Radiation Damage Formation And Annealing In Mg-Implanted GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Sean; Kelly, Michael J.; Yan, John
2005-06-30
We have implanted GaN with Mg ions over an energy range of 200keV to 1MeV at substrate temperatures of -150 (cold) and +300 deg. C (hot). The radiation damage formation in GaN was increased for cold implants when compared to samples implanted at elevated temperatures. The increase in damage formation is due to a reduction in the dynamic defect annealing during ion irradiation. The dopant stopping in the solid also depends upon the implant temperature. For a fixed implant energy and dose, Mg ions have a shorter range in GaN for cold implants when compared to hot implants which ismore » caused by the increase in scattering centres (disorder)« less
Erber, R; Wulf, M; Becker-Birck, M; Kaps, S; Aurich, J E; Möstl, E; Aurich, C
2012-02-01
Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (P<0.001) and heart rate variability (P<0.01). Branding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Temperature changes in dental implants following exposure to hot substances in an ex vivo model.
Feuerstein, Osnat; Zeichner, Kobi; Imbari, Chen; Ormianer, Zeev; Samet, Nachum; Weiss, Ervin I
2008-06-01
The habitual consumption of extremely hot foods and beverages may affect implant treatment modality. Our objectives were to: (i) establish the maximum temperature produced intra-orally while consuming very hot substances and (ii) use these values in an ex vivo model to assess the temperature changes along the implant-bone interface. Temperatures were measured using thermocouples linked to a computer. The thermocouple electrodes were attached to the tooth-gum interface of the interproximal areas in 14 volunteers during consumption of extremely hot foods and beverages. The in vivo measured temperature values obtained were used in an ex vivo model of a bovine mandible block with an implant and with an assembled abutment. Temperatures were measured by thermocouple electrodes attached to five locations, three of them along the implant-bone interface. During consumption of a hot beverage, a maximum temperature of up to 76.3 degrees C was recorded, and a calculated extreme intra-oral temperature of 61.4 degrees C was established. The ex vivo model showed a high correlation between the temperature measured at the abutment and that measured at the abutment-implant interface and inside the implant, reaching maximum temperatures close to 60 degrees C. At the mid-implant-bone and apical implant-bone interfaces, the maximum temperatures measured were 43.3 and 42 degrees C, respectively. The maximum temperatures measured at the implant-bone interfaces reached the temperature threshold of transient changes in bone (42 degrees C). The results of this study support the notion that intra-oral temperatures, developed during the consumption of very hot substances, may be capable of damaging peri-implant tissues.
Busch, Martin H J; Vollmann, Wolfgang; Grönemeyer, Dietrich H W
2006-05-26
Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach (1/4) of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q V(ind) < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q V(ind) > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for.
Busch, Martin HJ; Vollmann, Wolfgang; Grönemeyer, Dietrich HW
2006-01-01
Background Active magnetic resonance imaging implants, for example stents, stent grafts or vena cava filters, are constructed as wireless inductively coupled transmit and receive coils. They are built as a resonator tuned to the Larmor frequency of a magnetic resonance system. The resonator can be added to or incorporated within the implant. This technology can counteract the shielding caused by eddy currents inside the metallic implant structure. This may allow getting diagnostic information of the implant lumen (in stent stenosis or thrombosis for example). The electro magnetic rf-pulses during magnetic resonance imaging induce a current in the circuit path of the resonator. A by material fatigue provoked partial rupture of the circuit path or a broken wire with touching surfaces can set up a relatively high resistance on a very short distance, which may behave as a point-like power source, a hot spot, inside the body part the resonator is implanted to. This local power loss inside a small volume can reach ¼ of the total power loss of the intact resonating circuit, which itself is proportional to the product of the resonator volume and the quality factor and depends as well from the orientation of the resonator with respect to the main magnetic field and the imaging sequence the resonator is exposed to. Methods First an analytical solution of a hot spot for thermal equilibrium is described. This analytical solution with a definite hot spot power loss represents the worst case scenario for thermal equilibrium inside a homogeneous medium without cooling effects. Starting with this worst case assumptions additional conditions are considered in a numerical simulation, which are more realistic and may make the results less critical. The analytical solution as well as the numerical simulations use the experimental experience of the maximum hot spot power loss of implanted resonators with a definite volume during magnetic resonance imaging investigations. The finite volume analysis calculates the time developing temperature maps for the model of a broken linear metallic wire embedded in tissue. Half of the total hot spot power loss is assumed to diffuse into both wire parts at the location of a defect. The energy is distributed from there by heat conduction. Additionally the effect of blood perfusion and blood flow is respected in some simulations because the simultaneous appearance of all worst case conditions, especially the absence of blood perfusion and blood flow near the hot spot, is very unlikely for vessel implants. Results The analytical solution as worst case scenario as well as the finite volume analysis for near worst case situations show not negligible volumes with critical temperature increases for part of the modeled hot spot situations. MR investigations with a high rf-pulse density lasting below a minute can establish volumes of several cubic millimeters with temperature increases high enough to start cell destruction. Longer exposure times can involve volumes larger than 100 mm3. Even temperature increases in the range of thermal ablation are reached for substantial volumes. MR sequence exposure time and hot spot power loss are the primary factors influencing the volume with critical temperature increases. Wire radius, wire material as well as the physiological parameters blood perfusion and blood flow inside larger vessels reduce the volume with critical temperature increases, but do not exclude a volume with critical tissue heating for resonators with a large product of resonator volume and quality factor. Conclusion The worst case scenario assumes thermal equilibrium for a hot spot embedded in homogeneous tissue without any cooling due to blood perfusion or flow. The finite volume analysis can calculate the results for near and not close to worst case conditions. For both cases a substantial volume can reach a critical temperature increase in a short time. The analytical solution, as absolute worst case, points out that resonators with a small product of inductance volume and quality factor (Q Vind < 2 cm3) are definitely save. Stents for coronary vessels or resonators used as tracking devices for interventional procedures therefore have no risk of high temperature increases. The finite volume analysis shows for sure that also conditions not close to the worst case reach physiologically critical temperature increases for implants with a large product of inductance volume and quality factor (Q Vind > 10 cm3). Such resonators exclude patients from exactly the MRI investigation these devices are made for. PMID:16729878
Evaluation of heat conduction in dental implants after exposure to hot beverages.
Livne, Shiri; Harel, Noga; Piek, Dana; Ormianer, Zeev
2014-03-01
It is unknown if the consumption of hot beverages after implant placement poses a danger of overheating at the bone-implant interface. The purpose of this study was to investigate the effect of simulated consumption of hot beverages on the heat transfer to different dental implant types, implant sizes, and the presence of an interim restoration. A model that consisted of 2 plastic containers was constructed to simulate the oral cavity and endosseous region of the jaw. One-piece and 2-piece implants with abutments were placed into a block of bovine mandibular bone without any healing tissue, surrounded by water maintained at 37°C in the lower compartment. The abutments, which extended into the upper container, were covered with water heated to 60°C to simulate consumption of a hot substance and then were cooled down spontaneously to 37°C during 100 to 600 seconds. Five thermocouple electrodes with an accuracy of ±0.1°C were attached to each test specimen and to a computer with data recording and analysis software to record temperature changes. Repeated measures ANOVA (α=.05)was performed to determine the effect of each major factor. Heat conduction from the abutment exposed to hot liquid was significantly higher in the cervical as opposed to the apical areas of the implants. Implant type (1 piece), diameter (wider), and the absence of an interim coping had a significant effect on the maximum temperature measured and on the temperature change rate. Abutment exposure to hot liquids resulted in heat conduction to the cervical region of the implant, which could be biologically harmful in healing tissues. Heat conduction was mitigated by implant design and diameter, and by the presence of an interim prosthesis. Results may differ in clinical models. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Hormonal growth-promotant effects on grain-fed cattle maintained under different environments
NASA Astrophysics Data System (ADS)
Gaughan, J. B.; Kreikemeier, W. M.; Mader, T. L.
2005-07-01
Six steers (3/4 Charolais×1/4 Brahman) (mean body weight 314±27 kg) and six spayed heifers (3/5 Shorthorn×2/5 Red Angus) (mean body weight 478±30 kg) were used to determine the effects of climatic conditions and hormone growth promotants (HGP) on respiration rate (RR; breaths/min), pulse rate (beats/min), rectal temperature (RT; °C), and heat production (HP; kJ). Cattle were exposed to the following climatic conditions prior to implantation with a HGP and then again 12 days after implantation: 2 days of thermoneutral conditions (TNL) [21.9±0.9°C ambient temperature (TA) and 61.7±22.1% relative humidity (RH)] then 2 days of hot conditions [HOT; 29.2±4°C (TA) and 78.3±13.2% (RH)], then TNL for 3 days and then 2 days of cold conditions [COLD; 17.6±0.9°C (TA) and 63.4±1.8% (RH); cattle were wet during this treatment]. The HGP implants used were: estrogenic implant (E), trenbolone acetate implant (TBA), or both (ET). Both prior to and following administration of HGP, RRs were lower (P<0.05) on cold days and greater (P<0.05) on hot days compared to TNL. On hot days, RTs, were 0.62°C higher after compared to before implanting. Across all conditions, RTs were >0.5°C greater (P<0.05) for E cattle than for TBA or ET cattle. On cold days, RTs of steers were >0.8°C higher than for the heifers, while under TNL and HOT, RTs of steers were 0.2 0.35°C higher than those of heifers. Prior to implantation, HP per hour and per unit of metabolic body weight was higher (P<0.05) for cattle exposed to hot conditions, when compared to HP on cold days. After implantation, HP was greater (P<0.05) on hot days than on cold days. Under TNL, ET cattle had the lowest HP and greatest feed intake. On hot days, E cattle had the lowest HP, and the highest RT; therefore, if the potential exists for cattle death from heat episodes, the use of either TBA or ET may be preferred. Under cold conditions HP was similar among implant groups.
Formation of inorganic electride thin films via site-selective extrusion by energetic inert gas ions
NASA Astrophysics Data System (ADS)
Miyakawa, Masashi; Toda, Yoshitake; Hayashi, Katsuro; Hirano, Masahiro; Kamiya, Toshio; Matsunami, Noriaki; Hosono, Hideo
2005-01-01
Inert gas ion implantation (acceleration voltage 300kV) into polycrystalline 12CaO.7Al2O3 (C12A7) films was investigated with fluences from 1×1016 to 1×1017cm-2 at elevated temperatures. Upon hot implantation at 600°C with fluences greater than 1×1017cm-2, the obtained films were colored and exhibited high electrical conductivity in the as-implanted state. The extrusion of O2- ions encaged in the crystallographic cages of C12A7 crystal, which leaves electrons in the cages at concentrations up to ˜1.4×1021cm-3, may cause the high electrical conductivity. On the other hand, when the fluence is less than 1×1017cm-2, the as-implanted films are optically transparent and electrically insulating. The conductivity is enhanced and the films become colored by irradiating with ultraviolet light due to the formation of F +-like centers. The electrons forming the F+-like centers are photo released from the encaged H- ions, which are presumably derived from the preexisting OH- groups. The induced electron concentration is proportional to the calculated displacements per atom, which suggests that nuclear collision effects of the implanted ions play a dominant role in forming the electron and H- ion in the films. The hot ion implantation technique provides a nonchemical process for preparing electronic conductive C12A7 films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmeide, Matthias; Kondratenko, Serguei
2011-01-07
Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less
NASA Astrophysics Data System (ADS)
Mizuno, Tomohisa; Omata, Yuhsuke; Kanazawa, Rikito; Iguchi, Yusuke; Nakada, Shinji; Aoki, Takashi; Sasaki, Tomokazu
2018-04-01
We experimentally studied the optimization of the hot-C+-ion implantation process for forming nano-SiC (silicon carbide) regions in a (100) Si-on-insulator substrate at various hot-C+-ion implantation temperatures and C+ ion doses to improve photoluminescence (PL) intensity for future Si-based photonic devices. We successfully optimized the process by hot-C+-ion implantation at a temperature of about 700 °C and a C+ ion dose of approximately 4 × 1016 cm-2 to realize a high intensity of PL emitted from an approximately 1.5-nm-thick C atom segregation layer near the surface-oxide/Si interface. Moreover, atom probe tomography showed that implanted C atoms cluster in the Si layer and near the oxide/Si interface; thus, the C content locally condenses even in the C atom segregation layer, which leads to SiC formation. Corrector-spherical aberration transmission electron microscopy also showed that both 4H-SiC and 3C-SiC nanoareas near both the surface-oxide/Si and buried-oxide/Si interfaces partially grow into the oxide layer, and the observed PL photons are mainly emitted from the surface SiC nano areas.
Fernandes-Cunha, Gabriella M; Rezende, Cíntia M F; Mussel, Wagner N; da Silva, Gisele R; de L Gomes, Elionai C; Yoshida, Maria I; Fialho, Sílvia L; Goes, Alfredo M; Gomes, Dawison A; de Almeida Vitor, Ricardo W; Silva-Cunha, Armando
2016-01-01
Intraocular delivery systems have been developed to treat many eye diseases, especially those affecting the posterior segment of the eye. However, ocular toxoplasmosis, the leading cause of infectious posterior uveitis in the world, still lacks an effective treatment. Therefore, our group developed an intravitreal polymeric implant to release clindamycin, a potent anti-Toxoplasma antibiotic. In this work, we used different techniques such as differential scanning calorimetry, thermogravimetry, X-ray diffraction, scanning electron microscopy, and fourier-transform infrared spectroscopy to investigate drug/polymer properties while manufacturing the delivery system. We showed that the lyophilization, hot molding process, and sterilization by gamma irradiation did not change drug/polymer physical-chemistry properties. The drug was found to be homogeneously dispersed into the poly lactic-co-glycolic acid (PLGA) chains and the profile release was characterized by an initial burst followed by prolonged release. The drug profile release was not modified after gamma irradiation and non-covalent interaction was found between the drug and the PLGA. We also observed the preservation of the drug activity by showing the potent anti-Toxoplasma effect of the implant, after 24-72 h in contact with cells infected by the parasite, which highlights this system as an alternative to treat toxoplasmic retinochoroiditis.
A hot implantation study on the evolution of defects in He ion implanted MgO(1 0 0)
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; van Huis, M. A.; van Veen, A.
2002-05-01
Ion implantation at elevated temperature, so-called hot implantation, was used to study nucleation and thermal stability of the defects. In this work, MgO(1 0 0) single crystal samples were implanted with 30 keV He ions at various implantation temperatures. The implantation doses ranged from 10 14 to 10 16 cm -2. The implantation introduced defects were subsequently studied by thermal helium desorption spectroscopy (THDS) and Doppler broadening positron beam analysis (PBA). The THDS study provides vital information on the kinetics of He release from the sample. PBA technique, being sensitive to the open volume defects, provides complementary information on cavity evolution. The THD study has shown that in most cases helium release is characterised by the activation energy of Q=4.7±0.5 eV with the maximum release temperature of Tmax=1830 K. By applying first order desorption model the pre-exponent factor is estimated as ν=4.3×10 11 s -1.
Li, DeXia; Guo, Gang; Deng, Xin; Fan, RangRang; Guo, QingFa; Fan, Min; Liang, Jian; Luo, Feng; Qian, ZhiYong
2013-01-01
Hot-melt extrusion (HME) plays an important role in preparing implants as local drug delivery systems in pharmaceutical fields. Here, a new PLA/PEG-PPG-PEG/Dexamethasone (PLA/F68/Dex) implant prepared by HME has been developed. Importantly, the implant was successfully achieved to control release of immunosuppressive drug to an implanted device. In particular, this implant has not been reported previously in pharmaceutical fields. FTIR and XRD were adopted to investigate the properties of the samples. The in vivo release study showed that the maximum value of Dex release from the implants was approximately 50% at 1 month. The in vivo degradation behavior was determined by UV spectrophotometer and scanning electron microscopy studies, and the weight loss rate of the implants were up to 25% at 1 month. Furthermore, complete blood count (CBC) test, serum chemistry and major organs were performed, and there is no significant lesion and side effects observed in these results. Therefore, the results elucidated that the new PLA/F68/Dex implant prepared by HME could deliver an immunosuppressive drug to control the inflammatory reaction at the implant site.
Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang
2014-01-01
Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering. PMID:24447041
Gu, Ming; Liu, Yunsong; Chen, Tong; Du, Feng; Zhao, Xianghui; Xiong, Chunyang; Zhou, Yongsheng
2014-10-01
Bone tissue engineering promises to restore bone defects that are caused by severe trauma, congenital malformations, tumors, and nonunion fractures. How to effectively promote the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) or seed cells has become a hot topic in this field. Many researchers are studying the ways of conferring a pro-osteodifferentiation or osteoinductive capability on implants or scaffold materials, where osteogenesis of seed cells is promoted. Graphene (G) provides a new kind of coating material that may confer the pro-osteodifferentiation capability on implants and scaffold materials by surface modification. Here, we review recent studies on the effects of graphene on surface modifications of implants or scaffold materials. The ability of graphene to improve the mechanical and biological properties of implants or scaffold materials, such as nitinol and carbon nanotubes, and its ability to promote the adhesion, proliferation, and osteogenic differentiation of MSCs or osteoblasts have been demonstrated in several studies. Most previous studies were performed in vitro, but further studies will explore the mechanisms of graphene's effects on bone regeneration, its in vivo biocompatibility, its ability to promote osteodifferentiation, and its potential applications in bone tissue engineering.
Fearnot, N E; Kitoh, O; Fujita, T; Okamura, H; Smith, H J; Calderini, M
1989-05-01
The effectiveness of using blood temperature change as an indicator to automatically vary heart rate physiologically was evaluated in 3 patients implanted with Model Sensor Kelvin 500 (Cook Pacemaker Corporation, Leechburg, PA, USA) pacemakers. Each patient performed two block-randomized treadmill exercise tests: one while programmed for temperature-based, rate-modulated pacing and the other while programmed without rate modulation. In 1 pacemaker patient and 4 volunteers, heart rates were recorded during exposure to a hot water bath. Blood temperature measured at 10 sec intervals and pacing rate measured at 1 min intervals were telemetered to a diagnostic programmer and data collector for storage and transfer to a computer. Observation comments and ECG-derived heart rates were manually recorded. The temperature-based pacemaker was shown to respond promptly not only to physical exertion but also to emotionally caused stress and submersion in a hot bath. These events cause increased heart rate in the normal heart. Using a suitable algorithm to process the measurement of blood temperature, it was possible to produce appropriate pacing rates in paced patients.
Wu, S L; Chu, Paul K; Liu, X M; Chung, C Y; Ho, J P Y; Chu, C L; Tjong, S C; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K
2006-10-01
Good surface properties and biocompatibility are crucial to porous NiTi shape memory alloys (SMA) used in medical implants, as possible nickel release from porous NiTi may cause deleterious effects in the human body. In this work, oxygen plasma immersion ion implantation (O-PIII) was used to reduce the amount of nickel leached from porous NiTi alloys with a porosity of 42% prepared by capsule-free hot isostatic pressing. The mechanical properties, surface properties, and biocompatibility were studied by compression tests, X-ray photoelectron spectroscopy (XPS), and cell culturing. The O-PIII porous NiTi SMAs have good mechanical properties and excellent superelasticity, and the amount of nickel leached from the O-PIII porous NiTi is much less than that from the untreated samples. XPS results indicate that a nickel-depleted surface layer predominantly composed of TiO(2) is produced by O-PIII and acts as a barrier against out-diffusion of nickel. The cell culturing tests reveal that both the O-PIII and untreated porous NiTi alloys have good biocompatibility. (c) 2006 Wiley Periodicals, Inc
Gong, Haibo; Wang, Kun; Strich, Randy; Zhou, Jack G.
2017-01-01
Zinc–Magnesium (Zn–Mg) alloy as a novel biodegradable metal holds great potential in biodegradable implant applications as it is more corrosion resistant than Magnesium (Mg). However, the mechanical properties, biodegradation uniformity, and cytotoxicity of Zn–Mg alloy remained as concerns. In this study, hot extrusion process was applied to Zn–1 wt % Mg (Zn–1Mg) to refine its microstructure. Effects of hot extrusion on biodegradation behavior and mechanical properties of Zn–1Mg were investigated in comparison with Mg rare earth element alloy WE43. Metallurgical analysis revealed significant grain size reduction, and immersion test found that corrosion rates of WE43 and Zn–1Mg were reduced by 35% and 57%, respectively after extrusion. Moreover, hot extrusion resulted in a much more uniform biodegradation in extruded Zn–1Mg alloy and WE43. In vitro cytotoxicity test results indicated that Zn–1Mg alloy was biocompatible. Therefore, hot extruded Zn–1Mg with homogenous microstructure, uniform as well as slow degradation, improved mechanical properties, and good biocompatibility was believed to be an excellent candidate material for load-bearing biodegradable implant application. PMID:25581552
Corrosion and tribocorrosion behavior of Ti-B4C composite intended for orthopaedic implants.
Toptan, F; Rego, A; Alves, A C; Guedes, A
2016-08-01
Poor wear resistance of titanium is a major concern since relative movements due to the cyclic loads in body environment cause wear between the bone and the implant material leading to detachment of the wear debris and release of metal ions due to the simultaneous action of corrosion and wear, defined as tribocorrosion. In order to increase the tribocorrosion resistance, Grade 2 Ti matrix 24vol% B4C particle reinforced composites were processed by hot pressing. Corrosion behaviour was investigated by electrochemical impedance spectroscopy and potentiodynamic polarization in 9g/L NaCl solution at body temperature. Tribocorrosion tests were performed under open circuit potential, as well as under potentiodynamic polarization using a reciprocating ball-on-plate tribometer. Results suggested that the addition of B4C particles provided lower tendency to corrosion and lower corrosion kinetics under sliding, along with significantly reduced wear loss, mainly due to the load carrying effect given by the reinforcement particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rafí, J. M.; Campabadal, F.
2001-08-01
The hot-carrier degradation of lightly doped drain (LDD) and large angle tilt implanted drain (LATID) nMOSFETs of a 0.35 μm CMOS technology is analysed and compared by means of I-V characterisation and charge pumping current measurements. LATID nMOSFETs are found to exhibit a significant improvement in terms of both, current drivability and hot-carrier immunity at maximum substrate current condition. The different factors which can be responsible for this improved hot-carrier resistance are investigated. It is shown that this must be attributed to a reduction of the maximum lateral electric field along the channel, but not to a minor generation of physical damage for a given electric field or to a reduced I-V susceptibility to a given amount of generated damage. Further to this analysis, the hot-carrier degradation comparison between LDD and LATID devices is extended to the whole range of gate-stress regimes and the effects of short electron injection (SEI) and short hole injection (SHI) phases on hot-carrier-stressed devices are analysed. Apart from a significant improved resistance to hot-carrier effects registered for LATID devices, a similar behaviour is observed for the two types of architectures. In this way, SEI phases are found to be an efficient tool for revealing part of the damage generated in stresses at low gate voltages, whereas the performance of a first SHI phase after stress at high gate bias is found to result in a significant additional degradation of the devices. This enhanced degradation is attributed to a sudden interface states build-up occurring in both, LDD and LATID devices, near the Si/spacer interface only under the first hot-hole injection condition.
NASA Astrophysics Data System (ADS)
Schramm, G.; Maus, J.; Hofheinz, F.; Petr, J.; Lougovski, A.; Beuthien-Baumann, B.; Platzek, I.; van den Hoff, J.
2014-06-01
The aim of this paper is to describe a new automatic method for compensation of metal-implant-induced segmentation errors in MR-based attenuation maps (MRMaps) and to evaluate the quantitative influence of those artifacts on the reconstructed PET activity concentration. The developed method uses a PET-based delineation of the patient contour to compensate metal-implant-caused signal voids in the MR scan that is segmented for PET attenuation correction. PET emission data of 13 patients with metal implants examined in a Philips Ingenuity PET/MR were reconstructed with the vendor-provided method for attenuation correction (MRMaporig, PETorig) and additionally with a method for attenuation correction (MRMapcor, PETcor) developed by our group. MRMaps produced by both methods were visually inspected for segmentation errors. The segmentation errors in MRMaporig were classified into four classes (L1 and L2 artifacts inside the lung and B1 and B2 artifacts inside the remaining body depending on the assigned attenuation coefficients). The average relative SUV differences (\\varepsilon _{rel}^{av}) between PETorig and PETcor of all regions showing wrong attenuation coefficients in MRMaporig were calculated. Additionally, relative SUVmean differences (ɛrel) of tracer accumulations in hot focal structures inside or in the vicinity of these regions were evaluated. MRMaporig showed erroneous attenuation coefficients inside the regions affected by metal artifacts and inside the patients' lung in all 13 cases. In MRMapcor, all regions with metal artifacts, except for the sternum, were filled with the soft-tissue attenuation coefficient and the lung was correctly segmented in all patients. MRMapcor only showed small residual segmentation errors in eight patients. \\varepsilon _{rel}^{av} (mean ± standard deviation) were: ( - 56 ± 3)% for B1, ( - 43 ± 4)% for B2, (21 ± 18)% for L1, (120 ± 47)% for L2 regions. ɛrel (mean ± standard deviation) of hot focal structures were: ( - 52 ± 12)% in B1, ( - 45 ± 13)% in B2, (19 ± 19)% in L1, (51 ± 31)% in L2 regions. Consequently, metal-implant-induced artifacts severely disturb MR-based attenuation correction and SUV quantification in PET/MR. The developed algorithm is able to compensate for these artifacts and improves SUV quantification accuracy distinctly.
NASA Astrophysics Data System (ADS)
Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh
2016-08-01
In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples with nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naghshine, Babak B.; Cosman, James A.; Kiani, Amirkianoosh, E-mail: a.kiani@unb.ca
In this study, a combination of electrospinning and laser texturing is introduced as a novel method for increasing the biocompatibility of metal implants. Besides having a rough laser treated surface, the implant benefits from the high porosity and better wettability of an electrospun fibrous structure, which is a more favorable environment for cell proliferation. Titanium samples were patterned using a nanosecond laser beam and were placed as collectors in an electrospinning machine. They were then soaked in simulated body fluid for four weeks. Energy Dispersive X-ray and X-Ray Diffraction results indicate significantly more hydroxyapatite formation on laser treated samples withmore » nanoscale fibers deposited on their surface. This shows that having a laser treated surface underneath the fibrous layer can improve short-term biocompatibility even before degradation of fibers. The thermal conductivity of the electrospun layer, measured using a Hot Disk Transient Plane Source instrument and computer code, was shown to be considerably lower than that of titanium and very close to bone. The presence of this layer can therefore be beneficial in making the implant more compatible to a biological medium. In case of dental implants, it was shown that this layer can act as a thermal barrier while a hot beverage is consumed and it can decrease the temperature rise by about 60%, which avoids any possible damage to newly formed cells during the healing period.« less
NASA Astrophysics Data System (ADS)
Kang, Karam
Current Ti-based dental implants exhibit failure (2-10%), due to various mechanisms, including chemical corrosion of the surface of the TiO2 naturally covered Ti-based implants. This thesis focused on developing a unique biocompatible/bio-inert/corrosion resistant/low cost Ultrananocrystalline Diamond (UNCD) coating (with 3-5 nm grain size) for encapsulation of Tibased micro-implants to potentially eliminate the corrosion/mechanical induced failure of current commercial Ti-based dental implants. Microwave Plasma Chemical Vapor Deposition (MPCVD) and Hot Filament Chemical Vapor Deposition (HFCVD) processes were used to grow UNCD coatings. The surface topography and chemistry of UNCD coatings were characterized using scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopies (XPS) respectively. In conclusion, this thesis contributed to establish the optimal conditions to grow UNCD coatings on the complex 3-D geometry of Ti-based micro-implants, with geometry similar to real implants, relevant to developing UNCD-coated Ti-based dental implants with superior mechanical/chemical performance than current Ti-based implants.
Henderson, Hunter B.; Ramaswamy, Vidhya; Wilson-Heid, Alexander E.; ...
2018-02-03
Magnesium-based alloys have attracted interest as a potential material to comprise biomedical implants that are simultaneously high-strength and temporary, able to provide stabilization before degrading safely and able to be excreted by the human body. Many alloy systems have been evaluated, but this work reports on improved properties through hot extrusion of one promising alloy: Mg-1.0 wt% Ca-0.5 wt%Sr. This alloy has previously demonstrated promising toxicity and degradation properties in the as-cast and rolled conditions. In the current study extrusion causes a dramatic improvement in the mechanical properties in tension and compression, as well as a low in vitro degradationmore » rate. Microstructure (texture, second phase distribution, and grain size), bulk mechanical properties, flow behavior, degradation in simulated body fluid, and effect on osteoblast cyctotoxicity are evaluated and correlated to extrusion temperature. In conclusion, maximum yield strength of 300 MPa (above that of annealed 316 stainless steel) with 10% elongation is observed, making this alloy competitive with existing implant materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Hunter B.; Ramaswamy, Vidhya; Wilson-Heid, Alexander E.
Magnesium-based alloys have attracted interest as a potential material to comprise biomedical implants that are simultaneously high-strength and temporary, able to provide stabilization before degrading safely and able to be excreted by the human body. Many alloy systems have been evaluated, but this work reports on improved properties through hot extrusion of one promising alloy: Mg-1.0 wt% Ca-0.5 wt%Sr. This alloy has previously demonstrated promising toxicity and degradation properties in the as-cast and rolled conditions. In the current study extrusion causes a dramatic improvement in the mechanical properties in tension and compression, as well as a low in vitro degradationmore » rate. Microstructure (texture, second phase distribution, and grain size), bulk mechanical properties, flow behavior, degradation in simulated body fluid, and effect on osteoblast cyctotoxicity are evaluated and correlated to extrusion temperature. In conclusion, maximum yield strength of 300 MPa (above that of annealed 316 stainless steel) with 10% elongation is observed, making this alloy competitive with existing implant materials.« less
Henderson, Hunter B; Ramaswamy, Vidhya; Wilson-Heid, Alexander E; Kesler, Michael S; Allen, Josephine B; Manuel, Michele V
2018-04-01
Magnesium-based alloys have attracted interest as a potential material to comprise biomedical implants that are simultaneously high-strength and temporary, able to provide stabilization before degrading safely and able to be excreted by the human body. Many alloy systems have been evaluated, but this work reports on improved properties through hot extrusion of one promising alloy: Mg-1.0 wt% Ca-0.5 wt%Sr. This alloy has previously demonstrated promising toxicity and degradation properties in the as-cast and rolled conditions. In the current study extrusion causes a dramatic improvement in the mechanical properties in tension and compression, as well as a low in vitro degradation rate. Microstructure (texture, second phase distribution, and grain size), bulk mechanical properties, flow behavior, degradation in simulated body fluid, and effect on osteoblast cyctotoxicity are evaluated and correlated to extrusion temperature. Maximum yield strength of 300 MPa (above that of annealed 316 stainless steel) with 10% elongation is observed, making this alloy competitive with existing implant materials. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Regulation of body temperature in the blue-tongued lizard.
Hammel, H T; Caldwell, F T; Abrams, R M
1967-06-02
Lizards (Tiliqua scincoides) regulated their internal body temperature by moving back and forth between 15 degrees and 45 degrees C environments to maintain colonic and brain temperatures between 30 degrees and 37 degrees C. A pair of thermodes were implanted across the preoptic region of the brain stem, and a reentrant tube for a thermocouple was implanted in the brain stem. Heating the brain stem to 41 degrees C activated the exit response from the hot environment at a colonic temperature 1 degrees to 2 degrees C lower than normal, whereas cooling the brain stem to 25 degrees C delayed the exit from the hot environment until the colonic temperature was 1 degrees to 2 degrees C higher than normal. The behavioral thermoregulatory responses of this ectotherm appear to be activated by a combination of hypothalamic and other body temperatures.
NASA Technical Reports Server (NTRS)
Lowry, Lynn E.; Macwilliams, Kenneth P.; Isaac, Mary
1991-01-01
The use of fluorinated gate oxides may provide an improvement in nMOSFET reliability by enhancing hot carrier resistance. In order to clarify the mechanisms by which polysilicon processing and fluorination influence the oxide behavior, a matrix of nMOSFET structures was prepared using various processing, doping, and implantation strategies. These structures were evaluated for crystalline morphology and chemical element distribution. Mechanical stress measurements were taken on the polysilicon films from room temperature to cryogenic temperature. These examinations showed that fluorination of a structure with randomly oriented polysilicon can reduce residual mechanical stress and improve hot carrier resistance at room temperature.
Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji
2016-01-01
Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329
Iijima, Toshihiko; Homma, Shinya; Sekine, Hideshi; Sasaki, Hodaka; Yajima, Yasutomo; Yoshinari, Masao
2013-01-01
Hot isostatic pressing processed yttria-stabilized tetragonal zirconia polycrystal (HIP Y-TZP) has the potential for application to implants due to its high mechanical performance. The aim of this study was to investigate the influence of surface treatment of HIP Y-TZP on cyclic fatigue strength. HIP Y-TZP specimens were subjected to different surface treatments. Biaxial flexural strength was determined by both static and cyclic fatigue testing. In the cyclic fatigue test, the load was applied at a frequency of 10 Hz for 10(6) cycles in distilled water at 37°C. The surface morphology, roughness, and crystal phase of the surfaces were also evaluated. The cyclic fatigue strength (888 MPa) of HIP Y-TZP with sandblasting and acid-etching was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the clinical potential of this material.
Takahashi, Toshihito; Gonda, Tomoya; Maeda, Yoshinobu
Implant overdentures with attachments have been used in clinical practice and the effect of attachments on implant strain has been frequently reported. However, most studies have focused on mandibular overdentures; there are few reports on maxillary overdentures. The purpose of this study was to examine the influence of attachment type on implant strain in maxillary overdentures under various implant configurations. A maxillary edentulous model with implants and experimental overdentures were fabricated. Four strain gauges were attached to each implant, positioned in anterior, premolar, and molar areas. Three types of unsplinted attachments-ball, locator, and magnet-were set on the implants under various implant configurations. A vertical occlusal load of 98 N was applied through the mandibular complete denture, and implant strain was compared using the Kruskal-Wallis test. Ball attachments caused the greatest amount of strain, while magnet attachments caused the least amount under all conditions. For all attachments, two anterior implants caused significantly more strain than four implants (P < .05). No significant difference was observed between subtypes in four-implant configurations except when using locator attachments. When using unsplinted attachments for maxillary implant overdentures, magnet attachments are recommended to reduce implant stress. Using only two implants, especially two anterior implants, is not recommended regardless of attachment type.
TGF-beta1 secretion of ROS-17/2.8 cultures on NiTi implant material.
Kapanen, Anita; Kinnunen, Anne; Ryhänen, Jorma; Tuukkanen, Juha
2002-08-01
The biocompatibility of an orthopedic implant depends on the effect of the implant on bone-forming cells, osteoblasts. Changes in osteoblastic proliferation, maturation and differentiation are important events in ossification that enable monitoring the effect of the implant. Transforming growth factor-beta (TGF-beta) is known to suppress osteoblast proliferation and, on the other hand, to induce the maturation and differentiation of osteoblasts. Moreover, osteoblasts produce TGF-beta, which is embedded in the bone matrix and activated by bone-resorbing osteoclasts. TGF-beta inhibits osteoclastic activity. Here, we show for the first time the effect of nickel titanium shape memory metal (NiTi) on osteoblastic cytokine expression. In this study, we measured the levels of TGF-beta with enzyme-linked immunosorbent assay (ELISA) from a ROS-17/2.8 osteosarcoma cell line cultured on different metal alloy discs. ELISA results were proportioned to total DNA content of the samples. We compared NiTi, to stainless steel (Stst), pure titanium (Ti) and pure nickel (Ni). The TGF-beta1/DNA value in the NiTi group (0.0007 +/- 0.0003) was comparable with those seen in the Stst (0.0008 +/- 0.0001) and Ti (0.0007 +/- 0.0001) groups. The concentration in the Ni group was lower (0.0006 +/- 0.0003), though not statistically significantly so. In addition, the effect of surface roughness on TGF-beta1 production was studied. We compared three different grades of roughness in three differently hot-rolled alloys: NiTi. hot-rolled at 950 degrees C. Ti alloy hot-rolled at 850 degrees C (TiI) and the same Ti alloy hot-rolled at 1,050 degrees C (TiII). We found that increasing roughness of the NiTi surface increased the TGF-beta1 concentration. On the other hand, all roughness groups of TiII showed low levels of TGF-beta1. while a rough TiI surface induced similar TGF-beta1, expression as rough NiTi. Further, these same measurements made with interleukine 6 (IL-6) were found to be under the detection limit in these cultures. We conclude that a rough NiTi surface promotes TGF-beta1 expression in ROS-17/2.8 cells.
Xia, Xianping; Xie, Changsheng; Zhu, Changhong; Cai, Shuizhou; Yang, Xiangliang
2007-08-01
To investigate the damage of endometrium caused by the implanted Cu/low-density polyethylene (LDPE) nanocomposite and the contraceptive effect of this novel copper-containing intrauterine device material. Experimental animal study. TongJi Medical College of Huazhong University of Science and Technology. Sixty healthy female mice. Twenty mice received no implants, 20 mice received the Cu/LDPE nanocomposite, and 20 mice received bulk copper. Morphologic features of the endometrium, contraceptive effect, and surface condition of the implanted implants. The contraceptive effect of both the Cu/LDPE nanocomposite and bulk copper is 100%, the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper, and the surface of the implanted Cu/LDPE nanocomposite is much smoother and much softer than that of the implanted bulk copper. The contraceptive effect of the Cu/LDPE nanocomposite is comparable with that of bulk copper, and the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper. The endometrium injury is related to the surface condition of the implanted intrauterine device material.
NASA Astrophysics Data System (ADS)
Wu, Jay; Shih, Cheng-Ting; Chang, Shu-Jun; Huang, Tzung-Chi; Chen, Chuan-Lin; Wu, Tung Hsin
2011-08-01
The quantitative ability of PET/CT allows the widespread use in clinical research and cancer staging. However, metal artifacts induced by high-density metal objects degrade the quality of CT images. These artifacts also propagate to the corresponding PET image and cause a false increase of 18F-FDG uptake near the metal implants when the CT-based attenuation correction (AC) is performed. In this study, we applied a model-based metal artifact reduction (MAR) algorithm to reduce the dark and bright streaks in the CT image and compared the differences between PET images with the general CT-based AC (G-AC) and the MAR-corrected-CT AC (MAR-AC). Results showed that the MAR algorithm effectively reduced the metal artifacts in the CT images of the ACR flangeless phantom and two clinical cases. The MAR-AC also removed the false-positive hot spot near the metal implants of the PET images. We conclude that the MAR-AC could be applied in clinical practice to improve the quantitative accuracy of PET images. Additionally, further use of PET/CT fusion images with metal artifact correction could be more valuable for diagnosis.
Technical complications of implant-causes and management: A comprehensive review
Gupta, Swati; Gupta, Hemant; Tandan, Amrit
2015-01-01
Given the increasing popularity of dental implants, the number of failures due to late implant fracture is also expected to increase. Hence, the scope for prevention and management needs to be emphasized. The objective of this review article is to analyze the various causes of failure of dental implants due to implant fixture/abutment screw fractures and also to enumerate the management and the preventive options for these failures, thereby aiming to help the clinicians to properly plan the implant-supported prosthesis treatment by considering the important biomechanical aspects of this type of rehabilitation. The present review emphasizes the causes and management of technical complications and not the incidence of such complications. PMID:26668445
2013-01-01
Background Patients diagnosed for a serous ovarian borderline tumor (s-BOT) typically present with an excellent clinical outcome. However there have been controversies concerning the prognostic impact of so-called implants, an extra ovarian spread occurring alongside the s-BOT in certain cases. It remains obscure whether these implants actually resemble metastasis owning the same genetic pattern as the ovarian primary or whether they develop independently. Methods The current study, in the aim of further clarifying the genetic origin of implants, assessed BRAF/KRAS hot spot mutations and the p53/p16INK4a immunophenotype of s-BOTs and corresponding implants (n = 49) of 15 patients by pyro-sequencing and immunostaining, respectively. Results A significant proportion of both s-BOTs and implants showed KRAS or BRAF mutation and though p16INK4a was found to be abundantly expressed, p53 immunoreactivity was rather low. When genotypes of BRAF/KRAS mutated s-BOTs and corresponding implants were compared no patient presented with a fully matching mutation profile of s-BOTs and all corresponding implants. Conclusions The current study reveals genetic heterogeneity of s-BOTs and implants, as none of the markers examined showed constant reciprocity. Hence, our findings may assist to explain the different clinical presentation of s-BOTs and implants and might encourage to applying more individualized follow up protocols. PMID:24139521
Heublein, Sabine; Grasse, Katinka; Hessel, Harald; Burges, Alexander; Lenhard, Miriam; Engel, Jutta; Kirchner, Thomas; Jeschke, Udo; Mayr, Doris
2013-10-18
Patients diagnosed for a serous ovarian borderline tumor (s-BOT) typically present with an excellent clinical outcome. However there have been controversies concerning the prognostic impact of so-called implants, an extra ovarian spread occurring alongside the s-BOT in certain cases. It remains obscure whether these implants actually resemble metastasis owning the same genetic pattern as the ovarian primary or whether they develop independently. The current study, in the aim of further clarifying the genetic origin of implants, assessed BRAF/KRAS hot spot mutations and the p53/p16INK4a immunophenotype of s-BOTs and corresponding implants (n=49) of 15 patients by pyro-sequencing and immunostaining, respectively. A significant proportion of both s-BOTs and implants showed KRAS or BRAF mutation and though p16INK4a was found to be abundantly expressed, p53 immunoreactivity was rather low. When genotypes of BRAF/KRAS mutated s-BOTs and corresponding implants were compared no patient presented with a fully matching mutation profile of s-BOTs and all corresponding implants. The current study reveals genetic heterogeneity of s-BOTs and implants, as none of the markers examined showed constant reciprocity. Hence, our findings may assist to explain the different clinical presentation of s-BOTs and implants and might encourage to applying more individualized follow up protocols.
A long-acting buprenorphine delivery system.
Pontani, R B; Misra, A L
1983-03-01
A subcutaneously implantable buprenorphine delivery system utilizing cholesterol-glyceryltristearate matrix for prolonged release of drug is described. Implantable cylindrical pellets of buprenorphine (cholesterol 36 mg, glyceryltristearate 4 mg, buprenorphine hydrochloride 10 mg), diameter 3 mm, length 6 mm blocked the antinociceptive action (hot plate, 55 degrees C) of 10 mg kg-1 SC challenge dose of morphine in rats for 12 weeks or more (longer periods not evaluated). The cumulative percent release of buprenorphine from the test devices 2, 4, 6, 10 and 12 weeks after implantation was 27.4, 35.9, 37.6, 39.9 and 43.1, respectively. The release of buprenorphine from 10 mg pellets approximated first-order kinetics with half-lives of 0.85 and 50.24 weeks, for alpha and beta phases, respectively. The test devices possess the desirable characteristics of simplicity, biocompatibility, nontoxicity, ease of sterilization with ethylene oxide, small size for ease of insertion and removal, minimal encapsulation by surrounding tissue and an extended period of drug release unaffected by body metabolism. No side effects were seen in implanted rats which fed well and gained weight during entire treatment. Neither deterioration of implant nor any gross anatomic changes at implant site were apparent 12 weeks after pellet implantation.
Okazaki, Yoshimitsu
2012-01-01
Zr, Nb, and Ta as alloying elements for Ti alloys are important for attaining superior corrosion resistance and biocompatibility in the long term. However, note that the addition of excess Nb and Ta to Ti alloys leads to higher manufacturing cost. To develop low-cost manufacturing processes, the effects of hot-forging and continuous-hot-rolling conditions on the microstructure, mechanical properties, hot forgeability, and fatigue strength of Ti-15Zr-4Nb-4Ta alloy were investigated. The temperature dependences with a temperature difference (ΔT) from β-transus temperature (Tβ) for the volume fraction of the α- and β-phases were almost the same for both Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys. In the α-β-forged Ti-15Zr-4Nb-4Ta alloy, a fine granular α-phase structure containing a fine granular β-phase at grain boundaries of an equiaxed α-phase was observed. The Ti-15Zr-4Nb-4Ta alloy billet forged at Tβ-(30 to 50) °C exhibited high strength and excellent ductility. The effects of forging ratio on mechanical strength and ductility were small at a forging ratio of more than 3. The maximum strength (σmax) markedly increased with decreasing testing temperature below Tβ. The reduction in area (R.A.) value slowly decreased with decreasing testing temperature below Tβ. The temperature dependences of σmax for the Ti-15Zr-4Nb-4Ta and Ti-6Al-4V alloys show the same tendency and might be caused by the temperature difference (ΔT) from Tβ. It was clarified that Ti-15Zr-4Nb-4Ta alloy could be manufactured using the same manufacturing process as for previously approved Ti-6Al-4V alloy, taking into account the difference (ΔT) between Tβ and heat treatment temperature. Also, the manufacturing equivalency of Ti-15Zr-4Nb-4Ta alloy to obtain marketing approval of implants was established. Thus, it was concluded that continuous hot rolling is useful for manufacturing α-β-type Ti alloy.
AlSabaani, Nasser A.; Behrens, Ashley; Jastanieah, Sabah; Al Malki, Salem; Al Jindan, Mohanna; Al Motowa, Saeed
2016-01-01
PURPOSE: The purpose of this study is to evaluate the causes of phakic implantable collamer lens (ICL) explantation/exchange at an eye hospital in Saudi Arabia. MATERIALS AND METHODS: A retrospective chart review was performed for patients who underwent ICL implantation from 2007 to March 2014 and data were collected on cases that underwent ICL explantation. RESULTS: Of the 787 ICL implants, 30 implants (3.8% [95% confidence interval 2.6%; 5.3%]) were explanted. The causes of explantation included incorrect lens size (22), cataract (4), high residual astigmatism (2), rhegmatogenous retinal detachment (1), and intolerable glare (1). Corrective measures mainly included an exchange with an appropriately sized lens (9), ICL explantation (11), with phacoemulsification and posterior chamber intraocular lens implantation (6), or replacement with an ICL of correct power (2). CONCLUSION: Incorrect ICL size was the most common cause of ICL explantation. More accurate sizing methods for ICL are required to reduce the explantation/exchange rate. PMID:27994391
Hot-cold foods in diet and all-cause mortality in a Japanese community: the Takayama study.
Nagata, Chisato; Wada, Keiko; Tamura, Takashi; Konishi, Kie; Goto, Yuko
2017-03-01
In the field of traditional Chinese medicine, foods are grouped as cold or hot, and the balance of hot and cold food intake is considered vital to good health. We aimed to examine prospectively whether hot-cold food intake as well as ratio of hot-to-cold foods is associated with all-cause mortality in a general population. A total of 28,356 residents of Takayama City, Japan (response rate: 85.3%, mean age: 54.6 [SD, 12.6] years, male: 45.9%), responded to a food frequency questionnaire in 1992. This questionnaire was used to assess intakes of hot, cold, and neutral foods. Four different lists by Lu, Nishimura, Kuwaki, and Dobashi were used to classify foods as hot, cold, or neutral. During a follow-up of 16 years (loss to follow-up: 6.1%), 5339 deaths were identified. In men, hot food intake was significantly positively associated with the risk of all-cause mortality according to Nishimura's classification and significantly inversely associated with the risk according to Lu's and Dobashi's classifications. In women, hot food intake was inversely associated with the risk only according to Dobashi's classification. We found no clear and consistent evidence that hot-cold food intake is associated with all-cause mortality in Japanese. Copyright © 2017 Elsevier Inc. All rights reserved.
The clinical implications of poly implant prothèse breast implants: an overview.
Wazir, Umar; Kasem, Abdul; Mokbel, Kefah
2015-01-01
Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage.
The Clinical Implications of Poly Implant Prothèse Breast Implants: An Overview
Wazir, Umar; Kasem, Abdul
2015-01-01
Mammary implants marketed by Poly Implant Prothèse (PIP) were found to contain industrial grade silicone and this caused heightened anxiety and extensive publicity regarding their safety in humans. These implants were used in a large number of patients worldwide for augmentation or breast reconstruction. We reviewed articles identified by searches of Medline, PubMed, Embase, and Google Scholar databases up to May 2014 using the terms: "PIP", "Poly Implant Prothèse", "breast implants" and "augmentation mammoplasty" "siloxanes" or "silicone". In addition the websites of regulating bodies in Europe, USA, and Australia were searched for reports related to PIP mammary implants. PIP mammary implants are more likely to rupture than other implants and can cause adverse effects in the short to the medium term related to the symptoms of rupture such as pain, lumps in the breast and axilla and anxiety. Based on peer-reviewed published studies we have calculated an overall rupture rate of 14.5% (383/2,635) for PIP implants. However, there is no evidence that PIP implant rupture causes long-term adverse health effects in humans so far. Silicone lymphadenopathy represents a foreign body reaction and should be treated conservatively. The long-term adverse effects usually arise from inappropriate extensive surgery, such as axillary lymph node dissection or extensive resection of breast tissue due to silicone leakage. PMID:25606483
Stereoscopic Analysis of Silicone Breast Implant Shells Damaged by Surgical Instruments.
Rapp, Derek A; Neaman, Keith C; Hammond, Dennis C
2015-07-01
Iatrogenic shell injury during the implantation and explantation of silicone gel breast implants may lead to eventual device failure. Identification of the patterns of injury caused by surgical instruments is important when attempting to characterize the cause of shell rupture. Understanding the true causes of device failure may help with its prevention. The purpose of this study was to microscopically characterize patterns of shell injury induced by various surgical instruments. Textured and smooth silicone gel implants were intentionally damaged with a variety of surgical instruments. Various scalpels and surgical scissors ranging in fineness were used to create full-thickness injuries in the implant shell. Optical microscopy and scanning electron microscopy were then used to image the injured area to determine patterns of injury. Full-thickness striations across the thickness of the shell could be seen with damage caused by scissors. The density of these striations correlated directly with the fineness of scissors used. No striations were seen with injuries caused by scalpels. Striations were only observed in injuries caused by scissors and suture needles. Striation density correlated with the coarseness of the cutting edge. No such striations were seen in shells damaged by a scalpel even when the angle of approach was changed. This difference can be of assistance in distinguishing between scissors versus scalpel injury of an implant shell.
Discoloration of the Peri-implant Mucosa Caused by Zirconia and Titanium Implants.
Thoma, Daniel S; Ioannidis, Alexis; Cathomen, Elena; Hämmerle, Christoph H F; Hüsler, Jürg; Jung, Ronald E
2016-01-01
The aim of the present study was to assess the discoloration of the peri-implant mucosa caused by zirconia (Zr) and titanium (Ti) dental implants with and without soft tissue grafting (STG). Zr and Ti implants were inserted in edentulous areas in pig maxillae. Spectrophotometric measurements were performed prior to and after the insertion of the implants, and following the placement of a STG on the buccal side. A significant discoloration of the mucosa was observed with a mean ΔE of 8.05 (± 2.51) (Ti) and 4.93 (± 3.18) (Zr). In conjunction with a STG, ΔE values amounted to 5.31 ± 3.50 (Ti) and 5.95 (± 3.68) (Zr). The placement of Zr implants led to less discoloration of the mucosa than Ti implants without STG.
NASA Technical Reports Server (NTRS)
Madzsar, George C. (Inventor)
1993-01-01
The elemental composition of a material exposed to hot gases and subjected to wear is determined. Atoms of an elemental species not appearing in this material are implanted in a surface at a depth based on the maximum allowable wear. The exhaust gases are spectroscopically monitored to determine the exposure of these atoms when the maximum allowable wear is reached.
Experimentally Evoking Nonbelieved Memories for Childhood Events
ERIC Educational Resources Information Center
Otgaar, Henry; Scoboria, Alan; Smeets, Tom
2013-01-01
We report on the 1st experimental elicitation of nonbelieved memories for childhood events in adults (Study 1) and children (Study 2) using a modified false memory implantation paradigm. Participants received true (trip to a theme park) and false (hot air balloon ride) narratives and recalled these events during 2 interviews. After debriefing, 13%…
Hetzel, Martin; Lugstein, Alois; Zeiner, Clemens; Wójcik, Tomasz; Pongratz, Peter; Bertagnolli, Emmerich
2011-09-30
The feasibility of gallium as a catalyst for vapour-liquid-solid (VLS) nanowire (NW) growth deriving from an implantation process in silicon by a focused ion beam (FIB) is investigated. Si(100) substrates are subjected to FIB implantation of gallium ions with various ion fluence rates. NW growth is performed in a hot wall chemical vapour deposition (CVD) reactor at temperatures between 400 and 500 °C with 2% SiH(4)/He as precursor gas. This process results in ultra-fast growth of (112)- and (110)-oriented Si-NWs with a length of several tens of micrometres. Further investigation by transmission electron microscopy indicates the presence of a NW core-shell structure: while the NW core yields crystalline structuring, the shell consists entirely of amorphous material.
Lerch, M; Olender, G; von der Höh, N; Thorey, F; von Lewinski, G; Meyer-Lindenberg, A; Windhagen, H; Hurschler, C
2009-01-01
Microfractures of the femoral head during implantation of the femoral components are suspected to be a cause of fractures at the implant/neck junction which represent a common failure mode in hip resurfacing arthroplasty. Callus formation observed in femoral head retrievals suggests the occurrence of microfractures inside the femoral head, which might be inadvertently caused by the surgeon during implantation. The aim of this biomechanical study was to analyse whether or not the implantation of a cementless femoral component hip resurfacing system causes microfractures in the femoral head. After the preparation of 20 paired human cadaveric femoral heads, the cementless femoral component ESKA Typ BS (ESKA Implants GmbH & Co., Lübeck) was implanted on 9 specimens with an impaction device that generates 4.5 kN impaction force. On 9 specimens the femoral component was implanted by hand. One head was used as a fracture model, 1 specimen served as control without manipulation. The femoral component used for impaction was equipped with hinges to enable its removal without further interfering with the bone stock. Specimens were scanned with a microCT device before and after impaction and the microCT datasets before and after impaction were compared to identify possible microfractures. Twenty strikes per hand or with the impaction device provided sufficient implant seating. Neither the macroscopic examination nor the 2-dimensional microCT analysis revealed any fractures of the femoral heads after impaction. At least macroscopically and in the 2-dimensional microCT analysis, implantation of the cementless hip resurfacing femoral component ESKA Typ BS with 4.5 kN or by hand does not seem to cause fractures of the femoral head. Georg Thieme Verlag KG Stuttgart, New York.
78 FR 48826 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... could cause a fuel leak near an ignition source (e.g., hot brakes or engine exhaust nozzle... could cause a fuel leak near an ignition source (e.g., hot brakes or engine nozzle), consequently... ignition source (e.g., hot brakes or engine nozzle), consequently leading to a fuel-fed fire. (f...
Yilmaz, Zehra; Ucer, Cemal; Scher, Edwin; Suzuki, Jon; Renton, Tara
2016-10-01
Dental implant-related iatrogenic trigeminal nerve (TG) injuries are proportionally increasing with dental implant surgery. This study, which is presented in greater detail over a series of articles, assessed the experience of implant-related TG nerve injuries among UK dentists. Incidence and cause of inferior alveolar nerve (IAN), mental nerve (MN), and lingual nerve (LN) injuries, together with preoperative assessment and the consent process, are presented in this article. A survey was distributed among 405 dentists attending an Association of Dental Implantology congress in the United Kingdom, of which 187 completed the survey. Most responding dentists were full-time general practitioners. Implant dentistry training was predominately through industry-organized courses. Eighty dentists encountered implant-related IAN injuries, whereas 8 encountered LN injuries. Inaccurate radiological identification of the IAN/MN and their anatomical variations (48%) were seen to be the most frequent cause of TG injuries. Disclosure of the relative risk and benefits of alternative implant treatment strategies as part of the informed consent process was not deemed to be essential by 47 (25%) of the participants. Inadequate radiological assessment was the most common cause of TG nerve injury. The use of small field of view cone beam computer tomography (CBCT) is therefore recommended when placing implants in the posterior mandible. Implant surgeons should acquire evidence-based skills in the prevention, diagnosis, and management of TG nerve injury as well as specific training on justification and interpretation of CBCT scans.
Amyotrophic Lateral Sclerosis (ALS)
... Pacing System, which uses implanted electrodes and a battery pack to cause the diaphragm (breathing muscle) to ... Pacing System, which uses implanted electrodes and a battery pack to cause the diaphragm (breathing muscle) to ...
Correction of a malpositioned endosseous implant by a segmental osteotomy: a case report.
Raghoebar, Gerry M; Visser, Anita; Vissink, Arjan
2005-01-01
A mandibular overdenture supported by 2 or 4 endosseous implants has been proven to be a reliable treatment modality for patients suffering from conventional denture problems. However, fabrication of an implant-retained mesostructure to support an overdenture is not possible in all cases. Malpositioning of implants is a common cause of failure in such cases. A case is presented in which a ball attachment caused pain and severe swelling of the floor of the mouth because of the lingual inclination of an endosseous implant. The lingual inclination of the implant was corrected by a segmental osteotomy. Six weeks later, prosthodontic treatment began, and the resultant overdenture supported by a Dolder bar was quite acceptable for the patient.
Starchy liquid burns do not have worse outcomes in children relative to hot beverage scalds.
Lavigne, Jordan M; Patel, Bhaveshkumar; Stockton, Kellie; McBride, Craig A
2016-12-01
To characterise children presenting with hot beverage scalds versus scalds caused by starchy water. Retrospective survey of prospectively collected database of all children presenting over a two-year period. There were 138 starch scalds and 262 hot beverage injuries. Children with hot beverage injuries were significantly younger (18.2 months; IQR 14.1, 27.8) than those suffering starch scald injuries (51.4 months; 18.7, 102.3; p<0.001). Perineal burns were more common in the starch group than the hot beverage scald group (10.9% vs. 2.4%, p<0.001). Chest/breast and abdominal burns were more common in the hot beverage group than the starch group (60.7% vs. 36.9%, p<0.001). Children under three years of age in both groups are significantly less likely to receive adequate first aid at the scene (p<0.001). There are no differences in the need for skin grafting or scar management when comparing hot beverage scalds and scalds caused by starchy liquids. Scald injuries caused by starchy liquids do not appear to cause a more severe injury than hot beverage scalds. There is a different pattern of injury from starchy liquids in older children. Children under three years old are less likely to receive appropriate first aid at the scene. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
The implant infection paradox: why do some succeed when others fail? Opinion and discussion paper.
Yue, C; Zhao, B; Ren, Y; Kuijer, R; van der Mei, H C; Busscher, H J; Rochford, E T J
2015-06-05
Biomaterial-implants are frequently used to restore function and form of human anatomy. However, the presence of implanted biomaterials dramatically elevates infection risk. Paradoxically, dental-implants placed in a bacteria-laden milieu experience moderate failure-rates, due to infection (0.0-1.1%), similar to the ones of joint-arthroplasties placed in a near-sterile environment (0.1-1.3%). Transcutaneous bone-fixation pins breach the immune-barrier of the epidermis, exposing underlying sterile-tissue to an unsterile external environment. In contrast to dental-implants, also placed in a highly unsterile environment, these pins give rise to relatively high infection-associated failure-rates of up to 23.0%. Herein, we attempt to identify causes as to why dental-implants so often succeed, where others fail. The major part of all implants considered are metal-made, with similar surface-finishes. Material choice was therefore discarded as underlying the paradox. Antimicrobial activity of saliva has also been suggested as a cause for the success of dental-implants, but was discarded because saliva is the implant-site-fluid from which viable bacteria adhere. Crevicular fluid was discarded as it is largely analogous to serum. Instead, we attribute the relative success of dental-implants to (1) ability of oral tissues to heal rapidly in the continuous presence of commensal bacteria and opportunistic pathogens, and (2) tolerance of the oral immune-system. Inability of local tissue to adhere, spread and grow in presence of bacteria and an intolerant immune-system are identified as the likely main causes explaining the susceptibility of other implants to infection-associated failure. In conclusion, it is the authors' belief that new anti-infection strategies for a wide range of biomaterial-implants may be derived from the relative success of dental-implants.
Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation
NASA Astrophysics Data System (ADS)
Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan
2018-05-01
The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (< 1 dpa). Nonetheless, such zones undergo only nanoscopic swelling and a small hardness increase ( 10%), with no appreciable decrease in fracture strength. Thus, for this fluence and applied conditions, the integrity of the steel cladding is retained despite He2+ implantation.
Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiation
NASA Astrophysics Data System (ADS)
Degueldre, Claude; Fahy, James; Kolosov, Oleg; Wilbraham, Richard J.; Döbeli, Max; Renevier, Nathalie; Ball, Jonathan; Ritter, Stefan
2018-04-01
The production of helium bubbles in advanced gas-cooled reactor (AGR) cladding could represent a significant hazard for both the mechanical stability and long-term storage of such materials. However, the high radioactivity of AGR cladding after operation presents a significant barrier to the scientific study of the mechanical properties of helium incorporation, said cladding typically being analyzed in industrial hot cells. An alternative non-active approach is to implant He2+ into unused AGR cladding material via an accelerator. Here, a feasibility study of such a process, using sequential implantations of helium in AGR cladding steel with decreasing energy is carried out to mimic the buildup of He (e.g., 50 appm) that would occur for in-reactor AGR clad in layers of the order of 10 µm in depth, is described. The implanted sample is subsequently analyzed by scanning electron microscopy, nanoindentation, atomic force and ultrasonic force microscopies. As expected, the irradiated zones were affected by implantation damage (< 1 dpa). Nonetheless, such zones undergo only nanoscopic swelling and a small hardness increase ( 10%), with no appreciable decrease in fracture strength. Thus, for this fluence and applied conditions, the integrity of the steel cladding is retained despite He2+ implantation.
Segerström, Susanna; Ruyter, I Eystein
2009-09-01
For long-term stability the adhering interfaces of an implant-retained supraconstruction of titanium/carbon-graphite fiber-reinforced (CGFR) polymer/opaquer layer/denture base polymer/denture teeth must function as a unity. The aim was to evaluate adhesion of CGFR polymer to a titanium surface or CGFR polymer to two different opaquer layers/with two denture base polymers. Titanium plates were surface-treated and silanized and combined with a bolt of CGFR polymer or denture base polymer (Probase Hot). Heat-polymerized plates of CGFR polymer (47 wt% fiber) based on poly(methyl methacrylate) and a copolymer matrix were treated with an opaquer (Sinfony or Ropak) before a denture base polymer bolt was attached (Probase Hot or Lucitone 199). All specimens were heat-polymerized, water saturated (200 days) and thermally cycled (5000 cycles, 5/55 degrees C) before shear bond testing. Silicatized titanium surfaces gave higher bond strength to CGFR polymer (16.2+/-2.34 and 18.6+/-1.32) MPa and cohesive fracture than a sandblasted surface (5.9+/-2.11) MPa where the fracture was adhesive. The opaquer Sinfony gave higher adhesion values and mainly cohesive fractures than the opaquer Ropak. Different surface treatments (roughened or polished) of the CGFR polymer had no effect on bond strength. The fracture surfaces of silicatized titanium/CGFR polymer/opaquer layer (Sinfony)/denture base polymers were mainly cohesive. A combination of these materials in an implant-retained supraconstruction is promising for in vivo evaluation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
.... Therefore, you should always check the Agency's Web site and call the appropriate advisory committee hot... currently approved for mid- to deep- dermal implantation for the correction of moderate to severe facial... material on its Web site prior to the meeting, the background material will be made publicly available at...
NASA Astrophysics Data System (ADS)
Tardío, M.; Egaña, A.; Ramírez, R.; Muñoz-Santiuste, J. E.; Alves, E.
2016-07-01
The electrical conductivity in α-Al2O3 single crystals implanted with Mg ions in two different crystalline orientations, parallel and perpendicular to c axis, was investigated. The samples were implanted at room temperature with energies of 50 and 100 keV and fluences of 1 × 1015, 5 × 1015 and 5 × 1016 ions/cm2. Optical characterization reveals slight differences in the absorption bands at 6.0 and 4.2 eV, attributed to F type centers and Mie scattering from Mg precipitates, respectively. DC electrical measurements using the four and two-point probe methods, between 295 and 490 K, were used to characterize the electrical conductivity of the implanted area (Meshakim and Tanabe, 2001). Measurements in this temperature range indicate that: (1) the electrical conductivity is thermally activated independently of crystallographic orientation, (2) resistance values in the implanted region decrease with fluence levels, and (3) the I-V characteristic of electrical contacts in samples with perpendicular c axis orientation is clearly ohmic, whereas contacts are blocking in samples with parallel c axis. When thin layers are sequentially removed from the implanted region by immersing the sample in a hot solution of nitric and fluorhydric acids the electrical resistance increases until reaching the values of non-implanted crystal (Jheeta et al., 2006). We conclude that the enhancement in conductivity observed in the implanted regions is related to the intrinsic defects created by the implantation rather than to the implanted Mg ions (da Silva et al., 2002; Tardío et al., 2001; Tardío et al., 2008).
The origin of children's implanted false memories: memory traces or compliance?
