a severe threat to the success of dental implants. Current research focuses on the development of surfaces that inhibit biofilm formation while not inferring with tissue integration. This study compared the adherence of two oral bacterial species, Streptococcus sanguinis and Streptococcus mutans to nanostructured titanium surfaces. The samples included TiO2 nanotubes formed by anodization of titanium foil of 100, 50 and 15nm diameter (NT15, NT50, NT100), a nanoporous (15nm pore diameter) surface and compact TiO2 control. Adherent surviving bacteria were enumerated after 1h in an artificial saliva medium containing bovine mucin. Lowest numbers of adherent bacteria of both species were recovered from the original titanium foil and nanoporous surface and highest numbers from the Ti100 nanotubes. Numbers of attached S. sanguinis increased in the order (NT15

  18. Resonant infrared matrix-assisted pulsed laser evaporation of TiO2 nanoparticle films

    NASA Astrophysics Data System (ADS)

    Mayo, Daniel C.; Paul, Omari; Airuoyo, Idemudia J.; Pan, Zhengda; Schriver, Kenneth E.; Avanesyan, Sergey M.; Park, Hee K.; Mu, Richard R.; Haglund, Richard F.

    2013-03-01

    The successful development of flexible, high performance thin films that are competitive with silicon-based technology will likely require fabricating films of hybrid materials that incorporate nanomaterials, glasses, ceramics, polymers, and thin films. Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is an ideal method for depositing organic materials and nanoparticles with minimal photochemical or photothermal damage to the deposited material. Furthermore, there are many nonhazardous solvents containing chemical functional groups with infrared absorption bands that are accessible using IR lasers. We report here results of recent work in which RIR-MAPLE has been employed successfully to deposit thin films of TiO2 nanoparticles on Si substrates. Using an Er:YAG laser ( λ=2.94 μm), we investigated a variety of MAPLE matrices containing -OH moieties, including water and all four isomers of butyl alcohol. The alcohol isomers are shown to provide effective and relatively nontoxic solvents for use in the RIR-MAPLE process. In addition, we examine the effects of varying concentration and laser fluence on film roughness and surface coverage.

  19. Scientific Fundamentals and Technological Development of Novel Biocompatible/Corrosion Resistant Ultrananocrystalline Diamond (UNCD) Coating Enabling Next Generation Superior Metal-Based Dental Implants

    NASA Astrophysics Data System (ADS)

    Kang, Karam

    Current Ti-based dental implants exhibit failure (2-10%), due to various mechanisms, including chemical corrosion of the surface of the TiO2 naturally covered Ti-based implants. This thesis focused on developing a unique biocompatible/bio-inert/corrosion resistant/low cost Ultrananocrystalline Diamond (UNCD) coating (with 3-5 nm grain size) for encapsulation of Tibased micro-implants to potentially eliminate the corrosion/mechanical induced failure of current commercial Ti-based dental implants. Microwave Plasma Chemical Vapor Deposition (MPCVD) and Hot Filament Chemical Vapor Deposition (HFCVD) processes were used to grow UNCD coatings. The surface topography and chemistry of UNCD coatings were characterized using scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopies (XPS) respectively. In conclusion, this thesis contributed to establish the optimal conditions to grow UNCD coatings on the complex 3-D geometry of Ti-based micro-implants, with geometry similar to real implants, relevant to developing UNCD-coated Ti-based dental implants with superior mechanical/chemical performance than current Ti-based implants.

  20. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection.

    PubMed

    Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K

    2016-05-04

    Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.

  1. Spectroscopic studies of porphyrin functionalized multiwalled carbon nanotubes and their interaction with TiO2 nanoparticles surface

    NASA Astrophysics Data System (ADS)

    Zannotti, Marco; Giovannetti, Rita; D'Amato, Chiara Anna; Rommozzi, Elena

    2016-01-01

    UV-vis and fluorescence investigations about the non-covalent interaction, in ethanolic solutions, of multi-wall carbon nanotube (MWCNT) with Coproporphyrin-I, and its Cu(II) and Zn(II) complexes (MCPIs) have been reported. Evidence of binding between MWCNTs and porphyrins was discovered from spectral adsorption decrease with respect to free porphyrins and by the exhibition of photoluminescence quenching with respect to free porphyrins demonstrating that MWCNT@MCPIs are potential donor-acceptor complexes. Equilibrium and kinetic aspects in the interactions with monolayer transparent TiO2 thin films with the obtained MWCNT@MCPIs are clarified showing their effective adsorption by porphyrin links on the TiO2 monolayer support, with respect to not only MWCNTs, according to the Langmuir model and with pseudo-first-order kinetics. Morphological description of the adsorption of MWCNT@MCPIs on TiO2 with scanning electron microscopy has been reported. The obtained experimental evidences describe therefore MWCNT@MCPIs as potential sensitizers in the DSSC (Dye-Sensitized Solar Cell) applications.

  2. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng

    2012-07-01

    A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.

  3. Transport Properties of Anatase-TiO2 Polycrystalline-Thin-Film Field-Effect Transistors with Electrolyte Gate Layers

    NASA Astrophysics Data System (ADS)

    Horita, Ryohei; Ohtani, Kyosuke; Kai, Takahiro; Murao, Yusuke; Nishida, Hiroya; Toya, Taku; Seo, Kentaro; Sakai, Mio; Okuda, Tetsuji

    2013-11-01

    We have fabricated anatase-TiO2 polycrystalline-thin-film field-effect transistors (FETs) with poly(vinyl alcohol) (PVA), ion-liquid (IL), and ion-gel (IG) gate layers, and have tried to improve the response to gate voltage by varying the concentration of mobile ions in these electrolyte gate layers. The increase in the concentration of mobile ions by doping NaOH into the PVA gate layer or reducing the gelator in the IG gate layer markedly increases the drain-source current and reduces the driving gate voltage, which show that the mobile ions in the PVA, IL, and IG gate layers cause the formation of electric double layers (EDLs), which act as nanogap capacitors. In these TiO2-EDL-FETs, the slow formation of EDLs and the oxidation reaction at the interface between the surface of the TiO2 film and the electrolytes cause unideal FET properties. In the optimized IL and IG TiO2-EDL-FETs, the driving gate voltage is less than 1 V and the ON/OFF ratios of the transfer characteristics are about 1×104 at RT, and the nearly metallic state is realized at the interface purely by applying a gate voltage.

