Science.gov

Sample records for implement dynamic wafer

  1. Implementation of high-resolution reticle inspection in wafer fabs

    NASA Astrophysics Data System (ADS)

    Dayal, Aditya; Bergmann, Nathan M.; Sanchez, Peter

    2003-05-01

    Many advanced wafer fabs are currently fabricating devices with 130nm or smaller design rules. To meet the challenges at these sub-wavelength technology nodes, fabs are using a variety of resolution enhancement techniques (RETs) in lithography and exploring new methods of processing, inspecting and requalifying photomasks. The acceleration of the lithography roadmap imposes more stringent requirements on mask qualification and requalification to ensure that device yields are not compromised: mask inspection tools of today need to find smaller defects on reticles against considerably more complicated patterns or tighter critical dimensions (CDs). In this paper we describe the early stages of implementation and proliferation of advanced reticle inspection tools at high volume manufacturing wafer fabs. The fabs run incoming multi-surface contamination inspections on masks sent from the mask shop (Intel Mask Operations, IMO), and follow them up with periodic inspections/review to make sure any new contaminant or damage does not go undetected. When necessary, images of defects are electronically presented to engineers at IMO for review. Reticle requalification with these inspection tools reduces or eliminates the need for print test verification. We describe the tools and procedure used to streamline reticle requalification at the fabs and improve the feedback loop between the fabs and the mask shop.

  2. Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections

    NASA Astrophysics Data System (ADS)

    Lin, Chiung-Wen; Yang, Hsueh-An; Wang, Wei Chung; Fang, Weileun

    2007-06-01

    Packaging is an emerging technology for microsystem integration. The silicon-on-insulator (SOI) wafer has been extensively employed for micromachined devices for its reliable fabrication steps and robust structures. This research reports a packaging approach for silicon-on- insulator-micro-electro-mechanical system (SOI-MEMS) devices using through-wafer vias and anodic bonding technologies. Through-wafer vias are embedded inside the SOI wafers, and are realized using laser drilling and electroplating. These vias provide electrical signal paths to the MEMS device, while isolating MEMS devices from the outer environment. A high-strength hermetic sealing is then achieved after anodic bonding of the through-wafer-vias-embedded SOI wafer to a Pyrex 7740 glass. Moreover, the packaged SOI-MEMS chip is compatible with surface mount technology, and provides a superior way for 3D heterogeneous integration.

  3. Glass Transition of Polystyrene Thin Films on Silicon Wafer Measured by Dynamic Mechanical Analysis and Ellipsometry

    NASA Astrophysics Data System (ADS)

    Jackson, Catheryn; Lan, Tian; Caporale, Stefan; Torkelson, John

    Measuring the glass transition temperature, Tg, of polymer films in the thickness range of 20-500 nm is non-routine but commercially important for polymer films used in applications such as membranes and electronic circuit boards. Various specialized methods have been used or developed to determine Tg in thin films, including thermal ellipsometry and many others. Differential scanning calorimetry (DSC) is a more conventional method that has been used to measure Tg, but since the thin films must be scraped from the wafer, consolidation and annealing can occur in the pan and may negate effects due to film thickness. Here we report results for polystyrene (PS) spin coated on silicon wafers in the range of 20-500 nm using a benchtop dynamic mechanical analyzer (DMA) in the 3-point bending mode. For the DMA, the peak tan δ temperature is related to the polymer Tg and effects due to confinement as a function of film thickness are compared to literature values. We use thermal ellipsometry as a control method to measure film thickness and Tg in parallel. Low level additives present in commercial PS were observed to strongly affect the results for thin films and are described.

  4. An architecture for a wafer-scale-implemented MIMD parallel computer

    SciTech Connect

    Wang, Chiajiu.

    1988-01-01

    In this dissertation, a general-purpose parallel computer architecture is proposed and studied. The proposed architecture, called the modified mesh-connected parallel computer (MMCPC) is obtained by enhancing a mesh-connected parallel computer with row buses and column buses. The MMCPC is a multiple instruction multiple data parallel machine. Because of the regular structure and distributed control mechanisms, the MMCPC is suitable for VLSI or WSI implementation. The bus structure of the MMCPC lends itself to configurability and fault tolerance. The MMCPC can be logically configured as a number of different parallel computer topologies. The MMCPC can tolerate as many faulty PE's, located randomly, as there are available spares, resulting in 100% redundancy utilization. The performance of the MMCPC was analyzed by applying a generalized stochastic Petri net graph to the MMCPC. The GSPN performance modeling results show a need for a new processing element (PE). A new PE architecture, able to handle data processing and message passing concurrently, is proposed and the silicon overhead is estimated in comparison with transputer-like PE's. Based upon the proposed PE, optimum sizes of the MMCPC for different program structures are derived. Two routing algorithms for the MMCPC were proposed and studied. Routing analysis was carried out through simulation. The simulation results show that the dynamic routing algorithm out performs the deterministic routing algorithm.

  5. Wafer screening device and methods for wafer screening

    DOEpatents

    Sopori, Bhushan; Rupnowski, Przemyslaw

    2014-07-15

    Wafer breakage is a serious problem in the photovoltaic industry because a large fraction of wafers (between 5 and 10%) break during solar cell/module fabrication. The major cause of this excessive wafer breakage is that these wafers have residual microcracks--microcracks that were not completely etched. Additional propensity for breakage is caused by texture etching and incomplete edge grinding. To eliminate the cost of processing the wafers that break, it is best to remove them prior to cell fabrication. Some attempts have been made to develop optical techniques to detect microcracks. Unfortunately, it is very difficult to detect microcracks that are embedded within the roughness/texture of the wafers. Furthermore, even if such detection is successful, it is not straightforward to relate them to wafer breakage. We believe that the best way to isolate the wafers with fatal microcracks is to apply a stress to wafers--a stress that mimics the highest stress during cell/module processing. If a wafer survives this stress, it has a high probability of surviving without breakage during cell/module fabrication. Based on this, we have developed a high throughput, noncontact method for applying a predetermined stress to a wafer. The wafers are carried on a belt through a chamber that illuminates the wafer with an intense light of a predetermined intensity distribution that can be varied by changing the power to the light source. As the wafers move under the light source, each wafer undergoes a dynamic temperature profile that produces a preset elastic stress. If this stress exceeds the wafer strength, the wafer will break. The broken wafers are separated early, eliminating cost of processing into cell/module. We will describe details of the system and show comparison of breakage statistics with the breakage on a production line.

  6. Wafer-Scale Fabrication of Suspended Single-Walled Carbon Nanotube Arrays by Silver Liquid Dynamics.

    PubMed

    Zhang, Jian; Liu, Siyu; Nshimiyimana, Jean Pierre; Deng, Ya; Hou, Gu; Chi, Xiannian; Hu, Xiao; Zhang, Zongzhi; Wu, Pei; Wang, Gongtang; Chu, Weiguo; Sun, Lianfeng

    2017-08-21

    Suspended single-walled carbon nanotubes (SWNTs) have advantages in mechanical resonators and highly sensitive sensors. Large-scale fabrication of suspended SWNTs array devices and uniformity among SWNTs devices remain a great challenge. This study demonstrates an effective, fast, and wafer-scale technique to fabricate suspended SWNT arrays, which is based on a dynamic motion of silver liquid to suspend and align the SWNTs between the prefabricated palladium electrodes in high temperature annealing treatment. Suspended, strained, and aligned SWNTs are synthesized on a 2 × 2 cm(2) substrate with an average density of 10 tubes per micrometer. Under the optimal conditions, almost all SWNTs become suspended. A promising formation model of suspended SWNTs is established. The Kelvin four-terminal resistance measurement shows that these SWNT array devices have extreme low contact resistance. Meanwhile, the suspended SWNT array field effect transistors are fabricated by selective etching of metallic SWNTs using electrical breakdown. This method of large-scale fabrication of suspended architectures pushes the study of nanoscale materials into a new stage related to the electrical physics and industrial applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays

    PubMed Central

    Suzuki, Hiroo; Kaneko, Toshiro; Shibuta, Yasushi; Ohno, Munekazu; Maekawa, Yuki; Kato, Toshiaki

    2016-01-01

    Adding a mechanical degree of freedom to the electrical and optical properties of atomically thin materials can provide an excellent platform to investigate various optoelectrical physics and devices with mechanical motion interaction. The large scale fabrication of such atomically thin materials with suspended structures remains a challenge. Here we demonstrate the wafer-scale bottom–up synthesis of suspended graphene nanoribbon arrays (over 1,000,000 graphene nanoribbons in 2 × 2 cm2 substrate) with a very high yield (over 98%). Polarized Raman measurements reveal graphene nanoribbons in the array can have relatively uniform-edge structures with near zigzag orientation dominant. A promising growth model of suspended graphene nanoribbons is also established through a comprehensive study that combined experiments, molecular dynamics simulations and theoretical calculations with a phase-diagram analysis. We believe that our results can contribute to pushing the study of graphene nanoribbons into a new stage related to the optoelectrical physics and industrial applications. PMID:27250877

  8. Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 µm CMOS MEMS process

    NASA Astrophysics Data System (ADS)

    Tseng, Sheng-Hsiang; S-C Lu, Michael; Wu, Po-Chang; Teng, Yu-Chen; Tsai, Hann-Huei; Juang, Ying-Zong

    2012-05-01

    This paper describes the design, fabrication and characterization of a complementary metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) accelerometer implemented in a 0.18 µm multi-project wafer (MPW) CMOS MEMS process. In addition to the standard CMOS process, an additional aluminum layer and a thick photoresist masking layer are employed to achieve etching and microstructural release. The structural thickness of the accelerometer is up to 9 µm and the minimum structural spacing is 2.3 µm. The out-of-plane deflection resulted from the vertical stress gradient over the whole device is controlled to be under 0.2 µm. The chip area containing the micromechanical structure and switched-capacitor sensing circuit is 1.18 × 0.9 mm2, and the total power consumption is only 0.7 mW. Within the sensing range of ±6 G, the measured nonlinearity is 1.07% and the cross-axis sensitivities with respect to the in-plane and out-of-plane are 0.5% and 5.8%, respectively. The average sensitivity of five tested accelerometers is 191.4 mV G-1with a standard deviation of 2.5 mV G-1. The measured output noise floor is 354 µG Hz-1/2, corresponding to a 100 Hz 1 G sinusoidal acceleration. The measured output offset voltage is about 100 mV at 27 °C, and the zero-G temperature coefficient of the accelerometer output is 0.94 mV °C-1 below 85 °C.

  9. Dynamic Implementation Seeking Equilibrium Model.

    ERIC Educational Resources Information Center

    Riboldi, Pablo Jose

    Implementing exportable instructional systems has always been a problem for instructional developers. Even the best instructional systems lose effectiveness when they are poorly implemented. Researchers have focused their efforts on creating mechanisms to help developers and managers improve and control implementation. However, most of these…

  10. Design automation for wafer scale integration

    SciTech Connect

    Donlan, B.J.

    1986-01-01

    Wafer scale integration (WSI) is a technique for implementing large digital systems on a single wafer. This thesis describes a system of design automation tools developed to aid in the implementation of wafer scale integrated systems. An overview of wafer scale integration is given with fabrication details and yield considerations discussed. The Wafer architectural Design Language (WDL) used to describe and specify a system architecture to the development system is introduced along with a compiler that translates the high level WDL description into net lists and other internal data bases. Interactive placement tools used to map the system architecture onto the functional die sites on a wafer are described. A very fast line probe router was developed to perform the custom wafer level routing need to personalize each wafer. Router data structures, algorithms, techniques, and results are discussed in detail. Sample wafer scale architectures and the result of their WSI implementations are shown. Also presented is the Wafer Transmission Module (WTM) a packaging technology related to wafer scale integration.

  11. Implementation of various vacuum conditions in sealed chambers for wafer-level bonding by using embedded cavity

    NASA Astrophysics Data System (ADS)

    Cheng, C.-W.; Liang, K.-C.; Chu, C.-H.; Fang, W.

    2017-01-01

    The existing foundry processes enable the fabrication and integration of various sensors on a single chip. However, various vacuum conditions of these sensors remain a critical concern after packaging. For example, accelerometers and gyroscopes are operated under two different vacuum conditions. This study extends the concept of using outgassing to realize sealed chambers under different vacuum conditions in one wafer-level bonding step. In other words, by etching various numbers and sizes of cavities on a substrate, the vacuum condition of a sealed chamber can be modulated. In applications, resonators and Pirani gauges were fabricated and characterized to demonstrate the feasibility of the proposed process scheme. The vacuum condition of the sealed chambers was then monitored using the quality factor (detected by resonators) and the pressure (measured by Pirani gauges). The measurements indicate that the sealed chambers with vacuum conditions ranging from approximately 2 to 180 mbar were simultaneously fabricated and integrated on the same wafer. This approach could facilitate the monolithic integration of devices with different vacuum requirements, such as approximately 100 mbar chamber pressure for accelerometers, and single-digit millibars vacuum conditions for gyroscopes.

  12. Machining lead wafers

    SciTech Connect

    Schamaun, R.T.

    1987-09-01

    Recently, MEC-6 machined some 4-inch-diameter lead wafers to precision tolerances. The tolerance on the wafer thickness was +-0.000080 inch. A diamond tool was used to machine the wafers on a Moore No. 3 lathe. This report discusses the methods used to machine the wafers, the fixtures used to hold the wafers, and the inspection methods and results.

  13. Parallelized implementation of dynamical particle system

    NASA Astrophysics Data System (ADS)

    Mašek, Jan; Frantík, Petr; Vořechovský, Miroslav

    2017-07-01

    The paper presents approaches to implementation of solution of discrete dynamical system of mutually repelling particles. Two platforms: a single-thread JAVA process and parallelized CUDA C solution, are employed for the dynamical simulation. Qualities of both platforms are discussed and explained as their performance when solving two proposed interaction laws is compared.

  14. A new material platform of Si photonics for implementing architecture of dense wavelength division multiplexing on Si bulk wafer

    PubMed Central

    Zhang, Ziyi; Yako, Motoki; Ju, Kan; Kawai, Naoyuki; Chaisakul, Papichaya; Tsuchizawa, Tai; Hikita, Makoto; Yamada, Koji; Ishikawa, Yasuhiko; Wada, Kazumi

    2017-01-01

    Abstract A new materials group to implement dense wavelength division multiplexing (DWDM) in Si photonics is proposed. A large thermo-optic (TO) coefficient of Si malfunctions multiplexer/demultiplexer (MUX/DEMUX) on a chip under thermal fluctuation, and thus DWDM implementation, has been one of the most challenging targets in Si photonics. The present study specifies an optical materials group for DWDM by a systematic survey of their TO coefficients and refractive indices. The group is classified as mid-index contrast optics (MiDex) materials, and non-stoichiometric silicon nitride (SiNx) is chosen to demonstrate its significant thermal stability. The TO coefficient of non-stoichiometric SiNx is precisely measured in the temperature range 24–76 °C using the SiNx rings prepared by two methods: chemical vapor deposition (CVD) and physical vapor deposition (PVD). The CVD-SiNx ring reveals nearly the same TO coefficient reported for stoichiometric CVD-Si3N4, while the value for the PVD-SiNx ring is slightly higher. Both SiNx rings lock their resonance frequencies within 100 GHz in this temperature range. Since CVD-SiNx needs a high temperature annealing to reduce N–H bond absorption, it is concluded that PVD-SiNx is suited as a MiDex material introduced in the CMOS back-end-of-line. Further stabilization is required, considering the crosstalk between two channels; a ‘silicone’ polymer is employed to compensate for the temperature fluctuation using its negative TO coefficient, called athermalization. This demonstrates that the resonance of these SiNx rings is locked within 50 GHz at the same temperature range in the wavelength range 1460–1620 nm (the so-called S, C, and L bands in optical fiber communication networks). A further survey on the MiDex materials strongly suggests that Al2O3, Ga2O3 Ta2O5, HfO2 and their alloys should provide even more stable platforms for DWDM implementation in MiDex photonics. It is discussed that the MiDex photonics will

  15. Performance Evaluations of Ceramic Wafer Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; DeMange, Jeffrey J.; Steinetz, Bruce M.

    2006-01-01

    Future hypersonic vehicles will require high temperature, dynamic seals in advanced ramjet/scramjet engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Seal temperatures in these locations can exceed 2000 F, especially when the seals are in contact with hot ceramic matrix composite sealing surfaces. NASA Glenn Research Center is developing advanced ceramic wafer seals to meet the needs of these applications. High temperature scrub tests performed between silicon nitride wafers and carbon-silicon carbide rub surfaces revealed high friction forces and evidence of material transfer from the rub surfaces to the wafer seals. Stickage between adjacent wafers was also observed after testing. Several design changes to the wafer seals were evaluated as possible solutions to these concerns. Wafers with recessed sides were evaluated as a potential means of reducing friction between adjacent wafers. Alternative wafer materials are also being considered as a means of reducing friction between the seals and their sealing surfaces and because the baseline silicon nitride wafer material (AS800) is no longer commercially available.

  16. Barrier reduction via implementation of InGaN interlayer in wafer-bonded current aperture vertical electron transistors consisting of InGaAs channel and N-polar GaN drain

    SciTech Connect

    Kim, Jeonghee Laurent, Matthew A.; Li, Haoran; Lal, Shalini; Mishra, Umesh K.

    2015-01-12

    This letter reports the influence of the added InGaN interlayer on reducing the inherent interfacial barrier and hence improving the electrical characteristics of wafer-bonded current aperture vertical electron transistors consisting of an InGaAs channel and N-polar GaN drain. The current-voltage characteristics of the transistors show that the implementation of N-polar InGaN interlayer effectively reduces the barrier to electron transport across the wafer-bonded interface most likely due to its polarization induced downward band bending, which increases the electron tunneling probability. Fully functional wafer-bonded transistors with nearly 600 mA/mm of drain current at V{sub GS} = 0 V and L{sub go} = 2 μm have been achieved, and thus demonstrate the feasibility of using wafer-bonded heterostructures for applications that require active carrier transport through both materials.

  17. Parallel computational fluid dynamics - Implementations and results

    NASA Technical Reports Server (NTRS)

    Simon, Horst D. (Editor)

    1992-01-01

    The present volume on parallel CFD discusses implementations on parallel machines, numerical algorithms for parallel CFD, and performance evaluation and computer science issues. Attention is given to a parallel algorithm for compressible flows through rotor-stator combinations, a massively parallel Euler solver for unstructured grids, a fast scheme to analyze 3D disk airflow on a parallel computer, and a block implicit multigrid solution of the Euler equations. Topics addressed include a 3D ADI algorithm on distributed memory multiprocessors, clustered element-by-element computations for fluid flow, hypercube FFT and the Fourier pseudospectral method, and an investigation of parallel iterative algorithms for CFD. Also discussed are fluid dynamics using interface methods on parallel processors, sorting for particle flow simulation on the connection machine, a large grain mapping method, and efforts toward a Teraflops capability for CFD.

  18. Wafer-level reliability characterization for wafer-level packaged microbolometer with ultra-small array size

    NASA Astrophysics Data System (ADS)

    Kim, Hee Yeoun; Yang, Chungmo; Park, Jae Hong; Jung, Ho; Kim, Taehyun; Kim, Kyung Tae; Lim, Sung Kyu; Lee, Sang Woo; Mitchell, Jay; Hwang, Wook Joong; Lee, Kwyro

    2013-06-01

    For the development of small and low cost microbolometer, wafer level reliability characterization techniques of vacuum packaged wafer are introduced. Amorphous silicon based microbolometer-type vacuum sensors fabricated in 8 inch wafer are bonded with cap wafer by Au-Sn eutectic solder. Membrane deflection and integrated vacuum sensor techniques are independently used to characterize the hermeticity in a wafer-level. For the packaged wafer with membrane thickness below 100um, it is possible to determine the hermeticity as screening test by optical detection technique. Integrated vacuum sensor having the same structure as bolometer pixel shows the vacuum level below 100mTorr. All steps from packaging process to fine hermeticity test are implemented in wafer level to prove the high volume and low cost production.

  19. Scriber for silicon wafers

    NASA Technical Reports Server (NTRS)

    Yamakawa, K. A.; Fortier, E. P. (Inventor)

    1981-01-01

    A device for dividing silicon wafers into rectangular chips is characterized by a base including a horizontally oriented bed with a planar support surface, a vacuum chuck adapted to capture a silicon wafer seated on the support for translation in mutually perpendicular directions. A stylus support mounted on the bed includes a shaft disposed above and extended across the bed and a truck mounted on the shaft and supported thereby for linear translation along a path extended across the bed a vertically oriented scribe has a diamond tip supported by the truck also adapted as to engage a silicon wafer captured by the chuck and positioned beneath it in order to form score lines in the surface of the wafer as linear translation is imparted to the truck. A chuck positioning means is mounted on the base and is connected to the chuck for positioning the chuck relative to the stylus.

  20. Wafer characteristics via reflectometry

    DOEpatents

    Sopori, Bhushan L.

    2010-10-19

    Various exemplary methods (800, 900, 1000, 1100) are directed to determining wafer thickness and/or wafer surface characteristics. An exemplary method (900) includes measuring reflectance of a wafer and comparing the measured reflectance to a calculated reflectance or a reflectance stored in a database. Another exemplary method (800) includes positioning a wafer on a reflecting support to extend a reflectance range. An exemplary device (200) has an input (210), analysis modules (222-228) and optionally a database (230). Various exemplary reflectometer chambers (1300, 1400) include radiation sources positioned at a first altitudinal angle (1308, 1408) and at a second altitudinal angle (1312, 1412). An exemplary method includes selecting radiation sources positioned at various altitudinal angles. An exemplary element (1650, 1850) includes a first aperture (1654, 1854) and a second aperture (1658, 1858) that can transmit reflected radiation to a fiber and an imager, respectfully.

  1. High Throughput, Noncontact System for Screening Silicon Wafers Predisposed to Breakage During Solar Cell Production

    SciTech Connect

    Sopori, B.; Rupnowski, P.; Basnyat, P.; Mehta, V.

    2011-01-01

    We describe a non-contact, on-line system for screening wafers that are likely to break during solar cell/module fabrication. The wafers are transported on a conveyor belt under a light source, which illuminates the wafers with a specific light distribution. Each wafer undergoes a dynamic thermal stress whose magnitude mimics the highest stress the wafer will experience during cell/module fabrication. As a result of the stress, the weak wafers break, leaving only the wafers that are strong enough to survive the production processes. We will describe the mechanism of wafer breakage, introduce the wafer system, and discuss the results of the time-temperature (t-T) profile of wafers with and without microcracks.

  2. Stable wafer-carrier system

    DOEpatents

    Rozenzon, Yan; Trujillo, Robert T; Beese, Steven C

    2013-10-22

    One embodiment of the present invention provides a wafer-carrier system used in a deposition chamber for carrying wafers. The wafer-carrier system includes a base susceptor and a top susceptor nested inside the base susceptor with its wafer-mounting side facing the base susceptor's wafer-mounting side, thereby forming a substantially enclosed narrow channel. The base susceptor provides an upward support to the top susceptor.

  3. Organizational Readiness for Stage-Based Dynamics of Innovation Implementation

    ERIC Educational Resources Information Center

    Simpson, D. Dwayne

    2009-01-01

    Implementing innovations in social and health-related service programs is a dynamic stage-based process. This article discusses training, adoption, implementation, and practice as sequential elements of a conceptual framework for effective preparation and implementation of evidence-based innovations. However, systems need to be prepared for change…

  4. A generic architecture for wafer-scale neuromorphic systems

    NASA Astrophysics Data System (ADS)

    Raffel, Jack I.; Mann, James R.; Berger, Robert; Soares, Antonio M.; Gilbert, Sheldon L.

    The massive parallelism and high fan-out characteristics of neural networks impose interconnection requirements that are too extreme for IC-implementation; wafer-scale integration, however, interconnects many circuits on a wafer, thereby eliminating wirebonds, package pins, and external printed-circuit wiring. A generic wafer-scale device for neural networks has been devised which employs multiplying D/A converters for programmable synapses and operational amplifiers for summing nodes. Upon fabrication of each such wafer, laser cuts and links may be used to both define network connectivity and furnish defect-avoidance for the improvement of production yields.

  5. Innovative metrology for wafer edge defectivity in immersion lithography

    NASA Astrophysics Data System (ADS)

    Pollentier, I.; Iwamoto, F.; Kocsis, M.; Somanchi, A.; Burkeen, F.; Vedula, S.

    2007-03-01

    In semiconductor manufacturing, the control of defects at the edge of the wafer is a key factor to keep the number of yielding die on a wafer as high as possible. Using dry lithography, this control is typically done by an edge bead removal (EBR) process, which is understood well. Immersion lithography however changes this situation significantly. During this exposure, the wafer edge is locally in contact with water from the immersion hood, and particles can then be transported back and forth from the wafer edge area to the scanner wafer stage. Materiel in the EBR region can also potentially be damaged by the dynamic force of the immersion hood movement. In this paper, we have investigated the impact of immersion lithography on wafer edge defectivity. In the past, such work has been limited to the inspection of the flat top part of the wafer edge, due to the inspection challenges at the curved wafer edge and lack of a comprehensive defect inspection solution. This study utilized KLA-Tencor's VisEdge, a new automated edge inspection system, that provides full wafer edge imaging (top, side, bottom) using laser-based optics and multi-sensor detection, and where defects of interest can be classified with Automated Defect Classification (ADC) software. Using the VisEdge technology, the impact from the immersion lithography towards wafer edge defectivity is investigated. The work revealed several key challenges to keep the wafer edge related defectivity under control : choice of resist, optimization of EBR recipes, scanner pollution and related memory effects, wafer handling, device processing, etc... Contributing to the understanding of the mechanisms of wafer edge related immersion defects and to the optimization the die yield level, this technology is believed to be important when the immersion processes are introduced in semiconductor manufacturing.

  6. Within-wafer CD variation induced by wafer shape

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2016-03-01

    In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked vertical flash cell array has been proposed. In constructing 3D NAND flash memories, the bit number per unit area is increased as increasing the number of stacked layers. However, the increased number of stacked layers has made the film stress control extremely important for maintaining good process quality. The residual film stress alters the wafer shape accordingly several process impacts have been readily observed across wafer, such as film deposition non-uniformity, etch rate non-uniformity, wafer chucking error on scanner, materials coating/baking defects, overlay degradation and critical dimension (CD) non-uniformity. The residual tensile and compressive stresses on wafers will result in concave and convex wafer shapes, respectively. This study investigates within-wafer CD uniformity (CDU) associated with wafer shape change induced by the 3D NAND flash memory processes. Within-wafer CDU was correlated with several critical parameters including different wafer bow heights of concave and convex wafer shapes, photo resists with different post exposure baking (PEB) temperature sensitivities, and DoseMapper compensation. The results indicated the trend of within-wafer CDU maintains flat for convex wafer shapes with bow height up to +230um and concave wafer shapes with bow height ranging from 0 ~ -70um, while the within-wafer CDU trends up from -70um to -246um wafer bow heights. To minimize the within-wafer CD distribution induced by wafer warpage, carefully tailoring the film stack and thermal budget in the process flow for maintaining the wafer shape at CDU friendly range is indispensable and using photo-resist materials with lower PEB temperature sensitivity is also suggested. In addition, DoseMapper compensation is also an alternative to greatly suppress the within-wafer CD non-uniformity but the photo-resist profile variation induced by across-wafer

  7. On-wafer high temperature characterization system

    NASA Astrophysics Data System (ADS)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.

    2016-12-01

    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  8. Etching Of Semiconductor Wafer Edges

    DOEpatents

    Kardauskas, Michael J.; Piwczyk, Bernhard P.

    2003-12-09

    A novel method of etching a plurality of semiconductor wafers is provided which comprises assembling said plurality of wafers in a stack, and subjecting said stack of wafers to dry etching using a relatively high density plasma which is produced at atmospheric pressure. The plasma is focused magnetically and said stack is rotated so as to expose successive edge portions of said wafers to said plasma.

  9. A User Driven Dynamic Circuit Network Implementation

    SciTech Connect

    Guok, Chin; Robertson, David; Chaniotakis, Evangelos; Thompson, Mary; Johnston, William; Tierney, Brian

    2008-10-01

    The requirements for network predictability are becoming increasingly critical to the DoE science community where resources are widely distributed and collaborations are world-wide. To accommodate these emerging requirements, the Energy Sciences Network has established a Science Data Network to provide user driven guaranteed bandwidth allocations. In this paper we outline the design, implementation, and secure coordinated use of such a network, as well as some lessons learned.

  10. Minimum wafer thickness by rotated ingot ID wafering. [Inner Diameter

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1984-01-01

    The efficient utilization of materials is critical to certain device applications such as silicon for photovoltaics or diodes and gallium-gadolinium-garnet for memories. A variety of slicing techniques has been investigated to minimize wafer thickness and wafer kerf. This paper presents the results of analyses of ID wafering of rotated ingots based on predicted fracture behavior of the wafer as a result of forces during wafering and the properties of the device material. The analytical model indicated that the minimum wafer thickness is controlled by the depth of surface damage and the applied cantilever force. Both of these factors should be minimized. For silicon, a minimum thickness was found to be approximately 200 x 10 - 6th m for conventional sizes of rotated ingot wafering. Fractures through the thickness of the wafer rather than through the center supporting column were found to limit the minimum wafer thickness. The model suggested that the use of a vacuum chuck on the wafer surface to enhance cleavage fracture of the center supporting core and, with silicon, by using 111-line-type ingots could have potential for reducing minimum wafer thickness.

  11. Resolving critical dimension drift over time in plasma etching through virtual metrology based wafer-to-wafer control

    NASA Astrophysics Data System (ADS)

    Lee, Ho Ki; Baek, Kye Hyun; Shin, Kyoungsub

    2017-06-01

    As semiconductor devices are scaled down to sub-20 nm, process window of plasma etching gets extremely small so that process drift or shift becomes more significant. This study addresses one of typical process drift issues caused by consumable parts erosion over time and provides feasible solution by using virtual metrology (VM) based wafer-to-wafer control. Since erosion of a shower head has center-to-edge area dependency, critical dimensions (CDs) at the wafer center and edge area get reversed over time. That CD trend is successfully estimated on a wafer-to-wafer basis by a partial least square (PLS) model which combines variables from optical emission spectroscopy (OES), VI-probe and equipment state gauges. R 2 of the PLS model reaches 0.89 and its prediction performance is confirmed in a mass production line. As a result, the model can be exploited as a VM for wafer-to-wafer control. With the VM, advanced process control (APC) strategy is implemented to solve the CD drift. Three σ of CD across wafer is improved from the range (1.3-2.9 nm) to the range (0.79-1.7 nm). Hopefully, results introduced in this paper will contribute to accelerating implementation of VM based APC strategy in semiconductor industry.

  12. AFOSR Wafer Bonding

    DTIC Science & Technology

    2009-07-31

    cleanliness (foreign particles) and surface morphology (roughness). Two silicon wafers, when properly cleaned, can easily bond at room temperature because of...4 Figure IV data for nSi-nGaN bond. Structure is similar to that shown in Figure Difficulties and Knowledge Added Surface Morphology and...Particles One of the most important features of materials in determining whether they will bond is the quality of the bonding surfaces , in both

  13. Dynamic oversight: implementation gaps and challenges

    NASA Astrophysics Data System (ADS)

    Howard, John

    2011-04-01

    Nanotechnology is touted as a transformative technology in that it is predicted to improve many aspects of human life. There are hundreds of products in the market that utilize nanostructures in their design, such as composite materials made out of carbon or metal oxides. Potential risks to consumers, to the environment, and to workers from the most common passive nanomaterial—carbon nanotubes—are emerging through scientific research. Newer more active nanostructures—such as cancer therapies and targeted drug systems—are also increasing in use and are raising similar risk concerns. Governing the risks to workers is the subject of this commentary. The Occupational Safety and Health Act of 1970 grants the Occupational Safety and Health Administration the legal authority to set occupational health standards to insure that no worker suffers material impairment of health from work. However, setting a standard to protect workers from nanotechnology risks may occur some time in the future because the risks to workers have not been well characterized scientifically. Alternative risk governances—such as dynamic oversight through stakeholder partnerships, "soft law" approaches, and national adoption of international consensus standards—are evaluated in this article.

  14. Automated Wafer Flatness Characterization System

    NASA Astrophysics Data System (ADS)

    Morgan, Stephen; Sobczak, Zbigniew; Lynch, Gary; Reid, Lee

    1981-07-01

    As VLSI technology pushes toward micrometer range geometries, wafer flatness becomes critical to direct step on wafer projection printing. This paper describes a system that utilizes the automatic focusing capability of a wafer stepper to achieve in situ measurement of wafer flatness. A depth gauge attached to the lens column conveys to the system a voltage analog of column height during exposure of each die. The system then computes locations of isoplanar contour lines on the wafer and plots a topographic map on an X-Y recorder. Any vertical interval between contour lines can be specified between 0.5 and 2 micrometers. A close correlation has been found between interferometric images of wafer flatness and topographic maps produced by the system while attached to a wafer stepper. The chief advantage of the wafer topographic map over the interferometric image is its ability to capture flatness measurements during actual exposure. Also beneficial are tick marks on all contour lines which indicate direction of increasing wafer height. Application of the system will enhance prediction of photolithographic yield, identification of process steps causing wafer deformation and effectiveness of process quality control.

  15. Dynamically tuned high-Q AC-dipole implementation

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, W.C.; Meng, W.; Mernick, K.; Pai, C.; Roser, T.; Russo, T.

    2010-05-02

    AC-dipole magnets are typically implemented as a parallel LC resonant circuit. To maximize efficiency, it's beneficial to operate at a high Q. This, however, limits the magnet to a narrow frequency range. Current designs therefore operate at a low Q to provide a wider bandwidth at the cost of efficiency. Dynamically tuning a high Q resonant circuit tries to maintain a high efficiency while providing a wide frequency range. The results of ongoing efforts at BNL to implement dynamically tuned high-Q AC dipoles will be presented.

  16. Capacitive micromachined ultrasonic transducers with through-wafer interconnects

    NASA Astrophysics Data System (ADS)

    Zhuang, Xuefeng

    Capacitive micromachined ultrasonic transducer (CMUT) is a promising candidate for making ultrasound transducer arrays for applications such as 3D medical ultrasound, non-destructive evaluation and chemical sensing. Advantages of CMUTs over traditional piezoelectric transducers include low-cost batch fabrication, wide bandwidth, and ability to fabricate arrays with broad operation frequency range and different geometric configurations on a single wafer. When incorporated with through-wafer interconnects, a CMUT array can be directly integrated with a front-end integrated circuit (IC) to achieve compact packaging and to mitigate the effects of the parasitic capacitance from the connection cables. Through-wafer via is the existing interconnect scheme for CMUT arrays, and many other types of micro-electro-mechanical system (MEMS) devices. However, to date, no successful through-wafer via fabrication technique compatible with the wafer-bonding method of making CMUT arrays has been demonstrated. The through-wafer via fabrication steps degrade the surface conditions of the wafer, reduce the radius of curvature, thus making it difficult to bond. This work focuses on new through-wafer interconnect techniques that are compatible with common MEMS fabrication techniques, including both surface-micromachining and direct wafer-to-wafer fusion bonding. In this dissertation, first, a through-wafer via interconnect technique with improved characteristics is presented. Then, two implementations of through-wafer trench isolation are demonstrated. The through-wafer trench methods differ from the through-wafer vias in that the electrical conduction is through the bulk silicon instead of the conductor in the vias. In the first implementation, a carrier wafer is used to provide mechanical support; in the second, mechanical support is provided by a silicon frame structure embedded inside the isolation trenches. Both implementations reduce fabrication complexity compared to the through-wafer

  17. Design Study of Wafer Seals for Future Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H.; Finkbeiner, Joshua R.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2005-01-01

    Future hypersonic vehicles require high temperature, dynamic seals in advanced hypersonic engines and on the vehicle airframe to seal the perimeters of movable panels, flaps, and doors. Current seals do not meet the demanding requirements of these applications, so NASA Glenn Research Center is developing improved designs to overcome these shortfalls. An advanced ceramic wafer seal design has shown promise in meeting these needs. Results from a design of experiments study performed on this seal revealed that several installation variables played a role in determining the amount of leakage past the seals. Lower leakage rates were achieved by using a tighter groove width around the seals, a higher seal preload, a tighter wafer height tolerance, and a looser groove length. During flow testing, a seal activating pressure acting behind the wafers combined with simulated vibrations to seat the seals more effectively against the sealing surface and produce lower leakage rates. A seal geometry study revealed comparable leakage for full-scale wafers with 0.125 and 0.25 in. thicknesses. For applications in which lower part counts are desired, fewer 0.25-in.-thick wafers may be able to be used in place of 0.125-in.-thick wafers while achieving similar performance. Tests performed on wafers with a rounded edge (0.5 in. radius) in contact with the sealing surface resulted in flow rates twice as high as those for wafers with a flat edge. Half-size wafers had leakage rates approximately three times higher than those for full-size wafers.

  18. Gettering Silicon Wafers with Phosphorus

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1983-01-01

    Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.

  19. Gettering Silicon Wafers with Phosphorus

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1983-01-01

    Silicon wafers subjected to gettering in phosphorus atmosphere have longer diffusion lengths and higher solar-cell efficiencies than untreated wafers. Gettering treatment improves properties of solar cells manufactured from impure silicon and is compatible with standard solar-cell processing.

  20. Wafer-Level Vacuum Packaging of Smart Sensors

    PubMed Central

    Hilton, Allan; Temple, Dorota S.

    2016-01-01

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249

  1. Wafer-Level Vacuum Packaging of Smart Sensors.

    PubMed

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  2. Wafer-level vacuum/hermetic packaging technologies for MEMS

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil

    2010-02-01

    An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.

  3. Influence of the bonding front propagation on the wafer stack curvature

    SciTech Connect

    Navarro, E.; Bréchet, Y.; Barthelemy, A.; Radu, I.; Pardoen, T.; Raskin, J.-P.

    2014-08-11

    The influence of the dynamics of the direct wafer bonding process on the curvature of the final wafer stack is investigated. An analytical model for the final curvature of the bonded wafers is developed, as a function of the different load components acting during the bonding front propagation, using thin plate theory and considering a strain discontinuity locked at the bonding interface. Experimental profiles are measured for different bonding conditions and wafer thicknesses. A very good agreement with the model prediction is obtained and the influence of the thin air layer trapped in-between the two wafers is demonstrated. The proposed model contributes to further improvement of the bonding process, in particular, for the stacking of layers of electronic devices, which requires a high accuracy of wafer-to-wafer alignment and a very low distortion level.

  4. Through-wafer optical probe characterization for microelectromechanical systems positional state monitoring and feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    2000-12-01

    Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.

  5. Dynamics of Implementation and Maintenance of Organizational Health Interventions

    PubMed Central

    Rahmandad, Hazhir; Bullock, Sally Lawrence; Ammerman, Alice

    2017-01-01

    In this study, we present case studies to explore the dynamics of implementation and maintenance of health interventions. We analyze how specific interventions are built and eroded, how the building and erosion mechanisms are interconnected, and why we can see significantly different erosion rates across otherwise similar organizations. We use multiple comparative obesity prevention case studies to provide empirical information on the mechanisms of interest, and use qualitative systems modeling to integrate our evolving understanding into an internally consistent and transparent theory of the phenomenon. Our preliminary results identify reinforcing feedback mechanisms, including design of organizational processes, motivation of stakeholders, and communication among stakeholders, which influence implementation and maintenance of intervention components. Over time, these feedback mechanisms may drive a wedge between otherwise similar organizations, leading to distinct configurations of implementation and maintenance processes. PMID:28809807

  6. MEMS Wafer-level Packaging Technology Using LTCC Wafer

    NASA Astrophysics Data System (ADS)

    Mohri, Mamoru; Esashi, Masayoshi; Tanaka, Shuji

    This paper describes a versatile and reliable wafer-level hermetic packaging technology using an anodically-bondable low temperature co-fired ceramic (LTCC) wafer, in which multi-layer electrical feedthroughs can be embedded. The LTCC wafer allows many kinds of micro electro mechanical systems (MEMS) to be more flexibly designed and more easily packaged. The hermeticity of vacuum-sealed cavities was confirmed after 3000 cycles of thermal shock (-40°C×30min/+125°C×30min) by diaphragm method. To practically apply the LTCC wafer to a variety of MEMS, the electrical connection between MEMS on a Si wafer and feedthroughs in the LTCC should be established by a simple and reliable method. We have developed a new electrical connection methods; The electrical connection is established by porous Au bumps, which are a part of Au vias exposed in wet-etched cavities on the LTCC wafer. 100% yield of both electrical connection and hermetic sealing was demonstrated. A thermal shock test up to 3000 cycles confirmed the reliability of this packaging technology.

  7. Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.

    PubMed

    Einstein, D R; Reinhall, P; Nicosia, M; Cochran, R P; Kunzelman, K

    2003-02-01

    We present a novel method for the implementation of hyperelastic finite strain, non-linear strain-energy functions for biological membranes in an explicit finite element environment. The technique is implemented in LS-DYNA but may also be implemented in any suitable non-linear explicit code. The constitutive equations are implemented on the foundation of a co-rotational uniformly reduced Hughes-Liu shell. This shell is based on an updated-Lagrangian formulation suitable for relating Cauchy stress to the rate-of-deformation, i.e. hypo-elasticity. To accommodate finite deformation hyper-elastic formulations, a co-rotational deformation gradient is assembled over time, resulting in a formulation suitable for pseudo-hyperelastic constitutive equations that are standard assumptions in biomechanics. Our method was validated by comparison with (1) an analytic solution to a spherically-symmetric dynamic membrane inflation problem, incorporating a Mooney-Rivlin hyperelastic equation and (2) with previously published finite element solutions to a non-linear transversely isotropic inflation problem. Finally, we implemented a transversely isotropic strain-energy function for mitral valve tissue. The method is simple and accurate and is believed to be generally useful for anyone who wishes to model biologic membranes with an experimentally driven strain-energy function.

  8. System for slicing wafers

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A newly patented process for slicing silicon wafers that has distinct advantages over methods now widely used is described. The primary advantage of the new system is that it allows the efficient slicing of a number of ingots simultaneously at high speed. The cutting action is performed mechanically, most often with diamond particles that are transported to the cutting zone by a fluid vehicle or have been made an integral part of the blade by plating or impregnation. The new system uses a multiple or ganged band saw, arranged and spaced so that each side, or length, segment of a blade element, or loop, provides a cutting function. Each blade is maintained precisely in position by guides as it enters and leaves each ingot. The cutting action is performed with a conventional abrasive slurry composed of diamond grit suspended in an oil- or water-based vehicle. The distribution system draws the slurry from the supply reservoir and pumps it to the injection tubes to supply it to each side of each ingot. A flush system is provided at the outer end of the work-station zone. In order to reduce potential damage, a pneumatically driven flushing fluid is provided.

  9. Future trends in wafer scale integration

    SciTech Connect

    Carlson, R.O.; Neugebauer, C.A.

    1986-12-01

    The dramatic increase in the functional density of VLSI has been achieved without greatly increasing the chip size. In wafer scale integration, the area of an entire wafer is made available to increase the functional density still further. However, the requirement for fault tolerance, additional levels of metallization, excess power dissipation, process conservatism to achieve finite yield, and nonoptimum nature of the AI/SiO/sub 2/ transmission line for cross-wafer communication have made WSI noncompetitive with state-of-the-art VLSI and dense multichip hybrid packaging approaches, at least so far. On the other hand, the potential benefits of WSI are great. Chief among them is the greatly increased expected reliability, which is partly due to an all-monolithic system and partly because of the hope that fault tolerance, which is an absolute requirement for WSI fabrication, can be extended to failure tolerance, and thus the ability to reconfigure during systems operation, and perhaps even transparent to it. Pipeline- or bus-oriented logic structures were found to be the most promising for WSI implementation.

  10. Laser wafering for silicon solar.

    SciTech Connect

    Friedmann, Thomas Aquinas; Sweatt, William C.; Jared, Bradley Howell

    2011-03-01

    Current technology cuts solar Si wafers by a wire saw process, resulting in 50% 'kerf' loss when machining silicon from a boule or brick into a wafer. We want to develop a kerf-free laser wafering technology that promises to eliminate such wasteful wire saw processes and achieve up to a ten-fold decrease in the g/W{sub p} (grams/peak watt) polysilicon usage from the starting polysilicon material. Compared to today's technology, this will also reduce costs ({approx}20%), embodied energy, and green-house gas GHG emissions ({approx}50%). We will use short pulse laser illumination sharply focused by a solid immersion lens to produce subsurface damage in silicon such that wafers can be mechanically cleaved from a boule or brick. For this concept to succeed, we will need to develop optics, lasers, cleaving, and high throughput processing technologies capable of producing wafers with thicknesses < 50 {micro}m with high throughput (< 10 sec./wafer). Wafer thickness scaling is the 'Moore's Law' of silicon solar. Our concept will allow solar manufacturers to skip entire generations of scaling and achieve grid parity with commercial electricity rates. Yet, this idea is largely untested and a simple demonstration is needed to provide credibility for a larger scale research and development program. The purpose of this project is to lay the groundwork to demonstrate the feasibility of laser wafering. First, to design and procure on optic train suitable for producing subsurface damage in silicon with the required damage and stress profile to promote lateral cleavage of silicon. Second, to use an existing laser to produce subsurface damage in silicon, and third, to characterize the damage using scanning electron microscopy and confocal Raman spectroscopy mapping.

  11. Wafer handling and placement tool

    DOEpatents

    Witherspoon, Linda L.

    1988-01-05

    A spring arm tool is provided for clamp engaging and supporting wafers while the tool is hand held. The tool includes a pair of relatively swingable jaw element supporting support arms and the jaw elements are notched to enjoy multiple point contact with a wafer peripheral portion. Also, one disclosed form of the tool includes remotely operable workpiece ejecting structure carried by the jaw elements thereof.

  12. Note: Near infrared interferometric silicon wafer metrology.

    PubMed

    Choi, M S; Park, H M; Joo, K N

    2016-04-01

    In this investigation, two near infrared (NIR) interferometric techniques for silicon wafer metrology are described and verified with experimental results. Based on the transparent characteristic of NIR light to a silicon wafer, the fiber based spectrally resolved interferometry can measure the optical thickness of the wafer and stitching low coherence scanning interferometry can reconstruct entire surfaces of the wafer.

  13. Strategy optimization for mask rule check in wafer fab

    NASA Astrophysics Data System (ADS)

    Yang, Chuen Huei; Lin, Shaina; Lin, Roger; Wang, Alice; Lee, Rachel; Deng, Erwin

    2015-07-01

    Photolithography process is getting more and more sophisticated for wafer production following Moore's law. Therefore, for wafer fab, consolidated and close cooperation with mask house is a key to achieve silicon wafer success. However, generally speaking, it is not easy to preserve such partnership because many engineering efforts and frequent communication are indispensable. The inattentive connection is obvious in mask rule check (MRC). Mask houses will do their own MRC at job deck stage, but the checking is only for identification of mask process limitation including writing, etching, inspection, metrology, etc. No further checking in terms of wafer process concerned mask data errors will be implemented after data files of whole mask are composed in mask house. There are still many potential data errors even post-OPC verification has been done for main circuits. What mentioned here are the kinds of errors which will only occur as main circuits combined with frame and dummy patterns to form whole reticle. Therefore, strategy optimization is on-going in UMC to evaluate MRC especially for wafer fab concerned errors. The prerequisite is that no impact on mask delivery cycle time even adding this extra checking. A full-mask checking based on job deck in gds or oasis format is necessary in order to secure acceptable run time. Form of the summarized error report generated by this checking is also crucial because user friendly interface will shorten engineers' judgment time to release mask for writing. This paper will survey the key factors of MRC in wafer fab.

  14. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2008-10-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity DefecTM data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  15. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2009-04-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity Defect(R) data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  16. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2009-03-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity DefectTM data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  17. High-speed dynamic domino circuit implemented with gaas mesfets

    NASA Technical Reports Server (NTRS)

    Yang, Long (Inventor); Long, Stephen I. (Inventor)

    1990-01-01

    A dynamic logic circuit (AND or OR) utilizes one depletion-mode metal-semiconductor FET for precharging an internal node A, and a plurality of the same type of FETs in series, or a FET in parallel with one or more of the series connected FETs for implementing the logic function. A pair of FETs are connected to provide an output inverter with two series diodes for level shift. A coupling capacitor may be employed with a further FET to provide level shifting required between the inverter and the logic circuit output terminal. These circuits may be cascaded to form a domino chain.

  18. Design and implementation of dynamic hybrid Honeypot network

    NASA Astrophysics Data System (ADS)

    Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang

    2013-05-01

    The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.

  19. Dynamic damping control: Implementation issues and simulation results

    SciTech Connect

    Anderson, R.J.

    1989-01-01

    Computed torque algorithms are used to compensate for the changing dynamics of robot manipulators in order to ensure that a constant level of damping is maintained for all configurations. Unfortunately, there are three significant problems with existing computed torque algorithms. First, they are nonpassive and can lead to unstable behavior; second, they make inefficient use of actuator capability; and third, they cannot be used to maintain a constant end-effector stiffness for force control tasks. Recently, we introduced a new control algorithm for robots which, like computed torque, uses a model of the manipulator's dynamics to maintain a constant level of damping in the system, but does so passively. This new class of passive control algorithms has guaranteed stability properties, utilizes actuators more effectively, and can also be used to maintain constant end-effector stiffness. In this paper, this approach is described in detail, implementation issues are discussed, and simulation results are given. 15 refs., 6 figs., 2 tabs.

  20. Improving on-wafer CD correlation analysis using advanced diagnostics and across-wafer light-source monitoring

    NASA Astrophysics Data System (ADS)

    Alagna, Paolo; Zurita, Omar; Rechtsteiner, Gregory; Lalovic, Ivan; Bekaert, Joost

    2014-04-01

    With the implementation of multi-patterning ArF-immersion for sub 20nm integrated circuits (IC), advances in equipment monitoring and control are needed to support on-wafer yield performance. These in-situ equipment monitoring improvements, along with advanced litho-cell corrections based on on-wafer measurements, enable meeting stringent overlay and CD control requirements for advanced lithography patterning. The importance of light-source performance on lithography pattering (CD and overlay) has been discussed in previous publications.[1-3] Recent developments of Cymer ArF light-source metrology and on-board monitoring enable end-users to detect, for each exposed wafer, changes in the near-field and far-field spatial profiles and polarization performance, [4-6] in addition to the key `optical' scalar parameters, such as bandwidth, wavelength and energy. The major advantage of this capability is that the key performance metrics are sampled at rates matched to wafer performance, e.g. every exposure field across the wafer, which is critical for direct correlation with on-wafer performance for process control and excursion detection.

  1. Automated Product Test Wafer Procedure

    NASA Astrophysics Data System (ADS)

    Brown, Andrew; Minvielle, Anna; Salugsugan, Anita

    1987-04-01

    An automated test wafer procedure has been developed using the KLA 2020 wafer inspector to measure registration and critical dimensions on production wafers. The procedure reduces operator interactions to loading the wafer and entering information for wafer identification. The analysis of the registration data is performed on a PC using the methods established by Perloff to determine both intrafield and grid errors. These results are then used to correct the stepper. CD data is also analyzed by the program and corrections to the exposure time are calculated. It was found that the KLA 2020 is as much as 10 times faster and 4 times more precise in obtaining registration data then an operator reading optical verniers on a microscope. Due to the high precision of the reading, the analysis does not need a large number of readings to obtain precise and accurate stepper corrections. Further, significant improvements can be obtained by adding registration targets to measure the intrafield errors. Using the KLA 2020 and computer analysis we have demonstrated an ability to reduce the errors for a manually aligned run to a one sigma distribution of 0.09 um for x and y translation, 0.4 PPM for scaling and orthogonality, and 2.3 PPM for rotation from the first test wafer for a GCA 6100. Nearly all of this variation is due to operator misalignment or the inability of the stepper to correct the errors. The corrections with this technique measuring the same wafer are precise to + 0.01 um in translation and + 0.5 PPM for rotation, scaling, and orthogonality. It has also been shown that a simple linear equation can be used to correct exposure time, even when a process is not tightly controlled.

  2. A practical approach to LWIR wafer-level optics for thermal imaging systems

    NASA Astrophysics Data System (ADS)

    Symmons, Alan; Pini, Ray

    2013-06-01

    The development and implementation of wafer level packaging for commercial microbolometers has opened the pathway towards full wafer-based thermal imaging systems. The next challenge in development is moving from discrete element LWIR imaging systems to a wafer based optical system, similar to lens assemblies found in cell phone cameras. This paper will compare a typical high volume thermal imaging design manufactured from discrete lens elements to a similar design optimized for manufacture through a wafer based approach. We will explore both performance and cost tradeoffs as well as review the manufacturability of all designs.

  3. Wafer characteristics via reflectometry and wafer processing apparatus and method

    DOEpatents

    Sopori, Bhushan L.

    2007-07-03

    An exemplary system includes a measuring device to acquire non-contact thickness measurements of a wafer and a laser beam to cut the wafer at a rate based at least in part on one or more thicknesses measurements. An exemplary method includes illuminating a substrate with radiation, measuring at least some radiation reflected from the substrate, determining one or more cutting parameters based at least in part on the measured radiation and cutting the substrate using the one or more cutting parameters. Various other exemplary methods, devices, systems, etc., are also disclosed.

  4. Temperature switching waves in a silicon wafer on lamp-based heating

    NASA Astrophysics Data System (ADS)

    Ovcharov, Vladimir V.; Kurenya, Alexey L.; Rudakov, Valery I.; Prigara, Valeriya P.

    2016-12-01

    The dynamic properties of a silicon wafer thermally heated up under a bistable regime in a lamp-based reactor are simulated with regard to an optical non-gomogeneity as a nucleus of a high-temperature phase. The optical non-gomogeneity is represented by a doped layer region on the surface of the wafer imposed by radiation. It is shown that under these conditions temperature switching waves are formed in the wafer. Experimental verification of propagating the switching waves of temperature is obtained at the silicon wafer transition derived from the lower-temperature state to its upper-temperature state and the velocity of the waves is evaluated.

