Sample records for implementing joint vision

  1. A vision-based end-point control for a two-link flexible manipulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Obergfell, Klaus

    1991-01-01

    The measurement and control of the end-effector position of a large two-link flexible manipulator are investigated. The system implementation is described and an initial algorithm for static end-point positioning is discussed. Most existing robots are controlled through independent joint controllers, while the end-effector position is estimated from the joint positions using a kinematic relation. End-point position feedback can be used to compensate for uncertainty and structural deflections. Such feedback is especially important for flexible robots. Computer vision is utilized to obtain end-point position measurements. A look-and-move control structure alleviates the disadvantages of the slow and variable computer vision sampling frequency. This control structure consists of an inner joint-based loop and an outer vision-based loop. A static positioning algorithm was implemented and experimentally verified. This algorithm utilizes the manipulator Jacobian to transform a tip position error to a joint error. The joint error is then used to give a new reference input to the joint controller. The convergence of the algorithm is demonstrated experimentally under payload variation. A Landmark Tracking System (Dickerson, et al 1990) is used for vision-based end-point measurements. This system was modified and tested. A real-time control system was implemented on a PC and interfaced with the vision system and the robot.

  2. Enhanced control of a flexure-jointed micromanipulation system using a vision-based servoing approach

    NASA Astrophysics Data System (ADS)

    Chuthai, T.; Cole, M. O. T.; Wongratanaphisan, T.; Puangmali, P.

    2018-01-01

    This paper describes a high-precision motion control implementation for a flexure-jointed micromanipulator. A desktop experimental motion platform has been created based on a 3RUU parallel kinematic mechanism, driven by rotary voice coil actuators. The three arms supporting the platform have rigid links with compact flexure joints as integrated parts and are made by single-process 3D printing. The mechanism overall size is approximately 250x250x100 mm. The workspace is relatively large for a flexure-jointed mechanism, being approximately 20x20x6 mm. A servo-control implementation based on pseudo-rigid-body models (PRBM) of kinematic behavior combined with nonlinear-PID control has been developed. This is shown to achieve fast response with good noise-rejection and platform stability. However, large errors in absolute positioning occur due to deficiencies in the PRBM kinematics, which cannot accurately capture flexure compliance behavior. To overcome this problem, visual servoing is employed, where a digital microscopy system is used to directly measure the platform position by image processing. By adopting nonlinear PID feedback of measured angles for the actuated joints as inner control loops, combined with auxiliary feedback of vision-based measurements, the absolute positioning error can be eliminated. With controller gain tuning, fast dynamic response and low residual vibration of the end platform can be achieved with absolute positioning accuracy within ±1 micron.

  3. Influence of restricted vision and knee joint range of motion on gait properties during level walking and stair ascent and descent.

    PubMed

    Demura, Tomohiro; Demura, Shin-ich

    2011-01-01

    Because elderly individuals experience marked declines in various physical functions (e.g., vision, joint function) simultaneously, it is difficult to clarify the individual effects of these functional declines on walking. However, by imposing vision and joint function restrictions on young men, the effects of these functional declines on walking can be clarified. The authors aimed to determine the effect of restricted vision and range of motion (ROM) of the knee joint on gait properties while walking and ascending or descending stairs. Fifteen healthy young adults performed level walking and stair ascent and descent during control, vision restriction, and knee joint ROM restriction conditions. During level walking, walking speed and step width decreased, and double support time increased significantly with vision and knee joint ROM restrictions. Stance time, step width, and walking angle increased only with knee joint ROM restriction. Stance time, swing time, and double support time were significantly longer in level walking, stair descent, and stair ascent, in that order. The effects of vision and knee joint ROM restrictions were significantly larger than the control conditions. In conclusion, vision and knee joint ROM restrictions affect gait during level walking and stair ascent and descent. This effect is marked in stair ascent with knee joint ROM restriction.

  4. 76 FR 11847 - Thirteenth Meeting: Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... Special Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS...

  5. 76 FR 20437 - Fourteenth Meeting: Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... Special Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS...

  6. Joint NASA-ESA Outer Planet Mission study overview

    NASA Astrophysics Data System (ADS)

    Lebreton, J.-P.; Niebur, C.; Cutts, J.; Falkner, P.; Greeley, R.; Lunine, J.; Blanc, M.; Coustenis, A.; Pappalardo, R.; Matson, D.; Clark, K.; Reh, K.; Stankov, A.; Erd, C.; Beauchamp, P.