  4. Characterization and nanomechanical properties of novel dental implant coatings containing copper decorated-carbon nanotubes.

    PubMed

    Sasani, N; Vahdati Khaki, J; Mojtaba Zebarjad, S

    2014-09-01

    Fluorapatite-titania coated Ti-based implants are promising for using in dental surgery for restoring teeth. One of the challenges in implantology is to achieve a bioactive coating with appropriate mechanical properties. In this research, simple sol-gel method was developed for synthesis of fluorapatite-titania-carbon nanotube decorated with antibacterial agent. Triethyl phosphate [PO4(C2H5)3], calcium nitrate [Ca(NO3)2] and ammonium fluoride (NH4F) were used as precursors under an ethanol-water based solution for fluorapatite (FA) production. Titanium isopropoxide and isopropanol were used as starting materials for making TiO2 sol-gels. Also, Copper acetate [Cu(C2H3O2)2·H2O] was used as precursor for decoration of multi walled carbon nanotubes (MWCNTs) with wet chemical method. The decorated MWCNTs (CNT(Cu)) were evaluated by transmission electron microscopy (TEM). The phase identification of the FA-TiO2-CNT(Cu) coating was carried out by XRD analysis. Morphology of coated samples was investigated by SEM observations. The surface elastic modulus and hardness of coatings were studied using nanoindentation technique. The results indicate that novel dental implant coating containing FA, TiO2 and copper decorated MWCNTs have proper morphological features. The results of nanoindentation test show that incorporation of CNT(Cu) in FA-TiO2 matrix can improve the nanomechanical properties of composite coating. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate

    NASA Astrophysics Data System (ADS)

    Tan, A. W.; Ismail, R.; Chua, K. H.; Ahmad, R.; Akbar, S. A.; Pingguan-Murphy, B.

    2014-11-01

    Titanium dioxide (TiO2) nanowire surface structures were fabricated in situ by a thermal oxidation process, and their ability to enhance the osteogenic potential of primary osteoblasts was investigated. Human osteoblasts were isolated from nasal bone and cultured on a TiO2 nanowires coated substrate to assess its in vitro cellular interaction. Bare featureless Ti-6Al-4V substrate was used as a control surface. Initial cell adhesion, cell proliferation, cell differentiation, cell mineralization, and osteogenic related gene expression were examined on the TiO2 nanowire surfaces as compared to the control surfaces after 2 weeks of culturing. Cell adhesion and cell proliferation were assayed by field emission scanning electron microscope (FESEM) and Alamar Blue reduction assay, respectively. The nanowire surfaces promoted better cell adhesion and spreading than the control surface, as well as leading to higher cell proliferation. Our results showed that osteoblasts grown onto the TiO2 nanowire surfaces displayed significantly higher production levels of alkaline phosphatase (ALP), extracellular (ECM) mineralization and genes expression of runt-related transcription factor (Runx2), bone sialoprotein (BSP), ostoepontin (OPN) and osteocalcin (OCN) compared to the control surfaces. This suggests the potential use of such surface modification on Ti-6Al-4V substrates as a promising means to improve the osteointegration of titanium based implants.

  6. Applications of large-area nanopatterning to energy generation and storage devices

    NASA Astrophysics Data System (ADS)

    Mills, Eric N.

    This dissertation encompasses the creation and testing of nanostructured, electrochemically-active energy generation and storage devices, and development of the associated fabrication techniques. The fabricated devices include nanopatterned, plasmonically-active, TiO2+Au thin films for Photocatalytic Water Splitting (PCW), TiO2-based Dye-Sensitized Solar Cells (DSSCs) incorporating nanopatterned, plasmonically-active metallic front electrodes, and Si nanopillar anodes for Li-ion batteries. Techniques were also developed for encapsulation and removal of wet-etched Si nanowires from their mother substrates. TiO2 was the first material to be widely used for PCW. Its use is hampered by its large bandgap (~3.2eV), and poor recombination lifetimes. Au nanoparticles (NPs) have been previously used to improve recombination lifetimes in TiO2 by separating photogenerated carriers near the NP edges, and to increase photocurrents by injecting plasmonically-excited hot electrons into the TiO2 conduction band. Using nanostructured TiO 2+Au electrodes, we aim to increase the PCW efficiency of TiO2 -based electrodes. Dye-sensitized solar cells (DSSCs) employ visible-absorbing dyes anchored to a high-surface-area semiconducting scaffold. The front transparent conducting electrode (TCE) is typically ITO, a scarce and expensive material. We aim to increase the efficiency of thin-film DSSCs and eliminate the use of ITO by using a metallic subwavelength array (MESH) of nanoholes as the front TCE. Silicon holds promise as a high-capacity anode material for Li-ion batteries, as it can store ~10x the Li of graphite, the current leading anode material (3569 vs. 372 mAh/g). However, Si undergoes dramatic (>300%) volume expansion upon "lithiation", pulverizing any structure with non-nanoscopic dimensions (>250nm). We created large-area arrays of "nanopillars" with sub-100nm diameters, using roll-to-roll-compatible flexible-mold NIL on commercially-available metal substrates. Ordered nanopatterning by NIL combined with Metal-Assisted Chemical Etching (MACE) techniques is ideal for creating large-area arrays of high aspect-ratio nanowires, for use in solar cells or battery anodes. We introduce a polymer encapsulation technique that allows separation of the nanowire array from the mother substrate, while leaving the array structure, and original metal nanopattern, intact.