Otgaar, Henry; Verschuere, Bruno; Meijer, Ewout H; van Oorsouw, Kim
2012-03-01
A longstanding question in false memory research is whether children's implanted false memories represent actual memory traces or merely result from compliance. The current study examined this question using a response latency based deception task. Forty-five 8-year-old children received narratives about a true (first day at school) and false event (hot air balloon ride). Across two interviews, 58/32% of the participants developed a partial/full false memory. Interestingly, these children also showed higher false recall on an unrelated DRM paradigm compared to children without a false memory. The crucial finding, however, was that the results of the deception task revealed that children with partial and full false memories were faster to confirm than to deny statements relating to the false event. This indicates that children's implanted false memories reflect actual memory traces, and are unlikely to be explained by mere compliance. Copyright © 2012 Elsevier B.V. All rights reserved.
Hip Implant Modified To Increase Probability Of Retention
NASA Technical Reports Server (NTRS)
Canabal, Francisco, III
1995-01-01
Modification in design of hip implant proposed to increase likelihood of retention of implant in femur after hip-repair surgery. Decreases likelihood of patient distress and expense associated with repetition of surgery after failed implant procedure. Intended to provide more favorable flow of cement used to bind implant in proximal extreme end of femur, reducing structural flaws causing early failure of implant/femur joint.
Evaluation of stabilization techniques for ion implant processing
NASA Astrophysics Data System (ADS)
Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.
1999-06-01
With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across several combinations of current and energy.
The Influence of Non-Nociceptive Factors on Hot Plate Latency in Rats
Gunn, Amanda; Bobeck, Erin N.; Weber, Ceri; Morgan, Michael M.
2010-01-01
The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot plate latency was examined. Comparison of body weight and hot plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hr prior to testing did not decrease hot plate latency except for female rats tested on Days 2 - 4. Hot plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all four trials, and prior exposure to a room temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot plate latency, but these effects are small and have relatively little impact on morphine antinociception. PMID:20797920
The effects of hematoma on implant capsules.
Caffee, H H
1986-02-01
Hematoma surrounding an implant is one of the many factors that have been suggested as possible causes for scar capsule contracture. In this study, experiments were designed to determine the influence of hematoma on the incidence and severity of capsule contracture in rabbits. Two implants were placed in each animal, 1 with a surrounding hematoma and 1 control. Capsules were evaluated subjectively and compared objectively with measurements of deformability, surface area, and capsule thickness. No differences were found with any of the objective criteria, which suggests that hematoma may not be a noteworthy cause of implant capsule contracture.
Effect of He implantation on fracture behavior and microstructural evolution in F82H
NASA Astrophysics Data System (ADS)
Yabuuchi, Kiyohiro; Sato, Kiminori; Nogami, Shuhei; Hasegawa, Akira; Ando, Masami; Tanigawa, Hiroyasu
2014-12-01
Reduced-activation ferritic/martensitic steels (RAFMs) are the primary candidate structural materials for fusion reactor blanket components. He bubbles, which formed under 14 MeV neutron irradiation, is considered to cause some mechanical property changes. In a previous study, Hasegawa et al. investigated the fracture behavior using Charpy impact test of He implanted F82H by 50 MeV α-particles with cyclotron accelerator, and the ductile brittle transition temperature (DBTT) was increased and intergranular fracture (IGF) was observed. However, the cause of the IGF was not shown in the previous study. To clarify the cause of the IGF of the He implanted F82H by 50 MeV α-particles with cyclotron accelerator, the microstructure of the He implanted F82H was investigated. After Charpy impact test at 233 K, the brittle fracture surface of the He implanted specimen was observed by SEM and TEM. By SEM observation, grain boundary surface was clearly observed from the bottom of the notch to a depth of about 400 μm. This area correspond to the He implanted region. On the other hand, at unimplanted region, river pattern was observed and transgranular fracture occurred. TEM observation revealed the He bubbles agglomeration at dislocations, lath boundaries, and grain boundaries, and the coarsening of precipitates on grain boundaries. IGF of the He implanted F82H was caused by both He bubbles and coarsening precipitates.
Linguine sign at MR imaging: does it represent the collapsed silicone implant shell?
Gorczyca, D P; DeBruhl, N D; Mund, D F; Bassett, L W
1994-05-01
One intact and one ruptured single-lumen implant were surgically placed in a rabbit. Magnetic resonance (MR) imaging was performed before and after surgical removal, and the ruptured implant was imaged after removal of the implant shell. Multiple curvilinear hypointense lines (linguine sign) were present in the MR images of the ruptured implant and of the implant shell alone immersed in saline solution but not in the image of the free silicone. The collapsed implant shell in a ruptured silicone implant does cause the linguine sign.
Patients’ satisfaction with anatomic polyurethane implants
2017-01-01
This paper presents patients satisfaction using anatomical polyurethane breast implants. We performed surgery on 525 patients, 370 of which were primary and 155 were secondary to various causes such as capsular contracture, ruptured implants, volume changes, and incorrect positioning of the implant. The advantages of silicone polyurethane covers shown high level of patient satisfaction, low incidence of capsular contracture, and absence of implant rotation, and late seroma. PMID:28497022
Preparation of Chitin-PLA laminated composite for implantable application.
Nasrin, Romana; Biswas, Shanta; Rashid, Taslim Ur; Afrin, Sanjida; Jahan, Rumana Akhter; Haque, Papia; Rahman, Mohammed Mizanur
2017-12-01
The present study explores the possibilities of using locally available inexpensive waste prawn shell derived chitin reinforced and bioabsorbable polylactic acid (PLA) laminated composites to develop new materials with excellent mechanical and thermal properties for implantable application such as in bone or dental implant. Chitin at different concentration (1-20% of PLA) reinforced PLA films (CTP) were fabricated by solvent casting process and laminated chitin-PLA composites (LCTP) were prepared by laminating PLA film (obtained by hot press method) with CTP also by hot press method at 160 °C. The effect of variation of chitin concentration on the resulting laminated composite's behavior was investigated. The detailed physico-mechanical, surface morphology and thermal were assessed with different characterization technique such as FT-IR, XRD, SEM and TGA. The FTIR spectra showed the characteristic peaks for chitin and PLA in the composites. SEM images showed an excellent dispersion of chitin in the films and composites. Thermogravimetric analysis (TGA) showed that the complete degradation of chitin, PLA film, 5% chitin reinforced PLA film (CTP2) and LCTP are 98%, 95%, 87% and 98% respectively at temperature of 500 °C. The tensile strength of the LCTP was found 25.09 MPa which is significantly higher than pure PLA film (18.55 MPa) and CTP2 film (8.83 MPa). After lamination of pure PLA and CTP2 film, the composite (LCTP) yielded 0.265-1.061% water absorption from 30 min to 24 h immerse in water that is much lower than PLA and CTP. The increased mechanical properties of the laminated films with the increase of chitin content indicated good dispersion of chitin into PLA and strong interfacial actions between the polymer and chitin. The improvement of mechanical properties and the results of antimicrobial and cytotoxicity of the composites also evaluated and revealed the composite would be a suitable candidate for implant application in biomedical sector.
Management of dental implant fractures. A case history.
Al Quran, Firas A M; Rashan, Bashar A; Al-Dwairi, Ziad N
2009-01-01
The widespread use of endosseous osseointegrated implants to replace missing natural teeth increases the chances of implant complications and failures, despite the high initial success rate reported in the literature. Implant fracture is one possible complication that results in ultimate failure of the dental implant. Such a complication poses a management crisis even for the most experienced clinician. This article reports on a case of implant fracture, its possible causes, and how the case was managed.
Analysis of the causes of dental implant fracture: A retrospective clinical study.
Stoichkov, Biser; Kirov, Dimitar
2018-01-01
Fracture of osseointegrated dental implants is the most severe mechanical complication. The aim of the present study was to analyze possible causative factors for implant body fracture. One hundred and one patients with 218 fitted implants and a follow-up period of 3 to 10 years were studied. Factors associated with biomechanical and physiologic overloading such as parafunctional activity (eg, bruxism), occlusion, and cantilevers, and factors related to the planning of the dental prosthesis, available bone volume, implant area, implant diameter, number of implants, and their inclination were tracked. The impact of their effect was analyzed using the Bonferroni-corrected post-hoc Mann-Whitney test for each group. The incidence of dental implant fracture was 2.3% in the investigated cases. Improper treatment planning, bruxism, and time of the complication setting in were the main factors leading to this complication. Typical size effect was established only for available bruxism, occlusal errors, and their activity duration. These complications were observed most often with single crown prostheses, and in combination with parafunctional activities such as bruxism and lack of implant-protected occlusion. Occlusal overload due to bruxism or inappropriate or inadequate occlusion as a single factor or a combination of these factors during the first years after the functional load can cause implant fracture. Fracture of the implant body more frequently occurred with single crowns than with other implant-supported fixed dental prostheses.
Kim, Robert Y; Dragovic, Alek F; Whitley, Alexander C; Shen, Sui
2014-01-01
To analyze the D2 cc hot spot in three-dimensional CT and anatomic factors affecting the D2 cc hot spot in organs at risk (OARs). Thirty-one patients underwent pelvic CT scan after insertion of the applicator. High-dose-rate treatment planning was performed with standard loading patterns. The D2 cc structures in OARs were generated in three dimensional if the total equivalent dose in 2 Gy exceeded our defined dose limits (hot spot). The location of D2 cc hot spot was defined as the center of the largest D2 cc fragment. The relationship between the hot spot and the applicator position was reported in Digital Imaging and Communication in Medicine coordinates. The location of sigmoid, small bowel, and bladder D2 cc hot spots was around the endocervix: The mean location of sigmoid hot spot for lateral view was 1.6 cm posteriorly and 2.3 cm superiorly (Y, 1.6 and Z, 2.3), small bowel was 1.6 cm anteriorly and 2.7 cm superiorly (Y, -1.6 and Z, 2.7). The mean location of bladder hot spot was 1.6 cm anteriorly and 1.6 cm superiorly (Y, -1.6 and Z, 1.6). These hot spots were near the plane of Point A (X, 2.0 or -2.0; Y, 0; and Z, 2.0). The mean location of rectal hot spot was 1.6 cm posteriorly and 1.9 cm inferiorly (Y, 1.6 and Z, -1.9). D2 cc hot spot was affected by uterine wall thickness, uterine tandem position, fibroids, bladder fullness, bowel gas, and vaginal packing. Because of the location of the D2 cc hot spots, larger tumors present a challenge for adequate tumor coverage with a conventional brachytherapy applicator without an interstitial implant. Additionally, anatomic factors were identified which affect the D2 cc hot spot in OARs. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Scalding in Turkish children: comparison of burns caused by hot water and hot milk.
Tarim, Akin; Nursal, Tarik Zafer; Basaran, Ozgür; Yildirim, Sedat; Türk, Emin; Moray, Gökhan; Haberal, Mehmet
2006-06-01
Our aim in this study was to compare the clinical differences and etiologic risk factors for hot water and hot milk scald burns in Turkish children. The retrospective study examined the cases of 140 children aged 0.1-7 years who had scald burns treated in three burn units of a Turkish hospital network between March 2000 and December 2004. The patients were categorized in two groups: hot water burns or hot milk burns. Ninety-five (67.9%) patients had hot water burns and 45 (47.1%) had hot milk burns. The proportion of patients with hot milk burns who lived in rural areas was significantly higher than the corresponding proportion for the hot water cases (75.6% versus 52.6%, respectively; p<0.01). In 20 (44%) of the hot milk cases, the burn was caused by milk being boiled in large pots outdoors for cheese production. The other 25 hot milk cases were caused by milk being boiled in the kitchen. The mean (+/-S.D.) percentage total body surface area burned in the hot milk cases was higher than that in the hot water cases (33.6+/-2.24% versus 21.42+/-1.43%, respectively; p<0.001), and the corresponding mean percentages of TBSA with full-thickness burns were 9.2+/-2.52% versus 3.13+/-0.83%, respectively; (p=0.083). The mean percentages of TBSA with second-degree burns showed the same trend (29.0+/-12.39% versus 18.8+/-1.47%, respectively; p<0.001) higher percentage of the children with hot milk burns required antibiotics (78% versus 52.8%, respectively; p<0.006). Seven (7.4%) of the hot water burn patients and 15 (33.3%) of the hot milk burn patients died during the study period (p=0.025; overall mortality rate 15.7%). Children scalded with hot milk tend to have more extensive burns, and thus have higher mortality, than those scalded with hot water. To create effective programs for preventing scald injuries in Turkey and elsewhere, it is essential to consider ethnic and cultural issues based on these characteristics. Simple precautions should be explained and methods of using liquids such as hot milk should be researched in different geographic locations in order to formulate good prevention strategies.
Piątek, Łukasz; Polewczyk, Anna; Kurzawski, Jacek; Zachura, Małgorzata; Kaczmarczyk, Małgorzata; Janion, Marianna
Due to increasing number of patients treated by cardiac implantable electronic devices we observe increasing number of complications after these procedures We analysed causes of early surgical revision of implantable devices connected with 1673 procedures of implantation (871 procedures) or exchange (802 procedures) of pacing systems (PM), cardioverter-difibrillators (ICD) and resynchronisation systems (CRT) in one local centre of electrotherapy in years 2012 to 2015. We characterised risk factors and its influence on encountered complications. In analysed period 72 reinterventions after implantations or exchanges of PM/ICD/CRT were performed. Main causes of early complications were: lead malfunction (2.5%), including the dislodgement of the leads in 1.9%, pocket hematoma (1.4%) and other abnormalities of the pocket (0.4 %), including pocket infections in 0.2%. The most important risk factors of early complications were often implantations of the leads with passive fixation and anticoagulation therapy in perioperative period. The knowledge of the early complications after implantations and exchanges of PM/ICD/CRT should improve the safety of procedures through more often used of the leads with active fixation and properly preparation of the patients requering the antithrombic therapy.
NASA Technical Reports Server (NTRS)
Hapke, Bruce; DiMucci, Dominick; Nelson, Robert; Smythe, William
1996-01-01
Two different mechanisms, shadow-hiding and coherent backscatter, can cause a hot spot, or opposition effect, in the bidirectional reflectance of vegetation and soils. Because the two mechanisms sample different properties, it is important to know which one is primarily responsible in a given medium. This question can be answered by measuring the bidirectional reflectance in circularly polarized light. If the results of the limited experiments reported here can be extrapolated to a wider range of materials, it appears that the primary cause of the hot spot in most vegetation canopies and in moist, clumpy soils is shadow-hiding. However, in vegetation with large numbers of wavelength-sized structures, such as mosses, and in dry, fine-grained soils, the hot spot is dominated by coherent backscatter.
Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi
2008-04-01
Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... Agency's Web site and call the appropriate advisory committee hot line/phone line to learn about possible... wrinkles in the face. The AQUAMID dermal filler is intended for use in mid-to-deep sub-dermal implantation... before the meeting. If FDA is unable to post the background material on its Web site prior to the meeting...
Reaction of the rat tissues to implantation of polyhydroxyalkanoate films and ultrafine fibers.
Maiborodin, I V; Shevela, A I; Morozov, V V; Novikova, Ya V; Matveeva, V A; Drovosekov, M N; Barannik, M I
2013-01-01
The reaction of various tissues of rats to implantation of polyhydroxyalkanoate films and ultrafine fibers was studied by optic microscopy. Implantation of polyhydroxyalkanoate films into the abdominal cavity caused a peritoneal reaction, leading after 1 month to the formation of fibrous adhesions between polyhydroxyalkanoate and intestinal loops. Under the skin and in the muscle tissue polyhydroxyalkanoate films were encapsulated in a thick fibrous capsule. Implantation of polyhydroxyalkanoate ultrathin fibers led to formation of foreign body granulomas in all tissues with perifocal inflammation and sclerosis of the adjacent tissues. The polymer was fragmented in these granulomas and phagocytosed by macrophages with the formation of giant foreign body cells. Hence, polyhydroxyalkanoate materials implanted in vivo caused chronic granulomatous inflammatory reaction and were very slowly destroyed by macrophages.
A contact mechanics model for ankle implants with inclusion of surface roughness effects
NASA Astrophysics Data System (ADS)
Hodaei, M.; Farhang, K.; Maani, N.
2014-02-01
Total ankle replacement is recognized as one of the best procedures to treat painful arthritic ankles. Even though this method can relieve patients from pain and reproduce the physiological functions of the ankle, an improper design can cause an excessive amount of metal debris due to wear, causing toxicity in implant recipient. This paper develops a contact model to treat the interaction of tibia and talus implants in an ankle joint. The contact model describes the interaction of implant rough surfaces including both elastic and plastic deformations. In the model, the tibia and the talus surfaces are viewed as macroscopically conforming cylinders or conforming multi-cylinders containing micrometre-scale roughness. The derived equations relate contact force on the implant and the minimum mean surface separation of the rough surfaces. The force is expressed as a statistical integral function of asperity heights over the possible region of interaction of the roughness of the tibia and the talus implant surfaces. A closed-form approximate equation relating contact force and minimum separation is used to obtain energy loss per cycle in a load-unload sequence applied to the implant. In this way implant surface statistics are related to energy loss in the implant that is responsible for internal void formation and subsequent wear and its harmful toxicity to the implant recipient.
Urinary incontinence - injectable implant
... injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a weak urinary sphincter. ... choose to have implants. Women who have urine leakage and want a ... procedure to control the problem may choose to have an implant ...
A rare, late complication after automated implantable cardioverter-defibrillator placement.
Shapiro, Michael; Hanon, Sam; Schweitzer, Paul
2004-10-01
This article describes an interesting case of automated implantable cardioverter defibrillator (AICD) extrusion fifteen months after implantation. The case report is followed by a discussion of the causes and treatment of skin erosion following pacemaker/AICD insertion.
Experience in cochlear reimplantation. Descriptive study of a 20-year period.
Gutiérrez-Salazar, Andrés; Cop, Constanze; Osorio-Acosta, Ángel; Borkoski-Barreiro, Silvia; Falcón-González, Juan C; Ramos-Macías, Ángel
2015-01-01
The cochlear implant is a surgical procedure that has increased substantially, because the paediatric population is diagnosed and implanted early and because there are increased potential indications. This device has the inherent risk of failure in performance, as dies any active medical device, which is the most common cause of implant removal. Our goal was to understand what the causes that produced removal in our series were, and confirm if these conformed to reality as reviewed in the literature. This was a retrospective, descriptive, observational study of 859 cochlear implant surgeries carried out between October 1991 and May 2011. The causes of implant removal were classified according to the European Consensus Statement on Cochlear Implant Failures and Explantations. The reimplantation rate was 6.16% (n=51). The most common reason for removal was technical device failure (45.5%), followed by infection/rejection (23.6%) and upgrade (12.7%). Less common causes: there were 3 cases (5.6%) of electrode misplacement, 2 cases (3.6%) of labyrinthine ossification, 2 (3.6%) as a result of head trauma, 2 (3.6%) from need for nuclear magnetic resonance imaging and 1 case (1.8%) from psychiatric illness. Cochlear reimplantation is a safe procedure, with a low complication rate. In our centre, it reaches an overall rate of 6.16%. Technical device failure remains the most common cause of this procedure, although there is a significant percentage of reimplantation for device update. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.
The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
Li, Zijian; Gu, Xunan; Lou, Siquan; Zheng, Yufeng
2008-04-01
Binary Mg-Ca alloys with various Ca contents were fabricated under different working conditions. X-ray diffraction (XRD) analysis and optical microscopy observations showed that Mg-xCa (x=1-3 wt%) alloys were composed of two phases, alpha (Mg) and Mg2Ca. The results of tensile tests and in vitro corrosion tests indicated that the mechanical properties could be adjusted by controlling the Ca content and processing treatment. The yield strength (YS), ultimate tensile strength (UTS) and elongation decreased with increasing Ca content. The UTS and elongation of as-cast Mg-1Ca alloy (71.38+/-3.01 MPa and 1.87+/-0.14%) were largely improved after hot rolling (166.7+/-3.01 MPa and 3+/-0.78%) and hot extrusion (239.63+/-7.21 MPa and 10.63+/-0.64%). The in vitro corrosion test in simulated body fluid (SBF) indicated that the microstructure and working history of Mg-xCa alloys strongly affected their corrosion behaviors. An increasing content of Mg2Ca phase led to a higher corrosion rate whereas hot rolling and hot extrusion could reduce it. The cytotoxicity evaluation using L-929 cells revealed that Mg-1Ca alloy did not induce toxicity to cells, and the viability of cells for Mg-1Ca alloy extraction medium was better than that of control. Moreover, Mg-1Ca alloy pins, with commercial pure Ti pins as control, were implanted into the left and right rabbit femoral shafts, respectively, and observed for 1, 2 and 3 months. High activity of osteoblast and osteocytes were observed around the Mg-1Ca alloy pins as shown by hematoxylin and eosin stained tissue sections. Radiographic examination revealed that the Mg-1Ca alloy pins gradually degraded in vivo within 90 days and the newly formed bone was clearly seen at month 3. Both the in vitro and in vivo corrosion suggested that a mixture of Mg(OH)2 and hydroxyapatite formed on the surface of Mg-1Ca alloy with the extension of immersion/implantation time. In addition, no significant difference (p>0.05) of serum magnesium was detected at different degradation stages. All these results revealed that Mg-1Ca alloy had the acceptable biocompatibility as a new kind of biodegradable implant material. Based on the above results, a solid alloy/liquid solution interface model was also proposed to interpret the biocorrosion process and the associated hydroxyapatite mineralization.
Shalabi, Manal M; Wolke, Johannes G C; Cuijpers, Vincent M J I; Jansen, John A
2007-10-01
High-resolution three-dimensional data about the bone response to oral implants can be obtained by using microfocus computer tomography. However, a disadvantage is that metallic implants cause streaking artifacts due to scattering of X-rays, which prevents an accurate evaluation of the interfacial bone-to-implant contact. It has been suggested that the use of thin titanium coatings deposited on polymeric implants can offer an alternative option for analyzing bone contact using micro-CT imaging. Consequently, the aim of the current study was to investigate bone behavior to titanium-coated polymethylmethacrylate (PMMA) implants by micro-CT and histological evaluation. For the experiment titanium-coated PMMA implants were used. The implants had a machined threaded appearance and were provided with a 400-500 nm thick titanium coating. The implants were inserted in the right or left tibia of 10 goats. After an implantation period of 12 weeks the implants were retrieved and prepared for micro-computer tomography (microCT), light microscopy, and X-ray microanalysis. The micro-CT showed that the screw-threads and typical implant configuration were well maintained through the installation procedure. Overall, histological responses showed that the titanium-coated implants were well tolerated and caused no atypical tissue response. In addition, the bone was seen in direct contact with the titanium-coated layer. The X-ray microanalysis results confirmed the light microscopical data. In conclusion, the obtained results proof the final use of titanium-coated PMMA implants for evaluation of the bone-implant response using microCT. However, this study also confirms that for a proper analysis of the bone-implant interface the additional use of microscopical techniques is still required.
Clinical Holistic Medicine: How to Recover Memory Without “Implanting” Memories in Your Patient
Ventegodt, Søren; Kandel, Isack; Merrick, Joav
2007-01-01
Every therapeutic strategy and system teach us the philosophy of the treatment system to the patient, but often this teaching is subliminal and the philosophical impact must be seen as “implanted philosophy”, which gives distorted interpretations of past events called “implanted memories”. Based on the understanding of the connection between “implanted memory” and “implanted philosophy” we have developed a strategy for avoiding implanting memories arising from one of the seven most common causes of implanted memories in psychodynamic therapy: 1) Satisfying own expectancies, 2) pleasing the therapist, 3) transferences and counter transferences, 4) as source of mental and emotional order, 5) as emotional defence, 6) as symbol and 7) from implanted philosophy. Freud taught us that child sexuality is “polymorphously perverted”, meaning that all kinds of sexuality is present at least potentially with the little child; and in dreams consciousness often go back to the earlier stages of development, potentially causing all kinds of sexual dreams and fantasies, which can come up in therapy and look like real memories. The therapist working with psychodynamic psychotherapy, clinical holistic medicine, psychiatry, and emotionally oriented bodywork, should be aware of the danger of implanting philosophy and memories. Implanted memories and implanted philosophy must be carefully handled and de-learned before ending the therapy. In conclusion “clinical holistic medicine” has developed a strategy for avoiding implanting memories. PMID:17891319
Effects of Casting Conditions on End Product Defects in Direct Chill Casted Hot Rolling Ingots
NASA Astrophysics Data System (ADS)
Yorulmaz, Arda; Yüksel, Çağlar; Erzi, Eraz; Dispinar, Derya
Direct chill casting is a reliable casting process for almost any wrought aluminum alloy for subsequent deformation via hot rolling to supply vital industries such as aerospace, automotive, construction, packaging and maritime. While some defects occur during casting, like hot tearing, some others like surface defect causing blisters, appear after hot rolling process or annealing after final cold rolling steps. It was found that some of these defects are caused by melt impurities formed from entrained folded aluminum oxides or bifilms. A study in a hot rolling casting facility was carried out with different melt cleaning practices, launder and molten metal transferring designs. Bifilm index and reduced pressure test were used for determining melt cleanliness measurement. It was found that porous plug gas diffusons for degassing are more effective than lance type degassers and a design towards less turbulent molten metal flow from furnace to mould cavity are necessary for reducing defects caused by bifilms.
Biomaterials and host versus graft response: A short review
Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija
2016-01-01
Biomaterials and biotechnology are increasing becoming an important area in modern medicine. The main aim in this area is the development of materials, which are biocompatible to normal tissue. Tissue-implant interactions with molecular, biological and cellular characteristics at the implant-tissue interface are important for the use and development of implants. Implantation may cause an inflammatory and immune response in tissue, foreign body reaction, systemic toxicity and imminent infection. Tissue-implant interactions determine the implant life-period. The aims of the study are to consider the biological response to implants. Biomaterials and host reactions to implants and their mechanisms are also briefly discussed. PMID:26894284
Hot tub folliculitis or hot hand-foot syndrome caused by Pseudomonas aeruginosa.
Yu, Yue; Cheng, Amy S; Wang, Lawrence; Dunne, W Michael; Bayliss, Susan J
2007-10-01
Pseudomonas aeruginosa is a ubiquitous gram-negative rod that can cause a well-recognized, acquired skin infection from bacterial colonization of contaminated water called "hot tub folliculitis." We report an outbreak of pseudomonas skin infection associated with the use of a hot tub at a pool party in 33 children. In particular, 2 of the children were admitted to our hospital; both presented with high leukocyte counts, intermittent low grade fevers, and painful, erythematous nodules and papules on their palms and soles. One of the 2 children also presented with small erythematous pustular lesions on the face and trunk, which led to the diagnosis. Cultures from these pustules grew P aeruginosa. Thirty two other children at this pool/hot tub party developed similar lesions of varying severity 6 to 48 hours after the party. These findings were most consistent with the diagnosis of pseudomonas folliculitis/hot hand.
Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells
NASA Technical Reports Server (NTRS)
Fonash, S. J.; Sigh, R.; Mu, H. C.
1986-01-01
The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.
Griffin, John F; Archambault, Nicholas S; Mankin, Joseph M; Wall, Corey R; Thompson, James A; Padua, Abraham; Purdy, David; Kerwin, Sharon C
2013-11-15
Laboratory investigation, ex vivo. Postoperative complications are common after spinal implantation procedures, and magnetic resonance imaging (MRI) would be the ideal modality to image these patients. Unfortunately, the implants cause artifacts that can render MRI nondiagnostic. The WARP-turbo spin echo (TSE) sequence has been developed to mitigate artifacts caused by metal. The objective of this investigation was to evaluate the performance of the WARP-TSE sequence in canine cadaver specimens after implantation with metallic vertebral implants. Magnetic field strength, implant type, and MRI acquisition technique all play a role in the severity of susceptibility artifacts. The WARP-TSE sequence uses increased bandwidth, view angle tilting, and SEMAC (slice-encoding metal artifact correction) to correct for susceptibility artifact. The WARP-TSE technique has outperformed conventional techniques in patients, after total hip arthroplasty. However, published reports of its application in subjects with vertebral column implants are lacking. Ex vivo anterior stabilization of the atlantoaxial joint was performed on 6 adult small breed (<8 kg) cadaver dogs using stainless steel screws and polymethylmethacrylate. Axial and sagittal T2-weighted and short tau inversion recovery MRI was performed using conventional pulse sequences and WARP-TSE sequences at 3 T. Images were assessed qualitatively and quantitatively. Images made with the WARP-TSE sequence had smaller susceptibility artifacts and superior spinal cord margin depiction. WARP-TSE sequences reduced the length over which susceptibility artifacts caused spinal cord margin depiction interference by 24.9% to 71.5% with scan times of approximately 12 to 16 minutes. The WARP-TSE sequence is a viable option for evaluating the vertebral column after implantation with stainless steel implants. N/A.
Overdenture retaining bar stress distribution: a finite-element analysis.
Caetano, Conrado Reinoldes; Mesquita, Marcelo Ferraz; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; Dos Santos, Mateus Bertolini Fernandes
2015-05-01
Evaluate the stress distribution on the peri-implant bone tissue and prosthetic components of bar-clip retaining systems for overdentures presenting different implant inclinations, vertical misfit and framework material. Three-dimensional models of a jaw and an overdenture retained by two implants and a bar-clip attachment were modeled using specific software (SolidWorks 2010). The studied variables were: latero-lateral inclination of one implant (-10°, -5°, 0°, +5°, +10°); vertical misfit on the other implant (50, 100, 200 µm); and framework material (Au type IV, Ag-Pd, Ti cp, Co-Cr). Solid models were imported into mechanical simulation software (ANSYS Workbench 11). All nodes on the bone's external surface were constrained and a displacement was applied to simulate the settling of the framework on the ill-fitted component. Von Mises stress for the prosthetic components and maximum principal stress to the bone tissue were evaluated. The +10° inclination presented the worst biomechanical behavior, promoting the highest stress values on the bar framework and peri-implant bone tissue. The -5° group presented the lowest stress values on the prosthetic components and the lowest stress value on peri-implant bone tissue was observed in -10°. Increased vertical misfit caused an increase on the stress values in all evaluated structures. Stiffer framework materials caused a considerable stress increase in the framework itself, prosthetic screw of the fitted component and peri-implant bone tissue. Inclination of one implant associated with vertical misfit caused a relevant effect on the stress distribution in bar-clip retained overdentures. Different framework materials promoted increased levels of stress in all the evaluated structures.
NASA Astrophysics Data System (ADS)
Tan, Jing; Li, Yiting; Liu, Zhiyuan; Qu, Shuxin; Lu, Xiong; Wang, Jianxin; Duan, Ke; Weng, Jie; Feng, Bo
2015-07-01
The titanium percutaneous implants were widely used in clinic; however, they have an increased risk of infection since they breach the skin barrier. Lack of complete skin integration with the implants can cause infection and implant removal. In this work, three titania nanotubes (TNT) with different diameters, 50 nm (TNT-50), 100 nm (TNT-100) and 150 nm (TNT-150) arrays were prepared on titanium surfaces by anodization, pure titanium (pTi) was used as control. Samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle analysis. The antibacterial efficiency of TNT was evaluated in vitro against Staphylococcus aureus under the visible light. The results indicated that TNT-100 had the highest antibacterial efficiency under the visible light. Subsequently, TNT implants and pTi implants were placed subcutaneously to the dorsum of New Zealand White rabbits, 108 CFU S. aureus was inoculated into the implant sites 4 h after surgery. The TNF-alpha and IL-1alpha were determined using enzyme linked immunoassay (ELISA). TNT implants revealed less inflammatory factor release than pTi implants with or without injected S. aureus liquid. According to the histological results, the TNT implants displayed excellent tissue integration. Whereas, pTi implants were surrounded with fibrotic capsule, and the skin tissue was almost separated from the implant surface. Therefore, the TNT significantly inhibited the infection risk and enhanced tissue integration of the percutaneous implants compared to pTi. The immersion test in the culture medium suggested that one of causes be probably more proteins adsorbed on TNT than on pTi.
Cochlear Implantation in Siblings With Refsum's Disease.
Stähr, Kerstin; Kuechler, Alma; Gencik, Martin; Arnolds, Judith; Dendy, Meaghan; Lang, Stephan; Arweiler-Harbeck, Diana
2017-08-01
Whether the origin of severe hearing loss in Refsum's syndrome is caused by cochlear impairment or retrocochlear degeneration remains unclear. This case report aims to investigate hearing performance before and after cochlear implantation to shed light on this question. Also, identification of new mutations causing Refsum's syndrome would be helpful in generating additional means of diagnosis. A family of 4 individuals was subjected to genetic testing. Two siblings (56 and 61 years old) suffered from severe hearing and vision loss and received bilateral cochlear implants. Genetic analysis, audiological outcome, and clinical examinations were performed. One new mutation in the PHYH gene (c.768del63bp) causing Refsum's disease was found. Preoperative distortion product otoacoustic emissions (DPAOEs) were absent. Postoperative speech perception in Freiburger speech test was 100% for bisyllabic words and 85% (patient No. 1) and 65% (patient No. 2), respectively, for monosyllabic words. Five years after implantation, speech perception remained stable for bisyllabic words but showed decreasing capabilities for monosyllabic words. A new mutation causing Refsum's disease is presented. Cochlear implantation in case of severe hearing loss leads to an improvement in speech perception and should be recommended for patients with Refsum's disease, especially when the hearing loss is combined with a severe loss of vision. Decrease of speech perception in the long-term follow-up could indicate an additional retrocochlear degeneration.
Cochlear implantation in patients with bilateral cochlear trauma.
Serin, Gediz Murat; Derinsu, Ufuk; Sari, Murat; Gergin, Ozgül; Ciprut, Ayça; Akdaş, Ferda; Batman, Cağlar
2010-01-01
Temporal bone fracture, which involves the otic capsule, can lead to complete loss of auditory and vestibular functions, whereas the patients without fractures may experience profound sensorineural hearing loss due to cochlear concussion. Cochlear implant is indicated in profound sensorineural hearing loss due to cochlear trauma but who still have an intact auditory nerve. This is a retrospective review study. We report 5 cases of postlingually deafened patients caused by cochlear trauma, who underwent cochlear implantation. Preoperative and postoperative hearing performance will be presented. These patients are cochlear implanted after the cochlear trauma in our department between 2001 and 2006. All patients performed very well with their implants, obtained open-set speech understanding. They all became good telephone users after implantation. Their performance in speech understanding was comparable to standard postlingual adult patients implanted. Cochlear implantation is an effective aural rehabilitation in profound sensorineural hearing loss caused by temporal bone trauma. Preoperative temporal bone computed tomography, magnetic resonance imaging, and promontorium stimulation testing are necessary to make decision for the surgery and to determine the side to be implanted. Surgery could be challenging and complicated because of anatomical irregularity. Moreover, fibrosis and partial or total ossification within the cochlea must be expected. Copyright 2010. Published by Elsevier Inc.
Delayed Propionibacterium acnes surgical site infections occur only in the presence of an implant
Shiono, Yuta; Ishii, Ken; Nagai, Shigenori; Kakinuma, Hiroaki; Sasaki, Aya; Funao, Haruki; Kuramoto, Tetsuya; Yoshioka, Kenji; Ishihama, Hiroko; Isogai, Norihiro; Takeshima, Kenichiro; Tsuji, Takashi; Okada, Yasunori; Koyasu, Shigeo; Nakamura, Masaya; Toyama, Yoshiaki; Aizawa, Mamoru; Matsumoto, Morio
2016-01-01
Whether Propionibacterium acnes (P. acnes) causes surgical-site infections (SSI) after orthopedic surgery is controversial. We previously reported that we frequently find P. acnes in intraoperative specimens, yet none of the patients have clinically apparent infections. Here, we tracked P. acnes for 6 months in a mouse osteomyelitis model. We inoculated P. acnes with an implant into the mouse femur in the implant group; the control group was treated with the bacteria but no implant. We then observed over a 6-month period using optical imaging system. During the first 2 weeks, bacterial signals were detected in the femur in the both groups. The bacterial signal completely disappeared in the control group within 28 days. Interestingly, in the implant group, bacterial signals were still present 6 months after inoculation. Histological and scanning electron-microscope analyses confirmed that P. acnes was absent from the control group 6 months after inoculation, but in the implant group, the bacteria had survived in a biofilm around the implant. PCR analysis also identified P. acnes in the purulent effusion from the infected femurs in the implant group. To our knowledge, this is the first report showing that P. acnes causes SSI only in the presence of an implant. PMID:27615686
Mycelial antineoplastic activity of Agaricus blazei.
Bertéli, Míria Benetati Delgado; Umeo, Suzana Harue; Bertéli, André; do Valle, Juliana Silveira; Linde, Giani Andrea; Colauto, Nelson Barros
2014-08-01
Basidiocarp of Agaricus blazei (=Agaricus brasiliensis; =Agaricus subrufescens) is used as teas or capsules due to its antineoplastic effect but there are few reports of using mycelium for this purpose. The objective of this study was to evaluate the antineoplastic activity on sarcoma 180 cells implanted in mice of two forms of preparation of the mycelium from two A. blazei strains grown in culture medium with different concentrations of isolated soy protein. Mycelia were grown in Pontecorvo medium with different concentrations of isolated soybean protein (ISP). Mycelial hot water extract, moistened mycelial powder, hot water extract of green tea, Ifosfamida(®) (ifosfamide drug), and saline solution were administered daily by gavage in mice with sarcoma 180 cells to evaluate antineoplastic activity. It was concluded that antineoplastic activity was the same for both strains, except when used as moistened mycelial powder, which rules out the use of mycelial powder in capsules. Mycelial hot water extract had high antineoplastic activity with lower metabolic demand on the spleen and maintenance of normal blood parameters. Mycelial growth in different ISP concentrations had the same antineoplastic activity. Also the vegetative mycelium was as effective as the basidiocarp for sarcoma 180 tumor inhibition. Green tea was as effective as mycelial hot water extract.
Composite fibrous glaucoma drainage implant
NASA Astrophysics Data System (ADS)
Klapstova, A.; Horakova, J.; Shynkarenko, A.; Lukas, D.
2017-10-01
Glaucoma is a frequent reason of loss vision. It is usually caused by increased intraocular pressure leading to damage of optic nerve head. This work deals with the development of fibrous structure suitable for glaucoma drainage implants (GDI). Commercially produced metallic glaucoma implants are very effective in lowering intraocular pressure. However, these implants may cause adverse events such as damage to adjacent tissue, fibrosis, hypotony or many others [1]. The aim of this study is to reduce undesirable properties of currently produced drains and improve their properties by creating of the composite fibrous drain for achieve a normal intraocular pressure. Two types of electrospinning technologies were used for the production of very small tubular implants. First type was focused for production of outer part of tubular drain and the second type of electrospinning method made the inner part of shape follows the connections of both parts. Complete implant had a special properties suitable for drainage of fluid. Morphological parameters, liquid transport tests and in-vitro cell adhesion tests were detected.
Hayes, Galina; Gibson, Tom; Moens, Noel M M; Nykamp, Stephanie; Wood, Darren; Foster, Robert; Lerer, Asaf
2016-01-01
Gentamicin impregnated collagen sponge (GICS) can be used to treat intra-articular surgical site infections. High local concentrations of gentamicin can be reached for short periods; however the collagen vehicle may persist for much longer periods. We wished to determine the effect of sponge implantation on joint inflammation and renal function. Eighteen medium sized mixed breed research dogs of hound type were randomized to two groups; arthroscopic implantation of GICS at gentamicin dose = 6 mg/kg (n = 9) or sham operation (n = 9). Endpoints consisted of joint inflammation measured by synovial fluid cell counts and cytokine concentrations; lameness measured by force plate asymmetry indices; and renal function measured by glomerular filtration rate (GFR) study. The prevalence of lesions associated with aminoglycoside nephrotoxicity was assessed by renal biopsy and transmission electron microscopy. Gentamicin impregnated collagen sponge implantation caused joint inflammation (p <0.01), lameness (p = 0.04), and decreased GFR (p = 0.04). No difference was observed in the prevalence of renal lesions on biopsy between the treatment and control groups (p = 0.49). Gentamicin impregnated collagen sponge implantation causes joint inflammation and lameness as well as GFR reductions at the dose assessed. Gentamicin impregnated collagen sponge are not recommended for intra-articular implantation in dogs.
Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale.
Kim, Yongsik; Oh, Tae-Ju; Misch, Carl E; Wang, Hom-Lay
2005-02-01
Due to lack of the periodontal ligament, osseointegrated implants, unlike natural teeth, react biomechanically in a different fashion to occlusal force. It is therefore believed that dental implants may be more prone to occlusal overloading, which is often regarded as one of the potential causes for peri-implant bone loss and failure of the implant/implant prosthesis. Overloading factors that may negatively influence on implant longevity include large cantilevers, parafunctions, improper occlusal designs, and premature contacts. Hence, it is important to control implant occlusion within physiologic limit and thus provide optimal implant load to ensure a long-term implant success. The purposes of this paper are to discuss the importance of implant occlusion for implant longevity and to provide clinical guidelines of optimal implant occlusion and possible solutions managing complications related to implant occlusion. It must be emphasized that currently there is no evidence-based, implant-specific concept of occlusion. Future studies in this area are needed to clarify the relationship between occlusion and implant success.
Rühling, A; Kocher, T; Kreusch, J; Plagmann, H C
1994-03-01
Removal of plaque and calculus by means of sonic and ultrasonic scalers causes considerable damage to implants. With a view to avoiding the aggressive effects of these instruments, an experimental study was carried out for which conventional sonic and ultrasonic scalers were coated with Teflon. The effects of these instruments on implant surfaces was then compared with that of plastic and metal implant curettes. Stereo-microscopy, scanning electron microscopy and surface profilometry were used to detect and record damage to implant surfaces and changes in surface roughness. Generation and propagation of heat in subgingival simulation of use of sonic and ultrasonic scalers were also recorded by means of temperature measurements at the implant surface. The results revealed that no discernible damage was caused by Teflon-coated sonic and ultrasonic scalers or implant curettes made of plastic on smooth titanium surfaces. Instrument material residues were found on rough implant surfaces. It was not the intention of this study to provide an analysis of the prerequisites for the cleaning of rough implant surfaces, but rather to determine what type of damage is to be expected when contact is made with smooth and rough surfaces unintentionally. Temperature measurements during the subgingival use of sonic and ultrasonic scalers indicated satisfactory functioning of the cooling system. Coating of sonic and ultrasonic scaler tips with Teflon thus facilitates the use of high-frequency instruments to achieve professional cleaning of implants.
An unusual burn caused by hot argy wormwood leaf water
Liang, Xun; Chen, Xu-Lin; Wang, Fei; Guo, Feng
2011-01-01
An unusual burn case caused by hot wormwood leaf water was discussed. A 29-year-old woman sustained a 7% second-degree burn on both buttocks and left thigh. This case report highlights a rare cause of a chemical burn that may become more common with increasing use of this Chinese traditional medicine. The prevention measures of this burn injury were also presented. PMID:24765332
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reass, W.A.
1994-07-01
This paper describes the electrical design and operation of a high power modulator system implemented for the Los Alamos Plasma Source Ion Implantation (PSII) facility. To test the viability of the PSII process for various automotive components, the modulator must accept wide variations of load impedance. Components have varying area and composition which must be processed with different plasmas. Additionally, the load impedance may change by large factors during the typical 20 uS pulse, due to plasma displacement currents and sheath growth. As a preliminary design to test the system viability for automotive component implantation, suitable for a manufacturing environment,more » circuit topology must be able to directly scale to high power versions, for increased component through-put. We have chosen an evolutionary design approach with component families of characterized performance, which should Ion result in a reliable modulator system with component lifetimes. The modulator utilizes a pair of Litton L-3408 hollow beam amplifier tubes as switching elements in a ``hot-deck`` configuration. Internal to the main of planar triode hot deck, an additional pair decks, configured in a totem pole circuit, provide input drive to the L-3408 mod-anodes. The modulator can output over 2 amps average current (at 100 kV) with 1 kW of modanode drive. Diagnostic electronics monitor the load and stops pulses for 100 mS when a load arcs occur. This paper, in addition to providing detailed engineering design information, will provide operational characteristics and reliability data that direct the design to the higher power, mass production line capable modulators.« less
21 CFR 882.5860 - Implanted neuromuscular stimulator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted neuromuscular stimulator. 882.5860... neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a device that provides electrical stimulation to a patient's peroneal or femoral nerve to cause muscles in the leg to contract, thus...
Effect of plastic-covered ultrasonic scalers on titanium implant surfaces.
Mann, M; Parmar, D; Walmsley, A D; Lea, S C
2012-01-01
Maintaining oral health around titanium implants is essential. The formation of a biofilm on the titanium surface will influence the continuing success of the implant. These concerns have led to modified ultrasonic scaler instruments that look to reduce implant damage while maximising the cleaning effect. This study aimed to assess the effect of instrumentation, with traditional and modified ultrasonic scalers, on titanium implant surfaces and to correlate this with the oscillations of the instruments. Two ultrasonic insert designs (metallic TFI-10 and a plastic-tipped implant insert) were selected. Each scaler probe was scanned using a scanning laser vibrometer, under loaded and unloaded conditions, to determine their oscillation characteristics. Loads were applied against a titanium implant (100g and 200 g) for 10 s. The resulting implant surfaces were then scanned using laser profilometry and scanning electron microscopy (SEM). Insert probes oscillated with an elliptical motion with the maximum amplitude at the probe tip. Laser profilometry detected defects in the titanium surface only for the metallic scaler insert. Defect widths at 200 g high power were significantly larger than all other load/power conditions (P<0.02). Using SEM, it was observed that modifications to the implant surface had occurred following instrumentation with the plastic-tipped insert. Debris was also visible around the defects. Metal scalers produce defects in titanium implant surfaces and load and power are important factors in the damage caused. Plastic-coated scaler probes cause minimal damage to implant surfaces and have a polishing action but can leave plastic deposits behind on the implant surface. © 2011 John Wiley & Sons A/S.
The influence of non-nociceptive factors on hot-plate latency in rats.
Gunn, Amanda; Bobeck, Erin N; Weber, Ceri; Morgan, Michael M
2011-02-01
The hot plate is a widely used test to assess nociception. The effect of non-nociceptive factors (weight, sex, activity, habituation, and repeated testing) on hot-plate latency was examined. Comparison of body weight and hot-plate latency revealed a small but significant inverse correlation (light rats had longer latencies). Habituating rats to the test room for 1 hour prior to testing did not decrease hot-plate latency except for female rats tested on days 2 to 4. Hot-plate latency decreased with repeated daily testing, but this was not caused by a decrease in locomotor activity or learning to respond. Activity on the hot plate was consistent across all 4 trials, and prior exposure to a room-temperature plate caused a similar decrease in latency as rats tested repeatedly on the hot plate. Despite this decrease in baseline hot-plate latency, there was no difference in morphine antinociceptive potency. The present study shows that weight, habituation to the test room, and repeated testing can alter baseline hot-plate latency, but these effects are small and have relatively little impact on morphine antinociception. This manuscript shows that non-nociceptive factors such as body weight, habituation, and repeated testing can alter hot-plate latency, but these factors do not alter morphine potency. In sum, the hot-plate test is an easy to use and reliable method to assess supraspinally organized nociceptive responses. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Analysis of 30 breast implant rupture cases.
Tark, Kwan Chul; Jeong, Hii Sun; Roh, Tae Suk; Choi, Jong Woo
2005-01-01
Breast implants used for augmentation mammoplasty or breast reconstruction could rupture from various causes such as trauma or spontaneous failure. The objectives of this study were to investigate the relationships between the causes of implant rupture and the degree of capsular contracture, and then to evaluate the relative efficacies of specific signs on magnetic resonance imaging (MRI) known to be beneficial for diagnosing the rupture. A retrospective review identified patients with prosthetic implant rupture or impending rupture treated by the senior author. The 30 cases of implant rupture available for review were classified into two groups: intracapsular and extracapsular ruptures. The 30 cases of breast implant ruptures were analyzed with respect to the clinical symptoms and signs, the causes of rupture, the degree of capsular contracture, and therapeutic plans. Among the 30 cases, 14 patients who had undergone MRI during the diagnostic period were analyzed with respect to the relationships between MRI readings and operative findings. Spontaneous rupture of membranes was most common (80%), followed by failure because of trauma (7%) and valve or implant base (4%). The symptoms during implant rupture were contour deformity, palpated mass-like lesions, pain, and focal inflammation. According to the analysis of specific MRI signs, the sensitivity and specificity of the linguine sign were 87% and 100%, respectively, for intracapsular rupture. For extracapsular rupture, the sensitivity and specificity of the linguine sign were, respectively, 67% and 75%. The sensitivity and specificity of the rat-tail sign and tear drop sign were 14% and 50%, respectively. Breast implant rupture was correlated with the degree of capsular contracture in our study. Among the various specific MRI signs used in diagnosing the rupture, the linguine sign was reliable and had a high sensitivity and specificity, especially in cases of intracapsular rupture. On the other hand, the rat-tail and tear drop signs were nonspecific signs for diagnosing the rupture of breast implant.
Kilauea volcano: the degassing of a hot spot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, T.M.
1986-03-01
Hot spots such as Kilauea volcano can degas by a one-stage eruptive process or a two-stage process involving eruptive and noneruptive degassing. One stage degassing occurs during sustained summit eruptions and causes a direct environmental impact. Although generally less efficient than the one-stage degassing process, two stage degassing can cause 1 to 2 orders of magnitude greater impact in just a few hours during flank eruptions. Hot spot volcanos with resupplied crustal magma chambers may be capable of maintaining an equivalent impact from CO/sub 2/ and S outgassing during both eruptive and noneruptive periods. On average, a hot spot volcanomore » such as Kilauea is a minor polluter compared to man.« less
Optical and Interface-Based Methods of Defect Engineering in Silicon
ERIC Educational Resources Information Center
Kondratenko, Yevgeniy Vladimirovich
2009-01-01
Ion implantation is widely used in the microelectronics industry for fabrication of source and drain transistor regions. Unfortunately, implantation causes considerable damage to the substrate lattice rendering most of the implanted dopant electrically inactive. Rapid thermal annealing (RTA) heals the damage by rapidly heating the substrate with a…
Kozik, Teri M; Chien, Gianna; Connolly, Therese F; Grewal, Gurinder S; Liang, David; Chien, Walter
2014-04-10
Over 140 million iPads(®) have been sold worldwide. The iPad2(®), with magnets embedded in its frame and Smart Cover and 3G cellular data capability, can potentially cause electromagnetic interference in implantable cardioverter defibrillators. This can lead to potentially life-threatening situations in patients. The goal of this study was to determine whether the iPad2(®) can cause electromagnetic interference in patients with implantable cardioverter defibrillators. Twenty-seven patients with implantable cardioverter defibrillators were studied. The iPad2(®) was held at reading distance and placed directly over the device with cellular data capability activated and deactivated. The manufacturers/models of devices and the patients' body mass index were noted. The presence of electromagnetic interference was detected by using a programmer supplied by each manufacturer. Magnet mode with suspension of anti-tachycardia therapy was triggered in 9 (33%) patients. All occurred when the iPad2(®) was placed directly over the device. The cellular data status did not cause interference and no noise or oversensing was noted. There was no significant difference between the mean body mass index of the groups with or without interference. The iPad2(®) can trigger magnet mode in implantable cardioverter defibrillators when laid directly over the device. This is potentially dangerous if patients should develop life-threatening arrhythmias at the same time. As new electronic products that use magnets are produced, the potential risk to patients with implantable defibrillators needs to be addressed.
An unusual burn caused by hot argy wormwood leaf water
Liang, X.; Chen, X.-L.; Wang, F.; Guo, F.
2011-01-01
Summary An unusual burn case caused by hot wormwood leaf water is discussed. A 29-yr-old woman sustained a 7% seconddegree burn on both buttocks and the left thigh. This case report highlights a rare cause of chemical burn that may become more common with increasing use of this method of traditional Chinese medicine. Measures for preventing this type of burn injury are also presented. PMID:22396673
78 FR 49237 - Airworthiness Directives; the Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-13
... could cause a fuel leak near an ignition source (e.g., hot brakes or engine exhaust nozzle..., which could cause a fuel leak near an ignition source (e.g., hot brakes or engine exhaust nozzle... brakes or engine exhaust nozzle), consequently leading to a fuel-fed fire. (f) Compliance Comply with...
Bogovič, Valerija; Svete, Andrej; Bajsić, Ivan
2016-10-01
Heat, generated during the drilling of a dental implant site preparation, leads to a temperature rise and consequently to a thermal injury of the bone tissue surrounding the implant site, which can cause the subsequent implant failure. In this article, we present new findings related to the temperature rise during implant site drilling under real conditions on a bovine rib bone specimen. The experiments were designed with the help of a full-factorial design in randomized complete blocks, where the main effects of the drill diameter in combination with the drilling force and the drilling speed, and their interactions, on the temperature rise were determined. The temperature rise in the bone under real conditions was measured as the implant site was being prepared by a dentist using intermittent, graduated drilling and external irrigation. Results show that the drill diameter has statistically significant effect, independent of the drilling procedure used. Among the examined drilling parameters, the drill diameter has the greatest effect, where an increase in the drill diameter first causes a decrease in the temperature rise and further increase in the drill diameter causes its increase. During the continuous and one-step drilling, the temperatures of the bones were up to 40.5 °C and during the drilling under actual conditions up to 30.11 °C. © IMechE 2016.
Skinner, John P.; Tuomi, Pam A.; Mellish, Jo-Ann E.
2015-01-01
The Steller sea lion, Eumetopias jubatus, has experienced regionally divergent population trends over recent decades. One potential mechanism for this disparity is that local factors cause reduced health and, therefore, reduced survival of individuals. The use of blood parameters to assess sea lion health may help to identify whether malnutrition, disease and stress are important drivers of current trends, but such assessments require species-specific knowledge of how parameters respond to various health challenges. We used principal components analysis to identify which key blood parameters (principal analytes) best described changes in health for temporarily captive juvenile Steller sea lions in known conditions. Generalized additive mixed models were used to estimate the changes in principal analytes with food intake, time in captivity and acute trauma associated with hot-iron branding and transmitter implant surgery. Of the 17 blood parameters examined, physiological changes for juvenile sea lions were best described using the following six principal analytes: red blood cell counts, white blood cell counts, globulin, platelets, glucose and total bilirubin. The white blood cell counts and total bilirubin declined over time in captivity, whereas globulin increased. Elevated red blood cell counts, white blood cell counts and total bilirubin and reduced globulin values were associated with lower food intake. After branding, white blood cell counts were elevated for the first 30 days, while globulin and platelets were elevated for the first 15 days only. After implant surgery, red blood cell counts and globulin remained elevated for 30 days, while white blood cell counts remained elevated during the first 15 days only. Glucose was unassociated with the factors we studied. These results were used to provide expected ranges for principal analytes at different levels of food intake and in response to the physical challenges of branding and implant surgery. These results provide a more detailed reference for future evaluations of health-related assessments. PMID:27293693
A new system of implant abutment connection: how to improve a two piece implant system sealing.
Grecchi, F; DI Girolamo, M; Cura, F; Candotto, V; Carinci, F
2017-01-01
Implant dentistry has become one of the most successful dentistry techniques for replacing missing teeth. The success rate of implant dentistry is above 80%. However, peri-implantitis is a later complication of implant dentistry that if untreated, can lead to implant loss. One of the hypotized causes of peri-implantis is the bacterial leakage at the level of implant-abutment connection. Bacterial leakage is favored to the presence of a micro gap at the implant-abutment interface, allowing microorganisms to penetrate and colonize the inner part of the implant leading to biofilm accumulation and consequently to peri-implantitis development. To identify the capability of the implant to protect the internal space from the external environment, the passage of genetically modified Escherichia coli across implant-abutment interface was evaluated. Implants were immerged in a bacterial culture for twenty-four hours and then bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 9%. The reported results are better to those of previous studies carried out on different implant systems. Until now, none implant-abutment system has been proven to seal the gap between implant and abutment.
Bilateral cochlear implantation in a patient with bilateral temporal bone fractures.
Chung, Jae Ho; Shin, Myung Chul; Min, Hyun Jung; Park, Chul Won; Lee, Seung Hwan
2011-01-01
With the emphasis on bilateral hearing nowadays, bilateral cochlear implantation has been tried out for bilateral aural rehabilitation. Bilateral sensorineural hearing loss caused by head trauma can get help from cochlear implantation. We present the case of a 44-year-old man with bilateral otic capsule violating temporal bone fractures due to head trauma. The patient demonstrated much improved audiometric and psychoacoustic performance after bilateral cochlear implantation. We believe bilateral cochlear implantation in such patient can be a very effective tool for rehabilitation. Copyright © 2011 Elsevier Inc. All rights reserved.
Hempel, John Martin
2015-12-01
The use of porous polyethylene in reconstructive surgery of the auricle is becoming increasingly accepted. This is a single-stage procedure providing pleasing cosmetic rehabilitation. Further advantages are the possibility of early implantation and the lack of complications caused by harvesting costal cartilage. Additional hearing restoration using middle ear implants allows functional rehabilitation at an early stage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
A Ballistics Examination of Firearm Injuries Involving Breast Implants.
Pannucci, Christopher J; Cyr, Adam J; Moores, Neal G; Young, Jason B; Szegedi, Martin
2018-03-01
This ballistics study examines whether saline breast implants can decrease tissue penetration in firearm injuries. We hypothesize that the fluid column within a saline breast implant can alter bullet velocity and/or bullet pattern of mushrooming. The two experimental groups included saline implants with 7.4 cm projection and a no implant group. The experimental design allowed the bullet to pass-through an implant and into ballistics gel (n = 10) or into ballistics gel without passage through an implant (n = 11). Shots that passed through an implant had 20.6% decreased penetration distance when compared to shots that did not pass-through an implant; this difference was statistically significant (31.9 cm vs. 40.2 cm, p < 0.001). Implant group bullets mushroomed prior to gel entry, but the no implant group mushroomed within the gel. Bullet passage through a saline breast implant results in direct bullet velocity reduction and earlier bullet mushrooming; this causes significantly decreased ballistics gel penetration. © 2017 American Academy of Forensic Sciences.
Why do dental implants fail? Part I.
el Askary, A S; Meffert, R M; Griffin, T
1999-01-01
Many factors are attributed to failure of the dental implant, either directly or indirectly. The focus of this article is to define the causation of dental implant failure, as well as to present an evaluation of the implant literature regarding etiology, classification, management, and treatment of implant failures. This article will highlight the initial signs of implant failure with a view of some clinical cases in terms of classification and degrees of implant failure. Finally, a dental implant failure checklist is formulated to guide the practitioner in defining the cause of implant failure, be it infective or noninfective, and to establish percentages and frequency of occurrence. The checklist applies to all implant systems and will help to determine the factors responsible for causation and the repair procedures, whether they are at the surgical or restorative phases. The definition of implant failure is set forth in terms of ailing, failing, failed, and surviving implants, and the appropriate treatments and dispositions are outlined.
Mastenbroek, Mirjam H; Versteeg, Henneke; Jordaens, Luc; Theuns, Dominic A M J; Pedersen, Susanne S
2014-01-01
We examined whether depression is independently associated with implantable cardioverter defibrillator (ICD) therapy for ventricular tachyarrhythmias and mortality. A cohort of 430 consecutive patients with a first-time ICD (79% men; mean [standard deviation] age = 57.8 [12.1] years) completed the Hospital Anxiety and Depression Scale 1 day before implantation. During follow-up, the ICD was interrogated at 3-month intervals. Cox proportional hazard regression analyses were used to examine the impact of depression on time to first appropriate ICD therapy and all-cause mortality during a median follow-up period of 3.8 years. Of all patients, 108 (25.1%) were depressed. Depression was not associated with time to first appropriate ICD therapy (unadjusted hazard ratio [HR] = 1.07, 95% confidence interval [CI] = 0.73-1.56). However, depression was associated with an increased risk for all-cause mortality (unadjusted HR = 2.18, 95% CI = 1.36-3.49). Depression remained independently associated with all-cause mortality (HR = 1.94, 95% CI = 1.06-3.54, p = .031), after adjusting for demographic and clinical characteristics. Patients who remained depressed during the first 3 months after implantation were at greatest risk for dying (HR = 2.88, 95% CI = 1.29-6.45, p = .010). The current study showed that depression at the time of implant is not associated with time to first appropriate ICD therapy but almost doubled the risk for all-cause mortality in patients with an ICD. Patients with persistent depression during the first 3 months after implantation face the greatest risk of dying. Current evidence indicates that multifactorial interventions are likely to be the most successful in terms of reducing distress. Whether this translates into enhanced survival has yet to be determined.
Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice.
Jähn, Katharina; Saito, Hiroaki; Taipaleenmäki, Hanna; Gasser, Andreas; Hort, Norbert; Feyerabend, Frank; Schlüter, Hartmut; Rueger, Johannes M; Lehmann, Wolfgang; Willumeit-Römer, Regine; Hesse, Eric
2016-05-01
Intramedullary stabilization is frequently used to treat long bone fractures. Implants usually remain unless complications arise. Since implant removal can become technically very challenging with the potential to cause further tissue damage, biodegradable materials are emerging as alternative options. Magnesium (Mg)-based biodegradable implants have a controllable degradation rate and good tissue compatibility, which makes them attractive for musculoskeletal research. Here we report for the first time the implantation of intramedullary nails made of an Mg alloy containing 2% silver (Mg2Ag) into intact and fractured femora of mice. Prior in vitro analyses revealed an inhibitory effect of Mg2Ag degradation products on osteoclast differentiation and function with no impair of osteoblast function. In vivo, Mg2Ag implants degraded under non-fracture and fracture conditions within 210days and 133days, respectively. During fracture repair, osteoblast function and subsequent bone formation were enhanced, while osteoclast activity and bone resorption were decreased, leading to an augmented callus formation. We observed a widening of the femoral shaft under steady state and regenerating conditions, which was at least in part due to an uncoupled bone remodeling. However, Mg2Ag implants did not cause any systemic adverse effects. These data suggest that Mg2Ag implants might be promising for intramedullary fixation of long bone fractures, a novel concept that has to be further investigated in future studies. Biodegradable implants are promising alternatives to standard steel or titanium implants to avoid implant removal after fracture healing. We therefore developed an intramedullary nail using a novel biodegradable magnesium-silver-alloy (Mg2Ag) and investigated the in vitro and in vivo effects of the implants on bone remodeling under steady state and fracture healing conditions in mice. Our results demonstrate that intramedullary Mg2Ag nails degrade in vivo over time without causing adverse effects. Importantly, radiographs, μCT and bone histomorphometry revealed a significant increase in callus size due to an augmented bone formation rate and a reduced bone resorption in fractures supported by Mg2Ag nails, thereby improving bone healing. Thus, intramedullary Mg2Ag nails are promising biomaterials for fracture healing to circumvent implant removal. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Time to B. cereus about hot chocolate.
Nelms, P K; Larson, O; Barnes-Josiah, D
1997-01-01
OBJECTIVE: To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. METHODS: The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. RESULTS: Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. CONCLUSIONS: Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study. PMID:9160059
Time to B. cereus about hot chocolate.
Nelms, P K; Larson, O; Barnes-Josiah, D
1997-01-01
To determine the cause of illnesses experienced by employees of a Minneapolis manufacturing plant after drinking hot chocolate bought from a vending machine and to explore the prevalence of similar vending machine-related illnesses. The authors inspected the vending machines at the manufacturing plant where employees reported illnesses and at other locations in the city where hot chocolate beverages were sold in machines. Tests were performed on dry mix, water, and beverage samples and on machine parts. Laboratory analyses confirmed the presence of B. cereus in dispensed beverages at a concentration capable of causing illness (170,000 count/gm). In citywide testing of vending machines dispensing hot chocolate, 7 of the 39 licensed machines were found to be contaminated, with two contaminated machines having B. cereus levels capable of causing illness. Hot chocolate sold in vending machines may contain organisms capable of producing toxins that under favorable conditions, can induce illness. Such illnesses are likely to be underreported. Even low concentrations of B. cereus may be dangerous for vulnerable populations such as the aged or immunosuppressed. Periodic testing of vending machines is thus warranted. The relationship between cleaning practices and B. cereus contamination is an issue for further study.
Besinis, A; Hadi, S D; Le, H R; Tredwin, C; Handy, R D
2017-04-01
One of the most common causes of implant failure is peri-implantitis, which is caused by bacterial biofilm formation on the surfaces of dental implants. Modification of the surface nanotopography has been suggested to affect bacterial adherence to implants. Silver nanoparticles are also known for their antibacterial properties. In this study, titanium alloy implants were surface modified following silver plating, anodisation and sintering techniques to create a combination of silver, titanium dioxide and hydroxyapatite (HA) nanocoatings. Their antibacterial performance was quantitatively assessed by measuring the growth of Streptococcus sanguinis, proportion of live/dead cells and lactate production by the microbes over 24 h. Application of a dual layered silver-HA nanocoating to the surface of implants successfully inhibited bacterial growth in the surrounding media (100% mortality), whereas the formation of bacterial biofilm on the implant surfaces was reduced by 97.5%. Uncoated controls and titanium dioxide nanocoatings showed no antibacterial effect. Both silver and HA nanocoatings were found to be very stable in biological fluids with material loss, as a result of dissolution, to be less than 0.07% for the silver nanocoatings after 24 h in a modified Krebs-Ringer bicarbonate buffer. No dissolution was detected for the HA nanocoatings. Thus, application of a dual layered silver-HA nanocoating to titanium alloy implants creates a surface with antibiofilm properties without compromising the HA biocompatibility required for successful osseointegration and accelerated bone healing.