    2009-04-01

    In 2008, ESA and NASA performed joint studies of two highly capable scientific missions to the outer planets: the Europa Jupiter System Mission (EJSM) and the Titan Saturn System Mission (TSSM). Joint Science Definition Teams (JSDTs) were formed with U.S. and European membership to guide study activities that were conducted collaboratively by engineering teams working on both sides of the Atlantic. EJSM comprises the Jupiter Europa Orbiter (JEO) that would be provided by NASA and the Jupiter Ganymede Orbiter (JGO) that would be provided by ESA. Both spacecraft would be launched independently in 2020, and arrive 6 years later for a 3-4 year mission within the Jupiter System. Both orbiters would explore Jupiter's system on trajectories that include flybys of Io (JEO only), Europa (JEO only), Ganymede and Callisto. The operation of JEO would culminate in orbit around Europa while that of JGO would culminate in orbit around Ganymede. Synergistic and coordinated observations would be planned. The Titan Saturn System Mission (TSSM) comprises a Titan Orbiter provided by NASA that would carry two Titan in situ elements provided by ESA: the montgolfière and the lake lander. The mission would launch in 2020 and arrive 9 years later for a 4-year duration in the Saturn system. Following delivery of the ESA in situ elements to Titan, the Titan Orbiter would explore the Saturn system via a 2-year tour that includes Enceladus and Titan flybys. The montgolfière would last at least 6-12 months at Titan and the lake lander 8-10 hours. Following the Saturn system tour, the Titan Orbiter would culminate in a ~2-year orbit around Titan. Synergistic and coordinated observations would be planned between the orbiter and in situ elements. The ESA contribution to this joint endeavor will be implemented as the first Cosmic Vision Large-class (L1) mission; the NASA contribution will be implemented as the Outer Planet Flagship Mission. The contribution to each mission is being reviewed and evaluated by each agency between November 2008 and January 2009, and a joint decision as to which destination has been selected is expected to be announced in February 2009. The ESA Cosmic Vision selection process includes two additional competitive steps (that include two competing astronomy missions) before its contribution to the selected Outer Planet Mission is confirmed in 2012. NASA expects to proceed with the initial implementation of the mission in FY2009, while full implementation will start in FY2013, in line with ESA Cosmic Vision schedule. Should ESA select an astronomy mission instead, NASA would proceed in 2013 with the implementation of a NASA-only mission concept. This presentation will provide an overview of the selected Outer Planet Mission and outline the next steps towards its implementation.

  7. Joint Mission Command Implementation

    DTIC Science & Technology

    2016-01-22

    choose. The paper finds that trust is strongly influenced by the subconscious brain and treating it like a tool ignores biology and results in... bias for action and empowerment.14 Since then, the services have evaluated their own concepts of command assessing them against Dempsey’s vision. Lt...understanding, intent, and trust, only trust is strongly influenced by the subconscious brain. Treating trust like it can be taught, or a behavior that

  8. Transformation: growing role of sensor networks in defense applications

    NASA Astrophysics Data System (ADS)

    Gunzelman, Karl J.; Kwok, Kwan S.; Krotkov, Eric P.

    2003-12-01

    The Department of Defense (DoD) is undergoing a transformation. What began as theoretical thinking, under the notion of a Revolution in Military Affairs (RMA) is now beginning to manifest itself in a "Transformation." The overall goal of the transformation described in Joint Vision 2020 is the creation of a force that is dominant across the full spectrum of military operations. The warfighting concept that will allow us to achieve Joint Vision 2020 operational capabilities is Network Centric Warfare (NCW). NCW is no less than the embodiment of an Information Age transformation of the DoD. It involves a new way of thinking about how we accomplish our missions, how we organize and interrelate, and how we acquire, field and use the systems that support us. It will involve ways of operating that have yet to be conceived, and it will employ technologies yet to be invented. NCW has the potential to increase warfighting capabilities by orders of magnitude, and it will do so by leveraging information superiority. A major condition to success is an infostructure that is robustly networked to support information collection, sharing and collaboration; which will require increased emphasis on sensor research, development and implementation. DARPA is taking steps today to research, develop and implement those sensor capabilities. The Multi-Body Control program is a step in that direction.

  9. 75 FR 17202 - Eighth Meeting: Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY...-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing...: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will be held April...

  10. 75 FR 44306 - Eleventh Meeting: Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Committee 213: EUROCAE WG- 79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY... Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS... 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The...

  11. 75 FR 71183 - Twelfth Meeting: Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY...: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). DATES: The meeting will...