  7. Fabrication of TiO2-Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications.

    PubMed

    Lu, Wen-Chung; Tseng, Li-Chun; Chang, Kao-Shuo

    2017-09-11

    This study is the first to employ combinatorial hydrothermal synthesis and facile spin-coating technology to fabricate TiO 2 -reduced graphene oxide (rGO) nanorod composition spreads. The features of this study are (1) the development of a self-designed spin-coating wedge, (2) the systemic investigation of the structure-property relationship of the system, (3) the high-throughput screening of the optimal ratio from a wide range of compositions for photocatalytic and photoelectrochemical (PEC) applications, and (4) the effective coupling between the density gradient TiO 2 nanorod array and the thickness gradient rGO. The formation of rGO in the fabricated TiO 2 -rGO sample was monitored through Fourier transform infrared spectrometry. Transmission electron microscopy images also suggested that the TiO 2 nanorod surfaces were covered with a thin layer of amorphous rGO. The rutile TiO 2 plane evolution along the composition variation was verified through X-ray diffraction. 7% TiO 2 -93% rGO on the nanorod composition spread exhibited the most promising photocatalytic ability; the corresponding photodegradation kinetics, denoted by the photodegradation rate constant (k), was determined to be approximately 12.7 × 10 -3 min -1 . The excellent performance was attributed to the effective coupling between the TiO 2 and rGO, which improved the charge carrier transport, thus inhibiting electron-hole pair recombination. A cycling test implied that 7% TiO 2 -93% rGO is a reliable photocatalyst. A photoluminescence spectroscopy study also supported the superior photocatalytic ability of the sample, which was attributed to its markedly poorer recombination behavior. In addition, without further treatment, the sample exhibited excellent PEC stability; the photocurrent density was more than three times higher than that exhibited by the density gradient TiO 2 nanorods.

  8. Effect of calcium phosphate surface coating on bone ingrowth onto porous-surfaced titanium alloy implants in rabbit tibiae.

    PubMed

    Yang, Cheng

    2002-04-01

    The purpose of the present study was to determine whether calcium phosphate coating has a significant impact on bone ingrowth into a porous titanium implant. Porous-surfaced titanium alloy Ti-6Al-4V implants were prepared with or without the addition of a thin surface layer of calcium phosphate applied by sol-gel coating. Implants were placed into the tibiae of 16 rabbits. Implanted sites were allowed to heal for 2 weeks, after which specimens were retrieved for morphometric assessment using backscatter scanning electron microscopy. The data collected show that there is more extensive ingrowth into the porous regions of the calcium phosphate-coated implants than into the control implants. The weighted average ingrowth for the calcium phosphate-coated implants was 2.01, whereas that for the noncoated implants was 1.49; the difference is statistically significant (P <.01). The addition of a thin layer of calcium phosphate to these implants appears to promote a more extensive implant-to-bone interface by allowing the neck regions to become intimately ingrown with bone even after only 2 weeks of initial healing. Copyright 2002 American Association of Oral and Maxillofacial Surgeons

  9. Swift heavy ion induced modification in morphological and physico-chemical properties of tin oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Nanocomposite thin films of tin oxide (SnO2)/titanium oxide (TiO2) were grown on silicon (1 0 0) substrates by electron beam evaporation deposition technique using sintered nanocomposite pellet of SnO2/TiO2 in the percentage ratio of 95:5. Sintering of the nanocomposite pellet was done at 1300 °C for 24 h. The thicknesses of these films were measured to be 100 nm during deposition using piezo-sensor attached to the deposition chamber. TiO2 doped SnO2 nanocomposite films were irradiated by 100 MeV Au8+ ion beam at fluence range varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2 at Inter University Accelerator Center (IUAC), New Delhi, India. Chemical properties of pristine and ion irradiation modified thin films were characterized by Fourier Transform Infrared (FTIR) spectroscopy. FTIR peak at 610 cm-1 confirms the presence of O-Sn-O bridge of tin (IV) oxide signifying the composite nature of pristine and irradiated thin films. Atomic Force Microscope (AFM) in tapping mode was used to study the surface morphology and grain growth due to swift heavy ion irradiation at different fluencies. Grain size calculations obtained from sectional analysis of AFM images were compared with results obtained from Glancing Angle X-ray Diffraction (GAXRD) measurements using Scherrer’s formulae. Phase transformation due to irradiation was observed from Glancing Angle X-ray Diffraction (GAXRD) results. The prominent 2θ peaks observed in GAXRD spectrum are at 30.67°, 32.08°, 43.91°, 44.91° and 52.35° in the irradiated films.

  10. Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Xu, Chao; Feng, ZuDe

    2014-09-01

    Fe-doped TiO2 thin films were fabricated by liquid phase deposition (LPD) method, using Fe(III) nitrate as both Fe element source and fluoride scavenger instead of commonly-used boric acid (H3BO3). Scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis spectrum were employed to examine the effects of Fe element on morphology, structure and optical characteristics of TiO2 films. The as-prepared films were served as photoanode applied to photogenerated cathodic protection of SUS304 stainless steel (304SS). It was observed that the photoelectrochemical properties of the as-prepared films were enhanced with the addition of Fe element compared to the undoped TiO2 film. The highest photoactivity was achieved for Ti13Fe (Fe/Ti = 3 molar ratio) film prepared in precursor bath containing 0.02 M TiF4 + 0.06 M Fe(NO3)3 under white-light illumination. The effective anticorrosion behaviors can be attributed to the Fe element incorporation which decreases the probability of photogenerated charge-carrier recombination and extends the light response range of Fe-doped TiO2 films appeared to visible-light region.

  11. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    PubMed Central

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039

  12. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    PubMed

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  13. Using TiO2 as a conductive protective layer for photocathodic H2 evolution.