Zhou, Liang; Abraham, Adam C; Tang, Simon Y; Chakrabartty, Shantanu
2016-12-01
Piezoelectricity-driven hot-electron injectors (p-HEI) are used for self-powered monitoring of mechanical activity in biomechanical implants and structures. Previously reported p-HEI devices operate by harvesting energy from a piezoelectric transducer to generate current and voltage references which are then used for initiating and controlling the process of hot-electron injection. As a result, the minimum energy required to activate the device is limited by the power requirements of the reference circuits. In this paper we present a p-HEI device that operates by directly exploiting the self-limiting capability of an energy transducer when driving the process of hot-electron injection in a pMOS floating-gate transistor. As a result, the p-HEI device can activate itself at input power levels less than 5 nW. Using a prototype fabricated in a 0.5- [Formula: see text] bulk CMOS process we validate the functionality of the proposed injector and show that for a fixed input power, its dynamics is quasi-linear with respect to time. The paper also presents measurement results using a cadaver phantom where the fabricated p-HEI device has been integrated with a piezoelectric transducer and is used for self-powered monitoring of mechanical activity.
Rajagopal, Karthikan; Wood, Joseph; Tran, Benjamin; Patapoff, Thomas W; Nivaggioli, Thierry
2013-08-01
Polymer implants are promising systems for sustained release applications but their utility for protein delivery has been hindered because of concerns over drug stability at elevated temperatures required for processing. Using bovine serum albumin (BSA) as a model, we have assessed whether proteins can be formulated for processing at elevated temperatures. Specifically, the effect of trehalose and histidine-HCl buffer on BSA stability in a spray-dried formulation has been investigated at temperatures ranging from 80°C to 110°C. When both the sugar and buffer are present, aggregation is suppressed even when exposed to 100°C, the extrusion temperature of poly(lactide-co-glycolide) (PLGA), a bioresorbable polymer. Estimation of aggregation rate constants (k) indicate that though both trehalose and histidine-HCl buffer contribute to BSA stability, the effect because of trehalose alone is more pronounced. BSA-loaded PLGA implants were prepared using hot-melt extrusion process and in vitro release was conducted in phosphate buffered saline at 37°C. Comparison of drug released from implants prepared using four different formulations confirmed that maximal release was achieved from the formulation in which BSA was least aggregated. These studies demonstrate that when trehalose and histidine-HCl buffer are included in spray-dried formulations, BSA stability is maintained both during processing at 100°C and long-term residence within implants. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jung, P.; Henry, J.; Chen, J.
2005-08-01
Low activation 9%Cr martensitic steels EUROFER97, pure tantalum, and low carbon austenitic stainless steel 316L were homogeneously implanted with helium to concentrations up to 5000 appm at temperatures from 70 °C to 400 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. In all materials the helium caused an increased in strength and reduction in ductility, with both changes being generally larger at lower implantation and testing temperatures. After implantation some work hardening was retained in 316L and in tantalum, while it almost completely disappeared in EUROFER97. After tensile testing, fracture surfaces were analysed by scanning electron microscopy (SEM). Implantation caused reduction of necking, but up to concentrations of 2500 appm He fracture surface still showed transgranular ductile appearance. Completely brittle intergranular fracture was observed in tantalum at 9000 appm He and is also expected for EUROFER97 at this concentration, according to previous results on similar 9%Cr steels.
An unusual cause of death at preschool age: scalding by hot milk.
Cekin, Necmi; Akçan, Ramazan; Arslan, Mustafa M; Hilal, Ahmet; Eren, Ali
2010-03-01
Scalding is one of the most painful and devastating burn injuries a child can suffer. Victims are generally scalded by splashed or spilled hot fluids in the home environment. Interestingly, scalding by hot milk is a common cause of burns in rural parts of Turkey. This study aimed to identify the general features of scalding by hot milk, and to make the authorities aware of this problem through educational programs for parents and caregivers.The records of the Council of Forensic Medicine Adana Group Administration and public prosecutor's office were used. Forty-four deaths in children of preschool age (under 6) due to scalding by hot milk during 2001-2005 were analyzed.Scalding with hot milk constituted 1.05% of all medico-legal deaths (4183) during the period considered. Twenty-five (56.81%) of the victims were male while 19 (43.19%) were female. The victims' ages ranged between 18 months and 6 years, with a mean age of 3.03.Scalding by hot milk appears to be an important public health problem, especially in rural areas of Turkey. Educational programs for families and caregivers and implementation of simple safety measures will decrease the prevalence of deaths due to such preventable injuries.
Biomaterials and biologics in craniofacial reconstruction.
Engstrand, Thomas
2012-01-01
Complications related to surgery, including infection, wound dehiscence, and implant protrusion, are costly and may cause severe morbidity to patients. The choice of implants materials is critical for a successful outcome, particularly in craniofacial reconstructions. This review discusses the potential benefits and drawbacks of biologically active materials used for craniofacial bone repair as alternatives to inert implant prostheses.
Trans-catheter aortic valve implantation after previous aortic homograft surgery.
Drews, Thorsten; Pasic, Miralem; Buz, Semih; Unbehaun, Axel
2011-12-01
In patients with previous heart surgery, the operative risk is elevated during conventional aortic valve re-operations. Trans-catheter aortic valve implantation is a new method for the treatment of high-risk patients. Nevertheless, this new procedure carries potential risks in patients with previous homograft implantation in aortic position. Between April 2008 and February 2011, 345 consecutive patients (mean EuroSCORE (European System for Cardiac Operative Risk Evaluation): 38 ± 20%; mean Society of Thoracic Surgeons (STS) Mortality Score: 19 ± 16%; mean age: 80 ± 8 years; 111 men and 234 women) underwent trans-apical aortic valve implantation. In three patients, previous aortic homograft implantation had been performed. Homograft degeneration causing combined valve stenosis and incompetence made re-operation necessary. In all three patients, the aortic valve could be implanted using the trans-apical approach, and the procedure was successful. In two patients, there was slight paravalvular leakage of the aortic prosthesis and the other patient had slight central leakage. Neither ostium obstruction nor mitral valve damage was observed. Trans-catheter valve implantation can be performed successfully after previous homograft implantation. Particular care should be taken to achieve optimal valve positioning, not to obstruct the ostium of the coronary vessels due to the changed anatomic situation and not to cause annulus rupture. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.
A subperiosteal maxillary implant causing severe osteolysis.
Maï, Nguyen Tan; Jean-Baptiste, Caruhel; Hossein, Khonsari Roman
2018-06-22
Subperiosteal implant denture therapy was initially introduced in 1942 in Sweden and was then used worldwide for the treatment of fully edentulous maxillary or mandibular arches with advanced bone atrophy. Most authors describe decent success rates for mandibular subperiosteal implants in cases with major bone atrophy but follow-up studies for maxillary subperiosteal implants are not available. Here, we report a case of severe maxillary osteolysis secondary to the placement of a subperiosteal in-house implant. Subperiosteal implants are rarely used today but patients still carrying these devices with severe complications can be challenging to manage. New technical advances, including the use of surgical planification and additive manufacturing, may lead to a new interest in subperiosteal implants. Copyright © 2018. Published by Elsevier Masson SAS.
Development of a Multileaf Collimator for Proton Therapy
2012-11-01
Hounsfield Units (HU) into density bins (of width 10 kg/m^3), we now define a unique density for each Hounsfield Unit . The density resolution is thus...patient basis given some knowledge about any implants they might have. 24 The calibration of CT Hounsfield unit to material type and density was...that region, resulting in a hot ring around the cold spot. It was determined that the Hounsfield unit values corresponding to the voxels in the cold
Gun Liner Emplacement With an Elastomeric Material
2010-04-01
Introduction The U.S. Army uses liners or coatings in many of its guns currently in service. This includes a chrome coating in the M256 main tank...coatings increase the barrel wear life of those guns by protecting them against the effects of hot propellant gasses. Chrome coatings are applied by...CCM is a chrome -cobalt alloy that is used for medical implants. The tube was machined from a solid bar of metal. The load frame was programmed to
Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee
2016-12-22
Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.
A media player causes clinically significant telemetry interference with implantable loop recorders.
Thaker, Jay P; Patel, Mehul B; Shah, Ashok J; Liepa, Valdis V; Jongnarangsin, Krit; Thakur, Ranjan K
2009-03-01
The implantable loop recorder is a useful diagnostic tool for intermittent cardiovascular symptoms because it can automatically record arrhythmias as well as a patient-triggered ECG. Media players have been shown to cause telemetry interference with pacemakers. Telemetry interference may be important in patients with implantable loop recorders because capturing a patient-triggered ECG requires a telemetry link between a hand-held activator and the implanted device. The purpose of this study was to determine if a media player causes interference with implantable loop recorders. Fourteen patients with implantable loop recorders underwent evaluation for interference with a 15 GB third generation iPod (Apple, Inc.) media player. All patients had the Reveal Plus (Medtronic, Inc.) implantable loop recorder. We tested for telemetry interference on the programmer by first establishing a telemetry link with the loop recorder and then, the media player was placed next to it, first turned off and then, on. We evaluated for telemetry interference between the activator and the implanted device by placing the activator over the device (normal use) and the media player next to it, first turned off and then, on. We made 5 attempts to capture a patient-triggered ECG by depressing the activator switch 5 times while the media player was off or on. Telemetry interference on the programmer screen, consisting of either high frequency spikes or blanking of the ECG channel was seen in all patients. Telemetry interference with the activator resulted in failure to capture an event in 7 patients. In one of these patients, a green indicator light on the activator suggested that a patient-triggered event was captured, but loop recorder interrogation did not show a captured event. In the remaining 7 patients, an event was captured and appropriately recognized by the device at least 1 out of 5 times. A media player playing in close proximity to an implanted loop recorder may interfere with capture of a patient-triggered event. Patients should be advised to keep media players away from their implanted loop recorder.
Ahn, C Y; DeBruhl, N D; Gorczyca, D P; Shaw, W W; Bassett, L W
1994-10-01
With the current controversy regarding the safety of silicone implants, the detection and evaluation of implant rupture are causing concern for both plastic surgeons and patients. Our study obtained comparative value analysis of mammography, sonography, and magnetic resonance imaging (MRI) in the detection of silicone implant rupture. Twenty-nine symptomatic patients (total of 59 silicone implants) were entered into the study. Intraoperative findings revealed 21 ruptured implants (36 percent). During physical examination, a positive "squeeze test" was highly suggestive of implant rupture. Mammograms were obtained of 51 implants (sensitivity 11 percent, specificity 89 percent). Sonography was performed on 57 implants (sensitivity 70 percent, specificity 92 percent). MRI was performed on 55 implants (sensitivity 81 percent, specificity 92 percent). Sonographically, implant rupture is demonstrated by the "stepladder sign." Double-lumen implants may appear as false-positive results for rupture on sonography. On MRI, the "linguine sign" represents disrupted fragments of a ruptured implant. The most reliable imaging modality for implant rupture detection is MRI, followed by sonogram. Mammogram is the least reliable. Our study supports the clinical indication and diagnostic value of sonogram and MRI in the evaluation of symptomatic breast implant patients.
Thermal Injuries in Veterinary Forensic Pathology.
Wohlsein, P; Peters, M; Schulze, C; Baumgärtner, W
2016-09-01
Localized thermal injuries in animals may be caused by exposure to fire and radiant heat, contact with hot items including hot liquids or steam, inhalation of hot air, and exposure to cold temperatures. In addition, animal fire victims may have intoxications caused by smoke gas. This article reviews the causes, pathogenetic aspects, morphological findings, additional investigations, differential diagnoses, and causes of death in various forms of thermal injuries. Since these cases do not occur frequently in diagnostic pathology, they represent a challenging task in general but also with respect to forensic or criminal aspects, such as whether a lesion represents an accidental or nonaccidental effect. Besides detailed information about the circumstances at the location, thermal injuries in animals require a thorough morphological evaluation, including additional investigations in conjunction with a profound knowledge about the possible lesion spectrum and suitable additional investigations. © The Author(s) 2016.
Getzlaf, Matthew A.; Lewallen, Eric A.; Kremers, Hilal M.; Jones, Dakota L.; Bonin, Carolina A.; Dudakovic, Amel; Thaler, Roman; Cohen, Robert C.; Lewallen, David G.; van Wijnen, Andre J.
2016-01-01
Like any foreign object, orthopaedic implants are susceptible to infection when introduced into the human body. Without additional preventative measures, the absolute number of annual prosthetic joint infections will continue to rise, and may exceed the capacity of health care systems in the near future. Bacteria are difficult to eradicate from synovial joints due to their exceptionally diverse taxonomy, complex mechanistic attachment capabilities, and tendency to evolve antibiotic resistance. When a primary orthopaedic implant fails from prosthetic joint infection, surgeons are generally challenged by limited options for intervention. In this review, we highlight the etiology and taxonomic groupings of bacteria known to cause prosthetic joint infections, and examine their key mechanisms of attachment. We propose that antimicrobial strategies should focus on the most harmful bacteria taxa within the context of occurrence, taxonomic diversity, adhesion mechanisms, and implant design. Patient-specific identification of organisms that cause prosthetic joint infections will permit assessment of their biological vulnerabilities. The latter can be targeted using a range of antimicrobial techniques that exploit different colonization mechanisms including implant surface attachment, biofilm formation, and/or hematogenous recruitment. We anticipate that customized strategies for each patient, joint, and prosthetic component will be most effective at reducing prosthetic joint infections, including those caused by antibiotic-resistant and polymicrobial bacteria. PMID:26449208
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high cervical spinal cord injury, or chronic lung disease. The stimulator consists of an implanted receiver with...
Campe, Amely; Schulz, Sophia; Bohnet, Willa
2016-01-01
Although equids have had to be tagged with a transponder since 2009, breeding associations in Germany disagree as to which method is best suited for identification (with or without hot iron branding). Therefore, the aim of this systematic literature review was to gain an overview of how effective identification is using transponders and hot iron branding and as to which factors influence the success of identification. Existing literature showed that equids can be identified by means of transponders with a probability of 85-100%, whereas symbol brandings could be identified correctly in 78-89%, whole number brandings in 0-87% and single figures in 37-92% of the readings, respectively. The successful reading of microchips can be further optimised by a correctly operated implantation process and thorough training of the applying persons. affect identification with a scanner. The removal of transponders for manipulation purposes is virtually impossible. Influences during the application of branding marks can hardly, if at all, be standardised, but influence the subsequent readability relevantly. Therefore, identification by means of hot branding cannot be considered sufficiently reliable. Impaired quality of identification can be reduced during reading but cannot be counteracted. Based on the existing studies it can be concluded that the transponder method is the best suited of the investigated methods for clearly identifying equids, being forgery-proof and permanent. It is not to be expected that applying hot branding in addition to microchips would optimise the probability of identification relevantly.
Research on Blastocyst Implantation Essential Factors (BIEFs).
Yoshinaga, Koji
2010-06-01
Blastocyst implantation is a process of interaction between embryo and the uterus. To understand this process, this review tries to summarize what blastocyst implantation essential factors (BIEFs) play what roles, as well as where in the uterus and at what stage of implantation process. Addition of more new data to this kind of compilation of information will help the development of diagnosis and treatment of infertility caused by implantation failure. The major, important cells of the endometrial cells that interact with invading blastocyst (trophoblast) are luminal epithelial cells, stromal cells (decidual cells) and resident immune cells. BIEFs regulate these cells to successfully maintain pregnancy.
Bowen, Patrick K; Seitz, Jan-Marten; Guillory, Roger J; Braykovich, Jacob P; Zhao, Shan; Goldman, Jeremy; Drelich, Jaroslaw W
2018-01-01
Special high grade zinc and wrought zinc-aluminum (Zn-Al) alloys containing up to 5.5 wt % Al were processed, characterized, and implanted in rats in search of a new family of alloys with possible applications as bioabsorbable endovascular stents. These materials retained roll-induced texture with an anisotropic distribution of the second-phase Al precipitates following hot-rolling, and changes in lattice parameters were observed with respect to Al content. Mechanical properties for the alloys fell roughly in line with strength (190-240 MPa yield strength; 220-300 MPa ultimate tensile strength) and elongation (15-30%) benchmarks, and favorable elastic ranges (0.19-0.27%) were observed. Intergranular corrosion was observed during residence of Zn-Al alloys in the murine aorta, suggesting a different corrosion mechanism than that of pure zinc. This mode of failure needs to be avoided for stent applications because the intergranular corrosion caused cracking and fragmentation of the implants, although the composition of corrosion products was roughly identical between non- and Al-containing materials. In spite of differences in corrosion mechanisms, the cross-sectional reduction of metals in murine aorta was nearly identical at 30-40% and 40-50% after 4.5 and 6 months, respectively, for pure Zn and Zn-Al alloys. Histopathological analysis and evaluation of arterial tissue compatibility around Zn-Al alloys failed to identify areas of necrosis, though both chronic and acute inflammatory indications were present. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 245-258, 2018. © 2017 Wiley Periodicals, Inc.
A Retrospective Analysis of Ruptured Breast Implants
Baek, Woo Yeol; Lew, Dae Hyun
2014-01-01
Background Rupture is an important complication of breast implants. Before cohesive gel silicone implants, rupture rates of both saline and silicone breast implants were over 10%. Through an analysis of ruptured implants, we can determine the various factors related to ruptured implants. Methods We performed a retrospective review of 72 implants that were removed for implant rupture between 2005 and 2014 at a single institution. The following data were collected: type of implants (saline or silicone), duration of implantation, type of implant shell, degree of capsular contracture, associated symptoms, cause of rupture, diagnostic tools, and management. Results Forty-five Saline implants and 27 silicone implants were used. Rupture was diagnosed at a mean of 5.6 and 12 years after insertion of saline and silicone implants, respectively. There was no association between shell type and risk of rupture. Spontaneous was the most common reason for the rupture. Rupture management was implant change (39 case), microfat graft (2 case), removal only (14 case), and follow-up loss (17 case). Conclusions Saline implants have a shorter average duration of rupture, but diagnosis is easier and safer, leading to fewer complications. Previous-generation silicone implants required frequent follow-up observation, and it is recommended that they be changed to a cohesive gel implant before hidden rupture occurs. PMID:25396188
Alqutaibi, Ahmed Yaseen; Aboalrejal, Afaf Noman
2018-06-01
Influences of micro-gap and micromotion of the implant-abutment interface on marginal bone loss around implant neck. Liu Y, Wang J. Arch Oral Biol 2017;83:153-60. This study was financially supported by grants from the National Natural Science Foundation of China (81570956) and the Bureau of Science and Technology of Wuhan ([2014]160, 2015060101010051) TYPE OF STUDY/DESIGN: Comprehensive literature review. Copyright © 2018 Elsevier Inc. All rights reserved.
Photodynamic therapy in peri-implantitis
NASA Astrophysics Data System (ADS)
Leretter, Marius; Cândea, Adrian; Topala, Florin
2014-01-01
Peri-implantitis is like Damocles sword, threatening over our final results as is the most common cause of implant failure. It is, was and will be one of the most challenging tasks for the practitioner to deal with. The rough implant surface offers the ideal conditions for the pathogenic bacteria to stick and multiply. Even more, the growing mature biofilm is harder to eliminate. Mechanical cleaning and rinsing is not capable to destroy it entirely. Most treatment protocols include strong antibiotics, disregarding their side effects and interactions with other medications.
Öztürk, Erkan; Doruk, Can; Orhan, Kadir Serkan; Çelik, Mehmet; Polat, Beldan; Güldiken, Yahya
2017-06-01
Cochlear implants are mechanical devices used for patients with severe sensory-neural hearing loss, which has an inner magnet. It is proven that 1.5 Tesla magnetic resonance imaging (MRI) scanners are safe to use in patients with cochlear implant. In our patient, the authors aim to introduce a rare complication caused after a 1.5 Tesla MRI scanning and the management of this situation; the reversion of the magnet of the implant without displacement and significance of surgery in management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watt, E; Tom Baker Cancer Centre, Calgary, AB; Long, K
The planning for PBSI is done with the patient's ipsilateral arm raised, however, anatomical changes and variations are unavoidable as the patient resumes her daily activities, potentially resulting in significant deviations in implant geometry from the treatment plan. This study aims to quantify the impact of the ipsilateral arm position on the geometry and dosimetry of the implant at eight weeks, evaluated on post-plans using the MIM Symphony™ software (MIM Software, Cleveland, OH). The average dose metrics for the three patients treated at the TBCC thus far using rigid fusion and contour transfer for the arms up position were 76%more » for the CTV V100, 61% for the PTV V100, and 37% for the PTV V200; and for the arms down position 81% for the CTV V100, 64% for the PTV V100, and 42% for the PTV V200. Qualitative analysis of the post-implant CT for one of the three patients showed poor agreement between the seroma contour transferred from the pre-implant CT and the seroma visible on the post-implant CT. To obtain a clinically accurate plan for that patient, contour modifications were used, yielding improved dose metric averages for the arms-up position for all three patients of 87% for the CTV V100, 68% for the PTV V100, and 39% for the PTV V200. Overall, the data available shows that dosimetric parameters increase with the patient's arm down, both in terms of coverage and in terms of the hot spot, and accrual of more patients may confirm this in a larger population.« less
Engelhart, Sally; Segal, Robert J
2017-04-01
Allergy as a cause of adverse outcomes in patients with implanted orthopedic hardware is controversial. Allergy to titanium-based implants has not been well researched, as titanium is traditionally thought to be inert. We highlight the case of a patient who developed systemic dermatitis and implant failure after surgical placement of a titanium alloy (Ti6Al4V) plate in the left foot. The hardware was removed and the eruption cleared in the following weeks. The plate and screws were submitted for metal analysis. The elemental composition of both the plate and screws included 3 major elements-titanium, aluminum, and vanadium-as well as trace elements. Metal analysis revealed that the plate and screws had different microstructures, and electrochemical studies demonstrated that galvanic corrosion could have occurred between the plate and screws due to their different microstructures, contributing to the release of vanadium in vivo. The patient was patch tested with several metals including components of the implant and had a positive patch test reaction only to vanadium trichloride. These findings support a diagnosis of vanadium allergy and suggests that clinicians should consider including vanadium when patch testing patients with a suspected allergic reaction to vanadium-containing implants.
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
29 CFR 1915.504 - Fire watches.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...
Ward, W Kenneth; Slobodzian, Emily P; Tiekotter, Kenneth L; Wood, Michael D
2002-11-01
We addressed the effect of implant thickness, implant porosity, and polyurethane (PU) chemistry on angiogenesis and on the foreign body response in rats. The following materials were implanted subcutaneously for 7 weeks then excised for histologic analysis: a solid PU; a solid polyurethane with silicone and polyethylene oxide (PU-S-PEO); porous expanded polytetrafluoroethylene (ePTFE); and porous polyvinyl alcohol sponge (PVA). Two thicknesses of PU-S-PEO were compared: 300 microns (thin) and 2000 microns (thick). Foreign body capsule (FBC) thickness was much less in PU-S-PEO implants than in PU implants. In addition, FBC were thinner in thin implants than in thick implants. FBC was much more dense in solid implants than in porous implants. As compared with solid implants, porous implants (PVA and ePTFE) led to a marked increase in the number of microvessels that developed adjacent to the implant, as observed both with hematoxylin/eosin staining and with an immunohistochemical anti-endothelial stain. We conclude that the polyethylene oxide and silicone moieties in PU reduce the thickness of the subsequent FBC. In addition, thin implants lead to a thin FBC. Porous implants (PVA and ePTFE) cause more angiogenesis than solid implants. These results may have implications for the measurement of blood-derived analytes by biosensors.
Characterizing prolonged heat effects on mortality in a sub-tropical high-density city, Hong Kong
NASA Astrophysics Data System (ADS)
Ho, Hung Chak; Lau, Kevin Ka-Lun; Ren, Chao; Ng, Edward
2017-11-01
Extreme hot weather events are likely to increase under future climate change, and it is exacerbated in urban areas due to the complex urban settings. It causes excess mortality due to prolonged exposure to such extreme heat. However, there is lack of universal definition of prolonged heat or heat wave, which leads to inadequacies of associated risk preparedness. Previous studies focused on estimating temperature-mortality relationship based on temperature thresholds for assessing heat-related health risks but only several studies investigated the association between types of prolonged heat and excess mortality. However, most studies focused on one or a few isolated heat waves, which cannot demonstrate typical scenarios that population has experienced. In addition, there are limited studies on the difference between daytime and nighttime temperature, resulting in insufficiency to conclude the effect of prolonged heat. In sub-tropical high-density cities where prolonged heat is common in summer, it is important to obtain a comprehensive understanding of prolonged heat for a complete assessment of heat-related health risks. In this study, six types of prolonged heat were examined by using a time-stratified analysis. We found that more consecutive hot nights contribute to higher mortality risk while the number of consecutive hot days does not have significant association with excess mortality. For a day after five consecutive hot nights, there were 7.99% [7.64%, 8.35%], 7.74% [6.93%, 8.55%], and 8.14% [7.38%, 8.88%] increases in all-cause, cardiovascular, and respiratory mortality, respectively. Non-consecutive hot days or nights are also found to contribute to short-term mortality risk. For a 7-day-period with at least five non-consecutive hot days and nights, there was 15.61% [14.52%, 16.70%] increase in all-cause mortality at lag 0-1, but only -2.00% [-2.83%, -1.17%] at lag 2-3. Differences in the temperature-mortality relationship caused by hot days and hot nights imply the need to categorize prolonged heat for public health surveillance. Findings also contribute to potential improvement to existing heat-health warning system.
Characterizing prolonged heat effects on mortality in a sub-tropical high-density city, Hong Kong.
Ho, Hung Chak; Lau, Kevin Ka-Lun; Ren, Chao; Ng, Edward
2017-11-01
Extreme hot weather events are likely to increase under future climate change, and it is exacerbated in urban areas due to the complex urban settings. It causes excess mortality due to prolonged exposure to such extreme heat. However, there is lack of universal definition of prolonged heat or heat wave, which leads to inadequacies of associated risk preparedness. Previous studies focused on estimating temperature-mortality relationship based on temperature thresholds for assessing heat-related health risks but only several studies investigated the association between types of prolonged heat and excess mortality. However, most studies focused on one or a few isolated heat waves, which cannot demonstrate typical scenarios that population has experienced. In addition, there are limited studies on the difference between daytime and nighttime temperature, resulting in insufficiency to conclude the effect of prolonged heat. In sub-tropical high-density cities where prolonged heat is common in summer, it is important to obtain a comprehensive understanding of prolonged heat for a complete assessment of heat-related health risks. In this study, six types of prolonged heat were examined by using a time-stratified analysis. We found that more consecutive hot nights contribute to higher mortality risk while the number of consecutive hot days does not have significant association with excess mortality. For a day after five consecutive hot nights, there were 7.99% [7.64%, 8.35%], 7.74% [6.93%, 8.55%], and 8.14% [7.38%, 8.88%] increases in all-cause, cardiovascular, and respiratory mortality, respectively. Non-consecutive hot days or nights are also found to contribute to short-term mortality risk. For a 7-day-period with at least five non-consecutive hot days and nights, there was 15.61% [14.52%, 16.70%] increase in all-cause mortality at lag 0-1, but only -2.00% [-2.83%, -1.17%] at lag 2-3. Differences in the temperature-mortality relationship caused by hot days and hot nights imply the need to categorize prolonged heat for public health surveillance. Findings also contribute to potential improvement to existing heat-health warning system.
Method for implantation of high dopant concentrations in wide band gap materials
Usov, Igor [Los Alamos, NM; Arendt, Paul N [Los Alamos, NM
2009-09-15
A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.
NH2+ implantations induced superior hemocompatibility of carbon nanotubes.
Guo, Meixian; Li, Dejun; Zhao, Mengli; Zhang, Yiteng; Deng, Xiangyun; Geng, Dongsheng; Li, Ruying; Sun, Xueliang; Gu, Hanqing; Wan, Rongxin
2013-05-01
NH2+ implantation was performed on multiwalled carbon nanotubes (MWCNTs) prepared by chemical vapor deposition. The hemocompatibility of MWCNTs and NH2+-implanted MWCNTs was evaluated based on in vitro hemolysis, platelet adhesion, and kinetic-clotting tests. Compared with MWCNTs, NH2+-implanted MWCNTs displayed more perfect platelets and red blood cells in morphology, lower platelet adhesion rate, lower hemolytic rate, and longer kinetic blood-clotting time. NH2+-implanted MWCNTs with higher fluency of 1 × 1016 ions/cm2 led to the best thromboresistance, hence desired hemocompatibility. Fourier transfer infrared and X-ray photoelectron spectroscopy analyses showed that NH2+ implantation caused the cleavage of some pendants and the formation of some new N-containing functional groups. These results were responsible for the enhanced hemocompatibility of NH2+-implanted MWCNTs.
Success and High Predictability of Intraorally Welded Titanium Bar in the Immediate Loading Implants
Fogli, Vaniel; Camerini, Michele; Carinci, Francesco
2014-01-01
The implants failure may be caused by micromotion and stress exerted on implants during the phase of bone healing. This concept is especially true in case of implants placed in atrophic ridges. So the primary stabilization and fixation of implants are an important goal that can also allow immediate loading and oral rehabilitation on the same day of surgery. This goal may be achieved thanks to the technique of welding titanium bars on implant abutments. In fact, the procedure can be performed directly in the mouth eliminating possibility of errors or distortions due to impression. This paper describes a case report and the most recent data about long-term success and high predictability of intraorally welded titanium bar in immediate loading implants. PMID:24963419
Electromagnetic irradiation may be a new approach to therapy for peri-implantitis.
Cao, Zhensheng; Chen, Yijia; Chen, Yuxue; Zhao, Qing; Xu, Xiaomei; Chen, Yangxi
2012-03-01
Peri-implantitis can lead to bone destruction around a dental implant through inflammation and immune reactions caused by bacteria adhering to the surface of the implant abutment. Electromagnetic irradiation can inhibit bacterial growth, increase bone formation, decrease bone resorption and reduce the inflammatory response. Our hypothesis is that electromagnetic irradiation may be a new treatment approach for peri-implantitis and may simultaneously maintain bone mass around the dental implant. The results would be more significant when combined with other agents, because the effect of some antibiotics and anti-inflammatory drugs is strengthened by electromagnetic irradiation. This non-invasive therapy is expected to be conducted in a convenient manner, and even by patients at home, thereby facilitating the prevention and treatment of peri-implantitis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Research on ion implantation in MEMS device fabrication by theory, simulation and experiments
NASA Astrophysics Data System (ADS)
Bai, Minyu; Zhao, Yulong; Jiao, Binbin; Zhu, Lingjian; Zhang, Guodong; Wang, Lei
2018-06-01
Ion implantation is widely utilized in microelectromechanical systems (MEMS), applied for embedded lead, resistors, conductivity modifications and so forth. In order to achieve an expected device, the principle of ion implantation must be carefully examined. The elementary theory of ion implantation including implantation mechanism, projectile range and implantation-caused damage in the target were studied, which can be regarded as the guidance of ion implantation in MEMS device design and fabrication. Critical factors including implantations dose, energy and annealing conditions are examined by simulations and experiments. The implantation dose mainly determines the dopant concentration in the target substrate. The implantation energy is the key factor of the depth of the dopant elements. The annealing time mainly affects the repair degree of lattice damage and thus the activated elements’ ratio. These factors all together contribute to ions’ behavior in the substrates and characters of the devices. The results can be referred to in the MEMS design, especially piezoresistive devices.
Kusumoto, Saburo; Kawano, Hiroaki; Makita, Naomasa; Ichimaru, Shinichiro; Kaku, Takashi; Haruta, Daisuke; Hida, Ayumi; Sera, Nobuko; Imaizumi, Misa; Nakashima, Eiji; Maemura, Koji; Akahoshi, Masazumi
2014-06-01
We investigated the clinical course of complete right bundle branch block (RBBB) or RBBB with axis deviation (AD) in terms of subsequent pacemaker implantation for high-degree atrioventricular (AV) block or sick sinus syndrome (SSS). Among the 16,170 atomic-bomb survivors in our biennial health examination between July 1967 and December 2010, we detected 520 newly-acquired RBBB subjects with no organic heart disease, and selected 1038 age- (at RBBB diagnosis) and sex-matched subjects without RBBB to serve as comparison subjects. Multivariate Cox regression analysis was used to estimate the hazard ratios (HRs) for the risk of pacemaker implantation due to all causes, AV block or SSS between RBBB and comparison subjects and between RBBB subjects with and without AD. The risk of pacemaker implantation for RBBB was 4.79 (95% confidence interval [CI] 1.89-12.58; P=0.001), 3.77 (95% CI, 1.09-13.07; P=0.036), and 6.28 (95% CI, 1.24-31.73, P=0.026) when implantation was for all causes, AV block and SSS, respectively. RBBB subjects with AD had a higher risk for all-cause pacemaker implantation than subjects without AD (HR, 3.03; 95% CI, 1.00-9.13, P=0.049). RBBB subjects with AD were younger than subjects without AD at the time of RBBB diagnosis (59.4±7.6 vs 74.4±3.1 years old, P=0.019), and their progression from diagnosis to pacemaker implantation took longer (15.1±6.6 vs 6.4±3.0 years, P=0.032). RBBB, especially with AD, progresses to AV block and SSS that requires pacemaker implantation; the mechanisms by which the conduction defect progresses differ among patients with and without AD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
40 CFR 86.1336-84 - Engine starting, restarting, and shutdown.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (4) If a failure to start occurs during the hot start portion of the test and is caused by engine... stalling. (1) If the engine stalls during the initial idle period of either the cold or hot start test, the engine shall be restarted immediately using the appropriate cold or hot starting procedure and the test...
40 CFR 86.1336-84 - Engine starting, restarting, and shutdown.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (4) If a failure to start occurs during the hot start portion of the test and is caused by engine... stalling. (1) If the engine stalls during the initial idle period of either the cold or hot start test, the engine shall be restarted immediately using the appropriate cold or hot starting procedure and the test...
40 CFR 86.1336-84 - Engine starting, restarting, and shutdown.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (4) If a failure to start occurs during the hot start portion of the test and is caused by engine... stalling. (1) If the engine stalls during the initial idle period of either the cold or hot start test, the engine shall be restarted immediately using the appropriate cold or hot starting procedure and the test...
Floor-of-Mouth Hematoma Following Dental Implant Placement: Literature Review and Case Presentation.
Law, Catherine; Alam, Peyman; Borumandi, Farzad
2017-11-01
The authors provide a structured review of reported cases of floor-of-mouth hematoma during or after dental implantation and frequent causes and management and present a related case. An online search of the medical literature was conducted from 1990 through 2016. The following search terms were used: floor of mouth hematoma, sublingual hematoma, dental implant hematoma, implant in mandible, and complication of dental implant. Abstracts were screened for relevance to the aims of the review. Relevant reports in the English language were included and referenced. The articles were reviewed for patient demographics, implant location, coagulopathy, pre- or postoperative imaging, airway management, treatment of the hematoma, and management of the offending implant. The literature search identified 25 reported cases. Hemorrhage was caused by perforation of the lingual cortex in 84% of cases (n = 21). Airway obstruction resulted in emergency intubation or tracheostomy in 68% of patients (n = 17). Most cases (n = 18; 72%) required surgical management in the hospital setting. Management of the offending implant was reported inconsistently. Of 17 reported cases, 5 implants had to be removed, 9 remained in situ, and in 3 cases implant placement was abandoned. Only 1 case involved preoperative 3-dimensional (3D) imaging before implant insertion. The authors report on an additional case with a serious floor-of-mouth hematoma that required immediate surgical evacuation and hemostasis. Serious complications, such as floor-of-mouth hematoma after dental implant insertion, can occur, which could be life-threatening. Preoperative 3D imaging helps to visualize the individual mandibular shape, which could decrease the incidence of serious complications. If injury to vessels of the floor of the mouth cannot be confidently excluded, then further assessment and treatment are recommended before the patient is discharged. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Safety considerations for wireless delivery of continuous power to implanted medical devices.
Lucke, Lori; Bluvshtein, Vlad
2014-01-01
Wireless power systems for use with implants are referred to as transcutaneous energy transmission systems (TETS) and consist of an implanted secondary coil and an external primary coil along with supporting electronics. A TETS system could be used to power ventricular assist systems and eliminate driveline infections. There are both direct and indirect safety concerns that must be addressed when continuously transferring power through the skin. Direct safety concerns include thermal tissue damage caused by exposure to the electromagnetic fields, coil heating effects, and potential unwanted nerve stimulation. Indirect concerns are those caused by potential interference of the TETS system with other implanted devices. Wireless power systems are trending towards higher frequency operation. Understanding the limits for safe operation of a TETS system across a range of frequencies is important. A low frequency and a high frequency implementation are simulated to demonstrate the impact of this trend for a VAD application.
MIS diode structure in As/+/ implanted CdS
NASA Technical Reports Server (NTRS)
Hutchby, J. A.
1977-01-01
Structure made by As implantation of carefully prepared high-conductivity CdS surfaces followed by Pt deposition and 450 C anneal display rectifying, although substantially different, I-V characteristics in the dark and during illumination with subband-gap light. Structures prepared in the same way on an unimplanted portion of the substrate have similar I-V characteristics, except that the forward turnover voltage for an illuminated unimplanted diode is much smaller than that for an implanted diode. It is suggested that the charge conduction in both structures is dominated by hole and/or electron tunneling through a metal-semiconductor potential barrier. The tunneling processes appear to be quite sensitive to subband-gap illumination, which causes the dramatic decreases of turnover voltages and apparent series resistances. The difference in turnover voltage appears to be caused by interface states between the Pt electrode and the implanted layer, which suggests a MIS model.
Silicone granuloma from ruptured breast implants as a cause of cervical lymphadenopathy
Gallagher, G; Skelly, BL
2016-01-01
A 56-year-old woman with a 10-year history of bilateral silicone breast implants presented to the ear, nose and throat outpatient clinic with a 2-month history of a right-sided neck lump. She was found to have a 1.3cm supraclavicular lymph node that gave the clinical impression of being reactive. Ultrasonography guided fine needle aspiration was inconclusive and initial review of subsequent computed tomography failed to identify a cause. This was followed by excisional biopsy of the lymph node, which revealed a silicone granuloma that was linked to a ruptured right-sided breast implant placed ten years previously. This case highlights the importance for otolaryngologists to consider silicone granuloma among the differential diagnoses of cervical lymphadenopathy in patients with a history of silicone breast implants. Recognising this differential diagnosis could avoid undue anxiety for patient and clinician regarding more serious pathology. PMID:27167311
Yeganeh, Ali; Otoukesh, Babak; Kaghazian, Peyman; Yeganeh, Nima; Boddohi, Bahram; Moghtadaei, Mehdi
2015-01-01
Background: Orthopedics implants are important tools for treatment of bone fractures. Despite available recommendations for designing and making the implants, there are multiple cases of fracture of these implants in the body. Hence, in this study the frequency of failure of implants in long bones of lower extremities was evaluated. Methods and Materials: In this cross-sectional study, two types of fractured implants in the body were analyzed and underwent metalogical, mechanical, and modeling and stress-bending analysis. Results: The results revealed that the main cause of fractures was decreased mechanical resistance due to inappropriate chemical composition (especially decreased percentages of Nickel and Molybdenum). Conclusions: It may be concluded that following the standard chemical composition and use of optimal making method are the most important works for prevention of failure of implants. PMID:26843735
Broken Esophageal Stent Successfully Treated by Interventional Radiology Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenak, Kamil, E-mail: zelenak@mfn.s; Mistuna, Dusan; Lucan, Jaroslav
2010-06-15
Esophageal stent fractures occur quite rarely. A 61-year-old male patient was previously treated for rupture of benign stenosis, occurring after dilatation, by implanting an esophageal stent. However, a year after implantation, the patient suffered from dysphagia caused by the broken esophageal stent. He was treated with the interventional radiology technique, whereby a second implantation of the esophageal stent was carried out quite successfully.
Loverix, L; Timmermans, P; Benit, E
2013-01-01
We describe a case of a 79-year-old male patient with severe aortic stenosis who underwent transcatheter aortic valve implantation (TAVI) at our institution. He presented at the emergency department with dyspnea and fatigue 7 months after implantation. The diagnosis of early prosthetic valve endocarditis (PVE) caused by Staphylococcus haemolyticus was made by transesophageal echocardiography (TEE) and multiple positive blood cultures. Since our patient was considered inoperable due to a history of coronary artery bypass graft (CABG) surgery with patent bypasses, high peri-operative mortality including renal failure and a poor general prognosis, surgical removal of the valve was not an option. The patient was successfully treated with antibiotic therapy.
Al-Bawardy, Rasha; Krishnaswamy, Amar; Bhargava, Mandeep; Dunn, Justin; Wazni, Oussama; Tuzcu, E Murat; Stewart, William; Kapadia, Samir R
2013-05-01
Implantable cardiac devices, including defibrillators and pacemakers, may be the cause of tricuspid regurgitation (TR) or may worsen existing TR. This review of the literature suggests that TR usually occurs over time after lead implantation. Diagnosis by clinical exam and 2-dimensional echocardiography may be augmented by 3-dimensional echocardiography and/or computed tomography. The mechanism may be mechanical perforation or laceration of leaflets, scarring and restriction of leaflets, or asynchronized activation of the right ventricle. Pacemaker-related TR might cause severe right-sided heart failure, but data regarding associated mortality are lacking. This comprehensive review summarizes the data regarding incidence, mechanism, and treatment of lead-related TR. © 2013 Wiley Periodicals, Inc.
Santini, Massimo; Cappato, Riccardo; Andresen, Dietrich; Brachmann, Johannes; Davies, D Wyn; Cleland, John; Filippi, Alessandro; Gronda, Edoardo; Hauer, Richard; Steinbeck, Gerhard; Steinhaus, David
2009-06-01
ICD implantation is today a well-recognized therapy to prevent sudden cardiac death. The available implantable devices at present need the use of permanent endocavitary leads which may cause, in some instances, serious troubles to the patients (lead dislodgement, ventricular perforation, lead infections, etc.). A new implantable defibrillator provided by only a subcutaneous lead is at present under evaluation. Its potential indications, usefulness benefits, and problems represent an interesting field of investigation and discussion. This paper describes the conclusions recently reached by a panel of experts, with regard to the potential role of an implantable subcutaneous defibrillator in the prevention of sudden cardiac death.
[Local foreign body reactions to biodegradable implants. A classification].
Hoffmann, R; Weller, A; Helling, H J; Krettek, C; Rehm, K E
1997-08-01
Biodegradable implants are increasingly used in orthopedic and trauma surgery. Many different implants consisting of different biodegradable polymers are currently available. Different factors contribute to the biocompatibility of these implants, and local foreign-body reactions remain a matter of concern. Therefore, it is mandatory to document and compare the tissue reactions caused by various biodegradable implants in experimental or clinical studies. We have developed a standardized system of classification based on our previous experimental and clinical observations. Foreign-body reactions are differentiated into osteolysis (0-0 to 0-4), extra-articular (EA-0 to EA-4) and intraarticular (IA-0 to A-4) soft-tissue reactions.
Ao, Haiyong; Zong, Jiajia; Nie, Yanjiao; Wan, Yizao; Zheng, Xiebin
2018-03-01
Aseptic loosening of implant is one of the main causes of Ti-based implant failure. In our previous work, a novel stable collagen/hyaluronic acid (Col/HA) multilayer modified titanium coatings (TCs) was developed by layer-by-layer (LBL) covalent immobilization technique, which showed enhanced biological properties compared with TCs that were physically absorbed with Col/HA multilayer in vitro . In this study, a rabbit model with femur condyle defect was employed to compare the osteointegration performance of them. Results indicated that Col/HA multilayer with favourable stability could better facilitate osteogenesis around implants and bone-implant contact. The Col/HA multilayer covalent-immobilized TC may reduce aseptic loosening of implant.
Effect of antimicrobial preservatives on partial protein unfolding and aggregation†
Hutchings, Regina L.; Singh, Surinder M.; Cabello-Villegas, Javier; Mallela, Krishna M. G.
2014-01-01
One-third of protein formulations are multi-dose. These require antimicrobial preservatives (APs); however, some APs have been shown to cause protein aggregation. Our previous work on a model protein cytochrome c indicated that partial protein unfolding, rather than complete unfolding, triggers aggregation. Here, we examined the relative strength of five commonly used APs on such unfolding and aggregation, and explored whether stabilizing the aggregation “hot-spot” reduces such aggregation. All APs induced protein aggregation in the order m-cresol > phenol > benzyl alcohol > phenoxyethanol > chlorobutanol. All these enhanced the partial protein unfolding that includes a local region which was predicted to be the aggregation “hot-spot”. The extent of destabilization correlated with the extent of aggregation. Further, we show that stabilizing the “hot-spot” reduces aggregation induced by all five APs. These results indicate that m-cresol causes the most protein aggregation, whereas chlorobutanol causes the least protein aggregation. The same protein region acts as the “hot-spot” for aggregation induced by different APs, implying that developing strategies to prevent protein aggregation induced by one AP will also work for others. PMID:23169345
Exposure to Zearalenone During Early Pregnancy Causes Estrogenic Multitoxic Effects in Mice.
Kunishige, Kohji; Kawate, Noritoshi; Inaba, Toshio; Tamada, Hiromichi
2017-03-01
Although zearalenone (ZEN; Sigma Chemicals, St Louis, Missouri) is a well-known mycotoxin with estrogenic activity, the toxic effects of ZEN during pregnancy are unknown. This study compared the effects of daily subcutaneous injections of ZEN (2, 4, or 8 mg/kg) with those of 17β-estradiol (E2; [Sigma Chemicals] 0.8, 1.6, or 3.2 μg/kg) in mice. Injections were administered on gestational days (GDs) 1 to 5, the period including implantation which is sensitive to hormonal balance. The effects of ZEN or E2 were evaluated by comparing the number of live fetuses, their weight, and absorbed conceptuses on GD 18, with those in vehicle-treated controls. In addition, implantation, embryos in the oviducts and those in uteri without implantation sites were investigated on GD 5. In mice treated with the highest dose of ZEN or E2, decidual responses and plasma progesterone concentrations were measured on GDs 5 and 6, respectively, and delayed implantation was investigated on GDs 9 and 14. The results showed that treatment with ZEN, in a manner similar to that seen for E2, led to obstruction of essential processes for establishing and maintaining pregnancy, such as embryo migration from oviducts to uteri, the decidual response, and activation of luteal function. Zearalenone also induced delayed implantation and loss of conceptuses and at low doses caused a retarded growth of the fetuses after normal implantation. It was therefore concluded that ZEN causes multiple estrogenic toxic actions when administered during early pregnancy in mice.
Stein, Sandra; Auel, Tobias; Kempin, Wiebke; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne
2018-06-01
Sustained intravitreal dexamethasone (DX) administration with the FDA and EMA approved Ozurdex® implant is indicated for the treatment of macular edema and non-infectious uveitis. Since drug release after intravitreal application cannot be determined in vivo in human eyes, the characterization of drug release in vitro in addition to animal models is of great importance. The aim of this study was to provide information about the influence of the test method on the in vitro drug release from intravitreal model implants. The following test methods were used: a shaking incubator experiment in reagent tubes, the small volume USP apparatus 7, the Vitreous Model (VM) and a system simulating the impact of movement on the VM (Eye Movement System, EyeMoS). Cylindrical model implants composed of DX and PLGA (poly (d,l-lactide-co-glycolide)) and additional polycaprolactone (PCL) implants containing fluorescein sodium (FS) as a model substance were produced by hot melt extrusion and were cut to a length of approximately 6 mm. Drug release was studied in ringer buffer pH 7.4 and in a modified polyacrylamide gel (PAAG) as vitreous substitute. In combination with the VM, the shape, the gel structure and a partial liquefaction (50%) were simulated in vitro. Swelling, disintegration, fragmentation, surface enlargement and changes in shape of the PLGA model implants were observed during the drug release study. We experienced that not each of the test methods and media were suitable for drug release studies of the PLGA implants. Marked differences in the release profiles were observed depending on the employed test method. These results emphasize the necessity to understand the underlying in vivo processes and to transfer the knowledge about the release determining factors into reliable in vitro test systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Protopapadaki, Maria; Monaco, Edward A; Kim, Hyeong-Il; Davis, Elaine L
2013-11-01
The predictable nature of the hot pressing ceramic technique has several applications, but no study was identified that evaluated its application to the fabrication of custom implant abutments. The purpose of this study was to compare the fracture resistance of an experimentally designed pressable metal ceramic custom implant abutment (PR) with that of a duplicate zirconia abutment (ZR). Two groups of narrow platform (NP) (Nobel Replace) implant abutment specimens were fabricated (n=10). The experimental abutment (PR) had a metal substructure cast with ceramic alloy (Lodestar) and veneered with leucite pressable glass ceramic (InLine PoM). Each PR abutment was individually scanned and 10 duplicate CAD/CAM ZR abutments were fabricated for the control group. Ceramic crowns (n=20) with the average dimensions of a human lateral incisor were pressed with lithium disilicate glass ceramic (IPS e.max Press) and bonded on the abutments with a resin luting agent (Multilink Automix). The specimens were subjected to thermocycling, cyclic loading, and finally static loading to failure with a computer-controlled Universal Testing Machine. An independent t test (1 sided) determined whether the mean values of the fracture load differed significantly (α=.05) between the 2 groups. No specimen failed during cyclic loading. Upon static loading, the mean (SD) load to failure was significantly higher for the PR group (525.89 [143.547] N) than for the ZR group (413.70 [35.515] N) for internal connection narrow platform bone-level implants (P=.025). Failure was initiated at the screw and internal connection level for both groups. It is possible to fabricate PR abutments that are stronger than ZR abutments for Nobel Biocare internal connection NP bone-level implants. The screw and the internal connection are the weak links for both groups. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook.
Talebian, Sepehr; Foroughi, Javad; Wade, Samantha J; Vine, Kara L; Dolatshahi-Pirouz, Alireza; Mehrali, Mehdi; Conde, João; Wallace, Gordon G
2018-05-13
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial-based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer-based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting-edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of Chinese Materia Medica-Fubao Danggui Jiao on experimental endometriosis.
Sun, Xing; Chen, Lijue; Zeng, Fanbo
2011-01-01
The objective of this paper was to investigate the effects of a Chinese Materia Medica variant -Fubao Danggui Jiao (FDJ)-on experimental endometriosis. An endometriosis model was created by virtue of auto-transplantation of endometrial tissue onto rats' abdominal walls. The implants were allowed to grow for 30 days until the successful completion of the model. After that, forty endometriotic rats were randomly divided into four study groups and given different treatments: (1) negative control group (water, 2ml/kg, per os); (2) FDJ-A group (FDJ, 2ml/kg, per os); (3) FDJ-B group (FDJ, 4ml/kg, per os); (4) Danazol group (70mg/kg, per os). After 30 days with treatments, the volumes of endometriotic implants in each rat were measured. The implants and normal uterine horns were removed for routine histological examination. FDJ caused significant decreases in volumes of the surviving endometriotic implants, with two different doses having statistically equivalent effects. Upon histological examination, FDJ was observed to cause regression of epithelium and stroma of endometriotic implants. FDJ had revealed promising therapeutic effects on endometriosis.
The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.
Du, Hongling; Taylor, Hugh S
2015-11-09
HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.
Simulation analysis on miniature wireless power transfer system
NASA Astrophysics Data System (ADS)
Liu, Tao; Wei, Zhiqiang; Yin, Bo; Chi, Haokun; Du, Panpan
2018-03-01
In recent years, the research on implantable medical devices has become a hot scientific topic, and the power supply of these devices are especially concerned. Generally, these devices are usually powered by disposable batteries. However, for some of the long-term human implant devices, such as pacemakers, once the battery has been exhausted after several years, the patient has to replace the battery by surgery, which increases the patient’s economic burden and pain. Wireless power transfer technology, using non-contact way for power transfer, can be a good solution to this problem. In this paper, a micro induction coil was designed, and the transfer efficiency in the air and human tissue model of two-layers were simulated by Ansoft HFSS. The results showed that the system could achieve the energy transfer in both cases, meanwhile, it indicated that the transfer efficiency was lower in a relative larger permittivity of transmission medium.
Casting the implant for reconstruction of pectus excavatum.
Hougaard, G; Svensson, H; Holmqvist, K G
1995-09-01
Fourteen patients with pectus excavatum underwent a total of 17 operations for the insertion of subcutaneous implants aimed at camouflaging their defects. A silicone prosthesis in one patient early in the series caused severe capsular formation. Although a block of Proplast may occasionally be used with success, the rational solution to the problem is to produce a custom made Silastic implant that adheres optimally to the defect in each individual case. This retrospective study shows that a subcutaneous implant clearly improves the appearance of the chest wall in most of the patients.
Femtosecond laser assisted antibacterial activity of ZnO nanoparticles
NASA Astrophysics Data System (ADS)
Luna Palacios, Yryx Yanet; Alvarez, Crysthal; Cuando-Espitia, Natanael; Halaney, David L.; Camacho-Lopez, Santiago; Aguilar, Guillermo
2017-07-01
Bacterial infection of cranial implants remains a major cause of implant failure, and often requires surgical intervention to remove and replace the fouled implant. Novel transparent implants may allow for mitigation of infection using optical therapies, without the need for invasive surgeries. In this study, we investigate a combined treatment with ZnO nanoparticles and femtosecond laser pulses to inhibit the growth of Escherichia coli (E. Coli) in vitro. The combined effect has shown a substantial reduction in the number of CFU/mL after incubation compared with no treatment.
Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging.
Wagner, A; Sachse, A; Keller, M; Aurich, M; Wetzel, W-D; Hortschansky, P; Schmuck, K; Lohmann, M; Reime, B; Metge, J; Arfelli, F; Menk, R; Rigon, L; Muehleman, C; Bravin, A; Coan, P; Mollenhauer, J
2006-03-07
Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.
Qualitative evaluation of titanium implant integration into bone by diffraction enhanced imaging
NASA Astrophysics Data System (ADS)
Wagner, A.; Sachse, A.; Keller, M.; Aurich, M.; Wetzel, W.-D.; Hortschansky, P.; Schmuck, K.; Lohmann, M.; Reime, B.; Metge, J.; Arfelli, F.; Menk, R.; Rigon, L.; Muehleman, C.; Bravin, A.; Coan, P.; Mollenhauer, J.
2006-03-01
Diffraction enhanced imaging (DEI) uses refraction of x-rays at edges, which allows pronounced visualization of material borders and rejects scattering which often obscures edges and blurs images. Here, the first evidence is presented that, using DEI, a destruction-free evaluation of the quality of integration of metal implants into bone is possible. Experiments were performed in rabbits and sheep with model implants to investigate the option for DEI as a tool in implant research. The results obtained from DEI were compared to conventional histology obtained from the specimens. DE images allow the identification of the quality of ingrowth of bone into the hydroxyapatite layer of the implant. Incomplete integration of the implant with a remaining gap of less than 0.3 mm caused the presence of a highly refractive edge at the implant/bone border. In contrast, implants with bone fully grown onto the surface did not display a refractive signal. Therefore, the refractive signal could be utilized to diagnose implant healing and/or loosening.
Garry, Maryanne; Wade, Kimberley A
2005-04-01
Most memory "implantation" studies have elicited false memories by using fake narratives. Recently, Wade, Garry, Read, and Lindsay (2002) showed that doctored photographs can be used to create false childhood memories in adults. Fifty percent of Wade et al.'s sample reported details of taking a childhood hot air balloon ride, although they had never been in a balloon. In this experiment, we investigated whether photos or narratives influence memory more than the other. We exposed subjects to either a fake photograph or a fake narrative of a childhood hot air balloon ride. Subjects tried to remember the false event and three real events over 1 week. Narratives were more likely to produce false memory reports than were photos. We offer a fluency-based account of our results and suggest that narratives promote more familiarity in subjects than do photographs.
Arabnejad Khanoki, Sajad; Pasini, Damiano
2012-03-01
Revision surgeries of total hip arthroplasty are often caused by a deficient structural compatibility of the implant. Two main culprits, among others, are bone-implant interface instability and bone resorption. To address these issues, in this paper we propose a novel type of implant, which, in contrast to current hip replacement implants made of either a fully solid or a foam material, consists of a lattice microstructure with nonhomogeneous distribution of material properties. A methodology based on multiscale mechanics and design optimization is introduced to synthesize a graded cellular implant that can minimize concurrently bone resorption and implant interface failure. The procedure is applied to the design of a 2D left implanted femur with optimized gradients of relative density. To assess the manufacturability of the graded cellular microstructure, a proof-of-concept is fabricated by using rapid prototyping. The results from the analysis are used to compare the optimized cellular implant with a fully dense titanium implant and a homogeneous foam implant with a relative density of 50%. The bone resorption and the maximum value of interface stress of the cellular implant are found to be over 70% and 50% less than the titanium implant while being 53% and 65% less than the foam implant.
Macro design effects on stress distribution around implants: a photoelastic stress analysis.
Ozkir, Serhat Emre; Terzioglu, Hakan
2012-01-01
Biomechanics is one of the main factors for achieving long-term success of implant supported prostheses. Long-term failures mostly depend on biomechanical complications. It is important to distinguish the effects of macro design of the implants. In this study, the photoelastic response of four different types of implants that were inserted with different angulations were comparatively analyzed. The implant types investigated were screw cylinder (ITI, Straumann AG, Basel, Switzerland), stepped cylinder (Frialit2, Friadent GmbH, Manheim, Germany), root form (Camlog Rootline, Alatatec, Wilshelm, Germany), and cylindrical implant, with micro-threads on the implant neck (Astra, AstraTech, Mölndal, Sweden). In the test models, one of the implants was inserted straight, while the other one was aligned mesially with 15° angles. The superstructures were prepared as single crowns. A 150N loading was applied to the restorations throughout the test. A comparison of the implant designs showed that there were no significant differences between the straight implants; however, between the inclined implants, the most favorable stress distribution was seen with the stepped cylinder implants. The least favorable stress concentration was observed around the root formed implants. Microthreads around the implant neck appeared to be effective in a homogenous stress distribution. Observations showed that misaligned implants caused less stress than straight implants, but the stress concentrations were not homogenous. As there were observable differences between the implant types, straight placed cylindrical implants showed better stress distribution characteristics, while inclined tapering implants had better stress distribution characteristics.
I, Zarei; S, Khajehpour; A, Sabouri; AZ, Haghnegahdar; K, Jafari
2016-01-01
Statement of Problem: Impacts and accidents are considered as the main fac- tors in losing the teeth, so the analysis and design of the implants that they can be more resistant against impacts is very important. One of the important nu- merical methods having widespread application in various fields of engineering sciences is the finite element method. Among its wide applications, the study of distribution of power in complex structures can be noted. Objectives: The aim of this research was to assess the geometric effect and the type of implant thread on its performance; we also made an attempt to determine the created stress using finite element method. Materials and Methods: In this study, the three dimensional model of bone by using Cone Beam Computerized Tomography (CBCT) of the patient has been provided. The implants in this study are designed by Solid Works software. Loading is simulated in explicit dynamic, by struck of a rigid body with the speed of 1 mm/s to implant vertically and horizontally; and the maximum level of induced stress for the cortical and trabecular bone in the ANSYS Workbench software was calculated. Results: By considering the results of this study, it was identified that, among the designed samples, the maximum imposed stress in the cortical bone layer occurred in the first group (straight threads) and the maximum stress value in the trabecular bone layer and implant occurred in the second group (tapered threads). Conclusions: Due to the limitations of this study, the implants with more depth thread, because of the increased contact surface of the implant with the bone, caused more stability; also, the implant with smaller thread and shorter pitch length caused more stress to the bone. PMID:28959748
I, Zarei; S, Khajehpour; A, Sabouri; Az, Haghnegahdar; K, Jafari
2016-06-01
Impacts and accidents are considered as the main fac- tors in losing the teeth, so the analysis and design of the implants that they can be more resistant against impacts is very important. One of the important nu- merical methods having widespread application in various fields of engineering sciences is the finite element method. Among its wide applications, the study of distribution of power in complex structures can be noted. The aim of this research was to assess the geometric effect and the type of implant thread on its performance; we also made an attempt to determine the created stress using finite element method. In this study, the three dimensional model of bone by using Cone Beam Computerized Tomography (CBCT) of the patient has been provided. The implants in this study are designed by Solid Works software. Loading is simulated in explicit dynamic, by struck of a rigid body with the speed of 1 mm/s to implant vertically and horizontally; and the maximum level of induced stress for the cortical and trabecular bone in the ANSYS Workbench software was calculated. By considering the results of this study, it was identified that, among the designed samples, the maximum imposed stress in the cortical bone layer occurred in the first group (straight threads) and the maximum stress value in the trabecular bone layer and implant occurred in the second group (tapered threads). Due to the limitations of this study, the implants with more depth thread, because of the increased contact surface of the implant with the bone, caused more stability; also, the implant with smaller thread and shorter pitch length caused more stress to the bone.
Pediatric deep burns caused by hot incense ashes during 2014 Spring Festival in Fuyang city, China.
Wang, Jian; Zhou, Bo; Tao, Ren Qin; Chen, Xu Lin
2016-01-01
The Chinese people in Fuyang city, a northwest city of Anhui Province, are accustomed to burning incense at home for blessing during the Spring Festival. Their children, especially toddlers, like playing around the burning incense and are at risk of burning by hot incense ashes. The purpose of this study was to describe the unique cause and clinical characteristics of pediatric deep burns caused by hot incense ashes during 2014 Spring Festival. Twelve consecutive children admitted to our Burn Center and Fuyang People's Hospital during 2014 Spring Festival, with burn injuries caused by hot incense ashes which were epidemiologically studied retrospectively. Data on age, gender, size, depth and site of burn, incidence by day, number of operation, hospital stay, and causes of burns were collected. All patients came from Fuyang city. Of the 12 patients, the average age was 2.17 years, with a range of 1-6. The boy-to-girl ratio was 2: 1. The mean total burn surface area (TBSA) was 5.83%, and 91.67% of the children sustained full-thickness burn. Hands were the most common parts of the body to be injured. Dry necrosis developed in 14 fingers of 3 patients. January 31, 2014, the first day of the Chinese New Year, was the time of highest incidence. Six patients (50%) required surgical intervention while the number of operations including escharectomy, excision, skin grafting, or amputation of necrotic fingers, per patient was 2. A total of 14 fingers were amputated of the necrotic parts. All children survived and mean length of hospital stay of the patients was 20 days. Hot incense ashes cause serious injuries to children in Fuyang city during the Spring Festival. Preventive programs should be directed towards high risk groups to reduce the incidence of this burn.
Hwang, Chung-Feng; Ko, Hui-Chen; Tsou, Yung-Ting; Chan, Kai-Chieh; Fang, Hsuan-Yeh; Wu, Che-Ming
2016-01-01
Objectives. We evaluated the causes, hearing, and speech performance before and after cochlear implant reimplantation in Mandarin-speaking users. Methods. In total, 589 patients who underwent cochlear implantation in our medical center between 1999 and 2014 were reviewed retrospectively. Data related to demographics, etiologies, implant-related information, complications, and hearing and speech performance were collected. Results. In total, 22 (3.74%) cases were found to have major complications. Infection (n = 12) and hard failure of the device (n = 8) were the most common major complications. Among them, 13 were reimplanted in our hospital. The mean scores of the Categorical Auditory Performance (CAP) and the Speech Intelligibility Rating (SIR) obtained before and after reimplantation were 5.5 versus 5.8 and 3.7 versus 4.3, respectively. The SIR score after reimplantation was significantly better than preoperation. Conclusions. Cochlear implantation is a safe procedure with low rates of postsurgical revisions and device failures. The Mandarin-speaking patients in this study who received reimplantation had restored auditory performance and speech intelligibility after surgery. Device soft failure was rare in our series, calling attention to Mandarin-speaking CI users requiring revision of their implants due to undesirable symptoms or decreasing performance of uncertain cause. PMID:27413753
Colvin, Arthur E; Jiang, Hui
2013-05-01
Understanding and improving in vivo materials related to signal stability and preservation for active chemical sensor and biosensor transduction systems is critical in achieving implantable medical sensors for long-term in vivo applications. During human in vivo clinical testing of an implantable glucose sensor based on a glucose sensitive hydrogel, post-explant analysis showed that the boronate recognition element had been oxidized from the fluorescent indicator, causing a rapid loss of signal within hours after implant. Additional wet-bench analytical evidence and reproduction in vitro suggests reactive oxygen species, particularly hydrogen peroxide (H2O2), stemming from natural inflammatory response to the material, to be the cause of the observed oxidative de-boronation. A 3-nm thick deposition of metallic platinum (Pt) placed by plasma sputtering onto the porous surface of the hydrogel, showed immediate protection from sensor signal loss due to oxidation both in vitro and in vivo, greatly extending the useful lifetime of the implantable glucose sensor from 1 day to an expected ≥6 months. This finding may represent a new strategy to protect an implanted material and/or device from in vivo oxidative damage, leading to much improved overall stability and reliability for long-term applications. Copyright © 2012 Wiley Periodicals, Inc.
Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.
Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A
2016-04-01
Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications.
Kim, Ji-Eun; Takanche, Jyoti Shrestha; Kim, Jeong-Seok; Lee, Min-Ho; Jeon, Jae-Gyu; Park, Il-Song; Yi, Ho-Keun
2018-04-12
Poor bone quality and osteolysis are the major causes of implant failure in dentistry. Here, this study tested the effect of phelligridin D-loaded nanotubes titanium (Ti) for bone formation around the dental implants. The purpose of this study was to enhance osseointegration of phelligridin D-loaded implant into the bone for bone formation and prevention of osteolysis. Cell viability, crystal violet staining, Western blot, alizarin red S staining, alkaline phosphatase activity, tartrate-resistant acid phosphatase staining, micro-computed tromography (μ-CT), hematoxylin and eosin (H&E) and immunohistochemical staining were used in vitro and in vivo to test the biocompatibility of phelligridin D. Phelligridin D enhanced osteoblast differentiation and mineralization by increasing bone morphogenic protein-2/7 (BMP-2/7), Osterix, Runx-2, osteoprotegerin (OPG), alkaline phosphatase and inhibited osteoclast differentiation by decreasing receptor activator of nuclear factor kappa-B ligand (RANKL) in MC-3T3 E1 cells. Further, phelligridin D promoted bone regeneration around nanotube Ti implant surface by increasing the levels of BMP-2/7 and OPG in a rat model. Phelligridin D also inhibited osteolysis by suppressing the expression of RANKL. These findings strongly suggest that phelligridin D is a new compound representing a potential therapeutic candidate for implant failure caused by osteolysis and poor bone quality of teeth.
Cochlear implantation for severe sensorineural hearing loss caused by lightning.
Myung, Nam-Suk; Lee, Il-Woo; Goh, Eui-Kyung; Kong, Soo-Keun
2012-01-01
Lightning strike can produce an array of clinical symptoms and injuries. It may damage multiple organs and cause auditory injuries ranging from transient hearing loss and vertigo to complete disruption of the auditory system. Tympanic-membrane rupture is relatively common in patients with lightning injury. The exact pathogenetic mechanisms of auditory lesions in lightning survivors have not been fully elucidated. We report the case of a 45-year-old woman with bilateral profound sensorineural hearing loss caused by a lightning strike, who was successfully rehabilitated after a cochlear implantation. Copyright © 2012 Elsevier Inc. All rights reserved.
Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark
2013-01-01
The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all 3 types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4–6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p<0.05). Only one case of infection was observed (infection rate 2.9%). Small and Nano groups showed the same implant extrusion rate which was lower than the Large group rate (0.06±0.01 vs. 0.16 ± 0.02 cm/week; p<0.05). Ingrowth area was comparable in the Small, Large and Nano implants. However, qualitatively, the Nano implants showed greatest cellular inhabitation within first three weeks. We concluded that percutaneous porous titanium implants allow for skin integration with the potential for a safe seal. PMID:23703928
Chrcanovic, Bruno Ramos; Kisch, Jenö; Albrektsson, Tomas; Wennerberg, Ann
2018-04-01
Very long-term follow-up of oral implants is seldom reported in the literature. To assess oral implant failure rates and marginal bone loss (MBL) of patients followed up for a minimum of 20 years. Implants placed in patients followed up for 20+ years were included. Descriptive statistics, survival analyses, generalized estimating equations were performed. Three-hundred implants were randomly selected for MBL. 1,045 implants (227 patients) were included. Implant location, irradiation, and bruxism affected the implant survival rate. Thirty-five percent of the failures occurred within the first year after implantation, and another 26.8% in the second/third year. There was a cumulative survival rate of 87.8% after 36 years of follow-up. In the last radiological follow up, 35 implants (11.7%) had bone gain, and 35 implants (11.7%) presented at least 3 mm of MBL. Twenty-six out of 86 failed implants with available radiograms presented severe MBL in the last radiological register before implant failure. Most of the implant failures occurred at the first few years after implantation, regardless of a very long follow up. MBL can be insignificant in long-term observations, but it may, nevertheless, be the cause of secondary failure of oral implants in some cases. © 2017 Wiley Periodicals, Inc.
Air pollution from hot mix plants.
DOT National Transportation Integrated Search
1970-10-01
The Louisiana Air Control Commission adopted Regulation II, effective 1969, which sets stringent limits on suspended particulates. Because of the lack of knowledge concerning air pollution caused by hot mix plants within the Stake and because of the ...
[Effect of hot-air balloon crossings on animals in the open air].
Stephan, E
1997-02-01
Since the middle of the eighties owners of animals increasingly claimed compensation from balloon pilots. They asserted, that their animals got restless due to strange optical and acoustical stimuli caused by low altitude crossing of hot-air balloons and were damaged while trying to get out of the way or to escape. Very low altitude "Contour crossing" of hot-air balloons, mainly forming the basis of complaints, is only left possible in a limited degree in Germany since the air traffic regulations were changed to a higher minimum safety altitude (Air Traffic Act, LuftVO, version of March 21, 1995) and the violating balloon pilot may be disciplined. The paper is dealing with the principle of hot-air ballooning, with the feasibility of the pilot to avoid and restrict damages, with the possibilities to assign damages to a potential cause and with the legal basis.
Hot Ductility Behavior of an 8 Pct Cr Roller Steel
NASA Astrophysics Data System (ADS)
Wang, Zhenhua; Sun, Shuhua; Shi, Zhongping; Wang, Bo; Fu, Wantang
2015-04-01
The hot ductility of an 8 pct Cr roller steel was determined between 1173 K and 1473 K (900 °C and 1200 °C) at strain rates of 0.01 to 10 s-1 through tensile testing. The fracture morphology was observed using scanning electron microscopy, and the microstructure was examined through optical microscopy and transmission electron microscopy. The dependence of the hot ductility behavior on the deformation conditions, grain size, and precipitation was analyzed. The relationship between the reduction in area and the natural logarithm of the Zener-Hollomon parameter (ln Z) was found to be a second-order polynomial. When ln Z was greater than 40 s-1, the hot ductility was poor and fracture was mainly caused by incompatible deformation between the grains. When ln Z was between 32 and 40 s-1, the hot ductility was excellent and the main fracture mechanism was void linking. When ln Z was below 32 s-1, the hot ductility was poor and fracture was mainly caused by grain boundary sliding. A fine grain structure is beneficial for homogenous deformation and dynamic recrystallization, which induces better hot ductility. The effect of M7C3 carbide particles dispersed in the matrix on the hot ductility was small. The grain growth kinetics in the 8 pct Cr steel were obtained between 1373 K and 1473 K (1100 °C and 1200 °C). Finally, optimized preheating and forging procedures for 8 pct Cr steel rollers are provided.
Francis, Howard W; Pulsifer, Margaret B; Chinnici, Jill; Nutt, Robert; Venick, Holly S; Yeagle, Jennifer D; Niparko, John K
2004-05-01
This study explored factors associated with speech recognition outcomes in postmeningitic deafness (PMD). The results of cochlear implantation may vary in children with PMD because of sequelae that extend beyond the auditory periphery. To determine which factors might be most determinative of outcome of cochlear implantation in children with PMD. Retrospective chart review. A referral center for pediatric cochlear implantation and rehabilitation. Thirty children with cochlear implants who were deafened by meningitis were matched with subjects who were deafened by other causes based on the age at diagnosis, age at cochlear implantation, age at which hearing aids were first used, and method of communication used at home or in the classroom. Speech perception performance within the first 2 years after cochlear implantation and its relationship with presurgical cognitive measures and medical history. There was no difference in the overall cognitive or postoperative speech perception performance between the children with PMD and those deafened by other causes. The presence of postmeningitic hydrocephalus, however, posed greater challenges to the rehabilitation process, as indicated by significantly smaller gains in speech perception and a predilection for behavioral problems. By comparison, cochlear scarring and incomplete electrode insertion had no impact on speech perception results. Although the results demonstrated no significant delay in cognitive or speech perception performance in the PMD group, central nervous system residua, when present, can impede the acquisition of speech perception with a cochlear implant. Central effects associated with PMD may thus impact language learning potential; cognitive and behavioral therapy should be considered in rehabilitative planning and in establishing expectations of outcome.
NASA Astrophysics Data System (ADS)
de Camargo, Eliene Nogueira; Oliveira Lobo, Anderson; Silva, Maria Margareth Da; Ueda, Mario; Garcia, Edivaldo Egea; Pichon, Luc; Reuther, Helfried; Otubo, Jorge
2011-07-01
NiTi SMA is a promising material in the biomedical area due to its mechanical properties and biocompatibility. However, the nickel in the alloy may cause allergic and toxic reactions and thus limiting its applications. It was evaluated the influence of surface modification in NiTi SMA by nitrogen plasma immersion ion implantation (varying temperatures, and exposure time as follows: <250 °C/2 h, 290 °C/2 h, and 560 °C/1 h) in the amount of nickel released using immersion test in simulated body fluid. The depth of the nitrogen implanted layer increased as the implantation temperature increased resulting in the decrease of nickel release. The sample implanted in high implantation temperature presented 35% of nickel release reduction compared to reference sample.
NASA Astrophysics Data System (ADS)
Miranda, S. M. C.; Franco, N.; Alves, E.; Lorenz, K.
2012-10-01
AlN thin films were implanted with cadmium, to fluences of 1 × 1013 and 8 × 1014 at/cm2. The implanted samples were annealed at 950 °C under flowing nitrogen. Although implantation damage in AlN is known to be extremely stable the crystal could be fully recovered at low fluences. At high fluences the implantation damage was only partially removed. Implantation defects cause an expansion of the c-lattice parameter. For the high fluence sample the lattice site location of the ions was studied by Rutherford Backscattering/Channelling Spectrometry. Cd ions are found to be incorporated in substitutional Al sites in the crystal and no significant diffusion is seen upon thermal annealing. The observed high solubility limit and site stability are prerequisite for using Cd as p-type dopant in AlN.
Kempin, Wiebke; Franz, Christian; Koster, Lynn-Christine; Schneider, Felix; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne
2017-06-01
The 3D printing technique of fused deposition modeling® (FDM) has lately come into focus as a potential fabrication technique for pharmaceutical dosage forms and medical devices that allows the preparation of delivery systems with nearly any shape. This is particular promising for implants administered at application sites with a high anatomical variability where an individual shape adaption appears reasonable. In this work different polymers (Eudragit®RS, polycaprolactone (PCL), poly(l-lactide) (PLLA) and ethyl cellulose (EC)) were evaluated with respect to their suitability for FDM of drug loaded implants and their drug release behaviour was evaluated. The fluorescent dye quinine was used as a model drug to visualize drug distribution in filaments and implants. Quinine loaded filaments were produced by solvent casting and subsequent hot melt extrusion (HME) and model implants were printed as hollow cylinders using a standard FDM printer. Parameters were found at which model implants (hollow cylinders, outer diameter 4-5mm, height 3mm) could be produced from all tested polymers. The drug release which was examined by incubation of the printed implants in phosphate buffered saline solution (PBS) pH 7.4 was highly dependent on the used polymer. The fastest relative drug release of approximately 76% in 51days was observed for PCL and the lowest for Eudragit®RS and EC with less than 5% of quinine release in 78 and 100days, respectively. For PCL further filaments were prepared with different quinine loads ranging from 2.5% to 25% and thermal analysis proved the presence of a solid dispersion of quinine in the polymer for all tested concentrations. Increasing the drug load also increased the overall percentage of drug released to the medium since nearly the same absolute amount of quinine remained trapped in PCL at the end of drug release studies. This knowledge is valuable for future developments of printed implants with a desired drug release profile that might be controlled by the choice of the polymer and the drug load. Copyright © 2017 Elsevier B.V. All rights reserved.
Preventing Bacterial Infections using Metal Oxides Nanocoatings on Bone Implant
NASA Astrophysics Data System (ADS)
Duceac, L. D.; Straticiuc, S.; Hanganu, E.; Stafie, L.; Calin, G.; Gavrilescu, S. L.
2017-06-01
Nowadays bone implant removal is caused by infection that occurs around it possibly acquired after surgery or during hospitalization. The purpose of this study was to reveal some metal oxides applied as coatings on bone implant thus limiting the usual antibiotics-resistant bacteria colonization. Therefore ZnO, TiO2 and CuO were synthesized and structurally and morphologically analized in order to use them as an alternative antimicrobial agents deposited on bone implant. XRD, SEM, and FTIR characterization techniques were used to identify structure and texture of these nanoscaled metal oxides. These metal oxides nanocoatings on implant surface play a big role in preventing bacterial infection and reducing surgical complications.
Biocompatible implants and methods of making and attaching the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, Adrian P; Laude, Lucien D; Humayun, Mark S
2014-10-07
The invention provides a biocompatible silicone implant that can be securely affixed to living tissue through interaction with integral membrane proteins (integrins). A silicone article containing a laser-activated surface is utilized to make the implant. One example is an implantable prosthesis to treat blindness caused by outer retinal degenerative diseases. The device bypasses damaged photoreceptors and electrically stimulates the undamaged neurons of the retina. Electrical stimulation is achieved using a silicone microelectrode array (MEA). A safe, protein adhesive is used in attaching the MEA to the retinal surface and assist in alleviating focal pressure effects. Methods of making and attachingmore » such implants are also provided.« less
Tompkins, Jared J; Petersen, Dana K; Sharbel, Daniel D; McKinnon, Brian J; MacDonald, C Bruce
2016-07-01
Implantation of auditory osseointegrated implants, also known as bone-anchored hearing systems (BAHS), represents a surgical option for select pediatric patients aged 5 years or older with hearing loss. Functional indications in this patient population include conductive or mixed hearing loss. Common complications of implantation include skin infections, chronic skin irritation, hypertrophic skin overgrowth, and loose abutments. In a case series of 15 pediatric patients, we discovered an unexpectedly high skin-related complication rate requiring surgical revision of 53%. During revision surgery, we discovered 5 patients who exhibited significant bony overgrowth at the abutment site, a complication infrequently noted in past literature. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Lou, J.; Ye, B. J.; Weng, H. M.; Du, H. J.; Wang, Z. B.; Wang, X. P.
2008-08-01
Tungsten oxide (WOx) nanostructures were prepared by a hot filament chemical vapour deposition system and the temperature of the hot tungsten filaments was changed by steps of degrees. The morphology and average growth rate were indicated by scanning electron microscopy which showed that the morphology was highly related to the filament temperature (Tf) and the distance between the filaments and the polished Si (1 0 0) substrates (df). The influence of Tf on the crystalline nature was studied by x-ray diffraction and Raman spectroscopy. The evolution of stoichiometry and types of defects was indicated by x-ray photoelectron spectroscopy and slow positron implantation spectroscopy. When Tf was up to 1750 °C, tungsten oxide nanostructure was synthesized. A turning point of Tf was found at which the nature of crystallinity and of stoichiometry was the best. As Tf increased to 2100 °C or df decreased, the film crystallinity decreased; correspondingly, the component ratio of stoichiometry WO3 decreased and lots of vacancy agglomerates were present. In order to develop the chemical phase from substoichiometry to stoichiometry, the oxygen gas concentration in the mixture gas during deposition should be raised to an appropriate level.
Sedimentation in Hot Creek in vicinity of Hot Creek Fish Hatchery, Mono County, California
Burkham, D.E.
1978-01-01
An accumulation of fine-grained sediment in Hot Creek downstream from Hot Creek Fish Hatchery, Mono County, Calif., created concern that the site may be deteriorating as a habitat for trout. The accumulation is a phenomenon that probably occurs naturally in the problem reach. Fluctuation in the weather probably is the basic cause of the deposition of fine-grained sediment that has occurred since about 1970. Man 's activities and the Hot Creek Fish Hatchery may have contributed to the problem; the significance of these factors, however, probably was magnified because of drought conditions in 1975-77. (Woodard-USGS)
Nonlinear simulations of Jupiter's 5-micron hot spots
NASA Technical Reports Server (NTRS)
Showman, A. P.; Dowling, T. E.
2000-01-01
Large-scale nonlinear simulations of Jupiter's 5-micron hot spots produce long-lived coherent structures that cause subsidence in local regions, explaining the low cloudiness and the dryness measured by the Galileo probe inside a hot spot. Like observed hot spots, the simulated coherent structures are equatorially confined, have periodic spacing, propagate west relative to the flow, are generally confined to one hemisphere, and have an anticyclonic gyre on their equatorward side. The southern edge of the simulated hot spots develops vertical shear of up to 70 meters per second in the eastward wind, which can explain the results of the Galileo probe Doppler wind experiment.
NASA Astrophysics Data System (ADS)
Ma, Changdong; Lu, Fei; Xu, Bo; Fan, Ranran
2016-05-01
We investigated lattice modification and its physical mechanism in H and He co-implanted, z-cut potassium titanyl phosphate (KTiOPO4). The samples were implanted with 110 keV H and 190 keV He, both to a fluence of 4 × 1016 cm-2, at room temperature. Rutherford backscattering/channeling, high-resolution x-ray diffraction, and transmission electron microscopy were used to examine the implantation-induced structural changes and strain. Experimental and simulated x-ray diffraction results show that the strain in the implanted KTiOPO4 crystal is caused by interstitial atoms. The strain and stress are anisotropic and depend on the crystal's orientation. Transmission electron microscopy studies indicate that ion implantation produces many dislocations in the as-implanted samples. Annealing can induce ion aggregation to form nanobubbles, but plastic deformation and ion out-diffusion prevent the KTiOPO4 surface from blistering.
PIXE microbeam analysis of the metallic debris release around endosseous implants
NASA Astrophysics Data System (ADS)
Buso, G. P.; Galassini, S.; Moschini, G.; Passi, P.; Zadro, A.; Uzunov, N. M.; Doyle, B. L.; Rossi, P.; Provencio, P.
2005-10-01
The mechanical friction that occurs during the surgical insertion of endosseous implants, both in dentistry and orthopaedics, may cause the detachment of metal debris which are dislodged into the peri-implant tissues and can lead to adverse clinical effects. This phenomenon more likely happens with coated or roughened implants that are the most widely employed. In the present study were studied dental implants screws made of commercially pure titanium and coated using titanium plasma-spray (TPS) technique. The implants were inserted in the tibia of rabbits, and removed "en bloc" with the surrounding bone after one month. After proper processing and mounting on plastic holders, samples from bones were analysed by EDXRF setup at of National Laboratories of Legnaro, INFN, Italy, and consequently at 3 MeV proton microbeam setup at Sandia National Laboratories. Elemental maps were drawn, showing some occasional presence of metal particles in the peri-implant bone.
King, EB; Hartsock, JJ; O'Leary, SJ; Salt, AN
2013-01-01
Locally-applied drugs can protect residual hearing following cochlear implantation. The influence of cochlear implantation on drug levels in scala tympani (ST) after round window application was investigated in guinea pigs using the marker trimethylphenlyammonium (TMPA) measured in real-time with TMPA-selective microelectrodes. TMPA concentration in the upper basal turn of ST rapidly increased during implantation and then declined due to cerebrospinal fluid entering ST at the cochlear aqueduct and exiting at the cochleostomy. The TMPA increase was found to be caused by the cochleostomy drilling, if the burr tip partially entered ST. TMPA distribution in the second turn was less affected by implantation procedures. These findings show that basal turn drug levels may be changed during implantation and the changes may need to be considered in the interpretation of therapeutic effects of drugs in conjunction with implantation. PMID:24008355
Bore, Millicent; Choudhari, Nikhil; Chaurasia, Sunita
2018-03-21
To report the intricacies of managing complications that arose out of cosmetic iris implants (BrightOcular) placement. Interventional case report. A thirty-year-old gentleman presented with complaint of progressive loss of vision after having cosmetic iris implant surgery to change his eye colour. He then developed raised intraocular pressures and had a right eye trabeculectomy conducted with the implants in situ. Subsequently, he had implant removal surgery because of persistent implant-associated complications. The vision was impaired due to progressive corneal oedema and glaucoma. Various considerations were taken while planning for surgical intervention because of the extensive structural damage to the anterior segment of the eye. This case report highlights that cosmetic iris implants are dangerous intraocular devices and management of the associated complications is also challenging. As these devices cause irreversible structural and functional damage, their use should be discouraged in normal eyes.
Two implants for all edentulous mandibles.
Wright, P S
2006-04-22
Complete dentures have always been a poor substitute for natural teeth. Mandibular complete dentures frequently cause pain and discomfort, accelerated residual bone resorption, while failing to restore effective chewing. The provision of two implants to stabilise the mandibular complete denture can result in significant improvements.
Cheng, Alan; Zhang, Yiyi; Blasco-Colmenares, Elena; Dalal, Darshan; Butcher, Barbara; Norgard, Sanaz; Eldadah, Zayd; Ellenbogen, Kenneth A; Dickfeld, Timm; Spragg, David D; Marine, Joseph E; Guallar, Eliseo; Tomaselli, Gordon F
2014-12-01
Primary prevention implantable cardioverter defibrillators (ICDs) reduce all-cause mortality, but the benefits are heterogeneous. Current risk stratification based on left ventricular ejection fraction has limited discrimination power. We hypothesize that biomarkers for inflammation, neurohumoral activation, and cardiac injury can predict appropriate shocks and all-cause mortality in patients with primary prevention ICDs. The Prospective Observational Study of Implantable Cardioverter Defibrillators (PROSe-ICD) enrolled 1189 patients with systolic heart failure who underwent ICD implantation for primary prevention of sudden cardiac death. The primary end point was an ICD shock for adjudicated ventricular tachyarrhythmia. The secondary end point was all-cause mortality. After a median follow-up of 4.0 years, 137 subjects experienced an appropriate ICD shock and 343 participants died (incidence rates of 3.2 and 5.8 per 100 person-years, respectively). In multivariable-adjusted models, higher interleukin-6 levels increased the risk of appropriate ICD shocks. In contrast, C-reactive protein, interleukin-6, tumor necrosis factor-α receptor II, pro-brain natriuretic peptide (pro-BNP), and cardiac troponin T showed significant linear trends for increased risk of all-cause mortality across quartiles. A score combining these 5 biomarkers identified patients who were much more likely to die than to receive an appropriate shock from the ICD. An increase in serum biomarkers of inflammation, neurohumoral activation, and myocardial injury increased the risk for death but poorly predicted the likelihood of an ICD shock. These findings highlight the potential importance of serum-based biomarkers in identifying patients who are unlikely to benefit from primary prevention ICDs. clinicaltrials.gov; Unique Identifier: NCT00733590. © 2014 American Heart Association, Inc.
Non-linear 3D evaluation of different oral implant-abutment connections.
Streckbein, P; Streckbein, R G; Wilbrand, J F; Malik, C Y; Schaaf, H; Howaldt, H P; Flach, M
2012-12-01
Micro-gaps and osseous overload in the implant-abutment connection are the most common causes of peri-implant bone resorption and implant failure. These undesirable events can be visualized on standardized three-dimensional finite element models and by radiographic methods. The present study investigated the influence of 7 available implant systems (Ankylos, Astra, Bego, Brånemark, Camlog, Straumann, and Xive) with different implant-abutment connections on bone overload and the appearance of micro-gaps in vitro. The individual geometries of the implants were transferred to three-dimensional finite element models. In a non-linear analysis considering the pre-loading of the occlusion screw, friction between the implant and abutment, the influence of the cone angle on bone strain, and the appearance of micro-gaps were determined. Increased bone strains were correlated with small (< 15°) cone angles. Conical implant-abutment connections efficiently avoided micro-gaps but had a negative effect on peri-implant bone strain. Bone strain was reduced in implants with greater wall thickness (Ankylos) or a smaller cone angle (Bego). The results of our in silico study provide a solid basis for the reduction of peri-implant bone strain and micro-gaps in the implant-abutment connection to improve long-term stability.
Detection of stripping in hot mix asphalt.
DOT National Transportation Integrated Search
2005-03-11
Stripping in hot mix asphalt (HMA) refers to the loss of adhesion between the asphalt cement and the aggregate surface primarily caused by the action of moisture and moisture vapor (Kandhal and Rickards 2001). Moisture damage begins with a reduction ...
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Gao, Yu-Rong; Ye, Meijun; Welle, Cristin G.
2017-02-01
Microelectrodes implanted in the brain cause mechanical damage to the tissue that mediate neuroinflammation and eventual encapsulation by microglia and astrocytes. Electrophysiological signals recorded from implants used in brain-computer interfaces (BCI) degrade over time, limiting their usefulness, but the precise causes and progression are not fully understood. We are investigating the dynamics of brain morphological changes and neuroinflammation with a multimodal approach to better understand the potential causes of implant failure. We performed weekly optical coherence tomography (OCT)-guided two-photon microscopy (TPM) in the region around microelectrodes inserted under a cranial window concurrent with electrophysiological recordings. Transgenic mouse cohorts studied include Thy1-YFP, Cx3cr1, and GFAP-GFP to image neurons, microglia, and astrocytes, respectively. Single-shank, 16-channel, Michigan-style microelectrodes were inserted under the window at a 15-20° angle with an insertion depth up to cortical layer 5. Single-unit and local field potential (LFP) recordings were collected for 15 minutes while the animals moved freely in their home cages. Cellular and vascular morphology were monitored using TPM and OCT at timepoints matched to the recordings. In preliminary data, we observed a decay of neural firing rates in most of the channels after implantation. The relationship between electrophysiological measures (e.g., neural firing rate, LFP power) and neural/vascular morphological measurements (e.g., cell density, glial migration, blood flow changes) will be quantified. The multimodal approach combining electrophysiology and optical imaging provides a broader picture of the multifactorial nature of the response to implanted electrodes. Understanding and accounting for the response may lead to better BCI designs and approaches.
Nam, So-Hyun; Kim, Dae-Yeon; Kim, Seong-Chul; Kim, In-Koo
2010-04-01
Totally implantable access ports (TIAPs) are widely used in pediatric hematology-oncology patients. We investigated the incidence of complications, causes of TIAP removal, and risk factors for infection. We retrospectively analyzed the clinical, demographic, and surgical characteristics in 225 pediatric hematology-oncology patients implanted with 238 TIAPs between January 2004 and December 2005. Except for 20 patients lost to follow-up, the mean maintenance period was 724.8 +/- 500.6 days (range: 17-2,124). Mechanical complications occurred in seven patients (2.9%). The causes of TIAP removal were termination of use in 130 patients (59.6%), death from primary disease with TIAP in situ in 35 (14.7%), infection in 35 (14.7%), and obstruction in 4 (1.8%). Early infections occurred in nine patients at mean 37.77 +/- 16.44 days (range: 17-56). Late infections occurred in 26 patients at mean 334.5 +/- 257.82 days (range: 68-997). Univariate analysis showed that the risk factors of early infection were re-implantation (P = 0.022) and long operation time (P = 0.045). The risk factors of late infection were ANC <500/mm(3) (P = 0.011) and platelet count <50,000/mm(3) (P < 0.001). In multivariate analysis, re-implantation was a significant risk factor of early infection (P = 0.033, OR 4.528) and low platelet count (<50,000/mm(3)) was the independent risk factor for late infection (P = 0.005, OR 4.24). Correct procedure and careful use decreases the incidence of early infection and leads to the prevention of re-implantation. Initial thrombocytopenia was attributable to bone marrow suppression caused by hematologic malignancies or severe infection. Thus, this condition is of value in predicting late infection.
[Retrieval and failure analysis of surgical implants in Brazil: the need for proper regulation].
Azevedo, Cesar R de Farias; Hippert, Eduardo
2002-01-01
This paper summarizes several cases of metallurgical failure analysis of surgical implants conducted at the Laboratory of Failure Analysis, Instituto de Pesquisas Tecnológicas (IPT), in Brazil. Failures with two stainless steel femoral compression plates, one stainless steel femoral nail plate, one Ti-6Al-4V alloy maxillary reconstruction plate, and five Nitinol wires were investigated. The results showed that the implants were not in accordance with ISO standards and presented evidence of corrosion-assisted fracture. Furthermore, some of the implants presented manufacturing/processing defects which also contributed to their premature failure. Implantation of materials that are not biocompatible may cause several types of adverse effects in the human body and lead to premature implant failure. A review of prevailing health legislation is needed in Brazil, along with the adoption of regulatory mechanisms to assure the quality of surgical implants on the market, providing for compulsory procedures in the reporting and investigation of surgical implants which have failed in service.
Safely re-integrating silicone breast implants into the plastic surgery practice.
Gladfelter, Joanne
2006-01-01
In the early 1990s, it was reported that silicone breast implants were possibly responsible for serious damage to women's health. In January 1992, the Food and Drug Administration issued a voluntary breast implant moratorium and, in April, issued a ban on the use of silicone gel-filled implants for cosmetic breast augmentation. Since that time, silicone gel-filled breast implants have been available to women only for select cases: women seeking breast reconstruction or revision of an existing breast implant, women who have had breast cancer surgery, a severe injury to the breast, a birth defect that affects the breast, or a medical condition causing a severe breast deformity. Since the ban on the use of silicone gel-filled breast implants for cosmetic breast augmentation, numerous scientific studies have been conducted. To ensure patient safety, the American Board of Plastic Surgery believes that these scientific studies and the Food and Drug Administration's scrutiny of silicone gel-filled breast implants have been appropriate and necessary.
Zafar, Andleeb; Aslanides, Ioannis M; Selimis, Vasileios; Tsoulnaras, Konstantinos I; Tabibian, David; Kymionis, George D
2018-01-01
We report here the case of a patient with anterior segment migration of intravitreal dexamethasone implant as well as its management and outcome. The patient had the following sequence of events: complicated cataract surgery, iris-sutured intraocular lens implant, followed by cystoid macular edema treated with intravitreal Avastin, retinal vein occlusion treated with intravitreal dexamethasone implant, corneal decompensation treated with Descemet stripping automated endothelial keratoplasty (DSAEK), and finally recurrence of macular edema treated with repeated intravitreal dexamethasone implant. Dexamethasone implant had completely dissolved from the eye 12 weeks after insertion without any complication. A conservative approach with regular monitoring in the situation of a quiet anterior segment without any corneal decompensation can provide enough time for the implant to dissolve without causing any complication to the involved eye, avoiding any additional surgical intervention, as presented in this case report. Despite the fact that the implant was left for natural dissolution, there were no adverse effects related to the graft or the eye.
Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.
2007-01-01
The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.
Zygoma Implant-Supported Prosthetic Rehabilitation of a Patient After Bilateral Maxillectomy.
Celakil, Tamer; Ayvalioglu, Demet Cagil; Sancakli, Erkan; Atalay, Belir; Doganay, Ozge; Kayhan, Kivanc Bektas
2015-10-01
Maxillectomy defects may vary from localized to extensive soft and hard tissue loss. In addition to physical and psychologic damages, functional and aesthetic aspects must be restored. This clinical report describes the rehabilitation of a patient with a zygoma implant-supported obturator prosthesis caused by a subtotal bilateral maxillectomy due to a squamous oral cell carcinoma. Prosthetic rehabilitation of this patient was performed after zygoma implant surgery. A maxillary obturator prosthesis supported by 2 osseointegrated zygoma implants was fabricated. Despite limited mouth opening and anatomic deficiencies, the patient's aesthetic and functional demands were fulfilled.
A Cellular Automata Model of Infection Control on Medical Implants
Prieto-Langarica, Alicia; Kojouharov, Hristo; Chen-Charpentier, Benito; Tang, Liping
2011-01-01
S. epidermidis infections on medically implanted devices are a common problem in modern medicine due to the abundance of the bacteria. Once inside the body, S. epidermidis gather in communities called biofilms and can become extremely hard to eradicate, causing the patient serious complications. We simulate the complex S. epidermidis-Neutrophils interactions in order to determine the optimum conditions for the immune system to be able to contain the infection and avoid implant rejection. Our cellular automata model can also be used as a tool for determining the optimal amount of antibiotics for combating biofilm formation on medical implants. PMID:23543851
The Use of Implants to Improve Removable Partial Denture Function.
Pimentel, Marcele Jardim; Arréllaga, Juan Pablo; Bacchi, Ataís; Del Bel Cury, Altair A
2014-12-01
The oral rehabilitation with conventional removable partial dentures in Kennedy class I patients allows continuous bone resorption, dislodgment of the prosthesis during the mastication caused by the resilience of the mucosa, and rotation of the prosthesis. Thus, the associations of distal implants become an attractive modality of treatment for these patients. This case report presented an association of removable partial dentures, milled crowns and osseointegrated implants to rehabilitate a partial edentulous patient. A removable partial denture associated with implants and metal-ceramic milled crowns can offer excellent esthetics, and will improve function and biomechanics, at a reduced cost.
Kristjánsdóttir, Ingibjörg; Reimarsdóttir, Guđrun; Arnar, Davíđ O
2012-09-01
Syncope is a common complaint and determining the underlying cause can be difficult despite extensive evaluation. The purpose of this study was to evaluate the usefulness of an implantable loop recorder for patients with unexplained syncope and palpitations. This was a retrospective analysis of 18 patients, five of whom still have the device implanted. All patients had undergone extensive evaluation for their symptoms before getting the loop recorder implanted and this was therefore a highly select group. Of the thirteen patients where use of the device was completed, the mean age was 65±20 years. The loop recorder was in use for a mean time of 20±13 months. Unexplained syncope, eleven of thirteen, was the most common indication. The other two received the loop recorder for unexplained palpitations. Four patients had sick sinus syndrome during monitoring, three had supraventricular tachycardia and one had ventricular tachycardia. Further three had typical symptoms but no arrhythmia was recorded and excluding that as a cause. Two patients had no symptoms the entire time they had the loop recorder. Of the five patients still with the device three had syncope as the indication for monitoring and two have the device as a means of evaluating the results of treatment for arrhythmia. This study on our initial experience with implantable loop recorders shows that these devices can be useful in the investigation of the causes of syncope and palpitations.
Orciani, Monia; Lazzarini, Raffaella; Scartozzi, Mario; Bolletta, Elisa; Mattioli-Belmonte, Monica; Scalise, Alessandro; Di Benedetto, Giovanni; Di Primio, Roberto
2013-12-01
Breast implants are widely used and at times might cause inflammation as a foreign body, followed by fibrous capsule formation around the implant. In cancer, the inflamed stroma is essential for preservation of the tumor. Mesenchymal stem cells can be recruited to sites of inflammation, and their role in cancer development is debated. The authors assessed the effects of inflammation caused by breast implants' effects on tumor. Mesenchymal stem cells were isolated from the fibrous capsules of women who underwent a second operation after 1 year (presenting inflammation) or after 20 years (not presenting inflammation) since initial surgery. After characterization, cells were co-cultured with MCF7, a breast cancer cell line. The expression of genes involved in oncogenesis, proliferation, and epithelial-to-mesenchymal transition was investigated, followed by Western blot analyses. After co-culture with mesenchymal stem cells from the inflamed capsule, MCF7 induced a dose- and time-dependent increase in proliferation. Polymerase chain reaction analyses revealed a dysregulation of genes involved in oncogenesis, proliferation, and epithelial-to-mesenchymal transition. The subsequent evaluation by Western blot did not confirm these results, showing only a modest decrease in the expression of E-cadherin after co-culture with mesenchymal stem cells (both derived from inflamed or control capsules). These data indicate that inflammation caused by breast implants partially affects proliferation of MCF7 but does not influence key mechanisms of tumor development.
Revision surgery due to magnet dislocation in cochlear implant patients: an emerging complication.
Hassepass, Frederike; Stabenau, Vanessa; Maier, Wolfgang; Arndt, Susan; Laszig, Roland; Beck, Rainer; Aschendorff, Antje
2014-01-01
To analyze the cause and effect of magnet dislocation in cochlear implant (CI) recipients requiring magnet revision surgery for treatment. Retrospective study. Tertiary referral center. Case reports from 1,706 CI recipients consecutively implanted from January 2000 to December 2011 were reviewed. The number of cases requiring magnet revision surgery was assessed. Revision surgery involving magnet removal or replacement was indicated in 1.23% (21/1,706), of all CI recipients. Magnet dislocation occurring during magnetic resonance tomography (MRI), at 1.5 Tesla (T), with the magnet in place and with the application of compression bandaging around the head, was the main cause for revision surgery in 47.62% (10/21) of the affected cases. All 10 cases were implanted with Cochlear Nucleus cochlear implants. These events occurred, despite adherence to current recommendations of the manufacturer. The present study underlines that MRI examination is the main cause of magnet dislocation. The use of compressive bandaging when using 1.5-T MRI does not eliminate the risk of magnet dislocation. Additional cautionary measures are for required for conditional MRI. We recommend X-ray examination after MRI to determine magnet dislocation and avoid major complications in all cases reporting pain during or after MRI. Additional research regarding silicon magnet pocket design for added retention is needed. Effective communication of guidelines for precautionary measures during MRI examination in CI patients is mandatory for all clinicians involved. MRI in CI recipients should be indicated with caution.
NASA Astrophysics Data System (ADS)
Ivorra, Antoni; Becerra-Fajardo, Laura; Castellví, Quim
2015-12-01
Objective. It is possible to develop implantable microstimulators whose actuation principle is based on rectification of high-frequency (HF) current bursts supplied through skin electrodes. This has been demonstrated previously by means of devices consisting of a single diode. However, previous single diode devices caused dc currents which made them impractical for clinical applications. Here flexible thread-like stimulation implants which perform charge balance are demonstrated in vivo. Approach. The implants weigh 40.5 mg and they consist of a 3 cm long tubular silicone body with a diameter of 1 mm, two electrodes at opposite ends, and, within the central section of the body, an electronic circuit made up of a diode, two capacitors, and a resistor. In the present study, each implant was percutaneously introduced through a 14 G catheter into either the gastrocnemius muscle or the cranial tibial muscle of a rabbit hindlimb. Then stimulation was performed by delivering HF bursts (amplitude <60 V, frequency 1 MHz, burst repetition frequency from 10 Hz to 200 Hz, duration = 200 μs) through a pair of textile electrodes strapped around the hindlimb and either isometric plantarflexion or dorsiflexion forces were recorded. Stimulation was also assayed 1, 2 and 4 weeks after implantation. Main results. The implants produced bursts of rectified current whose mean value was of a few mA and were capable of causing local neuromuscular stimulation. The implants were well-tolerated during the 4 weeks. Significance. Existing power supply methods, and, in particular inductive links, comprise stiff and bulky parts. This hinders the development of minimally invasive implantable devices for neuroprostheses based on electrical stimulation. The proposed methodology is intended to relieving such bottleneck. In terms of mass, thinness, and flexibility, the demonstrated implants appear to be unprecedented among the intramuscular stimulation implants ever assayed in vertebrates.
NASA Astrophysics Data System (ADS)
Nelson, Peggy B.; Jin, Su-Hyun
2004-05-01
Previous work [Nelson, Jin, Carney, and Nelson (2003), J. Acoust. Soc. Am 113, 961-968] suggested that cochlear implant users do not benefit from masking release when listening in modulated noise. The previous findings indicated that implant users experience little to no release from masking when identifying sentences in speech-shaped noise, regardless of the modulation frequency applied to the noise. The lack of masking release occurred for all implant subjects who were using three different devices and speech processing strategies. In the present study, possible causes of this reduced masking release in implant listeners were investigated. Normal-hearing listeners, implant users, and normal-hearing listeners presented with a four-band simulation of a cochlear implant were tested for their understanding of sentences in gated noise (1-32 Hz gate frequencies) when the duty cycle of the noise was varied from 25% to 75%. No systematic effect of noise duty cycle on implant and simulation listeners' performance was noted, indicating that the masking caused by gated noise is not only energetic masking. Masking release significantly increased when the number of spectral channels was increased from 4 to 12 for simulation listeners, suggesting that spectral resolution is important for masking release. Listeners were also tested for their understanding of gated sentences (sentences in quiet interrupted by periods of silence ranging from 1 to 32 Hz as a measure of auditory fusion, or the ability to integrate speech across temporal gaps. Implant and simulation listeners had significant difficulty understanding gated sentences at every gate frequency. When the number of spectral channels was increased for simulation listeners, their ability to understand gated sentences improved significantly. Findings suggest that implant listeners' difficulty understanding speech in modulated conditions is related to at least two (possibly related) factors: degraded spectral information and limitations in auditory fusion across temporal gaps.
A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...
NASA Astrophysics Data System (ADS)
Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.
2018-01-01
A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.
Pavement temperature and burns: streets of fire.
Harrington, W Z; Strohschein, B L; Reedy, D; Harrington, J E; Schiller, W R
1995-11-01
To measure pavement temperatures over a 24-hour period to determine when patients are at risk for burns and to report cases of pavement burns with predisposing factors. Descriptive study of pavement temperatures and retrospective case series of 23 patients with pavement burns admitted to the Maricopa Medical Center during the years 1986 to 1992. Twenty-three patients with pavement burns serious enough for them to be admitted to the burn center. We measured the temperatures of asphalt, cement, and other outdoor materials hourly for one 24-hour period using a thermocouple thermometer. Asphalt pavement was hot enough to cause burns from 9 AM to 7 PM during the summer months. It was hot enough to cause a second-degree burn within 35 seconds from 10 AM to 5 PM. The group of burned patients could be divided into three categories: incapacitated, restrained, and sensory deficient. All burns involved less than 13% of the total body surface area. During summer days in the desert, pavement is often hot enough to cause burns and does so with regularity in the southwestern United States. No one should be allowed to remain in contact with hot pavement, even transiently.
Effect of healing time on bone-implant contact of orthodontic micro-implants: a histologic study.
Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed
2014-01-01
Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability.
Effect of Healing Time on Bone-Implant Contact of Orthodontic Micro-Implants: A Histologic Study
Ramazanzadeh, Barat Ali; Fatemi, Kazem; Dehghani, Mahboobe; Mohtasham, Nooshin; Jahanbin, Arezoo; Sadeghian, Hamed
2014-01-01
Objectives. This study aimed to evaluate the effect of immediate and delayed loading of orthodontic micro-implants on bone-implant contact. Materials and Methods. Sixty four micro-implants were implanted in dog's jaw bone. The micro-implants were divided into loaded and unloaded (control) groups. The control group had two subgroups: four and eight weeks being implanted. The loaded group had two subgroups of immediate loading and delayed (after four weeks healing) loading. Loaded samples were subjected to 200g load for four weeks. After sacrificing the animals micro-implants and surrounding tissues were observed histologically. Bone-implant contact ratios (BIC) were calculated and different groups' results were compared by three-way ANOVA. Results. Mean survival rate was 96.7% in general. Survival rates were 96.7%, 94.4% and 100% for control, immediate and delayed loaded groups, respectively. BIC values were not significantly different in loaded and control groups, immediate and delayed loading groups, and pressure and tension sides. Mandibular micro-implants had significantly higher BIC than maxillary ones in immediate loading, 4-weeks control, and 8-weeks control groups (P = 0.021, P = 0.009, P = 0.003, resp.). Conclusion Immediate or delayed loading of micro-implants in dog did not cause significant difference in Bone-implant contact which could be concluded that healing time had not significant effect on micro-implant stability. PMID:25006463
Degidi, Marco; Perrotti, Vittoria; Shibli, Jamil A; Mortellaro, Carmen; Piattelli, Adriano; Iezzi, Giovanna
2014-05-01
The long-term high percentages of survival and success of dental implants reported in the literature are related mainly to new, innovative implant and thread designs, and new implant surfaces that allow to obtain very good primary and secondary stability in most anatomical and clinical situations, even in low quality and quantity of bone, promoting a more rapid osseointegration. The aim of this retrospective study was a histological and histomorphometrical evaluation of the bone response around implants with a parallel-wall configuration, condensing thread macrodesign, and self-tapping apex, retrieved from man for different causes. A total of 10 implants were reported in the present study, and these implants had been retrieved after a loading period comprised between a few weeks to about 8 years. Mineralized newly formed bone was found at the interface of all the implants, in direct contact with the implant surface, with no gaps or connective fibrous tissue. This bone adapted very well to the microirregularities of the implant surface. Areas of bone remodeling were present in some regions of the interface, with many reversal lines. High bone-implant contact percentages were found. In conclusion, both the macrostructure and the microstructure of this specific type of implant could be very helpful in the long-term high survival and success implant percentages.
Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?
Heublein, B; Rohde, R; Kaese, V; Niemeyer, M; Hartung, W; Haverich, A
2003-01-01
Objectives: To develop and test a new concept of the degradation kinetics of newly developed coronary stents consisting of magnesium alloys. Methods: Design of a coronary stent prototype consisting of the non-commercial magnesium based alloy AE21 (containing 2% aluminium and 1% rare earths) with an expected 50% loss of mass within six months. Eleven domestic pigs underwent coronary implantation of 20 stents (overstretch injury). Results: No stent caused major problems during implantation or showed signs of initial breakage in the histological evaluation. There were no thromboembolic events. Quantitative angiography at follow up showed a significant (p < 0.01) 40% loss of perfused lumen diameter between days 10 and 35, corresponding to neointima formation seen on histological analysis, and a 25% re-enlargement (p < 0.05) between days 35 and 56 caused by vascular remodelling (based on intravascular ultrasound) resulting from the loss of mechanical integrity of the stent. Inflammation (p < 0.001) and neointimal plaque area (p < 0.05) depended significantly on injury score. Planimetric degradation correlated with time (r = 0.67, p < 0.01). Conclusion: Vascular implants consisting of magnesium alloy degradable by biocorrosion seem to be a realistic alternative to permanent implants. PMID:12748224
Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?
Heublein, B; Rohde, R; Kaese, V; Niemeyer, M; Hartung, W; Haverich, A
2003-06-01
To develop and test a new concept of the degradation kinetics of newly developed coronary stents consisting of magnesium alloys. Design of a coronary stent prototype consisting of the non-commercial magnesium based alloy AE21 (containing 2% aluminium and 1% rare earths) with an expected 50% loss of mass within six months. Eleven domestic pigs underwent coronary implantation of 20 stents (overstretch injury). No stent caused major problems during implantation or showed signs of initial breakage in the histological evaluation. There were no thromboembolic events. Quantitative angiography at follow up showed a significant (p < 0.01) 40% loss of perfused lumen diameter between days 10 and 35, corresponding to neointima formation seen on histological analysis, and a 25% re-enlargement (p < 0.05) between days 35 and 56 caused by vascular remodelling (based on intravascular ultrasound) resulting from the loss of mechanical integrity of the stent. Inflammation (p < 0.001) and neointimal plaque area (p < 0.05) depended significantly on injury score. Planimetric degradation correlated with time (r = 0.67, p < 0.01). Vascular implants consisting of magnesium alloy degradable by biocorrosion seem to be a realistic alternative to permanent implants.
Allergic contact dermatitis caused by titanium screws and dental implants.
Hosoki, Maki; Nishigawa, Keisuke; Miyamoto, Youji; Ohe, Go; Matsuka, Yoshizo
2016-07-01
Titanium has been considered to be a non-allergenic material. However, several studies have reported cases of metal allergy caused by titanium-containing materials. We describe a 69-year-old male for whom significant pathologic findings around dental implants had never been observed. He exhibited allergic symptoms (eczema) after orthopedic surgery. The titanium screws used in the orthopedic surgery that he underwent were removed 1 year later, but the eczema remained. After removal of dental implants, the eczema disappeared completely. Titanium is used not only for medical applications such as plastic surgery and/or dental implants, but also for paints, white pigments, photocatalysts, and various types of everyday goods. Most of the usage of titanium is in the form of titanium dioxide. This rapid expansion of titanium-containing products has increased percutaneous and permucosal exposure of titanium to the population. In general, allergic risk of titanium material is smaller than that of other metal materials. However, we suggest that pre-implant patients should be asked about a history of hypersensitivity reactions to metals, and patch testing should be recommended to patients who have experienced such reactions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Some aspects of the hot corrosion of thermal barrier coatings
NASA Technical Reports Server (NTRS)
Jones, Robert L.
1995-01-01
This paper provides a pro tem review of the hot corrosion of zirconia-based thermal barrier coatings for engine applications. Emphasis is placed on trying to understand the chemical reactions, and such other mechanisms as can be identified, that cause corrosive degradation of the thermal barrier coating. The various approaches taken in attempts to improve the hot corrosion resistance of thermal barrier coatings are also briefly described and critiqued.
Hong, Young-Joon; Dan, Jung-Bae; Kim, Myung-Jin; Kim, Hyun Jeong; Seo, Kwang-Suk
2017-06-01
Cerebral palsy is a non-progressive disorder resulting from central nervous system damage caused by multiple factors. Almost all cerebral palsy patients have a movement disorder that makes dental treatment difficult. Oral hygiene management is difficult and the risks for periodontitis, dental caries and loss of multiple teeth are high. Placement of dental implants for multiple missing teeth in cerebral palsy patients needs multiple rounds of general anesthesia, and the prognosis is poor despite the expense. Therefore, making the decision to perform multiple dental implant treatments on cerebral palsy patients is difficult. A 33-year-old female patient with cerebral palsy and mental retardation was scheduled for multiple implant treatments. She underwent computed tomography (CT) under sedation and the operation of nine dental implants under general anesthesia. Implant-supported fixed prosthesis treatment was completed. During follow-up, she had the anterior incisors extracted and underwent the surgery of 3 additional dental implants, completing the prosthetic treatment. Although oral parafunctions existed due to cerebral palsy, no implant failure was observed 9 years after the first implant surgery.
Regan, S. P.; Epstein, R.; Hammel, B. A.; ...
2012-03-30
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regan, S. P.; Epstein, R.; Hammel, B. A.
Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less
Bacterial plaque colonization around dental implant surfaces.
Covani, Ugo; Marconcini, Simone; Crespi, Roberto; Barone, Antonio
2006-09-01
To examine the distribution of bacteria into the internal and external surfaces of failed implants using histologic analysis. There were 10 failed pure titanium and 5 failed hydroxyapatite-coated titanium implants consecutively removed various years after their placement. Criteria for fixture removal were peri-implant radiolucency and clinical mobility. The mobile fixtures were retrieved with the patients under local anesthesia. Fixtures were removed maintaining the abutments with the aim to observe the bacterial infiltration at the level of abutment/implant interface and on the implant surface. A thin radiolucent space was always present around all the failed implants. The abutments screws were tightly secured in all clinical cases. The bacterial cells were composed of cocci and filaments, which were adherent to the implant surface with an orientation perpendicular to the long axis of the implant. All the specimens included in this study showed bacteria at the level of implant/abutment interface. Histologic analysis at the level of abutment/implant interface in 2-stage implants identified heavy bacterial colonization. These findings appear to support those studies showing bacteria penetration at the level of the micro-gap, which can legitimate the hypothesis that the micro-gap at the bone level could present a risk for bone loss caused by bacterial colonization.
Takahashi, Toshihito; Gonda, Tomoya; Tomita, Akiko; Mizuno, Yoko; Maeda, Yoshinobu
2016-01-01
As maxillary implant overdentures are being increasingly used in clinical practice, prosthodontic complications related to these dentures are also reported more often. The purpose of this study was to examine the influence of palatal coverage and implant distribution on the shear strain of maxillary implant overdentures. A maxillary edentulous model with implants inserted in the anterior, premolar, and molar areas was fabricated. Two kinds of experimental overdentures, with and without palatal coverage, were also fabricated, and two strain gauges were attached at the midline of the labial and palatal sides. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the shear strain in each denture was compared by analysis of variance (P = .05). In all situations, the shear strain in palateless dentures was significantly higher than in dentures with palate on both sides (P < .05). In dentures with palate, the shear strain was lower when anterior implants were present. Palateless maxillary implant overdentures exhibited much higher strain than overdentures with palate regardless of the implant distribution; this may cause more prosthodontic and implant complications. The most favorable configuration to prevent complications in maxillary implant overdentures was palatal coverage that was supported by more than four widely distributed implants.
Kim, Albert H.; Wakabayashi, Ken T.; Baumann, Michael H.; Shaham, Yavin
2014-01-01
MDMA (Ecstasy) is an illicit drug used by young adults at hot, crowed “rave” parties, yet the data on potential health hazards of its abuse remain controversial. Here, we examined the effect of MDMA on temperature homeostasis in male rats under standard laboratory conditions and under conditions that simulate drug use in humans. We chronically implanted thermocouple microsensors in the nucleus accumbens (a brain reward area), temporal muscle, and facial skin to measure temperature continuously from freely moving rats. While focusing on brain hyperthermia, temperature monitoring from the two peripheral locations allowed us to evaluate the physiological mechanisms (i.e., intracerebral heat production and heat loss via skin surfaces) that underlie MDMA-induced brain temperature responses. Our data confirm previous reports on high individual variability and relatively weak brain hyperthermic effects of MDMA under standard control conditions (quiet rest, 22−23°C), but demonstrate dramatic enhancements of drug-induced brain hyperthermia during social interaction (exposure to male conspecific) and in warm environments (29°C). Importantly, we identified peripheral vasoconstriction as a critical mechanism underlying the activity- and state-dependent potentiation of MDMA-induced brain hyperthermia. Through this mechanism, which prevents proper heat dissipation to the external environment, MDMA at a moderate nontoxic dose (9 mg/kg or ∼1/5 of LD50 in rats) can cause fatal hyperthermia under environmental conditions commonly encountered by humans. Our results demonstrate that doses of MDMA that are nontoxic under cool, quiet conditions can become highly dangerous under conditions that mimic recreational use of MDMA at rave parties or other hot, crowded venues. PMID:24899699
Application of uniform design to improve dental implant system.
Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei
2015-01-01
This paper introduces the application of uniform experimental design to improve dental implant systems subjected to dynamic loads. The dynamic micromotion of the Zimmer dental implant system is calculated and illustrated by explicit dynamic finite element analysis. Endogenous and exogenous factors influence the success rate of dental implant systems. Endogenous factors include: bone density, cortical bone thickness and osseointegration. Exogenous factors include: thread pitch, thread depth, diameter of implant neck and body size. A dental implant system with a crest module was selected to simulate micromotion distribution and stress behavior under dynamic loads using conventional and proposed methods. Finally, the design which caused minimum micromotion was chosen as the optimal design model. The micromotion of the improved model is 36.42 μm, with an improvement is 15.34% as compared to the original model.
Bhattacharyya, Pranab Jyoti; Agrawal, Shweta; Barkataky, Jogesh Chandra; Bhattacharyya, Anjan Kumar
2015-01-01
Insulation break in a permanent pacemaker lead is a rare long-term complication. We describe an elderly male with a VVIR pacemaker, who presented with an episode of presyncope more than 3 years after the initial implantation procedure, attributed to insulation break possibly caused by lead entrapment in components of the medial subclavicular musculotendinous complex (MSMC) and repeated compressive damage over time during ipsilateral arm movement requiring lead replacement. The differential diagnosis of a clinical presentation when pacing stimuli are present with failure to capture and the role of the MSMC in causing lead damage late after implantation are discussed. PMID:26995445
Shock whilst gardening--implantable defibrillators & lawn mowers.
Von Olshausen, G; Lennerz, C; Grebmer, C; Pavaci, H; Kolb, C
2014-02-01
Electromagnetic interference with implantable cardioverter defibrillators (ICDs) can cause inappropriate shock delivery or temporary inhibition of ICD functions. We present a case of electromagnetic interference between a lawn mower and an ICD resulting in an inappropriate discharge of the device due to erroneous detection of ventricular fibrillation.
Influence of trabecular bone quality and implantation direction on press-fit mechanics.
Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E
2017-02-01
Achieving primary stability of uncemented press-fit prostheses in patients with poor quality bone can involve axial implantation forces large enough to cause bone fracture. Radial implantation eliminates intraoperative impaction forces and could prevent this damage. Platens of two commercial implant surfaces ("Beaded" and "Flaked") were implanted onto trabecular bone specimens of varying quality in a press-fit simulator. Samples were implanted with varying interference, either axially (shear) or radially (normal). Push-in and pull-out forces were measured to assess stability. Microstructural changes in the bone were determined from μCT analysis. For force-defined implantation analysis, push-in and pull-out forces both increased proportionally with increasing radial force, independent of implantation direction, bone quality or implant surface. For position-defined implantation analysis, pull-out forces were generally found to increase with interference and to be greater for radial than axial implantation direction, and to be lower for poor quality bone. Bone density increased locally at the tested interface due to implantation, in particular for the Beaded surface under axial implantation. If a safe radial stress can be determined for cortical bone in a particular patient, the associated implantation force, and pull-out force which represents primary stability, can be directly derived, regardless of implantation direction, bone quality or implant surface. Radial implantation delivers primary stability that is no worse than that for axial implantation and may eliminate potentially damaging impaction forces. Development of implant designs based on this principal might improve implant fixation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:224-233, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Aunmeungtong, W; Khongkhunthian, P; Rungsiyakull, P
2016-01-01
Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force.
Development and application of biomimetic electrospun nanofibers in total joint replacement
NASA Astrophysics Data System (ADS)
Song, Wei
Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone-implant interface is required. Our study is to develop a class of "bone-like" nanofibers (NFs) that promote osseointegration while preventing bacterial colonization and subsequent infections. This research goal is supported by our preliminary data on the preparation of coaxial electrospun NFs composed of polycaprolactone (PCL) and polyvinyl alcohol (PVA) polymers arranged in a core-sheath shape. The PCL/PVA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of osteoblast precursor cells. The objective is to develop functionalized "bone-like" PCL/PVA NFs matrix embedded with antibiotics (doxycycline (Doxy), bactericidal and anti-osteoclastic) on prosthesis surface. Through a rat tibia implantation model, the Doxy incorporated coaxial NFs has demonstrated excellent in promoting osseointegration and bacteria inhibitory efficacy. NFs coatings significantly enhanced the bonding between implant and bone remodeling within 8 weeks. The SA-induced osteomyelitis was prevented by the sustained release of Doxy from NFs. The capability of embedding numerous bio-components including proteins, growth factors, drugs, etc. enables NFs an effective solution to overcome the current challenged issue in Total joint replacement. In summary, we proposed PCL/PVA electrospun nanofibers as promising biomaterials that can be applied on joint replacement prosthesis to improve osseointegration and prevent osteomyelitis.
Thyssen, J P; Menné, T; Schalock, P C; Taylor, J S; Maibach, H I
2011-03-01
Allergic complications following insertion of metallic orthopaedic implants include allergic dermatitis reactions but also extracutaneous complications. As metal-allergic patients and/or surgeons may ask dermatologists and allergologists for advice prior to planned orthopaedic implant surgery, and as surgeons may refer patients with complications following total joint arthroplasty for diagnostic work-up, there is a continuous need for updated guidelines. This review presents published evidence for patch testing prior to surgery and proposes tentative diagnostic criteria which clinicians can rely on in the work-up of patients with putative allergic complications following surgery. Few studies have investigated whether subjects with metal contact allergy have increased risk of developing complications following orthopaedic implant insertion. Metal allergy might in a minority increase the risk of complications caused by a delayed-type hypersensitivity reaction. At present, we do not know how to identify the subgroups of metal contact allergic patients with a potentially increased risk of complications following insertion of a metal implant. We recommend that clinicians should refrain from routine patch testing prior to surgery unless the patient has already had implant surgery with complications suspected to be allergic or has a history of clinical metal intolerance of sufficient magnitude to be of concern to the patient or a health provider. The clinical work-up of a patient suspected of having an allergic reaction to a metal implant should include patch testing and possibly in vitro testing. We propose diagnostic criteria for allergic dermatitis reactions as well as noneczematous complications caused by metal implants. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.
Outcomes and special considerations of cochlear implantation in waardenburg syndrome.
Kontorinis, Georgios; Lenarz, Thomas; Giourgas, Alexandros; Durisin, Martin; Lesinski-Schiedat, Anke
2011-08-01
The objective of this study was a state-of-the-art analysis of cochlear implantation in patients with Waardenburg syndrome (WS). Twenty-five patients with WS treated with cochlear implants in our department from 1990 to 2010. The 25 patients with WS underwent 35 cochlear implantations. Hearing outcome was evaluated using HSM sentence test in 65 dB in quiet, Freiburg Monosyllabic Test, and categories of auditory performance for children and compared with that of a control group. Anatomic abnormalities of the inner ear were examined using magnetic resonance imaging and computed tomography of the temporal bones. The mean follow-up time was 8.3 years (range, 0.3-18.3 yr). The majority achieved favorable postimplantation performance with mean HSM scores of 75.3% (range, 22.6%-99%) and Freiburg Monosyllabic Test scores of 67.8% (range, 14%-95%). However, in 4 cases, the results were less satisfactory. The comparison with the control group did not reveal any statistical significance (p = 0.56). In 6 patients (24%), behavioral disorders caused temporary difficulties during the rehabilitation procedure. Except of isolated large vestibule in 1 patient, the radiological assessment of the 50 temporal bones did not reveal any temporal bone abnormalities. Most patients with WS performed well with cochlear implants. However, WS is related to behavioral disorders that may cause temporary rehabilitation difficulties. Finally, temporal bone malformations that could affect cochlear implantation are notcharacteristic of WS.
ERIC Educational Resources Information Center
Hogins, James Burl; Bryant, Gerald A., Jr.
This anthology, intended for college freshman composition courses, is organized around eight "domains," each a major contemporary concern. The domains are "hot issues", feminism, ecology, student life, work, leisure, the arts, and "cold continuing causes" (issues that, while not "hot," are still important). The contents of each domain include…
The removal of a malpositioned implant in the anterior mandible using piezosurgery.
Marini, Ettore; Cisterna, Veronica; Messina, Antonello Maria
2013-05-01
In oral, cranio, and maxillofacial surgery, a close relationship among the bone, nerves, and blood vessels can be regularly observed. Surgical procedures for the removal of dental implants have the potential to cause vascular injury and bleeding in the floor of the mouth and internal anterior region of the mandible. Furthermore, conventional osteotomy techniques always require extensive protection of adjacent soft tissue because cutting is not limited to bone and could easily affect other tissues when applied improperly. We report the removal by means of piezosurgery of a malpositioned osseointegrated implant that had previously caused a sublingual hematoma during its insertion. The postoperative course was uneventful, no bleeding, infection, or hematoma formation was noted and the patient reported 100% resolution of all symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.
LaDisa, John F; Olson, Lars E; Douglas, Hettrick A; Warltier, David C; Kersten, Judy R; Pagel, Paul S
2006-06-16
The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation. In the current investigation, we tested the hypothesis that acute changes in stent-induced regional geometry influence distributions of WSS using 3D coronary artery CFD models implanted with stents that either conformed to or caused straightening of the primary curvature of the left anterior descending coronary artery. WSS obtained at several intervals during the cardiac cycle, time averaged WSS, and WSS gradients were calculated using conventional techniques. Implantation of a stent that causes straightening, rather than conforms to the natural curvature of the artery causes a reduction in the radius of curvature and subsequent increase in the Dean number within the stented region. This straightening leads to modest skewing of the velocity profile at the inlet and outlet of the stented region where alterations in indices of WSS are most pronounced. For example, time-averaged WSS in the proximal portion of the stent ranged from 8.91 to 11.7 dynes/cm2 along the pericardial luminal surface and 4.26 to 4.88 dynes/cm2 along the myocardial luminal surface of curved coronary arteries as compared to 8.31 dynes/cm2 observed throughout the stented region of a straight vessel implanted with an equivalent stent. The current results predicting large spatial and temporal variations in WSS at specific locations in curved arterial 3D CFD simulations are consistent with clinically observed sites of restenosis. If the findings of this idealized study translate to the clinical situation, the regional geometry established immediately after stent implantation may predispose portions of the stented vessel to a higher risk of neointimal hyperplasia and subsequent restenosis.