  5. Heating device for semiconductor wafers

    DOEpatents

    Vosen, Steven R.

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  6. Heating device for semiconductor wafers

    DOEpatents

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  7. Automated Dynamic Demand Response Implementation on a Micro-grid

    SciTech Connect

    Kuppannagari, Sanmukh R.; Kannan, Rajgopal; Chelmis, Charalampos; Prasanna, Viktor K.

    2016-11-16

    In this paper, we describe a system for real-time automated Dynamic and Sustainable Demand Response with sparse data consumption prediction implemented on the University of Southern California campus microgrid. Supply side approaches to resolving energy supply-load imbalance do not work at high levels of renewable energy penetration. Dynamic Demand Response (D2R) is a widely used demand-side technique to dynamically adjust electricity consumption during peak load periods. Our D2R system consists of accurate machine learning based energy consumption forecasting models that work with sparse data coupled with fast and sustainable load curtailment optimization algorithms that provide the ability to dynamically adapt to changing supply-load imbalances in near real-time. Our Sustainable DR (SDR) algorithms attempt to distribute customer curtailment evenly across sub-intervals during a DR event and avoid expensive demand peaks during a few sub-intervals. It also ensures that each customer is penalized fairly in order to achieve the targeted curtailment. We develop near linear-time constant-factor approximation algorithms along with Polynomial Time Approximation Schemes (PTAS) for SDR curtailment that minimizes the curtailment error defined as the difference between the target and achieved curtailment values. Our SDR curtailment problem is formulated as an Integer Linear Program that optimally matches customers to curtailment strategies during a DR event while also explicitly accounting for customer strategy switching overhead as a constraint. We demonstrate the results of our D2R system using real data from experiments performed on the USC smartgrid and show that 1) our prediction algorithms can very accurately predict energy consumption even with noisy or missing data and 2) our curtailment algorithms deliver DR with extremely low curtailment errors in the 0.01-0.05 kWh range.

  8. SVX3 Six Inch Wafer Failure Report

    SciTech Connect

    Yarema, R.

    1999-05-01

    In 1997 an order was placed with Honeywell for 265 four inch SVX3 wafers. After the initial delivery, the processing line at Honeywell was switched to 6 inch wafers. It was quickly apparent that there were serious problems on the 6 inch wafers which were not seen on the 4 inch wafers. Wafers from one of the 6 inch lots generally have a high yield and do not exhibit the center of the wafer via problem. It is not know if bad vias will recover or good vias go bad with time, temperature and radiation.

  9. Dynamics of the public concern and risk communication program implementation.

    PubMed

    Zaryabova, Victoria; Israel, Michel

    2015-09-01

    The public concern about electromagnetic field (EMF) exposure varies due to different reasons. A part of them are connected with the better and higher quality of information that people receive from science, media, Internet, social networks, industry, but others are based on good communication programs performed by the responsible institutions, administration and persons. Especially, in Bulgaria, public concern follows interesting changes, some of them in correlation with the European processes of concern, but others following the economic and political processes in the country. Here, we analyze the dynamics of the public concern over the last 10 years. Our explanation of the decrease of the people's complaints against EMF exposure from base stations for mobile communication is as a result of our risk communication program that is in implementation for >10 years.

  10. Overview of recent direct wafer bonding advances and applications

    NASA Astrophysics Data System (ADS)

    Moriceau, H.; Rieutord, F.; Fournel, F.; Le Tiec, Y.; Di Cioccio, L.; Morales, C.; Charvet, A. M.; Deguet, C.

    2010-12-01

    Direct wafer bonding processes are being increasingly used to achieve innovative stacking structures. Many of them have already been implemented in industrial applications. This article looks at direct bonding mechanisms, processes developed recently and trends. Homogeneous and heterogeneous bonded structures have been successfully achieved with various materials. Active, insulating or conductive materials have been widely investigated. This article gives an overview of Si and SiO2 direct wafer bonding processes and mechanisms, silicon-on-insulator type bonding, diverse material stacking and the transfer of devices. Direct bonding clearly enables the emergence and development of new applications, such as for microelectronics, microtechnologies, sensors, MEMs, optical devices, biotechnologies and 3D integration.

  11. Dynamic partial reconfiguration of logic controllers implemented in FPGAs

    NASA Astrophysics Data System (ADS)

    Bazydło, Grzegorz; Wiśniewski, Remigiusz

    2016-09-01

    Technological progress in recent years benefits in digital circuits containing millions of logic gates with the capability for reprogramming and reconfiguring. On the one hand it provides the unprecedented computational power, but on the other hand the modelled systems are becoming increasingly complex, hierarchical and concurrent. Therefore, abstract modelling supported by the Computer Aided Design tools becomes a very important task. Even the higher consumption of the basic electronic components seems to be acceptable because chip manufacturing costs tend to fall over the time. The paper presents a modelling approach for logic controllers with the use of Unified Modelling Language (UML). Thanks to the Model Driven Development approach, starting with a UML state machine model, through the construction of an intermediate Hierarchical Concurrent Finite State Machine model, a collection of Verilog files is created. The system description generated in hardware description language can be synthesized and implemented in reconfigurable devices, such as FPGAs. Modular specification of the prototyped controller permits for further dynamic partial reconfiguration of the prototyped system. The idea bases on the exchanging of the functionality of the already implemented controller without stopping of the FPGA device. It means, that a part (for example a single module) of the logic controller is replaced by other version (called context), while the rest of the system is still running. The method is illustrated by a practical example by an exemplary Home Area Network system.

  12. Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo

    2014-03-01

    While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.

  13. Granular Flow and Dynamics of Lunar Simulants in Excavating Implements

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Wilkinson, R. Allen

    2010-01-01

    The exploration of the lunar surface will rely on properly designed excavation equipment for surface preparations and for collection of lunar regolith in In-Situ Resource Utilization (ISRU) processes. Performance efficiency, i.e minimizing loading forces while maximizing material collection, and mass and volume reductions are major design goals. The NASA Glenn Research Center has embarked on an experimental program to determine the flow characteristics and dynamic forces produced by excavation operations using various excavator bucket designs. A new large scale soil bin facility, 2.27 m x 5.94 m x 0.76 m (nominally 8 ft. x 20 ft. x 27 in.) in size, capable of accommodating moderately large test implements was used for the simulations of lunar operations. The soil bin is filled with GRC-3simulant (a mixture of industrial sands and silt with a particle size distribution and the bulk mechanical (shear) strength representative of an average of lunar regolith from different regions) and uses motorized horizontal rails and a vertical actuator to drive the implement through the lunar simulant soil. A six-axis load cell and encoders provide well resolved measurements of the three dimensional forces and torques and motion of the bucket. In addition, simultaneous video allows for the analysis of the flow behavior and structure formation of the regolith during excavation. The data may be useful in anchoring soil mechanic models and to provide engineering data for design consideration.

  14. Implementation of Dynamic Smart Decision Model for Vertical Handoff

    NASA Astrophysics Data System (ADS)

    Sahni, Nidhi

    2010-11-01

    International Mobile Telecommunications-Advanced (IMT Advanced), better known as 4G is the next level of evolution in the field of wireless communications. 4G Wireless networks enable users to access information anywhere, anytime, with a seamless connection to a wide range of information and services, and receiving a large volume of information, data, pictures, video and thus increasing the demand for High Bandwidth and Signal Strength. The mobility among various networks is achieved through Vertical Handoff. Vertical handoffs refer to the automatic failover from one technology to another in order to maintain communication. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the "best" available network at "best" time for handoff. In this paper, we implemented the proposed Dynamic and Smart Decision model to decide the "best" network interface and "best" time moment to handoff. The proposed model implementation not only demonstrates the individual user needs but also improve the whole system performance i.e. Quality of Service by reducing the unnecessary handoffs and maintain mobility.

  15. Granular Flow and Dynamics of Lunar Simulants in Excavating Implements

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Wilkinson, R. Allen

    2010-01-01

    The exploration of the lunar surface will rely on properly designed excavation equipment for surface preparations and for collection of lunar regolith in In-Situ Resource Utilization (ISRU) processes. Performance efficiency, i.e minimizing loading forces while maximizing material collection, and mass and volume reductions are major design goals. The NASA Glenn Research Center has embarked on an experimental program to determine the flow characteristics and dynamic forces produced by excavation operations using various excavator bucket designs. A new large scale soil bin facility, 2.27 m x 5.94 m x 0.76 m (nominally 8 ft. x 20 ft. x 27 in.) in size, capable of accommodating moderately large test implements was used for the simulations of lunar operations. The soil bin is filled with GRC-3simulant (a mixture of industrial sands and silt with a particle size distribution and the bulk mechanical (shear) strength representative of an average of lunar regolith from different regions) and uses motorized horizontal rails and a vertical actuator to drive the implement through the lunar simulant soil. A six-axis load cell and encoders provide well resolved measurements of the three dimensional forces and torques and motion of the bucket. In addition, simultaneous video allows for the analysis of the flow behavior and structure formation of the regolith during excavation. The data may be useful in anchoring soil mechanic models and to provide engineering data for design consideration.

  16. Smoother Scribing of Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1986-01-01

    Proposed new tool used to scribe silicon wafers into chips more smoothly than before. New scriber produces surface that appears ductile. Scribed groove cuts have relatively smooth walls. Scriber consists of diamond pyramid point on rigid shaft. Ethanol flows through shaft and around point, like ink in ballpoint pen. Ethanol has significantly different effect for scribing silicon than water, used in conventional diamond scribers.

  17. Smoother Scribing of Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1986-01-01

    Proposed new tool used to scribe silicon wafers into chips more smoothly than before. New scriber produces surface that appears ductile. Scribed groove cuts have relatively smooth walls. Scriber consists of diamond pyramid point on rigid shaft. Ethanol flows through shaft and around point, like ink in ballpoint pen. Ethanol has significantly different effect for scribing silicon than water, used in conventional diamond scribers.

  18. Characterizing SOI Wafers By Use Of AOTF-PHI

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Li, Guann-Pyng; Zang, Deyu

    1995-01-01

    Developmental nondestructive method of characterizing layers of silicon-on-insulator (SOI) wafer involves combination of polarimetric hyperspectral imaging by use of acousto-optical tunable filters (AOTF-PHI) and computational resources for extracting pertinent data on SOI wafers from polarimetric hyperspectral images. Offers high spectral resolution and both ease and rapidity of optical-wavelength tuning. Further efforts to implement all of processing of polarimetric spectral image data in special-purpose hardware for sake of procesing speed. Enables characterization of SOI wafers in real time for online monitoring and adjustment of production. Also accelerates application of AOTF-PHI to other applications in which need for high-resolution spectral imaging, both with and without polarimetry.

  19. Characterizing SOI Wafers By Use Of AOTF-PHI

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Li, Guann-Pyng; Zang, Deyu

    1995-01-01

    Developmental nondestructive method of characterizing layers of silicon-on-insulator (SOI) wafer involves combination of polarimetric hyperspectral imaging by use of acousto-optical tunable filters (AOTF-PHI) and computational resources for extracting pertinent data on SOI wafers from polarimetric hyperspectral images. Offers high spectral resolution and both ease and rapidity of optical-wavelength tuning. Further efforts to implement all of processing of polarimetric spectral image data in special-purpose hardware for sake of procesing speed. Enables characterization of SOI wafers in real time for online monitoring and adjustment of production. Also accelerates application of AOTF-PHI to other applications in which need for high-resolution spectral imaging, both with and without polarimetry.

  20. WaferOptics® mass volume production and reliability

    NASA Astrophysics Data System (ADS)

    Wolterink, E.; Demeyer, K.

    2010-05-01

    The Anteryon WaferOptics® Technology platform contains imaging optics designs, materials, metrologies and combined with wafer level based Semicon & MEMS production methods. WaferOptics® first required complete new system engineering. This system closes the loop between application requirement specifications, Anteryon product specification, Monte Carlo Analysis, process windows, process controls and supply reject criteria. Regarding the Anteryon product Integrated Lens Stack (ILS), new design rules, test methods and control systems were assessed, implemented, validated and customer released for mass production. This includes novel reflowable materials, mastering process, replication, bonding, dicing, assembly, metrology, reliability programs and quality assurance systems. Many of Design of Experiments were performed to assess correlations between optical performance parameters and machine settings of all process steps. Lens metrologies such as FFL, BFL, and MTF were adapted for wafer level production and wafer mapping was introduced for yield management. Test methods for screening and validating suitable optical materials were designed. Critical failure modes such as delamination and popcorning were assessed and modeled with FEM. Anteryon successfully managed to integrate the different technologies starting from single prototypes to high yield mass volume production These parallel efforts resulted in a steep yield increase from 30% to over 90% in a 8 months period.

  1. NREL Core Program; Session: Wafer Silicon (Presentation)

    SciTech Connect

    Wang, Q.

    2008-04-01

    This project supports the Solar America Initiative by working on: (1) wafer Si accounts for 92% world-wide solar cell production; (2) research to fill the industry R and D pipeline for the issues in wafer Si; (3) development of industry collaborative research; (4) improvement of NREL tools and capabilities; and (5) strengthen US wafer Si research.

  2. Wafering economies for industrialization from a wafer manufacturer's viewpoint

    NASA Technical Reports Server (NTRS)

    Rosenfield, T. P.; Fuerst, F. P.

    1982-01-01

    The key technical limitations which inhibit the lowering of value-added costs for state-of-the-art wafering techniques are assessed. From the best experimental results to date, a projection was made to identify those parts of each system which need to be developed in order to meet or improve upon the value-added cost reduction necessary for $0.70/Wp photovoltaics modules.

  3. Wafering economies for industrialization from a wafer manufacturer's viewpoint

    NASA Astrophysics Data System (ADS)

    Rosenfield, T. P.; Fuerst, F. P.

    1982-02-01

    The key technical limitations which inhibit the lowering of value-added costs for state-of-the-art wafering techniques are assessed. From the best experimental results to date, a projection was made to identify those parts of each system which need to be developed in order to meet or improve upon the value-added cost reduction necessary for $0.70/Wp photovoltaics modules.

  4. Performance of a 10 Gbps FSO System Implementing Novel Beam Tracking a Dynamic Buffering Modem

    NASA Technical Reports Server (NTRS)

    Kiriazes, John; Valencia, J. Emilio; Peach, Robert; Visone, Chris; Burdge, Geoffrey; Vickers, John; Leclerc, Troy; Sauer, Paul; Andrews, Larry; Phillips, Ron

    2012-01-01

    A 10 Gbps Free space optical (FSO) system implements beam tracking, a high dynamic range optical receiver, and a dynamic buffering packet modem. Performance was characterized at the 4.5 km Shuttle Landing Facility at Kennedy Space Center Florida.

  5. Temperature Dependent Electrical Properties of PZT Wafer

    NASA Astrophysics Data System (ADS)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  6. Implementation of enhanced dynamic wedge in the focus rtp system.

    PubMed

    Miften, M; Wiesmeyer, M; Beavis, A; Takahashi, K; Broad, S

    2000-01-01

    The FOCUS RTP system implementation of Varian's enhanced dynamic wedge (EDW) is presented. Calculations of both dose distributions and wedge factors (WFs) are based on segmented treatment tables (STTs). Calculating dose requires a "transmission matrix" derived from an STT to model the modified fluence from the source. The dose calculation is then performed using either the Clarkson or convolution/superposition algorithms. An initial "primary dose/monitor unit (MU) fraction" WF estimate at the weight point of symmetric and asymmetric fields is calculated from the STT as the ratio of MU delivered on the axis of the weight point divided by total MU delivered for the treatment field. In our approach, we go beyond this initial estimate with a "scatter dose" correction. This requires measured 60 degrees WFs for 5 fields. Scatter corrections derived from measured WFs are interpolated for other wedge angles and field sizes in much the same way as arbitrary wedge angle STTs are derived from a "golden STT" using the "ratio of tangents" formalism. Dose comparisons with measured distributions show good agreement to within 3% or 3 mm for 6-MV beams and all EDW angles. Agreement with measurements to within 1% is obtained for WFs in all symmetric and asymmetric fields for 6- and 10-MV beams. For large wedge angles and field sizes, this represents a significant improvement over the 3% to 4% errors often observed using the MU fraction model alone.

  7. FPGA Implementation of Discrete-Time Neuronal Network for Dynamic Image Segmentation

    NASA Astrophysics Data System (ADS)

    Fujimoto, Ken'ichi; Musashi, Mio; Yoshinaga, Tetsuya

    We have developed a discrete-time dynamical system for dynamic image segmentation. It consists of a global inhibitor and modified chaotic neurons that can generate oscillatory responses. Dynamic image segmentation is performed using its oscillatory responses. This letter presents an implementation of our system in a field programmable gate array (FPGA) device and a successful result of dynamic image segmentation.

  8. Support apparatus for semiconductor wafer processing

    DOEpatents

    Griffiths, Stewart K.; Nilson, Robert H.; Torres, Kenneth J.

    2003-06-10

    A support apparatus for minimizing gravitational stress in semiconductor wafers, and particularly silicon wafers, during thermal processing. The support apparatus comprises two concentric circular support structures disposed on a common support fixture. The two concentric circular support structures, located generally at between 10 and 70% and 70 and 100% and preferably at 35 and 82.3% of the semiconductor wafer radius, can be either solid rings or a plurality of spaced support points spaced apart from each other in a substantially uniform manner. Further, the support structures can have segments removed to facilitate wafer loading and unloading. In order to withstand the elevated temperatures encountered during semiconductor wafer processing, the support apparatus, including the concentric circular support structures and support fixture can be fabricated from refractory materials, such as silicon carbide, quartz and graphite. The claimed wafer support apparatus can be readily adapted for use in either batch or single-wafer processors.

  9. Wafer scale oblique angle plasma etching

    DOEpatents

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  10. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOEpatents

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H; Peterson, Tracy C; Shul, Randy J; Ahlers, Catalina; Plut, Thomas A; Patrizi, Gary A

    2013-12-03

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  11. Leading Dynamic Schools: How to Create and Implement Ethical Policies

    ERIC Educational Resources Information Center

    Rallis, Sharon F.; Rossman, Gretchen B.; Cobb, Casey D.; Reagan, Timothy G.; Kuntz, Aaron

    2007-01-01

    This companion book to "Principals of Dynamic Schools" and "Dynamic Teachers" brings to life the process of making and enacting educational policy and helps decision makers evaluate, interpret, and analyze the policies that govern their schools. In accessible language, this book presents educational leaders with a conceptual framework for…

  12. Leading Dynamic Schools: How to Create and Implement Ethical Policies

    ERIC Educational Resources Information Center

    Rallis, Sharon F.; Rossman, Gretchen B.; Cobb, Casey D.; Reagan, Timothy G.; Kuntz, Aaron

    2007-01-01

    This companion book to "Principals of Dynamic Schools" and "Dynamic Teachers" brings to life the process of making and enacting educational policy and helps decision makers evaluate, interpret, and analyze the policies that govern their schools. In accessible language, this book presents educational leaders with a conceptual framework for…

  13. Stress Voiding During Wafer Processing

    SciTech Connect

    Yost, F.G.

    1999-03-01

    Wafer processing involves several heating cycles to temperatures as high as 400 C. These thermal excursions are known to cause growth of voids that limit reliability of parts cut from the wafer. A model for void growth is constructed that can simulate the effect of these thermal cycles on void growth. The model is solved for typical process steps and the kinetics and extent of void growth are determined for each. It is shown that grain size, void spacing, and conductor line width are very important in determining void and stress behavior. For small grain sizes, stress relaxation can be rapid and can lead to void shrinkage during subsequent heating cycles. The effect of rapid quenching from process temperatures is to suppress void growth but induce large remnant stress in the conductor line. This stress can provide the driving force for void growth during storage even at room temperature. For isothermal processes the model can be solved analytically and estimates of terminal void size a nd lifetime are obtained.

  14. An Approach for Dynamic Optimization of Prevention Program Implementation in Stochastic Environments

    NASA Astrophysics Data System (ADS)

    Kang, Yuncheol; Prabhu, Vittal

    The science of preventing youth problems has significantly advanced in developing evidence-based prevention program (EBP) by using randomized clinical trials. Effective EBP can reduce delinquency, aggression, violence, bullying and substance abuse among youth. Unfortunately the outcomes of EBP implemented in natural settings usually tend to be lower than in clinical trials, which has motivated the need to study EBP implementations. In this paper we propose to model EBP implementations in natural settings as stochastic dynamic processes. Specifically, we propose Markov Decision Process (MDP) for modeling and dynamic optimization of such EBP implementations. We illustrate these concepts using simple numerical examples and discuss potential challenges in using such approaches in practice.

  15. Preparation and Characterization of PZT Wafers

    NASA Astrophysics Data System (ADS)

    Seal, A.; Rao, B. S. S. Chandra; Kamath, S. V.; Sen, A.; Maiti, H. S.

    2008-07-01

    Piezoelectric materials have recently attracted a lot of attention for ultrasonic structural health monitoring (shm) in aerospace, defence and civilian sectors, where they can act as both actuators and sensors. Incidentally, piezoelectric materials in the form of wafers (pwas-piezoelectric wafer active sensor, approx. 5-10 mm square and 0.2-0.3 mm thickness) are inexpensive, non intrusive and non-resonant wide band devices that can be surface-mounted on existing structures, inserted between the layers of lap joints or embedded inside composite materials. The material of choice for piezoelectric wafers is lead zirconate titanate (PZT) of composition close to morphotropic phase boundary [pb(zr0.52 ti0.48)o3]. However, an excess pbo is normally added to pzt as a densification aid and also to make up for the lead loss during high temperature sintering. Hence, it is of paramount importance to know how the shift of the lead content from the morphotropic composition affects the piezoelectric and mechanical properties of the sintered wafers, keeping in view the importance of mechanical properties of wafers in shm. In the present study, we observed that with the increase in the lead content of the sintered wafers, the dielectric and piezoelectric constants decreased. However, the elastic modulus, hardness and fracture toughness of the wafers increased with increasing lead content in the composition. Hence, the lead content in the sintered wafers should be optimized to get acceptable piezoelectric and mechanical

  16. On the feasibility of through-wafer optical interconnects for hybrid wafer-scale-integrated architectures

    NASA Astrophysics Data System (ADS)

    Hornak, L. A.; Tewksbury, S. K.

    1987-07-01

    A method, compatible with VLSI processing, is described which makes it possible to fabricate vertical through-wafer optical interconnects for hybrid multiwafer wafer-scale-integrated (WSI) architectures. Using optical devices operating at wavelengths beyond the Si absorption cutoff, a low-loss through-the-wafer propagation between WSI circuit planes can be achieved over the distances of about 1 mm with the interstitial Si wafers as part of the interconnect 'free-space' transmission medium. VLSI-process-compatible SiO2 Fresnel phase-reversal zone plate arrays were fabricated. Initial results show that a 400-percent improvement in optical power coupling through the wafer was obtained.

  17. Methane production using resin-wafer electrodeionization

    DOEpatents

    Snyder, Seth W; Lin, YuPo; Urgun-Demirtas, Meltem

    2014-03-25

    The present invention provides an efficient method for creating natural gas including the anaerobic digestion of biomass to form biogas, and the electrodeionization of biogas to form natural gas and carbon dioxide using a resin-wafer deionization (RW-EDI) system. The method may be further modified to include a wastewater treatment system and can include a chemical conditioning/dewatering system after the anaerobic digestion system. The RW-EDI system, which includes a cathode and an anode, can either comprise at least one pair of wafers, each a basic and acidic wafer, or at least one wafer comprising of a basic portion and an acidic portion. A final embodiment of the RW-EDI system can include only one basic wafer for creating natural gas.

  18. Gallium Arsenide wafer scale integration

    NASA Astrophysics Data System (ADS)

    McDonald, J. F.; Taylor, G.; Steinvorth, R.; Donlan, B.; Bergendahl, A. S.

    1985-08-01

    Gallium Arsenide (GaAs) digital MESFET technology has recently begun to appear in the semiconductor marketplace. The initial commercial offerings are at the small to medium scale integration levels. The high speed of these parts would seem to be very attractive for designers of high performance signal processing equipment. Persistent yield problems, however, have prevented the appearance of large scale integrated circuits. As a result, intrapackage and interpackage signal propagation problems such as coupling, parasitics and delay are likely to negate much of the benefits of the fast MESFET logic devices for large systems constructed with such small scale building blocks. An early packaging concept, Wafer Scale Integration (WSI), which could possibly be used to address some of these limitations is reexamined.

  19. The Empowerment Dynamic: Planning and Implementing a Support Group Network.

    ERIC Educational Resources Information Center

    Stephens, Robin; Haley, Pat

    This handbook describes how to plan and implement a support group for disabled youth in transition from school to work. It was developed from the experiences of a 3-year model program entitled Employability Support Network of Disabled Youth (ESN) which used support groups to accomplish its primary goal of creating "employability readiness" for…

  20. Influence of Internal Electric Field on the Recombination Dynamics of Localized Excitons in an InGaN Double-Quantum-Well Laser Diode Wafer Operated at 450 nm

    NASA Astrophysics Data System (ADS)

    Onuma, Takeyoshi; Chichibu, Shigefusa F.; Aoyama, Toyomi; Nakajima, Kiyomi; Ahmet, Parhat; Azuhata, Takashi; Chikyow, Toyohiro; Sota, Takayuki; Nagahama, Shin-ichi; Mukai, Takashi

    2003-12-01

    Optical and structural properties of an InGaN double-quantum-well (DQW) laser diode (LD) wafer that lased at 450 nm were investigated to discuss an enormous impact of a polarization-induced electric field on the recombination dynamics in InGaN quantum structures. The quantum-well (QW) structure was shown to have the well thickness as thin as approximately 1 nm and InN molar fraction x of approximately 14%. The gross effective electric field in the QW (FQW) was estimated to be 490 kV/cm from the Franz-Keldysh oscillation (FKO) period in the electroreflectance (ER) spectrum, implying that an internal piezoelectric field (Fpiz) of approximately 1.4 MV/cm was cancelled by the pn junction built-in field (Fbi) and Coulomb screening due to carriers in the DQW. The magnitude of FQW can be further weakened by applying reverse bias (VR) on the junction; the decrease in the photoluminescence (PL) lifetime at low temperature measured under VR was explained to be due to a recovery of electron-hole wavefunction overlap for small VR (|VR|<4 V), and due mainly to the tunneling escape of carriers through the barriers for larger VR. By applying an appropriate VR smaller than 4 V, electron-hole wavefunction overlap, which had been separated vertically along the c-axis due to quantum-confined Stark effect, could be partially recovered, and then the time-resolved PL signals exhibited a less-pronounced stretched exponential decay, giving a scaling parameter (β) of 0.85 and effective in-plane localization depth (E0) of 40-50 meV for the spontaneous emission. These values were closer to those of much homogeneous QWs compared to those reported previously for InGaN QWs having similar InN molar fractions. The use of very thin QWs is considered to bring easier Coulomb screening of FQW and population inversion under high excitation conditions.

  1. Implementation of the dynamic laser goniometer for noncontact measurement of angular movement

    NASA Astrophysics Data System (ADS)

    Bohkman, Eugene; Burnashev, Mikhail; Filatov, Yuri; Pavlov, Petr

    2016-07-01

    The dynamic laser goniometer (LG) implementation for noncontact measurements of an object's angular position is presented. One of the possible implementations involves determining the time dependence of the scanning mirror's angular position. Another application is aimed at determining the oscillatory movement parameters on the test table. The results obtained in the course of the research show that the dynamic LG makes it possible to calibrate various kinds of test beds making angular oscillations or angular movement of arbitrary law.

  2. Implementing a Dynamic Database-Driven Course Using LAMP

    ERIC Educational Resources Information Center

    Laverty, Joseph Packy; Wood, David; Turchek, John

    2011-01-01

    This paper documents the formulation of a database driven open source architecture web development course. The design of a web-based curriculum faces many challenges: a) relative emphasis of client and server-side technologies, b) choice of a server-side language, and c) the cost and efficient delivery of a dynamic web development, database-driven…

  3. A system dynamics evaluation model: implementation of health information exchange for public health reporting.

    PubMed

    Merrill, Jacqueline A; Deegan, Michael; Wilson, Rosalind V; Kaushal, Rainu; Fredericks, Kimberly

    2013-06-01

    To evaluate the complex dynamics involved in implementing electronic health information exchange (HIE) for public health reporting at a state health department, and to identify policy implications to inform similar implementations. Qualitative data were collected over 8 months from seven experts at New York State Department of Health who implemented web services and protocols for querying, receipt, and validation of electronic data supplied by regional health information organizations. Extensive project documentation was also collected. During group meetings experts described the implementation process and created reference modes and causal diagrams that the evaluation team used to build a preliminary model. System dynamics modeling techniques were applied iteratively to build causal loop diagrams representing the implementation. The diagrams were validated iteratively by individual experts followed by group review online, and through confirmatory review of documents and artifacts. Three casual loop diagrams captured well-recognized system dynamics: Sliding Goals, Project Rework, and Maturity of Resources. The findings were associated with specific policies that address funding, leadership, ensuring expertise, planning for rework, communication, and timeline management. This evaluation illustrates the value of a qualitative approach to system dynamics modeling. As a tool for strategic thinking on complicated and intense processes, qualitative models can be produced with fewer resources than a full simulation, yet still provide insights that are timely and relevant. System dynamics techniques clarified endogenous and exogenous factors at play in a highly complex technology implementation, which may inform other states engaged in implementing HIE supported by federal Health Information Technology for Economic and Clinical Health (HITECH) legislation.

  4. An SSM-Based Approach to Implement a Dynamic Performance Management System

    NASA Astrophysics Data System (ADS)

    da Piedade Francisco, Roberto; Azevedo, Américo

    This paper underlines how the use of Soft Systems Methodology (SSM) for an efficient planning, implementation and monitoring of a dynamic performance management system supported by a conceptual scheme that enables a conscious and prepared implementation, can provide instances of performance of a collaborative network, and also promote alignment among the partners. A systematic way to implement it and a review on two practical applications in Brazilian collaborative networks of SMEs are also presented.

  5. Effects of wafer noise on the detection of 20-nm defects using optical volumetric inspection

    NASA Astrophysics Data System (ADS)

    Barnes, Bryan M.; Goasmat, Francois; Sohn, Martin Y.; Zhou, Hui; Vladár, András E.; Silver, Richard M.

    2015-01-01

    Patterning imperfections in semiconductor device fabrication may either be noncritical [e.g., line edge roughness (LER)] or critical, such as defects that impact manufacturing yield. As the sizes of the pitches and linewidths decrease in lithography, detection of the optical scattering from killer defects may be obscured by the scattering from other variations, called wafer noise. Understanding and separating these optical signals are critical to reduce false positives and overlooked defects. The effects of wafer noise on defect detection are assessed using volumetric processing on both measurements and simulations with the SEMATECH 9-nm gate intentional defect array. Increases in LER in simulation lead to decreases in signal-to-noise ratios due to wafer noise. Measurement procedures illustrate the potential uses in manufacturing while illustrating challenges to be overcome for full implementation. Highly geometry-dependent, the ratio of wafer noise to defect signal should continue to be evaluated for new process architectures and production nodes.

  6. Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Rhee, S. S.

    1979-01-01

    Several aspects of silicon wafer surface texturizing were studied. A low cost cleaning method that utilizes recycled Freon in an ultrasonic vapor degreaser to remove organic and inorganic contaminants from the surface of silicon wafers as received from silicon suppliers was investigated. The use of clean dry air and high throughout wafer batch drying techniques was shown to lower the cost of wafer drying. A two stage texturizing process was examined for suitability in large scale production. Also, an in-depth gettering study with the two stage texturizing process was performed for the enhancement of solar cell efficiency, minimization of current versus voltage curve dispersion, and improvement in process reproducibility. The 10% efficiency improvement goal was exceeded for the near term implementation of flat plate photovoltaic cost reduction.

  7. Diffusion length and resistivity distribution characteristics of silicon wafer by photoluminescence

    SciTech Connect

    Baek, Dohyun; Lee, Jaehyeong; Choi, Byoungdeog

    2014-10-15

    Highlights: • Analytical photoluminescence efficiency calculation and PL intensity ratio method are developed. • Wafer resistivity and diffusion length characteristics are investigated by PL intensity ratio. • PL intensity is well correlated with resistivity, diffusion length or defect density on wafer measurement. - Abstract: Photoluminescence is a convenient, contactless method to characterize semiconductors. Its use for room-temperature silicon characterization has only recently been implemented. We have developed the PL efficiency theory as a function of substrate doping densities, bulk trap density, photon flux density, and reflectance and compared it with experimental data initially for bulk Si wafers. New developed PL intensity ratio method is able to predict the silicon wafer properties, such as doping densities, minority carrier diffusion length and bulk trap density.

  8. Dynamic Visualizations: How Attraction, Motivation and Communication Affect Streaming Video Tutorial Implementation

    ERIC Educational Resources Information Center

    Boger, Claire

    2011-01-01

    The rapid advancement in the capabilities of computer technologies has made it easier to design and deploy dynamic visualizations in web-based learning environments; yet, the implementation of these dynamic visuals has been met with mixed results. While many guidelines exist to assist instructional designers in the design and application of…

  9. Dynamic Visualizations: How Attraction, Motivation and Communication Affect Streaming Video Tutorial Implementation

    ERIC Educational Resources Information Center

    Boger, Claire

    2011-01-01

    The rapid advancement in the capabilities of computer technologies has made it easier to design and deploy dynamic visualizations in web-based learning environments; yet, the implementation of these dynamic visuals has been met with mixed results. While many guidelines exist to assist instructional designers in the design and application of…

  10. Dynamic Training Elements in a Circuit Theory Course to Implement a Self-Directed Learning Process

    ERIC Educational Resources Information Center

    Krouk, B. I.; Zhuravleva, O. B.

    2009-01-01

    This paper reports on the implementation of a self-directed learning process in a circuit theory course, incorporating dynamic training elements which were designed on the basis of a cybernetic model of cognitive process management. These elements are centrally linked in a dynamic learning frame, created on the monitor screen, which displays the…

  11. A System Dynamics Approach for Information Technology Implementation and Sustainment

    DTIC Science & Technology

    2003-03-01

    Kofron, and Richard Updike , for their financial support and superb system insight during the course of this research. I would also like to thank...Organizational Learning,” Sloan Management Review, Fall:37-50 (1993). 315 Kotter, John P. “Leading Change: Why Transformation Efforts Fail,” Harvard...Sterman, John D., Business Dynamics: Systems Thinking and Modeling for a Complex World, Kingport, McGraw-Hill Companies, Inc., 2000. Tornatzky

  12. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    PubMed

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  13. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  14. Optimization of an integrated and automated macro inspection system for the utilization of wafer color variation detection in a photolithography cluster

    NASA Astrophysics Data System (ADS)

    Lickteig, Stephen J.; Forstner, Thomas W.; Barnett, Anthony R.; Dixon, David S.; Menon, Vinayan C.; Isaacson, Robert L.; Nicholls, Matthew C.; Liu, Yonqiang; Kinikoglu, Pinar

    2006-03-01

    The IBM 300 mm wafer manufacturing line provides a case study for the optimization of an automated macro defect inspection system to accurately flag global wafer color variation. The IBM inspection system was falsely flagging a large number of wafers primarily for global wafer color variation, leading to unacceptable amounts of production volume being placed on hold. A review of the macro inspection system identified several areas for improvement. An investigation into the installed hardware base found a panel behind the beam splitter was introducing noise through reflected light. This panel was replaced with a less reflective material. A review of the failed wafers found that maximum light levels were not achieved across all tools and an improved diffuser plate for the fiber optic output was designed to improve light transmittance. Global wafer color is determined by comparing the scanned wafer image to a "golden" data set, referred to as a "color baselist," which is composed of data from 30 wafers. A review of the recipe baselists revealed that some of the wafer samples did not accurately represent process conditions, and new wafer samples were collected. Finally, a tool-to-tool matching test revealed that the set of weightings given to each of the color parameters in the baselists was not optimized. After implementing the above changes, false global wafer color failures were virtually eliminated.

  15. Analysis of organic contaminants from silicon wafer and disk surfaces by thermal desorption-GC-MS

    NASA Astrophysics Data System (ADS)

    Camenzind, Mark J.; Ahmed, Latif; Kumar, Anurag

    1999-03-01

    Organic contaminants can affect semiconductor wafer processing including gate oxide integrity, polysilicon growth, deep ultraviolet photoresist line-width, and cleaning & etching steps. Organophosphates are known to counter dope silicon wafers. Organic contaminants in disk drives can cause failures due to stiction or buildup on the heads. Therefore, it is important to identify organic contaminants adsorbed on wafer or disk surfaces and find their sources so they can be either completely eliminated or at least controlled. Dynamic headspace TD-GC-MS (Thermal Desorption-Gas Chromatography-Mass Spectrometry) methods are very sensitive and can be used to identify organic contaminants on disks and wafers, in air, or outgassing from running drives or their individual components.

  16. Development of megasonic cleaning for silicon wafers

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1980-01-01

    A cleaning and drying system for processing at least 2500 three in. diameter wafers per hour was developed with a reduction in process cost. The system consists of an ammonia hydrogen peroxide bath in which both surfaces of 3/32 in. spaced, ion implanted wafers are cleaned in quartz carriers moved on a belt past two pairs of megasonic transducers. The wafers are dried in the novel room temperature, high velocity air dryer in the same carriers used for annealing. A new laser scanner was used effectively to monitor the cleaning ability on a sampling basis.

  17. Metal Enhanced Fluorescence on Silicon Wafer Substrates

    PubMed Central

    Gryczynski, I.; Matveeva, E.G.; Sarkar, P.; Bharill, S.; Borejdo, J.; Mandecki, W.; Akopova, I.; Gryczynski, Z.

    2008-01-01

    We report on the fluorescence enhancement induced by silver island film (SIF) deposited on a silicon wafer. The model immunoassay was studied on silvered and unsilvered wafers. The fluorescence brightness of Rhodamine Red X increased about 300% on the SIF, while the lifetime was reduced by several fold and the photostability increased substantially. We discuss potential uses of silicon wafer substrates in multiplex assays in which the fluorescence is enhanced due to the SIF, and the multiplexing is achieved by using micro transponders. PMID:19137060

  18. Three wafer stacking for 3D integration.

    SciTech Connect

    Greth, K. Douglas; Ford, Christine L.; Lantz, Jeffrey W.; Shinde, Subhash L.; Timon, Robert P.; Bauer, Todd M.; Hetherington, Dale Laird; Sanchez, Carlos Anthony

    2011-11-01

    Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

  19. An optimized ultrasound digital beamformer with dynamic focusing implemented on FPGA.

    PubMed

    Almekkawy, Mohamed; Xu, Jingwei; Chirala, Mohan

    2014-01-01

    We present a resource-optimized dynamic digital beamformer for an ultrasound system based on a field-programmable gate array (FPGA). A comprehensive 64-channel receive beamformer with full dynamic focusing is embedded in the Altera Arria V FPGA chip. To improve spatial and contrast resolution, full dynamic beamforming is implemented by a novel method with resource optimization. This was conceived using the implementation of the delay summation through a bulk (coarse) delay and fractional (fine) delay. The sampling frequency is 40 MHz and the beamformer includes a 240 MHz polyphase filter that enhances the temporal resolution of the system while relaxing the Analog-to-Digital converter (ADC) bandwidth requirement. The results indicate that our 64-channel dynamic beamformer architecture is amenable for a low power FPGA-based implementation in a portable ultrasound system.

  20. Enhanced capture rate for haze defects in production wafer inspection

    NASA Astrophysics Data System (ADS)

    Auerbach, Ditza; Shulman, Adi; Rozentsvige, Moshe

    2010-03-01

    Photomask degradation via haze defect formation is an increasing troublesome yield problem in the semiconductor fab. Wafer inspection is often utilized to detect haze defects due to the fact that it can be a bi-product of process control wafer inspection; furthermore, the detection of the haze on the wafer is effectively enhanced due to the multitude of distinct fields being scanned. In this paper, we demonstrate a novel application for enhancing the wafer inspection tool's sensitivity to haze defects even further. In particular, we present results of bright field wafer inspection using the on several photo layers suffering from haze defects. One way in which the enhanced sensitivity can be achieved in inspection tools is by using a double scan of the wafer: one regular scan with the normal recipe and another high sensitivity scan from which only the repeater defects are extracted (the non-repeater defects consist largely of noise which is difficult to filter). Our solution essentially combines the double scan into a single high sensitivity scan whose processing is carried out along two parallel routes (see Fig. 1). Along one route, potential defects follow the standard recipe thresholds to produce a defect map at the nominal sensitivity. Along the alternate route, potential defects are used to extract only field repeater defects which are identified using an optimal repeater algorithm that eliminates "false repeaters". At the end of the scan, the two defect maps are merged into one with optical scan images available for all the merged defects. It is important to note, that there is no throughput hit; in addition, the repeater sensitivity is increased relative to a double scan, due to a novel runtime algorithm implementation whose memory requirements are minimized, thus enabling to search a much larger number of potential defects for repeaters. We evaluated the new application on photo wafers which consisted of both random and haze defects. The evaluation procedure

  1. Improvement of process control using wafer geometry for enhanced manufacturability of advanced semiconductor devices

    NASA Astrophysics Data System (ADS)

    Lee, Honggoo; Lee, Jongsu; Kim, Sang Min; Lee, Changhwan; Han, Sangjun; Kim, Myoungsoo; Kwon, Wontaik; Park, Sung-Ki; Vukkadala, Pradeep; Awasthi, Amartya; Kim, J. H.; Veeraraghavan, Sathish; Choi, DongSub; Huang, Kevin; Dighe, Prasanna; Lee, Cheouljung; Byeon, Jungho; Dey, Soham; Sinha, Jaydeep

    2015-03-01

    Aggressive advancements in semiconductor technology have resulted in integrated chip (IC) manufacturing capability at sub-20nm half-pitch nodes. With this, lithography overlay error budgets are becoming increasingly stringent. The delay in EUV lithography readiness for high volume manufacturing (HVM) and the need for multiple-patterning lithography with 193i technology has further amplified the overlay issue. Thus there exists a need for technologies that can improve overlay errors in HVM. The traditional method for reducing overlay errors predominantly focused on improving lithography scanner printability performance. However, processes outside of the lithography sector known as processinduced overlay errors can contribute significantly to the total overlay at the current requirements. Monitoring and characterizing process-induced overlay has become critical for advanced node patterning. Recently a relatively new technique for overlay control that uses high-resolution wafer geometry measurements has gained significance. In this work we present the implementation of this technique in an IC fabrication environment to monitor wafer geometry changes induced across several points in the process flow, of multiple product layers with critical overlay performance requirement. Several production wafer lots were measured and analyzed on a patterned wafer geometry tool. Changes induced in wafer geometry as a result of wafer processing were related to down-stream overlay error contribution using the analytical in-plane distortion (IPD) calculation model. Through this segmentation, process steps that are major contributors to down-stream overlay were identified. Subsequent process optimization was then isolated to those process steps where maximum benefit might be realized. Root-cause for the within-wafer, wafer-to-wafer, tool-to-tool, and station-to-station variations observed were further investigated using local shape curvature changes - which is directly related to

  2. Implementing efficient dynamic formal verification methods for MPI programs.

    SciTech Connect

    Vakkalanka, S.; DeLisi, M.; Gopalakrishnan, G.; Kirby, R. M.; Thakur, R.; Gropp, W.; Mathematics and Computer Science; Univ. of Utah; Univ. of Illinois

    2008-01-01

    We examine the problem of formally verifying MPI programs for safety properties through an efficient dynamic (runtime) method in which the processes of a given MPI program are executed under the control of an interleaving scheduler. To ensure full coverage for given input test data, the algorithm must take into consideration MPI's out-of-order completion semantics. The algorithm must also ensure that nondeterministic constructs (e.g., MPI wildcard receive matches) are executed in all possible ways. Our new algorithm rewrites wildcard receives to specific receives, one for each sender that can potentially match with the receive. It then recursively explores each case of the specific receives. The list of potential senders matching a receive is determined through a runtime algorithm that exploits MPI's operation ordering semantics. Our verification tool ISP that incorporates this algorithm efficiently verifies several programs and finds bugs missed by existing informal verification tools.

  3. LQR Control of Thin Shell Dynamics: Formulation and Numerical Implementation

    NASA Technical Reports Server (NTRS)

    delRosario, R. C. H.; Smith, R. C.

    1997-01-01

    A PDE-based feedback control method for thin cylindrical shells with surface-mounted piezoceramic actuators is presented. Donnell-Mushtari equations modified to incorporate both passive and active piezoceramic patch contributions are used to model the system dynamics. The well-posedness of this model and the associated LQR problem with an unbounded input operator are established through analytic semigroup theory. The model is discretized using a Galerkin expansion with basis functions constructed from Fourier polynomials tensored with cubic splines, and convergence criteria for the associated approximate LQR problem are established. The effectiveness of the method for attenuating the coupled longitudinal, circumferential and transverse shell displacements is illustrated through a set of numerical examples.

  4. Modelling deformation and fracture in confectionery wafers

    NASA Astrophysics Data System (ADS)

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-01

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  5. Forming electrical interconnections through semiconductor wafers

    NASA Technical Reports Server (NTRS)

    Anthony, T. R.

    1981-01-01

    An information processing system based on CMOS/SOS technology is being developed by NASA to process digital image data collected by satellites. An array of holes is laser drilled in a semiconductor wafer, and a conductor is formed in the holes to fabricate electrical interconnections through the wafers. Six techniques are used to form conductors in the silicon-on-sapphire (SOS) wafers, including capillary wetting, wedge extrusion, wire intersection, electroless plating, electroforming, double-sided sputtering and through-hole electroplating. The respective strengths and weaknesses of these techniques are discussed and compared, with double-sided sputtering and the through-hole plating method achieving best results. In addition, hollow conductors provided by the technique are available for solder refill, providing a natural way of forming an electrically connected stack of SOS wafers.

  6. Modelling deformation and fracture in confectionery wafers

    SciTech Connect

    Mohammed, Idris K.; Charalambides, Maria N.; Williams, J. Gordon; Rasburn, John

    2015-01-22

    The aim of this research is to model the deformation and fracture behaviour of brittle wafers often used in chocolate confectionary products. Three point bending and compression experiments were performed on beam and circular disc samples respectively to determine the 'apparent' stress-strain curves in bending and compression. The deformation of the wafer for both these testing types was observed in-situ within an SEM. The wafer is modeled analytically and numerically as a composite material with a core which is more porous than the skins. X-ray tomography was used to generate a three dimensional volume of the wafer microstructure which was then meshed and used for quantitative analysis. A linear elastic material model, with a damage function and element deletion, was used and the XMT generated architecture was loaded in compression. The output from the FE simulations correlates closely to the load-deflection deformation observed experimentally.

  7. Non-Reciprocal on Wafer Microwave Devices

    DTIC Science & Technology

    2015-05-27

    2010 24-Feb-2015 Approved for Public Release; Distribution Unlimited Final Report: Non- reciprocal on-wafer microwave devices The views, opinions and...ABSTRACT Final Report: Non- reciprocal on-wafer microwave devices Report Title We studied the growth, structural and magnetic properties of the hexagonal...Fal, R. E. Camley. Non- reciprocal devices using attenuated total reflection and thin filmmagnetic layered structures, Journal of Applied Physics

  8. Validating and implementing modified Filinov phase filtration in semiclassical dynamics

    NASA Astrophysics Data System (ADS)

    Church, Matthew S.; Antipov, Sergey V.; Ananth, Nandini

    2017-06-01

    The Mixed Quantum-Classical Initial Value Representation (MQC-IVR) is a recently introduced approximate semiclassical (SC) method for the calculation of real-time quantum correlation functions. MQC-IVR employs a modified Filinov filtration (MFF) scheme to control the overall phase of the SC integrand, extending the applicability of SC methods to complex systems while retaining their ability to accurately describe quantum coherence effects. Here, we address questions regarding the effectiveness of the MFF scheme in combination with SC dynamics. Previous work showed that this filtering scheme is of limited utility in the context of semiclassical wavepacket propagation, but we find that the MFF is extraordinarily powerful in the context of correlation functions. By examining trajectory phase and amplitude contributions to the real-time SC correlation function in a model system, we clearly demonstrate that the MFF serves to reduce noise by damping amplitude only in regions of highly oscillatory phase leading to a reduction in computational effort while retaining accuracy. Further, we introduce a novel and efficient MQC-IVR formulation that allows for linear scaling in computational cost with the total simulation length, a significant improvement over the more-than quadratic scaling exhibited by the original method.

  9. Genesis Ultrapure Water Megasonic Wafer Spin Cleaner

    NASA Technical Reports Server (NTRS)

    Allton, Judith H.; Stansbery, Eileen K.; Calaway, Michael J.; Rodriquez, Melissa C.

    2013-01-01

    A device removes, with high precision, the majority of surface particle contamination greater than 1-micron-diameter in size from ultrapure semiconductor wafer materials containing implanted solar wind samples returned by NASA's Genesis mission. This cleaning device uses a 1.5-liter/minute flowing stream of heated ultrapure water (UPW) with 1- MHz oscillating megasonic pulse energy focused at 3 to 5 mm away from the wafer surface spinning at 1,000 to 10,000 RPM, depending on sample size. The surface particle contamination is removed by three processes: flowing UPW, megasonic cavitations, and centripetal force from the spinning wafer. The device can also dry the wafer fragment after UPW/megasonic cleaning by continuing to spin the wafer in the cleaning chamber, which is purged with flowing ultrapure nitrogen gas at 65 psi (.448 kPa). The cleaner also uses three types of vacuum chucks that can accommodate all Genesis-flown array fragments in any dimensional shape between 3 and 100 mm in diameter. A sample vacuum chuck, and the manufactured UPW/megasonic nozzle holder, replace the human deficiencies by maintaining a consistent distance between the nozzle and wafer surface as well as allowing for longer cleaning time. The 3- to 5-mm critical distance is important for the ability to remove particles by megasonic cavitations. The increased UPW sonication time and exposure to heated UPW improve the removal of 1- to 5-micron-sized particles.

  10. Reticle and wafer CD variation for different dummy pattern

    NASA Astrophysics Data System (ADS)

    Ning, GuoXiang; Buergel, Christian; Ackmann, Paul; Staples, Marc; Thamm, Thomas; Lim, Chin Teong; Leschok, Andre; Roling, Stefan; Zhou, Anthony; Gn, Fang Hong; Richter, Frank

    2012-11-01

    Dummy pattern fill is added to a layout of a reticle for the purpose of raising the pattern-density of specific regions. The pattern-density has also an influence on different process-steps which were performed when manufacturing a reticle (e.g. proximity effect of electron beam exposure process, developer, and etch-processes). Although the reticle processes are set up to compensate the influence of the pattern density, dummy pattern can have an influence onto the reticle CD. When the isolated features become "nested" by insertion of dummy pattern, the reticle CD variation is even larger because nested features exacerbate the proximity effect of an electron beam. Another reason is that the etch ratio as well as the develop dynamics during the reticle manufacturing process are slightly dependent on the local pattern-density of pattern. With different dummy pattern around the main feature, the final reticle CD will be changed. Wafer CD of main feature is also dependant on the surrounding patterns which will induce different boundary conditions for wafer exposure. We have investigated three manufacturing sites for a 28nm first-metal layer reticle. Two of them were manufactured with a comparable process using the same advanced reticle binary blank material. For the third site a different reticle blank material with a relatively thin absorber layer thickness was used which was made with a comparable reticle process. The optical proximity correction (OPC) test patterns were designed with two different dummy patterns. The CD differences of the three reticles will be demonstrated for different dummy pattern and will be discussed individually. All three reticles have been exposed and the respective wafer critical dimension through pitch (CDTP) and linearity performance is demonstrated. Also the line-end performance for two dimensional (2D) structures is shown for the three sites of the reticle. The wafer CD difference for CDTP, linearity, and 2D structures are also

  11. Analyzes Data from Semiconductor Wafers

    SciTech Connect

    Breiland, William G.

    2002-07-23

    This program analyzes reflectance data from semiconductor wafers taken during the deposition or evolution of a thin film, typically via chemical vapor deposition (CVD) or molecular beam epitaxy (MBE). It is used to determine the growth rate and optical constants of the deposited thin films using a virtual interface concept. Growth rates and optical constants of multiple-layer structures is possible by selecting appropriate sections in the reflectance vs time waveform. No prior information or estimates of growth rates and materials properties is required if an absolute reflectance waveform is used. If the optical constants of a thin film are known, then the growth rate may be extracted from a relative reflectance data set. The analysis is valid for either s or p polarized light at any incidence angle and wavelength. The analysis package is contained within an easy-to-use graphical user interface. The program is based on the algorighm described in the following two publications: W.G. Breiland and K.P. Killen, J. Appl. Phys. 78 (1995) 6726, and W. G. Breiland, H.Q. Hou, B.E. Hammons, and J.F. Klem, Proc. XXVIII SOTAPOCS Symp. Electrochem. Soc. San Diego, May 3-8, 1998. It relies on the fact that any multiple-layer system has a reflectance spectrum that is mathematically equivalent to a single-layer thin film on a virtual substrate. The program fits the thin film reflectance with five adjustable parameters: 1) growth rate, 2) real part of complex refractive index, 3) imaginary part of refractive index, 4) amplitude of virtual interface reflectance, 5) phase of virtual interface reflectance.

  12. Modeling human target reaching with an adaptive observer implemented with dynamic neural fields.

    PubMed

    Fard, Farzaneh S; Hollensen, Paul; Heinke, Dietmar; Trappenberg, Thomas P

    2015-12-01

    Humans can point fairly accurately to memorized states when closing their eyes despite slow or even missing sensory feedback. It is also common that the arm dynamics changes during development or from injuries. We propose a biologically motivated implementation of an arm controller that includes an adaptive observer. Our implementation is based on the neural field framework, and we show how a path integration mechanism can be trained from few examples. Our results illustrate successful generalization of path integration with a dynamic neural field by which the robotic arm can move in arbitrary directions and velocities. Also, by adapting the strength of the motor effect the observer implicitly learns to compensate an image acquisition delay in the sensory system. Our dynamic implementation of an observer successfully guides the arm toward the target in the dark, and the model produces movements with a bell-shaped velocity profile, consistent with human behavior data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Porous solid ion exchange wafer for immobilizing biomolecules

    DOEpatents

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  14. Parallel implementation of three-dimensional molecular dynamic simulation for laser-cluster interaction

    SciTech Connect

    Holkundkar, Amol R.