    PubMed

    Seger, Brian; Pedersen, Thomas; Laursen, Anders B; Vesborg, Peter C K; Hansen, Ole; Chorkendorff, Ib

    2013-01-23

    Surface passivation is a general issue for Si-based photoelectrodes because it progressively hinders electron conduction at the semiconductor/electrolyte interface. In this work, we show that a sputtered 100 nm TiO(2) layer on top of a thin Ti metal layer may be used to protect an n(+)p Si photocathode during photocatalytic H(2) evolution. Although TiO(2) is a semiconductor, we show that it behaves like a metallic conductor would under photocathodic H(2) evolution conditions. This behavior is due to the fortunate alignment of the TiO(2) conduction band with respect to the hydrogen evolution potential, which allows it to conduct electrons from the Si while simultaneously protecting the Si from surface passivation. By using a Pt catalyst the electrode achieves an H(2) evolution onset of 520 mV vs NHE and a Tafel slope of 30 mV when illuminated by the red part (λ > 635 nm) of the AM 1.5 spectrum. The saturation photocurrent (H(2) evolution) was also significantly enhanced by the antireflective properties of the TiO(2) layer. It was shown that with proper annealing conditions these electrodes could run 72 h without significant degradation. An Fe(2+)/Fe(3+) redox couple was used to help elucidate details of the band diagram.

  14. Preparation and characterization of nanorod-like TiO2 and ZnO films used for charge-transport buffer layers in P3HT based organic solar cells

    NASA Astrophysics Data System (ADS)

    Thao, Tran Thi; Long, Dang Dinh; Truong, Vo-Van; Dinh, Nguyen Nang

    2016-08-01

    With the aim of findingout the appropriate buffer layers for organic solar cells (OSC), TiO2 and ZnO on ITO/glass were prepared as nanorod-like thin films. The TiO2 films were crystallyzed in the anatase phase and the ZnO films, in the wurtzite structure. The nanorods in both the fims have a similar size of 15 to 20 nm in diameter and 30 to 50 nm in length. The nanorods have an orientation nearly perpendicular to the ITO-substrate surface. From UV-Vis data the bandgap of the TiO2 and ZnO films were determined tobe 3.26 eV and 3.42 eV, respectively. The laminar organic solar cells with added TiO2 and ZnO, namely ITO/TiO2/P3HT:PCBM/LiF/Al (TBD) and ITO/ZnO/P3HT:PCBM/LiF/Al (ZBD)were made for characterization of the energy conversion performance. As a result, comparing to TiO2,the nanorod-likeZnO filmwas found to be a much better buffer layer that made the fill factor improve from a value of 0.60 for TBD to 0.82 for ZBD, and consequently thePCE was enhanced from 0.84 for TBD to 1.17% for ZBD.

  15. Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.

    PubMed

    Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk

    2017-10-11

    We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO 2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO 2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; V OC = 0.73 V, J SC = 15.4 mA·cm -2 , and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m -2 ), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO 2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only J SC through improved ICT but also V OC through the evenly distributed sensitizer surface coverage.

  16. Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells.

    PubMed

    Krýsová, Hana; Krýsa, Josef; Kavan, Ladislav

    2018-01-01

    For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO 2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO 2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20-200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO 2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO 2 films. The blocking properties of the as-deposited TiO 2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO 2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar cells.

  17. A study comparing three different laser-assisted hatching techniques.

    PubMed

    Ma, B; Wang, Y; Zhang, H; Zhang, X

    2014-01-01

    Laser-assisted hatching (LAH) is recognized as a useful technology to improve clinical pregnancy rates and implantation rates. This study reports the differences between a new LAH method and two conventional LAH techniques. The authors studied 151 patients with repeated implantation failure, who were divided into three groups. In group 1, the zona pellucida (ZP) was opened using LAH (n = 52). In group 2, laser-assisted thinning was performed to dissolve the outer layer of the ZP (n = 49). In group 3, laser-assisted thinning was performed to dissolve the inner layer of the ZP (n = 50). The clinical pregnancy rates and implantation rates among the groups were compared. The results demonstrate that there are significant differences in the clinical pregnancy rates and implantation rates between group 3 and the other two groups. Performing laser-assisted thinning to dissolve the inner layer of the ZP markedly increases the pregnancy rates and implantation rates of patients with repeated implantation failure.

  18. TiO2 films photocatalytic activity improvements by swift heavy ions irradiation

    NASA Astrophysics Data System (ADS)

    Rafik, Hazem; Mahmoud, Izerrouken; Mohamed, Trari; Abdenacer, Benyagoub

    2014-08-01

    TiO2 thin films synthesized by sol-gel on glass substrates are irradiated by 90 MeV Xe ions at various fluences and room temperature under normal incidence. The structural, electrical, optical and surface topography properties before and after Xe ions irradiation are investigated. X-ray diffraction (XRD) reveals that the crystallinity is gradually destroyed, and the films become amorphous above 5×1012 ions/cm2. The band gap is not affected by Xe ions irradiation as evidenced from the optical measurements. By contrast, the conductivity increases with raising Xe fluence. The energy band diagram established from the electrochemical characterization shows the feasibility of TiO2 films for the photo-electrochemical chromate reduction. Xe ion irradiation results in enhanced photocatalytic activity in aquatic medium, evaluated by the reduction of Cr(VI) into trivalent state. TiO2 films irradiated at 1013 Xe/cm2 exhibit the highest photoactivity; 69% of chromate (10 ppm) is reduced at pH 3 after 4 h of exposure to sunlight (1120 mW cm-2) with a quantum yield of 0.06%.