Liu, Yang; Wang, Jiawei
2017-11-01
To review the influences and clinical implications of micro-gap and micro-motion of implant-abutment interface on marginal bone loss around the neck of implant. Literatures were searched based on the following Keywords: implant-abutment interface/implant-abutment connection/implant-abutment conjunction, microgap, micromotion/micromovement, microleakage, and current control methods available. The papers were then screened through titles, abstracts, and full texts. A total of 83 studies were included in the literature review. Two-piece implant systems are widely used in clinics. However, the production error and masticatory load result in the presence of microgap and micromotion between the implant and the abutment, which directly or indirectly causes microleakage and mechanical damage. Consequently, the degrees of microgap and micromotion further increase, and marginal bone absorption finally occurs. We summarize the influences of microgap and micromotion at the implant-abutment interface on marginal bone loss around the neck of the implant. We also recommend some feasible methods to reduce their effect. Clinicians and patients should pay more attention to the mechanisms as well as the control methods of microgap and micromotion. To reduce the corresponding detriment to the implant marginal bone, suitable Morse taper or hybrid connection implants and platform switching abutments should be selected, as well as other potential methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Lee, S; Suh, T
Purpose: This study investigates the effects of different kinds and designs of commercialized breast implants on the dose distributions in breast cancer radiotherapy under a variety of conditions. Methods: The dose for the clinical conventional tangential irradiation, Intensity Modulated Radiation Therapy (IMRT), volumetric modulated arc therapy (VMAT) breast plans was measured using radiochromic films and stimulated luminescence dosimeter (OSLD). The radiochromic film was used as an integrating dosimeter, while the OSLDs were used for real-time dosimetry to isolate the contribution of dose from individual segment. The films were placed at various slices in the Rando phantom and between the bodymore » and breast surface OSLDs were used to measure skin dose at 18 positions spaced on the two (right/left) breast. The implant breast was placed on the left side and the phantom breast was remained on the right side. Each treatment technique was performed on different size of the breasts and different shape of the breast implant. The PTV dose was prescribed 50.4 Gy and V47.88≥95%. Results: In different shapes of the breast implant, because of the shadow formed extensive around the breast implant, dose variation was relatively higher that of prescribed dose. As the PTV was delineated on the whole breast, maximum 5% dose error and average 3% difference was observed averagely. VMAT techniques largely decrease the contiguous hot spot in the skin by an average of 25% compared with IMRT. The both IMRT and VMAT techniques resulted in lower doses to normal critical structures than tangential plans for nearly all dose analyzation. Conclusion: Compared to the other technique, IMRT reduced radiation dose exposure to normal tissues and maintained reasonable target homogeneity and for the same target coverage, VMAT can reduce the skin dose in all the regions of the body.« less
Effect of nursing-calf implant timing on growth performance and carcass characteristics.
Webb, M J; Harty, A A; Salverson, R R; Kincheloe, J J; Zuelly, S M S; Underwood, K R; Luebbe, M K; Olson, K C; Blair, A D
2017-12-01
The objective of this study was to compare pre- and postweaning growth performance, carcass characteristics, and meat quality attributes of calves that did not receive an implant or were implanted early or late in the nursing period. Crossbred steer calves ( = 135) were stratified by birth date and birth weight and randomly assigned to the following implant treatments: control (CON; no preweaning implant), 58 d (EARLY; 36 mg zeranol, administered at an average of 58 ± 13 d of age), and 121 d (LATE; 36 mg zeranol, administered at an average 121 ± 13 d of age). After weaning, steers were blocked by initial feed yard BW to 15 pens (5 pens/treatment and 9 steers/pen). All steers were implanted on d 21 after arrival at the feed yard and again on d 108 of finishing. Steer BW and ultrasound assessment of rib eye area (uREA), rib fat thickness (uRFT), and percent intramuscular fat (uIMF) were collected when implants were administered, at weaning, and on harvest day. Carcass measurements included HCW, rib eye area (REA), 12th-rib fat thickness (FT), and marbling score. Objective color (L*, a*, and b*) was recorded, and a 3.8-cm strip loin section was removed from both sides of each carcass and portioned into 2.54-cm steaks that were aged for 3 or 14 d for analysis of cook loss and Warner-Bratzler shear force (WBSF). The remaining portion of each sample was used for analysis of moisture and crude fat. Steer BW, ADG, and G:F did not differ among treatments ( > 0.05). Steers implanted in the EARLY treatment had a greater ( < 0.05) cumulative DMI than CON but were not different from steers implanted in the LATE treatment. Ultrasound REA and uRFT (averaged across all collection days) did not differ ( > 0.05); however, steers on the CON treatment had a greater ( ≤ 0.05) percent uIMF than EARLY implanted steers, whereas steers receiving the LATE implant were intermediate and not different from the other treatments. Hot carcass weight, REA, FT, USDA yield grade, marbling score, and objective color did not differ ( > 0.05) among treatments. The proportion of steers in each USDA yield and quality grade was similar ( > 0.05) among treatments, and no differences were detected for total carcass value or price per 45.4 kg (hundredweight; > 0.05). Treatment did not influence ( > 0.05) percent cook loss, crude fat, moisture, or WBSF. In conclusion, administering a nursing implant, regardless of timing, did not influence live performance, carcass characteristics, or meat quality of steers fed in this study.
Highly Extensible Programmed Biosensing Circuits with Fast Memory
2011-12-16
single-cell imaging in microfluidic environment. Yeast strain YTS2ab_1 has constitutive Hog1-eGFP production and thus upon a step function of sorbitol ...expect a sorbitol pulse to cause Hog1-NeGFP to localize to the nucleus, and the resulting Hog1-Hot1 interaction to drive nuclear fluorescence...YTS2ab_3 – W303-A background, hot1D::loxP, hog1D::loxP, HO::Hog1:Hog1-NeGFP_Hot1:Hot1-CeGFP Time = 5 min prior to Sorbitol Pulse (A) Brightfield, 63X Oil
Hot atoms in cosmic chemistry.
Rossler, K; Jung, H J; Nebeling, B
1984-01-01
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.
Kuusisto, N; Vallittu, P K; Lassila, L V J
2015-01-01
Objectives: The aim was to compare the intensity of artefacts in CBCT images caused by different percentages of radio-opacifying material in composite simulation models of implants. Titanium and zirconia models of implants were used as a reference for the evaluation of the intensity of artefacts. Methods: Seven different percentages of radio-opacifying BaAlSiO2 fillers were added to composite resin to fabricate seven step wedges and simulation models of implants. Titanium and zirconia simulation models of implants were also fabricated. Aluminium step wedge was used as a reference for the measurement of grey values in intraoral radiographs. Step wedges were exposed with a Planmeca Intra X-ray machine (Planmeca Oy, Helsinki, Finland). All composite, titanium and zirconia simulation models of implants were exposed with a SCANORA® 3D dental X-ray machine (Soredex, Tuusula, Finland). Images and grey values were analysed with ImageJ software (National Institutes of Health, Bethesda, MD). To demonstrate possible artefacts between all the simulation models of implants, the images were also visually compared with each other using ImageJ software. Results: Artefacts were clearly present in CBCT images caused by titanium and zirconia and when the composite material consisted at least 20% BaAlSiO2. The intensity of artefacts increased when the radio-opacity of the composite material increased. Conclusions: Materials containing less radio-opacity produce less pronounced artefacts. The cut-off point for artefacts is at 20% radio-opaque filling material in composite material. PMID:25283364
Young women's attitudes toward injectable and implantable contraceptives.
Gold, M A; Coupey, S M
1998-02-01
To assess the potential acceptability of implantable and injectable contraceptive characteristics by young women of diverse ethnic and educational backgrounds. A cross-sectional self-administered survey. The waiting room of three clinical sites: an elite women's college health service, a coeducational state university health service, and an inner city hospital-based adolescent clinic. 328 young women awaiting medical care in one of three clinical sites, aged 13 to 21 years (85% 18-21 years); ethnic distribution differed significantly by site. The majority (83%) were sexually active, and of those who were sexually experienced, 25% had been pregnant. A 47-item questionnaire examining attitudes toward characteristics of injectable and implantable contraceptive methods, menstrual, sexual, and gynecologic history. Sixty-two percent of the sample agreed that they would get an injectable method. There was little variation in agreement to get an injectable method by sexual or pregnancy history. Fewer subjects (24%) agreed that they would like to get subdermal implants and agreement to get an implantable method of contraception did not vary by sexual history; however, ever-pregnant young women (33%) were significantly more likely to agree to implants than never-pregnant subjects (21%; chi2, 4.109; p = 0.04). Seventy-four percent of subjects said they would stop using a contraceptive that caused irregular menses, whereas 65% would stop using a method that caused amenorrhea. An injectable contraceptive method has universal appeal across ethnic, educational, and age categories, whereas implants are less appealing. Irregular bleeding and amenorrhea are poorly perceived side effects of long-acting contraceptives.
Podzimek, Stepan; Tomka, Milan; Nemeth, Tibor; Himmlova, Lucie; Matucha, Petr; Prochazkova, Jarmila
2010-01-01
In most of patients in need of implantation treatment in the oral cavity, implants heal well, nevertheless, there are some individuals, in whom titanium implants fail for reasons, which remain unclear. The aim of our study was to determine if there is a difference between metal influenced IL-1β, IL-4, IL-6, TNF-α and IFN-γ cytokines production in patients with successfully healed implants compared to those, whose implant therapy was unsuccessful. The two study groups included 12 patients with failed dental titanium implants and 9 patients with successfully healed implants. In the subjects, cytokine production was established after lymphocyte cultivation with mercury, nickel and titanium antigens. IL-1β levels were significantly increased in all patients after stimulation with titanium and in patients with accepted implants compared to patients with failed implants after the stimulation with mercury and titanium. Titanium caused significantly increased IL-6 production in all patients. TNF-α and IFN-γ levels were also significantly increased after the stimulation with titanium. Significantly increased TNF-α levels were found in patients with accepted implants as compared to patients with failed implants. Increased production of IL-1β a IL-6 cytokines in reaction to titanium and increased production of TNF-α and IFN-γ cytokines in reaction to mercury, which is very often present in the form of amalgam in the oral cavity of persons in need of implant therapy, can play an important role in immune reactions during implant healing process. In patients with failed titanium implants, decreased production of these cytokines may participate in implant failure.
Histological, mechanical, and radiological study of osteoformation in titanium foam implants.
Ito, Kiyoshi; Horiuchi, Tetsuyoshi; Arai, Yoshinori; Kawahara, Ichiro; Hongo, Kazuhiro
2014-11-01
Titanium (Ti) is widely used for implants because of its high mechanical reliability and because it aids osteoformation. However, it also produces artifacts during radiological imaging. Further, Ti implants can sometimes cause the surrounding bone to break. Owing to recent advances, Ti can be transformed into sponge-like, porous materials having a three-dimensional network of pores; such materials are called Ti foams. These foams exhibit distinct characteristics that make them more suitable than nonporous Ti. The objective of this study was to evaluate Ti foams as implant materials. Implants based on Ti foams having porosities of 80% and 90% were embedded in the femurs of 11 rabbits. Implants based on 0% porosity Ti were used as controls. Five rabbits were sacrificed 4 weeks after implantation, while the remaining were sacrificed after 12 weeks. The femurs containing the Ti implants were harvested and analyzed. Biomechanical analyses showed that the 80% porosity implants induced greater osteoformation. There were significant differences in the average pushout strengths of the control and 80% porosity implants after 4 weeks (p = 0.048) and 12 weeks (p = 0.001). Histopathological analyses confirmed osteoformation in the case of the 80% porosity implants. Analyses of the micro-computed tomography images of the Ti foam-based implants did not suggest the presence of artifacts. The 80% porosity Ti implants did not exhibit the shortcomings associated with conventional Ti implants. In addition, they induced greater osteoformation. Finally, the Ti foams did not produce radiological artifacts.
Effect of implanted helium on tensile properties and hardness of 9% Cr martensitic stainless steels
NASA Astrophysics Data System (ADS)
Jung, P.; Henry, J.; Chen, J.; Brachet, J.-C.
2003-05-01
Hundred micrometer thick specimens of 9% Cr martensitic steels EM10 and T91 were homogeneously implanted with He 4 to concentrations up to 0.5 at.% at temperatures from 150 to 550 °C. The specimens were tensile tested at room temperature and at the respective implantation temperatures. Subsequently the fracture surfaces were analysed by scanning electron microscopy and some of the specimens were examined in an instrumented hardness tester. The implanted helium caused hardening and embrittlement which both increased with increasing helium content and with decreasing implantation temperature. Fracture surfaces showed intergranular brittle appearance with virtually no necking at the highest implantation doses, when implanted below 250 °C. The present tensile results can be scaled to tensile data after irradiation in spallation sources on the basis of helium content but not on displacement damage. An interpretation of this finding by microstructural examination is given in a companion paper [J. Nucl. Mater., these Proceedings].
Penetration length-dependent hot electrons in the field emission from ZnO nanowires
NASA Astrophysics Data System (ADS)
Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun
2018-01-01
In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.
Maijers, Maria C; Niessen, Francisus B
2013-03-01
Recently, Poly Implant Prothèse silicone breast implants were recalled from the European market. The authors studied 112 women and previously published data on rupture prevalence. Women are presenting with symptoms they feel may be a result of ruptured implants. The authors' aim was to study the clinical consequences of Poly Implant Prothèse implants. One hundred twelve women with 224 proven Poly Implant Prothèse implants after 10 years of implantation were enrolled in this study. All women underwent physical examination and magnetic resonance imaging and were interviewed regarding symptoms. Details of the explantations of 35 women with at least one ruptured implant were documented. Tissue from 10 women was sent for pathologic investigation. Of 112 women, 34 (30.4 percent) had symptoms attributable to their implants. Physical examination showed that 12 of the 121 women (10.7 percent) had findings suggestive of rupture, most commonly pain. Three had lymphadenopathy that seemed to correlate with implant rupture or excessive "gel bleed." Pathologic findings showed no malignancies. Eight women who underwent explantation had no implant rupture. Excessive gel bleed was documented in half of them. Clinical consequences of women with Poly Implant Prothèse implants are comparable to those reported in the literature of other manufacturers. Neither complaints nor findings at physical examination had a significant correlation with implant rupture at explantation. Magnetic resonance imaging is still the preferred method compared with physical examination for diagnosing rupture. The low specificity was probably caused by the difficulty in differentiating between rupture and excessive gel bleed in these implants.
Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings
Zhang, Bill G. X.; Myers, Damian E.; Wallace, Gordon G.; Brandt, Milan; Choong, Peter F. M.
2014-01-01
Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants. PMID:25000263
Inchingolo, F; Paracchini, L; DE Angelis, F; Cielo, A; Orefici, A; Spitaleri, D; Santacroce, L; Gheno, E; Palermo, A
2016-01-01
Modern implantology is based on the use of endosseous dental implants and on the study of osseointegration processes. The loss of marginal bone around a dental implant can be caused by many factors; the proper distribution of the masticatory loads is important and is closely dependent on the quality and quantity of bone tissue surrounding the implant. In fact, bone has the ability to adapt its microstructure, through processes of resorption and neoformation of new bone matrix, as a result of the mechanical stimuli that are generated during the chewing cycles. The purpose of this article is to redefine in a modern key and in light of current industrial and engineering technology, clinical and biomechanical concepts that characterize the monophasic implants, in order to assess proper use by evaluating the biomechanical differences with the biphasic implants.
A simple device for exteriorizing chronically implanted catheters in dogs.
Butterfield, J L; Decker, G E
1984-04-01
A device, consisting of a round base and cap made of polytetrafluoroethylene, was made to exteriorize and protect chronically implanted arterial and venous catheters in conscious dogs. In experiments lasting as long as 9 months, the subcutaneously implanted button-like appliance did not cause tissue reactions and was well tolerated by 98% of a group of 200 dogs. Being maintenance-free, having the capacity to exteriorize several catheter or wire outputs, and needing no protective harness were advantages of the device.
Busch, Martin H J; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich H W
2005-04-08
Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation.
Zafar, Andleeb; Aslanides, Ioannis M.; Selimis, Vasileios; Tsoulnaras, Konstantinos I.; Tabibian, David; Kymionis, George D.
2018-01-01
Purpose We report here the case of a patient with anterior segment migration of intravitreal dexamethasone implant as well as its management and outcome. Methods The patient had the following sequence of events: complicated cataract surgery, iris-sutured intraocular lens implant, followed by cystoid macular edema treated with intravitreal Avastin, retinal vein occlusion treated with intravitreal dexamethasone implant, corneal decompensation treated with Descemet stripping automated endothelial keratoplasty (DSAEK), and finally recurrence of macular edema treated with repeated intravitreal dexamethasone implant. Results Dexamethasone implant had completely dissolved from the eye 12 weeks after insertion without any complication. Conclusion A conservative approach with regular monitoring in the situation of a quiet anterior segment without any corneal decompensation can provide enough time for the implant to dissolve without causing any complication to the involved eye, avoiding any additional surgical intervention, as presented in this case report. Despite the fact that the implant was left for natural dissolution, there were no adverse effects related to the graft or the eye. PMID:29643797
Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test
NASA Technical Reports Server (NTRS)
Thompson, R. G.; Genculu, S.
1983-01-01
The nickel-base alloy 718 was evaluated to study the role of preweld heat treatment in reducing or eliminating heat-affected zone hot cracking. Three heat treatments were studied using the Gleeble hot ductility test. A modified hot ductility test was also used to follow the evolution of microstructure during simulated welding thermal cycles. The microstructural evolution was correlated with the hot ductility data in order to evaluate the mechanism of hot cracking in alloy 718. The correlation of hot ductility with microstructure showed that recrystallization, grain growth, and dissolution of precipitates did not in themselves cause any loss of ductility during cooling. Ductility loss during cooling was not initiated until the constitutional liquation of NbC particles was observed in the microstructure. Laves-type phases were found precipitated in the solidified grain boundaries but were not found to correlate with any ductility loss parameter. Mechanisms are reviewed which help to explain how heat treatment controls the hot crack susceptibility of alloy 718 as measured in the hot ductility test.
Experimental Study of Ignition by Hot Spot in Internal Combustion Engines
NASA Technical Reports Server (NTRS)
Serruys, Max
1938-01-01
In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.
Corneal toxicity after Ozurdex(®) migration into anterior chamber.
Bernal, L; Estévez, B
2016-06-01
To describe a case of corneal toxicity after migration of a dexamethasone implant into the anterior chamber. A 62-year-old man with aphakia and a history of vitrectomy received a dexamethasone implant for a refractory Irvine-Gass syndrome. Thirty days later, the implant migrated into the anterior chamber causing endothelial contact with secondary corneal oedema that justified the removal of the implant without resolution of the oedema. Clinical tolerability to dislocated implant is poor in cases with pre-existing corneal oedema, and because of this, it must be removed early. In cases of aphakia and vitrectomy, the increased risk of Ozurdex(®) dislocation justifies performing a prior endothelial count. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
Automated extraction of subdural electrode grid from post-implant MRI scans for epilepsy surgery
NASA Astrophysics Data System (ADS)
Pozdin, Maksym A.; Skrinjar, Oskar
2005-04-01
This paper presents an automated algorithm for extraction of Subdural Electrode Grid (SEG) from post-implant MRI scans for epilepsy surgery. Post-implant MRI scans are corrupted by the image artifacts caused by implanted electrodes. The artifacts appear as dark spherical voids and given that the cerebrospinal fluid is also dark in T1-weigthed MRI scans, it is a difficult and time-consuming task to manually locate SEG position relative to brain structures of interest. The proposed algorithm reliably and accurately extracts SEG from post-implant MRI scan, i.e. finds its shape and position relative to brain structures of interest. The algorithm was validated against manually determined electrode locations, and the average error was 1.6mm for the three tested subjects.
[Classification of prosthetic loosening and determination of wear particles].
Otto, M
2008-11-01
Nowaday, loosening of orthopaedic implants implies important medical and socioeconomic problems. Implant loosening is caused by implant infections as well as aseptic loosening, due to particle disease and mechanical alterations. Clinically we divide the implant infection into early and late infections. Morphologically it is possible to reliably detect the infection by quantification of neutrophil granulocytes. Additionally molecular methods are suitable to detect micro-organisms which are responsible for the prosthetic joint infection including their resistance to antibiotics. Particle disease may be reproducibly classified by the detection of different types of wear particles, particularly polyethylene, metal, ceramic and cement. The aetiology of the indeterminate type of the periprosthetic membrane is obscure, but may be associated with osteopathies. This classification of the periprosthetic membrane morphology provides clinically significant information concerning clinical management of implant loosening.
Use of moisture induced stress testing to evaluate stripping potential of hot mix asphalt (HMA).
DOT National Transportation Integrated Search
2012-07-01
Stripping of hot mix asphalt (HMA) in the field is an ongoing issue for many Departments of Transportation : (DOTs). A leading cause of stripping is hydraulic scouring. The Moisture Induced Stress Tester (MIST) is a recently : developed technology th...
Bacterial microleakage at the abutment-implant interface, in vitro study.
Larrucea, Carlos; Conrado, Aparicio; Olivares, Denise; Padilla, Carlos; Barrera, Andrea; Lobos, Olga
2018-02-15
In implant rehabilitation, a microspace is created at the abutment-implant interface (AII). Previous research has shown that oral microbiome can proliferate in this microspace and affect periimplant tissues, causing inflammation in peri-implant tissues. Preventing microbial leakages through the AII is therefore an important goal in implantology. To determine the presence of marginal bacterial microleakage at the AII according to the torque applied to the prosthetic implant in vitro. Twenty-five Ticare Inhex internal conical implants (MG Mozo-Grau, Valladolid, España) were connected to a prosthetic abutment using torques of <10, 10, 20, 30, and 30 N and then sealed. The samples were submitted to cycles of occlusal loads and thermocycling, then one sample of each group was observed by micro TC, while the rest were mounted on devices according to the bacterial leakage model with Porphyromonas gingivalis. Bacterial leakage was observed only in the <10 and 10 N torque samples, and the same groups presented poor abutment/implant adjustment as determined by micro-CT. The different torques applied to the abutment-implant system condition the bacterial leakage at the implant interface. No microleakage was observed at 20 and 30 N. © 2018 Wiley Periodicals, Inc.
Effect of Boron on the Hot Ductility of Resulfurized Low-Carbon Free-Cutting Steel
NASA Astrophysics Data System (ADS)
Liu, Hai-tao; Chen, Wei-qing
2015-09-01
The hot ductility of resulfurized low-carbon free-cutting steel with boron additives is studied in the temperature range 850 - 1200°C with the help of a Gleeble-1500 thermomechanical simulator. The introduction of boron increases hot ductility, especially at 900 - 1050°C. In the single-phase austenitic region, this effect is caused by segregation of boron over grain boundaries, acceleration of dynamic recrystallization, and solid-solution softening of deformed austenite.
Hadzik, Jakub; Botzenhart, Ute; Krawiec, Maciej; Gedrange, Tomasz; Heinemann, Friedhelm; Vegh, Andras; Dominiak, Marzena
2017-09-01
Short dental implants can be an alternative method of treatment to a vertical bone augmentation procedure at sites of reduced alveolar height. However, for successful treatment, an implant system that causes a minimal marginal bone loss (MBL) should be taken into consideration. The aim of the study has been to evaluate implantation effectiveness for bone level and tissue level short implants provided in lateral aspects of partially edentulous mandible and limited alveolar ridge height. The MBL and primary as well as secondary implant stability were determined in the study. Patients were randomly divided into two groups according to the method of treatment provided. Sixteen short Bone Level Implants (OsseoSpeed TX, Astra tech) and 16 short Tissue Level Implants (RN SLActive ® , Straumann) were successfully placed in the edentulous part of the mandible. The determination of the marginal bone level was based on radiographic evaluation after 12 and 36 weeks. Implant stability was measured immediately after insertion and after 12 weeks. The marginal bone level of Bone Level Implants was significantly lower compared to Tissue Level Implants. Furthermore, the Bone Level Implants had greater primary and secondary stability in comparison with Tissue Level Implants (Primary: 77.8 ISQ versus 66.5 ISQ; Secondary: 78.9 ISQ versus 73.9 ISQ, respectively). Since short Bone Level Implants showed a significantly decreased MBL 12 and 36 weeks after implantation as well as better results for the primary stability compared to Tissue Level Implants, they should preferentially be used for this mentioned indication. Copyright © 2017 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Bose, A.; Betti, R.; Woo, K. M.; Christopherson, A. R.; Shvarts, D.
2015-11-01
The impact of intermediate- and low-mode nonuniformities on the performance of inertial confinement fusion (ICF) implosions is investigated by a detailed study of hot-spot energetics. It is found that low- (1 ~ 2) and intermediate-mode (1 >= 10) asymmetries affect the hot-spot hydrodynamics in very different ways. It is observed that for low-mode asymmetries, the fusion yield decreases because of a significant reduction in hot-spot pressure while the neutron-averaged hot-spot volume remains comparable to that of unperturbed (clean) simulations. On the other hand, implosions with moderate-amplitude, intermediate-wavelength modes, which are amplified by the Rayleigh-Taylor instability (RTI), exhibit a fusion-yield degradation primarily caused by a reduction in the burn volume without significant degradation of the pressure. For very large amplitudes, the intermediate modes show a ``secondary piston effect,'' where the converging RTI spikes compress a much smaller volume, allowing for a secondary conversion of the shell's kinetic energy to internal energy at a central region. Understanding the effects of nonuniformities on the hot-spot energetics provides valuable insight in determining the causes of performance degradation in current ICF experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).
Bhatia, Atul; Cooley, Ryan; Berger, Marcie; Blanck, Zalmen; Dhala, Anwer; Sra, Jasbir; Axtell-Mcbride, Kathleen; Vandervort, Cheryl; Akhtar, Masood
2004-06-01
Since the introduction of the implantable cardioverter defibrillator (ICD) for the management of patients with high risk of arrhythmic SCD, there has been increasing use of this device. Its basic promise to effectively terminate ventricular tachycardia (VT)-ventricular fibrillation (VF) has been repeatedly met. In several randomized trials, the ICD has been shown to be superior to conventional anti-arrhythmic therapy, both in patients with documented VT-VF (secondary prevention) and those with high risk such as left ventricular ejection fraction and no prior sustained VT-VF (primary prevention). In both groups, the ICD showed overall and cardiac mortality reduction. The device now can more accurately detect VT-VF and differentiate these from other arrhythmias through a series of algorithms and direct-chamber sensing. Therapy options include painless antitachycardia pacing, low-energy cardioversion, and high-energy defibrillation. The technique implant is now simple as a pacemaker with one lead attached to an active (hot) can functioning as the other electrode. Among other improvements is its weight, volume, multiprogrammability, and storage of information,dual-chamber pacing and sensing, dual-chamber defibrillation, and addition of biventricular pacing for cardiac synchronization. It is anticipated that further improvement in ICD technology will take place and the list of indications will grow.
Biomechanics and strain mapping in bone as related to immediately-loaded dental implants
Du, Jing; Lee, Jihyun; Jang, Andrew; Gu, Allen; Hossaini-Zadeh, Mehran; Prevost, Richard; Curtis, Don; Ho, Sunita
2015-01-01
The effects of alveolar bone socket geometry and bone-implant contact on implant biomechanics, and resulting strain distributions in bone were investigated. Following extraction of lateral incisors on a cadaver mandible, immediate implants were placed and bone-implant contact area, stability and bone strain were measured. In situ biomechanical testing coupled with micro X-ray microscope (μ-XRM) illustrated less stiff bone-implant complexes (701-822 N/mm) compared with bone-periodontal ligament (PDL)-tooth complexes (791-913 N/mm). X-ray tomograms illustrated that the cause of reduced stiffness was due to reduced and limited bone-implant contact. Heterogeneous elemental composition of bone was identified by using energy dispersive X-ray spectroscopy (EDS). The novel aspect of this study was the application of a new experimental mechanics method, that is, digital volume correlation, which allowed mapping of strains in volumes of alveolar bone in contact with a loaded implant. The identified surface and subsurface strain concentrations were a manifestation of load transferred to bone through bone-implant contact based on bone-implant geometry, quality of bone, implant placement, and implant design. 3D strain mapping indicated that strain concentrations are not exclusive to the bone-implant contact regions, but also extend into bone not directly in contact with the implant. The implications of the observed strain concentrations are discussed in the context of mechanobiology. Although a plausible explanation of surgical complications for immediate implant treatment is provided, extrapolation of results is only warranted by future systematic studies on more cadaver specimens and/or in vivo small scale animal models. PMID:26162549
Ploux, Sylvain; Swerdlow, Charles D; Eschalier, Romain; Monteil, Benjamin; Ouali, Sana; Haïssaguerre, Michel; Bordachar, Pierre
2016-07-01
Diaphragmatic myopotential oversensing (DMO) causes inhibition of pacing and inappropriate detection of ventricular fibrillation in implantable cardioverter defibrillators (ICDs). It occurs almost exclusively with integrated bipolar leads and is extremely rare with dedicated bipolar leads. If DMO cannot be corrected by reducing programmed sensitivity, ventricular lead revision is often required. The new Low Frequency Attenuation (LFA) filter in St. Jude Medical ICDs (St. Jude Medical, Sylmar, CA, USA) alters the sensing bandpass to reduce T-wave oversensing. This paper aims to present the LFA filter as a reversible cause of DMO. Unnecessary lead revision can be avoided by the simple programming solution of deactivating this LFA filter. ©2016 Wiley Periodicals, Inc.
Mechanical stability of Ti6Al4V implant material after femtosecond laser irradiation
NASA Astrophysics Data System (ADS)
Symietz, Christian; Lehmann, Erhard; Gildenhaar, Renate; Hackbarth, Andreas; Berger, Georg; Krüger, Jörg
2012-07-01
The surface of a titanium alloy (Ti6Al4V) implant material was covered with a bioactive calcium alkali phosphate ceramic with the aim to accelerate the healing and to form a stronger bond to living bone tissue. To fix the ceramic powder we used a femtosecond laser, which causes a thin surface melting of the metal. It is a requirement to prove that the laser irradiation would not reduce the lifetime of implants. Here we present the results of mechanical stability tests, determined by the rotating bending fatigue strength of sample rods. After describing the sample surfaces and their modifications caused by the laser treatment we give evidence for an unchanged mechanical stability. This applies not only to the ceramic fixation but also to a comparatively strong laser ablation.
Ronchi, A; Montella, M; Argenzio, V; Lucia, A; De Renzo, A; Alfano, R; Franco, R; Cozzolino, I
2018-04-06
Peri-implant breast seroma is a late clinical presentation of reconstructive surgery or augmentation mammoplasty with breast implants. Pre-operative cytological evaluation of the peri-implant breast seroma is a common clinical approach, showing mainly an inflammatory reaction or more rarely a breast implant-associated anaplastic large cell lymphoma. Herein, we reported the role of cytology in the evaluation of peri-implant breast seroma and its critical pre-operative implications. Eight cases of peri-implant breast seroma from files at Luigi Vanvitelli University were identified between January and December 2017. In all cases, seroma was aspirated; cytospins were performed and stained by Papanicolaou stain; finally, in all cases, a cell block was obtained for immunocytochemical evaluation and, in one case, for FISH to detect ALK1-gene translocation. The median age of patients was 48 years and the mean time between the implant placement and the occurrence of peri-implant breast seroma was 18 months. Microscopic examination showed breast implant-associated anaplastic large cell lymphoma in one case, aspecific inflammatory reaction in six cases and silicon-associated reaction in one case. Peri-implant breast seroma may be caused by several pathological conditions with different clinical behaviour. A proper cytological approach to peri-implant breast seroma allows a correct differential diagnosis between inflammatory conditions and breast implant-associated anaplastic large cell lymphoma and an appropriate management of the patient. © 2018 John Wiley & Sons Ltd.
2011-01-01
Background Femoral offset influences the forces at the hip and the implant stresses after revision THR. For extended bone defects, these forces may cause considerable bending moments within the implant, possibly leading to implant failure. This study investigates the influences of femoral anteversion and offset on stresses in the Wagner SL revision stem implant under varying extents of bone defect conditions. Methods Wagner SL revision stems with standard (34 mm) and increased offset (44 mm) were virtually implanted in a model femur with bone defects of variable extent (Paprosky I to IIIb). Variations in surgical technique were simulated by implanting the stems each at 4° or 14° of anteversion. Muscle and joint contact forces were applied to the reconstruction and implant stresses were determined using finite element analyses. Results Whilst increasing the implant's offset by 10 mm led to increased implant stresses (16.7% in peak tensile stresses), altering anteversion played a lesser role (5%). Generally, larger stresses were observed with reduced bone support: implant stresses increased by as much as 59% for a type IIIb defect. With increased offset, the maximum tensile stress was 225 MPa. Conclusion Although increased stresses were observed within the stem with larger offset and increased anteversion, these findings indicate that restoration of offset, key to restoring joint function, is unlikely to result in excessive implant stresses under routine activities if appropriate fixation can be achieved. PMID:21569522
[Hormonal (levonorgestrel) emergency contraception--effectiveness and mechanism of action].
Medard, Lech M; Ostrowska, Lucyna
2010-07-01
Periodic abstinence and coitus interruptus are the most popular methods of contraception in Poland. Recent studies have provided us with evidence that the so-called "menstrual calendar" may be much less effective than it was believed. In these circumstances, promotion and use of safe and truly effective contraceptives is very important for Polish women. Emergency contraception (EC) is a method which could be used even in cases when other contraception methods have failed. Mechanism of action of levonorgestrel used for EC and possible disturbances in the process of implantation of the blastocyst in the endometrium, remain the source of heated discussion among medical professionals. The latest publications provide us with evidence that the use of levonorgestrel in EC neither alters endometrial receptivity nor impedes implantation. Hormonal EC effectiveness is another hot topic of gynecological endocrinology and statistics. There is, however, no better, safer, and more ethically accepted method of preventing unwanted pregnancy for patients in need of postcoital contraception.
[Comperative study of implant surface characteristics].
Katona, Bernadett; Daróczi, Lajos; Jenei, Attila; Bakó, József; Hegedus, Csaba
2013-12-01
The osseointegration between the implant and its' bone environment is very important. The implants shall meet the following requirements: biocompatibility, rigidity, resistance against corrosion and technical producibility. In our present study surface morphology and material characteristics of different implants (Denti Bone Level, Denti Zirconium C, Bionika CorticaL, Straumann SLA, Straumann SLA Active, Dentsply Ankylos and Biotech Kontact implant) were investigated with scanning electron microscopy and energy-dispersive X-ray spectroscopy. The possible surface alterations caused by the manufacturing technology were also investigated. During grit-blasting the implants' surface is blasted with hard ceramic particles (titanium oxide, alumina, calcium phosphate). Properties of blasting material are critical because the osseointegration of dental implants should not be hampered. The physical and chemical features of blasting particles could importantly affect the produced surfaces of implants. Titanium surfaces with micro pits are created after immersion in mixtures of strong acids. On surfaces after dual acid-etching procedures the crosslinking between fibrin and osteogenetic cells could be enhanced therefore bone formation could be directly facilitated on the surface of the implant. Nowadays there are a number of surface modification techniques available. These can be used as a single method or in combination with each other. The effect of the two most commonly used surface modifications (acid-etching and grit-blasting) on different implants are demonstrated in our investigation.
[New concepts for pressure-controlled glaucoma implants].
Allemann, R; Stachs, O; Falke, K; Schmidt, W; Siewert, S; Sternberg, K; Chichkov, B; Wree, A; Schmitz, K-P; Guthoff, R F
2013-08-01
In industrialized countries glaucoma is one of the most common causes that leads to blindness. It is also the most common cause of irreversible blindness worldwide. In addition to local treatment of intraocular pressure and filtering glaucoma surgery, alloplastic implants are increasingly being used in glaucoma therapy. As long-term results published in the literature of commonly used implants are unsatisfactory, it seems useful to search for new concepts. In order to avoid the well-known short-term and long-term postoperative complications a pressure-controlled microstent with antiproliferative surface modifications was developed. Additionally, the functionality of such a microstent should be investigated using an animal glaucoma model. This paper describes the concept of a microstent which drains aquous humour from the anterior chamber into the suprachoroidal space. In addition, the glaucoma models described in the literature are discussed. Unfortunately, none of the methods could be reproduced permanently. First results show a correct implantation of a coated microstent with valve where the anti-proliferative effect could be demonstrated histologically. The promising results should lead to further investigations and the final goal will be the testing of the stent in the human eye.
AUNMEUNGTONG, W.; KHONGKHUNTHIAN, P.; RUNGSIYAKULL, P.
2016-01-01
SUMMARY Finite Element Analysis (FEA) has been used for prediction of stress and strain between dental implant components and bone in the implant design process. Purpose Purpose of this study was to characterize and analyze stress and strain distribution occurring in bone and implants and to compare stress and strain of three different implant designs. Materials and methods Three different mini dental implant designs were included in this study: 1. a mini dental implant with an internal implant-abutment connection (MDIi); 2. a mini dental implant with an external implant-abutment connection (MDIe); 3. a single piece mini dental implant (MDIs). All implant designs were scanned using micro-CT scans. The imaging details of the implants were used to simulate models for FEA. An artificial bone volume of 9×9 mm in size was constructed and each implant was placed separately at the center of each bone model. All bone-implant models were simulatively loaded under an axial compressive force of 100 N and a 45-degree force of 100 N loading at the top of the implants using computer software to evaluate stress and strain distribution. Results There was no difference in stress or strain between the three implant designs. The stress and strain occurring in all three mini dental implant designs were mainly localized at the cortical bone around the bone-implant interface. Oblique 45° loading caused increased deformation, magnitude and distribution of stress and strain in all implant models. Conclusions Within the limits of this study, the average stress and strain in bone and implant models with MDIi were similar to those with MDIe and MDIs. The oblique 45° load played an important role in dramatically increased average stress and strain in all bone-implant models. Clinical implications Mini dental implants with external or internal connections have similar stress distribution to single piece mini dental implants. In clinical situations, the three types of mini dental implant should exhibit the same behavior to chewing force. PMID:28042449
Implantable Bladder Sensors: A Methodological Review
Dakurah, Mathias Naangmenkpeong; Koo, Chiwan; Choi, Wonseok; Joung, Yeun-Ho
2015-01-01
The loss of urinary bladder control/sensation, also known as urinary incontinence (UI), is a common clinical problem in autistic children, diabetics, and the elderly. UI not only causes discomfort for patients but may also lead to kidney failure, infections, and even death. The increase of bladder urine volume/pressure above normal ranges without sensation of UI patients necessitates the need for bladder sensors. Currently, a catheter-based sensor is introduced directly through the urethra into the bladder to measure pressure variations. Unfortunately, this method is inaccurate because measurement is affected by disturbances in catheter lines as well as delays in response time owing to the inertia of urine inside the bladder. Moreover, this technique can cause infection during prolonged use; hence, it is only suitable for short-term measurement. Development of discrete wireless implantable sensors to measure bladder volume/pressure would allow for long-term monitoring within the bladder, while maintaining the patient’s quality of life. With the recent advances in microfabrication, the size of implantable bladder sensors has been significantly reduced. However, microfabricated sensors face hostility from the bladder environment and require surgical intervention for implantation inside the bladder. Here, we explore the various types of implantable bladder sensors and current efforts to solve issues like hermeticity, biocompatibility, drift, telemetry, power, and compatibility issues with popular imaging tools such as computed tomography and magnetic resonance imaging. We also discuss some possible improvements/emerging trends in the design of an implantable bladder sensor. PMID:26620894
Assessing material properties for fusion applications by ion beams
NASA Astrophysics Data System (ADS)
Catarino, N.; Dias, M.; Jepu, I.; Alves, E.
2017-10-01
The plasma-facing materials in the ITER divertor area must withstand unusual events, such as the edge-localized modes (ELMS). At the point when an ELM occurs, up to 30% of the energy can be deposited on the plasma-facing boundary in the form of the heat and particle load causing material loss due to sublimation. Tungsten is a promising candidate as a plasma-facing material in the ITER divertor area since it has a high melting point, good thermal conductivity and low sputtering yield, which minimizes the plasma contamination. However their brittleness at low temperatures which is worsened by irradiation is an issue. One strategy to modulate the properties of tungsten is alloying this element with other refractory metals, such as tantalum that shows higher toughness, lower activation and higher radiation resistance. In the present study tungsten-tantalum alloys (W-Ta) were produced by Ta implantation. The fundamental mechanisms which govern the behaviour of defect dynamics in W-Ta materials under reactor conditions, were simulated by the implantation of He and D. The microstructure observations of the W plates that after single Ta implantation revealed crater-like cavities and a more severe effect after D implantation. The effect increase with the increasing of D fluence. However at fluences higher than 1021D/m the effect is reduced. In addition, blistering was observed in W-Ta plates implanted with He. The D retention in the W-Ta alloys increases with the implanted fluence with tendency for saturation for high fluences. Moreover the results show that D retention is higher after sequential He and D implantation than for single D implantation. The diffractogram of W-Ta alloys implanted with He evidenced the presence of broadened W peaks associated with stress induced by irradiation, which may cause internal stress field resulting in a distortion of the crystal lattice. These irradiation defects can be observed in the D release spectra where three peaks are associated with three types of defects in W and W-Ta implanted with He and D.
Photocatalytic activity of low temperature oxidized Ti-6Al-4V.
Unosson, Erik; Persson, Cecilia; Welch, Ken; Engqvist, Håkan
2012-05-01
Numerous advanced surface modification techniques exist to improve bone integration and antibacterial properties of titanium based implants and prostheses. A simple and straightforward method of obtaining uniform and controlled TiO(2) coatings of devices with complex shapes is H(2)O(2)-oxidation and hot water aging. Based on the photoactivated bactericidal properties of TiO(2), this study was aimed at optimizing the treatment to achieve high photocatalytic activity. Ti-6Al-4V samples were H(2)O(2)-oxidized and hot water aged for up to 24 and 72 h, respectively. Degradation measurements of rhodamine B during UV-A illumination of samples showed a near linear relationship between photocatalytic activity and total treatment time, and a nanoporous coating was observed by scanning electron microscopy. Grazing incidence X-ray diffraction showed a gradual decrease in crystallinity of the surface layer, suggesting that the increase in surface area rather than anatase formation was responsible for the increase in photocatalytic activity.
APPLICATIONS OF HOT-MELT EXTRUSION FOR DRUG DELIVERY
Repka, Michael A.; Majumdar, Soumyajit; Battu, Sunil Kumar; Srirangam, Ramesh; Upadhye, Sampada B.
2018-01-01
In today’s pharmaceutical arena, it is estimated that more than 40% of new chemical entities produced during drug discovery efforts exhibit poor solubility characteristics. However, over the last decade hot-melt extrusion (HME) has emerged as a powerful processing technology for drug delivery and has opened the door to a host of such molecules previously considered unviable as drugs. HME is considered to be an efficient technique in developing solid molecular dispersions and has been demonstrated to provide sustained, modified and targeted drug delivery resulting in improved bioavailability. This article reviews the myriad of HME applications for pharmaceutical dosage forms such as tablets, capsules, films and implants for drug delivery through oral, transdermal, transmucosal, transungual, as well as other routes of administration. Interest in HME as a pharmaceutical process continues to grow and the potential of automation and reduction of capital investment and labor costs have made this technique worthy of consideration as a drug delivery solution. PMID:19040397
Kawashita, Masakazu; Endo, Naoko; Watanabe, Tomoaki; Miyazaki, Toshiki; Furuya, Maiko; Yokota, Kotoe; Abiko, Yuki; Kanetaka, Hiroyasu; Takahashi, Nobuhiro
2016-09-01
Titanium (Ti) treated with NaOH and hot water, and heated in an ammmonia (NH3) gas atmosphere for 1 or 3h exhibited in vitro apatite formation within 7days when soaked in simulated body fluid (SBF). Moreover, the treated Ti decomposed methylene blue and showed excellent bactericidal activity against Escherichia coli under visible light irradiation. The surface treatment resulted in the formation of a fine network of N-doped anatase-type titania (TiO2-xNx) on the Ti surface, which was responsible for both the apatite formation in SBF and the visible light-induced antibacterial activity. These preliminary results highlight the efficacy of our simple method for producing novel bioactive Ti with visible light-induced antibacterial activity, which could be applied to orthopaedic and dental implants without the risk of infection. Copyright © 2016 Elsevier B.V. All rights reserved.
Heating Capacity of ReBound Shortwave Diathermy and Moist Hot Packs at Superficial Depths
Hawkes, Amanda R.; Draper, David O.; Johnson, A. Wayne; Diede, Mike T.; Rigby, Justin H.
2013-01-01
Context: The effectiveness of a new continuous diathermy unit, ReBound, as a heating modality is unknown. Objective: To compare the effects of ReBound diathermy with silicate-gel moist hot packs on tissue temperature in the human triceps surae muscle. Design: Crossover study. Setting: University research laboratory. Patients or Other Participants: A total of 12 healthy, college-aged volunteers (4 men, 8 women; age = 22.2 ± 2.25 years, calf subcutaneous fat thickness = 7.2 ± 1.9 mm). Intervention(s): On 2 different days, 1 of 2 modalities (ReBound diathermy, silicate-gel moist hot pack) was applied to the triceps surae muscle of each participant for 30 minutes. After 30 minutes, the modality was removed, and temperature decay was recorded for 20 minutes. Main Outcome Measure(s): Medial triceps surae intramuscular tissue temperature at a depth of 1 cm was measured using an implantable thermocouple inserted horizontally into the muscle. Measurements were taken every 5 minutes during the 30-minute treatment and every minute during the 20-minute temperature decay, for a total of 50 minutes. Treatment was analyzed through a 2 × 7 mixed-model analysis of variance with repeated measures. Temperature decay was analyzed through a 2 × 21 mixed-model analysis of variance with repeated measures. Results: During the 30-minute application, tissue temperatures at a depth of 1 cm increased more with the ReBound diathermy than with the moist hot pack (F6,66 = 7.14, P < .001). ReBound diathermy and moist hot packs increased tissue temperatures 3.69°C ± 1.50°C and 2.82°C ± 0.90°C, respectively, from baseline. Throughout the temperature decay, ReBound diathermy produced a greater rate of heat dissipation than the moist hot pack (F20,222 = 4.42, P < .001). Conclusions: During a 30-minute treatment at a superficial depth, the ReBound diathermy increased tissue temperature to moderate levels, which were greater than the levels reached with moist hot packs. PMID:23855362
A study on setting of the fatigue limit of temporary dental implants.
Kim, M H; Cho, E J; Lee, J W; Kim, E K; Yoo, S H; Park, C W
2017-07-01
A temporary dental implant is a medical device which is temporarily used to support a prosthesis such as an artificial tooth used for restoring patient's masticatory function during implant treatment. It is implanted in the oral cavity to substitute for the role of tooth. Due to the aging and westernization of current Korean society, the number of tooth extraction and implantation procedures is increasing, leading to an increase in the use and development of temporary dental implants. Because an implant performs a masticatory function in place of a tooth, a dynamic load is repeatedly put on the implant. Thus, the fatigue of implants is reported to be the most common causes of the fracture thereof. According to the investigation and analysis of the current domestic and international standards, the standard for fatigue of implant fixtures is not separately specified. Although a test method for measuring the fatigue is suggested in an ISO standard, it is a standard for permanent dental implants. Most of the test standards for Korean manufacturers and importers apply 250 N or more based on the guidance for the safety and performance evaluation of dental implants. Therefore, this study is intended to figure out the fatigue standard which can be applied to temporary dental implants when measuring the fatigue according to the test method suggested in the permanent dental implant standard. The results determined that suitable fatigue standards of temporary dental implants should be provided by each manufacturer rather than applying 250 N. This study will be useful for the establishment of the fatigue standards and fatigue test methods of the manufacturers and importers of temporary dental implants.
The role of fixation and bone quality on the mechanical stability of tibial knee components.
Lee, R W; Volz, R G; Sheridan, D C
1991-12-01
Tibial component loosening remains one of the major causes of failure of cemented and noncemented total knee arthroplasties. In this study, the authors identified the role of implant design, method of fixation, and bone density as it related to implant stability. The physical properties of "good" and "bad" bone were simulated using a "good" and "bad" foam model of the proximal tibia, fabricated in the laboratory from DARO RF-100 foam. A generic tibial component permitting various fixation designs was implanted into "good" and "bad" variable density foam tibial models in both cemented and noncemented modes. The mechanical stability of the implants was determined using a Materials Testing Machine by the application of an eccentrically applied cyclic load. The micromotion (subsidence and lift-off) of the tibial implants was recorded using two Linear Variable Differential Transformers. Statistically significant differences in implant stability were recorded as a function of fixation method. The most rigid implant fixation was achieved using four peripherally placed, 6.5-mm cancellous screws. The addition of a central stem added stability only in the case of "poor" quality foam. The mechanical stability of noncemented implants related directly to the density of the foam. Implant stability was greatly enhanced in "poor" quality foam by the use of cement. The method of implant fixation and bone density are critical determinants to tibial implant stability.
Wu, K; Daruwalla, Z J; Wong, K L; Murphy, D; Ren, H
2015-08-01
The commercial humeral implants based on the Western population are currently not entirely compatible with Asian patients, due to differences in bone size, shape and structure. Surgeons may have to compromise or use different implants that are less conforming, which may cause complications of as well as inconvenience to the implant position. The construction of Asian humerus atlases of different clusters has therefore been proposed to eradicate this problem and to facilitate planning minimally invasive surgical procedures [6,31]. According to the features of the atlases, new implants could be designed specifically for different patients. Furthermore, an automatic implant selection algorithm has been proposed as well in order to reduce the complications caused by implant and bone mismatch. Prior to the design of the implant, data clustering and extraction of the relevant features were carried out on the datasets of each gender. The fuzzy C-means clustering method is explored in this paper. Besides, two new schemes of implant selection procedures, namely the Procrustes analysis-based scheme and the group average distance-based scheme, were proposed to better search for the matching implants for new coming patients from the database. Both these two algorithms have not been used in this area, while they turn out to have excellent performance in implant selection. Additionally, algorithms to calculate the matching scores between various implants and the patient data are proposed in this paper to assist the implant selection procedure. The results obtained have indicated the feasibility of the proposed development and selection scheme. The 16 sets of male data were divided into two clusters with 8 and 8 subjects, respectively, and the 11 female datasets were also divided into two clusters with 5 and 6 subjects, respectively. Based on the features of each cluster, the implants designed by the proposed algorithm fit very well on their reference humeri and the proposed implant selection procedure allows for a scenario of treating a patient with merely a preoperative anatomical model in order to correctly select the implant that has the best fit. Based on the leave-one-out validation, it can be concluded that both the PA-based method and GAD-based method are able to achieve excellent performance when dealing with the problem of implant selection. The accuracy and average execution time for the PA-based method were 100 % and 0.132 s, respectively, while those of the GAD- based method were 100 % and 0.058 s. Therefore, the GAD-based method outperformed the PA-based method in terms of execution speed. The primary contributions of this paper include the proposal of methods for development of Asian-, gender- and cluster-specific implants based on shape features and selection of the best fit implants for future patients according to their features. To the best of our knowledge, this is the first work that proposes implant design and selection for Asian patients automatically based on features extracted from cluster-specific statistical atlases.
Chopan, Mustafa
2017-01-01
The evidence base for the health effects of spice consumption is insufficient, with only one large population-based study and no reports from Europe or North America. Our objective was to analyze the association between consumption of hot red chili peppers and mortality, using a population-based prospective cohort from the National Health and Nutritional Examination Survey (NHANES) III, a representative sample of US noninstitutionalized adults, in which participants were surveyed from 1988 to 1994. The frequency of hot red chili pepper consumption was measured in 16,179 participants at least 18 years of age. Total and cause-specific mortality were the main outcome measures. During 273,877 person-years of follow-up (median 18.9 years), a total of 4,946 deaths were observed. Total mortality for participants who consumed hot red chili peppers was 21.6% compared to 33.6% for those who did not (absolute risk reduction of 12%; relative risk of 0.64). Adjusted for demographic, lifestyle, and clinical characteristics, the hazard ratio was 0.87 (P = 0.01; 95% Confidence Interval 0.77, 0.97). Consumption of hot red chili peppers was associated with a 13% reduction in the instantaneous hazard of death. Similar, but statistically nonsignificant trends were seen for deaths from vascular disease, but not from other causes. In this large population-based prospective study, the consumption of hot red chili pepper was associated with reduced mortality. Hot red chili peppers may be a beneficial component of the diet. PMID:28068423
Rupture of poly implant prothèse silicone breast implants: an implant retrieval study.
Swarts, Eric; Kop, Alan M; Nilasaroya, Anastasia; Keogh, Catherine V; Cooper, Timothy
2013-04-01
Poly Implant Prothèse implants were recalled in Australia in April of 2010 following concerns of higher than expected rupture rates and the use of unauthorized industrial grade silicone as a filler material. Although subsequent investigations found that the gel filler material does not pose a threat to human health, the important question of what caused a relatively modern breast implant to have such a poor outcome compared with contemporary silicone breast implants is yet to be addressed. From a cohort of 27 patients, 19 ruptured Poly Implant Prothèse breast implants were subjected to a range of mechanical tests and microscopic/macroscopic investigations to evaluate possible changes in properties as a result of implantation. New Poly Implant Prothèse implants were used as controls. All samples, explanted and controls, complied with the requirements for shell integrity as specified in the International Organization for Standardization 14607. Compression testing revealed rupture rates similar to those reported in the literature. Shell thickness was highly variable, with most shells having regions below the minimum thickness of 0.57 mm that was specified by the manufacturer. Potential regions of stress concentration were observed on the smooth inner surfaces and outer textured surfaces. The high incidence of Poly Implant Prothèse shell rupture is most likely a result of inadequate quality control, with contributory factors being shell thickness variation and manufacturing defects on both inner and outer surfaces of the shell. No evidence of shell degradation with implantation time was determined.
... Causes Dry skin can be caused by: The climate, such as cold, dry winter air or hot, ... Medical Dermatology, Associate Professor of Dermatology, Mayo Medical School, Scottsdale, AZ. Also reviewed by David Zieve, MD, ...
Delayed-onset streptococcus pyogenes endophthalmitis following Ahmed glaucoma valve implantation.
Bayraktar, Zerrin; Kapran, Ziya; Bayraktar, Sükrü; Acar, Nur; Unver, Yaprak Banu; Gök, Kemran
2005-01-01
To report a case of delayed-onset Streptococcus pyogenes endophthalmitis following implantation of an Ahmed glaucoma valve. A 10-year-old patient presented with acute endophthalmitis 1 year after Ahmed glaucoma valve implantation. The conjunctiva and Tenon's capsule over the valve plate had been penetrated by one of the polypropylene fixation sutures. The valve was removed, and pars plana vitrectomy was performed. Vitreous specimens and removal of the discharge over the plate revealed Streptococcus pyogenes. This is the first documented case of Streptococcus pyogenes endophthalmitis following Ahmed glaucoma valve implantation. We think the conjunctival buttonhole caused by the polypropylene suture provided an entry site for the infection. (c) Japanese Ophthalmological Society 2005.
Propionibacterium acnes: from Commensal to Opportunistic Biofilm-Associated Implant Pathogen
Achermann, Yvonne; Goldstein, Ellie J. C.; Coenye, Tom
2014-01-01
SUMMARY Propionibacterium acnes is known primarily as a skin commensal. However, it can present as an opportunistic pathogen via bacterial seeding to cause invasive infections such as implant-associated infections. These infections have gained more attention due to improved diagnostic procedures, such as sonication of explanted foreign materials and prolonged cultivation time of up to 14 days for periprosthetic biopsy specimens, and improved molecular methods, such as broad-range 16S rRNA gene PCR. Implantassociated infections caused by P. acnes are most often described for shoulder prosthetic joint infections as well as cerebrovascular shunt infections, fibrosis of breast implants, and infections of cardiovascular devices. P. acnes causes disease through a number of virulence factors, such as biofilm formation. P. acnes is highly susceptible to a wide range of antibiotics, including beta-lactams, quinolones, clindamycin, and rifampin, although resistance to clindamycin is increasing. Treatment requires a combination of surgery and a prolonged antibiotic treatment regimen to successfully eliminate the remaining bacteria. Most authors suggest a course of 3 to 6 months of antibiotic treatment, including 2 to 6 weeks of intravenous treatment with a beta-lactam. While recently reported data showed a good efficacy of rifampin against P. acnes biofilms, prospective, randomized, controlled studies are needed to confirm evidence for combination treatment with rifampin, as has been performed for staphylococcal implant-associated infections. PMID:24982315
NASA Astrophysics Data System (ADS)
Da-Tren Chou
Degradable metals hold considerable promise as materials which exhibit higher mechanical properties than degradable polymers while corroding over time to alleviate complications such as stress-shielding and infection that is inherent to permanent, bioinert metallic biomaterials. Specifically, degradable magnesium (Mg) alloys have emerged as a promising alternative for orthopedic and craniofacial applications due to their positive bone remodeling behavior, good biocompatibility, and relatively high strength compared to polymers while exhibiting similar stiffness to natural bone. Increasing the strength to maintain device integrity during degradation while simultaneously controlling the rapid corrosion of Mg to reduce the risk of hydrogen gas accumulation and toxicity are ongoing paramount goals for optimizing Mg alloys for musculoskeletal applications. In order to address these goals, novel Mg-Y-Ca-Zr based alloys were developed with alloying elements judiciously selected to impart favorable properties. Processing techniques including solution heat treatment combined with hot extrusion were employed to further enhance the desired properties of the material namely, controlled corrosion, high strength and ductility, and minimal toxic response. Increasing the Y content contributed to improved corrosion resistance yielding corrosion rates similar to commercial Mg alloys. Hot extrusion was employed to reduce the grain size, thereby improving mechanical properties through the Hall-Petch relation. Extrusion yielded extremely high strength relative to other Mg alloys, values approaching that of iron-based alloys, due to the presence of Mg12YZn, a long period stacking order phase that served to impede dislocation propagation. Both as-cast and extruded Mg-Y-Ca-Zr alloys demonstrated excellent in vitro cytocompatibility eliciting high viability and proliferation of MC3T3 pre-osteoblast cells and human mesenchymal stem cells. Alloying elements Y and Zr were specifically shown to improve cell proliferation. Finally, implantation of Mg-Y-Ca-Zr based alloys into the mouse subcutaneous tissue and intramedullary cavities of fractured rat femurs resulted in a normal host response and fracture healing, without eliciting any local or systemic toxicity. Thus, the alloys investigated in this work demonstrated great potential for applications as orthopedic and craniofacial implant biomaterials, warranting additional pre-clinical safety and efficacy trials that will be conducted in the near future.
Eom, Youngsub; Kim, Dae Wook; Ryu, Dongok; Kim, Jun-Heon; Yang, Seul Ki; Song, Jong Suk; Kim, Sug-Whan; Kim, Hyo Myung
2017-05-01
To evaluate the incidence of central hole-induced ring-shaped dysphotopsia after posterior chamber phakic implantable collamer lens (ICL) with central hole (hole ICL) implantation and to investigate the causes of central hole-induced dysphotopsia. The clinical study enrolled 29 eyes of 15 consecutive myopic patients implanted with hole ICL. The incidence of ring-shaped dysphotopsia after hole ICL implantation was evaluated. In the experimental simulation study, non-sequential ray tracing was used to construct myopic human eye models with hole ICL and ICL without a central hole (conventional ICL). Simulated retinal images measured in log-scale irradiance were compared between the two ICLs for an extended Lambertian light-emitting disc object 20 cm in diameter placed 2 m from the corneal vertex. To investigate the causes of hole-induced dysphotopsia, a series of retinal images were simulated using point sources at infinity with well-defined field angles (0 to -20°) and multiple ICL models. Of 29 eyes, 15 experienced ring-shaped dysphotopsia after hole ICL implantation. The simulation study using an extended Lambertian source showed that hole ICL-evoked ring-shaped dysphotopsia was formed at a retinal field angle of ±40°. Component-level analysis using a well-defined off-axis point source from infinity revealed that ring-shaped dysphotopsia was generated by stray light refraction from the inner wall of the hole and the posterior ICL surface. Hole ICL-evoked ring-shaped dysphotopsia was related to light refraction at the central hole structure. Surgeons are advised to explain to patients the possibility of ring-shaped dysphotopsia after hole ICL implantation. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Predictors of visual outcomes following Boston type 1 keratoprosthesis implantation.
Ahmad, Sumayya; Akpek, Esen K; Gehlbach, Peter L; Dunlap, Karen; Ramulu, Pradeep Y
2015-04-01
To identify predictors of visual outcomes following Boston type 1 Keratoprosthesis (KPro) implantation. Retrospective chart review. Data regarding preoperative clinical and demographic characteristics and postoperative course were collected. Fifty-nine eyes of 59 adult patients who underwent KPro implantation between January 2006 and March 2012 at a single tertiary care center. Preoperative factors associated with all-cause and glaucoma-related loss of visual acuity from the best postoperative visual acuity noted. Fifty-two of 59 eyes (88%) achieved improved vision post implantation, with 7 eyes failing to gain vision as a result of pre-existing glaucoma (n = 4) or retino-choroidal disease (n = 3). Twenty-one eyes (21/52, 40%) maintained their best-ever visual acuity at last visit (mean follow-up period was 37.8 months). The likelihood of maintaining best-ever vision was 71% at 1 year, 59% at 2 years, and 48% at 3 years. Primary KPro implantation was associated with a higher likelihood of losing best-ever vision as compared to KPro implantation as a repeat corneal procedure (hazard ratio [HR] = 3.06; P = 006). The main reasons for postimplantation vision loss was glaucoma (12/31, 39%), and the risk of glaucomatous visual acuity loss was 15% at 2 years and 27% at 3 years. Prior trabeculectomy was associated with a higher rate of vision loss from glaucoma (HR = 3.25, P = .04). Glaucoma is the primary reason for loss of visual acuity after KPro implantation. Conditions necessitating primary KPro surgery are associated with more frequent all-cause vision loss. Prospective trials are necessary to better determine which clinical features best predict KPro success. Copyright © 2015 Elsevier Inc. All rights reserved.
Ladisa, John F; Olson, Lars E; Ropella, Kristina M; Molthen, Robert C; Haworth, Steven T; Kersten, Judy R; Warltier, David C; Pagel, Paul S
2005-08-01
Restenosis caused by neointimal hyperplasia (NH) remains an important clinical problem after stent implantation. Restenosis varies with stent geometry, and idealized computational fluid dynamics (CFD) models have indicated that geometric properties of the implanted stent may differentially influence NH. However, 3D studies capturing the in vivo flow domain within stented vessels have not been conducted at a resolution sufficient to detect subtle alterations in vascular geometry caused by the stent and the subsequent temporal development of NH. We present the details and limitations of a series of post-processing operations used in conjunction with microfocal X-ray CT imaging and reconstruction to generate geometrically accurate flow domains within the localized region of a stent several weeks after implantation. Microfocal X-ray CT reconstruction volumes were subjected to an automated program to perform arterial thresholding, spatial orientation, and surface smoothing of stented and unstented rabbit iliac arteries several weeks after antegrade implantation. A transfer function was obtained for the current post-processing methodology containing reconstructed 16 mm stents implanted into rabbit iliac arteries for up to 21 days after implantation and resolved at circumferential and axial resolutions of 32 and 50 microm, respectively. The results indicate that the techniques presented are sufficient to resolve distributions of WSS with 80% accuracy in segments containing 16 surface perturbations over a 16 mm stented region. These methods will be used to test the hypothesis that reductions in normalized wall shear stress (WSS) and increases in the spatial disparity of WSS immediately after stent implantation may spatially correlate with the temporal development of NH within the stented region.
Freezing Range, Melt Quality, and Hot Tearing in Al-Si Alloys
NASA Astrophysics Data System (ADS)
Uludağ, Muhammet; Çetin, Remzi; Dispinar, Derya
2018-02-01
In this study, three different aluminum-silicon alloys (A356, A413, and A380) that have different solidification morphology and solidification ranges were examined with an aim to evaluate the hot tearing susceptibility. T-shape mold and Constrained Rod Casting (CRC) mold were used for the characterization. Reduced Pressure Test (RPT) was used to quantify the casting quality by measuring bifilm index. It was found that bifilm index and solidification range have an important role on the hot tearing formation. As it is known, bifilms can cause porosity and in this case, it was shown that porosity formed by bifilms decreased hot tearing tendency. As the freezing range of alloy increases, bifilms find the time to unravel that reduces hot tearing. However, for eutectic alloy (A413), due to zero freezing range, regardless of bifilm content, hot tearing was never observed. A380.1 alloy had the highest tendency for hot tearing due to having the highest freezing range among the alloys investigated in this work.
Multiphysical FE-analysis of a front-end bending phenomenon in a hot strip mill
NASA Astrophysics Data System (ADS)
Ilmola, Joonas; Seppälä, Oskari; Leinonen, Olli; Pohjonen, Aarne; Larkiola, Jari; Jokisaari, Juha; Putaansuu, Eero
2018-05-01
In hot steel rolling processes, a slab is generally rolled to a transfer bar in a roughing process and to a strip in a hot strip rolling process. Over several rolling passes the front-end may bend upward or downward due to asymmetrical rolling conditions causing entry problems in the next rolling pass. Many different factors may affect the front-end bending phenomenon and are very challenging to measure. Thus, a customized finite element model is designed and built to simulate the front-end bending phenomenon in a hot strip rolling process. To simulate the functioning of the hot strip mill precisely, automated controlling logic of the mill must be considered. In this paper we studied the effect of roll bite friction conditions and amount of reduction on the front-end bending phenomenon in a hot strip rolling process.