    2013-11-15

    The objective of this article is to report the parallel implementation of the 3D molecular dynamic simulation code for laser-cluster interactions. The benchmarking of the code has been done by comparing the simulation results with some of the experiments reported in the literature. Scaling laws for the computational time is established by varying the number of processor cores and number of macroparticles used. The capabilities of the code are highlighted by implementing various diagnostic tools. To study the dynamics of the laser-cluster interactions, the executable version of the code is available from the author.

  15. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  16. Improvement of focus accuracy on processed wafer

    NASA Astrophysics Data System (ADS)

    Higashibata, Satomi; Komine, Nobuhiro; Fukuhara, Kazuya; Koike, Takashi; Kato, Yoshimitsu; Hashimoto, Kohji

    2013-04-01

    As feature size shrinkage in semiconductor device progress, process fluctuation, especially focus strongly affects device performance. Because focus control is an ongoing challenge in optical lithography, various studies have sought for improving focus monitoring and control. Focus errors are due to wafers, exposure tools, reticles, QCs, and so on. Few studies are performed to minimize the measurement errors of auto focus (AF) sensors of exposure tool, especially when processed wafers are exposed. With current focus measurement techniques, the phase shift grating (PSG) focus monitor 1) has been already proposed and its basic principle is that the intensity of the diffraction light of the mask pattern is made asymmetric by arranging a π/2 phase shift area on a reticle. The resist pattern exposed at the defocus position is shifted on the wafer and shifted pattern can be easily measured using an overlay inspection tool. However, it is difficult to measure shifted pattern for the pattern on the processed wafer because of interruptions caused by other patterns in the underlayer. In this paper, we therefore propose "SEM-PSG" technique, where the shift of the PSG resist mark is measured by employing critical dimension-scanning electron microscope (CD-SEM) to measure the focus error on the processed wafer. First, we evaluate the accuracy of SEM-PSG technique. Second, by applying the SEM-PSG technique and feeding the results back to the exposure, we evaluate the focus accuracy on processed wafers. By applying SEM-PSG feedback, the focus accuracy on the processed wafer was improved from 40 to 29 nm in 3σ.

  17. Cost-Effective Silicon Wafers for Solar Cells: Direct Wafer Enabling Terawatt Photovoltaics

    SciTech Connect

    2010-01-15

    Broad Funding Opportunity Announcement Project: 1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020—from $0.15 per kilowatt hour to less than $0.07. 1366’s process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with today’s state-of-the-art technologies. 1366’s wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366’s technology, the cost of silicon wafers could be reduced by 80%.

  18. Full-field wafer warpage measurement technique

    NASA Astrophysics Data System (ADS)

    Hsieh, H. L.; Lee, J. Y.; Huang, Y. G.; Liang, A. J.; Sun, B. Y.

    2017-06-01

    An innovative moiré technique for full-field wafer warpage measurement is proposed in this study. The wafer warpage measurement technique is developed based on moiré method, Talbot effect, scanning profiling method, stroboscopic, instantaneous phase-shift method, as well as four-step phase shift method, high resolution, high stability and full-field measurement capabilities can be easily achieved. According to the proposed full-field optical configuration, a laser beam is expanded into a collimated beam with a 2-inch diameter and projected onto the wafer surface. The beam is reflected by the wafer surface and forms a moiré fringe image after passing two circular gratings, which is then focused and captured on a CCD camera for computation. The corresponding moiré fringes reflected from the wafer surface are obtained by overlapping the images of the measuring grating and the reference grating. The moiré fringes will shift when wafer warpage occurs. The phase of the moiré fringes will change proportionally to the degree of warpage in the wafer, which can be measured by detecting variations in the phase shift of the moiré fringes in each detection points on the surface of the entire wafer. The phase shift variations of each detection points can be calculated via the instantaneous phase-shift method and the four-step phase-shift method. By adding up the phase shift variations of each detection points along the radii of the circular gratings, the warpage value and surface topography of the wafer can be obtained. Experiments show that the proposed method is capable of obtaining test results similar to that of a commercial sensor, as well as performing accurate measurements under high speed rotation of 1500rpm. As compared to current warpage measurement methods such as the beam optical method, confocal microscopy, laser interferometry, shadow moiré method, and structured light method, this proposed technique has the advantage of full-field measurement, high

  19. Silicon Wafer-Scale Substrate for Microshutters and Detector Arrays

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Franz, David E.; Ewin, Audrey J.; Jhabvala, Christine; Babu, Sachi; Snodgrass, Stephen; Costen, Nicholas; Zincke, Christian

    2009-01-01

    The silicon substrate carrier was created so that a large-area array (in this case 62,000+ elements of a microshutter array) and a variety of discrete passive and active devices could be mounted on a single board, similar to a printed circuit board. However, the density and number of interconnects far exceeds the capabilities of printed circuit board technology. To overcome this hurdle, a method was developed to fabricate this carrier out of silicon and implement silicon integrated circuit (IC) technology. This method achieves a large number of high-density metal interconnects; a 100-percent yield over a 6-in. (approximately equal to 15-cm) diameter wafer (one unit per wafer); a rigid, thermally compatible structure (all components and operating conditions) to cryogenic temperatures; re-workability and component replaceability, if required; and the ability to precisely cut large-area holes through the substrate. A method that would employ indium bump technology along with wafer-scale integration onto a silicon carrier was also developed. By establishing a silicon-based version of a printed circuit board, the objectives could be met with one solution. The silicon substrate would be 2 mm thick to survive the environmental loads of a launch. More than 2,300 metal traces and over 1,500 individual wire bonds are required. To mate the microshutter array to the silicon substrate, more than 10,000 indium bumps are required. A window was cut in the substrate to allow the light signal to pass through the substrate and reach the microshutter array. The substrate was also the receptacle for multiple unpackaged IC die wire-bonded directly to the substrate (thus conserving space over conventionally packaged die). Unique features of this technology include the implementation of a 2-mmthick silicon wafer to withstand extreme mechanical loads (from a rocket launch); integrated polysilicon resistor heaters directly on the substrate; the precise formation of an open aperture

  20. Hybrid silicon wafer-scale packaging technology

    SciTech Connect

    Johnson, R.W.

    1987-01-01

    Wafer-scale integration (WSI) approaches the packaging problem by attempting to fabricate the system monolithically utilizing semiconductor techniques. However, WSI has been plagued by yield problems and the need for redundancy. This study demonstrates the feasibility of a novel hybrid technique that uses pretested integrated circuits mounted into holes etched in a master wafer. The chips are interconnected with planar, thin-film metallization. This approach achieves near WSI density, while allowing the use of separately fabricated and tested devices. Test wafers with three monolithic chips and one chip mounted in a hole were fabricated as proof of concept. The key processes developed include fabrication of metallized and patterned wafers with etched holes, mounting of die in etched holes with planar topside topology, and deposition and patterning of interlevel dielectric and metal links. Selection of suitable materials for die attach and for use as an interlevel dielectric was critical. Wafers were thermally cycled to evaluate the compatibility of the materials and the process. No cracks or chip movement were observed after 50 cycles from -25 to +85/sup 0/C.

  1. Silicon hybrid wafer scale integration interconnect evaluation

    NASA Astrophysics Data System (ADS)

    Lyke, James C.

    1989-12-01

    The electrical characteristics of interconnections that have been proposed for use in silicon hybrid wafer scale integration (WSI) approaches were investigated. The study was based on a set of 5 inch test wafers, containing various interconnection structures previously designed at AFIT. Two test wafers used a special polyimide dielectric, while a third was composed of a benzocyclobutene (BCB). The investigated structures represented 10 cm length aluminum, coupled, stripline-like transmission lines. The metrics used included continuity measurements, ac measurement of the characteristic impedance and coupling levels, and pulsed-signal response measurements. Continuity results indicated transmission and leakage failures in all wafers, although the failure mechanisms were sometimes wafer-specific. The characteristic impedance measurement technique was flawed, but revealed interesting information concerning the driving-point impedances of the structures. Most coupled structures manifested coupling responses which were consistent in shape with theoretical estimates, but higher in magnitude by 10 to 20 dB. All structures revealed coupling levels lower than -25 dB. Despite correlation difficulties, the results implied that transmission line behavior is manifested in WSIC interconnections.

  2. Wafer-fused semiconductor radiation detector

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  3. Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis

    NASA Technical Reports Server (NTRS)

    Quimby, Kelvin L.; Esker, Linda; Miller, John; Smith, Laurie; Stark, Mike; Mcgarry, Frank

    1989-01-01

    An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects.

  4. Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry

    ERIC Educational Resources Information Center

    Jasute, Egle; Dagiene, Valentina

    2014-01-01

    A long-term observation of students' usage of a dynamic geometry in a classroom at all grade levels has challenged to develop an approach for learning and understanding mathematics in an easier way for both students and teachers. The paper deals with the results of a study that investigates the process and outcomes of the implementation of…

  5. Environmentally benign processing of YAG transparent wafers

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Wu, Yiquan

    2015-12-01

    Transparent yttrium aluminum garnet (YAG) wafers were successfully produced via aqueous tape casting and vacuum sintering techniques using a new environmentally friendly binder, a copolymer of isobutylene and maleic anhydride with the commercial name ISOBAM (noted as ISOBAM). Aqueous YAG slurries were mixed by ball-milling, which was followed by de-gassing and tape casting of wafers. The final YAG green tapes were homogenous and flexible, and could be bent freely without cracking. After the drying and sintering processes, transparent YAG wafers were achieved. The microstructures of both the green tape and vacuum-sintered YAG ceramic were observed by scanning electronic microscopy (SEM). Phase compositions were examined by X-ray diffraction (XRD). Optical transmittance was measured in UV-VIS regions with the result that the transmittance is 82.6% at a wavelength of 800 nm.

  6. Biocompatible "click" wafer bonding for microfluidic devices.

    PubMed

    Saharil, Farizah; Carlborg, Carl Fredrik; Haraldsson, Tommy; van der Wijngaart, Wouter

    2012-09-07

    We introduce a novel dry wafer bonding concept designed for permanent attachment of micromolded polymer structures to surface functionalized silicon substrates. The method, designed for simultaneous fabrication of many lab-on-chip devices, utilizes a chemically reactive polymer microfluidic structure, which rapidly bonds to a functionalized substrate via"click" chemistry reactions. The microfluidic structure consists of an off-stoichiometry thiol-ene (OSTE) polymer with a very high density of surface bound thiol groups and the substrate is a silicon wafer that has been functionalized with common bio-linker molecules. We demonstrate here void free, and low temperature (< 37 °C) bonding of a batch of OSTE microfluidic layers to a silane functionalized silicon wafer.

  7. Grand-Canonical Adaptive Resolution Centroid Molecular Dynamics: Implementation and application

    NASA Astrophysics Data System (ADS)

    Agarwal, Animesh; Delle Site, Luigi

    2016-09-01

    We have implemented the Centroid Molecular Dynamics scheme (CMD) into the Grand Canonical-like version of the Adaptive Resolution Simulation Molecular Dynamics (GC-AdResS) method. We have tested the implementation on two different systems, liquid parahydrogen at extreme thermodynamic conditions and liquid water at ambient conditions; the reproduction of structural as well as dynamical results of reference systems are highly satisfactory. The capability of performing GC-AdResS CMD simulations allows for the treatment of a system characterized by some quantum features and open boundaries. This latter characteristic not only is of computational convenience, allowing for equivalent results of much larger and computationally more expensive systems, but also suggests a tool of analysis so far not explored, that is the unambiguous identification of the essential degrees of freedom required for a given property.

  8. Independent trajectory implementation of the semiclassical Liouville method: application to multidimensional reaction dynamics.

    PubMed

    Roman, Eduardo; Martens, Craig C

    2007-10-18

    We describe an independent trajectory implementation of semiclassical Liouville method for simulating quantum processes using classical trajectories. In this approach, a single ensemble of trajectories describes all semiclassical density matrix elements of a coupled electronic state problem, with the ensemble evolving classically under a single reference Hamiltonian chosen on the basis of physical grounds. In this paper, we introduce an additional uncoupled trajectory approximation, allowing the members of the ensemble to evolve independently of one another and eliminating the major computational costs of our previous coupled trajectory implementation. The accuracy of the method is demonstrated for model one-dimensional problems. In addition, the approach is applied to the chemical reaction dynamics of a collinear triatomic system, yielding excellent agreement with exact calculations. This method allows molecular dynamics involving coupled electronic surfaces to be modeled with essentially the same effort as classical molecular dynamics and ensemble averaging.

  9. Video-rate fuzzy Golay processor for wafer scale integration

    SciTech Connect

    Steinvorth, R.H.

    1987-01-01

    The fuzzy Golay transformation is a novel approach for gray-level image processing. Fuzzy-set theory is used to modify the binary image processing techniques developed by M. J. Golay to permit direct gray-level image processing without thresholding. The comparison between gray-level pixels is accomplished with the Pixel Closeness Value (PCV) while comparison between gray-level neighborhoods uses the Neighborhood Closeness Value (NCV). Feature extraction is done by comparing the gray-level image neighborhood to a subset of the fourteen Golay neighborhoods using the NCV function. The Fuzzy Golay Processor (FGP) is an architecture designed to implement the fuzzy Golay transformation. The design of the FGP has been optimized to permit a successful implementation in Wafer Scale Integration (WSI). A system containing four FGPs is capable of performing thirty fuzzy Golay transformations per second on a 256 by 256 eight-bit pixel image. Such a system could fit on a four-inch wafer with enough redundant dies to allow a 30% die yield. The required dies are four Input-Output Modules (IOM) and 56 Neighborhood Evaluation Modules (NEM).

  10. Implementation

    EPA Pesticide Factsheets

    Describes elements for the set of activities to ensure that control strategies are put into effect and that air quality goals and standards are fulfilled, permitting programs, and additional resources related to implementation under the Clean Air Act.

  11. Wafer-scale graphene integrated circuit.

    PubMed

    Lin, Yu-Ming; Valdes-Garcia, Alberto; Han, Shu-Jen; Farmer, Damon B; Meric, Inanc; Sun, Yanning; Wu, Yanqing; Dimitrakopoulos, Christos; Grill, Alfred; Avouris, Phaedon; Jenkins, Keith A

    2011-06-10

    A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer. The integrated circuit operates as a broadband radio-frequency mixer at frequencies up to 10 gigahertz. These graphene circuits exhibit outstanding thermal stability with little reduction in performance (less than 1 decibel) between 300 and 400 kelvin. These results open up possibilities of achieving practical graphene technology with more complex functionality and performance.

  12. Metallic nanowires by full wafer stencil lithography.

    PubMed

    Vazquez-Mena, O; Villanueva, G; Savu, V; Sidler, K; van den Boogaart, M A F; Brugger, J

    2008-11-01

    Aluminum and gold nanowires were fabricated using 100 mm stencil wafers containing nanoslits fabricated with a focused ion beam. The stencils were aligned and the nanowires deposited on a substrate with predefined electrical pads. The morphology and resistivity of the wires were studied. Nanowires down to 70 nm wide and 5 mum long have been achieved showing a resistivity of 10 microOmegacm for Al and 5 microOmegacm for Au and maximum current density of approximately 10(8) A/cm(2). This proves the capability of stencil lithography for the fabrication of metallic nanowires on a full wafer scale.

  13. Making Porous Luminescent Regions In Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  14. Making Porous Luminescent Regions In Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  15. Design and implementation of the flight dynamics system for COMS satellite mission operations

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon

    2011-04-01

    The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.

  16. Response to Intervention and Dynamic Assessment: Implementing Systematic, Dynamic and Individualised Interventions in Primary School

    ERIC Educational Resources Information Center

    Gustafson, Stefan; Svensson, Idor; Fälth, Linda

    2014-01-01

    In recent years, response to intervention (RTI) has been the focus of research, debate and educational implementations, especially regarding early reading instruction. RTI provides an educational framework characterised by different tiers or layers of instruction, providing increasingly more intense and individualised interventions for children in…

  17. Si-gold-glass hybrid wafer bond for 3D-MEMS and wafer level packaging

    NASA Astrophysics Data System (ADS)

    Reddy, Jayaprakash; Pratap, Rudra

    2017-01-01

    We report a relatively low temperature (<400 °C) hybrid wafer bonding process that results in the simultaneous anodic and eutectic bonding in different predetermined regions of the wafer. This hybrid bonding process has potential applications in CMOS-MEMS device integration and wafer level packaging. We demonstrate the process by realizing a simple MEMS cantilever beam and a complex MEMS gyroscope structure. These structures are characterized for ohmic contact and electromechanical response to verify the electrical interconnect and the mechanical strength of the structure at the bond interface.

  18. Innovation implementation in the public sector: an integration of institutional and collective dynamics.

    PubMed

    Choi, Jin Nam; Chang, Jae Yoon

    2009-01-01

    The present study integrates institutional factors and employee-based collective processes as predictors of 2 key implementation outcomes: implementation effectiveness and innovation effectiveness (Klein, Conn, & Sorra, 2001). Specifically, the authors proposed that institutional factors shape employees' collective implementation efficacy and innovation acceptance. The authors further hypothesized that these employee-based collective processes mediate the effects of institutional factors on implementation outcomes. This integrative framework was examined in the context of 47 agencies and ministries of the Korean Government that were implementing a process innovation called E-Government. Three-wave longitudinal data were collected from 60 external experts and 1,732 government employees. The results reveal the importance of management support for collective implementation efficacy, which affected employees' collective acceptance of the innovation. As hypothesized, these collective employee dynamics mediated the effects of institutional enablers on successful implementation as well as the amount of long-term benefit that accrued to the agencies and ministries. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  19. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    SciTech Connect

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  20. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 3. Binary mixtures.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Frenkel, Michael

    2009-02-01

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for binary chemical systems. Five activity-coefficient models have been implemented for representation of phase-equilibrium data (vapor-liquid, liquid-liquid, and solid-liquid equilibrium): NRTL, UNIQUAC, Van Laar, Margules/Redlich-Kister, and Wilson. Implementation of these models in TDE is fully described. Properties modeled individually are densities, surface tensions, critical temperatures, critical pressures, excess enthalpies, and the transport properties-viscosity and thermal conductivity. Extensions to the class structure of the program are described with emphasis on special features allowing close linkage between mixture and pure-component properties required for implementation of the models. Details of gas-phase models used in conjunction with the activity-coefficient models are shown. Initial implementation of the dynamic data evaluation concept for reactions is demonstrated with evaluation of enthalpies of formation for compounds containing carbon, hydrogen, oxygen, and nitrogen. Directions for future enhancements are outlined.

  1. Analysis of Ecodesign Implementation and Solutions for Packaging Waste System by Using System Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Berzina, Alise; Dace, Elina; Bazbauers, Gatis

    2010-01-01

    This paper discusses the findings of a research project which explored the packaging waste management system in Latvia. The paper focuses on identifying how the policy mechanisms can promote ecodesign implementation and material efficiency improvement and therefore reduce the rate of packaging waste accumulation in landfill. The method used for analyzing the packaging waste management policies is system dynamics modeling. The main conclusion is that the existing legislative instruments can be used to create an effective policy for ecodesign implementation but substantially higher tax rates on packaging materials and waste disposal than the existing have to be applied.

  2. Wafer-Scale Integration of Systolic Arrays,

    DTIC Science & Technology

    1985-10-01

    wafer-scale system, however, all the nearest neighbors of a processor may be dead, and thus the prime advantage of adopting a systolic array...work, however. To the best of our knowledge, the only result of a similar nature is due to Erdos and Renyi 15] who showed that most graphs with N

  3. Methanol Steam Reformer on a Silicon Wafer

    SciTech Connect

    Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

    2004-04-15

    A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

  4. Methods for characterization of wafer-level encapsulation applied on silicon to LTCC anodic bonding

    NASA Astrophysics Data System (ADS)

    Khan, M. F.; Ghavanini, F. A.; Haasl, S.; Löfgren, L.; Persson, K.; Rusu, C.; Schjølberg-Henriksen, K.; Enoksson, P.

    2010-06-01

    This paper presents initial results on generic characterization methods for wafer-level encapsulation. The methods, developed specifically to evaluate anodic bonding of low-temperature cofired ceramics (LTCC) to Si, are generally applicable to wafer-level encapsulation. Different microelectromechanical system (MEMS) structures positioned over the whole wafer provide local information about the bond quality. The structures include (i) resonating cantilevers as pressure sensors for bond hermeticity, (ii) resonating bridges as stress sensors for measuring the stress induced by the bonding and (iii) frames/mesas for pull tests. These MEMS structures have been designed, fabricated and characterized indicating that local information can easily be obtained. Buried electrodes to enable localized bonding have been implemented and their effectiveness is indicated from first results of the novel Si to LTCC anodic bonding.

  5. Integration of self-assembled carbon nanotube transistors: statistics and gate engineering at the wafer scale

    NASA Astrophysics Data System (ADS)

    Marty, L.; Bonhomme, A.; Iaia, A.; André, E.; Rauwel, E.; Dubourdieu, C.; Toffoli, A.; Ducroquet, F.; Bonnot, A. M.; Bouchiat, V.

    2006-10-01

    We present a full process based on chemical vapour deposition that allows fabrication and integration at the wafer scale of carbon-nanotube-based field effect transistors. We make a statistical analysis of the integration yield that allows assessment of the parameter fluctuations of the titanium-nanotube contact obtained by self-assembly. This procedure is applied to raw devices without post-process. Statistics at the wafer scale reveal the respective role of semiconducting and metallic connected nanotubes and show that connection yields up to 86% can be reached. For large scale device integration, our process has to implement both wafer-scale self-assembly of the nanotubes and high transistor performances. In order to address this last issue, a gate engineering process has been investigated. We present the improvements obtained using low and high κ dielectrics for the gate oxide.

  6. Terahertz transmission properties of silicon wafers using continuous-wave terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Chihoon; Ahn, Jae Sung; Ji, Taeksoo; Eom, Joo Beom

    2017-04-01

    We present the spectral properties of Si wafers using continuous-wave terahertz (CW-THz) spectroscopy. By using a tunable laser source and a fixed distributed-feedback laser diode (DFB-LD), a stably tunable beat source for CW-THz spectroscopy system can be implemented. THz radiation is generated in the frequency range of 100 GHz-800 GHz by photomixing in a photoconductive antenna. We also measured CW-THz waveforms by changing the beat frequency and confirmed repeatability through repeated measurement. We calculated the peaks of the THz frequency by taking fast Fourier transforms (FFTs) of measured THz waveforms. The feasibility of CW-THz spectroscopy is demonstrated by the THz spectra of Si wafers with different resistivities, mobilities, and carrier concentrations. The results show that Si wafers with a lower resistivity absorb more THz waves. Thus, we expect our CW-THz system to have the advantage of being able to perform fast non-destructive analysis.

  7. Bubble-domain circuit wafer evaluation coil set

    NASA Technical Reports Server (NTRS)

    Chen, T. T.; Williams, J. L.

    1975-01-01

    Coil structures have been designed to permit nondestructive testing of bubble wafers. Wafers can be electrically or optically inspected and operated from quasi-static frequency to maximum device operating frequency.

  8. Artificial solid electrolyte interphase with in-situ formed porosity for enhancing lithiation of silicon wafer

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2016-12-01

    In order to utilize silicon wafer as electrode and substrate for integrated lithium-ion batteries, a composite film with in-situ formed porosity (lithium phosphorous oxynitride/tin oxide, LiPON/SnO2) is fabricated and directly exploited as the artificial solid electrolyte interphase film. Without the compromise of Coulombic efficiency, the capacity and cycle performance of silicon wafer are both developed, resulting from the reduced resistance and the dynamically stable coating. This work provides guidance to enhance the lithiation of bulk silicon, and the strategy of surface modification can be applied to other advanced materials or fields.

  9. Implementing the dynamic appraisal of situational aggression in mental health units.

    PubMed

    Lantta, Tella; Daffern, Michael; Kontio, Raija; Välimäki, Maritta

    2015-01-01

    The aims of this study are to explain the intervention of implementing a structured violence risk assessment procedure in mental health inpatient units using the Ottawa Model of Research Use (OMRU) as a guiding framework and to consider nurses' perspectives of its clinical utility and implementation process. Patient aggression toward staff is a global concern in mental health units. The limited extant literature exploring the use of structured violence risk assessments in mental health units, although small and inconsistent, reveals some positive impacts on the incidence of aggression and staff's use of restrictive interventions. Although numerous violence risk assessment instruments have been developed and tested, their systematic implementation and use are still limited. A project titled "Safer Working Management" (111298) was conducted in a Finnish hospital district, across 3 mental health units. The 6 steps of OMRU were followed during implementation of the Dynamic Appraisal of Situational Aggression (DASA). Nurses' views toward structured violence risk assessment procedures varied. Although implementation of the DASA was seen as a useful method to increase discussions with patients and nursing staff, some staff preferred their own clinical judgment for assessment of violence risk. It is possible to use a specific model to promote the implementation of risk assessment instruments in mental health units. However, the complex mental health inpatient environment and the difficulties in understanding and managing aggressive patients present challenges for the implementation of structured violence risk assessment methods. The OMRU provides a tool for clinical nurse specialists to guide implementation process in mental health units. Clinical nurse specialists must promote training for staff regarding use of new innovations, such as the DASA. Implementation processes should be reviewed so that clinical nurse specialists can lead and support mental health staff to

  10. Noncontact sheet resistance measurement technique for wafer inspection

    NASA Astrophysics Data System (ADS)

    Kempa, Krzysztof; Rommel, J. Martin; Litovsky, Roman; Becla, Peter; Lojek, Bohumil; Bryson, Frank; Blake, Julian

    1995-12-01

    A new technique, MICROTHERM, has been developed for noncontact sheet resistance measurements of semiconductor wafers. It is based on the application of microwave energy to the wafer, and simultaneous detection of the infrared radiation resulting from ohmic heating. The pattern of the emitted radiation corresponds to the sheet resistance distribution across the wafer. This method is nondestructive, noncontact, and allows for measurements of very small areas (several square microns) of the wafer.

  11. MPI implementation of PHOENICS: A general purpose computational fluid dynamics code

    SciTech Connect

    Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D.B.

    1995-04-01

    PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.

  12. MPI implementation of PHOENICS: A general purpose computational fluid dynamics code

    NASA Astrophysics Data System (ADS)

    Simunovic, S.; Zacharia, T.; Baltas, N.; Spalding, D. B.

    1995-03-01

    PHOENICS is a suite of computational analysis programs that are used for simulation of fluid flow, heat transfer, and dynamical reaction processes. The parallel version of the solver EARTH for the Computational Fluid Dynamics (CFD) program PHOENICS has been implemented using Message Passing Interface (MPI) standard. Implementation of MPI version of PHOENICS makes this computational tool portable to a wide range of parallel machines and enables the use of high performance computing for large scale computational simulations. MPI libraries are available on several parallel architectures making the program usable across different architectures as well as on heterogeneous computer networks. The Intel Paragon NX and MPI versions of the program have been developed and tested on massively parallel supercomputers Intel Paragon XP/S 5, XP/S 35, and Kendall Square Research, and on the multiprocessor SGI Onyx computer at Oak Ridge National Laboratory. The preliminary testing results of the developed program have shown scalable performance for reasonably sized computational domains.

  13. User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics (DPD-E)

    DTIC Science & Technology

    2014-06-01

    Distribution List 20 iv INTENTIONALLY LEFT BLANK. 1 The constant energy dissipative particle dynamics ( DPD -E) method is implemented into the Large-Scale...User Manual and Source Code for a LAMMPS Implementation of Constant Energy Dissipative Particle Dynamics ( DPD -E) by James P. Larentzos...Energy Dissipative Particle Dynamics ( DPD -E) James P. Larentzos Engility Corporation John K. Brennan, Joshua D. Moore, and William D. Mattson

  14. Design of a Synthetic Integral Feedback Circuit: Dynamic Analysis and DNA Implementation.

    PubMed

    Briat, Corentin; Zechner, Christoph; Khammash, Mustafa

    2016-10-21

    The design and implementation of regulation motifs ensuring robust perfect adaptation are challenging problems in synthetic biology. Indeed, the design of high-yield robust metabolic pathways producing, for instance, drug precursors and biofuels, could be easily imagined to rely on such a control strategy in order to optimize production levels and reduce production costs, despite the presence of environmental disturbance and model uncertainty. We propose here a motif that ensures tracking and robust perfect adaptation for the controlled reaction network through integral feedback. Its metabolic load on the host is fully tunable and can be made arbitrarily close to the constitutive limit, the universal minimal metabolic load of all possible controllers. A DNA implementation of the controller network is finally provided. Computer simulations using realistic parameters demonstrate the good agreement between the DNA implementation and the ideal controller dynamics.

  15. Process variation monitoring (PVM) by wafer inspection tool as a complementary method to CD-SEM for mapping LER and defect density on production wafers

    NASA Astrophysics Data System (ADS)

    Shabtay, Saar; Blumberg, Yuval; Levi, Shimon; Greenberg, Gadi; Harel, Daniel; Conley, Amiad; Meshulach, Doron; Kan, Kobi; Dolev, Ido; Kumar, Surender; Mendel, Kalia; Goto, Kaori; Yamaguchi, Naoaki; Iriuchijima, Yasuhiro; Nakamura, Shinichi; Nagaoka, Shirou; Sekito, Toshiyuki

    2009-03-01

    As design rules shrink, Critical Dimension Uniformity (CDU) and Line Edge Roughness (LER) constitute a higher percentage of the line-width and hence the need to control these parameters increases. Sources of CDU and LER variations include: scanner auto-focus accuracy and stability, lithography stack thickness and composition variations, exposure variations, etc. These process variations in advanced VLSI manufacturing processes, specifically in memory devices where CDU and LER affect cell-to-cell parametric variations, are well known to significantly impact device performance and die yield. Traditionally, measurements of LER are performed by CD-SEM or Optical Critical Dimension (OCD) metrology tools. Typically, these measurements require a relatively long time and cover only a small fraction of the wafer area. In this paper we present the results of a collaborative work of the Process Diagnostic & Control Business Unit of Applied Materials® and Nikon Corporation®, on the implementation of a complementary method to the CD-SEM and OCD tools, to monitor post litho develop CDU and LER on production wafers. The method, referred to as Process Variation Monitoring (PVM), is based on measuring variations in the light reflected from periodic structures, under optimized illumination and collection conditions, and is demonstrated using Applied Materials DUV brightfield (BF) wafer inspection tool. It will be shown that full polarization control in illumination and collection paths of the wafer inspection tool is critical to enable to set an optimized Process Variation Monitoring recipe.

  16. Steel bridge fatigue crack detection with piezoelectric wafer active sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Giurgiutiu, Victor; Ziehl, Paul; Ozevin, Didem; Pollock, Patrick

    2010-04-01

    Piezoelectric wafer active sensors (PWAS) are well known for its dual capabilities in structural health monitoring, acting as either actuators or sensors. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In our research, our use of the PWAS based sensing has the novelty of implementing both passive (as acoustic emission) and active (as ultrasonic transducers) sensing with a single PWAS network. The combined schematic is using acoustic emission to detect the presence of fatigue cracks in steel bridges in their early stage since methods such as ultrasonics are unable to quantify the initial condition of crack growth since most of the fatigue life for these details is consumed while the fatigue crack is too small to be detected. Hence, combing acoustic emission with ultrasonic active sensing will strengthen the damage detection process. The integration of passive acoustic emission detection with active sensing will be a technological leap forward from the current practice of periodic and subjective visual inspection, and bridge management based primarily on history of past performance. In this study, extensive laboratory investigation is performed supported by theoretical modeling analysis. A demonstration system will be presented to show how piezoelectric wafer active sensor is used for acoustic emission. Specimens representing complex structures are tested. The results will also be compared with traditional acoustic emission transducers to identify the application barriers.

  17. Implementing vertex dynamics models of cell populations in biology within a consistent computational framework.

    PubMed

    Fletcher, Alexander G; Osborne, James M; Maini, Philip K; Gavaghan, David J

    2013-11-01

    The dynamic behaviour of epithelial cell sheets plays a central role during development, growth, disease and wound healing. These processes occur as a result of cell adhesion, migration, division, differentiation and death, and involve multiple processes acting at the cellular and molecular level. Computational models offer a useful means by which to investigate and test hypotheses about these processes, and have played a key role in the study of cell-cell interactions. However, the necessarily complex nature of such models means that it is difficult to make accurate comparison between different models, since it is often impossible to distinguish between differences in behaviour that are due to the underlying model assumptions, and those due to differences in the in silico implementation of the model. In this work, an approach is described for the implementation of vertex dynamics models, a discrete approach that represents each cell by a polygon (or polyhedron) whose vertices may move in response to forces. The implementation is undertaken in a consistent manner within a single open source computational framework, Chaste, which comprises fully tested, industrial-grade software that has been developed using an agile approach. This framework allows one to easily change assumptions regarding force generation and cell rearrangement processes within these models. The versatility and generality of this framework is illustrated using a number of biological examples. In each case we provide full details of all technical aspects of our model implementations, and in some cases provide extensions to make the models more generally applicable.

  18. Implementing Molecular Dynamics on Hybrid High Performance Computers - Particle-Particle Particle-Mesh

    SciTech Connect

    Brown, W Michael; Kohlmeyer, Axel; Plimpton, Steven J; Tharrington, Arnold N

    2012-01-01

    The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with nodes containing more than one type of floating-point processor (e.g. CPU and GPU), are now becoming more prevalent due to these advantages. In this paper, we present a continuation of previous work implementing algorithms for using accelerators into the LAMMPS molecular dynamics software for distributed memory parallel hybrid machines. In our previous work, we focused on acceleration for short-range models with an approach intended to harness the processing power of both the accelerator and (multi-core) CPUs. To augment the existing implementations, we present an efficient implementation of long-range electrostatic force calculation for molecular dynamics. Specifically, we present an implementation of the particle-particle particle-mesh method based on the work by Harvey and De Fabritiis. We present benchmark results on the Keeneland InfiniBand GPU cluster. We provide a performance comparison of the same kernels compiled with both CUDA and OpenCL. We discuss limitations to parallel efficiency and future directions for improving performance on hybrid or heterogeneous computers.

  19. Wafer-scale boundary value integrated circuit architecture

    SciTech Connect

    Delgado-Frias, J.G.

    1986-01-01

    Wafer scale integration (WSI) technology offers the potential for improving speed and reliability of a large integrated circuit system. An architecture is presented for a boundary value integrated circuit engine which lends itself to implementation in WSI. The philosophy underpinning this architecture includes local communication, cell regularity, and fault tolerance. The research described here proposes, investigates, and simulates this computer architecture and its flaw avoidance schemes for a WSI implementation. Boundary value differential equation computations are utilized in a number of scientific and engineering applications. A boundary value machine is ideally suited for solutions of finite difference and finite element problems with specified boundary values. The architecture is a 2-D array of computational cells. Each basic cell has four bit serial processing elements (PEs) and a local memory. Most communications is limited to transfer between adjacent PEs to reduce complexity, avoid long delays, and localize the effects of silicon flaws. Memory access time is kept short by restricting memory service to PEs in the same cell. I/O operation is performed by means of a row multiple single line I/O bus, which allows fast, reliable and independent data transference. WSI yield losses are due to gross defects and random defects. Gross defects which affect large portions of the wafer are usually fatal for any WSI implementation. Overcoming random defects which cover either a small area or points is achieved by defect avoidance schemes that are developed for this architecture. Those schemes are provided at array, cell, and communication level. Capabilities and limitations of the proposed WSI architecture can be observed through the simulations. Speed degradation of the array and the PE due to silicon defects is observed by means of simulation. Also, module and bus utilization are computed and presented.

  20. Uniaxially strained silicon by wafer bonding and layer transfer

    NASA Astrophysics Data System (ADS)

    Himcinschi, C.; Radu, I.; Muster, F.; Singh, R.; Reiche, M.; Petzold, M.; Gösele, U.; Christiansen, S. H.

    2007-02-01

    Uniaxial strain on wafer-level was realised by mechanically bending and direct wafer bonding of Si wafers in the bent state followed by thinning one of the Si wafers by the smart-cut process. This approach is flexible and allows to obtain different strain values at wafer-level in both tension and compression. UV micro-Raman spectroscopy was used to determine the strain in the thin transferred Si layers. Numerical modelling by 3D finite elements of the strain provided a good description of the experimental results.

  1. Thermal modeling of wafer-based precision glass molding process

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Shen, Lianguan; Zhou, Jian; Li, Mujun

    2016-10-01

    Wafer based precision glass optics manufacturing has been an innovative approach for combining high accuracy with mass production. However, due to the small ratio of thickness and diameter of the glass wafer, deformation and residual stress would be induced for the nonuniform temperature distribution in the glass wafer after molding. Therefore, thermal modelling of the heating system in the wafer based precision glass molding (PGM) process is of great importance in optimizing the heating system and the technique of the process. The current paper deals with a transient thermal modelling of a self-developed heating system for wafer based PGM process. First, in order to investigate the effect of radiation from the surface and interior of the glass wafer, the thermal modeling is simulated with a discrete ordinates radiation model in the CFD software FLUENT. Temperature distribution of the glass wafer obtained from the simulations is then used to evaluate the performance of heating system and investigate some importance parameters in the model, such as interior and surface radiation in glass wafer, thermal contact conductance between glass wafer and molds, thickness to diameter ratio of glass wafer. Finally, structure modification in the molding chamber is raised to decrease the temperature gradient in the glass wafer and the effect is significant.

  2. Optical cavity furnace for semiconductor wafer processing

    DOEpatents

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  3. Devices using resin wafers and applications thereof

    DOEpatents

    Lin, YuPo J [Naperville, IL; Henry, Michael P [Batavia, IL; Snyder, Seth W [Lincolnwood, IL; Martin, Edward [Libertyville, IL; Arora, Michelle [Woodridge, IL; de la Garza, Linda [Woodridge, IL

    2009-03-24

    Devices incorporating a thin wafer of electrically and ionically conductive porous material made by the method of introducing a mixture of a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material into a mold. The mixture is subjected to temperatures in the range of from about 60.degree. C. to about 170.degree. C. at pressures in the range of from about 0 to about 500 psig for a time in the range of from about 1 to about 240 minutes to form thin wafers. Devices include electrodeionization and separative bioreactors in the production of organic and amino acids, alcohols or esters for regenerating cofactors in enzymes and microbial cells.

  4. Wafer integrated micro-scale concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  5. EUVL mask substrate specifications (wafer-type)

    SciTech Connect

    Tong, W

    1999-07-01

    The Extreme Ultraviolet Lithography (EUVL) program currently is constructing an alpha-class exposure tool known as the Engineering Test Stand (ETS) that will employ 200mm wafer format masks. This report lists and explains the current specifications for the EUVL mask substrates suitable for use on the ETS. The shape and size of the mask are the same as those of a standard 200mm Si wafer. The flatness requirements are driven by the potential image placement distortion caused by the non-telecentric illumination of EUVL. The defect requirements are driven by the printable-defect size and desired yield for mask blank fabrication. Surface roughness can cause both a loss of light throughput and image speckle. The EUVL mask substrate must be made of low-thermal-expansion material because 40% of the light is absorbed by the multilayers and causes some uncorrectable thermal distortion during printing.

  6. Carbon dioxide capture using resin-wafer electrodeionization

    SciTech Connect

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  7. Metrology delay time reduction in lithography via small-lot wafer transport

    NASA Astrophysics Data System (ADS)

    Shah, Vinay K.; Englhardt, Eric A.; Koshti, Sushant; Armer, Helen R.

    2006-03-01

    A small lot Automated Material Handling System (AMHS) is presented as a method to reduce the time between wafer exposure at a photolithography tool and collection of metrology / inspection data. A new AMHS system that is capable of the move rates required by small lot wafer transport is described, its implementation in a photolithography bay is explained, and the resulting reduction in metrology delay time is quantified. In addition, a phased implementation approach is described in which some, but not all, components of the new AMHS would be installed in existing fabs to enhance the move rate capability of traditional overhead transport (OHT) AMHS systems. This partial implementation would enable a partial lot size reduction and corresponding metrology delay time reduction of 60-70%. The full AMHS solution would be installed in new fabs and enable true small lot manufacturing in the litho area and would result in the maximum delay time reduction of 75-85%.

  8. Wafer plane inspection with soft resist thresholding

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song

    2008-10-01

    Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just

  9. VLED for Si wafer-level packaging

    NASA Astrophysics Data System (ADS)

    Chu, Chen-Fu; Chen, Chiming; Yen, Jui-Kang; Chen, Yung-Wei; Tsou, Chingfu; Chang, Chunming; Doan, Trung; Tran, Chuong Anh

    2012-03-01

    In this paper, we introduced the advantages of Vertical Light emitting diode (VLED) on copper alloy with Si-wafer level packaging technologies. The silicon-based packaging substrate starts with a <100> dou-ble-side polished p-type silicon wafer, then anisotropic wet etching technology is done to construct the re-flector depression and micro through-holes on the silicon substrate. The operating voltage, at a typical cur-rent of 350 milli-ampere (mA), is 3.2V. The operation voltage is less than 3.7V under higher current driving conditions of 1A. The VLED chip on Si package has excellent heat dissipation and can be operated at high currents up to 1A without efficiency degradation. The typical spatial radiation pattern emits a uniform light lambertian distribution from -65° to 65° which can be easily fit for secondary optics. The correlated color temperature (CCT) has only 5% variation for daylight and less than 2% variation for warm white, when the junction temperature is increased from 25°C to 110°C, suggesting a stable CCT during operation for general lighting application. Coupled with aspheric lens and micro lens array in a wafer level process, it has almost the same light distribution intensity for special secondary optics lighting applications. In addition, the ul-tra-violet (UV) VLED, featuring a silicon substrate and hard glass cover, manufactured by wafer level pack-aging emits high power UV wavelengths appropriate for curing, currency, document verification, tanning, medical, and sterilization applications.

  10. Precipitating Chromium Impurities in Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1982-01-01

    Two new treatments for silicon wafers improve solar-cell conversion efficiency by precipitating electrically-active chromium impurities. One method is simple heat treatment. Other involves laser-induced damage followed by similar heat treatment. Chromium is one impurity of concern in metallurgical-grade silicon for solar cells. In new treatment, chromium active centers are made electrically inactive by precipitating chromium from solid solution, enabling use of lower grade, lower cost silicon in cell manufacture.

  11. Wafer dicing utilizing unique beam shapes

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2007-09-01

    Laser dicing of wafers is of keen interest to the semiconductor and LED industry. Devices such as ASICs, Ultra-thin Wafer Scale Packages and LEDS are unique in that they typically are formed from various materials in a multilayered structure. Many of these layers include active device materials, passivation coatings, conductors and dielectric films all deposited on top of a bulk wafer substrate and all potentially having differing ablation thresholds. These composite multi-layered structures require high finesse laser processes to ensure yields, cut quality and low process cost. Such processes have become very complex over the years as new devices have become miniaturized, requiring smaller kerf sizes. Of critical concern is the need to minimize substrate micro-cracking or lift off of upper layers along the dicing streets which directly corresponds to bulk device strength and device operational integrity over its projected lifetime. Laser processes involving the sequential use of single or multiple diode pumped solid state (DPSS) lasers, such as UV DPSS (355nn, 266nm, 532 nm), VIS DPSS (~532 nm) and IR DPSS (1064nm, 1070nm) as well as (UV, VIS, NIR, FIR and Eye Safe Wavelengths) DPFL (Diode Pumped Fiber Lasers) lasers to penetrate various and differing material layers and substrates including Silicon Carbide (SiC), Silicon, GaAs and Sapphire. Development of beam shaping optics with the purpose of permitting two or more differing energy densities within a single focused or imaged beam spot would provide opportunities for pre-processing or pre-scribing of thinner cover layers, while following through with a higher energy density segment to cut through the bulk base substrates. This paper will describe the development of beam shaping optical elements with unique beam shapes that could benefit dicing and patterning of delicate thin film coatings. Various designs will be described, with processing examples using LED wafer materials.

  12. Precipitating Chromium Impurities in Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1982-01-01

    Two new treatments for silicon wafers improve solar-cell conversion efficiency by precipitating electrically-active chromium impurities. One method is simple heat treatment. Other involves laser-induced damage followed by similar heat treatment. Chromium is one impurity of concern in metallurgical-grade silicon for solar cells. In new treatment, chromium active centers are made electrically inactive by precipitating chromium from solid solution, enabling use of lower grade, lower cost silicon in cell manufacture.

  13. Wafer-scale micro-optics fabrication

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2012-07-01

    Micro-optics is an indispensable key enabling technology for many products and applications today. Probably the most prestigious examples are the diffractive light shaping elements used in high-end DUV lithography steppers. Highly-efficient refractive and diffractive micro-optical elements are used for precise beam and pupil shaping. Micro-optics had a major impact on the reduction of aberrations and diffraction effects in projection lithography, allowing a resolution enhancement from 250 nm to 45 nm within the past decade. Micro-optics also plays a decisive role in medical devices (endoscopes, ophthalmology), in all laser-based devices and fiber communication networks, bringing high-speed internet to our homes. Even our modern smart phones contain a variety of micro-optical elements. For example, LED flash light shaping elements, the secondary camera, ambient light and proximity sensors. Wherever light is involved, micro-optics offers the chance to further miniaturize a device, to improve its performance, or to reduce manufacturing and packaging costs. Wafer-scale micro-optics fabrication is based on technology established by the semiconductor industry. Thousands of components are fabricated in parallel on a wafer. This review paper recapitulates major steps and inventions in wafer-scale micro-optics technology. The state-of-the-art of fabrication, testing and packaging technology is summarized.

  14. Optical characterization of SiC wafers

    SciTech Connect

    Burton, J.C.; Pophristic, M.; Long, F.H.; Ferguson, I.

    1999-07-01

    Raman spectroscopy has been used to investigate wafers of both 4H-SiC and 6H-SiC. The two-phonon Raman spectra from both 4H- and 6H-SiC have been measured and found to be polytype dependent, consistent with changes in the vibrational density of states. They have observed electronic Raman scattering from nitrogen defect levels in both 4H- and 6H-SiC at room temperature. They have found that electronic Raman scattering from the nitrogen defect levels is significantly enhanced with excitation by red or near IR laser light. These results demonstrate that the laser wavelength is a key parameter in the characterization of SiC by Raman scattering. These results suggest that Raman spectroscopy can be used as a noninvasive, in situ diagnostic for SiC wafer production and substrate evaluation. They also present results on time-resolved photoluminescence spectra of n-type SiC wafers.

  15. Mask-to-wafer alignment system

    DOEpatents

    Sweatt, William C.; Tichenor, Daniel A.; Haney, Steven J.

    2003-11-04

    A modified beam splitter that has a hole pattern that is symmetric in one axis and anti-symmetric in the other can be employed in a mask-to-wafer alignment device. The device is particularly suited for rough alignment using visible light. The modified beam splitter transmits and reflects light from a source of electromagnetic radiation and it includes a substrate that has a first surface facing the source of electromagnetic radiation and second surface that is reflective of said electromagnetic radiation. The substrate defines a hole pattern about a central line of the substrate. In operation, an input beam from a camera is directed toward the modified beam splitter and the light from the camera that passes through the holes illuminates the reticle on the wafer. The light beam from the camera also projects an image of a corresponding reticle pattern that is formed on the mask surface of the that is positioned downstream from the camera. Alignment can be accomplished by detecting the radiation that is reflected from the second surface of the modified beam splitter since the reflected radiation contains both the image of the pattern from the mask and a corresponding pattern on the wafer.

  16. Wafer level test solutions for IR sensors

    NASA Astrophysics Data System (ADS)

    Giessmann, Sebastian; Werner, Frank-Michael

    2014-05-01

    Wafer probers provide an established platform for performing electrical measurements at wafer level for CMOS and similar process technologies. For testing IR sensors, the requirements are beyond the standard prober capabilities. This presentation will give an overview about state of the art IR sensor probing systems reaching from flexible engineering solutions to automated production needs. Cooled sensors typically need to be tested at a target temperature below 80 K. Not only is the device temperature important but also the surrounding environment is required to prevent background radiation from reaching the device under test. To achieve that, a cryogenic shield is protecting the movable chuck. By operating that shield to attract residual gases inside the chamber, a completely contamination-free test environment can be guaranteed. The use of special black coatings are furthermore supporting the removal of stray light. Typically, probe card needles are operating at ambient (room) temperature when connecting to the wafer. To avoid the entrance of heat, which can result in distorted measurements, the probe card is fully embedded into the cryogenic shield. A shutter system, located above the probe field, is designed to switch between the microscope view to align the sensor under the needles and the test relevant setup. This includes a completely closed position to take dark current measurements. Another position holds a possible filter glass with the required aperture opening. The necessary infrared sources to stimulate the device are located above.

  17. Wafer weak point detection based on aerial images or WLCD

    NASA Astrophysics Data System (ADS)

    Ning, Guoxiang; Philipp, Peter; Litt, Lloyd C.; Ackmann, Paul; Crell, Christian; Chen, Norman

    2015-10-01

    Aerial image measurement is a key technique for model based optical proximity correction (OPC) verification. Actual aerial images obtained by AIMS (aerial image measurement system) or WLCD (wafer level critical dimension) can detect printed wafer weak point structures in advance of wafer exposure and defect inspection. Normally, the potential wafer weak points are determined based on optical rule check (ORC) simulation in advance. However, the correlation to real wafer weak points is often not perfect due to the contribution of mask three dimension (M3D) effects, actual mask errors, and scanner lens effects. If the design weak points can accurately be detected in advance, it will reduce the wafer fab cost and improve cycle time. WLCD or AIMS tools are able to measure the aerial images CD and bossung curve through focus window. However, it is difficult to detect the wafer weak point in advance without defining selection criteria. In this study, wafer weak points sensitive to mask mean-to-nominal values are characterized for a process with very high MEEF (normally more than 4). Aerial image CD uses fixed threshold to detect the wafer weak points. By using WLCD through threshold and focus window, the efficiency of wafer weak point detection is also demonstrated. A novel method using contrast range evaluation is shown in the paper. Use of the slope of aerial images for more accurate detection of the wafer weak points using WLCD is also discussed. The contrast range can also be used to detect the wafer weak points in advance. Further, since the mean to nominal of the reticle contributes to the effective contrast range in a high MEEF area this work shows that control of the mask error is critical for high MEEF layers such as poly, active and metal layers. Wafer process based weak points that cannot be detected by wafer lithography CD or WLCD will be discussed.

  18. Wafer surface pre-treatment study for micro bubble free of lithography process

    NASA Astrophysics Data System (ADS)

    Yang, Xiaosong; Zhu, XiaoZheng; Cai, Spencer

    2014-04-01

    Photo resist micro bubble and void defect is reported as a typical and very puzzle defect type in photo lithography process, it becomes more and more significantly and severely with the IC technology drive towards 2× node. Introduced in this paper, we have studied the mechanism of photo resist micro bubble at different in-coming wafer surface condition and tested a series of pre treatment optimization method to resolve photo resist micro bubble defect on different wafer substrate, including in the standard flat and smooth wafer surface and also in special wafer surface with high density line/space micro-structure substrate as is in logic process FinFET tri-gate structure and Nor type flash memory cell area Floating Gate/ONO/Control Gate structure. As is discovered in our paper, in general flat and smooth wafer surface, the photo resist micro bubble is formed during resist RRC coating process (resist reduction coating) and will easy lead to Si concave defect after etch; while in the high density line/space micro-structure substrate as FinFET tri-gate, the photo resist void defect is always formed after lithography pattern formation and will final cause the gate line broken after the etching process or localized over dose effect at Ion IMP layers. The 2nd type of photo resist micro bubble is much more complicated and hard to be eliminated. We try to figure out the interfacial mechanism between different type of photo resist (ArF, KrF and I-line) and pre-wet solvent by systematic methods and DOE splits. And finally, we succeeded to dig out the best solution to eliminate the micro bubble defect in different wafer surface condition and implement in the photolithography process.

  19. High-precision drop shape analysis (HPDSA) of quasistatic contact angles on silanized silicon wafers with different surface topographies during inclining-plate measurements: Influence of the surface roughness on the contact line dynamics

    NASA Astrophysics Data System (ADS)

    Heib, F.; Hempelmann, R.; Munief, W. M.; Ingebrandt, S.; Fug, F.; Possart, W.; Groß, K.; Schmitt, M.

    2015-07-01

    Contact angles and wetting of solid surfaces are strongly influenced by the physical and chemical properties of the surfaces. These influence quantities are difficult to distinguish from each other if contact angle measurements are performed by measuring only the advancing θa and the receding θr contact angle. In this regard, time-dependent water contact angles are measured on two hydrophobic modified silicon wafers with different physical surface topographies. The first surface is nearly atomically flat while the second surface is patterned (alternating flat and nanoscale rough patterns) which is synthesized by a photolithography and etching procedure. The different surface topographies are characterized with atomic force microscopy (AFM), Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) and Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR). The resulting set of contact angle data obtained by the high-precision drop shape analysis approach is further analyzed by a Gompertzian fitting procedure and a statistical counting procedure in dependence on the triple line velocity. The Gompertzian fit is used to analyze overall properties of the surface and dependencies between the motion on the front and the back edge of the droplets. The statistical counting procedure results in the calculation of expectation values E(p) and standard deviations σ(p) for the inclination angle φ, contact angle θ, triple line velocity vel and the covered distance of the triple line dis relative to the first boundary points XB,10. Therefore, sessile drops during the inclination of the sample surface are video recorded and different specific contact angle events in dependence on the acceleration/deceleration of the triple line motion are analyzed. This procedure results in characteristically density distributions in dependence on the surface properties. The used procedures lead to the possibility to investigate influences on contact

  20. A canonical replica exchange molecular dynamics implementation with normal pressure in each replica

    NASA Astrophysics Data System (ADS)

    Peter, Emanuel K.; Pivkin, Igor V.; Shea, Joan-Emma

    2016-07-01

    In this paper, we present a new canonical replica exchange molecular dynamics (REMD) simulation method with normal pressure for all replicas (REMD-NV(p) T). This method is suitable for systems for which conventional constant NPT-setups are difficult to implement. In this implementation, each replica has an individual volume, with normal pressure maintained for each replica in the simulation. We derive a novel exchange term and validate this method on the structural properties of SPC/E water and dialanine (Ala2) in the bulk and in the presence of a graphene layer. Compared to conventional constant NPT-REMD and NVT-REMD simulations, we find that the structural properties of our new method are in good agreement with simulations in the NPT-ensemble at all temperatures. The structural properties of the systems considered are affected by high pressures at elevated temperatures in the constant NVT-ensemble, an effect that our method corrects for. Unprojected distributions reveal that essential motions of the peptide are affected by the presence of the barostat in the NPT implementation but that the dynamical eigenmodes of the NV(p)T method are in close quantitative agreement with the NVT-ensemble.