  19. Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Chenxi; Luo, Yudan; Chen, Xiaohong; Ou-Yang, Wei; Chen, Yiwei; Sun, Zhuo; Huang, Sumei

    2016-12-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic (PV) cells. Cell structures based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive and brisk advances, holding great potential to grow into a mature PV technology. High power conversion efficiency (PCE) values have been obtained from the mesoscopic configuration in which a few hundred nano-meter thick mesoporous scaffold (e.g. TiO2 or Al2O3) infiltrated by perovskite absorber was sandwiched between the electron and hole transport layers. A uniform and compact hole-blocking layer is necessary for high efficient perovskite-based thin film solar cells. In this study, we investigated the characteristics of TiO2 compact layer using various methods and its effects on the PV performance of perovskite solar cells. TiO2 compact layer was prepared by a sol-gel method based on titanium isopropoxide and HCl, spin-coating of titanium diisopropoxide bis (acetylacetonate), screen-printing of Dyesol's bocking layer titania paste, and a chemical bath deposition (CBD) technique via hydrolysis of TiCl4, respectively. The morphological and micro-structural properties of the formed compact TiO2 layers were characterized by scanning electronic microscopy and X-ray diffraction. The analyses of devices performance characteristics showed that surface morphologies of TiO2 compact films played a critical role in affecting the efficiencies. The nanocrystalline TiO2 film deposited via the CBD route acts as the most efficient hole-blocking layer and achieves the best performance in perovskite solar cells. The CBD-based TiO2 compact and dense layer offers a small series resistance and a large recombination resistance inside the device, and makes it possible to achieve a high power conversion efficiency of 12.80%.

  20. Thin film growth into the ion track structures in polyimide by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Mättö, L.; Malm, J.; Arstila, K.; Sajavaara, T.

    2017-09-01

    High-aspect ratio porous structures with controllable pore diameters and without a stiff substrate can be fabricated using the ion track technique. Atomic layer deposition is an ideal technique for depositing thin films and functional surfaces on complicated 3D structures due to the high conformality of the films. In this work, we studied Al2O3 and TiO2 films grown by ALD on pristine polyimide (Kapton HN) membranes as well as polyimide membranes etched in sodium hypochlorite (NaOCl) and boric acid (BO3) solution by means of RBS, PIXE, SEM-EDX and helium ion microcopy (HIM). The focus was on the first ALD growth cycles. The areal density of Al2O3 film in the 400 cycle sample was determined to be 51 ± 3 × 1016 at./cm2, corresponding to the thickness of 55 ± 3 nm. Furthermore, the growth per cycle was 1.4 Å/cycle. The growth is highly linear from the first cycles. In the case of TiO2, the growth per cycle is clearly slower during the first 200 cycles but then it increases significantly. The growth rate based on RBS measurements is 0.24 Å/cycle from 3 to 200 cycles and then 0.6 Å/cycle between 200 and 400 cycles. The final areal density of TiO2 film after 400 cycles is 148 ± 3 × 1015 at./cm2 which corresponds to the thickness of 17.4 ± 0.4 nm. The modification of the polyimide surface by etching prior to the deposition did not have an effect on the Al2O3 and TiO2 growth.

  1. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application

    NASA Astrophysics Data System (ADS)

    Wang, Y. M.; Wang, F. H.; Xu, M. J.; Zhao, B.; Guo, L. X.; Ouyang, J. H.

    2009-08-01

    Magnesium and its alloy currently are considered as the potential biodegradable implant materials, while the accelerated corrosion rate in intro environment leads to implant failure by losing the mechanical integrity before complete restoration. Dense oxide coatings formed in alkaline silicate electrolyte with and without titania sol addition were fabricated on magnesium alloy using microarc oxidation process. The microstructure, composition and degradation behavior in simulated body fluid (SBF) of the coated specimens were evaluated. It reveals that a small amount of TiO 2 is introduced into the as-deposited coating mainly composed of MgO and Mg 2SiO 4 by the addition of titania sol into based alkaline silicate electrolytic bath. With increasing concentration of titania sol from 0 to 10 vol.%, the coating thickness decreases from 22 to 18 μm. Electrochemical tests show that the Ecorr of Mg substrate positively shifted about 300˜500 mV and icorr lowers more than 100 times after microarc oxidation. However, the TiO 2 modified coatings formed in electrolyte containing 5 and 10 vol.% titania sol indicate an increasing worse corrosion resistance compared with that of the unmodified coating, which is possibly attributed to the increasing amorphous components caused by TiO 2 involvement. The long term immersing test in SBF is consistent with the electrochemical test, with the coated Mg alloy obviously slowing down the biodegradation rate, meanwhile accompanied by the increasing damage trends in the coatings modified by 5 and 10 vol.% titania sol.

  2. Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness

    NASA Astrophysics Data System (ADS)

    Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy

    2017-02-01

    Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.

  3. Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Tang, Haixiong; Zhou, Zhi; Bowland, Christopher C.; Sodano, Henry A.

    2015-08-01

    Perovskite structure (ABO3) thin films have wide applications in electronic devices due to their unique properties, including high dielectric permittivity, ferroelectricity and piezoelectric coupling. Here, we report an approach to grow highly textured thick lead titanate (PbTiO3) films on conductive substrates by a two-step hydrothermal reaction. Initially, vertically aligned TiO2 nanowire arrays are grown on fluorine-doped tin oxide (FTO) coated glass, which act as template crystals for conversion to the perovskite structure. The PbTiO3 films are then converted from TiO2 NW arrays by diffusing Pb2+ ions into the template through a second hydrothermal reaction. The dielectric permittivity and piezoelectric coupling coefficient (d33) of the PbTiO3 films are as high as 795 at 1 kHz and 52 pm V-1, respectively. The reported process can also potentially be expanded for the assembly of other complex perovskite ATiO3 (A = Ba, Ca, Cd, etc) films by using the highly aligned TiO2 NW arrays as templates. Therefore, the approach introduced here opens up a new door to synthesize ferroelectric thin films on conductive substrates for application in sensors, actuators, and ultrasonic transducers that are important in various industrial and scientific areas.

  4. Memristive behavior of the SnO2/TiO2 interface deposited by sol-gel

    NASA Astrophysics Data System (ADS)

    Boratto, Miguel H.; Ramos, Roberto A.; Congiu, Mirko; Graeff, Carlos F. O.; Scalvi, Luis V. A.