Takada; Komatsu; Futamase
2000-04-20
We investigate the weak gravitational lensing effect that is due to the large-scale structure of the universe on two-point correlations of local maxima (hot spots) in the two-dimensional sky map of the cosmic microwave background (CMB) anisotropy. According to the Gaussian random statistics, as most inflationary scenarios predict, the hot spots are discretely distributed, with some characteristic angular separations on the last scattering surface that are due to oscillations of the CMB angular power spectrum. The weak lensing then causes pairs of hot spots, which are separated with the characteristic scale, to be observed with various separations. We found that the lensing fairly smooths out the oscillatory features of the two-point correlation function of hot spots. This indicates that the hot spot correlations can be a new statistical tool for measuring the shape and normalization of the power spectrum of matter fluctuations from the lensing signatures.
Stent Implantation for Superior Vena Cava Syndrome of Malignant Cause.
Büstgens, Felix A; Loose, Reinhard; Ficker, Joachim H; Wucherer, Michael; Uder, Michael; Adamus, Ralf
2017-05-01
Purpose The purpose of this paper is the retrospective analysis of endovascular therapy for the treatment of superior vena cava syndrome (SVCS) of malignant cause. This study focuses on the effectiveness of the therapy regarding the duration of remission, symptom control and practicability. Materials and Methods From January 2003 to November 2012, therapeutic implantation of one or more stents was performed in 141 patients suffering from SVCS. The medical history was retrospectively researched using digitalized patient files. If those were incomplete, secondary research was conducted using the cancer registry of the General Hospital Nuremberg, the cancer registry of the tumor center at Friedrich-Alexander-University Erlangen-Nuremberg (FAU) or information given by physicians in private practice. This data was collected using Microsoft Office Excel ® and statistically analyzed using IBM SPSS Statistics 22 ® . Results 168 stents were implanted in 141 patients (median age: 64.6 years; range: 36 - 84), 86 being male and 55 being female. In 121 patients, SVCS was caused by lung cancer (85.8 %), in 9 patients by mediastinal metastasis of an extrathoracic carcinoma (6.4 %), in 3 patients by mesothelioma of the pleura (2.1 %) and in 1 patient by Hodgkin's disease (0.7 %). There was no histological diagnosis in 7 cases (4.9 %). The primary intervention was successful in 138 patients (97.9 %). Immediate thrombosis in the stent occurred in the remaining 3 cases. Recurrence of SVCS was observed in 22 patients (15.6 %), including 5 early and 17 late occlusions. Stent dislocation or breakage was not observed. As expected, the survival after implantation was poor. The median survival was 101 days, and the median occlusion-free survival was 80 days. Conclusion The symptomatic therapy of SVCS with endovascular stents is effective and safe. Despite effective symptom control and a low rate of recurrence, the patients' prognosis is poor. Key Points: · Patients with SVCS of malignant cause have a poor prognosis.. · Lung cancer is the most common cause for SVCS.. · Endovascular therapy is safe and effective.. Citation Format · Büstgens FA, Loose R, Ficker JH et al. Stent Implantation for Superior Vena Cava Syndrome of Malignant Cause. Fortschr Röntgenstr 2017; 189: 423 - 430. © Georg Thieme Verlag KG Stuttgart · New York.
Pacemaker Implants in Children and Adolescents with Chagas Disease in Brazil: 18-Year Incidence
Mizzaci, Carolina Christianini; Souza, Thiago Gonçalves Schroder e; Targueta, Gabriel Pelegrineti; Tótora, Ana Paula Frederico; Mateos, Juan Carlos Pachón; Mateos, José Carlos Pachon
2017-01-01
Background: Chagas disease continues to be a serious public health problem, and accounts for 25-30% of the indications for cardiac stimulation in Brazil. Objective: To assess clinical and epidemiological characteristics of patients with Chagas disease, younger than 18 years, who had undergone pacemaker implantation in Brazil between 1994 and 2011, and its temporal trend. Methods: This was a cross-sectional analysis of data from the Brazilian Pacemaker Registry database. The following variables were analyzed: year when pacemaker was implanted, location, age, sex, ethnic group, functional class and the main electrocardiographic findings at baseline. Results: In a total of 183,123 implants performed between 1994 and 2011, 214 implants of cardiac stimulation device in Chagas disease patients aged younger than 18 years were identified. Mean age at implantation was 5.6 ± 6.2 years. Second- and third-degree atrioventricular blocks corresponded to 71% of indications for pacemaker implantation. Fifty-six percent of the procedures were performed in the southeast region. Regarding the total number of pacemaker implants per year, there was a remarkable increase in the implants for all causes. However, time series analysis of the implants in Chagas disease patients younger than 18 years revealed a significant reduction in the annual number of implants. Conclusion: There has been an important reduction in the number of pacemaker implantations among children and adolescents with Chagas disease, suggesting a reduction in the vertical transmission of the parasite. PMID:28699977
Effects of Condensation on Peri-implant Bone Density and Remodeling
Wang, L.; Wu, Y.; Perez, K.C.; Hyman, S.; Brunski, J.B.; Tulu, U.; Bao, C.; Salmon, B.; Helms, J.A.
2017-01-01
Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability. PMID:28048963
Effects of Condensation on Peri-implant Bone Density and Remodeling.
Wang, L; Wu, Y; Perez, K C; Hyman, S; Brunski, J B; Tulu, U; Bao, C; Salmon, B; Helms, J A
2017-04-01
Bone condensation is thought to densify interfacial bone and thus improve implant primary stability, but scant data substantiate either claim. We developed a murine oral implant model to test these hypotheses. Osteotomies were created in healed maxillary extraction sites 1) by drilling or 2) by drilling followed by stepwise condensation with tapered osteotomes. Condensation increased interfacial bone density, as measured by a significant change in bone volume/total volume and trabecular spacing, but it simultaneously damaged the bone. On postimplant day 1, the condensed bone interface exhibited microfractures and osteoclast activity. Finite element modeling, mechanical testing, and immunohistochemical analyses at multiple time points throughout the osseointegration period demonstrated that condensation caused very high interfacial strains, marginal bone resorption, and no improvement in implant stability. Collectively, these multiscale analyses demonstrate that condensation does not positively contribute to implant stability.
NASA Astrophysics Data System (ADS)
Pillaca, E. J. D. M.; Ueda, M.; Oliveira, R. M.; Pichon, L.
2014-08-01
Effects of E × B fields as mechanism to carbon-nitrogen plasma immersion ion implantation (PIII) have been investigated. This magnetic configuration when used in PIII allows obtaining high nitrogen plasma density close to the ion implantation region. Consequently, high ions dose on the target is possible to be achieved compared with standard PIII. In this scenario, nitrogen and carbon ions were implanted simultaneously on stainless steel, as measured by GDOES and detected by X-ray diffraction. Carbon-tape disposed on the sample-holder was sputtered by intense bombardment of nitrogen ions, being the source of carbon atoms in this experiment. The implantation of both N and C caused changes on sample morphology and improvement of the tribological properties of the stainless steel.
Fighting blindness with microelectronics.
Zrenner, Eberhart
2013-11-06
There is no approved cure for blindness caused by degeneration of the photoreceptor cells of the retina. However, there has been encouraging progress with attempts to restore vision using microelectronic retinal implant devices. Yet many questions remain to be addressed. Where is the best location to implant multielectrode arrays? How can spatial and temporal resolution be improved? What are the best ways to ensure the safety and longevity of these devices? Will color vision be possible? This Perspective discusses the current state of the art of retinal implants and attempts to address some of the outstanding questions.
Approaches to reducing photon dose calculation errors near metal implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jessie Y.; Followill, David S.; Howell, Reb
Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well asmore » two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact reduction methods investigated, the authors found that O-MAR was the most consistent method, resulting in either improved dose calculation accuracy (dental case) or little impact on calculation accuracy (spine case). GSI was unsuccessful at reducing the severe artifacts caused by dental fillings and had very little impact on calculation accuracy. GSI with MARS on the other hand gave mixed results, sometimes introducing metal distortion and increasing calculation errors (titanium rectangular implant and titanium spinal hardware) but other times very successfully reducing artifacts (Cerrobend rectangular implant and dental fillings). Conclusions: Though successful at improving dose calculation accuracy upstream of metal implants, metal kernels were not found to substantially improve accuracy for clinical cases. Of the commercial artifact reduction methods investigated, O-MAR was found to be the most consistent candidate for all-purpose CT simulation imaging. The MARS algorithm for GSI should be used with caution for titanium implants, larger implants, and implants located near heterogeneities as it can distort the size and shape of implants and increase calculation errors.« less
Enhanced bioactive scaffolds for bone tissue regeneration
NASA Astrophysics Data System (ADS)
Karnik, Sonali
Bone injuries are commonly termed as fractures and they vary in their severity and causes. If the fracture is severe and there is loss of bone, implant surgery is prescribed. The response to the implant depends on the patient's physiology and implant material. Sometimes, the compromised physiology and undesired implant reactions lead to post-surgical complications. [4, 5, 20, 28] Efforts have been directed towards the development of efficient implant materials to tackle the problem of post-surgical implant failure. [ 15, 19, 24, 28, 32]. The field of tissue engineering and regenerative medicine involves the use of cells to form a new tissue on bio-absorbable or inert scaffolds. [2, 32] One of the applications of this field is to regenerate the damaged or lost bone by using stem cells or osteoprogenitor cells on scaffolds that can integrate in the host tissue without causing any harmful side effects. [2, 32] A variety of natural, synthetic materials and their combinations have been used to regenerate the damaged bone tissue. [2, 19, 30, 32, 43]. Growth factors have been supplied to progenitor cells to trigger a sequence of metabolic pathways leading to cellular proliferation, differentiation and to enhance their functionality. [56, 57] The challenge persists to supply these proteins, in the range of nano or even picograms, and in a sustained fashion over a period of time. A delivery system has yet to be developed that would mimic the body's inherent mechanism of delivering the growth factor molecules in the required amount to the target organ or tissue. Titanium is the most preferred metal for orthopedic and orthodontic implants. [28, 46, 48] Even though it has better osteogenic properties as compared to other metals and alloys, it still has drawbacks like poor integration into the surrounding host tissue leading to bone resorption and implant failure. [20, 28, 35] It also faces the problem of postsurgical infections that contributes to the implant failure. [26, 37]. The focus of this dissertation was to design and develop novel implant materials for coating titanium to improve its biological properties. These natural and/or semi-synthetic materials improved cellular adhesion, biological response to the scaffolds and prevented growth of bacteria when they were enhanced with growth factor and anti-infective loaded nanotubes. The implant materials showed promise when tested in vitro for cell proliferation, differentiation and bacterial growth inhibition.
Lu, Kang; Liliang, Po-Chou; Wang, Hao-Kuang; Chen, Jui-Sheng; Chen, Te-Yuan; Huang, Ruyi; Chen, Han-Jung
2016-01-01
Background/objective Internal disk disruption (IDD), an early event of lumbar disk degeneration, is the most common cause of low back pain. Since increased intradiskal pressure (IDP) is associated with symptoms and progression of disk degeneration, unloading a painful disk with an interspinous process device (IPD) is a rational treatment option. The goal of this study was to evaluate the effectiveness of dynamic stabilization with an IPD in the treatment of symptomatic IDD of the lumbar spine. Patients and methods Patients with symptomatic IDD were treated with implantation of an IPD, the device for intervertebral assisted motion (DIAM). Diagnosis of IDD was based on typical MRI finding of posterior annular high-intensity zone and positive provocative test on discography. IDP was analyzed intraoperatively. Axial back and leg pain was evaluated with visual analog scale, functional status with Oswestry Disability Index, and final clinical outcomes with Odom criteria. Data from 34 patients followed up for at least 3 years were collected. Results DIAM implantation significantly reduced IDP (n=11, P<0.0001). All 34 patients reported symptom relief. Thirty-one patients (91%) remained symptom free until the last followups. Three patients (9%) experienced recurrence of pain, of which the causes were unrelated to the IDD or surgery. Disk status at the DIAM-implanted segments remained stable. Segmental flexion/extension mobility was preserved in 27 of 30 patients with preoperative mobility. No proximal or distal adjacent segment degeneration was observed. The final clinical outcomes were excellent/good in 31 and fair/poor in three patients. Conclusion For patients with symptomatic IDD, dynamic stabilization with DIAM provides pain relief and functional improvement. The implantation maintains disk status and prevents progression of disk degeneration, without compromising segmental flexion/extension mobility or causing adjacent segment degeneration. PMID:27826214
Impact of Iron Deficiency on Response to and Remodeling After Cardiac Resynchronization Therapy.
Martens, Pieter; Verbrugge, Frederik; Nijst, Petra; Dupont, Matthias; Tang, W H Wilson; Mullens, Wilfried
2017-01-01
Iron deficiency is prevalent in heart failure with reduced ejection fraction and relates to symptomatic status, readmission, and all-cause mortality. The relation between iron status and response to cardiac resynchronization therapy (CRT) remains insufficiently elucidated. This study assesses the impact of iron deficiency on clinical response and reverse cardiac remodeling and outcome after CRT. Baseline characteristics, change in New York Heart Association functional class, reverse cardiac remodeling on echocardiography, and clinical outcome (i.e., all-cause mortality and heart failure readmissions) were retrospectively evaluated in consecutive CRT patients who had full iron status and complete blood count available at implantation, implanted at a single tertiary care center with identical dedicated multidisciplinary CRT follow-up from October 2008 to August 2015. A total of 541 patients were included with mean follow-up of 38 ± 22 months. Prevalence of iron deficiency was 56% at implantation. Patients with iron deficiency exhibited less symptomatic improvement 6 months after implantation (p value <0.001). In addition, both the decrease in left ventricular end-diastolic diameter (-3.1 vs -6.2 mm; p value = 0.011) and improvement in ejection fraction (+11% vs +15%, p value = 0.001) were significantly lower in patients with iron deficiency. Iron deficiency was significantly associated with an increased risk for heart failure admission or all-cause mortality (adjusted hazard ratio 1.718, 95% confidence interval 1.178 to 2.506), irrespectively of the presence of anemia (Hemoglobin <12 g/dl in women and <13 g/dl in men). In conclusion, iron deficiency is prevalent and affects both clinical response and reverse cardiac remodeling after CRT implantation. Moreover, it is a powerful predictor of adverse clinical outcomes in CRT. Copyright © 2016 Elsevier Inc. All rights reserved.
Ghaem, Haleh; Ghorbani, Mohammad; Zare Dorniani, Samira
2017-06-01
Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients' medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. The patients' mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) ( P <0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models.
Sowing seeds: transperineal implantation.
Amerine, E; Nagle, G M; Bollinger, J R
2000-02-01
Prostate cancer, the second leading cause of male deaths in the United States, has increased by 126% since 1987 (Stephenson, 1998). Early diagnosis is attributed to public awareness and technologic advances. Multiple options for definitive treatment with equally positive outcomes dramatically influence the patient's decision-making process. One popular option for these patients is transperineal implantation of radioactive seeds into the prostate.
Influence of abutment screw preload on stress distribution in marginal bone.
Khraisat, Ameen
2012-01-01
Changes in an implant assembly after abutment connection might possibly cause deformation in the implant/abutment joint and even in the marginal bone. The aim of this study was to evaluate the influence of abutment screw preload through the implant collar on marginal bone stress without external load application. Models of three implant parts made of titanium (implant, abutment, and abutment screw) and cortical bone were built and positioned with computer-aided design software. Meshing and generation of boundary conditions, loads, and interactions were performed. Each part was meshed independently. The sole load applied to the model was a torque of 32 Ncm on the abutment screw about its axis of rotation. The implant collar was deformed axially after the screw was tightened (3 μm). This deformation resulted in 60 MPa of stress in the marginal bone. Moreover, pressure on the marginal bone in a radial direction was observed. It can be concluded that, without any external load application, abutment screw preload exerts stresses on the implant collar and the marginal bone. These findings should help guide the development of new implant/abutment joint designs that exert less stress on the marginal bone.
Cochlear implants and spoken language processing abilities: review and assessment of the literature.
Peterson, Nathaniel R; Pisoni, David B; Miyamoto, Richard T
2010-01-01
Cochlear implants (CIs) process sounds electronically and then transmit electric stimulation to the cochlea of individuals with sensorineural deafness, restoring some sensation of auditory perception. Many congenitally deaf CI recipients achieve a high degree of accuracy in speech perception and develop near-normal language skills. Post-lingually deafened implant recipients often regain the ability to understand and use spoken language with or without the aid of visual input (i.e. lip reading). However, there is wide variation in individual outcomes following cochlear implantation, and some CI recipients never develop useable speech and oral language skills. The causes of this enormous variation in outcomes are only partly understood at the present time. The variables most strongly associated with language outcomes are age at implantation and mode of communication in rehabilitation. Thus, some of the more important factors determining success of cochlear implantation are broadly related to neural plasticity that appears to be transiently present in deaf individuals. In this article we review the expected outcomes of cochlear implantation, potential predictors of those outcomes, the basic science regarding critical and sensitive periods, and several new research directions in the field of cochlear implantation.
X-ray absorption fine structure (XAFS) analysis of titanium-implanted soft tissue.
Uo, Motohiro; Asakura, Kiyotaka; Yokoyama, Atsuro; Ishikawa, Makoto; Tamura, Kazuchika; Totsuka, Yasunori; Akasaka, Tsukasa; Watari, Fumio
2007-03-01
Tissues contacting Ti dental implants were subjected to X-ray absorption fine structure (XAFS) analysis to examine the chemical state of Ti transferred from the placed implant into the surrounding tissue. Nine tissues that contacted pure Ti cover screws for several months were excised in a second surgery whereby healing abutments were set. Six tissues that surrounded implants retrieved due to their failure were also excised. Ti distributions in the excised specimens were confirmed by X-ray scanning analytical microscopy (XSAM), and the specimens were subjected to fluorescence XAFS analysis to determine the chemical states of the low concentrations of Ti in the tissues surrounding Ti dental implants. Ti mostly existed in the metallic state and was considered to be debris derived from the abrasion of implant pieces during implant surgery. Oxidized forms of Ti, such as anatase and rutile, were also detected in a few specimens-and existed in either a pure state or mixed state with metallic Ti. It was concluded that the existence of Ti in the tissue did not cause implant failure. Moreover, the usefulness of XAFS for analysis of the chemical states of rarely contained elements in biological tissue was demonstrated.
Cochlear implantation in children with Jervell and Lange-Nielsen syndrome - a cautionary tale.
Broomfield, Stephen J; Bruce, Iain A; Henderson, Lise; Ramsden, Richard T; Green, Kevin M J
2012-08-01
Jervell and Lange-Nielsen (JLN) syndrome is a rare cause of congenital profound hearing loss associated with a prolonged QT interval on the electrocardiogram. Children presenting for cochlear implantation with this condition may be asymptomatic but are at risk of sudden death. SCREENING AND SUBSEQUENT: careful management is therefore required to ensure a successful outcome. We present our experience of cochlear implantation in children with JLN syndrome, including two who died unexpectedly, and suggest a protocol for management of such cases. Clinical presentation Four cases of cochlear implantation in JLN syndrome are described. None had any previous cardiological family history. Two were diagnosed pre-operatively but, despite appropriate management under a cardiologist, died from cardiac arrest; the first in the perioperative period following reimplantation for infection, and the second unrelated to his cochlear implant surgery. The other two patients were diagnosed only subsequent to their implantation and continue to use their implants successfully. These cases highlight the variation in presentation of JLN syndrome, and the spectrum of disease severity that exists. Our protocol stresses the importance of careful assessment and counselling of parents by an experienced implant team.
Cohen, D. J.; Cheng, A.; Kahn, A.; Aviram, M.; Whitehead, A. J.; Hyzy, S. L.; Clohessy, R. M.; Boyan, B. D.; Schwartz, Z.
2016-01-01
Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants. PMID:26854193
Cohen, D J; Cheng, A; Kahn, A; Aviram, M; Whitehead, A J; Hyzy, S L; Clohessy, R M; Boyan, B D; Schwartz, Z
2016-02-08
Custom devices supporting bone regeneration and implant placement are needed for edentulous patients with large mandibular deficiencies where endosteal implantation is not possible. We developed a novel subperiosteal titanium-aluminum-vanadium bone onlay device produced by additive manufacturing (AM) and post-fabrication osteogenic micro-/nano-scale surface texture modification. Human osteoblasts produced osteogenic and angiogenic factors when grown on laser-sintered nano-/micro-textured surfaces compared to smooth surfaces. Surface-processed constructs caused higher bone-to-implant contact, vertical bone growth into disk pores (microCT and histomorphometry), and mechanical pull-out force at 5 and 10 w on rat calvaria compared to non surface-modified constructs, even when pre-treating the bone to stimulate osteogenesis. Surface-modified wrap-implants placed around rabbit tibias osseointegrated by 6 w. Finally, patient-specific constructs designed to support dental implants produced via AM and surface-processing were implanted on edentulous mandibular bone. 3 and 8 month post-operative images showed new bone formation and osseointegration of the device and indicated stability of the dental implants.
Agterberg, Martijn J H; Frenzel, Henning; Wollenberg, Barbara; Somers, Thomas; Cremers, Cor W R J; Snik, Ad F M
2014-01-01
There is no consensus on treatment of patients with congenital unilateral aural atresia. Currently, 3 intervention options are available, namely, surgical reconstruction, application of a bone-conduction device (BCD), or application of a middle ear implant. The present study aims to compare the BCD with the application of a middle ear implant. We hypothesized that cross-hearing (stimulating the cochlea by means of bone conduction contralateral to the implanted side) would cause BCD users to have difficulty performing localization tasks. Audiologic data of 4 adult patients with a middle ear implant coupled directly to the cochlea were compared with data of 4 adult patients fitted with an osseointegrated BCD. All patients were fitted during adulthood. The emphasis of this study is on directional hearing. The middle ear implant and the BCD improved sound localization of patients with congenital unilateral aural atresia. Unaided scores demonstrate a large variation. Our results demonstrate that there was no advantage of the middle ear implant over the BCD for directional hearing in patients who had no amplification in childhood. The BCD users had the best bandwidth.
The foreign body response: at the interface of surgery and bioengineering.
Major, Melanie R; Wong, Victor W; Nelson, Emily R; Longaker, Michael T; Gurtner, Geoffrey C
2015-05-01
The surgical implantation of materials and devices has dramatically increased over the past decade. This trend is expected to continue with the broadening application of biomaterials and rapid expansion of aging populations. One major factor that limits the potential of implantable materials and devices is the foreign body response, an immunologic reaction characterized by chronic inflammation, foreign body giant cell formation, and fibrotic capsule formation. The English literature on the foreign body response to implanted materials and devices is reviewed. Fibrotic encapsulation can cause device malfunction and dramatically limit the function of an implanted medical device or material. Basic science studies suggest a role for immune and inflammatory pathways at the implant-host interface that drive the foreign body response. Current strategies that aim to modulate the host response and improve construct biocompatibility appear promising. This review article summarizes recent basic science, preclinical, and clinicopathologic studies examining the mechanisms driving the foreign body response, with particular focus on breast implants and synthetic meshes. Understanding these molecular and cellular mechanisms will be critical for achieving the full potential of implanted biomaterials to restore human tissues and organs.
Persistent photoconductivity in oxygen-ion implanted KNbO3 bulk single crystal
NASA Astrophysics Data System (ADS)
Tsuruoka, R.; Shinkawa, A.; Nishimura, T.; Tanuma, C.; Kuriyama, K.; Kushida, K.
2016-12-01
Persistent Photoconductivity (PPC) in oxygen-ion implanted KNbO3 ([001] oriented bulk single crystals; perovskite structure; ferroelectric with a band gap of 3.16 eV) is studied in air at room temperature to prevent the degradation of its crystallinity caused by the phase transition. The residual hydrogens in un-implanted samples are estimated to be 5×1014 cm-2 from elastic recoil detection analysis (ERDA). A multiple-energy implantation of oxygen ions into KNbO3 is performed using energies of 200, 400, and 600 keV (each ion fluence:1.0×1014 cm-2). The sheet resistance varies from >108 Ω/□ for an un-implanted sample to 1.9×107 Ω/□ for as-implanted one, suggesting the formation of donors due to hydrogen interstitials and oxygen vacancies introduced by the ion implantation. The PPC is clearly observed with ultraviolet and blue LEDs illumination rather than green, red, and infrared, suggesting the release of electrons from the metastable conductive state below the conduction band relating to the charge states of the oxygen vacancy.
Wilmes, E; Berger, H; Dienemann, H; Jolk, A
1994-01-01
The treatment of tracheal stenoses caused by tracheomalacia is mainly carried out by means of sleeve resection, tracheopexy with ring support or other tracheoplastic operative procedures. If patients cannot be treated by surgical operative strategies, conventional stents are usually used to dilate the trachea. The use of a self-expanding elastic metal prosthesis in 5 patients with tracheal airway obstruction caused by tracheomalacia proved to be a true alternative in the therapy of tracheobronchial stenoses. We report on the long term use of 5 patients with tracheal stenoses treated by implantation of elastic metal wallstents. The implantation of the stents resulted in immediate improvement in respiratory function in all 5 patients. None of the patients experienced complications secondary to the stent placement. The stents were well tolerated (long-time follow-up 26 months). The implantation of self-expanding metal stents type "wallstent" seems to offer alternative possibilities for the treatment of tracheomalacia.
Vehmeijer, Jim T.; Brouwer, Tom F.; Limpens, Jacqueline; Knops, Reinoud E.; Bouma, Berto J.; Mulder, Barbara J.M.; de Groot, Joris R.
2016-01-01
Aims Sudden cardiac death is a major cause of mortality in adult congenital heart disease (ACHD) patients. The indications for implantable cardioverter-defibrillator (ICD) implantation in ACHD patients are still not well established. We aim to systematically review the literature on indications and outcome of ICD implantation in ACHD patients. Methods and results We performed a comprehensive search in EMBASE, MEDLINE, and Google Scholar to identify all studies on ICD implantation in ACHD patients. We used random effects models to calculate proportions and 95% confidence intervals. Of 1356 articles, 24 studies with 2162 patients were included, with a mean follow-up of 3.6 ± 0.9 years. Half of patients had tetralogy of Fallot. Mean age at implantation was 36.5 ± 5.5 years old and 66% was male. Implantable cardioverter-defibrillators were implanted for primary prevention in 53% (43.5–62.7). Overall, 24% (18.6–31.3) of patients received one or more appropriate ICD interventions (anti-tachycardia pacing or shocks) during 3.7 ± 0.9 years: 22% (16.9–28.8) of patients with primary prevention in 3.3 ± 0.3 years and 35% (26.6–45.2) of patients with secondary prevention in 4.3 ± 1.2 years. Inappropriate shocks occurred in 25% (20.1–31.0) in 3.7 ± 0.8 years and other, particularly lead-related complications in 26% (18.9–33.6) of patients in 3.8 ± 0.8 years. All-cause mortality was 10% during 3.7 ± 0.9 years. Conclusions In ACHD, remarkably high rates of appropriate ICD therapy were reported, both in primary and secondary prevention. Because of the young age and lower death rates, the cumulative beneficial effects are likely greater in ACHD patients than in acquired heart disease patients. However, considering the high rates of inappropriate shocks and complications, case-by-case weighing of costs and benefits, remains essential. PMID:26873095
Nuttin, Bart; Gielen, Frans; van Kuyck, Kris; Wu, Hemmings; Luyten, Laura; Welkenhuysen, Marleen; Brionne, Thomas C; Gabriëls, Loes
2013-01-01
In preparation for a multicenter study, a protocol was written on how to perform surgical targeting of the bed nucleus of the stria terminalis, based on the lead implantation experience in patients with treatment-refractory obsessive-compulsive disorder (OCD) at the Universitaire Ziekenhuizen Leuven (UZ Leuven). When analyzing the postoperative images, we were struck by the fact that the difference between the postoperative position of the leads and the planned position seemed larger than expected. The precision of targeting in four patients with severe OCD who received bilateral model 3391 leads (Medtronic) was compared with the precision of targeting in the last seven patients who underwent surgery at UZ Leuven for movement disorders (four with Parkinson disease and three with essential tremor; all received bilateral leads). Because the leads implanted in six of the seven patients with movement disorders were model 3387 leads (Medtronic), targeting precision was also analyzed in four patients with OCD in whom model 3387 leads were implanted in the same target as the other patients with OCD. In the patients with OCD, every implanted lead deviated at least 1.3 mm from its intended position in at least one of three directions (lateral, anteroposterior, and depth), whereas in the patients with movement disorders, the maximal deviation of any of all implanted leads was 1.3 mm. The deviations in lead placement were comparable in patients with OCD who received a model 3387 implant and patients who received a model 3391 implant. In the patients with OCD, all leads were implanted more posteriorly than planned. The cause of the posterior deviation could not be determined with certainty. The most likely cause was an increased mechanical resistance of the brain tissue along the trajectory when following the targeting protocol compared with the trajectories classically used for subthalamic nucleus or ventral intermediate nucleus of the thalamus stimulation. Copyright © 2013 Elsevier Inc. All rights reserved.
Implanted depleted uranium fragments cause soft tissue sarcomas in the muscles of rats.
Hahn, Fletcher F; Guilmette, Raymond A; Hoover, Mark D
2002-01-01
In this study, we determined the carcinogenicity of depleted uranium (DU) metal fragments containing 0.75% titanium in muscle tissues of rats. The results have important implications for the medical management of Gulf War veterans who were wounded with DU fragments and who retain fragments in their soft tissues. We compared the tissue reactions in rats to the carcinogenicity of a tantalum metal (Ta), as a negative foreign-body control, and to a colloidal suspension of radioactive thorium dioxide ((232)Th), Thorotrast, as a positive radioactive control. DU was surgically implanted in the thigh muscles of male Wistar rats as four squares (2.5 x 2.5 x 1.5 mm or 5.0 x 5.0 x 1.5 mm) or four pellets (2.0 x 1.0 mm diameter) per rat. Ta was similarly implanted as four squares (5.0 x 5.0 x 1.1 mm) per rat. Thorotrast was injected at two sites in the thigh muscles of each rat. Control rats had only a surgical implantation procedure. Each treatment group included 50 rats. A connective tissue capsule formed around the metal implants, but not around the Thorotrast. Radiographs demonstrated corrosion of the DU implants shortly after implantation. At later times, rarifactions in the radiographic profiles correlated with proliferative tissue responses. After lifetime observation, the incidence of soft tissue sarcomas increased significantly around the 5.0 x 5.0 mm squares of DU and the positive control, Thorotrast. A slightly increased incidence occurred in rats implanted with the 2.5 x 2.5 mm DU squares and with 5.0 x 5.0 mm squares of Ta. No tumors were seen in rats with 2.0 x 1.0 mm diameter DU pellets or in the surgical controls. These results indicate that DU fragments of sufficient size cause localized proliferative reactions and soft tissue sarcomas that can be detected with radiography in the muscles of rats. PMID:11781165
Saini, Hina; Vadekeetil, Anitha; Chhibber, Sanjay; Harjai, Kusum
2017-03-01
Pseudomonas aeruginosa is a multifaceted pathogen causing a variety of biofilm-mediated infections, including catheter-associated urinary tract infections (CAUTIs). The high prevalence of CAUTIs in hospitals, their clinical manifestations, such as urethritis, cystitis, pyelonephritis, meningitis, urosepsis, and death, and the associated economic challenges underscore the need for management of these infections. Biomaterial modification of urinary catheters with two drugs seems an interesting approach to combat CAUTIs by inhibiting biofilm. Previously, we demonstrated the in vitro efficacy of urinary catheters impregnated with azithromycin (AZM) and ciprofloxacin (CIP) against P. aeruginosa Here, we report how these coated catheters impact the course of CAUTI induced by P. aeruginosa in a murine model. CAUTI was established in female LACA mice with uncoated or AZM-CIP-coated silicone implants in the bladder, followed by transurethral inoculation of 10 8 CFU/ml of biofilm cells of P. aeruginosa PAO1. AZM-CIP-coated implants (i) prevented biofilm formation on the implant's surface ( P ≤ 0.01), (ii) restricted bacterial colonization in the bladder and kidney ( P < 0.0001), (iii) averted bacteriuria ( P < 0.0001), and (iv) exhibited no major histopathological changes for 28 days in comparison to uncoated implants, which showed persistent CAUTI. Antibiotic implants also overcame implant-mediated inflammation, as characterized by trivial levels of inflammatory markers such as malondialdehyde ( P < 0.001), myeloperoxidase ( P < 0.05), reactive oxygen species ( P ≤ 0.001), and reactive nitrogen intermediates ( P < 0.01) in comparison to those in uncoated implants. Further, AZM-CIP-coated implants showed immunomodulation by manipulating the release of inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-10 to the benefit of the host. Overall, the study demonstrates long-term in vivo effectiveness of AZM-CIP-impregnated catheters, which may possibly be a key to success in preventing CAUTIs. Copyright © 2017 American Society for Microbiology.
Dunbar, Hannah M P; Dhawahir-Scala, Felipe E
2018-06-01
Age-related macular degeneration (AMD) is the leading cause of visual impairment in the western world, causing significant reduction in quality of life. Despite treatment advances, the burden of visual impairment caused by AMD continues to rise. In addition to traditional low vision rehabilitation and support, optical and electronic aids, and strategies to enhance the use of peripheral vision, implantable telescopic devices have been indicated as a surgical means of enhancing vision. Here we examine the literature on commercially available telescopic devices discussing their design, mode of action, surgical procedure and published outcomes on visual acuity, quality of life, surgical complication rates and cost effectiveness data where available.Funding Article processing charges were funded by VisionCare Inc.
Evaluating cochlear implant trauma to the scala vestibuli.
Adunka, O; Kiefer, J; Unkelbach, M H; Radeloff, A; Gstoettner, W
2005-04-01
Placement of cochlear implant electrodes into the scala vestibuli may be intentional, e.g. in case of blocked scala tympani or unintentional as a result of trauma to the basilar membrane or erroneous location of the cochieostomy. The aim of this study was to evaluate the morphological consequences and cochlear trauma after implantation of different cochlear implant electrode arrays in the scala vestibuli. Human temporal bone study with histological and radiological evaluation. Twelve human cadaver temporal bones were implanted with different cochlear implant electrodes. Implanted bones were processed using a special method to section undecalcified bone. Cochlear trauma and intracochlear positions. All implanted electrodes were implanted into the scala vestibuli using a special approach that allows direct scala vestibuli insertions. Fractures of the osseous spiral lamina were evaluated in some bones in the basal cochlear regions. In most electrodes, delicate structures of the organ of Corti were left intact, however, Reissner's membrane was destroyed in all specimens and the electrode lay upon the tectorial membrane. In some bones the organ of Corti was destroyed. Scala vestibuli insertions did not cause severe trauma to osseous or neural structures, thus preserving the basis for electrostimulation of the cochlea. However, destruction of Reissner's membrane and impact on the Organ of Corti can be assumed to destroy residual hearing.
NASA Astrophysics Data System (ADS)
Virtanen, H.; Keshvari, J.; Lappalainen, R.
2007-03-01
As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg-1) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR.
Relationship between oral cancer and implants: clinical cases and systematic literature review
López-López, José; Roselló-Llabrés, Xavier; Rodríguez-Argueta, Oscar-Francisco; Chimenos-Küstner, Eduardo
2012-01-01
The use of implants for oral rehabilitation of edentulous spaces has recently been on the increase, which has also led to an increase in complications such as peri-implant inflammation or periimplantitis. Chronic inflammation is a risk factor for developing oral squamous cell carcinoma (OSCC). Objectives: To review the literature of cases that associate implant placement with the development of oral cancer. Study design: We present two clinical cases and a systematic review of literature published on the relationship between oral cancer and implants. Results: We found 13 articles published between the years 1996 and 2009, referencing 18 cases in which the osseointegrated implants are associated with oral squamous cell carcinoma. Of those, 6 articles were excluded because they did not meet the inclusion criteria. Of the 18 cases reported, only 7 cases did not present a previous history of oral cancer or cancer in other parts of the body. Conclusions: Based on the review of these cases, a clear cause-effect relationship cannot be established, although it can be deduced that there is a possibility that implant treatment may constitute an irritant and/or inflammatory cofactor which contributes to the formation and/or development of OSCC. Key words: Cancer, oral cancer, dental implants, oral squamous cell carcinoma, dental implants complications. PMID:21743414
Virtanen, H; Keshvari, J; Lappalainen, R
2007-03-07
As the use of radiofrequency (RF) electromagnetic (EM) fields has increased along with increased use of wireless communication, the possible related health risks have also been widely discussed. One safety aspect is the interaction of medical implants and RF devices like mobile phones. In the literature, effects on active implants like pacemakers have been discussed but the studies of passive metallic (i.e. conductive) implants are rare. However, some studies have shown that the EM power absorption in tissues may be enhanced due to metallic implants. In this study, the effect of authentic passive metallic implants in the head region was examined. A half-wave dipole antenna was used as an exposure source and the specific absorption rate (SAR, W kg(-1)) in the near field was studied numerically. The idea was to model the presumably worst cases of most common implants in an accurate MRI-based phantom. As exposure frequencies GSM (900 and 1800 MHz) and UMTS (2450 MHz) regions were considered. The implants studied were skull plates, fixtures, bone plates and ear rings. The results indicate that some of the implants, under very rare exposure conditions, may cause a notable enhancement in peak mass averaged SAR.
Fernandez-Bueno, Ivan; Di Lauro, Salvatore; Alvarez, Ivan; Lopez, Jose Carlos; Garcia-Gutierrez, Maria Teresa; Fernandez, Itziar; Larra, Eva; Pastor, Jose Carlos
2015-01-01
Purpose. To evaluate clinically and histologically the safety and biocompatibility of a new HDPE-based spherical porous orbital implants in rabbits. Methods. MEDPOR (Porex Surgical, Inc., Fairburn, GA, USA), OCULFIT I, and OCULFIT II (AJL Ophthalmic S.A., Vitoria, Spain) implants were implanted in eviscerated rabbis. Animals were randomly divided into 6 groups (n = 4 each) according to the 3 implant materials tested and 2 follow-up times of 90 or 180 days. Signs of regional pain and presence of eyelid swelling, conjunctival hyperemia, and amount of exudate were semiquantitatively evaluated. After animals sacrifice, the implants and surrounding ocular tissues were processed for histological staining and polarized light evaluation. Statistical study was performed by ANOVA and Kaplan-Meier analysis. Results. No statistically significant differences in regional pain, eyelid swelling, or conjunctival hyperemia were shown between implants and/or time points evaluated. However, amount of exudate differed, with OCULFIT I causing the smallest amount. No remarkable clinical complications were observed. Histological findings were similar in all three types of implants and agree with minor inflammatory response. Conclusions. OCULFIT ophthalmic tolerance and biocompatibility in rabbits were comparable to the clinically used MEDPOR. Clinical studies are needed to determine if OCULFIT is superior to the orbital implants commercially available. PMID:26689343
Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries
Singh, Charanpreet; Wong, Cynthia S.; Wang, Xungai
2015-01-01
Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery. This requires a thorough understanding of the structure and function of an artery, which can then be translated into a synthetic structure based on the capabilities of the manufacturing method utilised. Common textile manufacturing techniques, such as weaving, knitting, braiding, and electrospinning, are frequently used to design vascular implants for research and commercial purposes for the past decades. However, the ability to match attributes of a vascular substitute to those of a native artery still remains a challenge. The synthetic implants have been found to cause disturbance in biological, biomechanical, and hemodynamic parameters at the implant site, which has been widely attributed to their structural design. In this work, we reviewed the design aspect of textile vascular implants and compared them to the structure of a natural artery as a basis for assessing the level of success as an implant. The outcome of this work is expected to encourage future design strategies for developing improved long lasting vascular implants. PMID:26133386
Nerve damage related to implant dentistry: incidence, diagnosis, and management.
Greenstein, Gary; Carpentieri, Joseph R; Cavallaro, John
2015-10-01
Proper patient selection and treatment planning with respect to dental implant placement can preclude nerve injuries. Nevertheless, procedures associated with implant insertion can inadvertently result in damage to branches of the trigeminal nerve. Nerve damage may be transient or permanent; this finding will depend on the cause and extent of the injury. Nerve wounding may result in anesthesia, paresthesia, or dysesthesia. The type of therapy to ameliorate the condition will be dictated by clinical and radiographic assessments. Treatment may include monitoring altered sensations to see if they subside, pharmacotherapy, implant removal, reverse-torquing an implant to decompress a nerve, combinations of the previous therapies, and/or referral to a microsurgeon for nerve repair. Patients manifesting altered sensations due to various injuries require different therapies. Transection of a nerve dictates immediate referral to a microsurgeon for evaluation. If a nerve is compressed by an implant or adjacent bone, the implant should be reverse-torqued away from the nerve or removed. When an implant is not close to a nerve, but the patient is symptomatic, the patient can be monitored and treated pharmacologically as long as symptoms improve or the implant can be removed. There are diverse opinions in the literature concerning how long an injured patient should be monitored before being referred to a microsurgeon.
Higher-Order Thinking Development through Adaptive Problem-Based Learning
ERIC Educational Resources Information Center
Raiyn, Jamal; Tilchin, Oleg
2015-01-01
In this paper we propose an approach to organizing Adaptive Problem-Based Learning (PBL) leading to the development of Higher-Order Thinking (HOT) skills and collaborative skills in students. Adaptability of PBL is expressed by changes in fixed instructor assessments caused by the dynamics of developing HOT skills needed for problem solving,…
75 FR 68693 - Airworthiness Directives; Airbus Model A380-800 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... may lead to a degraded leak detection capability have been reported. In case of hot air leakage, the... inspection in production and on in-service aircraft, a number of OverHeat Detection System (OHDS... could allow undetected leakage of bleed air from the hot engine/auxiliary power unit causing damage to...
Apollo 14 mission food preparation unit leakage
NASA Technical Reports Server (NTRS)
1971-01-01
A bubble of water collected on the delivery probe of the food preparation unit after hot water was dispensed by the Apollo 14 crew. Postflight tests showed that dimensional interference between the cylinder and the piston at hot water temperatures produced the apparent leak by causing erratic and slow stroke time of the valve assembly.
Aggarwal, Ashim; Sarmiento, Joseph J; Charles, David R; Parr, Alan R; Baman, Timir S
2016-04-01
Device failure from unanticipated and precipitous battery depletion is uncommon but can be life-threatening. Multiple mechanisms of battery failure have been previously described in the medical literature. However, in this current case series, we describe the largest cohort of patients (n = 4) with St. Jude (St. Paul, MN, USA) early implantable defibrillator battery depletion attributable to lithium cluster formation causing short circuit and high current drain. Clinicians must be aware of this occult cause of device failure and more studies are needed to determine its true prevalence. © 2015 Wiley Periodicals, Inc.
Total artificial heart implantation for biventricular failure due to eosinophilic myocarditis.
Kawabori, Masashi; Kurihara, Chitaru; Miller, Yair; Heck, Kent A; Bogaev, Roberta C; Civitello, Andrew B; Cohn, William E; Frazier, O H; Morgan, Jeffrey A
2017-09-01
Idiopathic hypereosinophilic syndrome is a condition of unknown etiology characterized by proliferation of eosinophils and their infiltration into tissues. Although cardiac involvement is rare, eosinophilic myocarditis can lead to life-threating fulminant congestive heart failure. Treatment of patients with eosinophilic myocarditis is challenging as heart failure can be caused by biventricular dysfunction. To our knowledge, this is the first case reported in the literature describing a patient with acute severe biventricular heart failure caused by eosinophilic myocarditis with mural left ventricular apical thrombus who was successfully treated with implantation of a total artificial heart as a bridge to heart transplant.
Nakyinsige, K; Sazili, A Q; Aghwan, Z A; Zulkifli, I; Goh, Y M; Fatimah, A B
2013-06-01
Unlike Europe (particularly, Italy and Spain), where a number of studies have been conducted on the stressful effects of transport on rabbit welfare, few studies have been conducted on transportation of rabbits under hot, humid tropical conditions experienced in countries like Malaysia. We studied the effects of transportation in hot humid tropical conditions of Malaysia on physiometabolic changes in New Zealand white rabbits. Eighty experimental animals were divided into two groups of 40 bucks each and transported for either 3 or 1 h. Transportation caused a significant upsurge of aspartate aminotransferase, alanine aminotransferase and creatine kinase activities (p<0.001) though did not significantly affect lactate dehydrogenase (LDH) activity (p = 0.0706). Both transportation periods caused elevation in plasma glucose levels, lactic acidosis and dehydration as evidenced through elevated packed cell volume and plasma protein concentration. It was concluded that regardless of the duration, transport of rabbits under hot humid tropical conditions, resulted in heat distress since the rabbits showed hyperglycemia, hypercalcemia, lactacidemia, lymphocytopenia, dehydration and increase in blood enzyme activities.
NASA Astrophysics Data System (ADS)
Golestanirad, Laleh; Rouhani, Hossein; Elahi, Behzad; Shahim, Kamal; Chen, Robert; Mosig, Juan R.; Pollo, Claudio; Graham, Simon J.
2012-12-01
This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.
Ling, C. R.; Foster, M. A.; Mallard, J. R.
1979-01-01
In separate experiments, normal foreign tissue and malignant tumour were implanted s.c. into the rat thigh. NMR T1 values of the adjacent normal muscle, resulting from local inflammatory reactions or from malignant invasion, were measured. Elevations in T1 of the underlying muscle occurred within 24 h in both experiments, and it is believed these were caused by rapid inflammatory and immunological reactions to the implants. However the T1 values of muscle samples adjacent to the non-malignant implants decreased during the 11 days after implantation, dropping to values within the normal range. In the second experiment there was progressive malignant invasion into the normal adjacent tissue and the elevated T1 values were maintained throughout the 12-day period. The effects of the implantation on tissue water content are discussed in relation to NMR T1 relaxation times, and the relevance to whole-body NMR imaging of elevated T1 values due to nonmalignant pathological states is considered. PMID:526431
BCA-kMC Hybrid Simulation for Hydrogen and Helium Implantation in Material under Plasma Irradiation
NASA Astrophysics Data System (ADS)
Kato, Shuichi; Ito, Atsushi; Sasao, Mamiko; Nakamura, Hiroaki; Wada, Motoi
2015-09-01
Ion implantation by plasma irradiation into materials achieves the very high concentration of impurity. The high concentration of impurity causes the deformation and the destruction of the material. This is the peculiar phenomena in the plasma-material interaction (PMI). The injection process of plasma particles are generally simulated by using the binary collision approximation (BCA) and the molecular dynamics (MD), while the diffusion of implanted atoms have been traditionally solved by the diffusion equation, in which the implanted atoms is replaced by the continuous concentration field. However, the diffusion equation has insufficient accuracy in the case of low concentration, and in the case of local high concentration such as the hydrogen blistering and the helium bubble. The above problem is overcome by kinetic Monte Carlo (kMC) which represents the diffusion of the implanted atoms as jumps on interstitial sites in a material. In this paper, we propose the new approach ``BCA-kMC hybrid simulation'' for the hydrogen and helium implantation under the plasma irradiation.
Fritz, M E
1999-06-01
Since the advent of osseointegration approximately 20 years ago, there has been a great deal of scientific data developed on two-stage integrated implant systems. Although these implants were originally designed primarily for fixed prostheses in the mandibular arch, they have been used in partially dentate patients, in patients needing overdentures, and in single-tooth restorations. In addition, this implant system has been placed in extraction sites, in bone-grafted areas, and in maxillary sinus elevations. Often, the documentation of these procedures has lagged. In addition, most of the reports use survival criteria to describe results, often providing overly optimistic data. It can be said that the literature describes a true adhesion of the epithelium to the implant similar to adhesion to teeth, that two-stage implants appear to have direct contact somewhere between 50% and 70% of the implant surface, that the microbial flora of the two-stage implant system closely resembles that of the natural tooth, and that the microbiology of periodontitis appears to be closely related to peri-implantitis. In evaluations of the data from implant placement in all of the above-noted situations by means of meta-analysis, it appears that there is a strong case that two-stage dental implants are successful, usually showing a confidence interval of over 90%. It also appears that the mandibular implants are more successful than maxillary implants. Studies also show that overdenture therapy is valid, and that single-tooth implants and implants placed in partially dentate mouths have a success rate that is quite good, although not quite as high as in the fully edentulous dentition. It would also appear that the potential causes of failure in the two-stage dental implant systems are peri-implantitis, placement of implants in poor-quality bone, and improper loading of implants. There are now data addressing modifications of the implant surface to alter the percentage of osseointegration. New types of reinforcements for dental implants and the use of growth factors to augment bone regeneration so that implants can be placed more easily are now being actively investigated.
[Cost Analysis of Cochlear Implantation in Adults].
Raths, S; Lenarz, T; Lesinski-Schiedat, A; Flessa, S
2016-04-01
The number of implantation of cochlear implants has steadily risen in recent years. Reasons for this are an extension of indication criteria, demographic change, increased quality of life needs and greater acceptance. The consequences are rising expenditure for statutory health insurance (SHI) for cochlear implantation. A detailed calculation of lifetime costs from SHI's perspective for postlingually deafened adolescents and adults is essential in estimating future cost developments. Calculations are based on accounting data from the Hannover Medical School. With regard to further life expectancy, average costs of preoperative diagnosis, surgery, rehabilitation, follow-ups, processor upgrades and electrical maintenance were discounted to their present value at age of implantation. There is an inverse relation between cost of unilateral cochlear implantation and age of initial implantation. From SHI's perspective, the intervention costs between 36,001 and 68,970 € ($ 42,504-$ 81,429). The largest cost components are initial implantation and processor upgrades. Compared to the UK the cost of cochlear implantation in Germany seems to be significantly lower. In particular the costs of, rehabilitation and maintenance in Germany cause only a small percentage of total costs. Also, the costs during the first year of treatment seem comparatively low. With regard to future spending of SHI due to implant innovations and associated extension of indication, increasing cost may be suspected. © Georg Thieme Verlag KG Stuttgart · New York.
Epinette, Jean-Alain; Harwin, Steven F; Rowan, Fiachra E; Tracol, Philippe; Mont, Michael A; Chughtai, Morad; Westrich, Geoffrey H
2017-03-01
To evaluate early performance of contemporary dual mobility acetabular systems with second generation annealed highly cross-linked polyethylene for primary hip arthroplasty of patients under 55 years of age. A prospective observational five years study across five centers in Europe and the USA of 321 patients with a mean age of 48.1 years was performed. Patients were assessed for causes of revision, hip instability, intra-prosthetic dissociation, Harris hip score and radiological signs of osteolysis. There were no dislocations and no intra-prosthetic dissociations. Kaplan Meier analysis demonstrated 97.51% survivorship for all cause revision and 99.68% survivorship for acetabular component revision at five years. Mean Harris hip score was 93.6. Two acetabular shells were revised for neck-rim implant impingement without dislocation and ten femoral stems were revised for causes unrelated to dual mobility implants. Contemporary highly cross-linked polyethylene dual mobility systems demonstrate excellent early clinical, radiological, and survivorship results in a cohort of patients that demand high performance from their implants. It is envisaged that DM and second generation annealed HXLPE may reduce THA instability and wear, the two most common causes of THA revision in hip arthroplasty.
Tomaszewski, P K; Verdonschot, N; Bulstra, S K; Rietman, J S; Verkerke, G J
2012-11-01
Direct attachment of an upper leg prosthesis to the skeletal system by a percutaneous implant is an alternative solution to the traditional socket fixation. In this study, we investigated long-term periprosthetic bone changes around two types of fixation implants using two different initial conditions, namely immediate post-amputation implantation and the conventional implantation after considerable time of socket prosthesis use. We questioned the difference in bone modeling response the implants provoked and if it could lead to premature bone fracture. Generic CT-based finite element models of an intact femoral bone and amputated bone implanted with models of two existing direct-fixation implants, the OPRA system (Integrum AB) and the ISP Endo/Exo prosthesis (ESKA Implants AG) were created for this study. Adaptive bone-remodeling simulations used the heel-strike and toe-off loads from a normal walking cycle. The bone loss caused by prolonged use of socket prosthesis had more severe effects on the ultimate bone quality than adaptation induced by the direct-fixation implants. Both implants showed considerable bone remodeling; the titanium screw implant (OPRA system) provoked more bone loss than the porous coated CoCrMo stem (ISP implant). The chance of the peri-prosthetic bone fracture remained higher for the post-socket case as compared to the direct amputation cases. In conclusion, both direct-fixation implants lead to considerable bone loss and bone loss is more severe after a prolonged period of post-socket use. Hence, from a biomechanical perspective it is better to limit the post-socket time and to re-design direct fixation devices to reduce bone loss and the probability of peri-prosthetic bone fractures. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan
2015-04-01
Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to modify the implant site and tailor it to a desirable bioactivity.
Campoccia, Davide; Speziale, Pietro; Ravaioli, Stefano; Cangini, Ilaria; Rindi, Simonetta; Pirini, Valter; Montanaro, Lucio; Arciola, Carla Renata
2009-12-01
Staphylococcus aureus is a major, highly clonal, pathogen causing implant infections. This study aimed at investigating the diverse distribution of bacterial adhesins in most prevalent S. aureus strain types causing orthopaedic implant infections. 200 S. aureus isolates, categorized into ribogroups by automated ribotyping, i.e. rDNA restriction fragment length polymorphism analysis, were screened for the presence of a panel of adhesins genes. Within the collection of isolates, automated ribotyping detected 98 distinct ribogroups. For many ribogroups, characteristic tandem genes arrangements could be identified. In the predominant S. aureus cluster, enlisting 27 isolates, the bbp gene encoding bone sialoprotein-binding protein appeared a typical virulence trait, found in 93% of the isolates. Conversely, the bbp gene was identified in just 10% of the remaining isolates of the collection. In this cluster, co-presence of bbp with the cna gene encoding collagen adhesin was a pattern consistently observed. These findings indicate a crucial role of both these adhesins, able to bind the most abundant bone proteins, in the pathogenesis of orthopaedic implant infections, there where biomaterials interface bone tissues. This study suggests that specific adhesins may synergistically act in the onset of implant infections and that anti-adhesin strategies should be targeted to adhesins conjointly present.
Kim, Chang Yeom; Son, Byeong Jae; Son, Jangyup; Hong, Jongill; Lee, Sang Yeul
2017-01-01
Background Silicone rod is a commonly used synthetic suspension material in frontalis suspension surgery to correct blepharoptosis. The most challenging problem and a decisive drawback of the use of silicone rod is a considerable rate of ptosis recurrence after surgery. We examined patients with recurred ptosis and assessed the physical and micromorphological properties of implanted silicone rods to determine the causative mechanisms of recurred ptosis after frontalis suspension using silicone rod. Methods This is a prospective observational case series of 22 pediatric patients with recurred ptosis after frontalis suspension using silicone rods for congenital ptosis. Implanted silicone rods were observed and removed during the operation for correction of recurred ptosis. The removed silicone rods were physically and micromorphologically evaluated to determine the cause of recurrence. Results Pretarsal fixation positions migrated upward, whereas suprabrow fixation positions migrated downward during ptosis recurrence. The breaking strength of implanted silicone rods was reduced by approximately 50% during 3 years. Cracks, debris, and loss of homogenous structure with disintegration were observed on scanning electron micrographs of implanted silicone rods in patients with recurred ptosis. Preoperative severe degree of ptosis also contributed to recurred ptosis. Conclusions Recurrence of ptosis after frontalis suspension using silicone rod was associated with physical changes of implanted silicone rods, including positional migration, weakened tensile strength, and micromorphological changes in combination with patients’ characteristics. PMID:28207846
Capitena, Cara E; Gamett, Kevin; Pantcheva, Mina B
2016-10-01
To report a case of delayed presentation of a severed acrylic single-piece intraocular lens (IOL) haptic fragment causing corneal edema after uneventful phacoemulsification surgery. An 85-year-old male presented with inferior corneal decompensation six months after a reportedly uneventful phacoemulsification in his left eye. A distal haptic fragment of an acrylic single-piece posterior chamber intraocular lens was found in the inferior anterior chamber angle. Intraoperative examination revealed that the dislocated fragment originated from the temporal haptic, the remainder of which was adherent to the anterior surface of the capsular bag. The clipped edge of the haptic fragment showed a clean, flat surface, suggesting it was severed by a sharp object. The findings were considered consistent with cutting of the fragment during implantation presumably from improper lens loading, improper implantation technique, or defective implantation devices. This is the first case report of a foldable acrylic intraocular lens severed during routine uncomplicated cataract surgery that was not noted at the time of the surgery or in the immediate postoperative period. Delayed presentation of severed IOL fragments should be considered in cases of late onset corneal edema post-operatively, when other causes have been ruled out. Careful implantation technique and thorough examination of the intraocular lens after implantation to assess for lens damage intraoperatively is essential to avoid such rare complications.
Surface modification of biodegradable magnesium and its alloys for biomedical applications
Tian, Peng; Liu, Xuanyong
2015-01-01
Magnesium and its alloys are being paid much attention recently as temporary implants, such as orthopedic implants and cardiovascular stents. However, the rapid degradation of them in physiological environment is a major obstacle preventing their wide applications to date, which will result in rapid mechanical integrity loss or even collapse of magnesium-based implants before injured tissues heal. Moreover, rapid degradation of the magnesium-based implants will also cause some adverse effects to their surrounding environment, such as local gas cavity around the implant, local alkalization and magnesium ion enrichment, which will reduce the integration between implant and tissue. So, in order to obtain better performance of magnesium-based implants in clinical trials, special alloy designs and surface modifications are prerequisite. Actually, when a magnesium-based implant is inserted in vivo, corrosion firstly happens at the implant-tissue interface and the biological response to implant is also determined by the interaction at this interface. So the surface properties, such as corrosion resistance, hemocompatibility and cytocompatibility of the implant, are critical for their in vivo performance. Compared with alloy designs, surface modification is less costly, flexible to construct multi-functional surface and can prevent addition of toxic alloying elements. In this review, we would like to summarize the current investigations of surface modifications of magnesium and its alloys for biomedical application. The advantages/disadvantages of different surface modification methods are also discussed as a suggestion for their utilization. PMID:26816637
[Implant with a mobile or a fixed bearing in unicompartmental knee joint replacemen].
Matziolis, G; Tohtz, S; Gengenbach, B; Perka, C
2007-12-01
Although the goal of anatomical and functional joint reconstruction in unicompartmental knee replacement is well defined, no uniform implant design has become established. In particular, the differential indications for implantation of an implant with a mobile or a fixed bearing are still not clear. The long-term results of mobile and with fixed bearings are comparable, but there are significant differences in resulting knee joint kinematics, tribological properties and implant-associated complications. In unicompartmental knee replacement mobile bearings restore the physiological joint kinematics better than fixed implants, although the differences to total knee arthroplasty seem minor. The decoupling of mobile bearings from the tibia implant allows a high level of congruence with the femoral implant, resulting in larger contact areas than with fixed bearings. This fact in combination with the more physiological joint kinematics leads to less wear and a lower incidence of osteolyses with mobile bearings. Disadvantages of mobile bearings are the higher complication and early revision rates resulting from bearing dislocation and impingement syndromes caused by suboptimal implantation technique or instability. Especially in cases with ligamentous pathology fixed bearings involve a lower complication rate. It seems their use can also be beneficial in patients with a low level of activity, as problems related to wear are of minor importance for this subgroup. The data currently available allow differentiations between various indications for implants with mobile or fixed bearings, so that the implants can be matched to the patient and the joint pathology in unicompartmental knee joint replacement.
Compositional, structural, and optical changes of polyimide implanted by 1.0 MeV Ni+ ions
NASA Astrophysics Data System (ADS)
Mikšová, R.; Macková, A.; Pupikova, H.; Malinský, P.; Slepička, P.; Švorčík, V.
2017-09-01
The ion irradiation leads to deep structural and compositional changes in the irradiated polymers. Ni+ ions implanted polymers were investigated from the structural and compositional changes point of view and their optical properties were investigated. Polyimide (PI) foils were implanted with 1.0 MeV Ni+ ions at room temperature with fluencies of 1.0 × 1013-1.0 × 1015 cm-2 and two different ion implantation currents densities (3.5 and 7.2 nA/cm2). Rutherford Back-Scattering (RBS) and Elastic Recoil Detection Analysis (ERDA) were used for determination of oxygen and hydrogen escape in implanted PI. Atomic Force Microscopy (AFM) was used to follow surface roughness modification after the ion implantation and UV-Vis spectroscopy was employed to check the optical properties of the implanted PI. The implanted PI structural changes were analysed using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). High energy Ni-ion implantation causes only a minor release of hydrogen and oxygen close to the polymer sub-surface region in about 60 nm thick layer penetrated by the ion beam; especially at ion fluencies below 1.0 × 1014 cm-2. The mostly pronounced structural changes of the Ni implanted PI were found for the samples implanted above ion fluence 1.0 × 1015 cm-2 and at the ion current density 7.2 nA/cm2, where the optical band gap significantly decreases and the reduction of more complex structural unit of PI monomer was observed.
Experience of Thai women in Bangkok with Norplant-2 implants.
Chompootaweep, S; Kochagarn, E; Tang-Usaha, J; Theppitaksak, B; Dusitsin, N
1998-10-01
A prospective study of the Norplant-2 contraceptive subdermal implant system was conducted in Bangkok, Thailand. The objective of the study was to evaluate the efficacy, adverse effects, and overall acceptability of Norplant-2 implants. A total of 140 women were enrolled in a 3-year clinical trial. The mean age was 29 years. Of all the acceptors, 70% had completed primary school. The continuation rates at years 1, 2, and 3 were, respectively, 94%, 89%, and 83%. No accidental pregnancies occurred throughout the 3 years of use in this study. Personal reasons were the leading cause for termination of Norplant-2 implant use. The 3-year cumulative termination rate for personal reasons was 7.2%. These personal reasons were divorce, husband having vasectomy, and moving away from the study area. The other leading cause for termination was medical reasons; acne, headache, and pain at the implant site were the complaints. The termination rate for medical reasons in year 3 of the study was 4.6%. Prolonged menstrual flow was the other main reason for termination. The 3-year cumulative termination rate for menstrual irregularities was 3.8%. In this study, the cumulative termination for planned pregnancy at the end of the year 3 was only 1.6%. The incidence of difficult removals was 8%. Breakage of the rods on removal was encountered in the majority of these cases. The study findings presented suggest that the Norplant-2 implants are highly effective with high continuation rates. The Norplant-2 system could become another choice of long acting reversible contraception for Thai women.
Histatin 1 Enhances Cell Adhesion to Titanium in an Implant Integration Model.
van Dijk, I A; Beker, A F; Jellema, W; Nazmi, K; Wu, G; Wismeijer, D; Krawczyk, P M; Bolscher, J G M; Veerman, E C I; Stap, J
2017-04-01
Cellular adhesion is essential for successful integration of dental implants. Rapid soft tissue integration is important to create a seal around the implant and prevent infections, which commonly cause implant failure and can result in bone loss. In addition, soft tissue management is important to obtain good dental aesthetics. We previously demonstrated that the salivary peptide histatin 1 (Hst1) causes a more than 2-fold increase in the ability of human adherent cells to attach and spread on a glass surface. Cells treated with Hst1 attached more rapidly and firmly to the substrate and to each other. In the current study, we examine the potential application of Hst1 for promotion of dental implant integration. Our results show that Hst1 enhances the attachment and spreading of soft tissue cell types (oral epithelial cells and fibroblasts) to titanium (Ti) and hydroxyapatite (HAP), biomaterials that have found wide applications as implant material in dentistry and orthopedics. For improved visualization of cell adhesion to Ti, we developed a novel technique that uses sputtering to deposit a thin, transparent layer of Ti onto glass slides. This approach allows detailed, high-resolution analysis of cell adherence to Ti in real time. Furthermore, our results suggest that Hst1 has no negative effects on cell survival. Given its natural occurrence in the oral cavity, Hst1 could be an attractive agent for clinical application. Importantly, even though Hst1 is specific for saliva of humans and higher primates, it stimulated the attachment and spreading of canine cells, paving the way for preclinical studies in canine models.
Cochlear implant performance in children deafened by congenital cytomegalovirus-A systematic review.
Kraaijenga, V J C; Van Houwelingen, F; Van der Horst, S F; Visscher, J; Huisman, J M L; Hollman, E J; Stegeman, I; Smit, A L
2018-05-16
Congenital cytomegalovirus (cCMV) infection is a major cause of sensorineural hearing loss in children. The objective of this systematic review was to compare performance in paediatric cochlear implant users with SNHL caused by cCMV compared to non-cCMV implantees. Systematic review SEARCH STRATEGY: PubMed, EMBASE and the Cochrane databases were searched from inception up to 15 May 2017 for children, cochlear implant, performance and their synonyms. Titles, abstracts and full texts were screened for eligibility. Directness of evidence and risk of bias were assessed. From the included studies, study characteristics and outcome data (speech perception, speech production, receptive language and auditory performance of cCMV groups and non-cCMV groups) were extracted. A total of 5280 unique articles were screened of which 28 were eligible for critical appraisal. After critical appraisal, 12 studies remained for data extraction. Seven of 12 studies showed worse performance after cochlear implantation in cCMV children compared to non-cCMV children. Worse performance in cCMV children was attributed to cCMV-related comorbidities in six of these studies. Available data on asymptomatic cCMV children compared to non-cCMV children did not reveal an unfavourable effect on cochlear implant performance. The available evidence reveals that cCMV children often have worse cochlear implant performance compared to non-cCMV children, which can be attributed to cCMV related comorbidities. We urge physicians to take into account the cCMV related comorbidities in the counselling of paediatric CI users deafened by cCMV. © 2018 The Authors. Clinical Otolaryngology Published by John Wiley & Sons Ltd.