  1. The dynamical analysis of modified two-compartment neuron model and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao

    2017-10-01

    The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.

  2. Design and implementation of a fault-tolerant and dynamic metadata database for clinical trials

    NASA Astrophysics Data System (ADS)

    Lee, J.; Zhou, Z.; Talini, E.; Documet, J.; Liu, B.

    2007-03-01

    In recent imaging-based clinical trials, quantitative image analysis (QIA) and computer-aided diagnosis (CAD) methods are increasing in productivity due to higher resolution imaging capabilities. A radiology core doing clinical trials have been analyzing more treatment methods and there is a growing quantity of metadata that need to be stored and managed. These radiology centers are also collaborating with many off-site imaging field sites and need a way to communicate metadata between one another in a secure infrastructure. Our solution is to implement a data storage grid with a fault-tolerant and dynamic metadata database design to unify metadata from different clinical trial experiments and field sites. Although metadata from images follow the DICOM standard, clinical trials also produce metadata specific to regions-of-interest and quantitative image analysis. We have implemented a data access and integration (DAI) server layer where multiple field sites can access multiple metadata databases in the data grid through a single web-based grid service. The centralization of metadata database management simplifies the task of adding new databases into the grid and also decreases the risk of configuration errors seen in peer-to-peer grids. In this paper, we address the design and implementation of a data grid metadata storage that has fault-tolerance and dynamic integration for imaging-based clinical trials.

  3. Reconfigurable Flight Control Using Nonlinear Dynamic Inversion with a Special Accelerometer Implementation

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Ostroff, Aaron J.

    2000-01-01

    This paper presents an approach to on-line control design for aircraft that have suffered either actuator failure, missing effector surfaces, surface damage, or any combination. The approach is based on a modified version of nonlinear dynamic inversion. The approach does not require a model of the baseline vehicle (effectors at zero deflection), but does require feedback of accelerations and effector positions. Implementation issues are addressed and the method is demonstrated on an advanced tailless aircraft. An experimental simulation analysis tool is used to directly evaluate the nonlinear system's stability robustness.

  4. Impact dynamics in biped locomotion analysis: two modelling and implementation approaches.

    PubMed

    Addi, Khalid; Rodić, Aleksandar D

    2010-07-01

    Stability during the biped locomotion and especially humanoid robots walking is a big challenge in robotics modelling. This paper compares the classical and novel methodologies of modelling and algorithmic implementation of the impact/contact dynamics that occurs during a biped motion. Thus, after establishing the free biped locomotion system model, a formulation using variational inequalities theory via a Linear Complementarity Problem then an impedance model are explicitly developed. Results of the numerical simulations are compared to the experimental measurements then the both approaches are discussed.

  5. Development and implementation of dynamic methodologies for evaluating energy conservation strategies

    NASA Astrophysics Data System (ADS)

    Stephanedes, Y. J.; Michalopoulos, P. G.; Gabriel, D. A.; Hanna, H.; Plum, R.

    1982-04-01

    The modified TRANSIT1 simulation model is developed and implemented to test a wide range of transportation-related energy conservation policies and evaluate their impacts across time. The dynamic structure is based on a set of nonlinear differential equations describing the demand-supply-resource-energy interactions in a transportation system. Time delays associated with fluctuations in travel demand and management responsiveness to those fluctuations are explicitly included. Congestion effects on highway travel times are incorporated by connecting TRANSIT1 to the freeway FREQ6 programs.

  6. Studying chemical reactions in biological systems with MBN Explorer: implementation of molecular mechanics with dynamical topology

    NASA Astrophysics Data System (ADS)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.; Volkov, Sergey N.; Solov'yov, Andrey V.

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies. The implementation of the modified force field was carried out in the popular program MBN Explorer, and, to support the development, we provide several illustrative case studies where dynamical topology is necessary. In particular, it is shown that the modified molecular mechanics force field can be applied for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  7. Suspicion, resistance, tokenism and mutiny: problematic dynamics relevant to the implementation of clinical supervision in nursing.

    PubMed

    Cottrell, S

    2002-12-01

    In this paper I will discuss some of the more common pitfalls inherent in attempts to introduce clinical supervision to hospital wards or community teams. I will consider pre-existing relationships and how these may, if unexamined and unaccounted for, result in clinical supervision becoming less than optimally effective. Drawing upon the theory of Transactional Analysis, in particular the concept of 'psychological distance', I consider four possible interpersonal dynamics and examine how these may impact upon the implementation of clinical supervision. These problematic dynamics can result in undue resistance, suspicion, tokenism or interpersonal difficulties. Finally, I will consider ways in which the aforementioned problems may be addressed and their effects minimized through the use of co-operative contracting.

  8. Thinning of PLZT ceramic wafers for sensor integration

    NASA Astrophysics Data System (ADS)

    Jin, Na; Liu, Weiguo

    2010-08-01

    Characteristics of transparent PLZT ceramics can be tailored by controlling the component of them, and therefore showed excellent dielectric, piezoelectric, pyroelectric and ferroelectric properties. To integrate the ceramics with microelectronic circuit to realize integrated applications, the ceramic wafers have to be thinned down to micrometer scale in thickness. A7/65/35 PLZT ceramic wafer was selected in this study for the thinning process. Size of the wafer was 10×10mm with an initial thickness of 300μm. A novel membrane transfer process (MTP) was developed for the thinning and integration of the ceramic wafers. In the MTP process, the ceramic wafer was bonded to silicon wafer using a polymer bonding method. Mechanical grinding method was applied to reduce the thickness of the ceramic. To minimize the surface damage in the ceramic wafer caused by the mechanical grinding, magnetorheological finishing (MRF) method was utilized to polish the wafer. White light interference (WLI) apparatus was used to monitor the surface qualities of the grinded and ploished ceramic wafers. For the PLZT membrane obtained from the MTP process, the final thickness of the thinned and polished wafer was 10μm, the surface roughness was below 1nm in rms, and the flatness was better than λ/5.

  9. Implementation of a fast 16-Bit dynamic clamp using LabVIEW-RT.

    PubMed

    Kullmann, Paul H M; Wheeler, Diek W; Beacom, Joshua; Horn, John P

    2004-01-01

    The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds < or =43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.

  10. Building the future of WaferSat spacecraft for relativistic spacecraft

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Philip; Rupert, Nic; Stanton, Eric; Mehta, Amal; Knowles, Patrick; Hughes, Gary B.

    2016-09-01

    Recently, there has been a dramatic change in the way space missions are viewed. Large spacecraft with massive propellant-filled launch stages have dominated the space industry since the 1960's, but low-mass CubeSats and low-cost rockets have enabled a new approach to space exploration. In recent work, we have built upon the idea of extremely low mass (sub 1 kg), propellant-less spacecraft that are accelerated by photon propulsion from dedicated directed-energy facilities. Advanced photonics on a chip with hybridized electronics can be used to implement a laser-based communication system on board a sub 1U spacecraft that we call a WaferSat. WaferSat spacecraft are equipped with reflective sails suitable for propulsion by directed-energy beams. This low-mass spacecraft design does not require onboard propellant, creating significant new opportunities for deep space exploration at a very low cost. In this paper, we describe the design of a prototype WaferSat spacecraft, constructed on a printed circuit board. The prototype is envisioned as a step toward a design that could be launched on an early mission into Low Earth Orbit (LEO), as a key milestone in the roadmap to interstellar flight. In addition to laser communication, the WaferSat prototype includes subsystems for power source, attitude control, digital image acquisition, and inter-system communications.

  11. Fabrication of through-wafer 3D microfluidics in silicon carbide using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Huang, Yinggang; Wu, Xiudong; Liu, Hewei; Jiang, Hongrui

    2017-06-01

    We demonstrate a prototype through-wafer microfluidic structure in bulk silicon carbide (SiC) fabricated by femtosecond laser micromachining. The effects of laser fluence and scanning speed on the laser-affected zone are also investigated. Furthermore, the wettability of the laser-affected surface for the target liquid, mineral oil, is examined. Microchannels of various cross-sectional shapes are fabricated by the femtosecond laser and their effects on the liquid flow are simulated and compared. This fabrication approach offers a fast and efficient route to implement SiC-based through-wafer micro-structures, which are not able to be realized using other methods such as chemical etching. The flexibility of manufacturing 3D structures based on this fabrication method enables more complex structures as well. Smooth liquid flow in the microchannels of the bulk SiC substrate is presented. The work shown here paves a new way for various applications such as reliable microfluidic systems in a high-temperature, high radioactivity, and corrosive environment, and could be combined with SiC wafer-to-wafer bonding to realize a plethora of novel microelectromechanical (MEMS) structures.

  12. Method of bond strength evaluation for silicon direct wafer bonding

    NASA Astrophysics Data System (ADS)

    Spivak, Alexander; Avagyan, Avag; Davies, Brady R.

    2001-09-01

    A crack-opening method used for characterization of silicon direct wafer bonding (DWB) techniques was analyzed. Mathematical model describing the influence of the pattern shape on the wafer pair resistance curve, so-called the R-curve, was developed. Two-dimensional patterns were created on a mirror-polished silicon wafer surface by a combination of photolithography, deposition and etching steps. Experimental observations did show that structured wafers can be used for large bond energy measurements. We propose utilization of structured wafers for bond energy measurements. It allows R-curve shape manipulation, increases the method sensitivity, and reduces probability of wafer failure. The resulting theory can also be used for developing new experimental methods for large bond energy measurements.

  13. An empirical equation for prediction of silicon wafer deformation

    NASA Astrophysics Data System (ADS)

    Zhu, Xianglong; Chen, Xiuyi; Liu, Haijun; Kang, Renke; Zhang, Bi; Dong, Zhigang

    2017-06-01

    A thin subsurface damage layer is often formed in the ground layer of a silicon wafer. Compressive stresses exist in the damage layer of the wafer and cause the wafer to deflect when it is unloaded from the vacuum chuck. The residual stresses play an important role in evaluating the machining quality of a wafer. A concise yet accurate stress-deflection relationship is desired so that the residual stresses can be calculated from the wafer deflection. The theoretical equation based on minimizing the total strain energy is often used. However, the anisotropic effects of silicon are neglected and would incur errors when it is applied on silicon wafers. This study establishes an empirical equation via a finite element (FE) model. Both equations are verified in experiments. It is found that FE model is more accurate than the theoretical equation.

  14. Electrooptic shutter devices utilizing PLZT ceramic wafers

    SciTech Connect

    Thornton, A.L.

    1981-01-01

    Optical transparency was achieved in lead zirconate-titanate ferroelectric ceramics by substituting moderate amounts of the element lanthanum (8 to 12%) for lead. These compositions exhibit the quadratic (Kerr) electrooptic effect. The excellent optical qualities of these materials (designated PLZT) has permitted the practical utilization of their electrooptic properties in a number of devices. All of these devices utilize the classic Kerr cell arrangement. A PLZT wafer with optical axis oriented at 45/sup 0/ with respect to the axes of polarization is sandwiched between crossed polarizers. Application of an electric field via an interdigital array of electrodes on opposing wafer surfaces forces the PLZT material into a tetragonal state with the resulting induced birefringence proportional to the square of the applied electric field. Hence, the electrooptic wafer provides a retardation of light so that a component is passed by the second crossed polarizer to achieve an ON or open state. Maximum transmission is achieved when the retardation is half-wave. Shutter devices developed by Sandia and those in continuing development are described with respect to operational characteristics and physical configuration. The devices range in size from very small apertures of 50 ..mu..m x 2 mm with center-to-center repeat dimensions of 125 ..mu..m - to very large - apertures of 15.2 cm in single pieces and mosaics with apertures of 15.2 cm x 20.3 cm. Major efforts have centered on shutter development for the protection of aircrew from eye-damaging weapon effects. Other devices are also described which: provide eye protection for welders, protect vidicon tubes, function as page composers for holographic memories serve as large aperture photographic shutters, provide stereoscopic three-dimensional TV displays, and serve as data links in a fiber-optic transmission path.

  15. Brewster's angle silicon wafer terahertz linear polarizer.

    PubMed

    Wojdyla, Antoine; Gallot, Guilhem

    2011-07-18

    We present a new cost-effective terahertz linear polarizer made from a stack of silicon wafers at Brewster's angle, andevaluate its performances. We show that this polarizer is wide-band, has a high extinction ratio (> 6 × 10(3)) and very small insertion losses (< 1%). We provide measurements of the temporal waveforms after linearly polarizing the THz beam and show that there is no distortion of the pulse. We compare its performances with a commercial wire-grid polarizer, and show that the Brewster's angle polarizer can conveniently be used to control the power of a terahertz beam.

  16. ThermoData Engine (TDE) software implementation of the dynamic data evaluation concept. 7. Ternary mixtures.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Muzny, Chris D; Kazakov, Andrei F; Kroenlein, Kenneth; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Frenkel, Michael

    2012-01-23

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for ternary chemical systems. The method involves construction of Redlich-Kister type equations for individual properties (excess volume, thermal conductivity, viscosity, surface tension, and excess enthalpy) and activity coefficient models for phase equilibrium properties (vapor-liquid and liquid-liquid equilibrium). Constructed ternary models are based on those for the three pure component and three binary subsystems evaluated on demand through the TDE software algorithms. All models are described in detail, and extensions to the class structure of the program are provided. Reliable evaluation of properties for the binary subsystems is essential for successful property evaluations for ternary systems, and algorithms are described to aid appropriate parameter selection and fitting for the implemented activity coefficient models (NRTL, Wilson, Van Laar, Redlich-Kister, and UNIQUAC). Two activity coefficient models based on group contributions (original UNIFAC and NIST-KT-UNIFAC) are also implemented. Novel features of the user interface are shown, and directions for future enhancements are outlined.

  17. Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators

    NASA Astrophysics Data System (ADS)

    Vohar, B.; Kegl, M.; Ren, Z.

    2008-12-01

    Theoretical and practical aspects of an absolute nodal coordinate formulation (ANCF) beam finite element implementation are considered in the context of dynamic transient response optimization of elastic manipulators. The proposed implementation is based on the introduction of new nodal degrees of freedom, which is achieved by an adequate nonlinear mapping between the original and new degrees of freedom. This approach preserves the mechanical properties of the ANCF beam, but converts it into a conventional finite element so that its nodal degrees of freedom are initially always equal to zero and never depend explicitly on the design variables. Consequently, the sensitivity analysis formulas can be derived in the usual manner, except that the introduced nonlinear mapping has to be taken into account. Moreover, the adjusted element can also be incorporated into general finite element analysis and optimization software in the conventional way. The introduced design variables are related to the cross-section of the beam, to the shape of the (possibly) skeletal structure of the manipulator and to the drive functions. The layered cross-section approach and the design element technique are utilized to parameterize the shape of individual elements and the whole structure. A family of implicit time integration methods is adopted for the response and sensitivity analysis. Based on this assumption, the corresponding sensitivity formulas are derived. Two numerical examples illustrate the performance of the proposed element implementation.

  18. Non-linear dynamics in recurrently connected neural circuits implement Bayesian inference by sampling

    NASA Astrophysics Data System (ADS)

    Ticchi, Alessandro; Faisal, Aldo A.; Brain; Behaviour Lab Team

    2015-03-01

    Experimental evidence at the behavioural-level shows that the brains are able to make Bayes-optimal inference and decisions (Kording and Wolpert 2004, Nature; Ernst and Banks, 2002, Nature), yet at the circuit level little is known about how neural circuits may implement Bayesian learning and inference (but see (Ma et al. 2006, Nat Neurosci)). Molecular sources of noise are clearly established to be powerful enough to pose limits to neural function and structure in the brain (Faisal et al. 2008, Nat Rev Neurosci; Faisal et al. 2005, Curr Biol). We propose a spking neuron model where we exploit molecular noise as a useful resource to implement close-to-optimal inference by sampling. Specifically, we derive a synaptic plasticity rule which, coupled with integrate-and-fire neural dynamics and recurrent inhibitory connections, enables a neural population to learn the statistical properties of the received sensory input (prior). Moreover, the proposed model allows to combine prior knowledge with additional sources of information (likelihood) from another neural population, and to implement in spiking neurons a Markov Chain Monte Carlo algorithm which generates samples from the inferred posterior distribution.

  19. Dissipative Particle Dynamics Simulations at Extreme Scale: GPU Algorithms, Implementation and Applications

    NASA Astrophysics Data System (ADS)

    Tang, Yu-Hang; Karniadakis, George; Crunch Team

    2014-03-01

    We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to illustrate the practicality of our code in real-world applications. This work was supported by the new Department of Energy Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4). Simulations were carried out at the Oak Ridge Leadership Computing Facility through the INCITE program under project BIP017.

  20. On the implementation of error handling in dynamic interfaces to scientific codes

    SciTech Connect

    Solomon, Cynthia Jean

    1993-11-01

    With the advent of powerful workstations with windowing systems, the scientific community has become interested in user friendly interfaces as a means of promoting the distribution of scientific codes to colleagues. Distributing scientific codes to a wider audience can, however, be problematic because scientists, who are familiar with the problem being addressed but not aware of necessary operational details, are encouraged to use the codes. A more friendly environment that not only guides user inputs, but also helps catch errors is needed. This thesis presents a dynamic graphical user interface (GUI) creation system with user controlled support for error detection and handling. The system checks a series of constraints defining a valid input set whenever the state of the system changes and notifies the user when an error has occurred. A naive checking scheme was implemented that checks every constraint every time the system changes. However, this method examines many constraints whose values have not changed. Therefore, a minimum evaluation scheme that only checks those constraints that may have been violated was implemented. This system was implemented in a prototype and user testing was used to determine if it was a success. Users examined both the GUI creation system and the end-user environment. The users found both to be easy to use and efficient enough for practical use. Moreover, they concluded that the system would promote distribution.

  1. Wafer level reliability testing: An idea whose time has come

    NASA Technical Reports Server (NTRS)

    Trapp, O. D.

    1987-01-01

    Wafer level reliability testing has been nurtured in the DARPA supported workshops, held each autumn since 1982. The seeds planted in 1982 have produced an active crop of very large scale integration manufacturers applying wafer level reliability test methods. Computer Aided Reliability (CAR) is a new seed being nurtured. Users are now being awakened by the huge economic value of the wafer reliability testing technology.

  2. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  3. Efficient implementation of constant pH molecular dynamics on modern graphics processors.

    PubMed

    Arthur, Evan J; Brooks, Charles L

    2016-09-15

    The treatment of pH sensitive ionization states for titratable residues in proteins is often omitted from molecular dynamics (MD) simulations. While static charge models can answer many questions regarding protein conformational equilibrium and protein-ligand interactions, pH-sensitive phenomena such as acid-activated chaperones and amyloidogenic protein aggregation are inaccessible to such models. Constant pH molecular dynamics (CPHMD) coupled with the Generalized Born with a Simple sWitching function (GBSW) implicit solvent model provide an accurate framework for simulating pH sensitive processes in biological systems. Although this combination has demonstrated success in predicting pKa values of protein structures, and in exploring dynamics of ionizable side-chains, its speed has been an impediment to routine application. The recent availability of low-cost graphics processing unit (GPU) chipsets with thousands of processing cores, together with the implementation of the accurate GBSW implicit solvent model on those chipsets (Arthur and Brooks, J. Comput. Chem. 2016, 37, 927), provide an opportunity to improve the speed of CPHMD and ionization modeling greatly. Here, we present a first implementation of GPU-enabled CPHMD within the CHARMM-OpenMM simulation package interface. Depending on the system size and nonbonded force cutoff parameters, we find speed increases of between one and three orders of magnitude. Additionally, the algorithm scales better with system size than the CPU-based algorithm, thus allowing for larger systems to be modeled in a cost effective manner. We anticipate that the improved performance of this methodology will open the door for broad-spread application of CPHMD in its modeling pH-mediated biological processes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Graphene-Decorated Nanocomposites for Printable Electrodes in Thin Wafer Devices

    NASA Astrophysics Data System (ADS)

    Bakhshizadeh, N.; Sivoththaman, S.

    2017-08-01

    Printable electrodes that induce less stress and require lower curing temperatures compared to traditional screen-printed metal pastes are needed in thin wafer devices such as future solar cells, and in flexible electronics. The synthesis of nanocomposites by incorporating graphene nanopowders as well as silver nanowires into epoxy-based electrically conductive adhesives (ECA) is examined to improve electrical conductivity and to develop alternate printable electrode materials that induce less stress on the wafer. For the synthesized graphene and Ag nanowire-decorated ECA nanocomposites, the curing kinetics were studied by dynamic and isothermal differential scanning calorimetry measurements. Thermogravimetric analysis on ECA, ECA-AG and ECA/graphene nanopowder nanocomposites showed that the temperatures for onset of decomposition are higher than their corresponding glass transition temperature (T g) indicating an excellent thermal resistance. Printed ECA/Ag nanowire nanocomposites showed 90% higher electrical conductivity than ECA films, whereas the ECA/graphene nanocomposites increased the conductivity by over two orders of magnitude. Scanning electron microscopy results also revealed the effect of fillers morphology on the conductivity improvement and current transfer mechanisms in nanocomposites. Residual stress analysis performed on Si wafers showed that the ECA and nanocomposite printed wafers are subjected to much lower stress compared to those printed with metallic pastes. The observed parameters of low curing temperature, good thermal resistance, reasonably high conductivity, and low residual stress in the ECA/graphene nanocomposite makes this material a promising alternative in screen-printed electrode formation in thin substrates.

  5. Beginning-to-end wafer bonding for advanced optical systems

    NASA Astrophysics Data System (ADS)

    Farrens, Shari N.; Lindner, Paul; Dwyer, Steven; Wimplinger, Markus

    2003-11-01

    The old adage "Work Smarter, Not Harder" is certainly applicable in today's competitive marketplace for Optical MEMS. In order to survive the current economic conditions, high volume manufacturers must get optimum performance and yield from each design and manufactured component. Wafer bonding, and its numerous variants, is entering mainstream production environments by providing solutions throughout the production flow. For example, SOI (silicon on insulator) and other laminated materials such as GaAs/Si are used as cost effective alternatives to molecular epitaxy methods for Bragg mirrors, rf resonators, and hybrid device fabrication. Temporary wafer bonding is used extensively to allow fragile compound semiconductors to be attached to rigid support wafers. This allows for front side and backside processing with a reduction in wafer breakage and increases in thickness uniformity results after backgrind operations. Permanent wafer bonding is used to attach compound semiconductors to each other or silicon to completely integrate optical components and logic or MEMS components. Permanent hermetic sealing is used for waveguide formation and, when combined with vacuum sealing, higher performance is achieved for RF resonators. Finally, many of the low temperature solders and eutectic alloys are finding application in low temperature wafer-to-wafer level packaging of optical devices to ceramic packages. Through clever application of these bonding methods, throughput increases and reduction in fabrication complexity givs a clear edge in the market place. This presentation will provide guidelines and process overviews needed to adopt wafer-to-wafer bonding technologies into the high volume-manufacturing environment.

  6. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOEpatents

    Selwyn, G.S.

    1998-12-15

    Particulate contamination removal from wafers is disclosed using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer`s position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates. 4 figs.

  7. Dominant factors of the laser gettering of silicon wafers

    SciTech Connect

    Bokhan, Yu. I. E-mail: yuibokhan@gmail.com; Kamenkov, V. S.; Tolochko, N. K.

    2015-02-15

    The laser gettering of silicon wafers is experimentally investigated. The typical gettering parameters are considered. The surfaces of laser-treated silicon wafers are investigated by microscopy. When studying the effect of laser radiation on silicon wafers during gettering, a group of factors determining the conditions of interaction between the laser beam and silicon-wafer surface and affecting the final result of treatment are selected. The main factors determining the gettering efficiency are revealed. Limitations on the desired value of the getter-layer capacity on surfaces with insufficiently high cleanness (for example, ground or matte) are established.

  8. Micro-miniature gas chromatograph column disposed in silicon wafers

    DOEpatents

    Yu, Conrad M.

    2000-01-01

    A micro-miniature gas chromatograph column is fabricated by forming matching halves of a circular cross-section spiral microcapillary in two silicon wafers and then bonding the two wafers together using visual or physical alignment methods. Heating wires are deposited on the outside surfaces of each wafer in a spiral or serpentine pattern large enough in area to cover the whole microcapillary area inside the joined wafers. The visual alignment method includes etching through an alignment window in one wafer and a precision-matching alignment target in the other wafer. The two wafers are then bonded together using the window and target. The physical alignment methods include etching through vertical alignment holes in both wafers and then using pins or posts through corresponding vertical alignment holes to force precision alignment during bonding. The pins or posts may be withdrawn after curing of the bond. Once the wafers are bonded together, a solid phase of very pure silicone is injected in a solution of very pure chloroform into one end of the microcapillary. The chloroform lowers the viscosity of the silicone enough that a high pressure hypodermic needle with a thumbscrew plunger can force the solution into the whole length of the spiral microcapillary. The chloroform is then evaporated out slowly to leave the silicone behind in a deposit.

  9. Microwave Resistivity of Thermally Oxidized High Resistivity Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Judek, Jarosław; Zdrojek, Mariusz; Szmigiel, Dariusz; Krupka, Jerzy

    2017-10-01

    We used a microwave dielectric resonator to study how the process of thermal oxidation of high resistivity silicon wafers reduces the wafer microwave resistivity. Measurements were performed before surface thermal oxidation, after the oxidation, and after wet oxide removal. We show that the process of oxide growth decreases the microwave resistivity of the wafer from approximately 20 kΩ cm to as low as 400 Ω cm (typically to 1-2 kΩ cm), depending on the dielectric layer thickness and the growth process conditions. After the wet removal of SiO2, the resistivity of the wafers increased, but it did not reach the initial value.

  10. Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo

    2015-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.

  11. Real-time computational attention model for dynamic scenes analysis: from implementation to evaluation

    NASA Astrophysics Data System (ADS)

    Courboulay, Vincent; Perreira Da Silva, Matthieu

    2012-06-01

    Providing real time analysis of the huge amount of data generated by computer vision algorithms in interactive applications is still an open problem. It promises great advances across a wide variety of fields. When using dynamics scene analysis algorithms for computer vision, a trade-off must be found between the quality of the results expected, and the amount of computer resources allocated for each task. It is usually a design time decision, implemented through the choice of pre-defined algorithms and parameters. However, this way of doing limits the generality of the system. Using an adaptive vision system provides a more flexible solution as its analysis strategy can be changed according to the new information available. As a consequence, such a system requires some kind of guiding mechanism to explore the scene faster and more efficiently. We propose a visual attention system that it adapts its processing according to the interest (or salience) of each element of the dynamic scene. Somewhere in between hierarchical salience based and competitive distributed, we propose a hierarchical yet competitive and non salience based model. Our original approach allows the generation of attentional focus points without the need of neither saliency map nor explicit inhibition of return mechanism. This new realtime computational model is based on a preys / predators system. The use of this kind of dynamical system is justified by an adjustable trade-off between nondeterministic attentional behavior and properties of stability, reproducibility and reactiveness.

  12. Laser soft marking on silicon wafer

    NASA Astrophysics Data System (ADS)

    Khoong, L. E.; Lam, Y. C.; Zheng, H. Y.; Chen, X.

    2010-03-01

    A laser soft marking technique is developed for laser markings on a silicon wafer. Due to negligible surface modification, the laser soft wafer markings are invisible by naked eyes under room condition and are undetectable using sophisticated instruments. However, these laser markings are found to be visible to naked eyes through a differential condensation of water droplets on the laser-marked and unmarked silicon surfaces. To understand this phenomenon, a model is established to study the condensation of water droplets on laser-marked and unmarked silicon surfaces. Experimental observations and simulation results indicate that the laser soft marking could have modified the silicon surface with a thin polycrystalline silicon layer which has a much lower conductivity than the crystalline silicon. In addition, this thin layer exhibits a thermal conductivity which is approximately two orders of magnitude lower than that of its equivalent bulk material. As a result, heat transfer on the laser-marked silicon surface is much lower than the crystalline silicon and thus makes these laser soft markings easily visible visually under condensation.

  13. Application of chaotic dynamics in a recurrent neural network to control: hardware implementation into a novel autonomous roving robot.

    PubMed

    Li, Yongtao; Kurata, Shuhei; Morita, Shogo; Shimizu, So; Munetaka, Daigo; Nara, Shigetoshi

    2008-09-01

    Originating from a viewpoint that complex/chaotic dynamics would play an important role in biological system including brains, chaotic dynamics introduced in a recurrent neural network was applied to control. The results of computer experiment was successfully implemented into a novel autonomous roving robot, which can only catch rough target information with uncertainty by a few sensors. It was employed to solve practical two-dimensional mazes using adaptive neural dynamics generated by the recurrent neural network in which four prototype simple motions are embedded. Adaptive switching of a system parameter in the neural network results in stationary motion or chaotic motion depending on dynamical situations. The results of hardware implementation and practical experiment using it show that, in given two-dimensional mazes, the robot can successfully avoid obstacles and reach the target. Therefore, we believe that chaotic dynamics has novel potential capability in controlling, and could be utilized to practical engineering application.

  14. Implementation of variable time step stochastic dynamics for electronically inelastic gas-surface collisions

    NASA Technical Reports Server (NTRS)

    Garrett, Bruce C.; Swaminathan, P. K.; Murthy, C. S.; Redmon, Michael J.

    1987-01-01

    A variable time step algorithm has been implemented for solving the stochastic equations of motion for gas-surface collisions. It has been tested for a simple model of electronically inelastic collisions with an insulator surface in which the phonon manifold acts as a heat bath and electronic states are localized. In addition to reproducing the accurate nuclear dynamics of the surface atoms, numerical calculations have shown the algorithm to yield accurate ensemble averages of physical observables such as electronic transition probabilities and total energy loss of the gas atom to the surface. This new algorithm offers a gain in efficieny of up to an order of magnitude compared to fixed time step integration.

  15. ThermoData engine (TDE): software implementation of the dynamic data evaluation concept. 4. Chemical reactions.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Frenkel, Michael

    2009-12-01

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. This paper describes the first application of this concept to the evaluation of thermodynamic properties for chemical reactions. Reaction properties evaluated are the enthalpies, entropies, Gibbs energies, and thermodynamic equilibrium constants. Details of key considerations in the critical evaluation of enthalpies of formation and of standard entropies for organic compounds are discussed in relation to their application in the calculation of reaction properties. Extensions to the class structure of the program are described that allow close linkage between the derived reaction properties and the underlying pure-component properties. Derivation of pure-component enthalpies of formation and of standard entropies through the use of directly measured reaction properties (enthalpies of reaction and equilibrium constants) is described. Directions for future enhancements are outlined.

  16. A scalable implementation of a finite-volume dynamical core in the Community Atmosphere Model

    SciTech Connect

    Mirin, A A; Sawyer, W B

    2004-09-24

    A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model is presented. Due to the data dependencies resulting from the polar singularity of the latitude-longitude coordinate system, we employ two separate domain decompositions within the dynamical core--one in latitude/level space, and the other in longitude/latitude space. This requires that the data be periodically redistributed between these two decompositions. In addition, the domains contain halo regions that cover the nearest neighbor data dependencies. A combination of several techniques, such as one-sided communication and multithreading, are presented to optimize data movements. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.

  17. A Scalable Implementation of a Finite-Volume Dynamical Core in the Community Atmosphere Model

    SciTech Connect

    Sawyer, W; Mirin, A

    2004-06-25

    A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model is presented. Due to the data dependencies resulting from the polar singularity of the latitude-longitude coordinate system, it is necessary to employ two separate domain decompositions within the dynamical core. Data must be periodically redistributed between these two decompositions. In addition, the domains contain halo regions that cover the nearest neighbor data dependencies. A combination of several techniques, such as one-sided communication and multithreading, are presented to optimize data movements. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.

  18. Parallel Implementation Of Recursive Weighted Least Squares Estimation For Source Dynamic Motion Evaluation

    NASA Astrophysics Data System (ADS)

    El-Hawary, Ferial

    1989-09-01

    This paper treats the problem of source dynamic motion evaluation in underwater applications using recursive weighted least squares estimation. The issue of compensating for underwater motion effects arises in a number of areas of current interest such as control and operations of autonomous remotely operated vehicles, underwater seismic exploration, and buoy wave data analysis. Earlier treatments of the problem relied on frequency response methods and Kalman filtering. The present paper discusses the compensation problem using an alternative discrete model of the process and proposes use of the recursive weighted least squares algorithm for its solution. The algorithm is simpler than Kalman filtering in terms of the required knowledge of noise statistics and provides an attractive alternative to Kalman Filtering. Emphasis is given practical implementation using parallel processing and systolic array methodologies.

  19. Implementation of variable time step stochastic dynamics for electronically inelastic gas-surface collisions

    NASA Technical Reports Server (NTRS)

    Garrett, Bruce C.; Swaminathan, P. K.; Murthy, C. S.; Redmon, Michael J.

    1987-01-01

    A variable time step algorithm has been implemented for solving the stochastic equations of motion for gas-surface collisions. It has been tested for a simple model of electronically inelastic collisions with an insulator surface in which the phonon manifold acts as a heat bath and electronic states are localized. In addition to reproducing the accurate nuclear dynamics of the surface atoms, numerical calculations have shown the algorithm to yield accurate ensemble averages of physical observables such as electronic transition probabilities and total energy loss of the gas atom to the surface. This new algorithm offers a gain in efficieny of up to an order of magnitude compared to fixed time step integration.

  20. Photolithography diagnostic expert systems: a systematic approach to problem solving in a wafer fabrication facility

    NASA Astrophysics Data System (ADS)

    Weatherwax Scott, Caroline; Tsareff, Christopher R.

    1990-06-01

    One of the main goals of process engineering in the semiconductor industry is to improve wafer fabrication productivity and throughput. Engineers must work continuously toward this goal in addition to performing sustaining and development tasks. To accomplish these objectives, managers must make efficient use of engineering resources. One of the tools being used to improve efficiency is the diagnostic expert system. Expert systems are knowledge based computer programs designed to lead the user through the analysis and solution of a problem. Several photolithography diagnostic expert systems have been implemented at the Hughes Technology Center to provide a systematic approach to process problem solving. This systematic approach was achieved by documenting cause and effect analyses for a wide variety of processing problems. This knowledge was organized in the form of IF-THEN rules, a common structure for knowledge representation in expert system technology. These rules form the knowledge base of the expert system which is stored in the computer. The systems also include the problem solving methodology used by the expert when addressing a problem in his area of expertise. Operators now use the expert systems to solve many process problems without engineering assistance. The systems also facilitate the collection of appropriate data to assist engineering in solving unanticipated problems. Currently, several expert systems have been implemented to cover all aspects of the photolithography process. The systems, which have been in use for over a year, include wafer surface preparation (HMDS), photoresist coat and softbake, align and expose on a wafer stepper, and develop inspection. These systems are part of a plan to implement an expert system diagnostic environment throughout the wafer fabrication facility. In this paper, the systems' construction is described, including knowledge acquisition, rule construction, knowledge refinement, testing, and evaluation. The roles

  1. 1366 Direct Wafer: Demolishing the Cost Barrier for Silicon Photovoltaics

    SciTech Connect

    Lorenz, Adam

    2013-08-30

    The goal of 1366 Direct Wafer™ is to drastically reduce the cost of silicon-based PV by eliminating the cost barrier imposed by sawn wafers. The key characteristics of Direct Wafer are 1) kerf-free, 156-mm standard silicon wafers 2) high throughput for very low CAPEX and rapid scale up. Together, these characteristics will allow Direct Wafer™ to become the new standard for silicon PV wafers and will enable terawatt-scale PV – a prospect that may not be possible with sawn wafers. Our single, high-throughput step will replace the expensive and rate-limiting process steps of ingot casting and sawing, thereby enabling drastically lower wafer cost. This High-Impact PV Supply Chain project addressed the challenges of scaling Direct Wafer technology for cost-effective, high-throughput production of commercially viable 156 mm wafers. The Direct Wafer process is inherently simple and offers the potential for very low production cost, but to realize this, it is necessary to demonstrate production of wafers at high-throughput that meet customer specifications. At the start of the program, 1366 had demonstrated (with ARPA-E funding) increases in solar cell efficiency from 10% to 15.9% on small area (20cm2), scaling wafer size up to the industry standard 156mm, and demonstrated initial cell efficiency on larger wafers of 13.5%. During this program, the throughput of the Direct Wafer furnace was increased by more than 10X, simultaneous with quality improvements to meet early customer specifications. Dedicated equipment for laser trimming of wafers and measurement methods were developed to feedback key quality metrics to improve the process and equipment. Subsequent operations served both to determine key operating metrics affecting cost, as well as generating sample product that was used for developing downstream processing including texture and interaction with standard cell processing. Dramatic price drops for silicon wafers raised the bar significantly, but the

  2. Implementation of a methodology for determining elastic properties of lipid assemblies from molecular dynamics simulations.

    PubMed

    Johner, Niklaus; Harries, Daniel; Khelashvili, George

    2016-04-12

    The importance of the material properties of membranes for diverse cellular processes is well established. Notably, the elastic properties of the membrane, which depend on its composition, can directly influence membrane reshaping and fusion processes as well as the organisation and function of membrane proteins. Determining these properties is therefore key for a mechanistic understanding of how the cell functions. We have developed a method to determine the bending rigidity and tilt modulus, for lipidic assemblies of arbitrary lipid composition and shape, from molecular dynamics simulations. The method extracts the elastic moduli from the distributions of microscopic tilts and splays of the lipid components. We present here an open source implementation of the method as a set of Python modules using the computational framework OpenStructure. These modules offer diverse algorithms typically used in the calculatation the elastic moduli, including routines to align MD trajectories of complex lipidic systems, to determine the water/lipid interface, to calculate lipid tilts and splays, as well as to fit the corresponding distributions to extract the elastic properties. We detail the implementation of the method and give several examples of how to use the modules in specific cases. The method presented here is, to our knowledge, the only available computational approach allowing to quantify the elastic properties of lipidic assemblies of arbitrary shape and composition (including lipid mixtures). The implementation as python modules offers flexibility, which has already allowed the method to be applied to diverse lipid assembly types, ranging from bilayers in the liquid ordered and disordered phases to a study of the inverted-hexagonal phase, and with different force-fields (both all-atom and coarse grained representations). The modules are freely available through GitHub at https://github.com/njohner/ost_pymodules/ while OpenStructure can be obtained at http://www.openstructure.org .

  3. Particulate contamination removal from wafers using plasmas and mechanical agitation

    DOEpatents

    Selwyn, Gary S.

    1998-01-01

    Particulate contamination removal from wafers using plasmas and mechanical agitation. The present invention includes the use of plasmas with mechanical agitation for removing particulate matter from the surface of a wafer. The apparatus hereof comprises a mechanical activator, at least one conducting contact pin for transferring the vibration from the activator to the wafer, clamp fingers that maintain the wafer's position, and means for generating a plasma in the vicinity of the surface of the wafer, all parts of the cleaning apparatus except the mechanical activator and part of the contact pin being contained inside the processing chamber. By exposing a wafer to a plasma and providing motion thereto in a direction perpendicular to its surface, the bonding between the particulate matter and the surface may be overcome. Once free of the wafer surface, the particulates become charged by electrons from the plasma and are drawn into the plasma by attractive forces which keep them from redepositing. The introduction of a flowing gas through the plasma sweeps the particulates away from the wafer and out of the plasma. The entire surface is cleaned during one cleaning step. The use of an rf plasma to accomplish the particulate removal was found to remove more than 90% of the particulates.

  4. Wafer hot spot identification through advanced photomask characterization techniques

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2016-10-01

    As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.

  5. Fabrication of Uniform Nanoscale Cavities via Silicon Direct Wafer Bonding

    PubMed Central

    Thomson, Stephen R. D.; Perron, Justin K.; Kimball, Mark O.; Mehta, Sarabjit; Gasparini, Francis M.

    2014-01-01

    Measurements of the heat capacity and superfluid fraction of confined 4He have been performed near the lambda transition using lithographically patterned and bonded silicon wafers. Unlike confinements in porous materials often used for these types of experiments3, bonded wafers provide predesigned uniform spaces for confinement. The geometry of each cell is well known, which removes a large source of ambiguity in the interpretation of data. Exceptionally flat, 5 cm diameter, 375 µm thick Si wafers with about 1 µm variation over the entire wafer can be obtained commercially (from Semiconductor Processing Company, for example). Thermal oxide is grown on the wafers to define the confinement dimension in the z-direction. A pattern is then etched in the oxide using lithographic techniques so as to create a desired enclosure upon bonding. A hole is drilled in one of the wafers (the top) to allow for the introduction of the liquid to be measured. The wafers are cleaned2 in RCA solutions and then put in a microclean chamber where they are rinsed with deionized water4. The wafers are bonded at RT and then annealed at ~1,100 °C. This forms a strong and permanent bond. This process can be used to make uniform enclosures for measuring thermal and hydrodynamic properties of confined liquids from the nanometer to the micrometer scale. PMID:24457563

  6. Analysis of wafer heating in 14nm DUV layers

    NASA Astrophysics Data System (ADS)

    Subramany, Lokesh; Chung, Woong Jae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Minghetti, Blandine; Lee, Shawn

    2016-03-01

    To further shrink the contact and trench dimensions, Negative Tone Development (NTD) has become the de facto process at these layers. The NTD process uses a positive tone resist and an organic solvent-based negative tone developer which leads to improved image contrast, larger process window and smaller Mask Error Enhancement Factor (MEEF)[1]. The NTD masks have high transmission values leading to lens heating and as observed here wafer heating as well. Both lens and wafer heating will contribute to overlay error, however the effects of lens heating can be mitigated by applying lens heating corrections while no such corrections exist for wafer heating yet. Although the magnitude of overlay error due to wafer heating is low relative to lens heating; ever tightening overlay requirements imply that the distortions due to wafer heating will quickly become a significant part of the overlay budget. In this work the effects, analysis and observations of wafer heating on contact and metal layers of the 14nm node are presented. On product wafers it manifests as a difference in the scan up and scan down signatures between layers. An experiment to further understand wafer heating is performed with a test reticle that is used to monitor scanner performance.

  7. Strength of Si Wafers with Microcracks: A Theoretical Model; Preprint

    SciTech Connect

    Rupnowski, P.; Sopori, B.

    2008-05-01

    This paper concentrates on the modeling of the strength of photovoltaic (PV) wafers. First a multimodal Weibull distribution is presented for the strength of a silicon specimen with bulk, surface, and edge imperfections. Next, a specific case is analyzed of a PV wafer with surface damage that takes the form of subsurface microcracks.

  8. Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures (IDEALEM) v 0.1

    SciTech Connect

    Sim, Alex; Lee, Dongeun; Wu, K. John

    2016-03-04

    Handling large streaming data is essential for various applications such as network traffic analysis, social networks, energy cost trends, and environment modeling. However, it is in general intractable to store, compute, search, and retrieve large streaming data. This software addresses a fundamental issue, which is to reduce the size of large streaming data and still obtain accurate statistical analysis. As an example, when a high-speed network such as 100 Gbps network is monitored, the collected measurement data rapidly grows so that polynomial time algorithms (e.g., Gaussian processes) become intractable. One possible solution to reduce the storage of vast amounts of measured data is to store a random sample, such as one out of 1000 network packets. However, such static sampling methods (linear sampling) have drawbacks: (1) it is not scalable for high-rate streaming data, and (2) there is no guarantee of reflecting the underlying distribution. In this software, we implemented a dynamic sampling algorithm, based on the recent technology from the relational dynamic bayesian online locally exchangeable measures, that reduces the storage of data records in a large scale, and still provides accurate analysis of large streaming data. The software can be used for both online and offline data records.

  9. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation.

    PubMed

    Palatinus, Lukáš; Petříček, Václav; Corrêa, Cinthia Antunes

    2015-03-01

    Accurate structure refinement from electron-diffraction data is not possible without taking the dynamical-diffraction effects into account. A complete three-dimensional model of the structure can be obtained only from a sufficiently complete three-dimensional data set. In this work a method is presented for crystal structure refinement from the data obtained by electron diffraction tomography, possibly combined with precession electron diffraction. The principle of the method is identical to that used in X-ray crystallography: data are collected in a series of small tilt steps around a rotation axis, then intensities are integrated and the structure is optimized by least-squares refinement against the integrated intensities. In the dynamical theory of diffraction, the reflection intensities exhibit a complicated relationship to the orientation and thickness of the crystal as well as to structure factors of other reflections. This complication requires the introduction of several special parameters in the procedure. The method was implemented in the freely available crystallographic computing system Jana2006.

  10. Backside EBR process performance with various wafer properties

    NASA Astrophysics Data System (ADS)

    Goto, Tomohiro; Shigemori, Kazuhito; Vangheluwe, Rik; Erich, Daub; Sanada, Masakazu

    2009-03-01

    In immersion lithography process, film stacking architecture will be necessary to avoid top coat film peeling. To achieve suitable stacking architecture for immersion lithography process, an EBR process that delivers tightly controlled film edge position and good uniformity around the wafer circumference is needed. We demonstrated a new bevel rinse system on a SOKUDO RF3 coat-and-develop track for immersion lithography. The performance of the new bevel rinse system for various wafer properties was evaluated. It was found that the bevel rinse system has a good controllability of film edge position and good uniformity around the wafer circumference. The results indicate that the bevel rinse system has a large margin for wafer centering accuracy, back side particles, wafer shape and substrates with good film edge position controllability, uniformity and clean apex. The system has been demonstrated to provide a suitable film stacking architecture for immersion lithography mass production process.

  11. Reduction of Thermal Conductivity in Wafer-Bonded Silicon

    SciTech Connect

    ZL Liau; LR Danielson; PM Fourspring; L Hu; G Chen; GW Turner

    2006-11-27

    Blocks of silicon up to 3-mm thick have been formed by directly bonding stacks of thin wafer chips. These stacks showed significant reductions in the thermal conductivity in the bonding direction. In each sample, the wafer chips were obtained by polishing a commercial wafer to as thin as 36 {micro}m, followed by dicing. Stacks whose starting wafers were patterned with shallow dots showed greater reductions in thermal conductivity. Diluted-HF treatment of wafer chips prior to bonding led to the largest reduction of the effective thermal conductivity, by approximately a factor of 50. Theoretical modeling based on restricted conduction through the contacting dots and some conduction across the planar nanometer air gaps yielded fair agreement for samples fabricated without the HF treatment.

  12. Piezoresistive stress sensors on (110) silicon wafers

    NASA Technical Reports Server (NTRS)

    Kang, Y. L.; Suhling, J. C.; Jaeger, R. C.

    1992-01-01

    Structural reliability of electronic packages has become an increasing concern for a variety of reasons including the advent of higher integrated circuit densities, power density levels, and operating temperatures. A powerful method for experimental evaluation of die stress distributions is the use of test chips incorporating integral piezoresistive sensors. In this paper, the basic equations needed for the design of stress sensors fabricated on the surface of (110) oriented silicon wafers have been presented. Several sensor rosette configurations have been explored, including the familiar three-element 0-45-90 rosette. Rosette designs have been found which minimize the necessary calibration procedures and permit more stress components to be measured. It has been established that stress sensors on the surface of (110) test chips are sensitive to four out of the six stress components at a point.

  13. MAPPER alignment sensor evaluation on process wafers

    NASA Astrophysics Data System (ADS)

    Vergeer, N.; Lattard, L.; de Boer, G.; Couweleers, F.; Dave, D.; Pradelles, J.; Bustos, J.

    2013-03-01

    MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing. In order to reduce costs and to minimize the footprint of this tool a new alignment sensor has been developed; based on technologies used for DVD optical heads. A wafer with an alignment mark is scanned with the sensor, resulting in an intensity pattern versus position. From this pattern the mark position can be calculated. Evaluations have been made over the performance of this type of sensor using different mark designs at several lithography process steps for FEOL and BEOL manufacturing. It has been shown that sub-nanometer reproducibility (3σ std) of alignment mark readings can be achieved while being robust against various process steps.

  14. Infrared spectroscopy of wafer-scale graphene.

    PubMed

    Yan, Hugen; Xia, Fengnian; Zhu, Wenjuan; Freitag, Marcus; Dimitrakopoulos, Christos; Bol, Ageeth A; Tulevski, George; Avouris, Phaedon

    2011-12-27

    We report spectroscopy results from the mid- to far-infrared on wafer-scale graphene, grown either epitaxially on silicon carbide or by chemical vapor deposition. The free carrier absorption (Drude peak) is simultaneously obtained with the universal optical conductivity (due to interband transitions) and the wavelength at which Pauli blocking occurs due to band filling. From these, the graphene layer number, doping level, sheet resistivity, carrier mobility, and scattering rate can be inferred. The mid-IR absorption of epitaxial two-layer graphene shows a less pronounced peak at 0.37 ± 0.02 eV compared to that in exfoliated bilayer graphene. In heavily chemically doped single-layer graphene, a record high transmission reduction due to free carriers approaching 40% at 250 μm (40 cm(-1)) is measured in this atomically thin material, supporting the great potential of graphene in far-infrared and terahertz optoelectronics.

  15. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    NASA Astrophysics Data System (ADS)

    Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca

    2014-08-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.

  16. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers.

    PubMed

    Cunning, Benjamin V; Ahmed, Mohsin; Mishra, Neeraj; Kermany, Atieh Ranjbar; Wood, Barry; Iacopi, Francesca

    2014-08-15

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.

  17. Overlay Tolerances For VLSI Using Wafer Steppers

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.; Rice, Rory

    1988-01-01

    In order for VLSI circuits to function properly, the masking layers used in the fabrication of those devices must overlay each other to within the manufacturing tolerance incorporated in the circuit design. The capabilities of the alignment tools used in the masking process determine the overlay tolerances to which circuits can be designed. It is therefore of considerable importance that these capabilities be well characterized. Underestimation of the overlay accuracy results in unnecessarily large devices, resulting in poor utilization of wafer area and possible degradation of device performance. Overestimation will result in significant yield loss because of the failure to conform to the tolerances of the design rules. The proper methodology for determining the overlay capabilities of wafer steppers, the most commonly used alignment tool for the production of VLSI circuits, is the subject of this paper. Because cost-effective manufacturing process technology has been the driving force of VLSI, the impact on productivity is a primary consideration in all discussions. Manufacturers of alignment tools advertise the capabilities of their equipment. It is notable that no manufacturer currently characterizes his aligners in a manner consistent with the requirements of producing very large integrated circuits, as will be discussed. This has resulted in the situation in which the evaluation and comparison of the capabilities of alignment tools require the attention of a lithography specialist. Unfortunately, lithographic capabilities must be known by many other people, particularly the circuit designers and the managers responsible for the financial consequences of the high prices of modern alignment tools. All too frequently, the designer or manager is confronted with contradictory data, one set coming from his lithography specialist, and the other coming from a sales representative of an equipment manufacturer. Since the latter generally attempts to make his

  18. Rapid defect detections of bonded wafer using near infrared polariscope

    NASA Astrophysics Data System (ADS)

    Ng, Chi Seng; Asundi, Anand K.

    2011-10-01

    In modern field of microelectronics and MEMS, wafer bonding has emerged as an important processing step in wide range of manufacturing applications. During the manufacturing process, even in the modern clean room, small defects result from trapped particles and gas bubbles exist at bonded interface. Defects and trapped particles may exist on the top and bottom of the wafers, or at the interface of bonded wafer pair. These inclusions will generate high stress around debond region at the wafers bonded interface. In this paper, inspection at the bonded interface will be the interest of investigation. Since silicon wafer is opaque to visible light, defect detection at the bonded interface of silicon wafer is not possible. Due to the fact that silicon wafer is transparent to wavelength greater than 1150nm, an Near Infrared Polariscope which has showed some promises on residual stress measurement on silicon devices has been adapted and developed. This method is based on the well known photoelastic principles, where the stress variations are measured based on the changes of light propagation velocity in birefringence material. The results are compared and contrast with conventional Infrared Transmission Imaging tool (IRT) which is widely used to inspect the bonded silicon wafer. In this research, the trapped particles that are not visible via conventional infrared transmission method are identified via the generated residual stress pattern. The magnitude of the residual stress fields associated with each defect is examined qualitatively and quantitatively. The stress field generated at the wafers bonded interface will looks like a 'butterfly' pattern. Wafer pairs Pyrex-Si and Si-Si bonded interface will be examined.