    2017-07-01

    A novel and cheap Resistive Random Access Memory (RRAM) device is proposed within this work, based on the interface between antimony doped Tin Oxide (4%at Sb:SnO2) and Titanium Oxide (TiO2) thin films, entirely prepared through a low-temperature sol-gel process. The device was fabricated on glass slides using evaporated aluminum electrodes. Typical bipolar memristive behavior under cyclic voltage sweeping and square wave voltages, with well-defined high and low resistance states (HRS and LRS), and set and reset voltages are shown in our samples. The switching mechanism, explained by charges trapping/de-trapping by defects in the SnO2/TiO2 interface, is mainly driven by the external electric field. The calculated on/off ratio was about 8 × 102 in best conditions with good reproducibility over repeated measurement cycles under cyclic voltammetry and about 102 under applied square wave voltage.

  5. Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting.

    PubMed

    Cho, In Sun; Logar, Manca; Lee, Chi Hwan; Cai, Lili; Prinz, Fritz B; Zheng, Xiaolin

    2014-01-08

    We report a new flame reduction method to generate controllable amount of oxygen vacancies in TiO2 nanowires that leads to nearly three times improvement in the photoelectrochemical (PEC) water-splitting performance. The flame reduction method has unique advantages of a high temperature (>1000 °C), ultrafast heating rate, tunable reduction environment, and open-atmosphere operation, so it enables rapid formation of oxygen vacancies (less than one minute) without damaging the nanowire morphology and crystallinity and is even applicable to various metal oxides. Significantly, we show that flame reduction greatly improves the saturation photocurrent densities of TiO2 nanowires (2.7 times higher), α-Fe2O3 nanowires (9.4 times higher), ZnO nanowires (2.0 times higher), and BiVO4 thin film (4.3 times higher) in comparison to untreated control samples for PEC water-splitting applications.

  6. Dry-spray deposition of TiO2 for a flexible dye-sensitized solar cell (DSSC) using a nanoparticle deposition system (NPDS).

    PubMed

    Kim, Min-Saeng; Chun, Doo-Man; Choi, Jung-Oh; Lee, Jong-Cheon; Kim, Yang Hee; Kim, Kwang-Su; Lee, Caroline Sunyong; Ahn, Sung-Hoon

    2012-04-01

    TiO2 powders were deposited on indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates for application to the photoelectrode of a dye-sensitized solar cell (DSSC). In the conventional DSSC manufacturing process, a semiconductor oxide such as TiO2 powder requires a sintering process at higher temperature than the glass transition temperature (T(g)) of polymers, and thus utilization of flexible polymer substrates in DSSC research has been constrained. To overcome this restriction related to sintering, we used a nanoparticle deposition system (NPDS) that could produce a thin coating layer through a dry-spray method under atmospheric pressure at room temperature. The powder was sprayed through a slit-type nozzle having a 0.4 x 10 mm2 rectangular outlet. In order to determine the deposited TiO2 thickness, five kinds of TiO2 layered specimens were prepared, where the specimens have single and double layer structures. Deposited powders on the ITO coated PET substrates were observed using FE-SEM and a scan profiler The thicker TiO2 photoelectrode with a DSSC having a double layer structure showed higher energy efficiency than the single layer case. The highest fabricated flexible DSSC displayed a short circuit current density J(sc) = 1.99 mA cm(-2), open circuit voltage V(oc) = 0.71 V, and energy efficiency eta = 0.94%. These results demonstrate the possibility of utilizing the dry-spray method to fabricate a TiO2 layer on flexible polymer substrates at room temperature under atmospheric pressure.

  7. Supersensitization of CdS quantum dots with a near-infrared organic dye: toward the design of panchromatic hybrid-sensitized solar cells.

    PubMed

    Choi, Hyunbong; Nicolaescu, Roxana; Paek, Sanghyun; Ko, Jaejung; Kamat, Prashant V

    2011-11-22

    The photoresponse of quantum dot solar cells (QDSCs) has been successfully extended to the near-IR (NIR) region by sensitizing nanostructured TiO(2)-CdS films with a squaraine dye (JK-216). CdS nanoparticles anchored on mesoscopic TiO(2) films obtained by successive ionic layer adsorption and reaction (SILAR) exhibit limited absorption below 500 nm with a net power conversion efficiency of ~1% when employed as a photoanode in QDSC. By depositing a thin barrier layer of Al(2)O(3), the TiO(2)-CdS films were further modified with a NIR absorbing squaraine dye. Quantum dot sensitized solar cells supersensitized with a squariand dye (JK-216) showed good stability during illumination with standard global AM 1.5 solar conditions, delivering a maximum overall power conversion efficiency (η) of 3.14%. Transient absorption and pulse radiolysis measurements provide further insight into the excited state interactions of squaraine dye with SiO(2), TiO(2), and TiO(2)/CdS/Al(2)O(3) films and interfacial electron transfer processes. The synergy of combining semiconductor quantum dots and NIR absorbing dye provides new opportunities to harvest photons from different regions of the solar spectrum. © 2011 American Chemical Society

  8. Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation

    NASA Astrophysics Data System (ADS)

    Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  9. Strong guided mode resonant local field enhanced visible harmonic generation in an azo-polymer resonant waveguide grating.

    PubMed

    Lin, Jian Hung; Tseng, Chun-Yen; Lee, Ching-Ting; Young, Jeff F; Kan, Hung-Chih; Hsu, Chia Chen

    2014-02-10

    Guided mode resonance (GMR) enhanced second- and third-harmonic generation (SHG and THG) is demonstrated in an azo-polymer resonant waveguide grating (RWG), comprised of a poled azo-polymer layer on top of a textured SU8 substrate with a thin intervening layer of TiO2. Strong SHG and THG outputs are observed by matching either in-coming fundamental- or out-going harmonic-wavelength to the GMR wavelengths of the azo-polymer RWG. Without the azo-polymer coating, pure TiO2 RWGs, do not generate any detectable SHG using a fundamental beam peak intensity of 2 MW/cm(2). Without the textured TiO2 layer, a planar poled azo-polymer layer results in 3650 times less SHG than the full nonlinear RWG structure under identical excitation conditions. Rigorous coupled-wave analysis calculations confirm that this enhancement of the nonlinear conversion is due to strong local electric fields that are generated at the interfaces of the TiO2 and azo-polymer layers when the RWG is excited at resonant wavelengths associated with both SHG and THG conversion processes.