Computational wear assessment of hard on hard hip implants subject to physically demanding tasks.
Nithyaprakash, R; Shankar, S; Uddin, M S
2018-05-01
Hip implants subject to gait loading due to occupational activities are potentially prone to failures such as osteolysis and aseptic loosening, causing painful revision surgeries. Highly risky gait activities such as carrying a load, stairs up or down and ladder up or down may cause excessive loading at the hip joint, resulting in generation of wear and related debris. Estimation of wear under the above gait activities is thus crucial to design and develop a new and improved implant component. With this motivation, this paper presents an assessment of wear generation of PCD-on-PCD (poly crystalline diamond) hip implants using finite element (FE) analysis. Three-dimensional (3D) FE model of hip implant along with peak gait and peak flexion angle for each activity was used to estimate wear of PCD for 10 million cycles. The maximum and minimum initial contact pressures of 206.19 MPa and 151.89 MPa were obtained for carrying load of 40 kg and sitting down or getting up activity. The simulation results obtained from finite element model also revealed that the maximum linear wear of 0.585 μm occurred for the patients frequently involved in sitting down or getting up gait activity and maximum volumetric wear of 0.025 mm 3 for ladder up gait activity. The stair down activity showed the least linear and volumetric wear of 0.158 μm and 0.008 mm 3 , respectively, at the end of 10 million cycles. Graphical abstract Computational wear assessment of hip implants subjected to physically demanding tasks.
Baj, A; Beltramini, G A; Bolzoni, A; Cura, F; Palmieri, A; Scarano, A; Ottria, L; Giannì, A B
2017-01-01
Bacterial leakage at the implant-abutment connection of a two-piece implant system is considered the main cause of peri-implantitis. Prevention of bacterial leakage at the implant-abutment connection is mandatory for reducing inflammation process around implant neck and achieving bone stability. Micro-cavities at implant-abutment connection level can favour bacterial leakage, even in modern two-piece implant systems. The conical connection with an internal octagon (CCIO) is considered to be more stable mechanically and allows a more tight link between implant and abutment. As P. gingivalis and T. forsythia penetration might have clinical relevance, it was the purpose of this investigation to evaluate molecular leakage of these two bacteria in a new two-implant system with an internal conical implant-abutment connection with internal octagon (Shiner XT, FMD Falappa Medical Devices S.p.A. Rome, Italy). To verify the ability of the implant in protecting the internal space from the external environment, the passage of genetically modified Escherichia c oli across implant-abutment interface was evaluated. Four Shiner XT implants (FMD, Falappa Medical Devices®, Rome, Italy) were immerged in a bacterial culture for 24 h and bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 6% for P. gingivalis and 5% for T. forsythia. Other comparable studies about the tightness of the tested implant system reported similar results. The gap size at the implant-abutment connection of CCIOs was measured by other authors discovering a gap size of 1–2μm of the AstraTech system and of 4μm for the Ankylos system. Bacterial leakage along implant-abutment connection of cylindrical and tapered implants, Shiner XT, (FMD Falappa Medical Devices S.p.A. Rome, Italy) showed better results compared to other implants. Additional studies are needed to explore the relationship in terms of microbiota of the CCIO. In addition, the dynamics of internal colonization needs to be thoroughly documented in longitudinal in vivo studies.
The long term effect of an iris-supported lens on the endothelium.
Galin, M A; Dotson, R S; Obstbaum, S A; Tuberville, A W
1982-01-01
A retrospective study of 104 eyes that had iris-supported Sputnik intraocular lenses implanted and no surgery in the fellow eye and a separate series of 30 implanted eyes whose second eyes underwent surgery but did not receive implants disclosed that endothelial cell densities in the eyes with implants decreased immediately after surgery and then continued to decrease at the same rate as those of the control eyes. There was no sudden decrease in the endothelial cell counts during follow-up periods ranging from three to seven years. The main cause of large cell losses immediately after surgery, and possibly long-term corneal decompensation, was surgical manipulation rather than the presence of this style of intraocular lens.
Depth resolved investigations of boron implanted silicon
NASA Astrophysics Data System (ADS)
Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.
2003-01-01
We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.
Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation
NASA Astrophysics Data System (ADS)
Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke
2018-06-01
We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.
NASA Astrophysics Data System (ADS)
Horvath, J.; Moffatt, S.
1991-04-01
Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Changdong; Department of Radiation Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012; Lu, Fei, E-mail: lufei@sdu.edu.cn
We investigated lattice modification and its physical mechanism in H and He co-implanted, z-cut potassium titanyl phosphate (KTiOPO{sub 4}). The samples were implanted with 110 keV H and 190 keV He, both to a fluence of 4 × 10{sup 16 }cm{sup −2}, at room temperature. Rutherford backscattering/channeling, high-resolution x-ray diffraction, and transmission electron microscopy were used to examine the implantation-induced structural changes and strain. Experimental and simulated x-ray diffraction results show that the strain in the implanted KTiOPO{sub 4} crystal is caused by interstitial atoms. The strain and stress are anisotropic and depend on the crystal's orientation. Transmission electron microscopy studies indicate that ion implantationmore » produces many dislocations in the as-implanted samples. Annealing can induce ion aggregation to form nanobubbles, but plastic deformation and ion out-diffusion prevent the KTiOPO{sub 4} surface from blistering.« less
NASA Astrophysics Data System (ADS)
Novaković, M.; Traverse, A.; Popović, M.; Lieb, K. P.; Zhang, K.; Bibić, N.
2012-07-01
We report on modifications of 280-nm thin polycrystalline CrN layers caused by vanadium ion implantation. The CrN layers were deposited at 150°C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 80-keV V+ ions to fluences of 1×1017 and 2×1017 ions/cm2. Rutherford backscattering spectroscopy, cross-sectional transmission electron microscopy, and X-ray diffraction were used to characterize changes in the structural properties of the films. Their optical and electrical properties were analyzed by infrared spectroscopy in reflection mode and electrical resistivity measurements. CrN was found to keep its cubic structure under the conditions of vanadium ion implantation used here. The initially partially non-metallic CrN layer displays metallic character under implantation, which may be related to the possible formation of Cr1-x V x N.
RBS-channeling study of radiation damage in Ar{sup +} implanted CuInSe{sub 2} crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakushev, Michael V., E-mail: michael.yakushev@strath.ac.uk; Ural Federal University, Ekaterinburg 620002; Institute of Solid State Chemistry of the Urals Branch of RAS, Ekaterinburg 620990
2016-09-15
Chalcopyrite solar cells are reported to have a high tolerance to irradiation by high energy electrons or ions, but the origin of this is not well understood. This work studies the evolution of damage in Ar{sup +}-bombarded CuInSe{sub 2} single crystal using Rutherford backscattering/channeling analysis. Ar{sup +} ions of 30 keV were implanted with doses in the range from 10{sup 12} to 3 × 10{sup 16} cm{sup −2} at room temperature. Implantation was found to create two layers of damage: (1) on the surface, caused by preferential sputtering of Se and Cu atoms; (2) at the layer of implanted Ar, possibly consisting of stackingmore » faults and dislocation loops. The damage in the second layer was estimated to be less than 2% of the theoretical prediction suggesting efficient healing of primary implantation defects.« less
In vivo surface roughness evolution of a stressed metallic implant
NASA Astrophysics Data System (ADS)
Tan, Henry
2016-10-01
Implant-associated infection, a serious medical issue, is caused by the adhesion of bacteria to the surface of biomaterials; for this process the surface roughness is an important property. Surface nanotopography of medical implant devices can control the extent of bacterial attachment by modifying the surface morphology; to this end a model is introduced to facilitate the analysis of a nanoscale smooth surface subject to mechanical loading and in vivo corrosion. At nanometre scale rough surface promotes friction, hence reduces the mobility of the bacteria; this sessile environment expedites the biofilm growth. This manuscript derives the controlling equation for surface roughness evolution for metallic implant subject to in-plane stresses, and predicts the in vivo roughness changes within 6 h of continued mechanical loading at different stress level. This paper provides analytic tool and theoretical information for surface nanotopography of medical implant devices.
Danielski, Alan; Farrell, Michael
2018-06-20
An 8-month-old American Bulldog was presented for assessment of bilateral thoracic limb lameness. Computed tomographic imaging revealed large, deep osteochondritis dissecans lesions in both humeral heads. The osteochondritis dissecans lesions were debrided and the exposed subchondral defects were prepared to receive synthetic grafts. Circular implants consisting of a surface layer of polycarbonate urethane and a deep layer of lattice-type titanium were implanted into the osteochondral defects to reconstruct the articular surface topography. Follow-up clinical examination 1.5, 3 and 9months postoperatively revealed a lack of signs of shoulder pain and resolution of thoracic limb lameness. Nine-month follow-up radiographs showed radiographic evidence of osteointegration of both implants. Synthetic osteochondral implantation in the caudocentral aspect of the humeral head appeared technically feasible and effective in resolving lameness caused by humeral head osteochondritis dissecans. Schattauer GmbH Stuttgart.
Al-Ghamdi, Bandar; Widaa, Hassan El; Shahid, Maie Al; Aladmawi, Mohammed; Alotaibi, Jawaher; Sanei, Aly Al; Halim, Magid
2016-08-24
Infection of cardiac implantable electronic devices is a serious cardiovascular disease and it is associated with a high mortality. Mycobacterium species may rarely cause cardiac implantable electronic devices infection. We are reporting a case of miliary tuberculosis in an Arab patient with dilated cardiomyopathy and a cardiac resynchronization therapy-defibrillator device that was complicated with infection of his cardiac resynchronization therapy-defibrillator device. To our knowledge, this is the third case in the literature with such a presentation and all patients died during the course of treatment. This underscores the importance of early diagnosis and management. We also performed a literature review of reported cases of cardiac implantable electronic devices infection related to Mycobacterium species. Cardiac implantable electronic devices infection due to Mycobacterium species is an uncommon but a well-known entity. Early diagnosis and prompt management may result in a better outcome.
Peñarrocha-Oltra, David; Alonso-González, Rocio; Pellicer-Chover, Hilario; Aloy-Prósper, Amparo; Peñarrocha-Diago, María
2015-02-01
The aim of this study was to assess the use of buccal fat pad (BFP) technique as an option to close oroantral communications (OAC) after removing failed zygomatic implants in a patient with a severely resorbed maxilla, and to determine the degree of patient satisfaction. A 64-year-old woman presented recurrent sinusitis and permanent oroantral communication caused by bilateral failed zygomatic implants, 3 years after prosthetic loading. Zygomatic implants were removed previous antibiotic treatment and the BFP flap technique was used to treat the OAC and maxillary defect. The degree of patient satisfaction after treatment was assessed through a visual analogue scale (VAS). At 6-months follow-up, patient showed complete healing and good function and the results in terms of phonetics, aesthetics and chewing were highly rated by the patient. Key words:Bichat fat pad, buccal fat pad, zygomatic implants, oroantral communication.
Busch, Martin HJ; Vollmann, Wolfgang; Schnorr, Jörg; Grönemeyer, Dietrich HW
2005-01-01
Background Active Magnetic Resonance Imaging implants are constructed as resonators tuned to the Larmor frequency of a magnetic resonance system with a specific field strength. The resonating circuit may be embedded into or added to the normal metallic implant structure. The resonators build inductively coupled wireless transmit and receive coils and can amplify the signal, normally decreased by eddy currents, inside metallic structures without affecting the rest of the spin ensemble. During magnetic resonance imaging the resonators generate heat, which is additional to the usual one described by the specific absorption rate. This induces temperature increases of the tissue around the circuit paths and inside the lumen of an active implant and may negatively influence patient safety. Methods This investigation provides an overview of the supplementary power absorbed by active implants with a cylindrical geometry, corresponding to vessel implants such as stents, stent grafts or vena cava filters. The knowledge of the overall absorbed power is used in a finite volume analysis to estimate temperature maps around different implant structures inside homogeneous tissue under worst-case assumptions. The "worst-case scenario" assumes thermal heat conduction without blood perfusion inside the tissue around the implant and mostly without any cooling due to blood flow inside vessels. Results The additional power loss of a resonator is proportional to the volume and the quality factor, as well as the field strength of the MRI system and the specific absorption rate of the applied sequence. For properly working devices the finite volume analysis showed only tolerable heating during MRI investigations in most cases. Only resonators transforming a few hundred mW into heat may reach temperature increases over 5 K. This requires resonators with volumes of several ten cubic centimeters, short inductor circuit paths with only a few 10 cm and a quality factor above ten. Using MR sequences, for which the MRI system manufacturer declares the highest specific absorption rate of 4 W/kg, vascular implants with a realistic construction, size and quality factor do not show temperature increases over a critical value of 5 K. Conclusion The results show dangerous heating for the assumed "worst-case scenario" only for constructions not acceptable for vascular implants. Realistic devices are safe with respect to temperature increases. However, this investigation discusses only properly working devices. Ruptures or partial ruptures of the wires carrying the electric current of the resonance circuits or other defects can set up a power source inside an extremely small volume. The temperature maps around such possible "hot spots" should be analyzed in an additional investigation. PMID:15819973
Hormonal crosstalk with calcium channel blocker during implantation.
Banerjee, Aryamitra; Padh, Harish; Nivsarkar, Manish
2011-08-01
The site specific action of the calcium channel blocker diltiazem in blocking prostaglandin synthesis and hence causing blastocyst implantation failure has been previously described. Based on this understanding it was important to learn if this pathway was under the control of the fine balance in estradiol-progesterone (E2-P4) milieu, considered to be of the utmost significance for effective implantation. In the current study the circulating E2-P4 levels were monitored on the first 6 d of pregnancy at various time points using sensitive chemiluminescence based assays. Next, diltiazem was administered intra-luminally into the uterus at 10-20 h prior to implantation as this time has been previously implicated to be when the best anti-implantation activity of diltiazem can be observed. Following this, the E2-P4 in peripheral circulation was again monitored. On d 6 (post implantation) the implantation sites were observed in the uterus of both diltiazem treated and untreated groups using Chicago blue dye and correlated to the hormonal activity. The levels of both estradiol and progesterone were very similar in both untreated and diltiazem treated groups during and post implantation. However complete implantation failure was noted in the diltiazem treated group whereas prominent implantation sites were observed in the untreated animals. Thus, the previously reported inhibition of blastocyst implantation cascade by calcium channel blockers during the 'implantation window' seems to be an independent mechanism interfering with uterine receptivity without any direct estrogen-progesterone control and further studies to understand its regulation need to be performed.
Can, Ata; Erdogan, Fahri; Erdogan, Ayse Ovul
2017-09-01
Tibiofemoral instability is a common complication after total knee arthroplasty (TKA), accounting for up to 22% of all revision procedures. Instability is the second most common cause of revision in the first 5 years after primary TKA. In this study, 13 knees with tibiofemoral instability after TKA were identified among 693 consecutive primary TKA procedures. Patient demographics, body mass index, clinical symptoms, previous deformity, previous knee surgery, complications, interval between index TKA and first tibiofemoral instability, causes of instability, and interval between index TKA and revision TKA were retrospectively reviewed. Clinical outcomes were assessed with the Lysholm Knee Scoring Scale. All patients were women, and mean body mass index was 37.7 kg/m 2 (range, 27.2-52.6 kg/m 2 ). Mean interval between index TKA and first tibiofemoral instability was 23.4 months (range, 9-45 months), and mean interval between index TKA and revision TKA was 25.6 months (range, 14-48 months). All patients had posterior cruciate ligament-retaining implants. Of the 13 knees, 11 had flexion instability and 2 had global instability. In all patients, instability was caused by incompetence of the posterior cruciate ligament; additionally, 1 patient had undersized and malpositioned implants. In 4 knees, the polyethylene insert was broken as well. All patients underwent revision TKA. Lysholm Knee Scoring Scale score had improved from a mean of 35.8 (range, 30-46) to a mean of 68.3 (range, 66-76). All patients included in this study were female and obese. The main cause of instability was secondary posterior cruciate ligament rupture and incompetence. The use of posterior-stabilized implants for primary TKA may prevent secondary instability in obese patients. [Orthopedics. 2017; 40(5):e812-e819.]. Copyright 2017, SLACK Incorporated.
Tailoring the structural and magnetic properties of masked CoPt thin films using ion implantation
NASA Astrophysics Data System (ADS)
Kumar, Durgesh; Gupta, Surbhi; Jin, Tianli; Nongjai, R.; Asokan, K.; Piramanayagam, S. N.
2018-05-01
The effects of ion implantations through a mask on the structural and magnetic properties of Co80Pt20 films were investigated. The mask was patterned using the self-assembly of diblock copolymers. For implantation, high (40 keV for 14N+ and 100 keV for 40Ar+) and low (7.5 keV for 14N+ and 4.5 keV for 40Ar+) energy 14N+ and 40Ar+ ions were used to modify the structural and magnetic properties of these films. X-ray diffraction and TRIM simulations were performed for understanding the structural changes due to ion implantations. These results revealed the intermixing of Co atoms in lower layers and lattice expansion in Co80Pt20 magnetic and Ru layers. A lateral straggling of Co caused an increase in the exchange coupling in the masked region. Depletion of Co atoms in Co80Pt20 layer caused a decrease in the anisotropy constant, which were further confirmed by the alternating gradient force magnetometer and magnetic force microscopy results. The magnetic force microscopy images showed an increase in domain width and domain wall width confirming the above-mentioned effects.
Zhang, Zehua; Dai, Fei; Cheng, Peng; Luo, Fei; Hou, Tianyong; Zhou, Qiang; Xie, Zhao; Deng, Moyuan; Xu, Jian-Zhong
2015-11-01
Aseptic loosening secondary to particle‑induced periprosthetic osteolysis is considered to be the primary cause of long‑term implant failure in orthopedic surgery. Implant‑derived wear particles activate and recruit macrophages and osteoclasts, which cause a persistent inflammatory response with bone destruction that is followed by a loosening of the implant. Thus, strategies for inhibiting macrophage and osteoclast function may provide a therapeutic benefit for preventing aseptic loosening. The aim of the present study was to determine the effects of pitavastatin on the activation and cytokine response of polymethyl methacrylate (PMMA) particle‑induced monocytes. Peripheral blood monocytes were obtained and treated with PMMA and pitavastatin. ELISA demonstrated that pitavastatin inhibited mRNA and protein expression of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α. Western blot analysis and immunofluorescence staining demonstrated that pitavastatin downregulated inhibitor of κB phosphorylation and degradation, and nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) p65 translocation. Together, these results indicate that pitavastatin may attenuate monocyte activation in response to orthopedic implant wear particles by suppression of the NF‑κB signaling pathway.
Tanaka, Ray; Hayashi, Takafumi; Ike, Makiko; Noto, Yoshiyuki; Goto, Tazuko K
2013-06-01
The aim of this study was to evaluate the usefulness of hypothetical monoenergetic images after dual-energy computed tomography (DECT) for assessment of the bone encircling dental implant bodies. Seventy-two axial images of implantation sites clipped out from image data scanned using DECT in dual-energy mode were used. Subjective assessment on reduction of dark-band-like artifacts (R-DBAs) and diagnosability of adjacent bone condition (D-ABC) in 3 sets of DECT images-a fused image set (DE120) and 2 sets of hypothetical monoenergetic images (ME100, ME190)-was performed and the results were statistically analyzed. With regards to R-DBAs and D-ABC, significant differences among DE120, ME100, and ME190 were observed. The ME100 and ME190 images revealed more artifact reduction and diagnosability than those of DE120. DECT imaging followed by hypothetical monoenergetic image construction can cause R-DBAs and increase D-ABC and may be potentially used for the evaluation of postoperative changes in the bone encircling implant bodies. Copyright © 2013 Elsevier Inc. All rights reserved.
Fisicaro, G; Pelaz, L; Lopez, P; La Magna, A
2012-09-01
Pulsed laser irradiation of damaged solids promotes ultrafast nonequilibrium kinetics, on the submicrosecond scale, leading to microscopic modifications of the material state. Reliable theoretical predictions of this evolution can be achieved only by simulating particle interactions in the presence of large and transient gradients of the thermal field. We propose a kinetic Monte Carlo (KMC) method for the simulation of damaged systems in the extremely far-from-equilibrium conditions caused by the laser irradiation. The reference systems are nonideal crystals containing point defect excesses, an order of magnitude larger than the equilibrium density, due to a preirradiation ion implantation process. The thermal and, eventual, melting problem is solved within the phase-field methodology, and the numerical solutions for the space- and time-dependent thermal field were then dynamically coupled to the KMC code. The formalism, implementation, and related tests of our computational code are discussed in detail. As an application example we analyze the evolution of the defect system caused by P ion implantation in Si under nanosecond pulsed irradiation. The simulation results suggest a significant annihilation of the implantation damage which can be well controlled by the laser fluence.
Workshop on Meteorites From Cold and Hot Deserts
NASA Technical Reports Server (NTRS)
Schultz, Ludolf (Editor); Annexstad, John O. (Editor); Zolensky, Michael E. (Editor)
1994-01-01
The current workshop was organized to address the following points: (1) definition of differences between meteorites from Antarctica, hot deserts, and modern falls; (2) discussion of the causes of these differences; (3) implications of possible different parent populations, infall rates, weathering processes, etc.; (4) collection, curation, and distribution of meteorites; and (5) planning and coordination of future meteorite searches.
Hot corrosion and high temperature corrosion behavior of a new gas turbine material -- alloy 603GT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, D.C.; Brill, U.; Klower, J.
1998-12-31
Salt deposits encountered in a variety of high temperature processes have caused premature failures in heat exchangers and superheater tubes in pulp and paper recovery boilers, waste incinerators and coal gasifiers. Molten salt corrosion studies in both land based and air craft turbines have been the subject of intense study by many researchers. This phenomenon referred to as ``hot corrosion`` has primarily been attributed to corrosion by alkali sulfates, and there is somewhat general agreement in the literature that this is caused by either basic or acidic dissolution (fluxing) of the protective metal oxide layers by complex salt deposits containingmore » both sulfates and chlorides. This paper describes experimental studies conducted on the hot corrosion behavior of a new Ni-Cr-Al alloy 603GT (UNS N06603) in comparison to some commercially established alloys used in gas turbine components.« less
The Escaping Upper Atmospheres of Hot Jupiters
NASA Astrophysics Data System (ADS)
Davidson, Eric; Jones, Gabrielle; Uribe, Ana; Carson, Joseph
2017-01-01
Hot Jupiters are massive gaseous planets which orbit closely to their parent star. The strong stellar irradiation at these small orbital separations causes the temperature of the upper atmosphere of the planet to rise. This can cause the planet's atmosphere to escape into space, creating an exoplanet outflow. We ascertained which factors determine the presence and structure of these outflows by creating one dimensional simulations of the density, pressure, velocity, optical depth, and neutral fraction of hot Jupiter atmospheres. This was done for planets of masses and radii ranging from 0.5-1.5 Mj and 0.5-1.5 Rj. We found the outflow rate to be highest for a planet of 0.5 Mj and 1.5 Rj at 5.3×10-14 Mj/Yr. We also found that the higher the escape velocity, the lower the chance of the planet having an outflow.
Cochlear implant revision surgeries in children.
Amaral, Maria Stella Arantes do; Reis, Ana Cláudia Mirândola B; Massuda, Eduardo T; Hyppolito, Miguel Angelo
2018-02-16
The surgery during which the cochlear implant internal device is implanted is not entirely free of risks and may produce problems that will require revision surgeries. To verify the indications for cochlear implantation revision surgery for the cochlear implant internal device, its effectiveness and its correlation with certain variables related to language and hearing. A retrospective study of patients under 18 years submitted to cochlear implant Surgery from 2004 to 2015 in a public hospital in Brazil. Data collected were: age at the time of implantation, gender, etiology of the hearing loss, audiological and oral language characteristics of each patient before and after Cochlear Implant surgery and any need for surgical revision and the reason for it. Two hundred and sixty-five surgeries were performed in 236 patients. Eight patients received a bilateral cochlear implant and 10 patients required revision surgery. Thirty-two surgeries were necessary for these 10 children (1 bilateral cochlear implant), of which 21 were revision surgeries. In 2 children, cochlear implant removal was necessary, without reimplantation, one with cochlear malformation due to incomplete partition type I and another due to trauma. With respect to the cause for revision surgery, of the 8 children who were successfully reimplanted, four had cochlear calcification following meningitis, one followed trauma, one exhibited a facial nerve malformation, one experienced a failure of the cochlear implant internal device and one revision surgery was necessary because the electrode was twisted. The incidence of the cochlear implant revision surgery was 4.23%. The period following the revision surgeries revealed an improvement in the subject's hearing and language performance, indicating that these surgeries are valid in most cases. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Pankaj, P; Evans, S L
2013-10-01
As many as 25% to 40% of unicompartmental knee replacement (UKR) revisions are performed for pain, a possible cause of which is proximal tibial strain. The aim of this study was to examine the effect of UKR implant design and material on cortical and cancellous proximal tibial strain in a synthetic bone model. Composite Sawbone tibiae were implanted with cemented UKR components of different designs, either all-polyethylene or metal-backed. The tibiae were subsequently loaded in 500 N increments to 2500 N, unloading between increments. Cortical surface strain was measured using a digital image correlation technique. Cancellous damage was measured using acoustic emission, an engineering technique that detects sonic waves ('hits') produced when damage occurs in material. Anteromedial cortical surface strain showed significant differences between implants at 1500 N and 2500 N in the proximal 10 mm only (p < 0.001), with relative strain shielding in metal-backed implants. Acoustic emission showed significant differences in cancellous bone damage between implants at all loads (p = 0.001). All-polyethylene implants displayed 16.6 times the total number of cumulative acoustic emission hits as controls. All-polyethylene implants also displayed more hits than controls at all loads (p < 0.001), more than metal-backed implants at loads ≥ 1500 N (p < 0.001), and greater acoustic emission activity on unloading than controls (p = 0.01), reflecting a lack of implant stiffness. All-polyethylene implants were associated with a significant increase in damage at the microscopic level compared with metal-backed implants, even at low loads. All-polyethylene implants should be used with caution in patients who are likely to impose large loads across their knee joint.
Yamanishi, Yasufumi; Yamaguchi, Satoshi; Imazato, Satoshi; Nakano, Tamaki; Yatani, Hirofumi
2014-09-01
Occlusal overloading causes peri-implant bone resorption. Previous studies examined stress distribution in alveolar bone around commercial implants using three-dimensional (3D) finite element analysis. However, the commercial implants contained some different designs. The purpose of this study is to reveal the effect of the target design on peri-implant bone stress and abutment micromovement. Six 3D implant models were created for different implant-abutment joints: 1) internal joint model (IM); 2) external joint model (EM); 3) straight abutment (SA) shape; 4) tapered abutment (TA) shapes; 5) platform switching (PS) in the IM; and 6) modified TA neck design (reverse conical neck [RN]). A static load of 100 N was applied to the basal ridge surface of the abutment at a 45-degree oblique angle to the long axis of the implant. Both stress distribution in peri-implant bone and abutment micromovement in the SA and TA models were analyzed. Compressive stress concentrated on labial cortical bone and tensile stress on the palatal side in the EM and on the labial side in the IM. There was no difference in maximum principal stress distribution for SA and TA models. Tensile stress concentration was not apparent on labial cortical bone in the PS model (versus IM). Maximum principal stress concentrated more on peri-implant bone in the RN than in the TA model. The TA model exhibited less abutment micromovement than the SA model. This study reveals the effects of the design of specific components on peri-implant bone stress and abutment displacement after implant-supported single restoration in the anterior maxilla.
Failure analysis of fractured dental zirconia implants.
Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E
2012-03-01
The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Myatt, J. F.; Shaw, J. G.; Solodov, A. A.; Maximov, A. V.; Short, R. W.; Seka, W.; Follett, R. K.; Edgell, D. H.; Froula, D. H.; Goncharov, V. N.
2015-11-01
Hot-electron preheat, caused by laser-plasma instabilities, can impair the performance of inertial confinement fusion implosions. It is therefore imperative to understand processes that can generate hot electrons and to design mitigation strategies should preheat be found to be excessive at the ignition scale (laser-plasma interactions do not follow hydrodynamic scaling). For this purpose, a new 3-D model [laser-plasma simulation environment (LPSE)] has been constructed that computes hot-electron generation in direct-drive plasmas based on the assumption that two-plasmon decay is the dominant, hot-electron-producing instability. It uses an established model of TPD-driven turbulence together with a new GPU based hybrid particle method of hot-electron production. The time-dependent hot-electron power, total energy, and energy spectrum are computed and compared with data from recent OMEGA implosion experiments that have sought to mitigate TPD by the use of multilayered (mid- Z) ablators. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Hot-spot heating in central-station arrays
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1983-01-01
Hot spot tests performed on the Sacramento Municipal Utility District (SMUD) verificaton array show that current imbalance occurs, resulting in significant hot spot heating. One cause of current imbalance is differences in the average shunt resistances of parallel cell strings due to cell shunt resistance variations. In depth hot spot tests are performed on the verification array with bypass diodes. The tests had several objectives: (1) a comparison of hot spot temperatures achieved under field conditions with those obtained with the present laboratory hot spot test using similar modules; (2) an assessment of current imbalance versus cross tie frequency; and (3) an assessment of different shadow patterns and shadow densities. Instrumented modules are used to vary the number of cross ties and to measure the test-cell current and back-bias voltage. The widths, lengths, and densities of the shadows are varied to maximize the back bias voltage at maximum power current. An infrared camera is used to indicate the existence of hot spots and estimate temperature increases in conjunction with thermocouples. The results of these hot spot tests indicate a sensitivity of back bias heating to the shadow size (amount of cell coverage) and density.
Secondary abdominal appendicular ectopic pregnancy.
Nama, Vivek; Gyampoh, Bright; Karoshi, Mahantesh; McRae, Reynold; Opemuyi, Isaac
2007-01-01
Although the case fatality rate for ectopic pregnancies has decreased to 0.08% in industrialized countries, it still represents 3.8% of maternal mortality in the United States alone. In developing countries, the case fatality rate varies from 3% to 27%. Laparoscopic management of tubal pregnancies is now the standard form of treatment where this technology is available. Abdominal pregnancies are rare, and secondary implantation of tubal ectopic pregnancies is the most common cause of abdominal gestations. We present an interesting case of secondary implantation of a tubal ectopic pregnancy to highlight the appendix as a possible secondary implantation site after a tubal ectopic pregnancy.
Acute pericarditis with cardiac tamponade induced by pacemaker implantation.
Shingaki, Masami; Kobayashi, Yutaka; Suzuki, Haruo
2015-11-01
An 87-year-old woman was diagnosed with third-degree atrioventricular block and underwent pacemaker implantation. On postoperative day 12, she experienced cardiac tamponade that was suspected on computed tomography to be caused by lead perforation; therefore, we performed open-heart surgery. However, we could not identify a perforation site on the heart, and drained a 400-mL exudative pericardial effusion. Subsequently, we diagnosed the pericardial effusion as due to pericarditis induced by pacemaker implantation. It is sometimes difficult to distinguish pericarditis from pacemaker lead perforation, so both should be included in the differential diagnosis. © The Author(s) 2014.
Fukushima, Kunihiro; Kawasaki, Akihiro; Nagayasu, Rie; Kunisue, Kazuya; Maeda, Yukihide; Kariya, Shin; Kataoka, Yuko; Nishizaki, Kazunori
2008-06-01
Learning disability combined with hearing impairment (LDHI) is a poor prognostic factor for the language development of hearing impaired children after educational intervention. A typical example of a child with LDHI and effective interventions provided by cochlear implants are presented in this report. A case of congenital cytomegaloviral infection that showed dysgraphia as well as profound deafness was reported and an underlying visual processing problem diagnosed in the present case caused the patient's dysgraphia. The dysgraphia could be circumvented by the use of auditory memory fairly established by a cochlear implant.
Electrochemical Behavior of Biomedical Titanium Alloys Coated with Diamond Carbon in Hanks' Solution
NASA Astrophysics Data System (ADS)
Gnanavel, S.; Ponnusamy, S.; Mohan, L.; Radhika, R.; Muthamizhchelvan, C.; Ramasubramanian, K.
2018-03-01
Biomedical implants in the knee and hip are frequent failures because of corrosion and stress on the joints. To solve this important problem, metal implants can be coated with diamond carbon, and this coating plays a critical role in providing an increased resistance to implants toward corrosion. In this study, we have employed diamond carbon coating over Ti-6Al-4V and Ti-13Nb-13Zr alloys using hot filament chemical vapor deposition method which is well-established coating process that significantly improves the resistance toward corrosion, wears and hardness. The diamond carbon-coated Ti-13Nb-13Zr alloy showed an increased microhardness in the range of 850 HV. Electrochemical impedance spectroscopy and polarization studies in SBF solution (simulated body fluid solution) were carried out to understand the in vitro behavior of uncoated as well as coated titanium alloys. The experimental results showed that the corrosion resistance of Ti-13Nb-13Zr alloy is relatively higher when compared with diamond carbon-coated Ti-6Al-4V alloys due to the presence of β phase in the Ti-13Nb-13Zr alloy. Electrochemical impedance results showed that the diamond carbon-coated alloys behave as an ideal capacitor in the body fluid solution. Moreover, the stability in mechanical properties during the corrosion process was maintained for diamond carbon-coated titanium alloys.
Wang, Chien-Kai; Chen, Hsiao-Chien; Fang, Sheng-Uei; Ho, Chia-Wen; Tai, Cheng-Jeng; Yang, Chih-Ping; Liu, Yu-Chuan
2018-04-20
Many human diseases are inflammation-related, such as cancer and those associated with aging. Previous studies demonstrated that plasmon-induced activated (PIA) water with electron-doping character, created from hot electron transfer via decay of excited Au nanoparticles (NPs) under resonant illumination, owns reduced hydrogen-bonded networks and physchemically antioxidative properties. In this study, it is demonstrated PIA water dramatically induced a major antioxidative Nrf2 gene in human gingival fibroblasts which further confirms its cellular antioxidative and anti-inflammatory properties. Furthermore, mice implanted with mouse Lewis lung carcinoma (LLC-1) cells drinking PIA water alone or together with cisplatin treatment showed improved survival time compared to mice which consumed only deionized (DI) water. With the combination of PIA water and cisplatin administration, the survival time of LLC-1-implanted mice markedly increased to 8.01 ± 0.77 days compared to 6.38 ± 0.61 days of mice given cisplatin and normal drinking DI water. This survival time of 8.01 ± 0.77 days compared to 4.62 ± 0.71 days of mice just given normal drinking water is statistically significant (p = 0.009). Also, the gross observations and eosin staining results suggested that LLC-1-implanted mice drinking PIA water tended to exhibit less metastasis than mice given only DI water.
Wang, Yang; Ma, Li; Sun, Yi; Yang, Liman; Yue, Hao; Liu, Shuying
2014-07-01
The hot syndrome refers to any feverish conditions during a pathological development, a sub-health phenomenon, and is a potential risk for human health. The metabonomics study on the hot syndrome may provide insight into understanding of its pathology and play a role in the prevention and treatment of its related diseases. In this paper, the rats were dosed with the hot syndrome prescription, ginseng and water. The corresponding urine samples were identified by rapid resolution liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry. More than 1,000 metabolic compounds from different urine samples could be further differentiated by principal component analysis. As a result, the rat body temperature and weight were recognized as the hot syndrome related factors. Some specific metabolites have been discovered as a pattern of the potential biomarkers for the hot syndrome. The results showed that ginseng cannot cause the hot syndrome in a reasonable dose, but the hot syndrome prescription can. It is suggested that ginseng cannot be used only as a tradition Chinese medicine but also as a nutrient. The work showed metabonomics method is a valuable tool in studying mechanism of the hot syndrome.
NASA Astrophysics Data System (ADS)
Fan, Zhengfeng; Liu, Jie
2016-10-01
We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.
Hot money and China's stock market volatility: Further evidence using the GARCH-MIDAS model
NASA Astrophysics Data System (ADS)
Wei, Yu; Yu, Qianwen; Liu, Jing; Cao, Yang
2018-02-01
This paper investigates the influence of hot money on the return and volatility of the Chinese stock market using a nonlinear Granger causality test and a new GARCH-class model based on mixed data sampling regression (GARCH-MIDAS). The empirical results suggest that no linear or nonlinear causality exists between the growth rate of hot money and the Chinese stock market return, implying that the Chinese stock market is not driven by hot money and vice versa. However, hot money has a significant positive impact on the long-term volatility of the Chinese stock market. Furthermore, the dependence between the long-term volatility caused by hot money and the total volatility of the Chinese stock market is time-variant, indicating that huge volatilities in the stock market are not always triggered by international speculation capital flow and that Chinese authorities should further focus on more systemic reforms in the trading rules and on effectively regulating the stock market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, B.; Lu, S. X.; Li, C. H.
In an atrium measured 120 m by 180 m by 36.5 m high, fire tests were conducted under 'natural filling' and 'mechanical exhaust' conditions by hot smoke test method. The fire size was 8 MW released by an ethanol pool of 3.6 m in diameter. The distribution of vertical temperature profiles above the fire source and the gas layer temperatures were measured. From these measurements, it was shown that the fans successfully exhausted hot smoke to control descending of hot smoke layer and temperature rising rate. The hot smoke layer can be maintained at about 30 m which was almostmore » 2 times of hot layer height in 'natural filling' condition. The temperature risings in both conditions were too low to cause thermal damage to the structure, only 18.6 K and 12 K. The centerline temperature above the fire source and the height of hot smoke layer were calculated using the plume models. The calculated results agreed well with the conclusions obtained from the experiment results.« less
The local structure and ferromagnetism in Fe-implanted SrTiO3 single crystals
NASA Astrophysics Data System (ADS)
Lobacheva, O.; Chavarha, M.; Yiu, Y. M.; Sham, T. K.; Goncharova, L. V.
2014-07-01
We report a connection between the local structure of low-level Fe impurities and vacancies as the cause of ferromagnetic behavior observed in strontium titanate single crystals (STO), which were implanted with Fe and Si ions at different doses then annealed in oxygen. The effects of Fe doping and post-implantation annealing of STO were studied by X-ray Absorption Near Edge Structure (XANES) spectroscopy and Superconducting Quantum Interference Device magnetometry. XANES spectra for Fe and Ti K- and L-edge reveal the changes in the local environment of Fe and Ti following the implantation and annealing steps. The annealing in oxygen atmosphere partially healed implantation damages and changed the oxidation state of the implanted iron from metallic Fe0 to Fe2+/Fe3+ oxide. The STO single crystals were weak ferromagnets prior to implantation. The maximum saturation moment was obtained after our highest implantation dose of 2 × 1016 Fe atom/cm2, which could be correlated with the metallic Fe0 phases in addition to the presence of O/Ti vacancies. After recrystallization annealing, the ferromagnetic response disappears. Iron oxide phases with Fe2+ and Fe3+ corresponding to this regime were identified and confirmed by calculations using Real Space Multiple Scattering program (FEFF9).
Maternal heparin-binding-EGF deficiency limits pregnancy success in mice.
Xie, Huirong; Wang, Haibin; Tranguch, Susanne; Iwamoto, Ryo; Mekada, Eisuke; Demayo, Francesco J; Lydon, John P; Das, Sanjoy K; Dey, Sudhansu K
2007-11-13
An intimate discourse between the blastocyst and uterus is essential for successful implantation. However, the molecular basis of this interaction is not clearly understood. Exploiting genomic Hbegf mutant mice, we show here that maternal deficiency of heparin-binding EGF-like growth factor (HB-EGF) defers on-time implantation, leading to compromised pregnancy outcome. We also demonstrate that amphiregulin, but not epiregulin, partially compensates for the loss of HB-EGF during implantation. In search of the mechanism of this compensation, we found that reduced preimplantation estrogen secretion from ovarian HB-EGF deficiency is a cause of sustained expression of uterine amphiregulin before the initiation of implantation. To explore the significance specifically of uterine HB-EGF in implantation, we examined this event in mice with conditional deletion of uterine HB-EGF and found that this specific loss of HB-EGF in the uterus still defers on-time implantation without altering preimplantation ovarian estrogen secretion. The observation of normal induction of uterine amphiregulin surrounding the blastocyst at the time of attachment in these conditional mutant mice suggests a compensatory role of amphiregulin for uterine loss of HB-EGF, preventing complete failure of pregnancy. Our study provides genetic evidence that HB-EGF is critical for normal implantation. This finding has high clinical relevance, because HB-EGF signaling is known to be important for human implantation.
Tomaszewski, P. K.; Verdonschot, N.; Bulstra, S. K.
2010-01-01
An alternative solution to conventional stump–socket prosthetic limb attachment is offered by direct skeletal fixation. This study aimed to assess two percutaneous trans-femoral implants, the OPRA system (Integrum AB, Göteborg, Sweden), and the ISP Endo/Exo prosthesis (ESKA Implants AG, Lübeck, Germany) on bone failure and stem–bone interface mechanics both early post-operative (before bony ingrowth) and after full bone ingrowth. Moreover, mechanical consequences of implantation of those implants in terms of changed loading pattern within the bone and potential consequences on long-term bone remodeling were studied using finite-element models that represent the intact femur and implants fitted in amputated femora. Two experimentally measured loads from the normal walking cycle were applied. The analyses revealed that implantation of percutaneous prostheses had considerable effects on stress and strain energy density levels in bone. This was not only caused by the implant itself, but also by changed loading conditions in the amputated leg. The ISP design promoted slightly more physiological strain energy distribution (favoring long-term bone maintenance), but the OPRA design generated lower bone stresses (reducing bone fracture risk). The safety factor against mechanical failure of the two percutaneous designs was relatively low, which could be improved by design optimization of the implants. PMID:20309731
Janssen, D; Zwartelé, R E; Doets, H C; Verdonschot, N
2010-01-01
Patients suffering from rheumatoid arthritis typically have a poor subchondral bone quality, endangering implant fixation. Using finite element analysis (FEA) an investigation was made to find whether a press-fit acetabular implant with a polar clearance would reduce interfacial micromotions and improve fixation compared with a standard hemispherical design. In addition, the effects of interference fit, friction, and implant material were analysed. Cups were introduced into an FEA model of a human pelvis with simulated subchondral bone plasticity. The models were loaded with a loading configuration simulating two cycles of normal walking, during which contact stresses and interfacial micromotions were monitored. Subsequently, a lever-out simulation was performed to assess the fixation strength of the various cases. A flattened cup with good bone quality produced the lowest interfacial micromotions. Poor bone decreased the fixation strength regardless of the geometry of the cup. Increasing the interference fit of the flattened cup compensated for the loss of fixation strength caused by poor bone quality. In conclusion, a flattened cup did not significantly improve implant fixation over a hemispherical cup in the case of poor bone quality. However, implant fixation can be optimized by increasing interference fit and avoiding inferior frictional properties and low-stiffness implants.
Bramanti, Ennio; Norcia, Antonio; Cicciù, Marco; Matacena, Giada; Cervino, Gabriele; Troiano, Giuseppe; Zhurakivska, Khrystyna; Laino, Luigi
2018-06-01
The aim of this randomized controlled trial was to evaluate the survival rate, the marginal bone level, and the aesthetic outcome; at 3 years' follow-up, of dental implants placed into a high-esthetic aesthetic zone by comparing 2 techniques of postextraction implant with immediate loading: the socket shied technique and the conventional insertion technique.Several clinical studies suggested that the avulsion of a dental element causes dimensional alterations of both soft and hard tissues at the postextractive site. To increase the aesthetic outcomes, the "socket-shield technique" has been proposed. This method involves maintaining the vestibular root portion and immediate insertion of the dental implant in close proximity to the root.Patients enrolled in this study were randomized to receive a postextraction implant in the aesthetic zone, either with the socket shied technique or with the conventional insertion technique. Implant survival, marginal bone level, and the pink aesthetic score were the outcomes evaluated.Implant survival rate was 100% in both the groups at 3 years. Implants inserted with the socket shield technique showed better values of both marginal bone level and pink aesthetic score (P < 0.05).Although such preliminary results need to be further confirmed, the socket shield technique seems to be a safe surgical technique that allows an implant rehabilitation characterized by better aesthetic outcomes.
NASA Astrophysics Data System (ADS)
Monsees, Thomas
2016-08-01
With regard to biocompatibility, the cardinal requirement for dental implants and other medical devices that are in long-term contact with tissue is that the material does not cause any adverse effect to the patient. To warrant stability and function of the implant, proper osseointegration is a further prerequisite. Cells interact with the implant surface as the interface between bulk material and biological tissue. Whereas structuring, deposition of a thin film or other modifications of the surface are crucial parameters in determining favorable adhesion of cells, corrosion of metal surfaces and release of ions can affect cell viability. Both parameters are usually tested using in vitro cytotoxicity and adhesion assays with bone or fibroblasts cells. For bioactive surface modifications, further tests should be considered for biocompatibility evaluation. Depending on the type of modification, this may include analysis of specific cell functions or the determination of antimicrobial activities. The latter is of special importance as bacteria and yeast present in the oral cavity can be introduced during the implantation process and this may lead to chronic infections and implant failure. An antimicrobial coating of the implant is a way to avoid that. This review describes the essential biocompatibility assays for evaluation of new implant materials required by ISO 10993 and also gives an overview on recent test methods for specific coatings of dental implants.
GHAEM, Haleh; GHORBANI, Mohammad; ZARE DORNIANI, Samira
2017-01-01
Background: Permanent artificial pacemaker is one of the important therapies for treatment of cardiac conduction system problems. The present study aimed to determine the association between some predictive variables and all-cause and cause-specific mortality in the patients who had undergone pacemaker implantation. Methods: This study was conducted on 1207 patients who had undergone permanent pacemaker implantation in the hospitals affiliated with Shiraz University of Medical Sciences, Iran, from Mar 2002 to Mar 2012. The variables that existed in the patients’ medical records included sex, diabetes mellitus, obesity, cerebrovascular accident, cardiomegaly, smoking, hypertension, ischemic heart disease, congenital heart disease, sick sinus syndrome, and atrial fibrillation. Competing risks model was used to assess the association between the predictive variables and cause-specific (i.e., cardiac and vascular) mortality. Results: The patients’ mean age was 66.32±17.92 yr (70.62±14.45 yr in the patients with single-chamber pacemakers vs. 61.91±17.69 yr in those with two-chamber pacemakers) (P<0.001). Sick sinus syndrome and age increased the risk of all-cause mortality, while two-chamber pacemaker decreased this risk. Obesity increased the risk of cardiac death, and diabetes mellitus and heart valve disease increased the risk of vascular death. Conclusion: The variables predicting mortality in all-cause model were completely different from those in cause-specific model. Moreover, death in such patients may occur due to reasons other than pacemaker. Therefore, future studies, particularly prospective ones, are recommended to use competing risks models. PMID:28828325
Metallic artifact in MRI after removal of orthopedic implants.
Bagheri, Mohammad Hadi; Hosseini, Mehrdad Mohammad; Emami, Mohammad Jafar; Foroughi, Amin Aiboulhassani
2012-03-01
The aim of the present study was to evaluate the metallic artifacts in MRI of the orthopedic patients after removal of metallic implants. From March to August 2009, 40 orthopedic patients operated for removal of orthopedic metallic implants were studied by post-operative MRI from the site of removal of implants. A grading scale of 0-3 was assigned for artifact in MR images whereby 0 was considered no artifact; and I-III were considered mild, moderate, and severe metallic artifacts, respectively. These grading records were correlated with other variables including the type, size, number, and composition of metallic devices; and the site and duration of orthopedic devices stay in the body. Metallic susceptibly artifacts were detected in MRI of 18 of 40 cases (45%). Screws and pins in removed hardware were the most important factors for causing artifacts in MRI. The artifacts were found more frequently in the patients who had more screws and pins in the removed implants. Gender, age, site of implantation of the device, length of the hardware, composition of the metallic implants (stainless steel versus titanium), and duration of implantation of the hardware exerted no effect in producing metallic artifacts after removal of implants. Short TE sequences of MRI (such as T1 weighted) showed fewer artifacts. Susceptibility of metallic artifacts is a frequent phenomenon in MRI of patients upon removal of metallic orthopedic implants. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Ya, Huiyuan; Chen, Qiufang; Wang, Weidong; Chen, Wanguang; Qin, Guangyong; Jiao, Zhen
2012-01-01
The stimulation effect that some beneficial agronomic qualities have exhibited in present-generation plants have also been observed due to ion implantation on plants. However, there is relatively little knowledge regarding the molecular mechanism of the stimulation effects of ion-beam implantation. In order to extend our current knowledge about the functional genes related to this stimulation effect, we have reported a comprehensive microarray analysis of the transcriptome features of the promoted-growth rice seedlings germinating from seeds implanted by a low-energy N+ beam. The results showed that 351 up-regulated transcripts and 470 down-regulated transcripts, including signaling proteins, kinases, plant hormones, transposable elements, transcription factors, non-coding protein RNA (including miRNA), secondary metabolites, resistance proteins, peroxidase and chromatin modification, are all involved in the stimulating effects of ion-beam implantation. The divergences of the functional catalog between the vacuum and ion implantation suggest that ion implantation is the principle cause of the ion-beam implantation biological effects, and revealed the complex molecular networks required to adapt to ion-beam implantation stress in plants, including enhanced transposition of transposable elements, promoted ABA biosynthesis and changes in chromatin modification. Our data will extend the current understanding of the molecular mechanisms and gene regulation of stimulation effects. Further research on the candidates reported in this study should provide new insights into the molecular mechanisms of biological effects induced by ion-beam implantation. PMID:22843621
Impaired receptivity and decidualization in DHEA-induced PCOS mice.
Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming
2016-12-07
Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study.
Impaired receptivity and decidualization in DHEA-induced PCOS mice
Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming
2016-01-01
Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study. PMID:27924832
PALUDETTI, G.; CONTI, G.; DI NARDO, W.; DE CORSO, E.; ROLESI, R.; PICCIOTTI, P.M.; FETONI, A.R.
2012-01-01
SUMMARY Hearing loss is one of the most common disabilities and has lifelong consequences for affected children and their families. Both conductive and sensorineural hearing loss (SNHL) may be caused by a wide variety of congenital and acquired factors. Its early detection, together with appropriate intervention, is critical to speech, language and cognitive development in hearing-impaired children. In the last two decades, the application of universal neonatal hearing screening has improved identification of hearing loss early in life and facilitates early intervention. Developments in molecular medicine, genetics and neuroscience have improved the aetiological classification of hearing loss. Once deafness is established, a systematic approach to determining the cause is best undertaken within a dedicated multidisciplinary setting. This review addresses the innovative evidences on aetiology and management of deafness in children, including universal neonatal screening, advances in genetic diagnosis and the contribution of neuroimaging. Finally, therapy remains a major challenge in management of paediatric SNHL. Current approaches are represented by hearing aids and cochlear implants. However, recent advances in basic medicine which are identifying the mechanisms of cochlear damage and defective genes causing deafness, may represent the basis for novel therapeutic targets including implantable devices, auditory brainstem implants and cell therapy. PMID:23349554
XEN Gel Implant: a new surgical approach in glaucoma.
Chaudhary, Ankita; Salinas, Lauriane; Guidotti, Jacopo; Mermoud, André; Mansouri, Kaweh
2018-01-01
Glaucoma is a leading cause of blindness worldwide. Intraocular pressure (IOP) lowering is the only effective treatment strategy. Traditional glaucoma surgeries are generally considered to be unpredictable and associated with a high rate of complications. This has led to the development of a novel XEN Gel Implant, a type of minimally invasive glaucoma surgery (MIGS), lowering the IOP without extensive surgical dissection. Areas covered: A literature search was undertaken on PubMed using the terms XEN glaucoma, gelatin microstent, and MIGS. All the articles and case reports on XEN Gel Implant and selected articles on MIGS were studied and reviewed. We have discussed the results of most studies on XEN Gel Implant related to its efficacy, safety and success. Expert commentary: The XEN Gel Implant effectively lowers IOP and medication use, with a favorable safety profile. Long-term data on its success and cost-effectiveness are lacking. The studies have shown it to be without any serious adverse events and to have good safety profile encouraging future research on this novel implant. There is a need to correctly identify selection criteria for patients, who would benefit the most from the XEN Gel Implant.
Using optical coherence tomography to evaluate glaucoma implant healing response in rabbit eyes
NASA Astrophysics Data System (ADS)
Gossage, Kirk W.; Tkaczyk, Tomasz S.; Barton, Jennifer K.
2002-06-01
Glaucoma is a set of diseases that cause optic nerve damage and visual field loss. The most important risk factor for the development of glaucoma is elevated intraocular pressure. One approach used to alleviate the pressure increase is to surgically install glaucoma implants. Two standard Ahmed and ten experimental ePTFE implants were evaluated in this study in rabbit eyes. The implants were imaged with optical coherence tomography (OCT) at 0, 7, 15, 30, and 90 days after implantation. Histology was collected at days 7, 15, 30, and 90 and compared to the OCT images. Preliminary analysis of images indicates that OCT can visualize the development of fibrous encapsulation of the implant, tissue erosion, fibrin accumulation in the implant tube, and tube position in the anterior chamber. A new OCT handheld probe was developed to facilitate in vivo imaging in rabbit eye studies. The OCT probe consists of a mechanical scaffold designed to allow the imaging fiber to be held in a fixed position with respect to the rabbit eye, with minimal anesthesia. A piezo electric lateral scanning device allows the imaging fiber to be scanned across the tissue so that 2D images may be acquired.
Schweiger, Josef; Neumeier, Peter; Stimmelmayr, Michael; Beuer, Florian; Edelhoff, Daniel
2013-04-01
Implant-supported prosthetic restorations with veneered crowns and fixed dental prostheses are a proven, scientifically accepted treatment concept in fixed prosthodontics. However, in this area of indication there is a comparatively high technical complication rate, which occurs mainly in the area of the superstructure in the form of minor or major chipping of the veneering material. Various studies have shown that purely implant-supported restorations are subjected to higher loading than those on natural abutment teeth due to the special biomechanical conditions. A possible approach to prevent technical complications is to create higher stability for the implant superstructure through the use of high-strength materials. This would, however, result in undiminished overloading being transmitted to the implant components and could cause increased technical and biological complications. This article describes a new procedure for the use of replaceable veneers made from high-performance polymer material on modified implant abutments. By storing digital datasets for the veneer section, it can be replaced easily and quickly if it becomes worn or is fractured. A reduction in the stresses for the implant components and biological structures under the polymer is also to be expected due the material properties of polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, S.; Nagar, S.; Chakrabarti, S., E-mail: subho@ee.iitb.ac.in
2014-08-11
ZnMgO thin films deposited on 〈100〉 Si substrates by RF sputtering were annealed at 800, 900, and 1000 °C after phosphorus plasma immersion ion implantation. X-ray diffraction spectra confirmed the presence of 〈101{sup ¯}0〉 and 〈101{sup ¯}3〉 peaks for all the samples. However, in case of the annealed samples, the 〈0002〉 peak was also observed. Scanning electron microscopy images revealed the variation in surface morphology caused by phosphorus implantation. Implanted and non-implanted samples were compared to examine the effects of phosphorus implantation on the optical properties of ZnMgO. Optical characteristics were investigated by low-temperature (15 K) photoluminescence experiments. Inelastic exciton–exciton scattering andmore » localized, and delocalized excitonic peaks appeared at 3.377, 3.42, and 3.45 eV, respectively, revealing the excitonic effect resulting from phosphorus implantation. This result is important because inelastic exciton–exciton scattering leads to nonlinear emission, which can improve the performance of many optoelectronic devices.« less
Corrosion processes of physical vapor deposition-coated metallic implants.
Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes
2009-01-01
Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.
Trisi, Paolo; Berardi, Davide; Paolantonio, Michele; Spoto, Giuseppe; D'Addona, Antonio; Perfetti, Giorgio
2013-05-01
Between implants and peri-implant bone, there should be a minimum gap, without micromotions over a threshold, which could cause resorption and fibrosis. The higher the implant insertion torque, the higher will be the initial stability. The aim was to evaluate in vitro the correlation between micromotions and insertion torque of implants in bone of different densities. The test was performed on bovine bone of hard, medium, and soft density: 150 implants were used, 10 for each torque (20, 35, 45, 70, and 100 N/cm). Samples were fixed on a loading device. On each sample, we applied a 25-N horizontal force. Insertion torque and micromotions are statistically correlated. In soft bone with an insertion force of 20 and 35 N/cm, the micromotion resulted significantly over the risk threshold, which was not found with an insertion force of 45 and 70 N/cm and in hard and medium bones with any insertion torque. The increase in insertion torque reduces the amount of micromotions between implant and bone. Therefore, the immediate loading may be considered a valid therapeutic choice, even in low-density bone, as long as at least 45 N/cm of insertion torque is reached.
A novel method for computing effective diffusivity: Application to helium implanted α-Fe thin films
NASA Astrophysics Data System (ADS)
Dunn, Aaron; Agudo-Merida, Laura; Martin-Bragado, Ignacio; McPhie, Mathieu; Cherkaoui, Mohammed; Capolungo, Laurent
2014-05-01
The effective diffusivity of helium in thin iron films is quantified using spatially resolved stochastic cluster dynamics and object kinetic Monte Carlo simulations. The roles of total displacement dose (in DPA), damage rate, helium to DPA ratio, layer thickness, and damage type (cascade damage vs Frenkel pair implantation) on effective He diffusivity are investigated. Helium diffusivity is found to decrease with increasing total damage and decreasing damage rate. Arrhenius plots show strongly increased helium diffusivity at high temperatures, high total implantation, and low implantation rates due to decreased vacancy and vacancy cluster concentrations. At low temperatures, effective diffusivity is weakly dependent on foil thickness while at high temperatures, narrower foils prevent defect accumulation by releasing all defects at the free surfaces. Helium to DPA ratio is not shown to strongly change helium diffusivity in the range of irradiation conditions simulated. Frenkel pair implantation is shown to cause higher effective diffusivity and more complex diffusion mechanisms than cascade implantation. The results of these simulations indicate that the differences in damage rates between implantation experiments and fission or fusion environments may result in differences in the final microstructure.
Durability of implanted electrodes and leads in an upper-limb neuroprosthesis.
Kilgore, Kevin L; Peckham, P Hunter; Keith, Michael W; Montague, Fred W; Hart, Ronald L; Gazdik, Martha M; Bryden, Anne M; Snyder, Scott A; Stage, Thomas G
2003-01-01
Implanted neuroprosthetic systems have been successfully used to provide upper-limb function for over 16 years. A critical aspect of these implanted systems is the safety, stability, and-reliability of the stimulating electrodes and leads. These components are (1) the stimulating electrode itself, (2) the electrode lead, and (3) the lead-to-device connector. A failure in any of these components causes the direct loss of the capability to activate a muscle consistently, usually resulting in a decrement in the function provided by the neuroprosthesis. Our results indicate that the electrode, lead, and connector system are extremely durable. We analyzed 238 electrodes that have been implanted as part of an upper-limb neuroprosthesis. Each electrode had been implanted at least 3 years, with a maximum implantation time of over 16 years. Only three electrode-lead failures and one electrode infection occurred, for a survival rate of almost 99 percent. Electrode threshold measurements indicate that the electrode response is stable over time, with no evidence of electrode migration or continual encapsulation in any of the electrodes studied. These results have an impact on the design of implantable neuroprosthetic systems. The electrode-lead component of these systems should no longer be considered a weak technological link.
Adaptation of cardiovascular system stent implants.
Ostasevicius, Vytautas; Tretsyakou-Savich, Yahor; Venslauskas, Mantas; Bertasiene, Agne; Minchenya, Vladimir; Chernoglaz, Pavel
2018-06-27
Time-consuming design and manufacturing processes are a serious disadvantage when adapting human cardiovascular implants as they cause unacceptable delays after the decision to intervene surgically has been made. An ideal cardiovascular implant should have a broad range of characteristics such as strength, viscoelasticity and blood compatibility. The present research proposes the sequence of the geometrical adaptation procedures and presents their results. The adaptation starts from the identification of a person's current health status while performing abdominal aortic aneurysm (AAA) imaging, which is a point of departure for the mathematical model of a cardiovascular implant. The computerized tomography scan shows the patient-specific geometry parameters of AAA and helps to create a model using COMSOL Multiphysics software. The initial parameters for flow simulation are taken from the results of a patient survey. The simulation results allow choosing the available shape of an implant which ensures a non-turbulent flow. These parameters are essential for the design and manufacturing of an implant prototype which should be tested experimentally for the assurance that the mathematical model is adequate to a physical one. The article gives a focused description of competences and means that are necessary to achieve the shortest possible preparation of the adapted cardiovascular implant for the surgery.
Paniccia, Alessandro; Rozner, Marc; Jones, Edward L; Townsend, Nicole T; Varosy, Paul D; Dunning, James E; Girard, Guillaume; Weyer, Christopher; Stiegmann, Gregory V; Robinson, Thomas N
2014-12-01
Surgical energy-based devices emit energy, which can interfere with other electronic devices (eg, implanted cardiac pacemakers and/or defibrillators). The purpose of this study was to quantify the amount of unintentional energy (electromagnetic interference [EMI]) transferred to an implanted cardiac defibrillator by common surgical energy-based devices. A transvenous cardiac defibrillator was implanted in an anesthetized pig. The primary outcome measure was the average maximum EMI occurring on the implanted cardiac device during activations of multiple different surgical energy-based devices. The EMI transferred to the implanted cardiac device is as follows: traditional bipolar 30 W .01 ± .004 mV, advanced bipolar .004 ± .003 mV, ultrasonic shears .01 ± .004 mV, monopolar Bovie 30 W coagulation .50 ± .20 mV, monopolar Bovie 30 W blend .92 ± .63 mV, monopolar instrument without dispersive electrode .21 ± .07 mV, plasma energy 3.48 ± .78 mV, and argon beam coagulator 2.58 ± .34 mV. Surgeons can minimize EMI on implanted cardiac defibrillators by preferentially utilizing bipolar and ultrasonic devices. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, B.S.; Davis, F.; Johnson, B.
1985-04-01
Concern about upper respiratory tract irritation and other symptoms among workers at a glass bottle manufacturing plant led to an epidemiologic and an industrial hygiene survey. Questionnaire responses from 35 hot end and 53 cold end workers indicated that the incidence of wheezing, chest pain, dyspnea on exertion, and cough was significantly elevated among hot end workers. Among both smokers and nonsmokers, hot end workers reported higher, but not significantly higher, rates of wheezing and chest pain. Among smokers, hot end workers reported significantly higher rates of dyspnea on exertion and cough than did cold end workers. Data suggest thatmore » reported exposure to stannic chloride solution likely caused these symptoms. The industrial hygiene survey, conducted when stannic chloride use had been reduced, cleaning had been done, and ventilation improved, focused on measuring air contaminants that might possibly cause symptoms. Levels of hydrogen chloride, which apparently was formed by the combination of stannic chloride and water in the presence of heat, were elevated. The finding of increased prevalence of respiratory symptoms among hot end workers was consistent with this exposure. Recommendations were made to reduce hazardous exposures at this plant. Individuals responsible for occupational health should be aware that relatively benign substances, such as stannic chloride and water, can combine spontaneously to form hazardous substances.« less
The effects of hot nights on mortality in Barcelona, Spain
NASA Astrophysics Data System (ADS)
Royé, D.
2017-12-01
Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.
Breast Implants and the Risk of Anaplastic Large-Cell Lymphoma in the Breast.
de Boer, Mintsje; van Leeuwen, Flora E; Hauptmann, Michael; Overbeek, Lucy I H; de Boer, Jan Paul; Hijmering, Nathalie J; Sernee, Arthur; Klazen, Caroline A H; Lobbes, Marc B I; van der Hulst, René R W J; Rakhorst, Hinne A; de Jong, Daphne
2018-03-01
Breast implants are among the most commonly used medical devices. Since 2008, the number of women with breast implants diagnosed with anaplastic large-cell lymphoma in the breast (breast-ALCL) has increased, and several reports have suggested an association between breast implants and risk of breast-ALCL. However, relative and absolute risks of breast-ALCL in women with implants are still unknown, precluding evidence-based counseling about implants. To determine relative and absolute risks of breast-ALCL in women with breast implants. Through the population-based nationwide Dutch pathology registry we identified all patients diagnosed with primary non-Hodgkin lymphoma in the breast between 1990 and 2016 and retrieved clinical data, including breast implant status, from the treating physicians. We estimated the odds ratio (OR) of ALCL associated with breast implants in a case-control design, comparing implant prevalence between women with breast-ALCL and women with other types of breast lymphoma. Cumulative risk of breast-ALCL was derived from the age-specific prevalence of breast implants in Dutch women, estimated from an examination of 3000 chest x-rays and time trends from implant sales. Relative and absolute risks of breast-ALCL in women with breast implants. Among 43 patients with breast-ALCL (median age, 59 years), 32 had ipsilateral breast implants, compared with 1 among 146 women with other primary breast lymphomas (OR, 421.8; 95% CI, 52.6-3385.2). Implants among breast-ALCL cases were more often macrotextured (23 macrotextured of 28 total implants of known type, 82%) than expected (49 193 sold macrotextured implants of total sold 109 449 between 2010 and 2015, 45%) based on sales data (P < .001). The estimated prevalence of breast implants in women aged 20 to 70 years was 3.3%. Cumulative risks of breast-ALCL in women with implants were 29 per million at 50 years and 82 per million at 70 years. The number of women with implants needed to cause 1 breast-ALCL case before age 75 years was 6920. Breast implants are associated with increased risk of breast-ALCL, but the absolute risk remains small. Our results emphasize the need for increased awareness among the public, medical professionals, and regulatory bodies, promotion of alternative cosmetic procedures, and alertness to signs and symptoms of breast-ALCL in women with implants.