  19. Compensating measured intra-wafer ring oscillator stage delay with intra-wafer exposure dose corrections

    NASA Astrophysics Data System (ADS)

    Verhaegen, Staf; Nackaerts, Axel; Dusa, Mircea; Carpaij, Rene; Vandenberghe, Geert; Finders, Jo

    2006-03-01

    The purpose of this paper is to use measurements on real working devices to derive more information than typically measured by the classic line-width measurement techniques. The first part of the paper will discuss the principle of the measurements with a ring oscillator, a circuit used to measure the speed of elementary logic gates. These measurements contribute to the understanding of the exact timing dependencies in circuits, which is of utmost importance for the design and simulation of these circuits. When connecting an odd number of digital inverting stages in a ring, the circuit has no stable digital state but acts as an analog oscillator with the oscillation frequency dependent on the analog propagation delay of the signals through the stages. By varying some conditions during a litho step, the delay change caused by the process condition change can be measured very accurately. The response of the ring oscillator delay to exposure dose is measured and presented in this paper together with a comparison of measured line-width values of the poly gate lines. The second part of the paper will focus on improving the intra-wafer variation of the stage delay. A number of ring oscillators are put in a design at different slit and scan locations. 200mm wafers are processed with 48 full dies present. From the intra-wafer delay fingerprint and the dose sensitivity of the delay an intra-wafer dose correction, also called a dose recipe, is calculated. This dose recipe is used on the scanner to compensate for effects that are the root cause for the delay profile; including reticle and processing such as track, etch and annealing.

  20. The parylene-aluminum multilayer interconnection system for wafer scale integration and wafer scale hybrid packaging

    NASA Astrophysics Data System (ADS)

    Majid, N.; Dabral, S.; McDonald, J. F.

    1989-03-01

    Polyimides have been considered as interlayer dielectrics for wafer scale integration (WSI) and wafer scale hybrid packaging (WSHP). However, high temperature curing steps for polyimide lead to large stresses in polyimide films. This is due to differing thermal expansion coefficients of the metal conductor, insulator and substrate materials causing yield and reliability problems. Polyimides also require the use of solvents, and tend to outgas during subsequent processing. They tend to absorb moisture with resulting degradation of dielectric constants. Also, the spin on method used to apply and planarize polyimide layers exhibits nonuniformity of thickness on large wafers. In this paper we examine parylene (Poly-p-xylylene) and some of its derivatives as possible interlayer dielectrics due to some of their attractive features. Parylene has a low dielectric constant. It can be vapor deposited at low temperatures and in vacuum. It is also highly resistant to corrosion and is a clear, transparent material with possible use for optical interconnections. This paper studies the reactive ion etching properties for polyimides and parylenes in an oxygen containing plasma under identical conditions. The etching rates of the parylenes and polyimides have been compared. The surface properties of these polymers are examined. Further, the film growth properties of aluminum deposited on the etched surfaces using the ionized cluster beam are investigated.

  1. Influence of Wafer Edge Geometry on Removal Rate Profile in Chemical Mechanical Polishing: Wafer Edge Roll-Off and Notch

    NASA Astrophysics Data System (ADS)

    Fukuda, Akira; Fukuda, Tetsuo; Fukunaga, Akira; Tsujimura, Manabu

    2012-05-01

    In the chemical mechanical polishing (CMP) process, uniform polishing up to near the wafer edge is essential to reduce edge exclusion and improve yield. In this study, we examine the influences of inherent wafer edge geometries, i.e., wafer edge roll-off and notch, on the CMP removal rate profile. We clarify the areas in which the removal rate profile is affected by the wafer edge roll-off and the notch, as well as the intensity of their effects on the removal rate profile. In addition, we propose the use of a small notch to reduce the influence of the wafer notch and present the results of an examination by finite element method (FEM) analysis.

  2. 2D ion velocity distribution function measurements by laser-induced fluorescence above a radio-frequency biased silicon wafer

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel; Gekelman, Walter; Pribyl, Patrick; Zhang, Yiting; Kushner, Mark

    2012-10-01

    Ion dynamics have been measured in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a plasma processing etch tool using laser-induced fluorescence (LIF). The velocity distribution function of argon ions was measured at thousands of positions above and radially along the edge of the wafer by sending a planar laser sheet from a pulsed, tunable dye laser into the tool. The RF sheath is clearly resolved. The laser sheet entered the machine both parallel and perpendicular to the wafer in order to measure the distribution function for both parallel and perpendicular velocities/energies (0.4 eV < Emax<600 eV). The resulting fluorescence was recorded using a fast CCD camera, which provided spatial (0.4 mm) and temporal (30 ns) resolution. Data was taken at eight different phases of the 2.2 MHz cycle. The distribution functions were found to be spatially non-uniform near the edge of the wafer and the distribution of energies extremely phase-dependent. Several cm above the wafer the distribution is Maxwellian and independent of phase. Results are compared with simulations; for example, the experimental time-averaged ion energy distribution function compares favorably with a computer model carefully constructed to emulate the device.

  3. 2D ion velocity distribution function measurements by laser-induced fluorescence above a radio-frequency biased silicon wafer

    NASA Astrophysics Data System (ADS)

    Moore, Nathaniel; Gekelman, Walter; Pribyl, Patrick; Zhang, Yiting; Kushner, Mark

    2012-10-01

    Ion dynamics have been measured in the sheath above a 30 cm diameter, 2.2 MHz-biased silicon wafer in a plasma processing etch tool using laser-induced fluorescence (LIF). The velocity distribution function of argon ions was measured at thousands of positions above and radially along the edge of the wafer by sending a planar laser sheet from a pulsed, tunable dye laser into the tool. The RF sheath is clearly resolved. The laser sheet entered the machine both parallel and perpendicular to the wafer in order to measure the distribution function for both parallel and perpendicular velocities/energies (0.4 eV < Emax< 600 eV). The resulting fluorescence was recorded using a fast CCD camera, which provided spatial (0.4 mm) and temporal (30 ns) resolution. Data was taken at eight different phases of the 2.2 MHz cycle. The distribution functions were found to be spatially non-uniform near the edge of the wafer and the distribution of energies extremely phase-dependent. Several cm above the wafer the distribution is Maxwellian and independent of phase. Results are compared with simulations; for example, the experimental time-averaged ion energy distribution function compares favorably with a computer model carefully constructed to emulate the device.

  4. Investigation of the properties of semiconductor wafer bonding in multijunction solar cells via metal-nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Makita, Kikuo; Mizuno, Hidenori; Sugaya, Takeyoshi

    2017-07-01

    Semiconductor wafer bonding has gained attention for its use in the design of efficient optoelectronic devices. Here, we report the observation of the properties of semiconductor wafer bonding via metal nanoparticle arrays based on the current-voltage and reflectance measurements of multijunction solar cells. Based on our observation of temporal changes in current-voltage characteristics and reflectance, we have revealed that reduced contact resistance at the bonded interface involves two processes: van der Waals bonding, which occurs within a few minutes, and diffusion bonding of metal nanoparticles, which occurs in a time scale of days. The mechanism of wafer bonding via metal nanoparticles is discussed based on its dynamical aspects, including the roles of liquid capillarity and alloy formation at the interface.

  5. Neuromorphic Implementation of Attractor Dynamics in a Two-Variable Winner-Take-All Circuit with NMDARs: A Simulation Study

    PubMed Central

    You, Hongzhi; Wang, Da-Hui

    2017-01-01

    Neural networks configured with winner-take-all (WTA) competition and N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic dynamics are endowed with various dynamic characteristics of attractors underlying many cognitive functions. This paper presents a novel method for neuromorphic implementation of a two-variable WTA circuit with NMDARs aimed at implementing decision-making, working memory and hysteresis in visual perceptions. The method proposed is a dynamical system approach of circuit synthesis based on a biophysically plausible WTA model. Notably, slow and non-linear temporal dynamics of NMDAR-mediated synapses was generated. Circuit simulations in Cadence reproduced ramping neural activities observed in electrophysiological recordings in experiments of decision-making, the sustained activities observed in the prefrontal cortex during working memory, and classical hysteresis behavior during visual discrimination tasks. Furthermore, theoretical analysis of the dynamical system approach illuminated the underlying mechanisms of decision-making, memory capacity and hysteresis loops. The consistence between the circuit simulations and theoretical analysis demonstrated that the WTA circuit with NMDARs was able to capture the attractor dynamics underlying these cognitive functions. Their physical implementations as elementary modules are promising for assembly into integrated neuromorphic cognitive systems. PMID:28223913

  6. A new dynamic tactile display for reconfigurable braille: implementation and tests

    PubMed Central

    Motto Ros, Paolo; Dante, Vittorio; Mesin, Luca; Petetti, Erminio; Del Giudice, Paolo; Pasero, Eros

    2014-01-01

    Different tactile interfaces have been proposed to represent either text (braille) or, in a few cases, tactile large-area screens as replacements for visual displays. None of the implementations so far can be customized to match users' preferences, perceptual differences and skills. Optimal choices in these respects are still debated; we approach a solution by designing a flexible device allowing the user to choose key parameters of tactile transduction. We present here a new dynamic tactile display, a 8 × 8 matrix of plastic pins based on well-established and reliable piezoelectric technology to offer high resolution (pin gap 0.7mm) as well as tunable strength of the pins displacement, and refresh rate up to 50s−1. It can reproduce arbitrary patterns, allowing it to serve the dual purpose of providing, depending on contingent user needs, tactile rendering of non-character information, and reconfigurable braille rendering. Given the relevance of the latter functionality for the expected average user, we considered testing braille encoding by volunteers a benchmark of primary importance. Tests were performed to assess the acceptance and usability with minimal training, and to check whether the offered flexibility was indeed perceived by the subject as an added value compared to conventional braille devices. Different mappings between braille dots and actual tactile pins were implemented to match user needs. Performances of eight experienced braille readers were defined as the fraction of correct identifications of rendered content. Different information contents were tested (median performance on random strings, words, sentences identification was about 75%, 85%, 98%, respectively, with a significant increase, p < 0.01), obtaining statistically significant improvements in performance during the tests (p < 0.05). Experimental results, together with qualitative ratings provided by the subjects, show a good acceptance and the effectiveness of the proposed solution

  7. A new dynamic tactile display for reconfigurable braille: implementation and tests.

    PubMed

    Motto Ros, Paolo; Dante, Vittorio; Mesin, Luca; Petetti, Erminio; Del Giudice, Paolo; Pasero, Eros

    2014-01-01

    Different tactile interfaces have been proposed to represent either text (braille) or, in a few cases, tactile large-area screens as replacements for visual displays. None of the implementations so far can be customized to match users' preferences, perceptual differences and skills. Optimal choices in these respects are still debated; we approach a solution by designing a flexible device allowing the user to choose key parameters of tactile transduction. We present here a new dynamic tactile display, a 8 × 8 matrix of plastic pins based on well-established and reliable piezoelectric technology to offer high resolution (pin gap 0.7mm) as well as tunable strength of the pins displacement, and refresh rate up to 50s(-1). It can reproduce arbitrary patterns, allowing it to serve the dual purpose of providing, depending on contingent user needs, tactile rendering of non-character information, and reconfigurable braille rendering. Given the relevance of the latter functionality for the expected average user, we considered testing braille encoding by volunteers a benchmark of primary importance. Tests were performed to assess the acceptance and usability with minimal training, and to check whether the offered flexibility was indeed perceived by the subject as an added value compared to conventional braille devices. Different mappings between braille dots and actual tactile pins were implemented to match user needs. Performances of eight experienced braille readers were defined as the fraction of correct identifications of rendered content. Different information contents were tested (median performance on random strings, words, sentences identification was about 75%, 85%, 98%, respectively, with a significant increase, p < 0.01), obtaining statistically significant improvements in performance during the tests (p < 0.05). Experimental results, together with qualitative ratings provided by the subjects, show a good acceptance and the effectiveness of the proposed solution.

  8. Parallel implementation of the particle simulation method with dynamic load balancing: Toward realistic geodynamical simulation

    NASA Astrophysics Data System (ADS)

    Furuichi, M.; Nishiura, D.

    2015-12-01

    Fully Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM) have been widely used to solve the continuum and particles motions in the computational geodynamics field. These mesh-free methods are suitable for the problems with the complex geometry and boundary. In addition, their Lagrangian nature allows non-diffusive advection useful for tracking history dependent properties (e.g. rheology) of the material. These potential advantages over the mesh-based methods offer effective numerical applications to the geophysical flow and tectonic processes, which are for example, tsunami with free surface and floating body, magma intrusion with fracture of rock, and shear zone pattern generation of granular deformation. In order to investigate such geodynamical problems with the particle based methods, over millions to billion particles are required for the realistic simulation. Parallel computing is therefore important for handling such huge computational cost. An efficient parallel implementation of SPH and DEM methods is however known to be difficult especially for the distributed-memory architecture. Lagrangian methods inherently show workload imbalance problem for parallelization with the fixed domain in space, because particles move around and workloads change during the simulation. Therefore dynamic load balance is key technique to perform the large scale SPH and DEM simulation. In this work, we present the parallel implementation technique of SPH and DEM method utilizing dynamic load balancing algorithms toward the high resolution simulation over large domain using the massively parallel super computer system. Our method utilizes the imbalances of the executed time of each MPI process as the nonlinear term of parallel domain decomposition and minimizes them with the Newton like iteration method. In order to perform flexible domain decomposition in space, the slice-grid algorithm is used. Numerical tests show that our

  9. Understanding the dynamics of the Seguro Popular de Salud policy implementation in Mexico from a complex adaptive systems perspective.

    PubMed

    Nigenda, Gustavo; González-Robledo, Luz María; Juárez-Ramírez, Clara; Adam, Taghreed

    2016-05-13

    In 2003, Mexico's Seguro Popular de Salud (SPS), was launched as an innovative financial mechanism implemented to channel new funds to provide health insurance to 50 million Mexicans and to reduce systemic financial inequities. The objective of this article is to understand the complexity and dynamics that contributed to the adaptation of the policy in the implementation stage, how these changes occurred, and why, from a complex and adaptive systems perspective. A complex adaptive systems (CAS) framework was used to carry out a secondary analysis of data obtained from four SPS's implementation evaluations. We first identified key actors, their roles, incentives and power, and their responses to the policy and guidelines. We then developed a causal loop diagram to disentangle the feedback dynamics associated with the modifications of the policy implementation which we then analyzed using a CAS perspective. Implementation variations were identified in seven core design features during the first 10 years of implementation period, and in each case, the SPS's central coordination introduced modifications in response to the reactions of the different actors. We identified several CAS phenomena associated with these changes including phase transitions, network emergence, resistance to change, history dependence, and feedback loops. Our findings generate valuable lessons to policy implementation processes, especially those involving a monetary component, where the emergence of coping mechanisms and other CAS phenomena inevitably lead to modifications of policies and their interpretation by those who implement them. These include the difficulty of implementing strategies that aim to pool funds through solidarity among beneficiaries where the rich support the poor when there are no incentives for the rich to do so. Also, how resistance to change and history dependence can pose significant challenges to implementing changes, where the local actors use their significant power

  10. Development of optical automatic positioning and wafer defect detection system

    NASA Astrophysics Data System (ADS)

    Tien, Chuen-Lin; Lai, Qun-Huang; Lin, Chern-Sheng

    2016-02-01

    The data of a wafer with defects can provide engineers with very important information and clues to improve the yield rate and quality in manufacturing. This paper presents a microscope automatic positioning and wafer detection system with human-machine interface based on image processing and fuzzy inference algorithms. In the proposed system, a XY table is used to move the position of each die on 6 inch or 8 inch wafers. Then, a high-resolution CCD and one set of two-axis optical linear encoder are used to accurately measure the position on the wafer. Finally, the developed human-machine interface is used to display the current position of an actual wafer in order to complete automatic positioning, and a wafer map database can be created. In the process of defect detection, CCD is used for image processing, and during preprocessing, it is required to filter noise, acquire the defect characteristics, define the defective template, and then take the characteristic points of the defective template as the reference input for fuzzy inference. A high-accuracy optical automatic positioning and wafer defect detection system is thus constructed. This study focused on automatic detection of spots, scratches, and bruises, and attempted to reduce the time to detect defective die and improve the accuracy of determining the defects of semiconductor devices.

  11. Techniques for the evaluation of outgassing from polymeric wafer pods

    SciTech Connect

    McIntyre, D.C.; Liang, A.; Thornberg, S.M.; Bender, S.F.; Lujan, R.D.; Blewer, R.S.; Bowers, W.D.

    1994-03-01

    In recent years there has been increasing interest in using wafer-level isolation environments or pods (microenvironments) to provide a more controllable, cleaner wafer environment during wafer processing. It has been shown that pods can be effective in reducing the amount of particulate contamination on wafers during manufacturing. However, there have also been studies that indicate that pods and wafer boxes can be the source of condensible, molecular organic contamination. This paper summarizes the work that has been performed during the past year at Sandia National Laboratories` Contamination Free Manufacturing Research Center (CFMRC) on (1) devising standard, low-temperature, high sensitivity techniques to detect outgassing of volatile organic compounds (VOCs) from polymers used to construct wafer pods and (2) development of a technique that can be used to continuously measure the condensible contamination within pods so that the pod environment can be monitored during manufacturing. Although these techniques have been developed specifically for assessing contamination threats from wafer pods, they can be used to evaluate other potential contamination sources. The high sensitivity outgassing techniques can be used to evaluate outgassing of volatiles from other clean-room materials and the real-time outgassing sensor can be used to monitor contamination condensation in non-pod environments such as ballroom-type cleanrooms and minienvironments.

  12. Verification Benchmarks to Assess the Implementation of Computational Fluid Dynamics Based Hemolysis Prediction Models.

    PubMed

    Hariharan, Prasanna; D'Souza, Gavin; Horner, Marc; Malinauskas, Richard A; Myers, Matthew R

    2015-09-01

    As part of an ongoing effort to develop verification and validation (V&V) standards for using computational fluid dynamics (CFD) in the evaluation of medical devices, we have developed idealized flow-based verification benchmarks to assess the implementation of commonly cited power-law based hemolysis models in CFD. Verification process ensures that all governing equations are solved correctly and the model is free of user and numerical errors. To perform verification for power-law based hemolysis modeling, analytical solutions for the Eulerian power-law blood damage model (which estimates hemolysis index (HI) as a function of shear stress and exposure time) were obtained for Couette and inclined Couette flow models, and for Newtonian and non-Newtonian pipe flow models. Subsequently, CFD simulations of fluid flow and HI were performed using Eulerian and three different Lagrangian-based hemolysis models and compared with the analytical solutions. For all the geometries, the blood damage results from the Eulerian-based CFD simulations matched the Eulerian analytical solutions within ∼1%, which indicates successful implementation of the Eulerian hemolysis model. Agreement between the Lagrangian and Eulerian models depended upon the choice of the hemolysis power-law constants. For the commonly used values of power-law constants (α  = 1.9-2.42 and β  = 0.65-0.80), in the absence of flow acceleration, most of the Lagrangian models matched the Eulerian results within 5%. In the presence of flow acceleration (inclined Couette flow), moderate differences (∼10%) were observed between the Lagrangian and Eulerian models. This difference increased to greater than 100% as the beta exponent decreased. These simplified flow problems can be used as standard benchmarks for verifying the implementation of blood damage predictive models in commercial and open-source CFD codes. The current study only used power-law model as an illustrative example to emphasize the need

  13. Using Sociocultural Perspectives: The Dynamic Process of Designing and Implementing Class Activities in an Online Japanese Language Course

    ERIC Educational Resources Information Center

    Shibakawa, Mayumi

    2012-01-01

    The study documented the dynamic process of designing and implementing instructional interventions in an online course of Japanese language and culture at a two-year college. The results have impact in three distinct areas: pedagogical, theoretical, and methodological. First, the interventions that encouraged student agency with rich…

  14. Implementing Dynamic Assessment of Vocabulary Development as a Trialogical Learning Process: A Practice of Teacher Support in Primary Education Schools

    ERIC Educational Resources Information Center

    van der Veen, Chiel; Dobber, Marjolein; van Oers, Bert

    2016-01-01

    Dynamic Assessment (DA) has received a considerable amount of attention in the educational sciences and beyond. DA combines instruction or feedback with assessment or testing within a single activity. DA has great potential for classroom practices, but has not been implemented in many classrooms yet. In this article, we argue that teacher…

  15. Implementation of a Research-Based Lab Module in a High School Chemistry Curriculum: A Study of Classroom Dynamics

    ERIC Educational Resources Information Center

    Pilarz, Matthew

    2013-01-01

    For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…

  16. Implementing Dynamic Assessment of Vocabulary Development as a Trialogical Learning Process: A Practice of Teacher Support in Primary Education Schools

    ERIC Educational Resources Information Center

    van der Veen, Chiel; Dobber, Marjolein; van Oers, Bert

    2016-01-01

    Dynamic Assessment (DA) has received a considerable amount of attention in the educational sciences and beyond. DA combines instruction or feedback with assessment or testing within a single activity. DA has great potential for classroom practices, but has not been implemented in many classrooms yet. In this article, we argue that teacher…

  17. Implementation of a Research-Based Lab Module in a High School Chemistry Curriculum: A Study of Classroom Dynamics

    ERIC Educational Resources Information Center

    Pilarz, Matthew

    2013-01-01

    For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…

  18. Using Sociocultural Perspectives: The Dynamic Process of Designing and Implementing Class Activities in an Online Japanese Language Course

    ERIC Educational Resources Information Center

    Shibakawa, Mayumi

    2012-01-01

    The study documented the dynamic process of designing and implementing instructional interventions in an online course of Japanese language and culture at a two-year college. The results have impact in three distinct areas: pedagogical, theoretical, and methodological. First, the interventions that encouraged student agency with rich…

  19. The uses of Man-Made diamond in wafering applications

    NASA Technical Reports Server (NTRS)

    Fallon, D. B.

    1982-01-01

    The continuing, rapid growth of the semiconductor industry requires the involvement of several specialized industries in the development of special products geared toward the unique requirements of this new industry. A specialized manufactured diamond to meet various material removal needs was discussed. The area of silicon wafer slicing has presented yet anothr challenge and it is met most effectively. The history, operation, and performance of Man-Made diamond and particularly as applied to silicon wafer slicing is discussed. Product development is underway to come up with a diamond specifically for sawing silicon wafers on an electroplated blade.

  20. Ulnar Impaction Syndrome: Ulnar Shortening vs. Arthroscopic Wafer Procedure

    PubMed Central

    Smet, Luc De; Vandenberghe, Lore; Degreef, Ilse

    2014-01-01

    The outcome of ulnar shortenings was compared with that of arthroscopic wafer resections for ulnar impaction (or abutment) syndrome in patients with a positive ulnar variance. The outcome was measured by DASH score, visual analog scale for pain, and working incapacity. The mean DASH score in the ulnar shortening group was 26; in the wafer group it was 36. The VAS scores were respectively 4.4 and 4.6. The working incapacity was 7?months in the ulnar shortening group and 6.1 months in the wafer group. The differences between the two groups were not statistically significant. PMID:25032075

  1. Optical Flatness Metrology for 300 mm Silicon Wafers

    SciTech Connect

    Griesmann, Ulf; Wang Quandou; Raymond, Thomas D.

    2005-09-09

    The National Institute of Standards and Technology (NIST) is developing two interferometric methods for measuring the thickness, thickness variation, and flatness of free-standing and chucked silicon wafers with diameters up to 300 mm. The 'eXtremely accurate CALIBration InterferometeR' (XCALIBIR) is a precision phase measuring interferometer with an operating wavelength of 633 nm and a test beam of 300 mm diameter. XCALIBIR is used to evaluate the flatness of chucked wafers. NIST's Infrared Interferometer (IR2) is a phase measuring interferometer that operates at 1.55 {mu}m and is used to measure the thickness variation of free-standing 300 mm silicon wafers.

  2. Using System Dynamics to Define, Study, and Implement Smart Control Strategies on the Electric Power Grid

    SciTech Connect

    Lyle G. Roybal; Robert F Jeffers

    2013-07-01

    The United States electric power grid is the most complex and expansive control system in the world. Local generation control occurs at individual units based on response time and unit economics, larger regional control coordinates unit response to error conditions, and high level large-area regional control is ultimately administered by a network of humans guided by economic and resiliency related factors. Under normal operating conditions, the grid is a relatively slow moving entity that exhibits high inertia to outside stimuli, and behaves along repeatable diurnal and seasonal patterns. However, that paradigm is quickly changing because of the increasing implementation of renewable generation sources. Renewable generators by nature cannot be tightly controlled or scheduled. They appear like a negative load to the system with all of the variability associated with load on a larger scale. Also, grid-reactive loads (i.e. smart devices) can alter their consumption based on price or demand rules adding more variability to system behavior. This paper demonstrates how a systems dynamic modeling approach capable of operating over multiple time scales, can provide valuable insight into developing new “smart-grid” control strategies and devices needed to accommodate renewable generation and regulate the frequency of the grid.

  3. Combined aerodynamic and structural dynamic problem emulating routines (CASPER): Theory and implementation

    NASA Technical Reports Server (NTRS)

    Jones, William H.

    1985-01-01

    The Combined Aerodynamic and Structural Dynamic Problem Emulating Routines (CASPER) is a collection of data-base modification computer routines that can be used to simulate Navier-Stokes flow through realistic, time-varying internal flow fields. The Navier-Stokes equation used involves calculations in all three dimensions and retains all viscous terms. The only term neglected in the current implementation is gravitation. The solution approach is of an interative, time-marching nature. Calculations are based on Lagrangian aerodynamic elements (aeroelements). It is assumed that the relationships between a particular aeroelement and its five nearest neighbor aeroelements are sufficient to make a valid simulation of Navier-Stokes flow on a small scale and that the collection of all small-scale simulations makes a valid simulation of a large-scale flow. In keeping with these assumptions, it must be noted that CASPER produces an imitation or simulation of Navier-Stokes flow rather than a strict numerical solution of the Navier-Stokes equation. CASPER is written to operate under the Parallel, Asynchronous Executive (PAX), which is described in a separate report.

  4. Capabilities and performance of the Automated Planet Finder telescope with the implementation of a dynamic scheduler

    NASA Astrophysics Data System (ADS)

    Burt, Jennifer; Holden, Bradford; Hanson, Russell; Laughlin, Greg; Vogt, Steve; Butler, Paul; Keiser, Sandy; Deich, William

    2015-10-01

    We report initial performance results emerging from 600 h of observations with the Automated Planet Finder (APF) telescope and Levy spectrometer located at UCO/Lick Observatory. We have obtained multiple spectra of 80 G, K, and M-type stars, which comprise 4954 individual Doppler radial velocity (RV) measurements with a median internal uncertainty of 1.35 ms-1. We find a strong, expected correlation between the number of photons accumulated in the 5000 to 6200 Å iodine region of the spectrum and the resulting internal uncertainty estimates. Additionally, we find an offset between the population of G and K stars and the M stars within the dataset when comparing these parameters. As a consequence of their increased spectral line densities, M-type stars permit the same level of internal uncertainty with 2× fewer photons than G-type and K-type stars. When observing M stars, we show that the APF/Levy has essentially the same speed-on-sky as Keck/high resolution echelle spectrometer (HIRES) for precision RVs. In the interest of using the APF for long-duration RV surveys, we have designed and implemented a dynamic scheduling algorithm. We discuss the operation of the scheduler, which monitors ambient conditions and combines on-sky information with a database of survey targets to make intelligent, real-time targeting decisions.

  5. Surface quality of silicon wafer improved by hydrodynamic effect polishing

    NASA Astrophysics Data System (ADS)

    Peng, Wenqiang; Guan, Chaoliang; Li, Shengyi

    2014-08-01

    Differing from the traditional pad polishing, hydrodynamic effect polishing (HEP) is non-contact polishing with the wheel floated on the workpiece. A hydrodynamic lubricated film is established between the wheel and the workpiece when the wheel rotates at a certain speed in HEP. Nanoparticles mixed with deionized water are employed as the polishing slurry, and with action of the dynamic pressure, nanoparticles with high chemisorption due to the high specific surface area can easily reacted with the surface atoms forming a linkage with workpiece surface. The surface atoms are dragged away when nanoparticles are transported to separate by the flow shear stress. The development of grand scale integration put extremely high requirements on the surface quality on the silicon wafer with surface roughness at subnanometer and extremely low surface damage. In our experiment a silicon sample was processed by HEP, and the surface topography before and after polishing was observed by the atomic force microscopy. Experiment results show that plastic pits and bumpy structures on the initial surface have been removed away clearly with the removal depth of 140nm by HEP process. The processed surface roughness has been improved from 0.737nm RMS to 0.175nm RMS(10μm×10μm) and the section profile shows peaks of the process surface are almost at the same height. However, the machining ripples on the wheel surface will duplicate on the silicon surface under the action of the hydrodynamic effect. Fluid dynamic simulation demonstrated that the coarse surface on the wheel has greatly influence on the distribution of shear stress and dynamic pressure on the workpiece surface.

  6. Wafer-bonded 2-D CMUT arrays incorporating through-wafer trench-isolated interconnects with a supporting frame.

    PubMed

    Zhuang, Xuefeng; Wygant, Ira O; Lin, Der-Song; Kupnik, Mario; Oralkan, Omer; Khuri-Yakub, Butrus T

    2009-01-01

    This paper reports on wafer-bonded, fully populated 2-D capacitive micromachined ultrasonic transducer (CMUT) arrays. To date, no successful through-wafer via fabrication technique has been demonstrated that is compatible with the wafer-bonding method of making CMUT arrays. As an alternative to through-wafer vias, trench isolation with a supporting frame is incorporated into the 2-D arrays to provide through-wafer electrical connections. The CMUT arrays are built on a silicon-on-insulator (SOI) wafer, and all electrical connections to the array elements are brought to the back side of the wafer through the highly conductive silicon substrate. Neighboring array elements are separated by trenches on both the device layer and the bulk silicon. A mesh frame structure, providing mechanical support, is embedded between silicon pillars, which electrically connect to individual elements. We successfully fabricated a 16 x 16-element 2-D CMUT array using wafer bonding with a yield of 100%. Across the array, the pulse-echo amplitude distribution is uniform (rho = 6.6% of the mean amplitude). In one design, we measured a center frequency of 7.6 MHz, a peak-to-peak output pressure of 2.9 MPa at the transducer surface, and a 3-dB fractional bandwidth of 95%. Volumetric ultrasound imaging was demonstrated by chip-to-chip bonding one of the fabricated 2-D arrays to a custom-designed integrated circuit (IC). This study shows that through-wafer trench-isolation with a supporting frame is a viable solution for providing electrical interconnects to CMUT elements and that 2-D arrays fabricated using waferbonding deliver good performance.

  7. Wafer Stepper Characterization And Process Control Techniques

    NASA Astrophysics Data System (ADS)

    Curry, S. C.; Friedberg, C. B.

    1982-09-01

    A process control vehicle is described which allows the characterization and comparison of wafer steppers with respect to distortion, resolution, uniformity, and misregistration. A block of test structures consisting of optical resolution patterns, verniers, and electrical line width and misalignment resistors is arrayed on an 11 x 11 grid which fills the entire available field of a 10X reticle. Fach block also contains a pair of targets for the THE laser-interferometric auto-alignment system. The ability of the auto-aligner to acquire such targets to within 500 is exploited as a metrology tool whereby the measured coordinates at each site are compared to the ideal (theoretical) coordinates to generate a vector distortion map across the field. Subsequent reduction of misregistration data is accomplished via application of the six parameter model developed by Perloff and co-workers. It is shown that these diagnostic tools permit the rapid characterization of distortion anisotropy for a given stepper and can be used to optimize and monitor level-to-level regis-tration. Further applications are suggested.

  8. Low-temperature full wafer adhesive bonding

    NASA Astrophysics Data System (ADS)

    Niklaus, Frank; Enoksson, Peter; Kälvesten, Edvard; Stemme, Göran

    2001-03-01

    We have systematically investigated the influence of different bonding parameters on void formation in a low-temperature adhesive bonding process. As a result of these studies we present guidelines for void free adhesive bonding of 10 cm diameter wafers. We have focused on polymer coatings with layer thicknesses between 1 µm and 18 µm. The tested polymer materials were benzocyclobutene (BCB) from Dow Chemical, a negative photoresist (ULTRA-i 300) and a positive photoresist (S1818) from Shipley, a polyimide (HTR3) from Arch Chemical and two different polyimides (PI2555 and PI2610) from DuPont. The polymer material, the bonding pressure and the pre-curing time and temperature for the polymer significantly influence void formation at the bond interface. High bonding pressure and optimum pre-curing times/temperatures counteract void formation. We present the process parameters to achieve void-free bonding with the BCB coating and with the ULTRA-i 300 photoresist coating as adhesive materials. Excellent void-free and strong bonds have been achieved by using BCB as the bonding material which requires a minimum bonding temperature of 180 °C.

  9. Implementation of window shading models into dynamic whole-building simulation

    NASA Astrophysics Data System (ADS)

    Lomanowski, Bartosz Aleksander

    resistances of sealed cavities between glazing/shading layers are calculated at each time-step for various fill gases and mixtures. In addition to modeling glazing/shading layer combinations, the CFC type also provides an alternate method of modeling unshaded windows without relying on third party software to supply the solar optics and cavity resistances. To build confidence in the CFC code implementation, two comparison studies were carried out to compare the CFC type against other models. The first study compared the CFC models for unshaded windows with the standard ESP-r transparent multi-layer construction (TMC) models. The second study compared the CFC slat-type blind models with EnergyPlus 2.0. Good agreement was seen in the simulation results in both studies. The successful implementation of the Complex Fenestration Construction within ESP-r has been demonstrated in the current research. In order for ESP-r users to fully exploit the capabilities of the CFC framework, it is recommended that the current models be extended to include a facility for dynamic shading control as well as the treatment of other types of shading layers. The coupling of daylighting models with the CFC type would provide a useful tool for modeling luminance control in combination with shading control strategies. With these enhancements, it is anticipated that the CFC implementation will be of significant value to practitioners.

  10. Positioning control system of three-dimensional wafer stage of lithography

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Yan, Wei; Yang, Fan; Li, Fanxing; Hu, Song

    2016-10-01

    Three-dimensional wafer stage is an important component of lithography. It is required to high positioning precision and efficiency. The closed-loop positioning control system, that consists of five-phase step motor and grating scale, implements rapid and precision positioning control of the three-dimensional wafer stage. The MCU STC15W4K32S4, which is possession of six independent PWM output channels and the pulse width, period is adjustable, is used to control the three axes. The stepper motor driver and grating scale are subdivided according to the precision of lithography, and grating scale data is transmitted to the computer for display in real time via USB communication. According to the lithography material, mask parameter, incident light intensity, it's able to calculate the speed of Z axis, and then get the value of PWM period based on the mathematical formula of speed and pulse period, finally realize high precision control. Experiments show that the positioning control system of three-dimensional wafer stage can meet the requirement of lithography, the closed-loop system is high stability and precision, strong practicability.

  11. Proceedings of the Low-Cost Solar Array Wafering Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1982-01-01

    The technology and economics of silicon ingot wafering for low cost solar arrays were discussed. Fixed and free abrasive sawing wire, ID, and multiblade sawing, materials, mechanisms, characterization, and innovative concepts were considered.

  12. Automated radiometric cryoprobe of IR focal plane array wafers

    NASA Astrophysics Data System (ADS)

    Whicker, Stephen L.

    1994-07-01

    Texas Instruments (TI) validated the feasibility of cryoprobing IRFPA arrays in late 1991. Since then, TI has developed a revolutionary automated cryoprobe for screening four and six inch wafers of IRFPAs. Generic prober automation features include cassette to cassette wafer load and unload, wafer alignment, black body selection, aperture selection, probe tip continuity test, and 77.5 degree(s) to 400 degree(s)K wafer temperature control. Modular construction of the prober enables placement of product specific components such as MWIR or LWIR bandpass filters, coldshield, coldfilter, probe card, and noise suppression circuitry on an easily removable `product specific' tooling plate. Prober operation is controlled through object oriented software. IRFPA specific software modules control array operation, data collection, and data reduction. In addition to describing the prober capabilities and versatility, this paper compares prober test data to lab dewar test data for 240 X 1 IRFPAs and projects benefits in reduced cycle time and labor savings.

  13. Stress-warping relation in thin film coated wafers

    NASA Astrophysics Data System (ADS)

    Schicker, J.; Khan, W. A.; Arnold, T.; Hirschl, C.

    2017-02-01

    A misfit strain or stress in a thin layer on the surface of a wafer lets the composite disk warp. When the wafer is thin and large, the Stoney estimation of the film stress as function of the curvature yields large errors. We present a nonlinear analytical model that describes the relationship between warpage and film stress on an anisotropic wafer, and give evidence for its suitability for large thin wafers by a comparison to finite element results. Finally, we show the confidence limit of the Stoney estimation and the benefit by the nonlinear model. For thin coatings, it can be succesfully used even without knowledge of the film properties, which was the main advantage of the Stoney estimation.

  14. Sub-10 nm nanoimprint lithography by wafer bowing.

    PubMed

    Wu, Wei; Tong, William M; Bartman, Jonathan; Chen, Yufeng; Walmsley, Robert; Yu, Zhaoning; Xia, Qiangfei; Park, Inkyu; Picciotto, Carl; Gao, Jun; Wang, Shih-Yuan; Morecroft, Deborah; Yang, Joel; Berggren, Karl K; Williams, R Stanley

    2008-11-01

    We introduce the concept of wafer bowing to affect nanoimprinting. This approach allows a design that can fit the key imprinting mechanism into a compact module, which we have constructed and demonstrated with an overlay and resolution of <0.5 microm and <10 nm, respectively. In the short term, this wafer bowing approach makes nanoimprint lithography much more accessible to a broad range of researchers. More importantly, this approach eliminates machine movement other than wafer bowing and shortens the mechanical path; these will enable the achievement of excellent patterning and overlay at a much lower cost. In the long term, wafer bowing is extensible to step-and-repeat printing for volume manufacturing.

  15. A molecular dynamics implementation of the 3D Mercedes-Benz water model

    NASA Astrophysics Data System (ADS)

    Hynninen, T.; Dias, C. L.; Mkrtchyan, A.; Heinonen, V.; Karttunen, M.; Foster, A. S.; Ala-Nissila, T.

    2012-02-01

    The three-dimensional Mercedes-Benz model was recently introduced to account for the structural and thermodynamic properties of water. It treats water molecules as point-like particles with four dangling bonds in tetrahedral coordination, representing H-bonds of water. Its conceptual simplicity renders the model attractive in studies where complex behaviors emerge from H-bond interactions in water, e.g., the hydrophobic effect. A molecular dynamics (MD) implementation of the model is non-trivial and we outline here the mathematical framework of its force-field. Useful routines written in modern Fortran are also provided. This open source code is free and can easily be modified to account for different physical context. The provided code allows both serial and MPI-parallelized execution. Program summaryProgram title: CASHEW (Coarse Approach Simulator for Hydrogen-bonding Effects in Water) Catalogue identifier: AEKM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 501 No. of bytes in distributed program, including test data, etc.: 551 044 Distribution format: tar.gz Programming language: Fortran 90 Computer: Program has been tested on desktop workstations and a Cray XT4/XT5 supercomputer. Operating system: Linux, Unix, OS X Has the code been vectorized or parallelized?: The code has been parallelized using MPI. RAM: Depends on size of system, about 5 MB for 1500 molecules. Classification: 7.7 External routines: A random number generator, Mersenne Twister ( http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/VERSIONS/FORTRAN/mt95.f90), is used. A copy of the code is included in the distribution. Nature of problem: Molecular dynamics simulation of a new geometric water model. Solution method: New force-field for

  16. Development of Megasonic cleaning for silicon wafers. Final report

    SciTech Connect

    Mayer, A.

    1980-09-01

    The major goals to develop a cleaning and drying system for processing at least 2500 three-in.-diameter wafers per hour and to reduce the process cost were achieved. The new system consists of an ammonia-hydrogen peroxide bath in which both surfaces of 3/32-in.-spaced, ion-implanted wafers are cleaned in quartz carriers moved on a belt past two pairs of Megasonic transducers. The wafers are dried in the novel room-temperature, high-velocity air dryer in the same carriers used for annealing. A new laser scanner was used effectively to monitor the cleaning ability on a sampling basis. The following factors contribute to the improved effectiveness of the process: (1) recirculation and filtration of the cleaning solution permit it to be used for at least 100,000 wafers with only a relatively small amount of chemical make-up before discarding; (2) uniform cleanliness is achieved because both sides of the wafer are Megasonically scrubbed to remove particulate impurities; (3) the novel dryer permits wafers to be dried in a high-velocity room-temperature air stream on a moving belt in their quartz carriers; and (4) the personnel safety of such a system is excellent and waste disposal has no adverse ecological impact. With the addition of mechanical transfer arms, two systems like the one developed will produce enough cleaned wafers for a 30-MW/year production facility. A projected scale-up well within the existing technology would permit a system to be assembled that produces about 12,745 wafers per hour; about 11 such systems, each occupying about 110 square feet, would be needed for each cleaning stage of a 500-MW/year production facility.

  17. One step automated unpatterned wafer defect detection and classification

    NASA Astrophysics Data System (ADS)

    Dou, Lie; Kesler, Daniel; Bruno, William; Monjak, Charles; Hunt, Jim

    1998-11-01

    Automated detection and classification of crystalline defects on micro-grade silicon wafers is extremely important for integrated circuit (IC) device yield. High training cost, limited capability of classifying defects, increasing possibility of contamination, and unexpected human mistakes necessitate the need to replace the human visual inspection with automated defect inspection. The Laser Scanning Surface Inspection Systems (SSISs) equipped with the Reconvergent Specular Detection (RSD) apparatus are widely used for final wafer inspection. RSD, more commonly known as light channel detection (LC), is capable of detecting and classifying material defects by analyzing information from two independent phenomena, light scattering and reflecting. This paper presents a new technique including a new type of light channel detector to detect and classify wafer surface defects such as slipline dislocation, Epi spikes, Pits, and dimples. The optical system to study this technique consists of a particle scanner to detect and quantify light scattering events from contaminants on the wafer surface and a RSD apparatus (silicon photo detector). Compared with the light channel detector presently used in the wafer fabs, this new light channel technique provides higher sensitivity for small defect detection and more defect scattering signatures for defect classification. Epi protrusions (mounds and spikes), slip dislocations, voids, dimples, and some other common defect features and contamination on silicon wafers are studied using this equipment. The results are compared quantitatively with that of human visual inspection and confirmed by microscope or AFM. This new light channel technology could provide the real future solution to the wafer manufacturing industry for fully automated wafer inspection and defect characterization.

  18. Stress rate and proof-testing of silicon wafers

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1985-01-01

    Fracture mechanics test methods were applied to evaluate the proof-test characteristics of single-crystal silicon wafers. The results indicate that the strength distribution of silicon wafers is truncated by proof-testing. No subcritical crack growth occurred during proof-loading, as inferred from the lack of a stress-rate effect on strength. Mechanical proof-testing appears to be an effective method for eliminating weak samples before cell processing.

  19. Stress rate and proof-testing of silicon wafers

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1985-01-01

    Fracture mechanics test methods were applied to evaluate the proof-test characteristics of single-crystal silicon wafers. The results indicate that the strength distribution of silicon wafers is truncated by proof-testing. No subcritical crack growth occurred during proof-loading, as inferred from the lack of a stress-rate effect on strength. Mechanical proof-testing appears to be an effective method for eliminating weak samples before cell processing.

  20. Wave-front propagation of rinsing flows on rotating semiconductor wafers

    NASA Astrophysics Data System (ADS)

    Frostad, John M.; Ylitalo, Andy; Walls, Daniel J.; Mui, David S. L.; Fuller, Gerald G.

    2016-11-01

    The semiconductor manufacturing industry is migrating to a cleaning technology that involves dispersing cleaning solutions onto a rotating wafer, similar to spin-coating. Advantages include a more continuous overall fabrication process, lower particle level, no cross contamination from the back side of a wafer, and less usage of harsh chemicals for a lower environmental impact. Rapid rotation of the wafer during rinsing can be more effective, but centrifugal forces can pull spiral-like ribbons of liquid radially outward from the advancing wave-front where particles can build up, causing higher instances of device failure at these locations. A better understanding of the rinsing flow is essential for reducing yield losses while taking advantage of the benefits of rotation. In the present work, high-speed video and image processing are used to study the dynamics of the advancing wave-front from an impinging jet on a rotating substrate. The flow-rate and rotation-speed are varied for substrates coated with a thin layer of a second liquid that has a different surface tension than the jet liquid. The difference in surface tension of the two fluids gives rise to Marangoni stresses at the interface that have a significant impact on the rinsing process, despite the extremely short time-scales involved.

  1. Multiagent Systems Based Modeling and Implementation of Dynamic Energy Management of Smart Microgrid Using MACSimJX

    PubMed Central

    Raju, Leo; Milton, R. S.; Mahadevan, Senthilkumaran

    2016-01-01

    The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations. PMID:27127802

  2. Multiagent Systems Based Modeling and Implementation of Dynamic Energy Management of Smart Microgrid Using MACSimJX.

    PubMed

    Raju, Leo; Milton, R S; Mahadevan, Senthilkumaran

    2016-01-01

    The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations.

  3. Electrochemical method for defect delineation in silicon-on-insulator wafers

    DOEpatents

    Guilinger, Terry R.; Jones, Howland D. T.; Kelly, Michael J.; Medernach, John W.; Stevenson, Joel O.; Tsao, Sylvia S.

    1991-01-01

    An electrochemical method for defect delineation in thin-film SOI or SOS wafers in which a surface of a silicon wafer is electrically connected so as to control the voltage of the surface within a specified range, the silicon wafer is then contacted with an electrolyte, and, after removing the electrolyte, defects and metal contamination in the silicon wafer are identified.

  4. Application of Silicon Micromachining to Thermal Dissipation Issues in Wafer Scale Integrated Circuits

    DTIC Science & Technology

    1991-12-01

    efficiently than the reference silicon wafer. 114. SUBJECT TERMS 15. NUMBER OF PAGES 270 Silicon Micromachining ; Wet Chemical Etching ; 16. PRICE Thermal...crystal silicon wafers. The following structures were micromachined in silicon wafers using wet chemical , anisotropic etching and photolithographic...wafer. Three different structures were micromachined using various wet chemical etching methodologies: (1) randomly sized and spaced pyramidal

  5. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two

  6. Electron arc therapy: design, implementation and evaluation of a dynamic multi-vane collimator system.

    PubMed

    Leavitt, D D; Stewart, J R; Moeller, J H; Lee, W L; Takach, G A

    1989-11-01

    Innovative techniques in motion control technology have been applied to the design and implementation of a portable computer-controlled multi-vane collimator for use in electron arc therapy. The collimator, consisting of 18 independently controlled vanes, is inserted into the standard accessory mount assembly of a linear accelerator, in the same fashion as standard field shaping blocks. Power is supplied to the collimator vane motors via a self-contained battery system. The range of motion of the vanes, symmetrically mounted nine on each side, provides a variable aperture width projected to isocenter of 2 cm minimum to 8 cm maximum. The projected length of the aperture at isocenter is 38 cm. The transition time between vane positions is less than 1 second, corresponding to gantry movement of less than 1 degree. The movement of each of the 18 vanes is monitored and controlled by six individually addressed three axis processors that are shielded from the electron beam. A table of collimator vane positions versus gantry angle, as determined by dose optimization calculations, is stored in a data file. The desired collimator vane position corresponding to the current arc segment is conveyed from the control console to each vane controller via packets within a token passing network. Communication between the computer in the console area and the vane controllers is accomplished through encoded infra-red pulse transmission, eliminating the need for additional communication lines between the console and the accelerator. This dynamic collimator offers improved dose uniformity while simplifying the delivery of electron arc therapy.

  7. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael K.

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two.

  8. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael K.

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two.

  9. Further investigation of EUV process sensitivities for wafer track processing

    NASA Astrophysics Data System (ADS)

    Bradon, Neil; Nafus, K.; Shite, H.; Kitano, J.; Kosugi, H.; Goethals, M.; Cheng, S.; Hermans, J.; Hendrickx, E.; Baudemprez, B.; Van Den Heuvel, D.

    2010-04-01

    As Extreme ultraviolet (EUV) lithography technology shows promising results below 40nm feature sizes, TOKYO ELECTRON LTD.(TEL) is committed to understanding the fundamentals needed to improve our technology, thereby enabling customers to meet roadmap expectations. TEL continues collaboration with imec for evaluation of Coater/Developer processing sensitivities using the ASML Alpha Demo Tool for EUV exposures. The results from the collaboration help develop the necessary hardware for EUV Coater/Developer processing. In previous work, processing sensitivities of the resist materials were investigated to determine the impact on critical dimension (CD) uniformity and defectivity. In this work, new promising resist materials have been studied and more information pertaining to EUV exposures was obtained. Specifically, post exposure bake (PEB) impact to CD is studied in addition to dissolution characteristics and resist material hydrophobicity. Additionally, initial results show the current status of CDU and defectivity with the ADT/CLEAN TRACK ACTTM 12 lithocluster. Analysis of a five wafer batch of CDU wafers shows within wafer and wafer to wafer contribution from track processing. A pareto of a patterned wafer defectivity test gives initial insight into the process defects with the current processing conditions. From analysis of these data, it's shown that while improvements in processing are certainly possible, the initial results indicate a manufacturable process for EUV.

  10. Efficient hardware implementation of the subthalamic nucleus-external globus pallidus oscillation system and its dynamics investigation.

    PubMed

    Yang, Shuangming; Wei, Xile; Wang, Jiang; Deng, Bin; Liu, Chen; Yu, Haitao; Li, Huiyan

    2017-07-26

    Modeling and implementation of the nonlinear neural system with physiologically plausible dynamic behaviors are considerably meaningful in the field of computational neuroscience. This study introduces a novel hardware platform to investigate the dynamical behaviors within the nonlinear subthalamic nucleus-external globus pallidus system. In order to reduce the implementation complexities, a hardware-oriented conductance-based subthalamic nucleus (STN) model is presented, which can reproduce accurately the dynamical characteristics of biological conductance-based STN cells. The accuracy of the presented design is ensured by the investigation of the dynamical properties including bifurcation analysis and phase portraits. Hardware implementation on a field-programmable gate array (FPGA) demonstrates that the proposed digital system can mimic the relevant biological characteristics with higher performance, which means the resource cost is cut down and the computational efficiency is improved by introducing the multiplier-less techniques including novel "shift MUL" approach and piecewise linear approximation. The central pattern generator (CPG) coupled by the presented system is also investigated, which can be applied as an embedded intelligent system in the field of neuro-robotic engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage

    PubMed Central

    Rack, Alexander; Scheel, Mario; Danilewsky, Andreas N.

    2016-01-01

    Fracture and breakage of single crystals, particularly of silicon wafers, are multi-scale problems: the crack tip starts propagating on an atomic scale with the breaking of chemical bonds, forms crack fronts through the crystal on the micrometre scale and ends macroscopically in catastrophic wafer shattering. Total wafer breakage is a severe problem for the semiconductor industry, not only during handling but also during temperature treatments, leading to million-dollar costs per annum in a device production line. Knowledge of the relevant dynamics governing perfect cleavage along the {111} or {110} faces, and of the deflection into higher indexed {hkl} faces of higher energy, is scarce due to the high velocity of the process. Imaging techniques are commonly limited to depicting only the state of a wafer before the crack and in the final state. This paper presents, for the first time, in situ high-speed crack propagation under thermal stress, imaged simultaneously in direct transmission and diffraction X-ray imaging. It shows how the propagating crack tip and the related strain field can be tracked in the phase-contrast and diffracted images, respectively. Movies with a time resolution of microseconds per frame reveal that the strain and crack tip do not propagate continuously or at a constant speed. Jumps in the crack tip position indicate pinning of the crack tip for about 1–2 ms followed by jumps faster than 2–6 m s−1, leading to a macroscopically observed average velocity of 0.028–0.055 m s−1. The presented results also give a proof of concept that the described X-ray technique is compatible with studying ultra-fast cracks up to the speed of sound. PMID:27006774

  12. Development of a Whole-Wafer, Macroscale Inspection Software Method for Semiconductor Wafer Analysis

    SciTech Connect

    Tobin, K.W.

    2003-05-22

    This report describes the non CRADA-protected results of the project performed between Nova Measuring Systems, Ltd., and the Oak Ridge National Laboratory to test and prototype defect signature analysis method for potential incorporation into an in-situ wafer inspection microscope. ORNL's role in this activity was to collaborate with Nova on the analysis and software side of the effort, wile Nova's role was to build the physical microscope and provide data to ORNL for test and evaluation. The objective of this project was to adapt and integrate ORNL's SSA and ADC methods and technologies in the Nova imaging environment. ORNL accomplished this objective by modifying the existing SSA technology for use as a wide-area signature analyzer/classifier on the Nova macro inspection tool (whole-wafer analysis). During this effort ORNL also developed a strategy and methodology for integrating and presenting the results of SSA/ADC analysis to the tool operator and/or data management system (DMS) used by the semiconductor manufacturer (i.e., the end-user).

  13. Stability of laser-propelled wafer satellites

    NASA Astrophysics Data System (ADS)

    Srinivasan, Prashant; Hughes, Gary B.; Lubin, Philip; Zhang, Qicheng; Madajian, Jonathan; Brashears, Travis; Kulkarni, Neeraj; Cohen, Alexander; Griswold, Janelle

    2016-09-01

    For interstellar missions, directed energy is envisioned to drive wafer-scale spacecraft to relativistic speeds. Spacecraft propulsion is provided by a large array of phase-locked lasers, either in Earth orbit or stationed on the ground. The directed-energy beam is focused on the spacecraft, which includes a reflective sail that propels the craft by reflecting the beam. Fluctuations and asymmetry in the beam will create rotational forces on the sail, so the sail geometry must possess an inherent, passive stabilizing effect. A hyperboloid shape is proposed, since changes in the incident beam angle due to yaw will passively counteract rotational forces. This paper explores passive stability properties of a hyperboloid reflector being bombarded by directed-energy beam. A 2D cross-section is analyzed for stability under simulated asymmetric loads. Passive stabilization is confirmed over a range of asymmetries. Realistic values of radiation pressure magnitude are drawn from the physics of light-mirror interaction. Estimates of beam asymmetry are drawn from optical modeling of a laser array far-field intensity using fixed and stochastic phase perturbations. A 3D multi-physics model is presented, using boundary conditions and forcing terms derived from beam simulations and lightmirror interaction models. The question of optimal sail geometry can be pursued, using concepts developed for the baseline hyperboloid. For example, higher curvature of the hyperboloid increases stability, but reduces effective thrust. A hyperboloid sail could be optimized by seeking the minimum curvature that is stable over the expected range of beam asymmetries.