  10. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    DOE R&D Accomplishments Database

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  11. Thin-film rechargeable lithium batteries for implantable devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bates, J.b.; Dudney, N.J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x-ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin-film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001 %/cycle or less. The reliability and performance of Li-LiCoO{sub 2} thin-film batteries make themmore » attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.« less

  12. Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles.

    PubMed

    Yang, Tingting; Qian, Shi; Qiao, Yuqing; Liu, Xuanyong

    2016-09-01

    TiO2 nanotubes prepared by electrochemical anodization have received considerable attention in the biomedical field. In this work, different amounts of gold nanoparticles were immobilized onto TiO2 nanotubes using 3-aminopropyltrimethoxysilane as coupling agent. Field emission scanning electron microscopy and X-ray photoelectron spectroscopy were used to investigate the surface morphology and composition. Photoluminescence spectra and surface zeta potential were also measured. The obtained results indicate that the surface modified gold nanoparticles can significantly enhance the electron storage capability and reduce the surface zeta potential compared to pristine TiO2 nanotubes. Moreover, the surface modified gold nanoparticles can stimulate initial adhesion and spreading of rat bone mesenchymal stem cells as well as proliferation, while the osteogenous performance of TiO2 nanotubes will not be reduced. The gold-modified surface presents moderate antibacterial effect on both Staphylococcus aureus and Escherichia coli. It should be noted that the surface modified fewer gold nanoparticles has better antibacterial effect compared to the surface of substantial modification of gold nanoparticles. Our study illustrates a composite surface with favorable cytocompatibility and antibacterial effect and provides a promising candidate for orthopedic and dental implant. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Pulsed Laser Deposited Ferromagnetic Chromium Dioxide thin Films for Applications in Spintronics

    NASA Astrophysics Data System (ADS)

    Dwivedi, S.; Jadhav, J.; Sharma, H.; Biswas, S.

    Stable rutile type tetragonal chromium dioxide (CrO2) thin films have been deposited on lattice-matched layers of TiO2 by KrF excimer laser based pulsed laser deposition (PLD) technique using Cr2O3 target. The TiO2 seed layer was deposited on oxidized Si substrates by the same PLD process followed by annealing at 1100 °C for 4 h. The lattice-matched interfacial layer is required for the stabilization of Cr (IV) phase in CrO2, since CrO2 behaves as a metastable compound under ambient conditions and readily converts into its stable phase of Cr (III) oxide, Cr2O3. Analyses with X-ray diffraction (XRD), Glancing-angle XRD (GIXRD), Raman spectroscopy and grazing-angle Fourier transform infra-red (FTIR) spectroscopy confirm the presence of tetragonal CrO2 phase in the as-deposited films. Microstructure and surface morphology in the films were studied with field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Electrical and magnetic characterizations of the films were performed at room temperature. Such type of stable half-metallic CrO2 thin films with low field magnetoresistive switching behaviour are in demand for applications as diverse as spin-FETs, magnetic sensors, and magneto-optical devices.

  14. Optical and Structural Properties of Ion-implanted InGaZnO Thin Films Studied with Spectroscopic Ellipsometry and Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Woo; Jeong, Pil Seong; Choi, Suk-Ho; Lee, Hosun; Kong, Bo Hyun; Koun Cho, Hyung

    2009-11-01

    Amorphous InGaZnO (IGZO) thin films were grown using RF sputtering deposition at room temperature and their corresponding dielectric functions were measured. In order to reduce defects and increase carrier concentrations, we examined the effect of forming gas annealing and ion implantation. The band gap energy increased with increasing forming gas annealing temperature. We implanted the IGZO thin films with F- ions in order to decrease oxygen vacancies. For comparison, we also implanted InO- ions. Transmission electron microscopy showed that the amorphous phase undergoes transformation to a nanocrystalline phase due to annealing. We also observed InGaZnO4 nanocrystals having an In-(Ga/Zn) superlattice structure. As the annealing temperature increased, the optical gap energy increased due to crystallization. After annealing, we observed an oxygen-vacancy-related 1.9 eV peak for both unimplanted and InO-implanted samples. However, F- ion implantation substantially reduced the amplitude of the 1.9 eV peak, which disappeared completely at a F fluence of 5×1015 cm-2. We observed other defect-related peaks at 3.6 and 4.2 eV after annealing, which also disappeared after F implantation.

  15. Antibacterial photocatalytic activity of different crystalline TiO2 phases in oral multispecies biofilm.

    PubMed

    Pantaroto, Heloisa N; Ricomini-Filho, Antonio P; Bertolini, Martinna M; Dias da Silva, José Humberto; Azevedo Neto, Nilton F; Sukotjo, Cortino; Rangel, Elidiane C; Barão, Valentim A R