Gil, Francisco Javier; Aparicio, Conrado; Manero, Jose M; Padros, Alejandro
2009-01-01
This study evaluated the effect of external hexagon height and commonly applied surface treatments on the fatigue life of titanium dental implants. Electropolished commercially pure titanium dental implants (seven implants per group) with three different external hexagon heights (0.6, 1.2, and 1.8 mm) and implants with the highest external hexagon height (1.8 mm) and different surface treatments (electropolishing, grit blasting with aluminium oxide, and acid etching with sulfuric acid) were tested to evaluate their mechanical fatigue life. To do so, 10-Hz triangular flexural load cycles were applied at 37 degrees C in artificial saliva, and the number of load cycles until implant fracture was determined. Tolerances of the hexagon/abutment fit and implant surface roughness were analyzed by scanning electron microscopy and light interferometry. Transmission electron microscopy and electron diffraction analyses of titanium hydrides were performed. First, the fatigue life of implants with the highest hexagon (8,683 +/- 978 load cycles) was more than double that of the implants with the shortest hexagons (3,654 +/- 789 load cycles) (P < .02). Second, the grit-blasted implants had the longest fatigue life of the tested materials (21,393 +/- 2,356 load cycles), which was significantly greater than that of the other surfaces (P < .001). The compressive surface residual stresses induced when blasting titanium are responsible for this superior mechanical response. Third, precipitation of titanium hydrides in grain boundaries of titanium caused by hydrogen adsorption from the acid solution deteriorates the fatigue life of acid-etched titanium dental implants. These implants had the shortest fatigue life (P < .05). The fatigue life of threaded root-form dental implants varies with the height of the external hexagon and/or the surface treatment of the implant. An external hexagon height of 1.8 mm and/or a blasting treatment appear to significantly increase fatigue life of dental implants.
Histologic and morphologic evaluation of explanted bone anchors from bone-anchored hearing aids.
Mlynski, Robert; Goldberg, Eva; Ebmeyer, Joerg; Scheich, Matthias; Gattenlöhner, Stefan; Schwager, Konrad; Hagen, Rudolf; Shehata-Dieler, Wafaa
2009-05-01
Bone-anchored hearing aids are a standard option in rehabilitation of patients with conductive or mixed hearing loss, and also CROS fitting. However, the skin-penetrating bone anchor repeatedly gives reason for discussion about the risk of infection of surrounding tissues as a major cause of malfunction. In the present study, explanted bone anchors with surrounding bone and soft tissue were examined and compared with the morphology of lost implants. The anchors originated from five patients. Two needed explantation due to deafness with the need of cochlea implantation. A third patient underwent explantation due to meningeal irritation by the bone anchor. Another patient lost the implant due to mechanical stress shortly after implantation. The last implant was lost in a child without apparent reason. All implants were clinically free of infection and had been stable for a median implantation period of 12 months. During the explantation procedure, the fixtures were recovered together with the attached soft tissue and bone. The specimens were examined by light microscopy or scanning electron microscopy (SEM). Sectioning for light microscopy was performed with a diamond-coated saw microtome. Histopathologic examination of the surrounding skin and subcutaneous soft tissue showed slight inflammation in one case only. The bone was regularly vital, presenting no signs of inflammation. The threads of the fixtures were filled with bone, with particularly strong attachment to the flank of traction. The SEM investigation exposed the ultrastructural interaction of bone with the implant surface. Filiform- and podocyte-like processes of osteocytes attach to the implant; lost implants did not reflect these features. Implant integration involves both osseointegration as well as soft tissue integration. Titanium oxide as the active implant surface promotes this integration even in unstable implants. The morphologic analysis exposed structural areas of the implant with weak bone-to-metal contact. Optimized implant design with modified surface and threads may additionally improve osseointegration of hearing aid bone anchors.
Impact of implant size on cement filling in hip resurfacing arthroplasty.
de Haan, Roel; Buls, Nico; Scheerlinck, Thierry
2014-01-01
Larger proportions of cement within femoral resurfacing implants might result in thermal bone necrosis. We postulate that smaller components are filled with proportionally more cement, causing an elevated failure rate. A total of 19 femoral heads were fitted with polymeric replicas of ReCap (Biomet) resurfacing components fixed with low-viscosity cement. Two specimens were used for each even size between 40 and 56 mm and one for size 58 mm. All specimens were imaged with computed tomography, and the cement thickness and bone density were analyzed. The average cement mantle thickness was 2.63 mm and was not correlated with the implant size. However, specimen with low bone density had thicker cement mantles regardless of size. The average filling index was 36.65% and was correlated to both implant size and bone density. Smaller implants and specimens with lower bone density contained proportionally more cement than larger implants. According to a linear regression model, bone density but not implant size influenced cement thickness. However, both implant size and bone density had a significant impact on the filling index. Large proportions of cement within the resurfacing head have the potential to generate thermal bone necrosis and implant failure. When considering hip resurfacing in patients with a small femoral head and/or osteoporotic bone, extra care should be taken to avoid thermal bone necrosis, and alternative cementing techniques or even cementless implants should be considered. This study should help delimiting the indications for hip resurfacing and to choose an optimal cementing technique taking implant size into account.
Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding
NASA Astrophysics Data System (ADS)
Wu, Weite; Tsai, C. H.
1999-02-01
The hot cracking susceptibility of fillers 52 and 82 in a alloy 690 weldment is analyzed by the Varestraint test. Weld characteristics, microstructure, hardness distribution, and thermal analysis of the two filler metals are also examined. The weld metal of both fillers develops an extremely dense oxide layer. A stainless steel brush cannot remove the oxide layer, and a grinder may be needed between weld passes to assure a sound weld. Differential temperature analysis (DTA) shows that filler 82 has a lower melting point and a wider melting/solidification temperature differential (Δ T). These characteristics correlate with greater hot cracking susceptibility of filler 82 than 52 in Varestraint tests. The hot cracks are intergranular and are caused by elements segregating in grain boundies.
Solid state engine using nitinol memory alloy
Golestaneh, Ahmad A.
1981-01-01
A device for converting heat energy to mechanical energy includes a reservoir of a hot fluid and a rotor assembly mounted thereabove so a portion of it dips into the hot fluid. The rotor assembly may include a shaft having four spokes extending radially outwardly therefrom at right angles to each other, a floating ring and four flexible elements composed of a thermal memory material having a critical temperature between the temperature of the hot fluid and that of the ambient atmosphere extending between the ends of the spokes and the floating ring. Preferably, the flexible elements are attached to the floating ring through curved leaf springs. Energetic shape recovery of the flexible elements in the hot fluid causes the rotor assembly to rotate.
Solid state engine using nitinol memory alloy
Golestaneh, A.A.
1980-01-21
A device for converting heat energy to mechanical energy includes a reservoir of a hot fluid and a rotor assembly mounted thereabove so a portion of it dips into the hot fluid. The rotor assembly may include a shaft having four spokes extending radially outwardly therefrom at right angles to each other, a floating ring and four flexible elements composed of a thermal memory material having a critical temperature between the temperature of the hot fluid and that of the ambient atmosphere extending between the ends of the spokes and the floating ring. Preferably, the flexible elements are attached to the floating ring through curved leaf springs. Energetic shape recovery of the flexible elements in the hot fluid causes the rotor assembly to rotate.
Kim, Kun-Hyung; Kang, Kyung-Won; Jung, Hee-Jung; Park, Ji-Eun; Jung, So-Young; Choi, Jun-Yong; Choi, Sun-Mi
2008-01-01
Background Hot flushes are the most frequent climacteric symptom and a major cause of suffering among menopausal women. The condition negatively influences many aspects of women's lives. To date, conventional hormone replacement therapy (HRT) is considered the most effective treatment for hot flushes. However, HRT is associated with a host of negative side effects. Complementary and alternative medical (CAM) approaches have been employed to relieve symptoms and to avoid these side effects. Acupuncture is one of the most strongly preferred CAM treatments for many diseases, causing few serious adverse effects, and is frequently used in Korea. We aim to evaluate the effectiveness of Traditional Korean Acupuncture (TKA) in conjunction with usual care, compared to usual care alone, on hot flushes in perimenopausal and postmenopausal women in Korea. Methods This study consists of a multi-center randomized controlled trial with 2 parallel arms. Participants included in the study will meet the following criteria: 1) a documented daily average hot flush score ≥ 10 for one week prior to the screening visit 2) not taking HRT and other pharmaceutical therapies which might affect hot flushes or other vasomotor symptoms. While maintaining usual care, the treatment group will receive acupuncture 3 times a week, for a total of 12 sessions over 4 weeks. The control group will receive usual care alone during the same period. Post-treatment follow-up will be performed one month after completing 12 sessions of acupuncture. Discussion This trial will provide evidence for the effectiveness of acupuncture as a treatment for hot flushes. The primary endpoint in both groups is a change in hot flush score from baseline to week 4 and/or week 8. As the secondary endpoint, we will employ the Menopause Rating Scale (MRS), a health-related quality of life questionnaire. Further analysis will examine the frequency, severity and difference in symptoms for daytime vs. nighttime hot flushes, sub-domain analysis of MRS, and participants' expectations of acupuncture treatment. Trial registration Current Controlled Trials ISRCTN49335612 PMID:19055763
Roche, N-C; Stefuriac, M; Dumitrescu, N; Charbonnel, A; Godreuil, C; Bonnevie, L
2015-02-01
Implantable cardioverter defibrillator (ICD) is well-recognized therapy to prevent sudden cardiac death. Classic ICD need the use of permanent endocavitary leads, which may cause serious troubles (lead dislodgement, ventricular perforation, lead infections, etc.). The subcutaneous implantable cardioverter defibrillator (S-ICD) is a new device provided by only a subcutaneous lead. It has been developed for the last five years and it is becoming at present a real alternative to classic ICD. We report a clinical case of a 34 y.o. woman who presented a sudden cardiac death and who benefited the implantation of this new technology. This paper deals with the potential indications, usefulness benefits, and problems of the S-ICD. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Subbaroyan, Jeyakumar; Kipke, Daryl R
2006-01-01
Chronic tissue response induced by tethering is one of the major causes for implant failure in intracortical microelectrodes. In this study, we had explored the hypothesis that flexible interconnects could provide strain relief against forces of "micromotion" and hence could result in maintaining a healthy tissue surrounding the implant. Finite element modeling results indicated that flexible interconnects, namely polyimide (E=2 GPa) and polydimethylsiloxane (PDMS, E=6 MPa), reduced the interfacial strain by 66% and two orders of magnitude, respectively. Quantitative immunohistochemistry results indicated that significant neuronal loss occurred up to 60 mum from the implant interface. This was strongly correlated to both glial fibrillary acidic protein (GFAP) expression and simulated strain as a function of distance away from the implant.
The Pattern and Degree of Capsular Fibrous Sheaths Surrounding Cochlear Electrode Arrays
Ishai, Reuven; Herrmann, Barbara S.; Nadol, Joseph B.; Quesnel, Alicia M.
2017-01-01
An inflammatory tissue reaction around the electrode array of a cochlear implant (CI) is common, in particular at the electrode insertion region (cochleostomy) where mechanical trauma often occurs. However, the factors determining the amount and causes of fibrous reaction surrounding the stimulating electrode, especially medially near the perimodiolar location, are unclear. Temporal bone (TB) specimens from patients who had undergone cochlear implantation during life with either Advanced Bionics (AB) Clarion TM or HiRes90KTM (Sylmar, CA, USA) or Cochlear TM Nucleus (Sydney, Australia) devices were evaluated. The thickness of the fibrous tissue surrounding the electrode array of both types of CI devices at both the lower (LB) and upper (UB) basal turns of the cochlea was quantified at three locations: the medial, inferior, and superior aspects of the sheath. Fracture of the osseous spiral lamina and/or marked displacement of the basilar membrane were interpreted as evidence of intracochlear trauma. In addition, post-operative word recognition scores, duration of implantation, and post-operative programming data were evaluated. Seven TBs from six patients implanted with AB devices and five TBs from five patients implanted with Nucleus devices were included. A fibrous capsule around the stimulating electrode array was present in all twelve specimens. TBs implanted with AB device had a significantly thicker fibrous capsule at the medial aspect than at the inferior or superior aspects at both locations (LB and UB) of the cochlea (Wilcoxon signed-ranks test, p<0.01). TBs implanted with a Nucleus device had no difference in the thickness of the fibrous capsule surrounding the track of the electrode array (Wilcoxon signed-ranks test, p>0.05). Nine of fourteen (64%) basal turns of the cochlea (LB and UB of seven TBs) implanted with AB devices demonstrated intracochlear trauma compared to two of ten (20%) basal turns of the cochlea (LB and UB of five TBs) with Nucleus devices, (Fisher exact test, p<0.05). There was no significant correlation between the thickness of the fibrous tissue and the duration of implantation or the word recognition scores (Spearman rho, p=0.06, p=0.4 respectively). Our outcomes demonstrated the development of a robust fibrous tissue sheath medially closest to the site of electric stimulation in cases implanted with the AB device electrode, but not in cases implanted with the Nucleus device. The cause of the asymmetric fibrous sheath may be multifactorial including insertional trauma, a foreign body response, and/or asymmetric current flow. PMID:28216124
Martínez-Salamanca, Juan Ignacio; Moncada, Ignacio; del Portillo, Luis; Sola, Ignacio; Martínez-Ballesteros, Claudio; Carballido, Joaquín
2011-04-01
Moderate-severe urinary incontinence and refractory-to-treatment erectile dysfunction after radical prostatectomy are two entities causing an important loss of quality of life to patients. The double implant of penile prosthesis and artificial urinary sphincter is a safe and effective option in these cases. This article describes preoperative considerations and the most important technical steps to do it satisfactorily.
Chao, Jesus; Rementeria, Rosalia; Aranda, Maria; Capdevila, Carlos; Gonzalez-Carrasco, Jose Luis
2016-07-29
The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell-Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic.
Chao, Jesus; Rementeria, Rosalia; Aranda, Maria; Capdevila, Carlos; Gonzalez-Carrasco, Jose Luis
2016-01-01
The ductile-to-brittle transition (DBT) behavior of two similar Fe-Cr-Al oxide dispersion strengthened (ODS) stainless steels was analyzed following the Cottrell–Petch model. Both alloys were manufactured by mechanical alloying (MA) but by different forming routes. One was manufactured as hot rolled tube, and the other in the form of hot extruded bar. The two hot forming routes considered do not significantly influence the microstructure, but cause differences in the texture and the distribution of oxide particles. These have little influence on tensile properties; however, the DBT temperature and the upper shelf energy (USE) are significantly affected because of delamination orientation with regard to the notch plane. Whereas in hot rolled material the delaminations are parallel to the rolling surface, in the hot extruded material, they are randomly oriented because the material is transversally isotropic. PMID:28773764
Temperature field study of hot water circulation pump shaft system
NASA Astrophysics Data System (ADS)
Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.
2016-05-01
In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.
Seigle-Murandi, Frédéric; Lefebvre, François; Bruant-Rodier, Catherine; Bodin, Frédéric
2017-01-01
The majority of studies assessing the rupture rate of breast implants were performed by the breast implant manufacturing industry with questionable independence. After repetitive removals of ruptured implants from the same model, our team decided to assess the rupture rate and the estimated risk thereof for most of the silicone gel-filled implants we have used since they regained market approval in France in 2001. Our study is a retrospective cohort of 809 patients operated in our University Hospital from 2001 to 2013 for cosmetic or reconstructive goals. We could track 1561 implants, 90% of them from the same manufacturer, Allergan (Irvine, CA, USA). For each of those, we gathered their exact reference, date of implantation, surgical approach, status, last follow-up visit or the eventual date, and cause of removal. Of 225 explanted devices, only 27 were ruptured, all from the Allergan brand. Risks of removal for rupture were estimated: 0.5% at 1000 days, 6% at 2000 days, and 14% at 3000 days. Risks were significantly different between the models from this same manufacturer. One of the range of macro-textured round implants showed risks of removal for rupture of 33% at 3000 days compared to 6% for the anatomically shaped range. These results suggest a qualitative discrepancy among the different ranges of breast implants of a single manufacturer within the same timeframe of implantation. To determine the in vivo lifespan of the implants that we use more precisely and sooner, we suggest that each removed implant should be analyzed for wear and tear, independently from the industry. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Metal ion levels in patients with stainless steel spinal instrumentation.
McPhee, I Bruce; Swanson, Cheryl E
2007-08-15
Case-control study. To determine whether metal ion concentrations are elevated in patients with spinal instrumentation. Studies have shown that serum and urinary levels of component metal ions are abnormally elevated in patients with total joint arthroplasties. Little is known of metal ion release and concentrations in patients with spinal instrumentation. The study group consisted of patients who had undergone spinal instrumentation for various spinal disorders with a variety of stainless steel implants, 5 to 25 years previously. A group of volunteers without metal implants were controls. All subjects were tested for serum nickel, blood chromium, and random urine chromium/creatinine ratio estimation. The study group consisted of 32 patients with retained implants and 12 patients whose implants had been removed. There were 26 unmatched controls. There was no difference in serum nickel and blood chromium levels between all 3 groups. The mean urinary chromium/creatinine ratio for patients with implants and those with implants removed was significantly greater than controls (P < 0.001). The difference between study subgroups was not significant (P = 0.16). Of several patient and instrumentation variables, only the number of couplings approached significance for correlation with the urine chromium excretion (P = 0.07). Spinal implants do not raise the levels of serum nickel and blood chromium. There is evidence that metal ions are released from spinal implants and excreted in urine. The excretion of chromium in patients with spinal implants was significantly greater than normal controls although lower where the implants have been removed. The findings are consistent with low-grade release of ions from implants with rapid clearance, thus maintaining normal serum levels. Levels of metal ions in the body fluids probably do not reach a level that causes late side-effect; hence, routine removal of the implants cannot be recommended.
de Barros E Lima Bueno, Renan; Dias, Ana Paula; Ponce, Katia J; Wazen, Rima; Brunski, John B; Nanci, Antonio
2018-05-31
When bone implants are loaded, they are inevitably subjected to displacement relative to bone. Such micromotion generates stress/strain states at the interface that can cause beneficial or detrimental sequels. The objective of this study is to better understand the mechanobiology of bone healing at the tissue-implant interface during repeated loading. Machined screw shaped Ti implants were placed in rat tibiae in a hole slightly bigger than the implant diameter. Implants were held stable by a specially-designed bone plate that permits controlled loading. Three loading regimens were applied, (a) zero loading, (b) one daily loading session of 60 cycles with an axial force of 1.5 N/cycle for 7 days, and (c) two such daily sessions with the same axial force also for 7 days. Finite element analysis was used to characterize the mechanobiological conditions produced by the loading sessions. After 7 days, the implants with surrounding interfacial tissue were harvested and processed for histological, histomorphometric and DNA microarray analyses. Histomorphometric analyses revealed that the group subjected to repeated loading sessions exhibited a significant decrease in bone-implant contact and increase in bone-implant distance, as compared to unloaded implants and those subjected to only one loading session. Gene expression profiles differed during osseointegration between all groups mainly with respect to inflammatory and unidentified gene categories. The results indicate that increasing the daily cyclic loading of implants induces deleterious changes in the bone healing response, most likely due to the accumulation of tissue damage and associated inflammatory reaction at the bone-implant interface. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Espinar-Escalona, Eduardo; Bravo-Gonzalez, Luis-Alberto; Pegueroles, Marta; Gil, Francisco Javier
2016-06-01
Self-drilling orthodontic mini-implants can be used as temporary devices for orthodontic treatments. Our main goal was to evaluate surface characteristics, roughness and wettability, of surface modified mini-implants to increase their stability during orthodontic treatment without inducing bone fracture and tissue destruction during unscrewing. Modified mini-implants by acid etching, grit-blasting and its combination were implanted in 20 New Zealand rabbits during 10 weeks. After that, the bone-to-implant (BIC) parameter was determined and the torque during unscrewing was measured. The surface characteristics, roughness and wettability, were also measured, onto modified Ti c.p. discs. Acid-etched mini-implants (R a ≈ 1.7 μm, contact angle (CA) ≈ 66°) significantly improved the bone-to-implant parameter, 26 %, compared to as-machined mini-implants (R a ≈ 0.3 μm, CA ≈ 68°, BIC = 19 %) due to its roughness. Moreover, this surface treatment did not modify torque during unscrewing due to their statistically similar wettability (p > 0.05). Surface treatments with higher roughness and hydrophobicity (R a ≈ 4.5 μm, CA ≈ 74°) lead to a greater BIC and to a higher removal torque during unscrewing, causing bone fracture, compared to as-machined mini-implants. Based on these in vivo findings, we conclude that acid-etching surface treatment can support temporary anchoring of titanium mini-implants. This treatment represents a step forward in the direction of reducing the time prior to mini-implant loading by increasing their stability during orthodontic treatment, without inducing bone fracture and tissue destruction during unscrewing.
Recovery of Serum Cholesterol Predicts Survival After Left Ventricular Assist Device Implantation
Vest, Amanda R.; Kennel, Peter J.; Maldonado, Dawn; Young, James B.; Mountis, Maria M.; Naka, Yoshifumi; Colombo, Paolo C.; Mancini, Donna M.; Starling, Randall C.; Schulze, P. Christian
2017-01-01
Background Advanced systolic heart failure is associated with myocardial and systemic metabolic abnormalities, including low levels of total cholesterol and low-density lipoprotein. Low cholesterol and low-density lipoprotein have been associated with greater mortality in heart failure. Implantation of a left ventricular assist device (LVAD) reverses some of the metabolic derangements of advanced heart failure. Methods and Results A cohort was retrospectively assembled from 2 high-volume implantation centers, totaling 295 continuous-flow LVAD recipients with ≥2 cholesterol values available. The cohort was predominantly bridge-to-transplantation (67%), with median age of 59 years and 49% ischemic heart failure cause. Total cholesterol, low-density lipoprotein, high-density lipoprotein, and triglyceride levels all significantly increased after LVAD implantation (median values from implantation to 3 months post implantation 125–150 mg/dL, 67–85 mg/dL, 32–42 mg/dL, and 97–126 mg/dL, respectively). On Cox proportional hazards modeling, patients achieving recovery of total cholesterol levels, defined as a median or greater change from pre implantation to 3 months post-LVAD implantation, had significantly better unadjusted survival (hazard ratio, 0.445; 95% confidence interval, 0.212–0.932) and adjusted survival (hazard ratio, 0.241; 95% confidence interval, 0.092–0.628) than those without cholesterol recovery after LVAD implantation. The continuous variable of total cholesterol at 3 months post implantation and the cholesterol increase from pre implantation to 3 months were also both significantly associated with survival during LVAD support. Conclusions Initiation of continuous-flow LVAD support was associated with significant recovery of all 4 lipid variables. Patients with a greater increase in total cholesterol by 3 months post implantation had superior survival during LVAD support. PMID:27623768
Neuroprotective effect of subretinal implants in the RCS rat.
Pardue, Machelle T; Phillips, Michael J; Yin, Hang; Sippy, Brian D; Webb-Wood, Sarah; Chow, Alan Y; Ball, Sherry L
2005-02-01
Retinal prosthetics have been designed to interface with the neural retina by electrically stimulating the remaining retinal circuits after photoreceptor degeneration. However, the electrical stimulation provided by the subretinal implant may also stimulate neurotrophic factors that provide neuroprotection to the retina. This study was undertaken to determine whether electrical stimulation from a subretinal photodiode-based implant has a neuroprotective effect on photoreceptors in the RCS rat, a model of photoreceptor degeneration. Eyes of RCS rats were implanted with an active or inactive device or underwent sham surgery before photoreceptor degeneration. Outer retinal function was assessed with electroretinogram (ERG) recordings weekly until 8 weeks after surgery, at which time retinal tissue was collected and processed for morphologic assessment, including photoreceptor cell counts and retinal layer thickness. At 4 to 6 weeks after surgery, the ERG responses in the active-implant eyes were 30% to 70% greater in b-wave amplitude than the responses from eyes implanted with inactive devices, those undergoing sham surgery, or the nonsurgical control eyes. At 8 weeks after surgery the ERG responses from active-implant eyes were not significantly different from the control groups. However, the number of photoreceptors in eyes implanted with the active or inactive device was significantly greater in the regions over and around the implant versus sham-surgical and nonsurgical control eyes. These results suggest that subretinal electrical stimulation provides temporary preservation of retinal function in the RCS rat. In addition, implantation of an active or inactive device into the subretinal space causes morphologic preservation of photoreceptors in the RCS rat until 8 weeks after surgery. Further studies are needed to determine whether the correlation of neuropreservation with subretinal implantation is due to electrical stimulation and/or a mechanical presence of the implant in the subretinal space.
Duque, Luisa; Körber, Martin; Bodmeier, Roland
2018-05-30
The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired. Copyright © 2018. Published by Elsevier B.V.
Taniguchi, Yoichi; Aoki, Akira; Mizutani, Koji; Takeuchi, Yasuo; Ichinose, Shizuko; Takasaki, Aristeo Atsushi; Schwarz, Frank; Izumi, Yuichi
2013-07-01
Er:YAG laser (ErL) irradiation has been reported to be effective for treating peri-implant disease. The present study seeks to evaluate morphological and elemental changes induced on microstructured surfaces of dental endosseous implants by high-pulse-repetition-rate ErL irradiation and to determine the optimal irradiation conditions for debriding contaminated microstructured surfaces. In experiment 1, dual acid-etched microstructured implants were irradiated by ErL (pulse energy, 30-50 mJ/pulse; repetition rate, 30 Hz) with and without water spray and for used and unused contact tips. Experiment 2 compared the ErL treatment with conventional mechanical treatments (metal/plastic curettes and ultrasonic scalers). In experiment 3, five commercially available microstructures were irradiated by ErL light (pulse energy, 30-50 mJ/pulse; pulse repetition rate, 30 Hz) while spraying water. In experiment 4, contaminated microstructured surfaces of three failed implants were debrided by ErL irradiation. After the experiments, all treated surfaces were assessed by stereomicroscopy, scanning electron microscopy (SEM), and/or energy-dispersive X-ray spectroscopy (EDS). The stereomicroscopy, SEM, and EDS results demonstrate that, unlike mechanical treatments, ErL irradiation at 30 mJ/pulse and 30 Hz with water spray induced no color or morphological changes to the microstructures except for the anodized implant surface, which was easily damaged. The optimized irradiation parameters effectively removed calcified deposits from contaminated titanium microstructures without causing substantial thermal damage. ErL irradiation at pulse energies below 30 mJ/pulse (10.6 J/cm(2)/pulse) and 30 Hz with water spray in near-contact mode seems to cause no damage and to be effective for debriding microstructured surfaces (except for anodized microstructures).
Martens, Pieter; Verbrugge, Frederik H; Nijst, Petra; Bertrand, Philippe B; Dupont, Matthias; Tang, Wilson H; Mullens, Wilfried
2017-08-01
Cardiac resynchronization therapy (CRT) improves mortality and morbidity on top of optimal medical therapy in heart failure with reduced ejection fraction (HFrEF). This study aimed to elucidate the association between neurohumoral blocker up-titration after CRT implantation and clinical outcomes. Doses of angiotensin-converting enzyme inhibitors (ACE-Is), angiotensin receptor blockers (ARBs), and beta-blockers were retrospectively evaluated in 650 consecutive CRT patients implanted from October 2008 to August 2015 and followed in a tertiary multidisciplinary CRT clinic. All 650 CRT patients were on a maximal tolerable dose of ACE-I/ARB and beta-blocker at the time of CRT implantation. However, further up-titration was successful in 45.4% for ACE-I/ARB and in 56.8% for beta-blocker after CRT-implantation. During a mean follow-up of 37 ± 22 months, a total of 139 events occurred for the combined end point of heart failure admission and all-cause mortality. Successful, versus unsuccessful, up-titration was associated with adjusted hazard ratios of 0.537 (95% confidence interval 0.316-0.913; P = .022) for ACE-I/ARB and 0.633 (0.406-0.988; P = .044) for beta-blocker on the combined end point heart failure admission and all-cause mortality. Patients in the up-titration group exhibited a similar risk for death or heart failure admission as patients treated with the maximal dose (ACE-I/ARB: P = .133; beta-blockers: P = .709). After CRT, a majority of patients are capable of tolerating higher dosages of neurohumoral blockers. Up-titration of neurohumoral blockers after CRT implantation is associated with improved clinical outcomes, similarly to patients treated with the guideline-recommended target dose at the time of CRT implantation. Copyright © 2017 Elsevier Inc. All rights reserved.
Thermal isotherms in PMMA and cell necrosis during total hip arthroplasty.
Gundapaneni, Dinesh; Goswami, Tarun
2014-12-30
Polymethylmethacrylate (PMMA), also known as bone cement, is a commonly used adhesive material to fix implants in Total Hip Arthroplasty (THA). During implantation, bone cement undergoes a polymerization reaction which is an exothermic reaction and results in the release of heat to the surrounding bone tissue, which ultimately leads to thermal necrosis. Necrosis in the bony tissue results in early loosening of the implant, which causes pain and reduces the life of the implant. The main objective of the present study was to understand the thermal isotherms in PMMA and to determine the optimal cement mantle thickness to prevent cell necrosis during THA. In this study, the environment in the bony tissue during implantation was simulated by constructing 3D solid models to observe the temperature distribution in the bony tissue at different cement mantle thicknesses (1 mm, 3 mm and 5 mm), by applying the temperature conditions that exist during the surgery. Stems made with Co-Cr-Mo, 316L stainless steel and Ti6Al4V were used, which acted as heat sinks, and a thermal damage equation was used to measure the bone damage. FEA was conducted based on temperature conditions and thermal isotherms at different cement mantle thicknesses were obtained. Thermal isotherms derived with respect to distance in the bony tissue from the center of the cement mantle, and cell necrosis was determined at different mantle thicknesses. Based on the deduced results, cement mantle thickness of 1-5 mm does not cause thermal damage in the bony tissue. Considering the long term stability of the implant, cement mantle thickness range from 3 mm-5 mm was found to be optimal in THA to prevent cell necrosis.
Ertugay, Serkan; Kemal, Hatice S; Kahraman, Umit; Engin, Catagay; Nalbantgil, Sanem; Yagdi, Tahir; Ozbaran, Mustafa
2017-07-01
Significant mitral regurgitation (MR) is thought to decrease after left ventricular assist device (LVAD) implantation, and therefore repair of mitral valve is not indicated in current practice. However, residual moderate and severe MR leads to pulmonary artery pressure increase, thereby resulting in right ventricular (RV) dysfunction during follow-up. We examined the impact of residual MR on systolic function of the right ventricle by echocardiography after LVAD implantation. This study included 90 patients (mean age: 51.7 ± 10.9 years, 14.4% female) who underwent LVAD implantation (HeartMate II = 21, HeartWare = 69) in a single center between December 2010 and June 2014. Echocardiograms obtained at 3-6 months and over after implantation were analyzed retrospectively. RV systolic function was graded as normal, mild, moderate, and severely depressed. MR (≥moderate) was observed in 43 and 44% of patients at early and late period, respectively. Systolic function of the RV was severely depressed in 16 and 9% of all patients. Initial analysis (mean duration of support 174.3 ± 42.5 days) showed a statistically significant correlation between less MR and improved systolic function of RV (P = 0.01). Secondary echocardiographic analysis (following a mean duration of support of 435.1 ± 203 days) was also statistically significant for MR degree and RV systolic dysfunction (P = 0.008). Residual MR after LVAD implantation may cause deterioration of RV systolic function and cause right-sided heart failure symptoms. Repair of severe MR, in selected patients such as those with severe pulmonary hypertension and depressed RV, may be considered to improve the patient's clinical course during pump support. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Ahmad, Rohana; Chen, Junning; Abu-Hassan, Mohamed I; Li, Qing; Swain, Michael V
2015-01-01
This study aimed to investigate and compare the residual ridge resorption (RRR) induced by an implant-retained overdenture (IRO) and associative biomechanics and by a conventional complete denture (CD) without implants. Cone beam computed tomography was used to quantify RRR in a three-dimensional (3D) manner before and after 1 year of treatment with either IROs or CDs. Twenty patients were treated with IROs, and nine patients were treated with CDs in the mandible. Their maximum bite forces were recorded. The same sets of high-resolution scan images were used to create patient-specific 3D finite element analysis models. The hydrostatic stresses, contact surface deformation, and strain energy absorption in soft tissue mucosa were correlated with the changes in RRR for patients with and without implants. With the IROs, contact surface deformation on the mucosa was two times greater than with CDs (0.32 ± 0.23 mm vs 0.16 ± 0.06 mm) and was in agreement with the amount of RRR measured, which was also two times higher for the IRO than the CD (-3.8% ± 4.5% vs -1.9% ± 0.4%). Taking into account the differences in bite forces with and without implants, which again were twice as high with IROs, the hydrostatic stress within the mucosa was found to correlate well to the RRR map measured over the 1-year interval of treatment. IROs resulted in at least twice the RRR as CDs. This could be caused by the higher hydrostatic stress and less effective energy absorption capabilities of the mucosa underneath the IRO. While implants associated with the IRO provide stronger bite force, they could potentially concentrate hydrostatic stress and cause greater RRR compared to a conventional CD.
Biomechanical analysis on stent materials used as cardiovascular implants
NASA Astrophysics Data System (ADS)
Kumar, Vasantha; Ramesha, C. M.; Sajjan, Sudheer S.
2018-04-01
Atherosclerosis is the most common cause of death in the world, accounting for 48% of all deaths in the world. Atherosclerosis, also known as coronary artery disease occurs when excess cholesterol attaches itself to the walls of blood vessels. Coronary stent implantation is one of the most important procedures to treating coronary artery disease such atherosclerosis. Due to its efficiency, flexibility and simplicity, the use of coronary stents procedures has increased rapidly. In order to have better output of stent implantation, it is needed to study and analyze the biomechanical behavior of this device before manufacturing and put into use. Biomaterials are commonly used for medical application in cardiovascular stent implantation. A biomaterial is a non-viable material used as medical implant, so it is intended to interact with biological system. In this paper, an explicit dynamic analysis is used for analyzing the biomechanical behavior of cardiovascular stent by using finite element analysis tool, ABAQUS 6.10. Results showed that a best suitable biomaterial for cardiovascular stent implants, which exhibits an outstanding biocompatibility and biomechanical characteristics will be aimed at which will be quite useful to the human beings worldwide.
Electronic excitation effects on nanoparticle formation in insulators under heavy-ion implantation
NASA Astrophysics Data System (ADS)
Kishimoto, N.; Plaksin, O. A.; Masuo, K.; Okubo, N.; Umeda, N.; Takeda, Y.
2006-01-01
Kinetic processes of nanoparticle formation by ion implantation was studied for the insulators of a-SiO2, LiNbO3, MgO · 2.4(Al2O3) and PMMA, either by changing ion flux or by using a co-irradiation technique of ions and photons. Under Cu-implantation of 60 keV Cu-, nanoparticles spontaneously formed without thermal annealing, indicating radiation-induced diffusion of implants. The high-flux implantation caused instable behaviors of nanoparticle morphology in a-SiO2, LiNbO3 and PMMA, i.e. enhanced atomic rearrangement or loss of nanoparticles. The spinel MgO · 2.4(Al2O3) also showed nanoparticle precipitation at 60 keV, but the precipitation tendency is less than the others. Combined irradiation of 3 MeV Cu ions and photons of 2.3 eV or 3.5 eV indicates that the electronic excitation during ion implantation significantly enhances nanoparticle precipitation, greatly depending on photon energy and fluence. The selectivity for photons can be applied to control nanoparticle precipitation.
Mulcahy, D.M.; Esler, Daniel N.; Stoskopf, M.K.
1999-01-01
We documented extrusion and loss of abdominally implanted radio transmitters with percutaneous antennas from adult female Harlequin Ducks (Histrionicus histrionicus). Birds were captured during wing molt (late August to mid-September) in 1995-1997. Of 44 Harlequin Ducks implanted with radios and recaptured, 7 (16%) had lost their transmitters and 5 (11%) had radios in the process of extruding. Most (11 of 12) extrusions and losses occurred in birds implanted with radios in 1996 and recaptured in 1997. We suggest that transmitter extrusions and losses were due largely to changes in transmitter design made between 1095 and 1996. Transmitters implanted in 1996 were cylindrical rather than spherical, had a flat end with an abrupt edge, and the lower portion of the antenna was reinforced. Radio losses occurred after the 7-mo monitoring period and caused no apparent harm to the birds. Investigators using implanted radios with percutaneous antennas for long-term projects should be aware of the potential for radio extrusion and should minimize the problem by using transmitters that have no sharp edges and that are wide, rather than narrow.
Long-Term Implanted cOFM Probe Causes Minimal Tissue Reaction in the Brain
Hochmeister, Sonja; Asslaber, Martin; Kroath, Thomas; Pieber, Thomas R.; Sinner, Frank
2014-01-01
This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe. PMID:24621608
Echazarreta-Gallego, Estíbaliz; Pola-Bandrés, Guillermo; Arribas-Del Amo, María Dolores; Gil-Romea, Ismael; Sousa-Domínguez, Ramón; Güemes-Sánchez, Antonio
2017-10-01
Breast prostheses exposure is probably the most devastating complication after a skin sparing mastectomy (SSM) and implant-based, one-stage, breast reconstruction. This complication may occur in the immediate post-operative period or in the weeks and even months after the procedure. In most cases, the cause is poor skin coverage of the implant due to skin necrosis. Eight consecutive cases of implant exposure (or risk of exposure) due to skin necrosis in SSM patients over a period of 5 years, all patients were treated using a random epigastric rotation flap, executed by the same medical team. A random epigastric flap (island or conventional rotation flap) was used to cover the skin defect. All the patients completed the procedure and all prostheses were saved; there were no cases of flap necrosis or infection. Cases of skin necrosis after SSM and immediate implant reconstruction, in which the implant is at risk of exposure, can be successfully treated with a random epigastric rotation flap.
ERIC Educational Resources Information Center
Imangulova, Tatiyana; Makogonov, Aleksandr; Kulakhmetova, Gulbaram; Sardarov, Osman
2016-01-01
The development of desert areas in the industrial and tourist and educational purposes related to the implementation of physical activity in extreme conditions. A complex set of hot climate causes the body deep adaptive adjustment, impact on health, human physical performance. Optimization of physical activity in hot climates is of particular…
Laboratory investigation of fire protection coatings for creosote-treated timber railroad bridges
Carol A. Clausen; Robert H. White; James P. Wacker; Stan T. Lebow; Mark A. Dietenberger; Samuel L. Zelinka; Nicole M. Stark
2014-01-01
As the incidence of timber railroad bridge fires increases, so has the need to develop protective measures to reduce the risk from accidental ignitions primarily caused by hot metal objects. Of the six barrier treatments evaluated in the laboratory for their ability to protect timbers from fires sourced with ignition from hot metal objects only one intumescent coating...
Horizontal sliding of kilometre-scale hot spring area during the 2016 Kumamoto earthquake
Tsuji, Takeshi; Ishibashi, Jun’ichiro; Ishitsuka, Kazuya; Kamata, Ryuichi
2017-01-01
We report horizontal sliding of the kilometre-scale geologic block under the Aso hot springs (Uchinomaki area) caused by vibrations from the 2016 Kumamoto earthquake (Mw 7.0). Direct borehole observations demonstrate the sliding along the horizontal geological formation at ~50 m depth, which is where the shallowest hydrothermal reservoir developed. Owing to >1 m northwest movement of the geologic block, as shown by differential interferometric synthetic aperture radar (DInSAR), extensional open fissures were generated at the southeastern edge of the horizontal sliding block, and compressional deformation and spontaneous fluid emission from wells were observed at the northwestern edge of the block. The temporal and spatial variation of the hot spring supply during the earthquake can be explained by the horizontal sliding and borehole failures. Because there was no strain accumulation around the hot spring area prior to the earthquake and gravitational instability could be ignored, the horizontal sliding along the low-frictional formation was likely caused by seismic forces from the remote earthquake. The insights derived from our field-scale observations may assist further research into geologic block sliding in horizontal geological formations. PMID:28218298
NASA Astrophysics Data System (ADS)
Barayan, Olfat Mohammad
A considerable amount of money for high-energy consumption is spent in traditional buildings located in hot climate regions. High-energy consumption is significantly influenced by several causes, including building materials, orientation, mass, and openings' sizes. This paper aims to identify these causes and find practical solutions to reduce the annual cost of bills. For the purpose of this study, simulation research method has been followed. A comparison between two Revit models has also been created to point out the major cause of high-energy consumption. By analysing different orientations, wall insulation, and window glazing and applying some other high performance building techniques, a conclusion was found to confirm that appropriate building materials play a vital role in affecting energy cost. Therefore, the ability to reduce the energy cost by more than 50% in traditional buildings depends on a careful balance of building materials, mass, orientation, and type of window glazing.
Sánchez-Siles, Mariano; Lucas-Azorin, Javier; Salazar-Sánchez, Noemi; Carbonell-Meseguer, Luis; Camacho-Alonso, Fabio
2016-10-01
The purpose of this study was to know if peri-implantitis causes an increase in the total salivary concentration of oxidative stress markers. Seventy patients, 28 men and 42 women, 60 of them with dental implants, 30 of which had peri-implantitis and 30 were healthy. The remaining 10 were the control group: healthy subjects without implants. The average number of implants per patient was 4.70 ± 2.29 in the peri-implantitis group and 2 70 ± 2.11 in the control group. Periodontal/peri-implant variables were assessed, including bleeding index, gingival index, clinical attachment level, probing depth, presence of pockets larger than 4 and 6 mm, pain to percussion, suppuration, gingival hyperplasia or granuloma, crestal bone loss (both mesially and distally), evaluated through periapical radiography. Saliva samples from the 70 subjects were collected for measurement of malondialdehyde high performance liquid chromatography (HPLC) and myeloperoxidase (enzyme-linked immunosorbent assay analysis) concentrations. Implants affected with peri-implantitis had an average follow-up of 26.40 ± 7.97 months. 4.12% of implants with peri-implantitis had a painful response to percussion. 2.06% showed suppuration; 25.77% had granuloma. The mean crestal bone loss in implants wtih peri-implantitis was 3.78 ± 1.17 mm. Total salivary malondialdehyde concentration in the peri-implantitis group (0.52 ± 0.37 μM/l) was slightly higher than that in the group with healthy implants (0.40 ± 0.16 μM/l) and also slightly higher than that in the group of healthy patients without implants (0.41 ± 0.79 μM/l), although the difference was not statistically significant, p value = .442. Myeloperoxidase concentration was slightly higher in the peri-implantitis group (12.32 ± 2.17 ng/ml) than in the group with healthy implants (11.54 ± 2.80 ng/ml) and the group of healthy patients without implants (11.86 ± 2.67 ng/ml), without statistically significant differences, p value = .584. The salivary concentration of oxidative stress markers in patients with peri-implantitis and without periodontitis is not higher than that found in healthy patients. © 2015 Wiley Periodicals, Inc.
Clustering of gold particles in Au implanted CrN thin films: The effect on the SPR peak position
NASA Astrophysics Data System (ADS)
Novaković, M.; Popović, M.; Schmidt, E.; Mitrić, M.; Bibić, N.; Rakočević, Z.; Ronning, C.
2017-12-01
We report on the formation of gold particles in 280 nm thin polycrystalline CrN layers caused by Au+ ion implantation. The CrN layers were deposited at 150 °C by d.c. reactive sputtering on Si(100) wafers and then implanted at room temperature with 150 keV Au+ ions to fluences of 2 × 1016 cm-2 to 4.1 × 1016 cm-2. The implanted layers were analysed by the means of Rutherford backscattering spectrometry, X-ray diffraction, atomic force microscopy and spectroscopic ellipsometry measurements. The results revealed that the Au atoms are situated in the near-surface region of the implanted CrN layers. At the fluence of 2 × 1016 cm-2 the formation of Au particles of ∼200 nm in diameter has been observed. With increasing Au ion fluence the particles coalesce into clusters with dimensions of ∼1.7 μm. The synthesized particles show a strong absorption peak associated with the excitation of surface plasmon resonances (SPR). The position of the SPR peak shifted in the range of 426.8-690.5 nm when the Au+ ion fluence was varied from 2 × 1016 cm-2 to 4.1 × 1016 cm-2. A correlation of the shift in the peak wavelength caused by the change in the particles size and clustering has been revealed, suggesting that the interaction between Au particles dominate the surface plasmon resonance effect.
Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects.
Hernández-Gascón, B; Peña, E; Pascual, G; Rodríguez, M; Bellón, J M; Calvo, B
2012-01-01
Routine hernia repair surgery involves the implant of synthetic mesh. However, this type of procedure may give rise to pain and bowel incarceration and strangulation, causing considerable patient disability. The purpose of this study was to compare the long-term behaviour of three commercial meshes used to repair the partially herniated abdomen in New Zealand White rabbits: the heavyweight (HW) mesh, Surgipro(®) and lightweight (LW) mesh, Optilene(®), both made of polypropylene (PP), and a mediumweight (MW) mesh, Infinit(®), made of polytetrafluoroethylene (PTFE). The implanted meshes were mechanical and histological assessed at 14, 90 and 180 days post-implant. This behaviour was compared to the anisotropic mechanical behaviour of the unrepaired abdominal wall in control non-operated rabbits. Both uniaxial mechanical tests conducted in craneo-caudal and perpendicular directions and histological findings revealed substantial collagen growth over the repaired hernial defects causing stiffness in the repair zone, and thus a change in the original properties of the meshes. The mechanical behaviour of the healthy tissue in the craneo-caudal direction was not reproduced by any of the implanted meshes after 14 days or 90 days of implant, whereas in the perpendicular direction, SUR and OPT achieved similar behaviour. From a mechanical standpoint, the anisotropic PP-lightweight meshes may be considered a good choice in the long run, which correlates with the structure of the regenerated tissue. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.; Derbin, J. T.
The objective of the project was to develop a system for delivering an implantable medical device used to treat cerebrovascular aneurysms, which can cause disability or hemorrhagic stroke (over 15,000 strokes in the U.S. each year are caused by ruptured aneurysms). Micrus has developed an implantable device with the potential to significantly improve the treatment of cerebrovascular aneurysms. This implantable device should significantly reduce the number of hemorrhagic strokes. LLNL has performed proof-of-concept experiments for a delivery system that could be modified to deploy the Micrus device into aneurysms. The purpose of this CRADA was to complete development of themore » LLNL delivery system and to integrate it with the Micrus device. The goal of the project was to develop an integrated minimally-invasive medical device for treating cerebrovascular aneurysms. The device was designed to access aneurysms through commercially-available catheters which are introduced into the patient through a small incision in the leg.« less
Glavis-Bloom, Justin; Vasher, Scott; Marmor, Meghan; Fine, Antonella B; Chan, Philip A; Tashima, Karen T; Lonks, John R; Kojic, Erna M
2015-11-01
Use of cardiovascular implantable electronic devices (CIED), including permanent pacemakers (PPM) and implantable cardioverter defibrillators (ICD), has increased dramatically over the past two decades. Most CIED infections are caused by staphylococci. Fungal causes are rare and their prognosis is poor. To our knowledge, there has not been a previously reported case of multifocal Candida endocarditis involving both a native left-sided heart valve and a CIED lead. Here, we report the case of a 70-year-old patient who presented with nausea, vomiting, and generalised fatigue, and was found to have Candida glabrata endocarditis involving both a native aortic valve and right atrial ICD lead. We review the literature and summarise four additional cases of CIED-associated Candida endocarditis published from 2009 to 2014, updating a previously published review of cases prior to 2009. We additionally review treatment guidelines and discuss management of CIED-associated Candida endocarditis. © 2015 Blackwell Verlag GmbH.
Korsch, Michael; Walther, Winfried
2015-10-01
The cementation of fixed implant-supported dental restorations involves the risk of leaving excess cement in the mouth which can promote biofilm formation in the peri-implant sulcus. As a result, an inflammation may develop. The aim of the present study was to investigate the clinical effect of two different luting cements on the peri-implant tissue. Within the scope of a retrospective clinical follow-up study, the prosthetic structures of 22 patients with 45 implants were revised. In all cases, a methacrylate cement (Premier Implant Cement [PIC], Premier® Dental Products Company, Plymouth Meeting, PA, USA) had been used for cementation. In 16 additional patients with 28 implants, the suprastructures were retained with a zinc oxide-eugenol cement (Temp Bond [TB], Kerr Sybron Dental Specialities, Glendora, CA, USA). These patients were evaluated in the course of routine treatment. In both populations, the retention time of the suprastructures was similar (TB 3.77 years, PIC 4.07 years). In the PIC cases, 62% of all implants had excess cement. In the TB cases, excess cement was not detectable on any of the implants. Bleeding on probing was significantly more frequent on implants cemented with PIC (100% with and 94% without excess cement) than on implants cemented with TB (46%). Pocket suppuration was observed on 89% of the PIC-cemented implants with excess cement (PIC without excess cement 24%), whereas implants with TB were not affected by it at all. The peri-implant bone loss was significantly greater in the PIC patients (with excess cement 1.37 mm, without excess cement 0.41 mm) than it was in the TB patients (0.07 mm). The frequency of undetected excess cement depends essentially on the type of cement used. Cements that tend to leave more undetected excess have a higher prevalence for peri-implant inflammation and cause a more severe peri-implant bone loss. © 2014 Wiley Periodicals, Inc.
Koyama, Taku; Sato, Toru; Yoshinari, Masao
2012-01-01
This study investigated the influence of surface roughness and cyclic loading on fatigue resistance in Y-TZP subjected to hot isostatic pressing (HIP). Fifty Y-TZP cylinders 3.0 mm in diameter were divided into Group A (polished by centerless method; TZP-CP) or Group B (blasted and acid-etched: TZP-SB150E). Twenty five cp-titanium cylinders (Ti-SB150E) were used as a control. Static and cyclic tests were carried out according to ISO 14801. The cyclic fatigue test was performed in distilled water at 37°C. Surface morphology and roughness as well as crystal phase on the surfaces were also evaluated. Fracture force under the static test was 1,765N (TZP-CP), 1,220N (TZP-SB150E), and 850 N (yield force, Ti-SB150E). Fracture values under the cyclic test decreased to approximately 70% of those under the static tests. These results indicate that HIPed Y-TZP with a 3.0-mm diameter has sufficient durability for application to dental implants.
Stacking-fault strengthening of biomedical Co-Cr-Mo alloy via multipass thermomechanical processing.
Yamanaka, Kenta; Mori, Manami; Sato, Shigeo; Chiba, Akihiko
2017-09-07
The strengthening of metallic biomaterials, such as Co-Cr-Mo and titanium alloys, is of crucial importance to the improvement of the durability of orthopedic implants. In the present study, we successfully developed a face-centered cubic (fcc) Co-Cr-Mo alloy with an extremely high yield strength (1400 MPa) and good ductility (12%) by multipass hot-rolling, which is suitable for industrial production, and examined the relevant strengthening mechanisms. Using an X-ray diffraction line-profile analysis, we revealed that a substantial increase in the number of stacking faults (SFs) in the fcc γ-matrix occurred at a greater height reduction (r), while physical modeling demonstrated that the contribution of the accumulated SFs (i.e., the reduction in SF spacing) with an increase in r successfully explains the entire strengthening behavior of the hot-rolled alloy. The present study sheds light on the importance of the SF strengthening mechanism, and will help to guide the design and manufacturing strategy for the high-strength Co-Cr-Mo alloys used in highly durable medical devices.
Basic Performance Test of a Prototype PET Scanner Using CdTe Semiconductor Detectors
NASA Astrophysics Data System (ADS)
Ueno, Y.; Morimoto, Y.; Tsuchiya, K.; Yanagita, N.; Kojima, S.; Ishitsu, T.; Kitaguchi, H.; Kubo, N.; Zhao, S.; Tamaki, N.; Amemiya, K.
2009-02-01
A prototype positron emission tomography (PET) scanner using CdTe semiconductor detectors was developed, and its initial evaluation was conducted. The scanner was configured to form a single detector ring with six separated detector units, each having 96 detectors arranged in three detector layers. The field of view (FOV) size was 82 mm in diameter. Basic physical performance indicators of the scanner were measured through phantom studies and confirmed by rat imaging. The system-averaged energy resolution and timing resolution were 5.4% and 6.0 ns (each in FWHM) respectively. Spatial resolution measured at FOV center was 2.6 mm FWHM. Scatter fraction was measured and calculated in a National Electrical Manufacturers Association (NEMA)-fashioned manner using a 3-mm diameter hot capillary in a water-filled 80-mm diameter acrylic cylinder. The calculated result was 3.6%. Effect of depth of interaction (DOI) measurement was demonstrated by comparing hot-rod phantom images reconstructed with and without DOI information. Finally, images of a rat myocardium and an implanted tumor were visually assessed, and the imaging performance was confirmed.
Tepper, Gabor; Haas, Robert; Mailath, Georg; Teller, Christoph; Zechner, Werner; Watzak, Georg; Watzek, Georg
2003-10-01
The number of dental implants inserted annually worldwide has been estimated to come close to a million. But the level of information available to patients about realistic, evidence-based treatment options by implants is often enough more than fragmentary, and what is disseminated by the media and the industry does not always reflect evidence-based empirical data. This survey of 1000 adults presented with 18 questions was designed to shed light on several points. These were (1). level of subjective patient information, (2). sources of information and prejudices, (3). future demand for implant treatment and target groups for patient information campaigns, and (4). potential misinformation, information deficits, discrepancies of information and how these come about. Of those questioned, 20% said unprompted that implants were a possibility to replace missing teeth. When prompted, 72% said that they knew about dental implants. Most of those questioned felt poorly informed about the options for replacing missing teeth and many knew less about implants than about other alternatives. The dentist was said to be the desired source of information, but 77% of those questioned reported that their dentists did not practice implant dentistry. More than 79% of those questioned did not know whether their dentist worked with implants. Forty-four percent thought that implants should only be placed by specially trained doctors. Sixty-one percent were of the opinion that dentists who provide implant dentistry were better qualified than their nonimplanting colleagues. Half of those questioned attributed implant failures to allergies and incompatibilities, the other half to poor medical care. Only 29% incriminated poor oral hygiene as a cause of implant failure. Future strategies should be geared to more professional public relations and patient information. Internationally operating qualified implant institutions could contribute much to balance discrepant information.
Implant healing in experimental animal models of diabetes.
Le, Nga N; Rose, Michael B; Levinson, Howard; Klitzman, Bruce
2011-05-01
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices. © 2011 Diabetes Technology Society.
Implant Healing in Experimental Animal Models of Diabetes
Le, Nga N; Rose, Michael B; Levinson, Howard; Klitzman, Bruce
2011-01-01
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices. PMID:21722576
Boisvert, Isabelle; McMahon, Catherine M.; Dowell, Richard C.; Lyxell, Björn
2015-01-01
In many countries, a single cochlear implant is offered as a treatment for a bilateral hearing loss. In cases where there is asymmetry in the amount of sound deprivation between the ears, there is a dilemma in choosing which ear should be implanted. In many clinics, the choice of ear has been guided by an assumption that the reorganisation of the auditory pathways caused by longer duration of deafness in one ear is associated with poorer implantation outcomes for that ear. This assumption, however, is mainly derived from studies of early childhood deafness. This study compared outcomes following implantation of the better or poorer ear in cases of long-term hearing asymmetries. Audiological records of 146 adults with bilateral hearing loss using a single hearing aid were reviewed. The unaided ear had 15 to 72 years of unaided severe to profound hearing loss before unilateral cochlear implantation. 98 received the implant in their long-term sound-deprived ear. A multiple regression analysis was conducted to assess the relative contribution of potential predictors to speech recognition performance after implantation. Duration of bilateral significant hearing loss and the presence of a prelingual hearing loss explained the majority of variance in speech recognition performance following cochlear implantation. For participants with postlingual hearing loss, similar outcomes were obtained by implanting either ear. With prelingual hearing loss, poorer outcomes were obtained when implanting the long-term sound-deprived ear, but the duration of the sound deprivation in the implanted ear did not reliably predict outcomes. Contrary to an apparent clinical consensus, duration of sound deprivation in one ear has limited value in predicting speech recognition outcomes of cochlear implantation in that ear. Outcomes of cochlear implantation are more closely related to the period of time for which the brain is deprived of auditory stimulation from both ears. PMID:26043227
Yucesoy, Deniz T; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M; Snead, Malcolm L; Tamerler, Candan
2015-04-01
Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMP's), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host- and bacterial- cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with antimicrobial peptides can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, S. mutans, S. epidermidis , and E. coli . In biological interactions such as occurs on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore open up new possibilities to cover the implant site and tailor it to a desirable bioactivity.
NASA Technical Reports Server (NTRS)
Bahcall, N.
1984-01-01
A search for X-ray emission from five compact groups of galaxies with the Einstein Observatory revealed detections from three groups. Soft, extended X-ray emission was observed in Stephan's Quintet which is most likely caused by hot intracluster gas. This provides evidence for dynamical interaction among the group galaxies. X-ray emission from the group Arp 330 may also originate in hot intracluster gas. Stephan's Quintet and Arp 330 have the largest velocity dispersions among the groups studied suggesting a correlation between high velocity and the release (or properties) of hot gas. X-ray emission from Arp 318 may originate in its member galaxies.
Investigating La Réunion Hot Spot From Crust to Core
NASA Astrophysics Data System (ADS)
Barruol, Guilhem; Sigloch, Karin
2013-06-01
Whether volcanic intraplate hot spots are underlain by deep mantle plumes continues to be debated 40 years after the hypothesis was proposed by Morgan [1972]. Arrivals of buoyant plume heads may have been among the most disruptive agents in Earth's history, initiating continental breakup, altering global climate, and triggering mass extinctions. Further, with the temporary shutdown of European air traffic in 2010 caused by the eruption of Eyjafjallajökull, a geologically routine eruption in the tail end of the presumed Iceland plume, the world witnessed an intrusion of hot spot activity into modern-day life.
Coupling device with improved thermal interface
NASA Astrophysics Data System (ADS)
Milam, Malcolm Bruce
1992-04-01
The primary object of the present invention is to provide a simple, reliable, and lightweight coupling that will also have an efficient thermal interface. A further object of the invention is to provide a coupling that is capable of blind mating with little or no insertion forces. Another object of the invention is to provide a coupling that acts as a thermal regulator to maintain a constant temperature on one side of the coupling. Another object of the invention is to increase the available surface area of a coupling thus providing a larger area for the conduction of heat across the thermal interface. Another object of the invention is to provide a fluidic coupling that has no fluid passing across the interface, thus reducing the likelihood of leaks and contamination. The foregoing objects are achieved by utilizing, as in the prior art, a hot area (at an elevated temperature as compared to a cold area) with a need to remove excess heat from the hot area to a cold area. In this device, the thermal interface will occur not on a planar horizontal surface, but along a non-planar vertical surface, which will reduce the reaction forces and increase the thermal conductivity of the device. One non-planar surface is a surface on a cold pin extending from the cold area and the other non-planar surface is a surface on a hot pin extending from the hot area. The cold pin is fixed and does not move while the hot pin is a flexible member and its movement towards the cold pin will bring the two non-planar surfaces together forming the thermal interface. The actuating member for the device is a shape-memory actuation wire which is attached through an aperture to the hot pin and through another aperture to an actuation wire retainer. By properly programming the actuation wire, heat from the hot area will cause the actuation wire to bend the hot wire. Heat from the hot area will cause the actuation wire to bend the hot pin towards the cold pin forming the coupling and the desired thermal interface. The shape-memory actuation wire is made of a shape-memory-effect alloy such as Nitinol.
Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays*1
NASA Astrophysics Data System (ADS)
Eah, Sang-Kee; Jaeger, Heinrich M.; Scherer, Norbert F.; Lin, Xiao-Min; Wiederrecht, Gary P.
2004-03-01
Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.
Wearable cardioverter defibrillator: Bridge or alternative to implantation?
Barraud, Jeremie; Cautela, Jennifer; Orabona, Morgane; Pinto, Johan; Missenard, Olivier; Laine, Marc; Thuny, Franck; Paganelli, Franck; Bonello, Laurent; Peyrol, Michael
2017-01-01
The implantable cardioverter-defibrillator (ICD) is effective to prevent sudden cardiac death (SCD) in selected patients with heart disease known to be at high risk for ventricular arrhythmia. Nevertheless, this invasive and definitive therapy is not indicated in patients with potentially transient or reversible causes of sudden death, or in patients with temporary contra-indication for ICD placement. The wearable cardioverter defibrillator (WCD) is increasingly used for SCD prevention both in patients awaiting ICD implantation or with an estimated high risk of ventricular arrhythmia though to be transient. We conducted a review of current clinical uses and benefits of the WCD, and described its technical aspects, limitations and perspectives. PMID:28706588
Periprosthetic bleeding 18 years post-silicone reconstruction of the orbital floor.
Ilie, Vlad Ionut; Ilie, Victor George; Quarmby, Craig; Lefter, Mihaela
2011-10-01
Periprosthetic orbital haemorrhage is an uncommon complication of the alloplastic implants used in post-traumatic orbital floor repair. The small case series or individual reports provide no definite causative explanation for this delayed bleeding around silicone implants. It is likely that it is related to the disruption of fine capillaries within the pseudocapsule surrounding the implant, since the material does cause low-grade irritation with evidence of chronic inflammation. We report the case of a patient who developed a spontaneous periprosthetic bleeding 18 years' post-silicone sheet reconstruction of the orbital floor. Urgent removal of the implant insured prompt resolution of all symptoms and no further problem during the 2-year follow-up. This report emphasizes that periprosthetic orbital haemorrhage can occur years after the initial repair. Awareness of this rare complication allows for prompt diagnosis, decreasing the possibility of permanent damage of the orbital content. The removal of implant is necessary to relieve the symptoms and prevent potential infective complications.
Third Order Optical Nonlinearity of Colloidal Metal Nanoclusters Formed by MeV Ion Implantation
NASA Technical Reports Server (NTRS)
Sarkisov, S. S.; Williams, E.; Curley, M.; Ila, D.; Venkateswarlu, P.; Poker, D. B.; Hensley, D. K.
1997-01-01
We report the results of characterization of nonlinear refractive index of the composite material produced by MeV Ag ion implantation of LiNbO(sub 3) crystal (z-cut). The material after implantation exhibited a linear optical absorption spectrum with the surface plasmon peak near 430 nm attributed to the colloidal silver nanoclusters. Heat treatment of the material at 500 deg C caused a shift of the absorption peak to 550 nm. The nonlinear refractive index of the sample after heat treatment was measured in the region of the absorption peak with the Z-scan technique using a tunable picosecond laser source (4.5 ps pulse width).The experimental data were compared against the reference sample made of MeV Cu implanted silica with the absorption peak in the same region. The nonlinear index of the Ag implanted LiNbO(sub 3) sample produced at five times less fluence is on average two times greater than that of the reference.
Daikoku, Takiko; Cha, Jeeyeon; Sun, Xiaofei; Tranguch, Susanne; Xie, Huirong; Fujita, Tomoko; Hirota, Yasushi; Lydon, John; DeMayo, Francesco; Maxson, Robert; Dey, Sudhansu K
2011-12-13
An effective bidirectional communication between an implantation-competent blastocyst and the receptive uterus is a prerequisite for mammalian reproduction. The blastocyst will implant only when this molecular cross-talk is established. Here we show that the muscle segment homeobox gene (Msh) family members Msx1 and Msx2, which are two highly conserved genes critical for epithelial-mesenchymal interactions during development, also play crucial roles in embryo implantation. Loss of Msx1/Msx2 expression correlates with altered uterine luminal epithelial cell polarity and affects E-cadherin/β-catenin complex formation through the control of Wnt5a expression. Application of Wnt5a in vitro compromised blastocyst invasion and trophoblast outgrowth on cultured uterine epithelial cells. The finding that Msx1/Msx2 genes are critical for conferring uterine receptivity and readiness to implantation could have clinical significance, because compromised uterine receptivity is a major cause of pregnancy failure in IVF programs. Copyright © 2011 Elsevier Inc. All rights reserved.