  14. Development of a Wafer Positioning System for the Sandia Extreme Ultraviolet Lithography Tool

    NASA Technical Reports Server (NTRS)

    Wronosky, John B.; Smith, Tony G.; Darnold, Joel R.

    1996-01-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development. This paper describes the design, implementation, and functional capability of the system. Specifics regarding control system electronics, including software and control algorithm structure, as well as performance design goals and test results are presented. Potential system enhancements, some of which are in process, are also discussed.

  15. Development of a wafer positioning system for the Sandia extreme ultraviolet lithography tool

    SciTech Connect

    Wronosky, J.B.; Smith, T.G.; Darnold, J.R.

    1995-12-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development. This paper describes the design, implementation, and functional capability of the system. Specifics regarding control system electronics, including software and control algorithm structure, as well as performance design goals and test results are presented. Potential system enhancements, some of which are in process, are also discussed.

  16. Service Learning for At-Risk Student Populations: The Contextual Dynamism of Implementation

    ERIC Educational Resources Information Center

    Akin, Jacob T.; Vesely, Randall S.

    2016-01-01

    The central purpose of this article is to explore research, issues, and perspectives on the implementation of service learning programs to improve student achievement in at-risk student populations. The implementation of service learning programs takes place within multiple contexts and across several terrains. The complexities of implementing…

  17. Investigation of the Relationship between Whole-Wafer Strength and Control of Its Edge Engineering

    NASA Astrophysics Data System (ADS)

    Chen, Po-Ying; Tsai, Ming-Hsing; Yeh, Wen-Kuan; Jing, Ming-Haw; Chang, Yukon

    2009-12-01

    Silicon wafer breakage has become a major concern for all semiconductor fabrication lines because it is brittle, and thus high stresses are easily induced in its manufacture. The production cost of devices significantly increases even for a breakage loss of a few percent if wafers are broken near completion. Even wafer breakage near the beginning of the process is significant. In this investigation, we develop a brand new approach to reducing breakage by using a charge-coupled device (CCD) to capture the cross-section image of the wafer at its edge; the data measured at the edge can be used to determine overall wafer strength. Analysis of the image of the wafer edge is used to characterize silicon strength, and a simple drop test is conducted to elucidate wafer failure, improving our understanding of the accumulation of stress in the wafer bulk before failure. We also describe many of the improvements that have resulted in the virtual elimination of wafer breakage due to unidentified causes. Our analysis gives the optimal front size (B1), edge widths (A1,A2), and bevel angle (θ) for the edge profiles of wafers to prevent wafer breakage. Briefly, when a suitable material and suitable process control approaches are utilized, silicon wafer breakage can be prevented. This is the first investigation providing evidence that whole-wafer strength is an important issue. We present a physical model to explain why wafer fracture has become an increasingly serious problem as the diameter of wafers has increased. The control of wafer edge geometry has been demonstrated to be an effective means of protecting wafers with large diameters against breakage. This model reveals that the breakage rate of wafers can be reduced by controlling the uniformity of the differences between the front size and the rear edge widths during the wafer manufacturing process.

  18. Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS.

    PubMed

    Grindon, Christina; Harris, Sarah; Evans, Tom; Novik, Keir; Coveney, Peter; Laughton, Charles

    2004-07-15

    Molecular modelling played a central role in the discovery of the structure of DNA by Watson and Crick. Today, such modelling is done on computers: the more powerful these computers are, the more detailed and extensive can be the study of the dynamics of such biological macromolecules. To fully harness the power of modern massively parallel computers, however, we need to develop and deploy algorithms which can exploit the structure of such hardware. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is a scalable molecular dynamics code including long-range Coulomb interactions, which has been specifically designed to function efficiently on parallel platforms. Here we describe the implementation of the AMBER98 force field in LAMMPS and its validation for molecular dynamics investigations of DNA structure and flexibility against the benchmark of results obtained with the long-established code AMBER6 (Assisted Model Building with Energy Refinement, version 6). Extended molecular dynamics simulations on the hydrated DNA dodecamer d(CTTTTGCAAAAG)(2), which has previously been the subject of extensive dynamical analysis using AMBER6, show that it is possible to obtain excellent agreement in terms of static, dynamic and thermodynamic parameters between AMBER6 and LAMMPS. In comparison with AMBER6, LAMMPS shows greatly improved scalability in massively parallel environments, opening up the possibility of efficient simulations of order-of-magnitude larger systems and/or for order-of-magnitude greater simulation times.

  19. Measuring Radiation Patterns of Reconfigurable Patch Antennas on Wafers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2004-01-01

    An apparatus and technique have been devised for measuring the radiation pattern of a microwave patch antenna that is one of a number of identical units that have been fabricated in a planar array on a high-resistivity silicon wafer. The apparatus and technique are intended, more specifically, for application to such an antenna that includes a DC-controlled microelectromechanical system (MEMS) actuator for switching the antenna between two polarization states or between two resonance frequencies. Prior to the development of the present apparatus and technique, patch antennas on wafers were tested by techniques and equipment that are more suited to testing of conventional printed-circuit antennas. The techniques included sawing of the wafers to isolate individual antennas for testing. The equipment included custom-built test fixtures that included special signal launchers and transmission-line transitions. The present apparatus and technique eliminate the need for sawing wafers and for custom-built test fixtures, thereby making it possible to test antennas in less time and at less cost. Moreover, in a production setting, elimination of the premature sawing of wafers for testing reduces loss from breakage, thereby enhancing yield.

  20. A benchmark investigation on cleaning photomasks using wafer cleaning technologies

    NASA Astrophysics Data System (ADS)

    Kindt, Louis; Burnham, Jay; Marmillion, Pat

    2004-12-01

    As new technologies are developed for smaller linewidths, the specifications for mask cleanliness become much stricter. Not only must the particle removal efficiency increase, but the largest allowable particle size decreases. Specifications for film thickness and surface roughness are becoming tighter and consequently the integrity of these films must be maintained in order to preserve the functionality of the masks. Residual contamination remaining on the surface of the mask after cleaning processes can lead to subpellicle defect growth once the mask is exposed in a stepper environment. Only during the last several years, has an increased focus been put on improving mask cleaning. Over the years, considerably more effort has been put into developing advanced wafer cleaning technologies. However, because of the small market involved with mask cleaning, wafer cleaning equipment vendors have been reluctant to invest time and effort into developing cleaning processes and adapting their toolset to accommodate masks. With the advent of 300 mm processing, wafer cleaning tools are now more easily adapted to processing masks. These wafer cleaning technologies may offer a solution to the difficulties of mask cleaning and need to be investigated to determine whether or not they warrant continued investigation. This paper focuses on benchmarking advanced wafer cleaning technologies applied to mask cleaning. Ozonated water, hydrogenated water, super critical fluids, and cryogenic cleaning have been investigated with regards to stripping resist and cleaning particles from masks. Results that include film thickness changes, surface contamination, and particle removal efficiency will be discussed.

  1. Quantitative phase measurement for wafer-level optics

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao

    2015-07-01

    Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.

  2. Silicon wafer-based tandem cells: The ultimate photovoltaic solution?

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2014-03-01

    Recent large price reductions with wafer-based cells have increased the difficulty of dislodging silicon solar cell technology from its dominant market position. With market leaders expected to be manufacturing modules above 16% efficiency at 0.36/Watt by 2017, even the cost per unit area (60-70/m2) will be difficult for any thin-film photovoltaic technology to significantly undercut. This may make dislodgement likely only by appreciably higher energy conversion efficiency approaches. A silicon wafer-based cell able to capitalize on on-going cost reductions within the mainstream industry, but with an appreciably higher than present efficiency, might therefore provide the ultimate PV solution. With average selling prices of 156 mm quasi-square monocrystalline Si photovoltaic wafers recently approaching 1 (per wafer), wafers now provide clean, low cost templates for overgrowth of thin, wider bandgap high performance cells, nearly doubling silicon's ultimate efficiency potential. The range of possible Si-based tandem approaches is reviewed together with recent results and ultimate prospects.

  3. Wafer-level vacuum packaging technology based on selective electroplating

    NASA Astrophysics Data System (ADS)

    Topart, Patrice A.; Leclair, Sebastien; Alain, Christine; Jerominek, Hubert

    2004-01-01

    A novel concept for low-cost, wafer-level packaging of MEMS is proposed and applied to vacuum packaging of INO"s 160x120 pixel uncooled bolometric focal plane arrays, FPAs, based on vanadium oxide thermistor material. A wafer-scale metallic tray composed of several tens of micropackages is electroplated by using the thick resist SU-8 as a micromold. FPA dies and infrared windows are then soldered to the main tray by flip-chip bonding. Contrary to the conventional wafer to wafer bonding approach, assembly and vacuum sealing steps are dissociated. For this purpose, each micropackage is equipped with a pump-out hole for outgassing under vacuum and at elevated temperature prior to vacuum sealing. The process flow for fabrication of micropackages is described. The influence of DC and pulse plating conditions on the stress and properties of deposited nickel packages was investigated. Results on the selective electroplating of indium solder on antireflection-coated IR window wafers and the formation of a solderable layer around the chip are presented.

  4. Use of dMLC for implementation of dynamic respiratory-gated radiation therapy

    SciTech Connect

    Pepin, Eric W.; Wu, Huanmei; Shirato, Hiroki

    2013-10-15

    Purpose: To simulate and evaluate the use of dynamic multileaf collimators (dMLC) in respiratory gating to compensate for baseline drift.Methods: Tumor motion tracking data from 30 lung tumors over 322 treatment fractions was analyzed with the finite state model. A dynamic respiratory gating window was established in real-time by determining the average positions during the previous two end-of-expiration breathing phases and centering the dMLC aperture on a weighted average of these positions. A simulated dMLC with physical motion constraints was used in dynamic gating treatment simulations. Fluence maps were created to provide a statistical description of radiation delivery for each fraction. Duty cycle was also calculated for each fraction.Results: The average duty cycle was 2.3% greater under dynamic gating conditions. Dynamic gating also showed higher fluences and less tumor obstruction. Additionally, dynamic gating required fewer beam toggles and each delivery period was longer on average than with static gating.Conclusions: The use of dynamic gating showed better performance than static gating and the physical constraints of a dMLC were shown to not be an impediment to dynamic gating.

  5. Optical wafer metrology sensors for process-robust CD and overlay control in semiconductor device manufacturing

    NASA Astrophysics Data System (ADS)

    den Boef, Arie J.

    2016-06-01

    This paper presents three optical wafer metrology sensors that are used in lithography for robustly measuring the shape and position of wafers and device patterns on these wafers. The first two sensors are a level sensor and an alignment sensor that measure, respectively, a wafer height map and a wafer position before a new pattern is printed on the wafer. The third sensor is an optical scatterometer that measures critical dimension-variations and overlay after the resist has been exposed and developed. These sensors have different optical concepts but they share the same challenge that sub-nm precision is required at high throughput on a large variety of processed wafers and in the presence of unknown wafer processing variations. It is the purpose of this paper to explain these challenges in more detail and give an overview of the various solutions that have been introduced over the years to come to process-robust optical wafer metrology.

  6. Spatiotemporal brain dynamics supporting the immediate automatization of inhibitory control by implementation intentions.

    PubMed

    De Pretto, Michael; Rochat, Lucien; Spierer, Lucas

    2017-09-07

    While cognitive interventions aiming at reinforcing intentional executive control of unwanted response showed only modest effects on impulse control disorders, the establishment of fast automatic, stimulus-driven inhibition of responses to specific events with implementation intention self-regulation strategies has proven to be an effective remediation approach. However, the neurocognitive mechanisms underlying implementation intentions remain largely unresolved. We addressed this question by comparing electrical neuroimaging analyses of event-related potentials recorded during a Go/NoGo task between groups of healthy participants receiving either standard or implementation intentions instructions on the inhibition stimuli. Inhibition performance improvements with implementation intentions were associated with a Group by Stimulus interaction 200-250 ms post-stimulus onset driven by a selective decrease in response to the inhibition stimuli within the left superior temporal gyrus, the right precuneus and the right temporo-parietal junction. We further observed that the implementation intentions group showed already at the beginning of the task the pattern of task-related functional activity reached after practice in the group having received standard instructions. We interpret our results in terms of an immediate establishment of an automatic, bottom-up form of inhibitory control by implementation intentions, supported by stimulus-driven retrieval of verbally encoded stimulus-response mapping rules, which in turn triggered inhibitory processes.

  7. On-wafer magnetic resonance of magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Little, Charles A. E.; Russek, Stephen E.; Booth, James C.; Kabos, Pavel; Usselman, Robert J.

    2015-11-01

    Magnetic resonance measurements of ferumoxytol and TEMPO were made using an on-wafer transmission line technique with a vector network analyzer, allowing for broadband measurements of small sample volumes (4 nL) and small numbers of spins (1 nmol). On-wafer resonance measurements were compared with standard single-frequency cavity-based electron paramagnetic resonance (EPR) measurements using a new power conservation approach and the results show similar line shape. On-wafer magnetic resonance measurements using integrated microfluidics and microwave technology can significantly reduce the cost and sample volumes required for EPR spectral analysis and allow for integration of EPR with existing lab-on-a-chip processing and characterization techniques for point-of-care medical diagnostic applications.

  8. Minority lifetime degradation of silicon wafers after electric zone melting

    NASA Astrophysics Data System (ADS)

    Wu, M. C.; Yang, C. F.; Lan, C. W.

    2015-06-01

    The degradation of minority lifetime of mono- and multi-crystalline silicon wafers after electric zone melting, a simple and contamination-free process, was investigated. The thermal-stress induced dislocations were responsible to the degradation; however, the grain size also played a crucial role. It was believed that the grain boundaries helped the relaxation of thermal stress, so that the degradation was reduced as the grain size decreased. In addition to lifetime mapping and etch pit density, photoluminescence mapping was also used to examine the electrically active defects after zone melting. Factors affecting lifetime degradation of silicon wafers after electric zone melting were examined. Small-grain multi-crystalline wafers showed better lifetime after zone melting. Twining area showed better lifetime. The formation of new grains relaxed the thermal stress mitigating lifetime degradation.

  9. Low cost wafer metrology using a NIR low coherence interferometry.

    PubMed

    Kim, Young Gwang; Seo, Yong Bum; Joo, Ki-Nam

    2013-06-03

    In this investigation, a low cost Si wafer metrology system based on low coherence interferometry using NIR light is proposed and verified. The whole system consists of two low coherence interferometric principles: low coherence scanning interferometry (LCSI) for measuring surface profiles and spectrally-resolved interferometry (SRI) to obtain the nominal optical thickness of the double-sided polished Si wafer. The combination of two techniques can reduce the measurement time and give adequate dimensional information of the Si wafer. The wavelength of the optical source is around 1 μm, for which transmission is non-zero for undoped silicon and can be also detected by a typical CCD camera. Because of the typical CCD camera, the whole system can be constructed inexpensively.

  10. IGBT scaling principle toward CMOS compatible wafer processes

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiro; Omura, Ichiro

    2013-02-01

    A scaling principle for trench gate IGBT is proposed. CMOS technology on large diameter wafer enables to produce various digital circuits with higher performance and lower cost. The transistor cell structure becomes laterally smaller and smaller and vertically shallower and shallower. In contrast, latest IGBTs have rather deeper trench structure to obtain lower on-state voltage drop and turn-off loss. In the aspect of the process uniformity and wafer warpage, manufacturing such structure in the CMOS factory is difficult. In this paper, we show the scaling principle toward shallower structure and better performance. The principle is theoretically explained by our previously proposed "Structure Oriented" analytical model. The principle represents a possibility of technology direction and roadmap for future IGBT for improving the device performance consistent with lower cost and high volume productivity with CMOS compatible large diameter wafer technologies.

  11. Wafer Fusion for Integration of Semiconductor Materials and Devices

    SciTech Connect

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  12. Growth of silver nanowires on GaAs wafers.

    PubMed

    Sun, Yugang

    2011-05-01

    Silver (Ag) nanowires with chemically clean surfaces have been directly grown on semi-insulating gallium arsenide (GaAs) wafers through a simple solution/solid interfacial reaction (SSIR) between the GaAs wafers themselves and aqueous solutions of silver nitrate (AgNO(3)) at room temperature. The success in synthesis of Ag nanowires mainly benefits from the low concentration of surface electrons in the semi-insulating GaAs wafers that can lead to the formation of a low-density of nuclei that facilitate their anisotropic growth into nanowires. The resulting Ag nanowires exhibit rough surfaces and reasonably good electric conductivity. These characteristics are beneficial to sensing applications based on single-nanowire surface-enhanced Raman scattering (SERS) and possible surface-adsorption-induced conductivity variation.

  13. Wafer-scale synthesis and transfer of graphene films.

    PubMed

    Lee, Youngbin; Bae, Sukang; Jang, Houk; Jang, Sukjae; Zhu, Shou-En; Sim, Sung Hyun; Song, Young Il; Hong, Byung Hee; Ahn, Jong-Hyun

    2010-02-10

    We developed means to produce wafer scale, high-quality graphene films as large as 3 in. wafer size on Ni and Cu films under ambient pressure and transfer them onto arbitrary substrates through instantaneous etching of metal layers. We also demonstrated the applications of the large-area graphene films for the batch fabrication of field-effect transistor (FET) arrays and stretchable strain gauges showing extraordinary performances. Transistors showed the hole and electron mobilities of the device of 1100 +/- 70 and 550 +/- 50 cm(2)/(V s) at drain bias of -0.75 V, respectively. The piezo-resistance gauge factor of strain sensor was approximately 6.1. These methods represent a significant step toward the realization of graphene devices in wafer scale as well as application in optoelectronics, flexible and stretchable electronics.

  14. Monitoring of acoustic emission activity using thin wafer piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei; Meisner, Daniel; Momeni, Sepand

    2014-03-01

    Acoustic emission (AE) is a well-known technique for monitoring onset and propagation of material damage. The technique has demonstrated utility in assessment of metallic and composite materials in applications ranging from civil structures to aerospace vehicles. While over the course of few decades AE hardware has changed dramatically with the sensors experiencing little changes. A traditional acoustic emission sensor solution utilizes a thickness resonance of the internal piezoelectric element which, coupled with internal amplification circuit, results in relatively large sensor footprint. Thin wafer piezoelectric sensors are small and unobtrusive, but they have seen limited AE applications due to low signal-to-noise ratio and other operation difficulties. In this contribution, issues and possible solutions pertaining to the utility of thin wafer piezoelectrics as AE sensors are discussed. Results of AE monitoring of fatigue damage using thin wafer piezoelectric and conventional AE sensors are presented.

  15. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  16. Large scale molecular dynamics simulations of a liquid crystalline droplet with fast multipole implementations

    SciTech Connect

    Wang, Z.; Lupo, J.; Patnaik, S.S.; McKenney, A.; Pachter, R.

    1999-07-01

    The Fast Multipole Method (FMM) offers an efficient way (order O(N)) to handle long range electrostatic interactions, thus enabling more realistic molecular dynamics simulations of large molecular systems. The performance of the fast molecular dynamics (FMD) code, a parallel MD code being developed in the group, using the three-dimensional fast multipole method, shows a good speedup. The application to the full atomic-scale molecular dynamics simulation of a liquid crystalline droplet of 4-n-pentyl-4{prime}-cyanobiphenyl (5CB) molecules, of size 35,872 atoms, shows strong surface effects on various orientational order parameters.

  17. 450mm wafer patterning with jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Thompson, Ecron; Hellebrekers, Paul; Hofemann, Paul; LaBrake, Dwayne L.; Resnick, Douglas J.; Sreenivasan, S. V.

    2013-09-01

    The next step in the evolution of wafer size is 450mm. Any transition in sizing is an enormous task that must account for fabrication space, environmental health and safety concerns, wafer standards, metrology capability, individual process module development and device integration. For 450mm, an aggressive goal of 2018 has been set, with pilot line operation as early as 2016. To address these goals, consortiums have been formed to establish the infrastructure necessary to the transition, with a focus on the development of both process and metrology tools. Central to any process module development, which includes deposition, etch and chemical mechanical polishing is the lithography tool. In order to address the need for early learning and advance process module development, Molecular Imprints Inc. has provided the industry with the first advanced lithography platform, the Imprio® 450, capable of patterning a full 450mm wafer. The Imprio 450 was accepted by Intel at the end of 2012 and is now being used to support the 450mm wafer process development demands as part of a multi-year wafer services contract to facilitate the semiconductor industry's transition to lower cost 450mm wafer production. The Imprio 450 uses a Jet and Flash Imprint Lithography (J-FILTM) process that employs drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for markets including NAND Flash memory, patterned media for hard disk drives and displays. This paper reviews the recent performance of the J-FIL technology (including overlay, throughput and defectivity), mask development improvements provided by Dai Nippon Printing, and the application of the technology to a 450mm lithography platform.

  18. Recovery Act: Novel Kerf-Free PV Wafering that provides a low-cost approach to generate wafers from 150um to 50um in thickness

    SciTech Connect

    Fong, Theodore E.

    2013-05-06

    The technical paper summarizes the project work conducted in the development of Kerf-Free silicon wafering equipment for silicon solar wafering. This new PolyMax technology uses a two step process of implantation and cleaving to exfoliate 50um to 120um wafers with thicknesses ranging from 50um to 120um from a 125mm or 156mm pseudo-squared silicon ingot. No kerf is generated using this method of wafering. This method of wafering contrasts with the current method of making silicon solar wafers using the industry standard wire saw equipment. The report summarizes the activity conducted by Silicon Genesis Corporation in working to develop this technology further and to define the roadmap specifications for the first commercial proto-type equipment for high volume solar wafer manufacturing using the PolyMax technology.

  19. Apparatus and method for measuring the thickness of a semiconductor wafer

    DOEpatents

    Ciszek, T.F.

    1995-03-07

    Apparatus for measuring thicknesses of semiconductor wafers is discussed, comprising: housing means for supporting a wafer in a light-tight environment; a light source mounted to the housing at one side of the wafer to emit light of a predetermined wavelength to normally impinge the wafer; a light detector supported at a predetermined distance from a side of the wafer opposite the side on which a light source impinges and adapted to receive light transmitted through the wafer; and means for measuring the transmitted light. 4 figs.

  20. Dynamic partial reconfiguration implementation of the SVM/KNN multi-classifier on FPGA for bioinformatics application.

    PubMed

    Hussain, Hanaa M; Benkrid, Khaled; Seker, Huseyin

    2015-01-01

    Bioinformatics data tend to be highly dimensional in nature thus impose significant computational demands. To resolve limitations of conventional computing methods, several alternative high performance computing solutions have been proposed by scientists such as Graphical Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs). The latter have shown to be efficient and high in performance. In recent years, FPGAs have been benefiting from dynamic partial reconfiguration (DPR) feature for adding flexibility to alter specific regions within the chip. This work proposes combing the use of FPGAs and DPR to build a dynamic multi-classifier architecture that can be used in processing bioinformatics data. In bioinformatics, applying different classification algorithms to the same dataset is desirable in order to obtain comparable, more reliable and consensus decision, but it can consume long time when performed on conventional PC. The DPR implementation of two common classifiers, namely support vector machines (SVMs) and K-nearest neighbor (KNN) are combined together to form a multi-classifier FPGA architecture which can utilize specific region of the FPGA to work as either SVM or KNN classifier. This multi-classifier DPR implementation achieved at least ~8x reduction in reconfiguration time over the single non-DPR classifier implementation, and occupied less space and hardware resources than having both classifiers. The proposed architecture can be extended to work as an ensemble classifier.

  1. An application of selective electrochemical wafer thinning for silicon characterization

    SciTech Connect

    Medernach, J.W.; Stein, H.J.; Stevenson, J.O.

    1990-01-01

    A new technique is reported for the rapid determination of interstitial oxygen (O{sub i}) in heavily doped n{sup +} and p{sup +} silicon. This technique includes application of a selective electrochemical thinning (SET) process and FTIR transmittance measurement on a limited area of a silicon wafer. The O{sub i} is calculated using ASTM F1188--88 with the IOC 88 calibration factor. An advantage of SET over mechanical thinning is that the original wafer thickness and diameter are maintained for additional processing. 1 tab.

  2. Hypervelocity impact on silicon wafers with metallic and polymeric coatings

    NASA Astrophysics Data System (ADS)

    Taylor, E. A.; Scott, H. J.; Abraham, M.; Kearsley, A. T.

    2001-10-01

    Current and near future developments in microsystem technologies (MST, also known as MEMS) are defining a new trend towards lower mass, smaller volume spacecraft, without loss of functionality. The MST spacecraft components are etched onto silicon wafers coated with different metallic or polymeric material layers (typically 1-2 microns in thickness). These silicon wafers are then integrated to provide the spacecraft structure subsystem. For the majority of spacecraft, small debris and meteoroid impacts are not often able to cause large satellite platform failures, due to the shielding provided by existing structural and thermal materials and the high percentage of 'empty volume' contained within a typical spacecraft structure. Smaller satellites incorporating MST and based on silicon wafers, whilst presenting a smaller surface area, are expected to be vulnerable to impacts as the lower subsystem mass defines a less substantial structure, providing significantly less protection against impact. This paper presents results of a BNSC-funded study aimed at identifying the vulnerability of MST technologies based on silicon wafers to space debris and meteoroid impact. Hypervelocity impact tests were carried out on silicon wafers coated with five different types of deposited material. Multiple glass spheres were fired simultaneously at velocities in the range of 6 km/s. The impact results identify the hypervelocity impact response of the silicon wafers. The impacted targets showed a brittle material damage morphology (defined by fracture) and linked to the crystalline structure of the silicon wafer. As predicted from the mechanical properties, it was found that the silicon tended to fracture along the 111 planes. Cross-sectioned craters also showed the crystalline structure of the silicon, with the onset of fracture-driven spall on the rear surface. The metal and polymeric coatings produced diverse damage morphologies, with delamination zones being up to twice the diameter

  3. Functional segmentation of dynamic PET studies: Open source implementation and validation of a leader-follower-based algorithm.

    PubMed

    Mateos-Pérez, José María; Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Desco, Manuel; Vaquero, Juan José

    2016-02-01

    We present a novel segmentation algorithm for dynamic PET studies that groups pixels according to the similarity of their time-activity curves. Sixteen mice bearing a human tumor cell line xenograft (CH-157MN) were imaged with three different (68)Ga-DOTA-peptides (DOTANOC, DOTATATE, DOTATOC) using a small animal PET-CT scanner. Regional activities (input function and tumor) were obtained after manual delineation of regions of interest over the image. The algorithm was implemented under the jClustering framework and used to extract the same regional activities as in the manual approach. The volume of distribution in the tumor was computed using the Logan linear method. A Kruskal-Wallis test was used to investigate significant differences between the manually and automatically obtained volumes of distribution. The algorithm successfully segmented all the studies. No significant differences were found for the same tracer across different segmentation methods. Manual delineation revealed significant differences between DOTANOC and the other two tracers (DOTANOC - DOTATATE, p=0.020; DOTANOC - DOTATOC, p=0.033). Similar differences were found using the leader-follower algorithm. An open implementation of a novel segmentation method for dynamic PET studies is presented and validated in rodent studies. It successfully replicated the manual results obtained in small-animal studies, thus making it a reliable substitute for this task and, potentially, for other dynamic segmentation procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 6. Dynamic web-based data dissemination through the NIST Web Thermo Tables.

    PubMed

    Kroenlein, Kenneth; Muzny, Chris D; Diky, Vladimir; Kazakov, Andrei F; Chirico, Robert D; Magee, Joseph W; Abdulagatov, Ilmutdin; Frenkel, Michael

    2011-06-27

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe the development of a World Wide Web-based interface to TDE evaluations of pure compound properties, including critical properties, phase boundary equilibria (vapor pressures, sublimation pressures, and crystal-liquid boundary pressures), densities, energetic properties, and transport properties. This includes development of a system for caching evaluation results to maintain high availability and an advanced window-in-window interface that leverages modern Web-browser technologies. Challenges associated with bringing the principal advantages of the TDE technology to the Web are described, as are compromises to maintain general access and speed of interaction while remaining true to the tenets of dynamic data evaluation. Future extensions of the interface and associated Web-services are outlined.

  5. Process variation monitoring (PVM) by wafer inspection tool as a complementary method to CD-SEM for mapping field CDU on advanced production devices

    NASA Astrophysics Data System (ADS)

    Kim, Dae Jong; Yoo, Hyung Won; Kim, Chul Hong; Lee, Hak Kwon; Kim, Sung Su; Bae, Koon Ho; Spielberg, Hedvi; Lee, Yun Ho; Levi, Shimon; Bustan, Yariv; Rozentsvige, Moshe

    2010-03-01

    As design rules shrink, Critical Dimension Uniformity (CDU) and Line Edge Roughness (LER) have a dramatic effect on printed final lines and hence the need to control these parameters increases. Sources of CDU and LER variations include scanner auto-focus accuracy and stability, layer stack thickness, composition variations, and exposure variations. Process variations, in advanced VLSI production designs, specifically in memory devices, attributed to CDU and LER affect cell-to-cell parametric variations. These variations significantly impact device performance and die yield. Traditionally, measurements of LER are performed by CD-SEM or OCD metrology tools. Typically, these measurements require a relatively long time to set and cover only selected points of wafer area. In this paper we present the results of a collaborative work of the Process Diagnostic & Control Business Unit of Applied Materials and Hynix Semiconductor Inc. on the implementation of a complementary method to the CDSEM and OCD tools, to monitor defect density and post litho develop CDU and LER on production wafers. The method, referred to as Process Variation Monitoring (PVM) is based on measuring variations in the scattered light from periodic structures. The application is demonstrated using Applied Materials DUV bright field (BF) wafer inspection tool under optimized illumination and collection conditions. The UVisionTM has already passed a successful feasibility study on DRAM products with 66nm and 54nm design rules. The tool has shown high sensitivity to variations across an FEM wafer in both exposure and focus axes. In this article we show how PVM can help detection of Field to Field variations on DRAM wafers with 44nm design rule during normal production run. The complex die layout and the shrink in cell dimensions require high sensitivity to local variations within Dies or Fields. During normal scan of production wafers local Process variations are translated into GL (Grey Level) values

  6. The influence of wafer elasticity on acoustic waves during LIGA development.

    SciTech Connect

    Ting, Aili

    2003-12-01

    During acoustically stimulated LIGA development, a wafer receives sound waves from both sides at a wide variety of incidence angles that vary in time depending on the orientation of the wafer relative to the multiple transducers that are typically actuated in a periodic sequence. It is important to understand the influence of these variables on the transmission of energy through the wafer as well as the induced motion of the wafer itself because these processes impact the induced acoustic streaming of the fluid within features, the mechanism presently thought responsible for enhanced development of LIGA features. In the present work, the impact of wafer elasticity on LIGA development is investigated. Transmission waves, wafer bending waves, and the related concepts such as critical bending frequency, mechanical impedance, coincidence, and resonance, are discussed. Supercritical-frequency incident waves induce supersonic bending waves in the wafer. Incident wave energy is channeled into three components, transmitted, reflected and energy deposited to the wafer, depending on the wafer material, thickness and wave incidence angle. Results show at normal incidence for a 1-mm PMMA wafer, about 47% of the wave energy is deposited in the wafer. The wafer gains almost half of the incident energy, a result that agrees well with the Bankert et a1 measurements. In LIGA development, transmitted waves may sometimes produce strong acoustic motion of the developer on the wafer backside, especially for the so-called coincidence case in which almost all incident wave energy transfers to the backside. Wafer bending waves cause wafer oscillation at high frequency, promoting the development process, but features shaking may weaken their attachments to the substrate. Resonance is not likely for the entire wafer, but may occur in short and wide wafer feature columns, which are least likely to break away from the substrate, perhaps resulting in good agitation of the fluid in adjacent

  7. Implementation and Test of the Automatic Flight Dynamics Operations for Geostationary Satellite Mission

    NASA Astrophysics Data System (ADS)

    Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea

    2009-12-01

    This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.

  8. Implementation of Malaria Dynamic Models in Municipality Level Early Warning Systems in Colombia. Part I: Description of Study Sites

    PubMed Central

    Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M.; Quiñónes, Martha L.; Jiménez, Mónica M.; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J.; Thomson, Madeleine C.

    2014-01-01

    As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. PMID:24891460

  9. Dynamic Sustainability: Practitioners' Perspectives on Housing First Implementation Challenges and Model Fidelity Over Time

    ERIC Educational Resources Information Center

    Stergiopoulos, Vicky; Zerger, Suzanne; Jeyaratnam, Jeyagobi; Connelly, Jolynn; Kruk, Katherine; O'Campo, Patricia; Hwang, Stephen

    2016-01-01

    Objectives: Although Housing First (HF) is a popular evidence-based intervention for persons experiencing homelessness and mental illness, research exploring its sustainability over time is scant. This mixed methods study captures practitioners' perspectives on key shifts in implementation of Housing First in a large urban center, and factors…

  10. Organizational Strategies for Promoting Instructional Change: Implementation Dynamics in Schools Working with Comprehensive School Reform Providers

    ERIC Educational Resources Information Center

    Rowan, Brian; Miller, Robert J.

    2007-01-01

    This article develops a conceptual framework for studying how three comprehensive school reform (CSR) programs organized schools for instructional change and how the distinctive strategies they pursued affected implementation outcomes. The conceptual model views the Accelerated Schools Project as using a system of cultural control to produce…

  11. Using Dynamic Value Stream Mapping and Lean Accounting Box Scores to Support Lean Implementation

    ERIC Educational Resources Information Center

    Woehrle, Stephen L.; Abou-Shady, Louay

    2010-01-01

    Lean has proven to be an effective management philosophy for improving businesses in a competitive market by eliminating waste and improving operations. An impact of implementing lean projects is the rapid reduction in inventory levels, which gives management the false impression that profits are decreasing while workers on the shop floor observe…

  12. Dynamic Sustainability: Practitioners' Perspectives on Housing First Implementation Challenges and Model Fidelity Over Time

    ERIC Educational Resources Information Center

    Stergiopoulos, Vicky; Zerger, Suzanne; Jeyaratnam, Jeyagobi; Connelly, Jolynn; Kruk, Katherine; O'Campo, Patricia; Hwang, Stephen

    2016-01-01

    Objectives: Although Housing First (HF) is a popular evidence-based intervention for persons experiencing homelessness and mental illness, research exploring its sustainability over time is scant. This mixed methods study captures practitioners' perspectives on key shifts in implementation of Housing First in a large urban center, and factors…

  13. One-step implementation of the 1->3 orbital state quantum cloning machine via quantum Zeno dynamics

    SciTech Connect

    Shao Xiaoqiang; Wang Hongfu; Zhang Shou; Chen Li; Zhao Yongfang; Yeon, Kyu-Hwang

    2009-12-15

    We present an approach for implementation of a 1->3 orbital state quantum cloning machine based on the quantum Zeno dynamics via manipulating three rf superconducting quantum interference device (SQUID) qubits to resonantly interact with a superconducting cavity assisted by classical fields. Through appropriate modulation of the coupling constants between rf SQUIDs and classical fields, the quantum cloning machine can be realized within one step. We also discuss the effects of decoherence such as spontaneous emission and the loss of cavity in virtue of master equation. The numerical simulation result reveals that the quantum cloning machine is especially robust against the cavity decay, since all qubits evolve in the decoherence-free subspace with respect to cavity decay due to the quantum Zeno dynamics.

  14. Feasibility Study for Implementing Magnetic Suspension in the Glenn Research Center 225 cm2 Supersonic Wind Tunnel for Testing the Dynamic Stability of Blunt Bodies

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark; Barnhart, Paul

    2016-01-01

    The implementation of a magnetic suspension system in the NASA Glenn Research Center (GRC) 225 cm2 Supersonic Wind Tunnel would be a powerful test technique that could accurately determine the dynamic stability of blunt body entry vehicles with no sting interference. This paper explores initial design challenges to be evaluated before implementation, including defining the lowest possible operating dynamic pressure and corresponding model size, developing a compatible video analysis technique, and incorporating a retractable initial support sting.

  15. Silicon Alignment Pins: An Easy Way to Realize a Wafer-to-Wafer Alignment

    NASA Technical Reports Server (NTRS)

    Jung-Kubiak, Cecile; Reck, Theodore J.; Lin, Robert H.; Peralta, Alejandro; Gill, John J.; Lee, Choonsup; Siles, Jose; Toda, Risaku; Chattopadhyay, Goutam; Cooper, Ken B.; hide

    2013-01-01

    Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers. Silicon micromachining technology is naturally suited for making these submillimeter and terahertz components, where precision and accuracy are essential. Waveguide and channel cavities are etched in a silicon bulk material using deep reactive ion etching (DRIE) techniques. Power amplifiers, multiplier and mixer chips are then integrated and the silicon pieces are stacked together to form a supercompact receiver front end. By using silicon micromachined packages for these components, instrument mass can be reduced and higher levels of integration can be achieved. A method is needed to assemble accurately these silicon pieces together, and a technique was developed here using etched pockets and silicon pins to align two wafers together.

  16. National solar technology roadmap: Wafer-silicon PV

    SciTech Connect

    Sopori, Bhushan

    2007-06-01

    This report applies to all bulk-silicon-based PV technologies, including those based on Czochralski, multicrystalline, float-zone wafers, and melt-grown crystals that are 100 μm or thicker, such as ribbons, sheet, or spheral silicon.

  17. High frequency guided wave propagation in monocrystalline silicon wafers

    NASA Astrophysics Data System (ADS)

    Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul

    2017-04-01

    Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.

  18. Scatterometry on pelliclized masks: an option for wafer fabs

    NASA Astrophysics Data System (ADS)

    Gallagher, Emily; Benson, Craig; Higuchi, Masaru; Okumoto, Yasuhiro; Kwon, Michael; Yedur, Sanjay; Li, Shifang; Lee, Sangbong; Tabet, Milad

    2007-03-01

    Optical scatterometry-based metrology is now widely used in wafer fabs for lithography, etch, and CMP applications. This acceptance of a new metrology method occurred despite the abundance of wellestablished CD-SEM and AFM methods. It was driven by the desire to make measurements faster and with a lower cost of ownership. Over the last year, scatterometry has also been introduced in advanced mask shops for mask measurements. Binary and phase shift masks have been successfully measured at all desired points during photomask production before the pellicle is mounted. There is a significant benefit to measuring masks with the pellicle in place. From the wafer fab's perspective, through-pellicle metrology would verify mask effects on the same features that are characterized on wafer. On-site mask verification would enable quality control and trouble-shooting without returning the mask to a mask house. Another potential application is monitoring changes to mask films once the mask has been delivered to the fab (haze, oxide growth, etc.). Similar opportunities apply to the mask metrologist receiving line returns from a wafer fab. The ability to make line-return measurements without risking defect introduction is clearly attractive. This paper will evaluate the feasibility of collecting scatterometry data on pelliclized masks. We explore the effects of several different pellicle types on scatterometry measurements made with broadband light in the range of 320-780 nm. The complexity introduced by the pellicles' optical behavior will be studied.

  19. An Advanced Wafer Stepper For Sub-Micron Fabrication

    NASA Astrophysics Data System (ADS)

    Mayer, Herbert E.; Loebach, Ernst W.

    1987-09-01

    An advanced wafer stepper is presented addressing the specific problems involved by sub-micron lithography such as alignment and focusing to multilayer resist films. New sub-systems were developed while maintaining principles well proven in a previous design. The system is described emphasizing the new sub-systems, and performance data are presented.

  20. Ultra-Gradient Test Cavity for Testing SRF Wafer Samples

    SciTech Connect

    N.J. Pogue, P.M. McIntyre, A.I. Sattarov, C. Reece

    2010-11-01

    A 1.3 GHz test cavity has been designed to test wafer samples of superconducting materials. This mushroom shaped cavity, operating in TE01 mode, creates a unique distribution of surface fields. The surface magnetic field on the sample wafer is 3.75 times greater than elsewhere on the Niobium cavity surface. This field design is made possible through dielectrically loading the cavity by locating a hemisphere of ultra-pure sapphire just above the sample wafer. The sapphire pulls the fields away from the walls so the maximum field the Nb surface sees is 25% of the surface field on the sample. In this manner, it should be possible to drive the sample wafer well beyond the BCS limit for Niobium while still maintaining a respectable Q. The sapphire's purity must be tested for its loss tangent and dielectric constant to finalize the design of the mushroom test cavity. A sapphire loaded CEBAF cavity has been constructed and tested. The results on the dielectric constant and loss tangent will be presented

  1. Vacuum wafer-level packaging for MEMS applications

    NASA Astrophysics Data System (ADS)

    Caplet, Stephane; Sillon, Nicolas; Delaye, Marie-Therese; Berruyer, Pascale

    2003-01-01

    For several kinds of MEMS (gyrometers, accelerometers, RF MEMS, bolometers, vacuum allows a significant improvement of performances. Leti has developed a high performance sensor operating at a pressure lower than 10-3 mbar. In a first phase, a ceramic vacuum packaging has been developed: the device is encapsulated in a cavity containing a getter. However, this technique increases considerably the fabrication costs, because it is made at the chip level. For that reason, Leti has also developed wafer-level vacuum packaging process. The process to manufacture encapsulated devices is presented in this paper. The vacuum function is obtained thanks to an additional wafer (glass or silicon wafer), which supports getters. This wafer is bonded by an hermetic bonding. Characterisation of different kinds of bonding, in term of hermeticity, is presented. First chips manufactured with this process have been tested. The vacuum level in the cavities has been measured, and was lower than 10-3 mbar. Moreover, vacuum evolution during 6 months does not show pressure increase. This process can be easily adapted to several MEMS applications. With these experiments, Leti has so proved the possibility of manufacturing low cost vacuum packaged MEMS.

  2. Multi-wafer slicing with a fixed abrasive

    NASA Technical Reports Server (NTRS)

    Schmid, Frederick (Inventor); Khattak, Chandra P. (Inventor); Smith, Maynard B. (Inventor)

    1988-01-01

    A wafering machine having a multiplicity of wire cutting blades supported by a bladehead reciprocally moving past a workpiece supported by a holder that rocks about an axis perpendicular to the wires at a frequency less than the reciprocation of the bladehead.

  3. Bonding silicon-on-insulator to glass wafers for integrated bio-electronic circuits

    NASA Astrophysics Data System (ADS)

    Kim, Hyun S.; Blick, Robert H.; Kim, D. M.; Eom, C. B.

    2004-09-01

    We report a method for bonding silicon-on-insulator wafers onto glass wafers. After pre-cleaning the wafers by an ozone and ultraviolet exposure, followed by mega-sonic water rinse, the SOI wafers are bonded to glass wafers in a vacuum chamber. This is performed at a temperature of 400 °C under an applied voltage of 700 V. The interface between the glass and SOI wafer is tested mechanically and inspected by electron beam microscopy. Furthermore, we demonstrate removal of the silicon bulk layer after wafer bonding. The quality of the single crystalline Si thin film on the glass wafers has been verified by four-circle x-ray diffraction and scanning electron microscopy. This process will allow us the integration of thin-film electronics in biological sensor applications.

  4. Method for reuse of wafers for growth of vertically-aligned wire arrays

    DOEpatents

    Spurgeon, Joshua M; Plass, Katherine E; Lewis, Nathan S; Atwater, Harry A

    2013-06-04

    Reusing a Si wafer for the formation of wire arrays by transferring the wire arrays to a polymer matrix, reusing a patterned oxide for several array growths, and finally polishing and reoxidizing the wafer surface and reapplying the patterned oxide.

  5. Guidelines for Implementing a Dynamic Warm-Up for Physical Education

    ERIC Educational Resources Information Center

    Faigenbaum, Avery; McFarland, James E., Jr.

    2007-01-01

    Since recent studies have not found substantial evidence to support the use of static stretching during the warm-up period, there has been a growing interest in dynamic warm-up procedures that can enhance physical fitness, improve performance, and better prepare students for the main part of physical education. In this article, the potential…

  6. Teachers' Critical Evaluations of Dynamic Geometry Software Implementation in 1:1 Classrooms

    ERIC Educational Resources Information Center

    Ware, Jennifer; Stein, Sarah

    2014-01-01

    Although the use of dynamic software in high school mathematics in the United States has emerged as a research topic, little research has been conducted on how teachers integrate new software in relation to at-home technology networks. Interviews with eight mathematics teachers from four North Carolina counties participating in 1:1 laptop…

  7. Design implementation and control of MRAS error dynamics. [Model-Reference Adaptive System

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1974-01-01

    Use is made of linearized error characteristic equation for model-reference adaptive systems to determine a parameter adjustment rule for obtaining time-invariant error dynamics. Theoretical justification of error stability is given and an illustrative example included to demonstrate the utility of the proposed technique.

  8. Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie

    2008-01-01

    Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…

  9. Teachers' Critical Evaluations of Dynamic Geometry Software Implementation in 1:1 Classrooms

    ERIC Educational Resources Information Center

    Ware, Jennifer; Stein, Sarah

    2014-01-01

    Although the use of dynamic software in high school mathematics in the United States has emerged as a research topic, little research has been conducted on how teachers integrate new software in relation to at-home technology networks. Interviews with eight mathematics teachers from four North Carolina counties participating in 1:1 laptop…

  10. Implementing molecular dynamics on hybrid high performance computers - short range forces

    NASA Astrophysics Data System (ADS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-04-01

    The use of accelerators such as graphics processing units (GPUs) has become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high-performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both multi-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS, however, the methods can be applied in many molecular dynamics codes. Specifically, we describe algorithms for efficient short range force calculation on hybrid high-performance machines. We describe an approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPUs and 180 CPU cores.

  11. Heuristic Implementation of Dynamic Programming for Matrix Permutation Problems in Combinatorial Data Analysis

    ERIC Educational Resources Information Center

    Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie

    2008-01-01

    Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…

  12. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  13. The Implementation of the Finite-Volume Dynamical Core in the Community Atmosphere Model

    SciTech Connect

    Sawyer, W B; Mirin, A A

    2005-07-26

    A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model 3.0 is presented. These three-dimensional equations can be decoupled into a set of two-dimensional equations by the introduction of a floating vertical coordinate, resulting in considerable potential parallelism. Subsequent analysis of the data dependencies --in particular those arising from the polar singularity of the latitude-longitude coordinate system--suggests that two separate domain decompositions should be employed, each tailored for a different part of the model. The implementation requires that data be periodically redistributed between these two decompositions. Furthermore, data from nearest neighbors are kept in halo regions, which are updated between iterations. These data movements are optimized through one-sided communication primitives and multithreading. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.

  14. The Implementation of the Finite-Volume Dynamical Core in the Community Atmosphere Model

    SciTech Connect

    Sawyer, W B; Mirin, A A

    2004-11-30

    A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model is presented. These three-dimensional equations can be decoupled into a set of two-dimensional equations by the introduction of a floating vertical coordinate, resulting in considerable potential parallelism. Subsequent analysis of the data dependencies--in particular those arising from the polar singularity of the latitude-longitude coordinate system--suggests that two separate domain decompositions should be employed, each tailored for a different part of the model. The implementation requires that data be periodically redistributed between these two decompositions. Furthermore, data from nearest neighbors are kept in halo regions, which are updated between iterations. These data movements are optimized through one-sided communication primitives and multithreading. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.

  15. The Effect of the Dynamic Skills Protocol RTI Model on Reading Achievement in an Elementary School and the Predictive Validity of Phonics Screening Measures Implemented in the Model

    ERIC Educational Resources Information Center

    Laben, Joyce

    2012-01-01

    With the implementation of RTI, educators are attempting to find models that are the best fit for their schools. The problem solving and standard protocol models are the two most common. This study of 65 students examines a new model, the dynamic skills protocol implemented in an elementary school starting in their fourth quarter of kindergarten…

  16. Implementation of a Mechanochemical Model for Dynamic Brittle Fracture in SIERRA

    DTIC Science & Technology

    2014-08-01

    enabling step in the formulation of the finite deformation analog to the linear elastic mechanochemical model. This formulation is similar to the linear...element size, which dictates the time step used during the calculations. This places some additional requirements on the calculation of the kinetic...reaction law since it too needs to be updated at each time step . If the kinetic reaction law is also implemented in an explicit manner, there would be

  17. Advanced FTIR technology for the chemical characterization of product wafers

    NASA Astrophysics Data System (ADS)

    Rosenthal, P. A.; Bosch-Charpenay, S.; Xu, J.; Yakovlev, V.; Solomon, P. R.

    2001-01-01

    Advances in chemically sensitive diagnostic techniques are needed for the characterization of compositionally variable materials such as chemically amplified resists, low-k dielectrics and BPSG films on product wafers. In this context, Fourier Transform Infrared (FTIR) reflectance spectroscopy is emerging as a preferred technique to characterize film chemistry and composition, due to its non-destructive nature and excellent sensitivity to molecular bonds and free carriers. While FTIR has been widely used in R&D environments, its application to mainstream production metrology and process monitoring on product wafers has historically been limited. These limitations have been eliminated in a series of recent FTIR technology advances, which include the use of 1) new sampling optics, which suppress artifact backside reflections and 2) comprehensive model-based analysis. With these recent improvements, it is now possible to characterize films on standard single-side polished product wafers with much simpler training wafer sets and machine-independent calibrations. In this new approach, the chemistry of the films is tracked via the measured infrared optical constants as opposed to conventional absorbance measurements. The extracted spectral optical constants can then be reduced to a limited set of parameters for process control. This paper describes the application of this new FTIR methodology to the characterization of 1) DUV photoresists after various processing steps, 2) low-k materials of different types and after various curing conditions, and 3) doped glass BPSG films of various concentration and, for the first time, widely different thicknesses. Such measurements can be used for improved process control on actual product wafers.

  18. Model implementation for dynamic computation of system cost for advanced life support

    NASA Technical Reports Server (NTRS)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. The Implementation of Slab Geometry for Membrane-Channel Molecular Dynamics Simulations

    PubMed Central

    Bostick, David; Berkowitz, Max L.

    2003-01-01

    Slab geometric boundary conditions are applied in the molecular dynamics simulation of a simple membrane-channel system. The results of the simulation were compared to those of an analogous system using normal three-dimensional periodic boundary conditions. Analysis of the dynamics and electrostatics of the system show that slab geometric periodicity eliminates the artificial bulk water orientational polarization that is present while using normal three-dimensional periodicity. Furthermore, even though the water occupancy and volume of our simple channel is the same when using either method, the electrostatic properties are considerably different when using slab geometry. In particular, the orientational polarization of water is seen to be different in the interior of the channel. This gives rise to a markedly different electric field within the channel. We discuss the implications of slab geometry for the future simulation of this type of system and for the study of channel transport properties. PMID:12829468

  20. Model implementation for dynamic computation of system cost for advanced life support.

    PubMed

    Levri, J A; Vaccari, D A

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. An high performance Fortran implementation of a Tight-Binding Molecular Dynamics simulation

    NASA Astrophysics Data System (ADS)

    Di Martino, B.; Celino, M.; Rosato, V.

    1999-08-01

    Molecular Dynamics simulations in the Tight-Binding approach allow the study of the ionic and electronic structures of semiconductors. The Tight-Binding codes are characterized by inhomogeneous data distribution and require the repeated diagonalization of a large sparse matrix to compute the whole body of its eigenvalues and eigenvectors. We describe the porting of this code on a parallel computer: we show the parallelization strategy for both the Molecular Dynamics part of the code and for the diagonalization needed at each time step. The parallelization has been carried out within the High Performance Fortran (HPF) environment, and tested on IBM SP architectures. The integration of optimized parallel mathematical routines is also described.

  2. Model implementation for dynamic computation of system cost for advanced life support

    NASA Technical Reports Server (NTRS)

    Levri, J. A.; Vaccari, D. A.

    2004-01-01

    Life support system designs for long-duration space missions have a multitude of requirements drivers, such as mission objectives, political considerations, cost, crew wellness, inherent mission attributes, as well as many other influences. Evaluation of requirements satisfaction can be difficult, particularly at an early stage of mission design. Because launch cost is a critical factor and relatively easy to quantify, it is a point of focus in early mission design. The method used to determine launch cost influences the accuracy of the estimate. This paper discusses the appropriateness of dynamic mission simulation in estimating the launch cost of a life support system. This paper also provides an abbreviated example of a dynamic simulation life support model and possible ways in which such a model might be utilized for design improvement. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  3. Implementation of recurrent artificial neural networks for nonlinear dynamic modeling in biomedical applications.

    PubMed

    Stošovic, Miona V Andrejevic; Litovski, Vanco B

    2013-11-01

    Simulation is indispensable during the design of many biomedical prostheses that are based on fundamental electrical and electronic actions. However, simulation necessitates the use of adequate models. The main difficulties related to the modeling of such devices are their nonlinearity and dynamic behavior. Here we report the application of recurrent artificial neural networks for modeling of a nonlinear, two-terminal circuit equivalent to a specific implantable hearing device. The method is general in the sense that any nonlinear dynamic two-terminal device or circuit may be modeled in the same way. The model generated was successfully used for simulation and optimization of a driver (operational amplifier)-transducer ensemble. This confirms our claim that in addition to the proper design and optimization of the hearing actuator, optimization in the electronic domain, at the electronic driver circuit-to-actuator interface, should take place in order to achieve best performance of the complete hearing aid.