    2018-07-01

    Titanium dioxide (TiO 2 ) incorporation in biomaterials is a promising technology due to its photocatalytic and antibacterial activities. However, the antibacterial potential of different TiO 2 crystalline structures on a multispecies oral biofilm remains unknown. We hypothesized that the different crystalline TiO 2 phases present different photocatalytic and antibacterial activities. Three crystalline TiO 2 films were deposited by magnetron sputtering on commercially pure titanium (cpTi), in order to obtain four groups: (1) machined cpTi (control); (2) A-TiO 2 (anatase); (3) M-TiO 2 (mixture of anatase and rutile); (4) R-TiO 2 (rutile). The morphology, crystalline phase, chemical composition, hardness, elastic modulus and surface free energy of the surfaces were evaluated. The photocatalytic potential was assessed by methylene blue degradation assay. The antibacterial activity was evaluated on relevant oral bacteria, by using a multispecies biofilm (Streptococcus sanguinis, Actinomyces naeslundii and Fusobacterium nucleatum) formed on the treated titanium surfaces (16.5h) followed by UV-A light exposure (1h) to generate reactive oxygen species production. All TiO 2 films presented around 300nm thickness and improved the hardness and elastic modulus of cpTi surfaces (p<0.05). A-TiO 2 and M-TiO 2 films presented superior photocatalytic activity than R-TiO 2 (p<0.05). M-TiO 2 revealed the greatest antibacterial activity followed by A-TiO 2 (≈99.9% and 99% of bacterial reduction, respectively) (p<0.001 vs. control). R-TiO 2 had no antibacterial activity (p>0.05 vs. control). This study brings new insights on the development of extra oral protocols for the photocatalytic activity of TiO 2 in oral biofilm-associated disease. Anatase and mixture-TiO 2 showed antibacterial activity on this oral bacterial biofilm, being promising surface coatings for dental implant components. Copyright © 2018 The Academy of Dental Materials. All rights reserved.

  16. Thermo-stable carbon nanotube-TiO2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process

    NASA Astrophysics Data System (ADS)

    Inoue, Ippei; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-07-01

    We produced a thermostable TiO2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor-liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO2 photoelectrodes.

  17. Growth, characterization and post-processing of inorganic and hybrid organic-inorganic thin films deposited using atomic and molecular layer deposition techniques

    NASA Astrophysics Data System (ADS)

    Abdulagatov, Aziz Ilmutdinovich

    Atomic layer deposition (ALD) and molecular layer deposition (MLD) are advanced thin film coating techniques developed for deposition of inorganic and hybrid organic-inorganic films respectively. Decreasing device dimensions and increasing aspect ratios in semiconductor processing has motivated developments in ALD. The beginning of this thesis will cover study of new ALD chemistry for high dielectric constant Y 2O3. In addition, the feasibility of conducting low temperature ALD of TiN and TiAlN is explored using highly reactive hydrazine as a new nitrogen source. Developments of these ALD processes are important for the electronics industry. As the search for new materials with more advanced properties continues, attention has shifted toward exploring the synthesis of hierarchically nanostructured thin films. Such complex architectures can provide novel functions important to the development of state of the art devices for the electronics industry, catalysis, energy conversion and memory storage as a few examples. Therefore, the main focus of this thesis is on the growth, characterization, and post-processing of ALD and MLD films for fabrication of novel composite (nanostructured) thin films. Novel composite materials are created by annealing amorphous ALD oxide alloys in air and by heat treatment of hybrid organic-inorganic MLD films in inert atmosphere (pyrolysis). The synthesis of porous TiO2 or Al2O3 supported V2O5 for enhanced surface area catalysis was achieved by the annealing of inorganic TiVxOy and AlV xOy ALD films in air. The interplay between phase separation, surface energy difference, crystallization, and melting temperature of individual oxides were studied for their control of film morphology. In other work, a class of novel metal oxide-graphitic carbon composite thin films was produced by pyrolysis of MLD hybrid organic-inorganic films. For example, annealing in argon of titania based hybrid films enabled fabrication of thin films of intimately mixed TiO2 and nanographitized carbon. The graphitized carbon in the film was formed as a result of the removal of hydrogen by pyrolysis of the organic constituency of the MLD film. The presence of graphitic carbon allowed a 14 orders of magnitude increase in the electrical conductivity of the composite material compared fully oxidized rutile TiO 2.

  18. Immediate provisionalization of immediate implants in the esthetic zone: a prospective case series evaluating implant survival, esthetics, and bone maintenance.

    PubMed

    Levin, Barry P; Wilk, Brian L

    2013-05-01

    This prospective study evaluates immediately placed and immediately provisionalized implants in the esthetic zone. All implants were TiO2-blasted, fluoride-modified, grade 4 titanium, with a coronal microthread design. Bone grafting and guided bone regeneration (GBR) was performed at all sites, and screw-retained temporary restorations were delivered on the day of surgery. All of the provisional crown(s) were out of occlusal function and remained in place for at least 8 weeks prior to initiation of definitive restorative therapy. Bone maintenance (BM) was considered successful if radiographs demonstrated proximal bone levels even or coronal to the implant platform. Of the 29 implants placed, 25 (86 percent) achieved bone maintenance at least 12 months post-loading with the final restorations. This study was considered successful, with 100 percent implant survival after at least 1 year loading of the final restoration, and 100 percent of patients were satisfied with the esthetics of their implant treatment.

  19. Surface and microstructural properties of photocatalytic cements for pavement applications.

    DOT National Transportation Integrated Search

    2016-10-01

    Thin concrete inlays incorporating flowable fibrous concrete (FFC) mix designs as well as titanium dioxide (TiO2)- containing photocatalytic cements are a promising pavement preservation solution. These multi-functional inlays offer enhanced construc...

  20. Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Kouzoudis, D.; Dickey, E. C.; Qian, D.; Anderson, M. A.; Shahidain, R.; Lindsey, M.; Green, L.

    2000-01-01

    Ribbonlike magnetoelastic sensors can be considered the magnetic analog of an acoustic bell; in response to an externally applied magnetic field impulse the sensors emit magnetic flux with a characteristic resonant frequency. The magnetic flux can be detected external to the test area using a pick-up coil, enabling query remote monitoring of the sensor. The characteristic resonant frequency of a magnetoelastic sensor changes in response to mass loads. [L.D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon, New York, 1986). p. 100].Therefore, remote query chemical sensors can be fabricated by combining the magnetoelastic sensors with a mass changing, chemically responsive layer. In this work magnetoelastic sensors are coated with humidity-sensitive thin films of ceramic, nanodimensionally porous TiO2 to make remote query humidity sensors. c2000 American Institute of Physics.

Top