  4. Damascene patterned metal/adhesive wafer bonding for three-dimensional integration

    NASA Astrophysics Data System (ADS)

    McMahon, J. Jay

    /m2. The elastic modulus of the BCB is investigated by monitoring film stress behavior for temperatures just below that needed for crosslinking (i.e. the temperature where BCB-BCB bonding begins). The film-stress temperature dependence is then used as an indicator for phase transitions in the BCB that affect elastic modulus. Surface analysis techniques are used to explore the surface chemistry of the BCB and measure its surface energy over the temperature range required for bonding. The surface energy of partially cured BCB at both 50 and 90% crosslinking is measured to decrease by ˜30% when the temperature is raised from 35°C to 230°C. The surface analysis and mechanical properties studies provide insight into the capability of BCB to close gaps when in contact during bonding, a necessary condition for forming void-free bonding interfaces. One important aspect for implementing wafer-level 3D integration is the ability of a technology platform to accommodate topography on fully fabricated wafers. The aforementioned metal/adhesive 3D platform has strict requirements in this regard if void-free surfaces are to be attained. A bonding protocol that eliminates the copper and tantalum interconnect structure is utilized to investigate the deformation capability of partially cured BCB during bonding. The results indicate that the defect density of such BCB-BCB bonds depends on material parameters such as the degree of crosslinking and surface energy, the pitch of the features, and the depth of the topography to be accommodated. For 70--90% crosslinked BCB, accommodation was observed for lines ˜120 nm deep and ˜100 mum in pitch. Furthermore, 70--90% crosslinked BCB lines with pitch ˜1 mum and depth ˜12 nm were accommodated during bonding. When the BCB crosslinking is reduced to 50%, additional accommodation is observed. In such cases, lines with pitch ˜100 mum and depth ˜500 nm, and those with pitch ˜1 mum and depth ˜50 nm were accommodated. Additional work has

  5. Implementing and Simulating Dynamic Traffic Assignment with Intelligent Transportation Systems in Cube Avenue

    NASA Technical Reports Server (NTRS)

    Foytik, Peter; Robinson, Mike

    2010-01-01

    As urban populations and traffic congestion levels increase, effective use of information and communication tools and intelligent transportation systems as becoming increasingly important in order to maximize the efficiency of transportation networks. The appropriate placement and employment of these tools within a network is critical to their effectiveness. This presentation proposes and demonstrates the use of a commercial transportation simulation tool to simulate dynamic traffic assignment and rerouting to model route modifications as a result of traffic information.

  6. Rinsing of wafers after wet processing: Simulation and experiments

    NASA Astrophysics Data System (ADS)

    Chiang, Chieh-Chun

    In semiconductor manufacturing, a large amount (50 billion gallons for US semiconductor fabrication plants in 2006) of ultrapure water (UPW) is used to rinse wafers after wet chemical processing to remove ionic contaminants on surfaces. Of great concern are the contaminants left in narrow (tens of nm), high-aspect-ratio (5:1 to 20:1) features (trenches, vias, and contact holes). The International Technology Roadmap for Semiconductors (ITRS) stipulates that ionic contaminant levels be reduced to below ˜ 10 10 atoms/cm2. Understanding the bottlenecks in the rinsing process would enable conservation of rinse water usage. A comprehensive process model has been developed on the COMSOL platform to predict the dynamics of rinsing of narrow structures on patterned SiO 2 substrates initially cleaned with NH4OH. The model considers the effect of various mass-transport mechanisms, including convection and diffusion/dispersion, which occur simultaneously with various surface phenomena, such as adsorption and desorption of impurities. The influences of charged species in the bulk and on the surface, and their induced electric field that affect both transport and surface interactions, have been addressed. Modeling results show that the efficacy of rinsing is strongly influenced by the rate of desorption of adsorbed contaminants, mass transfer of contaminants from the mouth of the feature to the bulk liquid, and the trench aspect ratio. Detection of the end point of rinsing is another way to conserve water used for rinsing after wet processing. The applicability of electrochemical impedance spectroscopy (EIS) to monitor rinsing of Si processed in HF with and without copper contaminant was explored. In the first study, the effect of the nature of surface state (flat band, depletion, or accumulation) of silicon on rinsing rate was investigated. The experimental results show that the state of silicon could affect rinsing kinetics through modulation of ion adsorption. In the second

  7. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 5. Experiment planning and product design.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Kroenlein, Kenneth; Frenkel, Michael

    2011-01-24

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.

  8. The physician-insurer dynamic must shift to successfully implement value-based payments.

    PubMed

    Beveridge, Roy A; Happe, Laura E; Funk, Mike

    2016-12-01

    Decades of practice under a system that set the financial interests of physicians and insurers at odds, has resulted in physician distrust of insurers being cited a key obstacle to value-based arrangements. Insurers must work to shift the insurer-provider relationship from one that's transactional to a partnership built on trust. Even when physicians and insurers agree philosophically on quality over quantity, there are practical challenges. Insurers can provide the data, systems and analytical insights that help inform the physician's care strategy. Implementing value-based payments requires the two groups to build trust and work together to change long-established systems.

  9. Wafer Scale Integration of CMOS Chips for Biomedical Applications via Self-Aligned Masking

    PubMed Central

    Uddin, Ashfaque; Milaninia, Kaveh; Chen, Chin-Hsuan; Theogarajan, Luke

    2011-01-01

    This paper presents a novel technique for the integration of small CMOS chips into a large area substrate. A key component of the technique is the CMOS chip based self-aligned masking. This allows for the fabrication of sockets in wafers that are at most 5 µm larger than the chip on each side. The chip and the large area substrate are bonded onto a carrier such that the top surfaces of the two components are flush. The unique features of this technique enable the integration of macroscale components, such as leads and microfluidics. Furthermore, the integration process allows for MEMS micromachining after CMOS die-wafer integration. To demonstrate the capabilities of the proposed technology, a low-power integrated potentiostat chip for biosensing implemented in the AMI 0.5 µm CMOS technology is integrated in a silicon substrate. The horizontal gap and the vertical displacement between the chip and the large area substrate measured after the integration were 4 µm and 0.5 µm, respectively. A number of 104 interconnects are patterned with high-precision alignment. Electrical measurements have shown that the functionality of the chip is not affected by the integration process. PMID:22400126

  10. HED-TIE: A Wafer Scale Approach for Fabricating Hybrid Electronic Devices with Trench Isolated Electrodes.

    PubMed

    Banerjee, Sreetama; Bülz, Daniel; Solonenko, Dmytro; Reuter, Danny; Deibel, Carsten; Hiller, Karla; Zahn, Dietrich; Salvan, Georgeta

    2017-03-15

    Organic-inorganic hybrid electronic devices (HEDs) offer opportunities for functionalities that are not easily obtainable with either organic or inorganic materials individually. In the strive for down-scaling the channel length in planar geometry HEDs the records were achieved with electron beam lithography or nanoimprint lithography. Their application on the wafer level is, however, cost intensive and time consuming. Here, we propose the trench isolated electrodes (TIE) technology as a fast, cost effective, wafer level approach for fabrication of planar HEDs with electrode gaps in the range of 100 nm. The TIE technology is inspired from the process flow which has been successfully implemented in the fabrication of microelectromechanical systems (MEMS) and is based on standard photolithography and a series of isotropic and anisotropic etching steps and trench refilling with silicon oxide. We demonstrate that the formation of the organic channel can be realized by deposition from solution as well as by thermal evaporation of organic molecules. To underline one key feature of planar HED-TIEs, namely full accessibility of the active area of the devices by external stimuli such as light, TIPS-pentacene/Au HED-TIEs were successfully tested for possible application as hybrid photodetectors in the visible spectral range.

  11. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    NASA Astrophysics Data System (ADS)

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, Sanghyeon; Choi, Won Jun

    2016-02-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates.

  12. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  13. Knowledge mobilisation for policy development: implementing systems approaches through participatory dynamic simulation modelling.

    PubMed

    Freebairn, Louise; Rychetnik, Lucie; Atkinson, Jo-An; Kelly, Paul; McDonnell, Geoff; Roberts, Nick; Whittall, Christine; Redman, Sally

    2017-10-02

    Evidence-based decision-making is an important foundation for health policy and service planning decisions, yet there remain challenges in ensuring that the many forms of available evidence are considered when decisions are being made. Mobilising knowledge for policy and practice is an emergent process, and one that is highly relational, often messy and profoundly context dependent. Systems approaches, such as dynamic simulation modelling can be used to examine both complex health issues and the context in which they are embedded, and to develop decision support tools. This paper reports on the novel use of participatory simulation modelling as a knowledge mobilisation tool in Australian real-world policy settings. We describe how this approach combined systems science methodology and some of the core elements of knowledge mobilisation best practice. We describe the strategies adopted in three case studies to address both technical and socio-political issues, and compile the experiential lessons derived. Finally, we consider the implications of these knowledge mobilisation case studies and provide evidence for the feasibility of this approach in policy development settings. Participatory dynamic simulation modelling builds on contemporary knowledge mobilisation approaches for health stakeholders to collaborate and explore policy and health service scenarios for priority public health topics. The participatory methods place the decision-maker at the centre of the process and embed deliberative methods and co-production of knowledge. The simulation models function as health policy and programme dynamic decision support tools that integrate diverse forms of evidence, including research evidence, expert knowledge and localised contextual information. Further research is underway to determine the impact of these methods on health service decision-making.

  14. Implementing a comprehensive approach to the study of health dynamics using the psychoneuroimmunology paradigm.

    PubMed

    McCain, Nancy L; Gray, Dorothy Patricia; Walter, Jeanne M; Robins, JoLynne

    2005-01-01

    This article addresses psychoneuroimmunology (PNI) as an integrative paradigm for advancing both theoretical and empirical knowledge of physiological patterns that contribute to the dynamics of health. We depict relationships among relevant psychobehavioral and physiological components in a PNI-based framework. We then provide examples of how this framework guided 2 clinical trials designed to assess the effectiveness of selected nursing interventions to reduce stress and enhance coping, one in persons with human immunodeficiency viral disease and the other in persons with cancer. The examples address disease-specific measures for assessing the components of the PNI-based framework.

  15. Wafer bonding process for building MEMS devices

    NASA Astrophysics Data System (ADS)

    Pabo, Eric F.; Meiler, Josef; Matthias, Thorsten

    2014-06-01

    The technology for the measurement of colour rendering and colour quality is not new, but many parameters related to this issue are currently changing. A number of standard methods were developed and are used by different specialty areas of the lighting industry. CIE 13.3 has been the accepted standard implemented by many users and used for many years. Light-emitting Diode (LED) technology moves at a rapid pace and, as this lighting source finds wider acceptance, it appears that traditional colour-rendering measurement methods produce inconsistent results. Practical application of various types of LEDs yielded results that challenged conventional thinking regarding colour measurement of light sources. Recent studies have shown that the anatomy and physiology of the human eye is more complex than formerly accepted. Therefore, the development of updated measurement methodology also forces a fresh look at functioning and colour perception of the human eye, especially with regard to LEDs. This paper includes a short description of the history and need for the measurement of colour rendering. Some of the traditional measurement methods are presented and inadequacies are discussed. The latest discoveries regarding the functioning of the human eye and the perception of colour, especially when LEDs are used as light sources, are discussed. The unique properties of LEDs when used in practical applications such as luminaires are highlighted.

  16. Induced thermal stress fields for three-dimensional distortion control of Si wafer topography

    NASA Astrophysics Data System (ADS)

    Schaper, Charles D.; Chen, Been-Der; Pease, R. Fabian W.

    2004-06-01

    Localized, controlled heating can induce a thermal stress field in silicon wafers and displace the surface topography in three dimensions, which is useful for nanoscale regulation of overlay in microcontact printing systems. Simulation and experimental results are presented to demonstrate the use of a thermal array consisting of a dense distribution of independent heating elements to locally displace silicon wafer alignment microstructures. An experimental apparatus comprised of a 7×7 array of thermal cycling sources is used to control the absolute three-dimensional position of surface microstructures. The system is used to demonstrate out-of-plane sensitivity of 1.4 μm/°C by thermomechanical displacement contributions from thermal expansion of the heating element. Rolloff in out-of-plane displacement of 200 nm/mm/°C in silicon at the boundary between heated and nonheated regions in this apparatus is exhibited. Dynamic real-time control of the substrate flatness is thus feasible and is demonstrated with the apparatus using feedback from three alignment microscopes, to sub-100 nm levels of regulation. Control of the in-plane microstructure position is achieved by stabilizing the vertical displacement with a mechanical nanopositioning stage, while establishing a thermal stress field to produce displacement sensitivity of 70 nm/°C. Real-time feedback control of the in-plane microstructure position is demonstrated, also within sub-100 nm of the target regulation level.

  17. Dissipative particle dynamics for systems with high density of charges: Implementation of electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Gavrilov, A. A.; Chertovich, A. V.; Kramarenko, E. Yu.

    2016-11-01

    In this work, we study the question of how to introduce electrostatic interactions in dissipative particle dynamics (DPD) method in order to correctly reproduce the properties of systems with high density of charges, including those with inhomogeneous charge distribution. To this end, we formulate general requirements for the electrostatic force in DPD and propose a new functional form of the force which suits better for satisfying these requirements than the previously used ones. In order to verify the proposed model, we study the problem of a single polyelectrolyte chain collapse and compare the results with molecular dynamics (MD) simulations in which the exact Coulomb force is used. We show that an excellent quantitative agreement between MD and DPD models is observed if the length parameter D of the proposed electrostatic force is chosen properly; the recommendations concerning the choice of this parameter value are given based on the analysis of a polyelectrolyte chain collapse behavior. Finally, we demonstrate the applicability of DPD with the proposed electrostatic force to studying microphase separation phenomenon in polyelectrolyte melts and show that the same values of D as in the case of single chain collapse should be used, thus indicating universality of the model. Due to the charge correlation attraction, a long-range order in such melts can be observed even at zero Flory-Huggins parameter.

  18. Implementation of the Algorithm for Congestion control in the Dynamic Circuit Network (DCN)

    NASA Astrophysics Data System (ADS)

    Nalamwar, H. S.; Ivanov, M. A.; Buddhawar, G. U.

    2017-01-01

    Transport Control Protocol (TCP) incast congestion happens when a number of senders work in parallel with the same server where the high bandwidth and low latency network problem occurs. For many data center network applications such as a search engine, heavy traffic is present on such a server. Incast congestion degrades the entire performance as packets are lost at a server side due to buffer overflow, and as a result, the response time becomes longer. In this work, we focus on TCP throughput, round-trip time (RTT), receive window and retransmission. Our method is based on the proactive adjust of the TCP receive window before the packet loss occurs. We aim to avoid the wastage of the bandwidth by adjusting its size as per the number of packets. To avoid the packet loss, the ICTCP algorithm has been implemented in the data center network (ToR).

  19. Modeling the dynamics of evaluation: a multilevel neural network implementation of the iterative reprocessing model.

    PubMed

    Ehret, Phillip J; Monroe, Brian M; Read, Stephen J

    2015-05-01

    We present a neural network implementation of central components of the iterative reprocessing (IR) model. The IR model argues that the evaluation of social stimuli (attitudes, stereotypes) is the result of the IR of stimuli in a hierarchy of neural systems: The evaluation of social stimuli develops and changes over processing. The network has a multilevel, bidirectional feedback evaluation system that integrates initial perceptual processing and later developing semantic processing. The network processes stimuli (e.g., an individual's appearance) over repeated iterations, with increasingly higher levels of semantic processing over time. As a result, the network's evaluations of stimuli evolve. We discuss the implications of the network for a number of different issues involved in attitudes and social evaluation. The success of the network supports the IR model framework and provides new insights into attitude theory.

  20. Research on the planarizaion of the large optic wafer in the fast polishing process

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Lin, Jing; Guo, YinBiao

    2010-10-01

    This paper researches on the planarization of the large optic wafer in the fast polishing process (FPP). In the FPP, the MRR (material removal rate) of the large optic wafer can reach 5~10 um/h. However, the planarization of the wafer is still a problem. Thus, this paper uses the revised skin model to analyze the non-uniform pressure distribution which results in the non-planarization of the wafer. At last, some experiments are done to see which parameter can be chosen to avoid the non-uniform pressure distribution and get the good wafer planarization.

  1. Compressive uniaxially strained silicon on insulator by prestrained wafer bonding and layer transfer

    NASA Astrophysics Data System (ADS)

    Himcinschi, C.; Reiche, M.; Scholz, R.; Christiansen, S. H.; Gösele, U.

    2007-06-01

    Wafer level compressive uniaxially strained silicon on insulator is obtained by direct wafer bonding of silicon wafers in cylindrically curved state, followed by thinning one of the wafers using the smart-cut process. The mapping of the wafer bow demonstrates the uniaxial character of the strain induced by the cylindrical bending. The interfacial properties are investigated by infrared transmission imaging, scanning acoustic microscopy, and transmission electron microscopy. UV-Raman spectroscopy is employed to determine the strain in the thin transferred layer as a function of radius of curvature of the initial bending.

  2. Wafer-level packaging with compression-controlled seal ring bonding

    DOEpatents

    Farino, Anthony J

    2013-11-05

    A device may be provided in a sealed package by aligning a seal ring provided on a first surface of a first semiconductor wafer in opposing relationship with a seal ring that is provided on a second surface of a second semiconductor wafer and surrounds a portion of the second wafer that contains the device. Forcible movement of the first and second wafer surfaces toward one another compresses the first and second seal rings against one another. A physical barrier against the movement, other than the first and second seal rings, is provided between the first and second wafer surfaces.

  3. Method for implementation of back-illuminated CMOS or CCD imagers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor)

    2008-01-01

    A method for implementation of back-illuminated CMOS or CCD imagers. An oxide layer buried between silicon wafer and device silicon is provided. The oxide layer forms a passivation layer in the imaging structure. A device layer and interlayer dielectric are formed, and the silicon wafer is removed to expose the oxide layer.

  4. The implementation of a modernized Dynamic Digital Map on Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Condit, C. D.

    2012-12-01

    Currently, geology instructors present information to students via PowerPoint, Word, Excel and other programs that are not designed to parse or present geologic data. More tech-savvy, and perhaps better-funded, instructors use Google Earth or ArcGIS to display geologic maps and other visual information. However, Google Earth lacks the ability to present large portions of text, and ArcGIS restricts such functionality to labels and annotations. The original Dynamic Digital Map, which we have renamed Dynamic Digital Map Classic (DDMC), allows instructors to represent both visual and large portions of textual information to students. This summer we generalized the underlying architecture of DDMC, redesigned the user interface, modernized the analytical functionality, renamed the older version and labeled this new creature Dynamic Digital Map Extended (DDME). With the new DDME instructors can showcase maps, images, articles and movies, and create digital field trips. They can set the scale, coordinate system and caption of maps and images, add symbol links to maps and images that can transport the user to any specified destination—either internally (to data contained within the DDME) or externally (to a website address). Instructors and students can also calculate non-linear distances and irregular areas of maps and images, and create digital field trips with any number of stops—complete with notes and driving directions. DDMEs are perhaps best described as a sort of computerized, self-authored, interactive textbook. To display the vast capabilities of DDME, we created a DDME of Gale Crater (DDME-GC), which is the landing site of the most sophisticated NASA Mars Rover—Curiosity. DDME-GC hosts six thematic maps: a detailed geologic map provided by Brad Thompson of the Boston University Center for Remote Sensing (Thompson, et al., 2010), and five maps maintained in ASU's JMARS system, including global mosaics from Mars Global Surveyor's Mars Orbiter Laser Altimeter

  5. Study on a new chaotic bitwise dynamical system and its FPGA implementation

    NASA Astrophysics Data System (ADS)

    Wang, Qian-Xue; Yu, Si-Min; Guyeux, C.; Bahi, J.; Fang, Xiao-Le

    2015-06-01

    In this paper, the structure of a new chaotic bitwise dynamical system (CBDS) is described. Compared to our previous research work, it uses various random bitwise operations instead of only one. The chaotic behavior of CBDS is mathematically proven according to the Devaney's definition, and its statistical properties are verified both for uniformity and by a comprehensive, reputed and stringent battery of tests called TestU01. Furthermore, a systematic methodology developing the parallel computations is proposed for FPGA platform-based realization of this CBDS. Experiments finally validate the proposed systematic methodology. Project supported by China Postdoctoral Science Foundation (Grant No. 2014M552175), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Chinese Education Ministry, the National Natural Science Foundation of China (Grant No. 61172023), and the Specialized Research Foundation of Doctoral Subjects of Chinese Education Ministry (Grant No. 20114420110003).

  6. Optimization of wafer-back pressure profile in chemical mechanical planarization

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Shiang; Wang, Yao-Chen; Hu, Ian

    2008-11-01

    In chemical mechanical planarization (CMP), a rotating wafer is pressed facedown against a rotating pad, while a slurry is dragged into the pad--wafer interface to assist in planarizing the wafer surface. Due to stress concentration, the interfacial contact stress near the wafer edge generally is much higher than that near the wafer center, resulting in spatially nonuniform material removal rate and hence imperfect planarity of the wafer surface. Here, integrating theories of fluid film lubrication and two-dimensional contact mechanics, we calculate the interfacial contact stress and slurry pressure distributions. In particular, the possibility of using a multizone wafer-back pressure profile to improve the contact stress uniformity is examined, by studying a practical case. The numerical results indicate that using a two-zone wafer-back pressure profile with optimized zonal sizes and pressures can increase the ``usable'' wafer surface area by as much as 12%. Using an optimized three- zone wafer-back pressure profile, however, does not much further increase the usable wafer surface area.

  7. Characterization of Boron Diffusion Phenomena According to the Specific Resistivity of N-Type Si Wafer.

    PubMed

    Lee, Woo-Jin; Choi, Chel-Jong; Park, Gye-Choon; Yang, O-Bong

    2016-02-01

    This paper is directed to characterize the boron diffusion process according to the specific resistivity of the Si wafer. N-type Si wafers were used with the specific resistivity of 0.5-3.2 omega-cm, 1.0-6.5 omega-cm and 2.0-8.0 omega-cm. The boron tribromide (BBr3) was used as boron source to create the PN junction on N-type Si wafer. The boron diffusion in N-type Si wafer was characterized by sheet resistance of wafer surface, secondary ion mass spectroscopy measurements (SIMS) and surface life time analysis. The degree of boron diffusion was depended on the variation in specific resistivity and sheet resistance of the bare N-type Si wafer. The boron diffused N-Si wafer exhibited the average junction depth of 750 nm and boron concentration of 1 x 10(19). N-type Si wafer with the different specific resistance considerably affected the boron diffusion length and life time of Si wafer. It was found that the lifetime of boron diffused wafer was proportional to the sheet resistance and resistivity. However, optimization process may necessary to achieve the high efficiency through the high sheet resistance wafer, because the metallization process control is very sensitive.

  8. Switchable static friction of piezoelectric composite—silicon wafer contacts

    NASA Astrophysics Data System (ADS)

    van den Ende, D. A.; Fischer, H. R.; Groen, W. A.; van der Zwaag, S.

    2013-04-01

    The meso-scale surface roughness of piezoelectric fiber composites can be manipulated by applying an electric field to a piezocomposite with a polished surface. In the absence of an applied voltage, the tips of the embedded piezoelectric ceramic fibers are below the surface of the piezocomposite and a silicon wafer counter surface rests solely on the matrix region of the piezocomposite surface. When actuated, the piezoelectric ceramic fibers protrude from the surface and the wafer rests solely on these protrusions. A threefold decrease in engineering static friction coefficient upon actuation of the piezocomposite was observed: from μ* = 1.65 to μ* = 0.50. These experimental results could be linked to the change in contact surface area and roughness using capillary adhesion theory, which relates the adhesive force to the number and size of the contacting asperities for the different surface states.

  9. JOINT RIGIDITY ASSESSMENT WITH PIEZOELECTRIC WAFERS AND ACOUSTIC WAVES

    SciTech Connect

    Montoya, Angela C.; Maji, Arup K.

    2010-02-22

    There has been an interest in the development of rapid deployment satellites. In a modular satellite design, different panels of specific functions can be pre-manufactured. The satellite can then be assembled and tested just prior to deployment. Traditional vibration testing is time-consuming and expensive. An alternative test method to evaluate the connection between two plates will be proposed. The method investigated and described employs piezoelectric wafers to induce and sense lamb waves in two aluminum plates, which were joined by steel brackets to form an 'L-Style' joint. Lamb wave behavior and piezoelectric material properties will be discussed; the experimental setup and results will be presented. A set of 4 piezoelectric ceramic wafers were used alternately as source and sensor. The energy transmitted was shown to correlate with a mechanical assessment of the joint, demonstrating that this method of testing is a feasible and reliable way to inspect the rigidity of joints.

  10. Wafer level reliability for high-performance VLSI design

    NASA Technical Reports Server (NTRS)

    Root, Bryan J.; Seefeldt, James D.

    1987-01-01

    As very large scale integration architecture requires higher package density, reliability of these devices has approached a critical level. Previous processing techniques allowed a large window for varying reliability. However, as scaling and higher current densities push reliability to its limit, tighter control and instant feedback becomes critical. Several test structures developed to monitor reliability at the wafer level are described. For example, a test structure was developed to monitor metal integrity in seconds as opposed to weeks or months for conventional testing. Another structure monitors mobile ion contamination at critical steps in the process. Thus the reliability jeopardy can be assessed during fabrication preventing defective devices from ever being placed in the field. Most importantly, the reliability can be assessed on each wafer as opposed to an occasional sample.

  11. Joint Rigidity Assessment with Piezoelectric Wafers and Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Montoya, Angela C.; Maji, Arup K.

    2010-02-01

    There has been an interest in the development of rapid deployment satellites. In a modular satellite design, different panels of specific functions can be pre-manufactured. The satellite can then be assembled and tested just prior to deployment. Traditional vibration testing is time-consuming and expensive. An alternative test method to evaluate the connection between two plates will be proposed. The method investigated and described employs piezoelectric wafers to induce and sense lamb waves in two aluminum plates, which were joined by steel brackets to form an `L-Style' joint. Lamb wave behavior and piezoelectric material properties will be discussed; the experimental setup and results will be presented. A set of 4 piezoelectric ceramic wafers were used alternately as source and sensor. The energy transmitted was shown to correlate with a mechanical assessment of the joint, demonstrating that this method of testing is a feasible and reliable way to inspect the rigidity of joints.

  12. A gas chromatographic air analyzer fabricated on a silicon wafer

    NASA Technical Reports Server (NTRS)

    Terry, S. C.; Jerman, J. H.; Angell, J. B.

    1979-01-01

    A miniature gas analysis system has been built based on the principles of gas chromatography (GC). The major components are fabricated in silicon using photolithography and chemical etching techniques, which allows size reductions of nearly three orders of magnitude compared to conventional laboratory instruments. The chromatography system consists of a sample injection valve and a 1.5-m-long separating capillary column, which are fabricated on a substrate silicon wafer. The output thermal conductivity detector is separately batch fabricated and integrably mounted on the substrate wafer. The theory of gas chromatography has been used to optimize the performance of the sensor so that separations of gaseous hydrocarbon mixtures are performed in less than 10 s. The system is expected to find application in the areas of portable ambient air quality monitors, implanted biological experiments, and planetary probes.

  13. Metal adsorbent for alkaline etching aqua solutions of Si wafer

    NASA Astrophysics Data System (ADS)

    Tamada, Masao; Ueki, Yuji; Seko, Noriaki; Takeda, Toshihide; Kawano, Shin-ichi

    2012-08-01

    High performance adsorbent is expected to be synthesized for the removal of Ni and Cu ions from strong alkaline solution used in the surface etching process of Si wafer. Fibrous adsorbent was synthesized by radiation-induce emulsion graft polymerization onto polyethylene nonwoven fabric and subsequent amination. The reaction condition was optimized using 30 L reaction vessel and nonwoven fabric, 0.3 m width and 18 m long. The resulting fibrous adsorbent was evaluated by 48 wt% NaOH and KOH contaminated with Ni and Cu ions, respectively. The concentration levels of Ni and Cu ions was reduced to less than 1 μg/kg (ppb) at the flow rate of 10 h-1 in space velocity. The life of adsorbent was 30 times higher than that of the commercialized resin. This novel adsorbent was commercialized as METOLATE® since the ability of adsorption is remarkably higher than that of commercial resin used practically in Si wafer processing.

  14. Chemical method for producing smooth surfaces on silicon wafers

    DOEpatents

    Yu, Conrad

    2003-01-01

    An improved method for producing optically smooth surfaces in silicon wafers during wet chemical etching involves a pre-treatment rinse of the wafers before etching and a post-etching rinse. The pre-treatment with an organic solvent provides a well-wetted surface that ensures uniform mass transfer during etching, which results in optically smooth surfaces. The post-etching treatment with an acetic acid solution stops the etching instantly, preventing any uneven etching that leads to surface roughness. This method can be used to etch silicon surfaces to a depth of 200 .mu.m or more, while the finished surfaces have a surface roughness of only 15-50 .ANG. (RMS).

  15. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  16. Towards reduced impact of EUV mask defectivity on wafer

    NASA Astrophysics Data System (ADS)

    Jonckheere, R.; Van den Heuvel, D.; Pacco, A.; Pollentier, I.; Baudemprez, B.; Jehoul, C.; Hermans, J.; Hendrickx, E.

    2014-07-01

    The defectivity challenges of extreme ultraviolet (EUV) masks, that need to be addressed before production readiness of EUV lithography is assured from the mask perspective, are twofold. First, the EUV-specific defect type relating to the multi-layer (ML) mirror, the so-called ML-defects, require to become more detectable than they are printable. This not only requires proven capability of blank inspection, but also the existence of satisfactory printability mitigation strategies (comprising avoidance, pattern shift methodology, compensation repair). Both these assets need to become available within the mask supply chain, as there is little that can still be done about such residual defects at the wafer fab. In a production phase, finding unexpected printing ML-defects is unacceptable. It is shown how the specific way-of-working in use at imec, starting from the printed wafer, contributes to related learning and identification of remaining gaps, in getting this issue fully dealt with. The second challenge relates to particle contamination during use of the reticle at the wafer fab. Avoiding overlaycritical particles on the backside of NXE3100 reticles is facilitated by the established way-of-working. Minimizing the occurrence of particles "hopping" between reticles via the electrostatic clamp of the scanner (so-called clamp-traveling particles) is a major driver for appropriate mask cleaning. The latter may not have negative impact by frequent use, in view of the highly vulnerable EUV mask stack, and especially for the present "black-border" solution in which the ML is etched away at the image border on the reticle. A lot of effort is spent into monitoring of NXE3100 reticles for particle adders on the pattern side. This is realized by comparing past and present mask defect maps obtained by inspection of printed wafers with subsequent repeater analysis.

  17. Cost of Czochralski wafers as a function of diameter

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.; Radics, C.; Kachare, A.

    1980-01-01

    The impact of diameter in the range of 10 to 15 cm on the cost of wafers sliced from Czochralski ingots was analyzed. Increasing silicon waste and decreasing ingot cost with increasing ingot size were estimated along with projected costs. Results indicate a small but continuous decrease in sheet cost with increasing ingot size in this size range. Sheet costs including silicon are projected to be $50 to $60/sq m (1980 $) depending upon technique used.

  18. Cost of Czochralski wafers as a function of diameter

    SciTech Connect

    Leipold, M.H.; Radics, C.; Kachare, A.

    1980-02-15

    The impact of diameter in the range of 10 to 15 cm on the cost of wafers sliced from Czochralski ingots is analyzed. Increasing silicon waste and decreasing ingot cost with increasing ingot size are estimated along with projected costs. Results indicate a small but continuous decrease in sheet cost with increasing ingot size in this size range. Sheet costs including silicon are projected to be $50 to $60/m/sup 2/ (1980 $) depending upon technique used.

  19. Overlay distortions in wafer-scale integration lithography

    NASA Astrophysics Data System (ADS)

    Flack, Warren W.

    1993-08-01

    Wafer scale integration (WSI) lithography is the technique used to fabricate ultra large scale integration (ULSI) integrated circuits significantly greater in size than current products. Applications for WSI lithography include large solid state detector arrays, large area liquid crystal displays, high speed mainframe supercomputers, and large random access memories. The lithography technology required to manufacture these devices is particularly challenging, requiring stringent control of both submicron critical dimensions and accurate alignment of level to level device patterns over large chip areas.

  20. Wafer-level radiometric performance testing of uncooled microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Dufour, Denis G.; Topart, Patrice; Tremblay, Bruno; Julien, Christian; Martin, Louis; Vachon, Carl

    2014-03-01

    A turn-key semi-automated test system was constructed to perform on-wafer testing of microbolometer arrays. The system allows for testing of several performance characteristics of ROIC-fabricated microbolometer arrays including NETD, SiTF, ROIC functionality, noise and matrix operability, both before and after microbolometer fabrication. The system accepts wafers up to 8 inches in diameter and performs automated wafer die mapping using a microscope camera. Once wafer mapping is completed, a custom-designed quick insertion 8-12 μm AR-coated Germanium viewport is placed and the chamber is pumped down to below 10-5 Torr, allowing for the evaluation of package-level focal plane array (FPA) performance. The probe card is electrically connected to an INO IRXCAM camera core, a versatile system that can be adapted to many types of ROICs using custom-built interface printed circuit boards (PCBs). We currently have the capability for testing 384x288, 35 μm pixel size and 160x120, 52 μm pixel size FPAs. For accurate NETD measurements, the system is designed to provide an F/1 view of two rail-mounted blackbodies seen through the Germanium window by the die under test. A master control computer automates the alignment of the probe card to the dies, the positioning of the blackbodies, FPA image frame acquisition using IRXCAM, as well as data analysis and storage. Radiometric measurement precision has been validated by packaging dies measured by the automated probing system and re-measuring the SiTF and Noise using INO's pre-existing benchtop system.

  1. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene

    NASA Astrophysics Data System (ADS)

    Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H.-Y.; Grill, A.; Avouris, Ph.

    2010-02-01

    The high carrier mobility of graphene has been exploited in field-effect transistors that operate at high frequencies. Transistors were fabricated on epitaxial graphene synthesized on the silicon face of a silicon carbide wafer, achieving a cutoff frequency of 100 gigahertz for a gate length of 240 nanometers. The high-frequency performance of these epitaxial graphene transistors exceeds that of state-of-the-art silicon transistors of the same gate length.

  2. Wafer-scale plasmonic and photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    George, M. C.; Liu, J.-N.; Farhang, A.; Williamson, B.; Black, M.; Wangensteen, T.; Fraser, J.; Petrova, R.; Cunningham, B. T.

    2015-08-01

    200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.

  3. Production of Optical Quality Free Standing Diamond Wafer

    DTIC Science & Technology

    2008-05-19

    Title : Production of Optical Quality Free Standing Diamond Wafer Prime Contractor : Onyx Optics, Inc. 6551 Sierra Lane Dublin, Ca 94568...www.onyxoptics.com Program Manager : Helmuth Meissner Onyx Optics, Inc. 6551 Sierra Lane Dublin, CA 94568 Email: hmeissner@onyxoptics.com Ph: 925...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Onyx Optics, Inc. 6551 Sierra Lane Dublin, Ca 94568 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING

  4. Probing and exploiting the chaotic dynamics of a hydrodynamic photochemical oscillator to implement all the basic binary logic functions

    NASA Astrophysics Data System (ADS)

    Hayashi, Kenta; Gotoda, Hiroshi; Gentili, Pier Luigi

    2016-05-01

    The convective motions within a solution of a photochromic spiro-oxazine being irradiated by UV only on the bottom part of its volume, give rise to aperiodic spectrophotometric dynamics. In this paper, we study three nonlinear properties of the aperiodic time series: permutation entropy, short-term predictability and long-term unpredictability, and degree distribution of the visibility graph networks. After ascertaining the extracted chaotic features, we show how the aperiodic time series can be exploited to implement all the fundamental two-inputs binary logic functions (AND, OR, NAND, NOR, XOR, and XNOR) and some basic arithmetic operations (half-adder, full-adder, half-subtractor). This is possible due to the wide range of states a nonlinear system accesses in the course of its evolution. Therefore, the solution of the convective photochemical oscillator results in hardware for chaos-computing alternative to conventional complementary metal-oxide semiconductor-based integrated circuits.

  5. Probing and exploiting the chaotic dynamics of a hydrodynamic photochemical oscillator to implement all the basic binary logic functions

    SciTech Connect

    Hayashi, Kenta; Gotoda, Hiroshi; Gentili, Pier Luigi

    2016-05-15

    The convective motions within a solution of a photochromic spiro-oxazine being irradiated by UV only on the bottom part of its volume, give rise to aperiodic spectrophotometric dynamics. In this paper, we study three nonlinear properties of the aperiodic time series: permutation entropy, short-term predictability and long-term unpredictability, and degree distribution of the visibility graph networks. After ascertaining the extracted chaotic features, we show how the aperiodic time series can be exploited to implement all the fundamental two-inputs binary logic functions (AND, OR, NAND, NOR, XOR, and XNOR) and some basic arithmetic operations (half-adder, full-adder, half-subtractor). This is possible due to the wide range of states a nonlinear system accesses in the course of its evolution. Therefore, the solution of the convective photochemical oscillator results in hardware for chaos-computing alternative to conventional complementary metal-oxide semiconductor-based integrated circuits.

  6. Real-time dynamic simulation of the Cassini spacecraft using DARTS. Part 2: Parallel/vectorized real-time implementation

    NASA Technical Reports Server (NTRS)

    Fijany, A.; Roberts, J. A.; Jain, A.; Man, G. K.

    1993-01-01

    Part 1 of this paper presented the requirements for the real-time simulation of Cassini spacecraft along with some discussion of the DARTS algorithm. Here, in Part 2 we discuss the development and implementation of parallel/vectorized DARTS algorithm and architecture for real-time simulation. Development of the fast algorithms and architecture for real-time hardware-in-the-loop simulation of spacecraft dynamics is motivated by the fact that it represents a hard real-time problem, in the sense that the correctness of the simulation depends on both the numerical accuracy and the exact timing of the computation. For a given model fidelity, the computation should be computed within a predefined time period. Further reduction in computation time allows increasing the fidelity of the model (i.e., inclusion of more flexible modes) and the integration routine.

  7. Entropic lattice Boltzmann model for gas dynamics: Theory, boundary conditions, and implementation.

    PubMed

    Frapolli, N; Chikatamarla, S S; Karlin, I V

    2016-06-01

    We present in detail the recently introduced entropic lattice Boltzmann model for compressible flows [N. Frapolli et al., Phys. Rev. E 92, 061301(R) (2015)PLEEE81539-375510.1103/PhysRevE.92.061301]. The model is capable of simulating a wide range of laminar and turbulent flows, from thermal and weakly compressible flows to transonic and supersonic flows. The theory behind the construction of the model is laid out and its thermohydrodynamic limit is discussed. Based on this theory and the hydrodynamic limit thereof, we also construct the boundary conditions necessary for the simulation of solid walls. We present the inlet and outlet boundary conditions as well as no-slip and free-slip boundary conditions. Details necessary for the implementation of the compressible lattice Boltzmann model are also reported. Finally, simulations of compressible flows are presented, including two-dimensional supersonic and transonic flows around a diamond and a NACA airfoil, the simulation of the Schardin problem, and the three-dimensional simulation of the supersonic flow around a conical geometry.

  8. Implementation of dynamic dual input multiple output logic gate via resonance in globally coupled Duffing oscillators

    NASA Astrophysics Data System (ADS)

    Venkatesh, P. R.; Venkatesan, A.; Lakshmanan, M.

    2017-08-01

    We have used a system of globally coupled double-well Duffing oscillators under an enhanced resonance condition to design and implement Dual Input Multiple Output (DIMO) logic gates. In order to enhance the resonance, the first oscillator in the globally coupled system alone is excited by two forces out of which one acts as a driving force and the other will be either sub-harmonic or super-harmonic in nature. We report that for an appropriate coupling strength, the second force coherently drives and enhances not only the amplitude of the weak first force to all the coupled systems but also drives and propagates the digital signals if any given to the first system. We then numerically confirm the propagation of any digital signal or square wave without any attenuation under an enhanced resonance condition for an amplitude greater than a threshold value. Further, we extend this idea for computing various logical operations and succeed in designing theoretically DIMO logic gates such as AND/NAND, OR/NOR gates with globally coupled systems.

  9. Development and Implementation of Dynamic Scripts to Execute Cycled WRF/GSI Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Quanli; Watson, Leela

    2014-01-01

    Automating the coupling of data assimilation (DA) and modeling systems is a unique challenge in the numerical weather prediction (NWP) research community. In recent years, the Development Testbed Center (DTC) has released well-documented tools such as the Weather Research and Forecasting (WRF) model and the Gridpoint Statistical Interpolation (GSI) DA system that can be easily downloaded, installed, and run by researchers on their local systems. However, developing a coupled system in which the various preprocessing, DA, model, and postprocessing capabilities are all integrated can be labor-intensive if one has little experience with any of these individual systems. Additionally, operational modeling entities generally have specific coupling methodologies that can take time to understand and develop code to implement properly. To better enable collaborating researchers to perform modeling and DA experiments with GSI, the Short-term Prediction Research and Transition (SPoRT) Center has developed a set of Perl scripts that couple GSI and WRF in a cycling methodology consistent with the use of real-time, regional observation data from the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC). Because Perl is open source, the code can be easily downloaded and executed regardless of the user's native shell environment. This paper will provide a description of this open-source code and descriptions of a number of the use cases that have been performed by SPoRT collaborators using the scripts on different computing systems.

  10. ALD Enabled Wafer Level Polymer Packaging for MEMS

    NASA Astrophysics Data System (ADS)

    Zhang, Yadong

    Wafer level polymer packaging for MEMS is a cost-effective approach that is also compatible with microelectronic packaging technologies. However, polymer packages are not hermetic and cannot be used for MEMS devices, which usually demand vacuum or low moisture environment inside the packages. This problem can be solved by applying atomic layer deposition (ALD) of nano-scaled Al 2O3 or other inorganic materials over the polymer packages. Defects and mechanical cracks in ALD coatings are major concerns for hermetic/vacuum sealing. Several techniques have been developed to inspect such defects and cracks. Assisted by the electroplating copper technique, we have reduced the defect density by 1000 times for an ultra-thin, 2-nm ALD Al2O 3 film. Such an ultra-thin coating is essential to enhance coating's mechanical toughness. The toughness is usually determined by monitoring coating's crack initiation and growth in a bending test. A real-time, non-destructive inspection technique has been developed for in-situ characterization of an ALD film coated on a surface or buried in a multilayer structure. With the knowledge and technology established, we have successfully demonstrated a wafer-level polymer packaging process for MEMS using a Pirani gauge as the vacuum sensor. The leak rate through the polymer package has been reduced by 100 times by the ALD Al2O3 coating. More importantly, we have developed models and identified issues that are critical to ALD-enabled wafer level polymer packaging for MEMS.

  11. Physical mechanisms of copper-copper wafer bonding

    SciTech Connect

    Rebhan, B.; Hingerl, K.

    2015-10-07

    The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing.

  12. Method for making circular tubular channels with two silicon wafers

    DOEpatents

    Yu, Conrad M.; Hui, Wing C.

    1996-01-01

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si.sub.3 N.sub.4) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO.sub.3 /CH.sub.3 COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary.

  13. Method for making circular tubular channels with two silicon wafers

    DOEpatents

    Yu, C.M.; Hui, W.C.

    1996-11-19

    A two-wafer microcapillary structure is fabricated by depositing boron nitride (BN) or silicon nitride (Si{sub 3}N{sub 4}) on two separate silicon wafers (e.g., crystal-plane silicon with [100] or [110] crystal orientation). Photolithography is used with a photoresist to create exposed areas in the deposition for plasma etching. A slit entry through to the silicon is created along the path desired for the ultimate microcapillary. Acetone is used to remove the photoresist. An isotropic etch, e.g., such as HF/HNO{sub 3}/CH{sub 3}COOH, then erodes away the silicon through the trench opening in the deposition layer. A channel with a half-circular cross section is then formed in the silicon along the line of the trench in the deposition layer. Wet etching is then used to remove the deposition layer. The two silicon wafers are aligned and then bonded together face-to-face to complete the microcapillary. 11 figs.

  14. Novel analytical methods for the characterization of oral wafers.

    PubMed

    Garsuch, Verena; Breitkreutz, Jörg

    2009-09-01

    This study aims at compensating the lack of adequate methods for the characterization of the novel dosage forms buccal wafers by applying recent advanced analytical techniques. Fast-dissolving oral wafers need special methods for assessing their properties in drug development and quality control. For morphologic investigations, scanning electron microscopy (SEM) and near-infrared chemical imaging (NIR-CI) were used. Differences in the distribution of the active pharmaceutical ingredient within wafers can be depicted by NIR-CI. Film thickness was determined by micrometer screw and coating thickness gauge revealing no significant differences between the obtained values. To distinguish between the mechanical properties of different polymers, tensile test was performed. Suitable methods to predict disintegration behaviour are thermomechanical analysis and contact angle measurement. The determination of drug release was carried out by three different methods. Fibre-optic sensor systems allow an online measurement of the drug release profiles and the thorough analysis even within the first seconds of disintegration and drug dissolution.

  15. Wettability investigating on the wet etching textured multicrystalline silicon wafer

    NASA Astrophysics Data System (ADS)

    Liu, Xiangju; Niu, Yuchao; Zhai, Tongguang; Ma, Yuying; Zhen, Yongtai; Ma, Xiaoyu; Gao, Ying

    2016-02-01

    In order to investigate the wettability properties of multicrystalline silicon (mc-Si), the different surface structures were fabricated on the as-cut p-type multi-wire slurry sawn mc-Si wafers, such as as-cut, polished and etched in various acid solutions. The contact angles and the XRD spectra of these samples were measured. It was noted that both the surface structures and the use of surfactant, such as Tween 80, made a stronger effect on wettability of the Si wafer. Due to the lipophilic groups of Tween 80 combined with the Si atoms while the hydrophilic groups of it were outward, a lipophilic surface of Si changed into a hydrophilic one and the rougher the surface, the stronger the hydrophily. Thus, it is feasible to add an appropriate surfactant into the etching solution during black-Si wafer fabrication for solar cells. In addition, different crystal plains of Si had different dangling bond density, so that their surface energies were different. A surface with higher surface energy could attract more water atoms and its wettability was better. However, the effect of crystal plain on the surface wettability was much weaker than surface morphology.

  16. Wafer level CD metrology on photomasks using aerial imaging technology

    NASA Astrophysics Data System (ADS)

    Scherübl, Thomas; Strößner, Ulrich; Seitz, Holger; Birkner, Robert; Richter, Rigo

    2008-05-01

    Recently more and more mask designs for critical layers involve strong OPC which increases the complexity for standard CD SEM mask measurements and conclusive interpretation of results. For wafer printing the wafer level CD is the crucial measure if the mask can be successfully used in production. Recent developments in the AIMSTM software have enabled the user to use the tool for wafer level CD metrology under scanner conditions. The advantage of this methodology is that AIMSTM does see the CD with scanner eyes. All lithographic relevant effects like OPC imaging which can not be measured by other tools like mask CD SEM will be captured optically by the AIMSTM principle. Therefore, measuring the CD uniformity of the mask by using AIMSTM will lead to added value in mask metrology. With decreasing feature sizes the requirements for CD metrology do increase. In this feasibility study a new prototype algorithm for measuring the lithographically relevant AIMSTM CD with sub pixel accuracy has been tested. It will be demonstrated that by using this algorithm line edge and line width roughness can be measured accurately by an AIMSTM image. Furthermore, CD repeatability and tool matching results will be shown.

  17. Wafer-scale aluminum plasmonics for fluorescence based biodetection

    NASA Astrophysics Data System (ADS)

    Farhang, Arash; George, Matthew C.; Williamson, Brent; Black, Mike; Wangensteen, Ted; Fraser, James; Petrova, Rumyana; Prestgard, Kent

    2015-08-01

    Moxtek has leveraged existing capabilities in wafer-scale patterning of sub-wavelength wire grid polarizers into the fabrication of 1D and 2D periodic aluminum plasmonic structures. This work will discuss progress in 200 mm diameter wafer-scale fabrication, with detailed emphasis within the realm of microarray based fluorescence detection. Aluminum nanohole arrays in a hexagonal lattice are first numerically investigated. The nanohole array geometry and periodicity are specifically tuned to coincide both with the excitation of the fluorophore Cy3, and to provide a high field enhancement within the nanoholes where labeled biomolecules are captured. This is accomplished through numerical modelling, nanofabrication, SEM imaging, and optical characterization. A 200mm diameter wafer, patterned with the optically optimized nanohole array, is cut into standard 1x3 inch microscope slide pieces and then subsequently printed with various antigens at 9 different concentrations. A sandwich bioassay is then carried out, using the corresponding conjugate antibodies in order to demonstrate specificity. The nanohole array exhibit a 3-4 times total fluorescence enhancement of Cy3, when compared to a leading commercial microarray glass slide.

  18. Texture of Al films for wafer-level thermocompression bonding

    NASA Astrophysics Data System (ADS)

    Malik, Nishant; Venkatachalapathy, Vishnukanthan; Dall, Wilhelm; Schjølberg-Henriksen, Kari; Poppe, Erik; Visser Taklo, Maaike M.; Finstad, Terje G.

    2017-06-01

    Properties of aluminum thin films for thermocompression bonding have been studied in terms of surface roughness, grain size, and grain orientation by AFM, SEM, XRD and EBSD for thermocompression bonding. Al films were sputter deposited directly on Si and thermally oxidized Si wafers, respectively. The resulting Si/Al and Si/SiO2/Al sample types were compared after annealing (300-550 °C) in vacuum. The Si/SiO2/Al film samples showed higher surface roughness than the Si/Al samples. The as-deposited films had (111) preferred orientation, while (100) and (110) oriented Al grains were also present in Si/SiO2/Al samples. The Si/SiO2/Al samples and Si/Al sample annealed at 550 °C had a conical <111> texture. The observed evolution of the grain structure with annealing temperature is discussed in terms of native oxide, surface roughness, diffusivity and grain orientation dependent mechanical properties in order to shine light on previously observed differences in Alsbnd Al thermocompression wafer-level bonding with Si/SiO2/Al and Si/Al wafers.

  19. Characterization and mitigation of overlay error on silicon wafers with nonuniform stress

    NASA Astrophysics Data System (ADS)

    Brunner, T.; Menon, V.; Wong, C.; Felix, N.; Pike, M.; Gluschenkov, O.; Belyansky, M.; Vukkadala, P.; Veeraraghavan, S.; Klein, S.; Hoo, C. H.; Sinha, J.

    2014-03-01

    Process-induced overlay errors are a growing problem in meeting the ever-tightening overlay requirements for integrated circuit production. While uniform process-induced stress is easily corrected, non-uniform stress across the wafer is much more problematic, often resulting in non-correctable overlay errors. Measurements of the wafer geometry of free, unchucked wafers give a powerful method for characterization of such non-uniform stress. We will describe a Patterned Wafer Geometry (PWG) tool, which uses optical methods to measure the geometry of in-process wafers. PWG data can be related to In-Plane Distortion (IPD) of the wafer through the PIR (Predicted IPD Residual) metric. This paper will explore the relationship between the PIR data and measured overlay data on Engineered Stress Monitor (ESM) wafers containing various designed stress variations. The process used to fabricate ESM wafers is quite versatile and can mimic many different stress variation signatures. For this study, ESM wafers were built with strong across-wafer stress variation and another ESM wafer set was built with strong intrafield stress variation. IPD was extensively characterized in two different ways: using standard overlay error metrology and using PWG metrology. Strong correlation is observed between these two independent sets of data, indicating that the PIR metric is able to clearly see wafer distortions. We have taken another step forward by using PIR data from the PWG tool to correct process-induced overlay error by feedforward to the exposure tool, a novel method that we call PWG-FF. We conclude that appropriate wafer geometry measurements of in-process wafers have strong potential to characterize and reduce process-induced overlay errors.

  20. Wafer-shape based in-plane distortion predictions using superfast 4G metrology

    NASA Astrophysics Data System (ADS)

    van Dijk, Leon; Mileham, Jeffrey; Malakhovsky, Ilja; Laidler, David; Dekkers, Harold; Van Elshocht, Sven; Anberg, Doug; Owen, David M.; van Haren, Richard

    2017-03-01

    With the latest immersion scanners performing at the sub-2 nm overlay level, the non-lithography contributors to the OnProduct-Overlay budget become more and more dominant. Examples of these contributors are etching, thin film deposition, Chemical-Mechanical Planarization and thermal anneal. These processes can introduce stress or stress changes in the thin films on top of the silicon wafers, resulting in significant wafer grid distortions. High-order wafer alignment (HOWA) is the current ASML solution for correcting wafers with a high order grid distortion introduced by non-lithographic processes, especially when these distortions vary from wafer-to-wafer. These models are currently successfully applied in high volume production at several semiconductor device manufacturers. An important precondition is that the wafer distortions remain global as the polynomial-based HOWA models become less effective for very local distortions. Wafer-shape based feed forward overlay corrections can be a possible solution to overcome this challenge. Thin film stress typically has an impact on the unclamped, free-form shape of the wafers. When an accurate relationship between the wafer shape and in-plane distortion (IPD) after clamping is established then feedforward overlay control can be enabled. In this work we assess the capability of wafer-shape based IPD predictions via a controlled experiment. The processinduced IPDs are accurately measured on the ASML TWINSCANTM system using its SMASH alignment system and the wafer shapes are measured on the Superfast 4G inspection system. In order to relate the wafer shape to the IPD we have developed a prediction model beyond the standard Stoney approximation. The match between the predicted and measured IPD is excellent ( 1-nm), indicating the feasibility of using wafer shape for feed-forward overlay control.

  1. Operational and Strategic Implementation of Dynamic Line Rating for Optimized Wind Energy Generation Integration

    SciTech Connect

    Gentle, Jake Paul

    2016-12-01

    One primary goal of rendering today’s transmission grid “smarter” is to optimize and better manage its power transfer capacity in real time. Power transfer capacity is affected by three main elements: stability, voltage limits, and thermal ratings. All three are critical, but thermal ratings represent the greatest opportunity to quickly, reliably and economically utilize the grid’s true capacity. With the “Smarter Grid”, new solutions have been sought to give operators a better grasp on real time conditions, allowing them to manage and extend the usefulness of existing transmission infrastructure in a safe and reliable manner. The objective of the INL Wind Program is to provide industry a Dynamic Line Rating (DLR) solution that is state of the art as measured by cost, accuracy and dependability, to enable human operators to make informed decisions and take appropriate actions without human or system overloading and impacting the reliability of the grid. In addition to mitigating transmission line congestion to better integrate wind, DLR also offers the opportunity to improve the grid with optimized utilization of transmission lines to relieve congestion in general. As wind-generated energy has become a bigger part of the nation’s energy portfolio, researchers have learned that wind not only turns turbine blades to generate electricity, but can cool transmission lines and increase transfer capabilities significantly, sometimes up to 60 percent. INL’s DLR development supports EERE and The Wind Energy Technology Office’s goals by informing system planners and grid operators of available transmission capacity, beyond typical Static Line Ratings (SLR). SLRs are based on a fixed set of conservative environmental conditions to establish a limit on the amount of current lines can safely carry without overheating. Using commercially available weather monitors mounted on industry informed custom brackets developed by INL in combination with Computational

  2. The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model.

    PubMed

    Swennen, Gwen R J; Mommaerts, Maurice Y; Abeloos, Johan; De Clercq, Calix; Lamoral, Philippe; Neyt, Nathalie; Casselman, Jan; Schutyser, Filip

    2007-05-01

    A detailed visualization of the interocclusal relationship is essential in a three-dimensional virtual planning setup for orthognathic and facial orthomorphic surgery. The purpose of this study was to introduce and evaluate the use of a wax bite wafer in combination with a double computed tomography (CT) scan procedure to augment the three-dimensional virtual model of the skull with a detailed dental surface. A total of 10 orthognathic patients were scanned after a standardized multislice CT scanning protocol with dose reduction with their wax bite wafer in place. Afterward, the impressions of the upper and lower arches and the wax bite wafer were scanned for each patient separately using a high-resolution standardized multislice CT scanning protocol. Accurate fitting of the virtual impressions on the wax bite wafer was done with surface matching using iterative closest points. Consecutively, automatic rigid point-based registration of the wax bite wafer on the patient scan was performed to implement the digital virtual dental arches into the patient's skull model (Maxilim, version 2.0; Medicim NV, St-Niklaas, Belgium). Probability error histograms showed errors of < or =0.16 mm (25% percentile), < or =0.31 mm (50% percentile), and < or =0.92 (90% percentile) for iterative closest point surface matching. The mean registration error for automatic point-based registration was 0.17 +/- 0.07 mm (range, 0.12-0.22 mm). The combination of the wax bite wafer with the double CT scan procedure allowed for the setup of an accurate three-dimensional virtual augmented model of the skull with detailed dental surface. However, from a clinical workload, data handling, and computational point of view, this method is too time-consuming to be introduced in the clinical routine.

  3. Failure And Yield Analysis Techniques For Readout Devices Tested In A High Throughput Automated Wafer Probing Environment

    NASA Astrophysics Data System (ADS)

    Jolivet, Noel D.; Holoien, Lee D.

    1990-01-01

    Failure and yield analysis capabilities were developed for focal plane array (FPA) readout devices probe tested at wafer level instead of merely performing production rate testing and cataloging data. Innovative test strategies have been combined with software techniques to provide tools which accomplish these analyses while maintaining high throughput in test. This approach has been beneficial and valuable in saving test time when searching for hardware faults, investigating design susceptibilities, revealing foundry process variations from wafer to wafer and/or lot to lot, and creating a yield model for the parts tested. Testing of readout devices has historically been viewed as a major obstacle in high volume production of reliable components for focal plane systems. Thorough testing in a high throughput automated wafer probe environment may be achieved, but often at the expense of real-time analysis of failures and yield factors. Production testing has been established with these goals in mind rather than as an afterthought. This enables one to identify failure mechanisms as they occur in order to reduce yield loss and unnecessary test time. In addition to performing requisite data base management, routines have been created to re-sort data and reevaluate yield through varying performance parameter limits, to track and map failure mechanisms as they are encountered, to examine acquired data as a function of limits, and to provide yield information for feedback response to foundry processing. Ideas for aiding operators in recognizing and diagnosing possible test set hardware problems (as opposed to on-chip failures) have also been implemented.

  4. Output blue light evaluation for phosphor based smart white LED wafer level packages.

    PubMed

    Kolahdouz, Zahra; Rostamian, Ali; Kolahdouz, Mohammadreza; Ma, Teng; van Zeijl, Henk; Zhang, Kouchi

    2016-02-22

    This study presents a blue light detector for evaluating the output light of phosphor based white LED package. It is composed of a silicon stripe-shaped photodiode designed and implemented in a 2 μm BiCMOS process which can be used for wafer level integration of different passive and active devices all in just 5 lithography steps. The final device shows a high selectivity to blue light. The maximum responsivity at 480 nm is matched with the target blue LED illumination. The designed structure have better responsivity compared to simple photodiode structure due to reducing the effect of dead layer formation close to the surface because of implantation. It has also a two-fold increase in the responsivity and quantum efficiency compared to previously similar published sensors.

  5. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    NASA Astrophysics Data System (ADS)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  6. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims.

    PubMed

    Laan, Nick; de Bruin, Karla G; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-06-22

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin's location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin's location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.

  7. Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit

    NASA Astrophysics Data System (ADS)

    Alombah, N. Henry; Fotsin, Hilaire; Ngouonkadi, E. B. Megam; Nguazon, Tekou

    This article introduces a novel four-dimensional autonomous multiscroll chaotic circuit which is derived from the actual simplest memristor-based chaotic circuit. A fourth circuit element — another inductor — is introduced to generate the complex behavior observed. A systematic study of the chaotic behavior is performed with the help of some nonlinear tools such as Lyapunov exponents, phase portraits, and bifurcation diagrams. Multiple scroll attractors are observed in Matlab, Pspice environments and also experimentally. We also observe the phenomenon of antimonotonicity, periodic and chaotic bubbles, multiple periodic-doubling bifurcations, Hopf bifurcations, crises and the phenomenon of intermittency. The chaotic dynamics of this circuit is realized by laboratory experiments, Pspice simulations, numerical and analytical investigations. It is observed that the results from the three environments agree to a great extent. This topology is likely convenient to be used to intentionally generate chaos in memristor-based chaotic circuit applications, given the fact that multiscroll chaotic systems have found important applications as broadband signal generators, pseudorandom number generators for communication engineering and also in biometric authentication.

  8. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims

    PubMed Central

    Laan, Nick; de Bruin, Karla G.; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-01-01

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction. PMID:26099070

  9. Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims

    NASA Astrophysics Data System (ADS)

    Laan, Nick; de Bruin, Karla G.; Slenter, Denise; Wilhelm, Julie; Jermy, Mark; Bonn, Daniel

    2015-06-01

    Bloodstain Pattern Analysis is a forensic discipline in which, among others, the position of victims can be determined at crime scenes on which blood has been shed. To determine where the blood source was investigators use a straight-line approximation for the trajectory, ignoring effects of gravity and drag and thus overestimating the height of the source. We determined how accurately the location of the origin can be estimated when including gravity and drag into the trajectory reconstruction. We created eight bloodstain patterns at one meter distance from the wall. The origin’s location was determined for each pattern with: the straight-line approximation, our method including gravity, and our method including both gravity and drag. The latter two methods require the volume and impact velocity of each bloodstain, which we are able to determine with a 3D scanner and advanced fluid dynamics, respectively. We conclude that by including gravity and drag in the trajectory calculation, the origin’s location can be determined roughly four times more accurately than with the straight-line approximation. Our study enables investigators to determine if the victim was sitting or standing, or it might be possible to connect wounds on the body to specific patterns, which is important for crime scene reconstruction.

  10. Development and Implementation of Dynamic Scripts to Execute Cycled GSI/WRF Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Srikishen, Jayanthi; Berndt, Emily; Li, Xuanli; Watson, Leela

    2014-01-01

    The Weather Research and Forecasting (WRF) numerical weather prediction (NWP) model and Gridpoint Statistical Interpolation (GSI) data assimilation (DA) are the operational systems that make up the North American Mesoscale (NAM) model and the NAM Data Assimilation System (NDAS) analysis used by National Weather Service forecasters. The Developmental Testbed Center (DTC) manages and distributes the code for the WRF and GSI, but it is up to individual researchers to link the systems together and write scripts to run the systems, which can take considerable time for those not familiar with the code. The objective of this project is to develop and disseminate a set of dynamic scripts that mimic the unique cycling configuration of the operational NAM to enable researchers to develop new modeling and data assimilation techniques that can be easily transferred to operations. The current version of the SPoRT GSI/WRF Scripts (v3.0.1) is compatible with WRF v3.3 and GSI v3.0.

  11. Lattice dynamical wavelet neural networks implemented using particle swarm optimization for spatio-temporal system identification.

    PubMed

    Wei, Hua-Liang; Billings, Stephen A; Zhao, Yifan; Guo, Lingzhong

    2009-01-01

    In this brief, by combining an efficient wavelet representation with a coupled map lattice model, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNNs), is introduced for spatio-temporal system identification. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimization (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the OPP algorithm, significant wavelet neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated wavelet neurons are optimized using a particle swarm optimizer. The resultant network model, obtained in the first stage, however, may be redundant. In the second stage, an orthogonal least squares algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet neurons from the network. An example for a real spatio-temporal system identification problem is presented to demonstrate the performance of the proposed new modeling framework.

  12. Nonadiabatic dynamics with intersystem crossings: A time-dependent density functional theory implementation

    SciTech Connect

    Franco de Carvalho, F.; Tavernelli, I.

    2015-12-14

    In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully’s surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO{sub 2}) in gas and liquid phases.

  13. Nonadiabatic dynamics with intersystem crossings: A time-dependent density functional theory implementation.

    PubMed

    Franco de Carvalho, F; Tavernelli, I

    2015-12-14

    In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully's surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO2) in gas and liquid phases.

  14. Implementation and evaluation of modified dynamic conformal arc (MDCA) technique for lung SBRT patients following RTOG protocols

    SciTech Connect

    Shi, Chengyu; Tazi, Adam; Fang, Deborah Xiangdong; Iannuzzi, Christopher

    2013-10-01

    To implement modified dynamic conformal arc (MDCA) technique and Radiation Therapy Oncology Group (RTOG) protocols in our clinic for stereotactic body radiation therapy (SBRT) treatment of patients with Stage I/II non–small cell lung cancer. Five patients with non–small cell lung cancer have been treated with SBRT. All the patients were immobilized using CIVCO Body Pro-Lok system and scanned using GE 4-slice computed tomography. The MDCA technique that was previously published was adopted as our planning technique, and RTOG protocols for the lung SBRT were followed. The patients were treated on Novalis Tx system with cone-beam computed tomography imaging guidance. All the patient plans passed the RTOG criteria. The conformal index ranges from 0.99 to 1.12 for the planning target volume, and the biological equivalent dose for the planning target volume is overall 100 Gy. Critical structures (lung, spinal cord, brachial plexus, skin, and chest wall) also meet RTOG protocols or published data. A 6-month follow-up of one of the patients shows good local disease control. We have successfully implemented the MDCA technique into our clinic for the lung SBRT program. It shows that the MDCA is useful and efficient for the lung SBRT planning, with the plan quality meeting the RTOG protocols.

  15. Implementation of malaria dynamic models in municipality level early warning systems in Colombia. Part I: description of study sites.

    PubMed

    Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M; Quiñónes, Martha L; Jiménez, Mónica M; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J; Thomson, Madeleine C

    2014-07-01

    As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. © The American Society of Tropical Medicine and Hygiene.

  16. Adhesive wafer bonding using a molded thick benzocyclobutene layer for wafer-level integration of MEMS and LSI

    NASA Astrophysics Data System (ADS)

    Makihata, M.; Tanaka, S.; Muroyama, M.; Matsuzaki, S.; Yamada, H.; Nakayama, T.; Yamaguchi, U.; Mima, K.; Nonomura, Y.; Fujiyoshi, M.; Esashi, M.

    2011-08-01

    This paper describes a wafer bonding process using a 50 µm thick benzocyclobutene (BCB) layer which has vias and metal electrodes. The vias were fabricated by molding BCB using a glass mold. During the molding, worm-like voids grew between BCB and the mold due to the shrinkage of polymerizing BCB. They were completely removed by subsequent reflowing in N2. After patterning Al on the reflowed BCB for the electrodes and via connections, bonding with a glass substrate was performed. Voidless bonding without damage in the vias and electrodes was achieved. Through the process, the control of the polymerization degree of BCB is important, and thus the polymerization degree was evaluated by Fourier transform infrared spectroscopy. The developed process is useful for the wafer-bonding-based integration of different devices, e.g. micro electro mechanical systems and large-scale integrated circuits.

  17. Attitude dynamics and control of a spacecraft like a robotic manipulator when implementing on-orbit servicing

    NASA Astrophysics Data System (ADS)

    Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo

    2017-08-01

    In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.

  18. A derivation and scalable implementation of the synchronous parallel kinetic Monte Carlo method for simulating long-time dynamics

    NASA Astrophysics Data System (ADS)

    Byun, Hye Suk; El-Naggar, Mohamed Y.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2017-10-01

    Kinetic Monte Carlo (KMC) simulations are used to study long-time dynamics of a wide variety of systems. Unfortunately, the conventional KMC algorithm is not scalable to larger systems, since its time scale is inversely proportional to the simulated system size. A promising approach to resolving this issue is the synchronous parallel KMC (SPKMC) algorithm, which makes the time scale size-independent. This paper introduces a formal derivation of the SPKMC algorithm based on local transition-state and time-dependent Hartree approximations, as well as its scalable parallel implementation based on a dual linked-list cell method. The resulting algorithm has achieved a weak-scaling parallel efficiency of 0.935 on 1024 Intel Xeon processors for simulating biological electron transfer dynamics in a 4.2 billion-heme system, as well as decent strong-scaling parallel efficiency. The parallel code has been used to simulate a lattice of cytochrome complexes on a bacterial-membrane nanowire, and it is broadly applicable to other problems such as computational synthesis of new materials.

  19. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  20. Bulk Laser Material Modification: Towards a Kerfless Laser Wafering Process

    NASA Astrophysics Data System (ADS)

    LeBeau, James

    Due to the ever increasing relevance of finer machining control as well as necessary reduction in material waste by large area semiconductor device manufacturers, a novel bulk laser machining method was investigated. Because the cost of silicon and sapphire substrates are limiting to the reduction in cost of devices in both the light emitting diode (LED) and solar industries, and the present substrate wafering process results in >50% waste, the need for an improved ingot wafering technique exists. The focus of this work is the design and understanding of a novel semiconductor wafering technique that utilizes the nonlinear absorption properties of band-gapped materials to achieve bulk (subsurface) morphological changes in matter using highly focused laser light. A method and tool was designed and developed to form controlled damage regions in the bulk of a crystalline sapphire wafer leaving the surfaces unaltered. The controllability of the subsurface damage geometry was investigated, and the effect of numerical aperture of the focusing optic, energy per pulse, wavelength, and number of pulses was characterized for a nanosecond pulse length variable wavelength Nd:YAG OPO laser. A novel model was developed to describe the geometry of laser induced morphological changes in the bulk of semiconducting materials for nanosecond pulse lengths. The beam propagation aspect of the model was based on ray-optics, and the full Keldysh multiphoton photoionization theory in conjuncture with Thornber's and Drude's models for impact ionization were used to describe high fluence laser light absorption and carrier generation ultimately resulting in permanent material modification though strong electron-plasma absorption and plasma melting. Although the electron-plasma description of laser damage formation is usually reserved for extremely short laser pulses (<20 ps), this work shows that it can be adapted for longer pulses of up to tens of nanoseconds. In addition to a model

  1. The role of biodiversity for the carbon cycle: Implementation of functional diversity in a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Sakschewski, Boris; Boit, Alice; von Bloh, Werner; Rammig, Anja; Thonicke, Kirsten

    2013-04-01

    Most dynamic global vegetation models (DGVMs) condense natural plant diversity to plant functional types (PFTs). A single PFT usually represents a whole biome, e.g. the PFT "tropical broadleaved evergreen tree" and its constant set of functional trait parameters covers entire regions in the model. This approach minimizes functional diversity and neglects the effects of functional diversity on the modeled vegetation and carbon dynamics. Our work aims to overcome this limitation and extend functional diversity in the vegetation model LPJmL to explore the role of biodiversity in climate change mitigation. Our approach improves the representation of biodiversity in the model by incorporating the natural ranges and eco-physiological interrelations of relevant plant traits. Empirical data on plant traits is provided by the TRY data base (www.try-db.org) and the ROBIN project (www.robinproject.info). A first sensitivity analysis revealed that simulated carbon stocks are very stable under a large range of trait combinations. However, several model output variables appeared highly sensitive to small changes of plant trait parameters and thus the introduction of trait ranges requires several improvements of the PFT concept of LPJmL. One possible way of improvement is to implement missing plant-trait tradeoffs, which will be used to simulate the growth of individual plants with flexible parameter combinations at the landscape scale. Our improved model will enable for the simulation of local competition and complementarity of individual plants which, according to their trait values and ranges, can then be categorized into a much broader variety of PFTs. This modeling approach will allow for investigating the role of bio- and functional diversity in the global carbon cycle as well as in regional vegetation dynamics.

  2. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation

    USGS Publications Warehouse

    Aagaard, B.T.; Knepley, M.G.; Williams, C.A.

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  3. Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

    PubMed Central

    Berman, Diana; Deshmukh, Sanket A.; Narayanan, Badri; Sankaranarayanan, Subramanian K. R. S.; Yan, Zhong; Balandin, Alexander A.; Zinovev, Alexander; Rosenmann, Daniel; Sumant, Anirudha V.

    2016-01-01

    The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. In addition, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics. PMID:27373740

  4. Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle

    NASA Astrophysics Data System (ADS)

    Huang, Zhifeng; Bai, Fan

    2014-07-01

    Minimization of helices opens a door to impose novel functions derived from the dimensional shrinkage of optical, mechanical and electronic devices. Glancing angle deposition (GLAD) enables one to deposit three-dimensional helical porous thin films (HPTFs) composed of separated spiral micro/nano-columns. GLAD integrates a series of advantageous features, including one-step deposition, wafer-scale production with mono-handedness of spirals, flexible engineering of spiral materials and dimensions, and the adaption to various kinds of substrates. Herein, we briefly review the fabrication of HPTFs by GLAD, specific growth mechanisms, physical properties in structures, mechanics and chiral optics, and the emerging applications in green energy. A prospective outlook is presented to illuminate some promising developments in enantioselection, bio-dynamic analyses, wirelessly-controlled drug delivery and mass production.

  5. Wafer-scale, three-dimensional helical porous thin films deposited at a glancing angle.

    PubMed

    Huang, Zhifeng; Bai, Fan

    2014-08-21

    Minimization of helices opens a door to impose novel functions derived from the dimensional shrinkage of optical, mechanical and electronic devices. Glancing angle deposition (GLAD) enables one to deposit three-dimensional helical porous thin films (HPTFs) composed of separated spiral micro/nano-columns. GLAD integrates a series of advantageous features, including one-step deposition, wafer-scale production with mono-handedness of spirals, flexible engineering of spiral materials and dimensions, and the adaption to various kinds of substrates. Herein, we briefly review the fabrication of HPTFs by GLAD, specific growth mechanisms, physical properties in structures, mechanics and chiral optics, and the emerging applications in green energy. A prospective outlook is presented to illuminate some promising developments in enantioselection, bio-dynamic analyses, wirelessly-controlled drug delivery and mass production.

  6. Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

    SciTech Connect

    Berman, Diana; Deshmukh, Sanket; Narayanan, Badri; Sankaranarayanan, Subramanian K.R.S.; Yan, Zhong; Balandin, Alexander A.; Zinovev, Alexander; Rosenmann, Daniel; Sumant, Anirudha V.

    2016-07-04

    The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here in this article, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. Additionally, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.

  7. Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

    NASA Astrophysics Data System (ADS)

    Berman, Diana; Deshmukh, Sanket A.; Narayanan, Badri; Sankaranarayanan, Subramanian K. R. S.; Yan, Zhong; Balandin, Alexander A.; Zinovev, Alexander; Rosenmann, Daniel; Sumant, Anirudha V.

    2016-07-01

    The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. In addition, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics.

  8. Identification and long term stability of DNA captured on a dental impression wafer.

    PubMed

    Kim, Maile; Siegler, Kate; Tamariz, Jeannie; Caragine, Theresa; Fernandez, Jill; Daronch, Marcia; Moursi, Amr

    2012-01-01

    The purpose of this study was to determine the quantity and quality of DNA extracted from a dental bite impression wafer immediately after impression and after 12 months of home storage. The authors' hypothesis was that the wafer would retain sufficient DNA with appropriate genetic markers to make an identification match. Two impression wafers (Toothprints(®) brand) were administered to 100 3- to 26-year-olds. A cotton swab was used as a control. DNA from wafers stored for 12 months at home were compared to DNA collected at time 0 and compared to swabs at specific sites to determine quality and accuracy. The amount of DNA captured and recovered was analyzed using MagAttract technology and a quantitative real-time polymerase chain reaction. Capillary gel electrophoresis was performed to determine the quality of the DNA profiles obtained from the wafers vs those generated from the swabs of each subject. Average DNA concentration was: 480 pg/μL (wafer at time 0); 392 pg/μL (wafer after 12 months kept by subjects); and 1,041 pg/μL (buccal swab). Sufficient DNA for human identification was recovered from all sets of wafers, producing clear DNA profiles and accurate matches to buccal swabs. No inhibitors were found that could interfere with DNA profiling. Toothprints® impression wafers can be useful for DNA collection and child identification. After 12 months, the wafer was still usable for DNA capture and identification match.

  9. Penetration of plasma into the wafer-focus ring gap in capacitively coupled plasmas

    SciTech Connect

    Babaeva, Natalia Y.; Kushner, Mark J.

    2007-06-01

    In plasma etching equipment for microelectronics fabrication, there is an engineered gap between the edge of the wafer and wafer terminating structures, such as focus rings. The intended purpose of these structures is to make the reactant fluxes uniform to the edge of the wafer and so prevent a larger than desired edge exclusion where useful products cannot be obtained. The wafer-focus ring gap (typically<1 mm) is a mechanical requirement to allow for the motion of the wafer onto and off of the substrate. Plasma generated species can penetrate into this gap and under the beveled edge of the wafer, depositing films and possibly creating particles which produce defects. In this paper, we report on a computational investigation of capacitively coupled plasma reactors with a wafer-focus ring gap. The penetration of plasma generated species (i.e., ions and radicals) into the wafer-focus ring gap is discussed. We found that the penetration of plasma into the gap and under the wafer bevel increases as the size of the gap approaches and exceeds the Debye length in the vicinity of the gap. Deposition of, for example, polymer by neutral species inside the gap and under the wafer is less sensitive to the size of the gap due the inability of ions, which might otherwise sputter the film, to penetrate into the gap.

  10. Performances of accumulation-mode n- and p-MOSFETs on Si(110) wafers

    NASA Astrophysics Data System (ADS)

    Gaubert, Philippe; Teramoto, Akinobu; Sugawa, Shigetoshi

    2017-04-01

    In this study, we investigate the electrical and noise performances of accumulation-mode n- and p-MOSFETs on Si(110) wafers and compare them with conventional MOSFETs fabricated either on Si(100) or Si(110) wafers. With regard to electrical performances, accumulation-mode p-type MOSFETs are in every aspect superior. However, its n-type counterpart does not provide the best performances even though they are still superior to conventional transistors when fabricated on the same type of wafer. Conventional inversion-mode n-MOSFETs on Si(100) wafers still display the best performances. The simultaneous improvement and reduction in drivability respectively in the p- and n-type transistors make the accumulation-mode MOSFETs fabricated on Si(110) wafers extremely well suited for complementary technologies owing to their great balance in terms of drivability. With regard to noise evaluation, accumulation-mode MOSFETs on Si(110) wafers exhibit the highest noise level even though they compare relatively well with the inversion transistors on Si(110) wafers, especially for p-type ones. The lowest noise level is obtained for conventional inversion-mode MOSFETs on Si(100) wafers, and the type of wafer upon which transistors are fabricated is the reason. Indeed, the fabrication of high-quality Si/SiO2 interfaces is better achieved for silicon wafers with a (100) crystallographic orientation, leading to few interface defects and consequently less noise.

  11. Wafer sub-layer impact in OPC/ORC models for 2x nm node implant layers

    NASA Astrophysics Data System (ADS)

    Le-Denmat, Jean-Christophe; Martinelli, Catherine; Sungauer, Elodie; Michel, Jean-Christophe; Yesilada, Emek; Robert, Frederic

    2013-04-01

    From 28nm technology node and below, Optical Proximity Correction (OPC) needs to take into account light scattering effects from prior layers when bottom anti-reflective coating (BARC) is not used, which is typical for implant layers. In this paper, we implement a sub-layer aware simulation method into a verification tool for Optical Rule Check (ORC) that is used on full 28nm test chip. The sub-layer aware verification can predict defects that are missed by standard ORC. SEM-CD review and defectivity analysis were used to confirm the validity of the sub-layer aware model on wafer.

  12. The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networks.

    PubMed

    Rostro-Gonzalez, Horacio; Cessac, Bruno; Girau, Bernard; Torres-Huitzil, Cesar

    2011-01-01

    This paper presents a numerical analysis of the role of asymptotic dynamics in the design of hardware-based implementations of the generalised integrate-and-fire (gIF) neuron models. These proposed implementations are based on extensions of the discrete-time spiking neuron model, which was introduced by Soula et al., and have been implemented on Field Programmable Gate Array (FPGA) devices using fixed-point arithmetic. Mathematical studies conducted by Cessac have evidenced the existence of three main regimes (neural death, periodic and chaotic regimes) in the activity of such neuron models. These activity regimes are characterised in hardware by considering a precision analysis in the design of an architecture for an FPGA-based implementation. The proposed approach, although based on gIF neuron models and FPGA hardware, can be extended to more complex neuron models as well as to different in silico implementations.

  13. Computational methods and implementation of the 3-D PWR core dynamics SIMTRAN code for online surveillance and prediction

    SciTech Connect

    Aragones, J.M.; Ahnert, C.

    1995-12-31

    New computational methods have been developed in our 3-D PWR core dynamics SIMTRAN code for online surveillance and prediction. They improve the accuracy and efficiency of the coupled neutronic-thermalhydraulic solution and extend its scope to provide, mainly, the calculation of: the fission reaction rates at the incore mini-detectors; the responses at the excore detectors (power range); the temperatures at the thermocouple locations; and the in-vessel distribution of the loop cold-leg inlet coolant conditions in the reflector and core channels, and to the hot-leg outlets per loop. The functional capabilities implemented in the extended SIMTRAN code for online utilization include: online surveillance, incore-excore calibration, evaluation of peak power factors and thermal margins, nominal update and cycle follow, prediction of maneuvers and diagnosis of fast transients and oscillations. The new code has been installed at the Vandellos-II PWR unit in Spain, since the startup of its cycle 7 in mid-June, 1994. The computational implementation has been performed on HP-700 workstations under the HP-UX Unix system, including the machine-man interfaces for online acquisition of measured data and interactive graphical utilization, in C and X11. The agreement of the simulated results with the measured data, during the startup tests and first months of actual operation, is well within the accuracy requirements. The performance and usefulness shown during the testing and demo phase, to be extended along this cycle, has proved that SIMTRAN and the man-machine graphic user interface have the qualities for a fast, accurate, user friendly, reliable, detailed and comprehensive online core surveillance and prediction.

  14. Implementation of a research-based lab module in a high school chemistry curriculum: A study of classroom dynamics

    NASA Astrophysics Data System (ADS)

    Pilarz, Matthew

    For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was modified and implemented in two high school settings. This module consisted of four phases: Skill Building, Experimental Design, Independent Research, and Results and Poster Presentation. Classroom dynamics were studied by considering the students' and teachers' perceptions of their experiences during the completion of the module and by examining the interactions between students and teachers that took place throughout the module. The results reveal that there are shifts in classroom dynamics throughout the four phases of the module. In the Skill Building phase there was a great deal of dependence on the teacher for help in completing tasks. However, there is a slight contrast to what the students and teachers reported about their experiences during this phase. The teachers describe the students as being very dependent on them and asking questions constantly during the Skill Building experiments. The students report that they tried to figure out their problems with their lab partners and students in other lab groups before asking the teacher for help. The teachers perceived that students came to them immediately for help and did not realize that students were coming to them as sort of a last resort when they could not solve problems on their own. In the Experimental Design phase the students and teachers both report that the lab groups were working together as groups to design their experiments, and rarely had interactions with anyone outside of their lab group. For the Independent Research phase both students and teachers report that lab groups worked very independently of any outside assistance and that they began to

  15. Laser-assisted removal of particles on silicon wafers

    NASA Astrophysics Data System (ADS)

    Vereecke, G.; Röhr, E.; Heyns, M. M.

    1999-04-01

    Laser cleaning is one of the new promising dry cleaning techniques considered by semiconductor companies to replace wet cleans in the near future. A dry laser cleaning tool was tested that uses an inert gas jet to remove particles lifted off by the action of a DUV excimer laser. A model was developed to simulate the cleaning process and analyze the influence of experimental parameters on laser cleaning efficiency. The best cleaning efficiencies obtained with 1.0 μm SiO2, ˜0.3 μm Si3N4, and 0.3 μm SiO2 particles deposited on Si wafers were 84±8%, 33±4%, and 12±7%, respectively. This is in qualitative agreement with theoretical calculations showing the existence of a size threshold for the removal of nonabsorbing particles by dry laser cleaning. Among the process parameters tested to optimize the process efficiency, fluence showed the highest influence on removal efficiency, before the number of laser pulses and the laser repetition rate. The use of high fluences was limited by the damaging of the wafer surface, which was not homogeneous on a macroscopic scale. The optimum number of laser pulses per unit area depended on the type of particle. The laser repetition rate had no significant influence on cleaning efficiency and can be used to reduce process time. The influence of capillary condensation on the process was demonstrated by the higher removal efficiency of 0.3 μm SiO2 and Si3N4 particles, 88±6% and 78%, respectively, upon exposure of wafers to air saturated with moisture prior to laser processing. This was attributed to the explosive evaporation of capillary condensed water, similar to the mechanism proposed for liquid assisted laser cleaning.

  16. Enhancing scheduling performance for a wafer fabrication factory: the biobjective slack-diversifying nonlinear fluctuation-smoothing rule.

    PubMed

    Chen, Toly; Wang, Yu Cheng

    2012-01-01

    A biobjective slack-diversifying nonlinear fluctuation-smoothing rule (biSDNFS) is proposed in the present work to improve the scheduling performance of a wafer fabrication factory. This rule was derived from a one-factor bi-objective nonlinear fluctuation-smoothing rule (1f-biNFS) by dynamically maximizing the standard deviation of the slack, which has been shown to benefit scheduling performance by several previous studies. The efficacy of the biSDNFS was validated with a simulated case; evidence was found to support its effectiveness. We also suggested several directions in which it can be exploited in the future.

  17. Addressable Inverter Matrix Tests Integrated-Circuit Wafer

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.

    1988-01-01

    Addressing elements indirectly through shift register reduces number of test probes. With aid of new technique, complex test structure on silicon wafer tested with relatively small number of test probes. Conserves silicon area by reduction of area devoted to pads. Allows thorough evaluation of test structure characteristics and of manufacturing process parameters. Test structure consists of shift register and matrix of inverter/transmission-gate cells connected to two-by-ten array of probe pads. Entire pattern contained in square area having only 1.6-millimeter sides. Shift register is conventional static CMOS device using inverters and transmission gates in master/slave D flip-flop configuration.

  18. Iterative bandgap engineering at selected areas of quantum semiconductor wafers.

    PubMed

    Stanowski, Radoslaw; Martin, Matthieu; Ares, Richard; Dubowski, Jan J

    2009-10-26

    We report on the application of a laser rapid thermal annealing technique for iterative bandgap engineering at selected areas of quantum semiconductor wafers. The approach takes advantage of the quantum well intermixing (QWI) effect for achieving targeted values of the bandgap in a series of small annealing steps. Each QWI step is monitored by collecting a photoluminescence map and, consequently, choosing the annealing strategy of the next step. An array of eight sites, 280 mum in diameter, each emitting at 1480 nm, has been fabricated with a spectral accuracy of better than 2 nm in a standard InGaAs/InGaAsP QW heterostructure that originally emitted at 1550 nm.

  19. Characterization of wafer charging mechanisms and oxide survival prediction methodology

    SciTech Connect

    Lukaszek, W.; Dixon, W.; Vella, M.; Messick, C.; Reno, S.; Shideler, J.

    1994-04-01

    Unipolar, EEPROM-based peak potential sensors and current sensors have been used to characterize the I-V relationship of charging transients which devices normally experience during the course of ion implantation. The results indicate that the charging sources may appear to behave like current-sources or voltage-sources, depending on the impedance of the load. This behavior may be understood in terms of plasma concepts. The ability to empirically characterize the I-V characteristics of charging sources using the CHARM-2 monitor wafers opens the way for prediction of failure rates of oxides subjected to specific processes, if the oxide Q{sub bd} distributions are known.

  20. Wafer hot spot identification through advanced photomask characterization techniques: part 2

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2017-03-01

    Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.

  1. Selected applications of photothermal and photoluminescence heterodyne techniques for process control in silicon wafer manufacturing

    NASA Astrophysics Data System (ADS)

    Ehlert, Andreas; Kerstan, Michael; Lundt, Holger; Huber, Anton; Helmreich, Dieter; Geiler, Hans-Dieter; Karge, Harald; Wagner, Matthias

    1997-02-01

    Two noncontact laser-based heterodyne techniques, photothermal heterodyne (PTH) and photoluminescence heterodyne (PLH), are introduced and applied to processing and quality control in silicon wafer manufacturing. The crystallographic characteristics of process-induced defects in silicon wafers are suitable for the application of PTH and PLH techniques, which are demonstrated on selected examples from different steps of silicon wafer production. Both PLH and PTH techniques meet the demand for nondestructive and on-line-suitable measurement in the semiconductor industry.

  2. Optical characterization of double-side-textured silicon wafer based on photonic nanostructures for thin-wafer crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Furuta, Daichi; Aonuma, Osamu; Takahashi, Isao; Hoshi, Yusuke; Kurokawa, Yasuyoshi; Usami, Noritaka

    2017-04-01

    Crystalline silicon (c-Si) wafers have found extensive use in photovoltaic applications. In this regard, to enable advanced light manipulation in thin-wafer c-Si solar cells, we demonstrate the fabrication of double-side-textured Si wafers composed of a front-surface photonic nanotexture fabricated with quantum dot arrays and a rear-surface microtexture. The addition of the rear-surface microtexture to a Si wafer with the front-surface photonic nanotexture increases the wafer’s optical absorption in the near-infrared region, thus enabling enhanced light trapping. Excitation spectroscopy reveals that the photoluminescence intensity in the Si wafer with the double-sided texture is higher than that in the Si wafer without the rear-surface microtexture, thus indicating an increase in true optical absorption in the Si wafer with the double-sided texture. Our results indicate that the double-sided textures, i.e., the front-surface photonic nanotexture and rear-surface microtexture, can effectively reduce the surface reflection loss and provide enhanced light trapping, respectively.

  3. Fabrication of micro-nano composite textured surface for slurry sawn mc-Si wafers cell

    NASA Astrophysics Data System (ADS)

    Niu, Y. C.; liu, Z.; Ren, X. K.; Liu, X. J.; Liu, H. T.; Jiang, Y. S.

    2017-01-01

    In order to enhance the PV efficiency of the cell made from slurry sawn (SS) mc-Si wafers, using a Ag-assisted electroless etching (AgNO3+HF+H2O2) combined with an auxiliary etching (HF+HNO3) the RENA textured SS mc-Si wafers (called as RENA wafers) were further textured (nano pores were formed on the original micro pits) to change into micro-nano composite textured wafers (called as MN-RENA wafers). The solar cells made from the MN-RENA wafers had a better PV efficiency than that of RENA wafers. This is mainly attributed to the higher light-trapping of the micro-nano composite texture. The nano size texture enhanced the light-trap of wafer surface and, at the same time, the micro size texture maintained the light-trap uniformity of different gains of RENA wafer. However, there still exist a potential for optimization, such as, the SiNx passviation coating should be improved to be deposited more uniformly in order to passivate the bottom of pits better and to reduce the reflectance of the obtuse tips of pits.

  4. Measuring the thickness profiles of wafers to subnanometer resolution using Fabry-Perot interferometry

    SciTech Connect

    Farrant, David I.; Arkwright, John W.; Fairman, Philip S.; Netterfield, Roger P

    2007-05-20

    The resolution of an angle-scanning technique for measuring transparent optical wafers is analyzed, and it is shown both theoretically and experimentally that subnanometer resolution can be readily achieved. Data are acquired simultaneously over the whole area of the wafer, producing two-dimensional thickness variation maps in as little as 10 s.Repeatabilities of 0.07 nm have been demonstrated, and wafers of up to100 mm diameter have been measured, with1 mm or better spatial resolution. A technique for compensating wafer and system aberrations is incorporated and analyzed.

  5. Critical dimension control using ultrashort laser for improving wafer critical dimension uniformity

    NASA Astrophysics Data System (ADS)

    Avizemer, Dan; Sharoni, Ofir; Oshemkov, Sergey; Cohen, Avi; Dayan, Asaf; Khurana, Ranjan; Kewley, Dave

    2015-07-01

    Requirements for control of critical dimension (CD) become more demanding as the integrated circuit (IC) feature size specifications become tighter and tighter. Critical dimension control, also known as CDC, is a well-known laser-based process in the IC industry that has proven to be robust, repeatable, and efficient in adjusting wafer CD uniformity (CDU) [Proc. SPIE 6152, 615225 (2006)]. The process involves locally and selectively attenuating the deep ultraviolet light which goes through the photomask to the wafer. The input data for the CDC process in the wafer fab is typically taken from wafer CDU data, which is measured by metrology tools such as wafer-critical dimension-scanning electron microscopy (CD-SEM), wafer optical scatterometry, or wafer level CD (WLCD). The CD correction process uses the CDU data in order to create an attenuation correction contour, which is later applied by the in-situ ultrashort laser system of the CDC to locally change the transmission of the photomask. The ultrashort pulsed laser system creates small, partially scattered, Shade-In-Elements (also known as pixels) by focusing the laser beam inside the quartz bulk of the photomask. This results in the formation of a localized, intravolume, quartz modified area, which has a different refractive index than the quartz bulk itself. The CDC process flow for improving wafer CDU in a wafer fab with detailed explanations of the shading elements formation inside the quartz by the ultrashort pulsed laser is reviewed.

  6. Bare wafer metrology challenges in microlithography at 45 nm node and beyond

    NASA Astrophysics Data System (ADS)

    Huang, Chunsheng

    2008-03-01

    The shrinking depth of focus (100-150 nm) of high numerical aperture immersion microlithography optics dictates a tight wafer flatness budget. Wafer flatness nanotopography (NT), and edge roll off (ERO) are critical parts of the equation in immersion microlithographic technology at the 45 nm node and beyond. Wafer features at the nanometer level could result not only in focus variation of the litho process, or thin film thickness variation in CMP process, but also in structural defects of the devices. Therefore, the metrology to measure nanometer level features and to control the quality of wafer geometry is a key to the success of IC production at the 45 nm node and beyond.

  7. How accurate are rapid prototyped (RP) final orthognathic surgical wafers? A pilot study.

    PubMed

    Shqaidef, Abedalrahman; Ayoub, Ashraf F; Khambay, Balvinder S

    2014-09-01

    Computer packages have been introduced to simulate the movements of the jaw in three dimensions to facilitate planning of treatment. After final 3-dimensional virtual planning, a rapid prototype wafer can be manufactured and used in theatre. Our aim was to assess the accuracy of rapid prototyping of virtual wafers derived from laser scanned dental models using CAD/CAM software. Upper and lower plaster models from 10 orthognathic patients, the articulated models, and the conventional wafers were scanned. The virtual wafers were made from CAD/CAM software, and printed on a stereolithographic printer. We also scanned the articulated models with rapid prototype wafers in place. The validity of the final rapid prototype wafer was measured by the accuracy with which upper and lower models related to one another. The absolute mean error of the rapid prototype wafer when aligned with the dental models was 0.94 (0.09) mm. The absolute distance of the 2 models articulated by conventional and rapid prototype wafers ranged from 0.04 - 1.73mm. The rapid prototype wafers were able to orientate the upper and lower dental models with an absolute mean error of 0.94 (0.09) mm, but it ranged from 0.04-1.73mm.

  8. Improved quality control of silicon wafers using novel off-line air pocket image analysis

    NASA Astrophysics Data System (ADS)

    Valley, John F.; Sanna, M. Cristina

    2014-08-01

    Air pockets (APK) occur randomly in Czochralski (Cz) grown silicon (Si) crystals and may become included in wafers after slicing and polishing. Previously the only APK of interest were those that intersected the front surface of the wafer and therefore directly impacted device yield. However mobile and other electronics have placed new demands on wafers to be internally APK-free for reasons of thermal management and packaging yield. We present a novel, recently patented, APK image processing technique and demonstrate the use of that technique, off-line, to improve quality control during wafer manufacturing.

  9. Growth of Catalyst-Free Epitaxial InAs Nanowires on Si Wafers Using Metallic Masks.

    PubMed

    Soo, M Teng; Zheng, Kun; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Zou, Jin

    2016-07-13

    Development of heteroepitaxy growth of catalyst-free vertical III-V nanowires on Si wafers is highly desirable for future nanoscale Si-based electronic and optoelectronic devices. In this study, a proof-of-concept approach is developed for catalyst-free heteroepitaxy growth of InAs nanowires on Si wafers. Before the growth of InAs nanowires, a Si-compatible metallic film with a thickness of several tens of nanometers was predeposited on a Si wafer and then annealed to form nanosize openings so as to obtain a metallic mask. These nano-openings exposed the surface of the Si wafer, which allowed subsequent nucleation and growth of epitaxial InAs nanowires directly on the surface of the Si wafer. The small size of the nano-openings limits the lateral growth of the nanostructures but promotes their axial growth. Through this approach, catalyst-free InAs nanowires were grown on both Si (111) and (001) wafers successfully at different growth temperatures. In particular, ultralong defect-free InAs nanowires with the wurtzite structure were grown the Si (111) wafers at 550 °C using the Ni mask. This study offers a simple, cost-effective, and scalable method to grow catalyst-free III-V nanowires on Si wafers. The simplicity of the approach opens a new avenue for the growth and integration of catalyst-free high-quality heteroepitaxial III-V nanowires on Si wafers.

  10. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics

    SciTech Connect

    Jung, Jinwoo; Lee, Jewon; Song, Hanjung

    2011-03-15

    This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-{mu}m single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with {+-}2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.

  11. Implementation of an integrated op-amp based chaotic neuron model and observation of its chaotic dynamics.

    PubMed

    Jung, Jinwoo; Lee, Jewon; Song, Hanjung

    2011-03-01

    This paper presents a fully integrated circuit implementation of an operational amplifier (op-amp) based chaotic neuron model with a bipolar output function, experimental measurements, and analyses of its chaotic behavior. The proposed chaotic neuron model integrated circuit consists of several op-amps, sample and hold circuits, a nonlinear function block for chaotic signal generation, a clock generator, a nonlinear output function, etc. Based on the HSPICE (circuit program) simulation results, approximated empirical equations for analyses were formulated. Then, the chaotic dynamical responses such as bifurcation diagrams, time series, and Lyapunov exponent were calculated using these empirical equations. In addition, we performed simulations about two chaotic neuron systems with four synapses to confirm neural network connections and got normal behavior of the chaotic neuron such as internal state bifurcation diagram according to the synaptic weight variation. The proposed circuit was fabricated using a 0.8-μm single poly complementary metal-oxide semiconductor technology. Measurements of the fabricated single chaotic neuron with ± 2.5 V power supplies and a 10 kHz sampling clock frequency were carried out and compared with the simulated results.

  12. Model-Based Infrared Metrology for Advanced Technology Nodes and 300 mm Wafer Processing

    NASA Astrophysics Data System (ADS)

    Rosenthal, Peter A.; Duran, Carlos; Tower, Josh; Mazurenko, Alex; Mantz, Ulrich; Weidner, Peter; Kasic, Alexander

    2005-09-01

    The use of infrared spectroscopy for production semiconductor process monitoring has evolved recently from primarily unpatterned, i.e. blanket test wafer measurements in a limited historical application space of blanket epitaxial, BPSG, and FSG layers to new applications involving patterned product wafer measurements, and new measurement capabilities. Over the last several years, the semiconductor industry has adopted a new set of materials associated with copper/low-k interconnects, and new structures incorporating exotic materials including silicon germanium, SOI substrates and high aspect ratio trenches. The new device architectures and more chemically sophisticated materials have raised new process control and metrology challenges that are not addressed by current measurement technology. To address the challenges we have developed a new infrared metrology tool designed for emerging semiconductor production processes, in a package compatible with modern production and R&D environments. The tool incorporates recent advances in reflectance instrumentation including highly accurate signal processing, optimized reflectometry optics, and model-based calibration and analysis algorithms. To meet the production requirements of the modern automated fab, the measurement hardware has been integrated with a fully automated 300 mm platform incorporating front opening unified pod (FOUP) interfaces, automated pattern recognition and high throughput ultra clean robotics. The tool employs a suite of automated dispersion-model analysis algorithms capable of extracting a variety of layer properties from measured spectra. The new tool provides excellent measurement precision, tool matching, and a platform for deploying many new production and development applications. In this paper we will explore the use of model based infrared analysis as a tool for characterizing novel bottle capacitor structures employed in high density dynamic random access memory (DRAM) chips. We will explore

  13. Deposition and removal of sodium contamination on silicon wafers

    NASA Astrophysics Data System (ADS)

    Constant, I.; Tardif, F.; Derrien, J.

    2000-01-01

    In this paper investigations are performed in order to understand the source of sodium contamination in clean-room environments and to find different cleaning processes able to limit or suppress sodium deposition. In a clean-room environment, the human being has been identified as one of the major sources of sodium. The airborne sodium contamination is essentially transmitted in particle form. In order to limit sodium deposition from the air, the wafers awaiting subsequent processing need to be stored in a protective box or placed far from the human environment and should not be left for much more than 1 week in a class 1 clean room. Also, wet chemistries could cause sodium contamination on wafers particularly during the deionized water rinse. In order to limit the possible contamination, the sodium deposition mechanisms have been studied: they show the typical characteristics of Langmuir adsorption. Temperature and ionic concentration are both parameters which influence the deposition. In water, sodium deposition can be avoided by introducing acid or alkaline solutions or increasing the temperature: it can be drastically reduced by adding traces of HCl (0.01%). Finally, other cleaning chemistries such as SC1 (NH4 OH-H2 O2 -H2 O) in 0.25:1:5 proportion, SC2 (HCl-H2 O2 -H2 O) in 1:1:5 proportion, 0.1% HF and SPM (H2 SO4 -H2 O2 ) in 3:1 proportion reduce the contamination as well.

  14. Very high aspect ratio wafer-free silicon micromechanical structures

    NASA Astrophysics Data System (ADS)

    Jazairy, Ali; MacDonald, Noel C.

    1995-09-01

    We report on the design and fabrication of a very high aspect ratio, entirely released single crystal silicon (SCS) micro-cantilever `on-a-frame' for z-motion applications. Motions of the micro-cantilever in the x-, y- and z-directions can be independently controlled by varying the spring constants of the SCS mechanical beams from about 103 N/m to approximately 109 N/m. We develop a new technology called Scream for High Aspect Ratio Proportions which increases the aspect ratio of the Single Crystal Reactive Etching And Metallization fabrication process. As an example, this novel technique based on a sequence of reactive ion etchings and thermal oxidations offers the capability of building a high aspect ratio wafer-free micro-cantilever `on-a-frame' with vertical dimensions exceeding 100 micrometers . The releasable grid consists of a large surface-to-volume ratio square-shaped `frame- within-a-frame' structure connected by z-motion springs. We have achieved intrinsic stress- based vertical deflections ranging from 60 micrometers to 125 micrometers with respect to the substrate floor for the large surface area (1 mm2) inner frame forming the z-stage. At the end of the fabrication process, the micro-cantilever `on-a-frame' can be fully released from the SCS substrate, thus resulting in a z-motion stage which can be entirely lifted off the wafer to be integrated with other micromechanical actuators.

  15. Thin-film resistance thermometers on silicon wafers

    NASA Astrophysics Data System (ADS)

    Kreider, Kenneth G; Ripple, Dean C; Kimes, William A

    2009-04-01

    We have fabricated Pt thin-film resistors directly sputtered on silicon substrates to evaluate their use as resistance thermal detectors (RTDs). This technique was chosen to achieve more accurate temperature measurements of large silicon wafers during semiconductor processing. High-purity (0.999 968 mass fraction) platinum was sputter deposited on silicon test coupons using titanium and zirconium bond coats. These test coupons were annealed, and four-point resistance specimens were prepared for thermal evaluation. Their response was compared with calibrated platinum-palladium thermocouples in a tube furnace. We evaluated the effects of furnace atmosphere, thin-film thickness, bond coats, annealing temperature and peak thermal excursion of the Pt thin films. Secondary ion mass spectrometry (SIMS) was performed to evaluate the effect of impurities on the thermal resistance coefficient, α. We present typical resistance versus temperature curves, hysteresis plots versus temperature and an analysis of the causes of uncertainties in the measurement of seven test coupons. We conclude that sputtered thin-film platinum resistors on silicon wafers can yield temperature measurements with uncertainties of less than 1 °C, k = 1 up to 600 °C. This is comparable to or better than commercially available techniques.

  16. Optical Cluster Eye fabricated on wafer-level

    NASA Astrophysics Data System (ADS)

    Meyer, Julia; Brückner, Andreas; Leitel, Robert; Dannberg, Peter; Bräuer, Andreas; Tünnermann, Andreas

    2011-08-01

    Wafer-level optics is considered as a cost-effective approach to miniaturized cameras, because fabrication and assembly are carried out for thousands of lenses in parallel. However, in most cases the micro-optical fabrication process is not mature enough to reach the required accuracy of the optical elements, which may have complex profiles and sags in the mm-scale. Contrary, the creation of microlens arrays is well controllable so that we propose a multi aperture system called ''Optical Cluster Eye'' which is based on conventional micro-optical fabrication techniques. The proposed multi aperture camera consists of many optical channels each transmitting a segment of the whole field of view. The design of the system provides the stitching of the partial images, so that a seamless image is formed and a commercially available image sensor can be used. The system can be fabricated on wafer-level with high yield due to small aperture diameters and low sags. The realized optics has a lateral size of 2.2 × 2.9 mm2, a total track length of 1.86 mm, and captures images at VGA video resolution.

  17. An advanced modeling approach for mask and wafer process simulation

    NASA Astrophysics Data System (ADS)

    Karakas, Ahmet; Elsen, Erich; Torunoglu, Ilhami; Andrus, Curtis

    2010-09-01

    A new modeling technique to accurately represent the mask and wafer process behavior is presented. The lithography simulation can be done in three steps: i) mask simulation, ii) latent image calculations and iii) resist process simulation. The leading edge designs, such as 32 nm and beyond, require higher-fidelity models to adequately represent each of these actual processes. Effects previously considered secondary, have become more pronounced with each new technology node. In this approach, we utilized separate physical models for both mask and wafer processes. We demonstrate that the residual errors can be further reduced when nonlinear mappers are used in addition. The advantage of the presented approach compared to standard curve-fitting or statistics-based models is its predictive power and adaptive nature. The physical model parameters were calibrated by a genetic algorithm whose details were outlined in [1]. The nonlinear mapper model parameters were identified by a gradient descent method. Given the computational requirements for a practical solution, our approach uses graphics processors as well as CPUs as computation hardware.

  18. Residual stress in silicon wafer using IR polariscope

    NASA Astrophysics Data System (ADS)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  19. Process Performance of Optima XEx Single Wafer High Energy Implanter

    SciTech Connect

    Kim, J. H.; Yoon, Jongyoon; Kondratenko, S.; David, J.; Rubin, L. M.; Jang, I. S.; Cha, J. C.; Joo, Y. H.; Lee, A. B.; Jin, S. W.

    2011-01-07

    To meet the process requirements for well formation in future CMOS memory production, high energy implanters require more robust angle, dose, and energy control while maintaining high productivity. The Optima XEx high energy implanter meets these requirements by integrating a traditional LINAC beamline with a robust single wafer handling system. To achieve beam angle control, Optima XEx can control both the horizontal and vertical beam angles to within 0.1 degrees using advanced beam angle measurement and correction. Accurate energy calibration and energy trim functions accelerate process matching by eliminating energy calibration errors. The large volume process chamber and UDC (upstream dose control) using faraday cups outside of the process chamber precisely control implant dose regardless of any chamber pressure increase due to PR (photoresist) outgassing. An optimized RF LINAC accelerator improves reliability and enables singly charged phosphorus and boron energies up to 1200 keV and 1500 keV respectively with higher beam currents. A new single wafer endstation combined with increased beam performance leads to overall increased productivity. We report on the advanced performance of Optima XEx observed during tool installation and volume production at an advanced memory fab.

  20. A thermal microprobe fabricated with wafer-stage processing

    NASA Astrophysics Data System (ADS)

    Zhang, Yongxia; Zhang, Yanwei; Blaser, Juliana; Sriram, T. S.; Enver, Ahsan; Marcus, R. B.

    1998-05-01

    A thermal microprobe has been designed and built for high resolution temperature sensing. The thermal sensor is a thin-film thermocouple junction at the tip of an atomic force microprobe (AFM) silicon probe needle. Only wafer-stage processing steps are used for the fabrication. For high resolution temperature sensing it is essential that the junction be confined to a short distance at the AFM tip. This confinement is achieved by a controlled photoresist coating process. Experiment prototypes have been made with an Au/Pd junction confined to within 0.5 μm of the tip, with the two metals separated elsewhere by a thin insulating oxide layer. Processing begins with double-polished, n-type, 4 in. diameter, 300-μm-thick silicon wafers. Atomically sharp probe tips are formed by a combination of dry and wet chemical etching, and oxidation sharpening. The metal layers are sputtering deposited and the cantilevers are released by a combination of KOH and dry etching. A resistively heated calibration device was made for temperature calibration of the thermal microprobe over the temperature range 25-110 °C. Over this range the thermal outputs of two microprobes are 4.5 and 5.6 μV/K and is linear. Thermal and topographical images are also obtained from a heated tungsten thin film fuse.