  12. 75 FR 38863 - Tenth Meeting: Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS) AGENCY...-79: Enhanced Flight Vision Systems/Synthetic Vision Systems (EFVS/SVS). SUMMARY: The FAA is issuing...: Enhanced Flight [[Page 38864

  13. Whatever Happened to Joint Vision 2010

    DTIC Science & Technology

    2010-04-02

    submitted to the Faculty of the Joint Advanced Warfighting School in partial satisfaction of the requirements of a Master of Science Degree in Joint...Service efforts and evolve “jointness” beyond the dictates of the 1986 Goldwater-Nichols Act. JV2010 delineated a common set of environmental ...towards something that is fresh, new and important. In this sense, the term vision may have been the wrong term. Warren Bennis and Burt Nanus, noted

  14. Military Transformation and the Defense Industry After Next: The Defense Industrial Implications of Network-Centric Warfare

    DTIC Science & Technology

    2002-09-01

    including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for Information Operations and Reports, 1215 Jefferson...require the acquisition of unfamiliar weapons and support systems. Joint and service visions of the military after next raise serious questions that...and the U.S. Defense Industry The U.S. military is awash in visions of transformation. There is an array of joint and service visions of what has become

  15. Using advanced computer vision algorithms on small mobile robots

    NASA Astrophysics Data System (ADS)

    Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.

    2006-05-01

    The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.

  16. Influence of control parameters on the joint tracking performance of a coaxial weld vision system

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.; Weeks, J. L.

    1985-01-01

    The first phase of a series of evaluations of a vision-based welding control sensor for the Space Shuttle Main Engine Robotic Welding System is described. The robotic welding system is presently under development at the Marshall Space Flight Center. This evaluation determines the standard control response parameters necessary for proper trajectory of the welding torch along the joint.

  17. High-Level Vision and Planning Workshop Proceedings

    DTIC Science & Technology

    1989-08-01

    Correspondence in Line Drawings of Multiple View-. In Proc. of 8th Intern. Joint Conf. on Artificial intellignece . 1983. [63] Tomiyasu, K. Tutorial...joint U.S.-Israeli workshop on artificial intelligence are provided in this Institute for Defense Analyses document. This document is based on a broad...participants is provided along with applicable references for individual papers. 14. SUBJECT TERMS 15. NUMBER OF PAGES Artificial Intelligence; Machine Vision

  18. Visual and non-visual control of landing movements in humans

    PubMed Central

    Santello, Marco; McDonagh, Martin J N; Challis, John H

    2001-01-01

    The role of vision in controlling leg muscle activation in landing from a drop was investigated. Subjects (n = 8) performed 10 drops from four heights (0.2, 0.4, 0.6 and 0.8 m) with and without vision. Drop height was maintained constant throughout each block of trials to allow adaptation. The aim of the study was to assess the extent to which proprioceptive and vestibular information could substitute for the lack of vision in adapting landing movements to different heights. At the final stages of the movement, subjects experienced similar peak centre of body mass (CM) displacements and joint rotations, regardless of the availability of vision. This implies that subjects were able to adapt the control of landing to different heights. The amplitude and timing of electromyographic signals from the leg muscles scaled to drop height in a similar fashion with and without vision. However, variables measured throughout the execution of the movement indicated important differences. Without vision, landings were characterised by 10 % larger ground reaction forces, 10 % smaller knee joint rotations, different time lags between peak joint rotations, and more variable ground reaction forces and times to peak CM displacement. We conclude that non-visual sensory information (a) could not fully compensate for the lack of continuous visual feedback and (b) this non-visual information was used to reorganise the motor output. These results suggest that vision is important for the very accurate timing of muscle activity onset and the kinematics of landing. PMID:11711583

  19. Achieving Cross-Domain Synergy: Overcoming Service Barriers to Joint Force 2020

    DTIC Science & Technology

    2014-06-13

    culture. It is my hope that this thesis will be of value to the Joint community by contributing to their understanding of inter-service cultural...Identify leadership implications. 8. Identify metrics, measures, and milestones to maintain accountability. 9. Identify a communication strategy...Under- communicating the vision 5. Permitting obstacles to block the vision 6. Failing to create short-term wins 7. Declaring victory too soon 8

  20. Joint Vision for the Korean Peninsula -- Can We Get There?

    DTIC Science & Technology

    2012-03-11

    complex problem that requires a multifaceted approach. Trilateral cooperation with China coupled with all the elements of the Alliance’s elements of...national power can set the conditions for the Joint Vision Statement to become a reality in this century. 15. SUBJECT TERMS Northeast Asia, China ...We Get There? FORMAT: Strategy Research Project DATE: 11 March 2012 WORD COUNT: 5,917 PAGES: 30 KEY TERMS: Northeast Asia, China

  1. Healthcare provider education: from institutional boxes to dynamic networks.

    PubMed

    Eisler, George

    2009-01-01

    The world recognizes the need for close collaboration in planning between the healthcare system and the post-secondary education system; this has also been advocated in the lead article. Forums and mechanisms to facilitate this collaboration are being implemented from local to global environments. Beyond the focus on competency gaps, there are important functional co-dependencies between healthcare and post-secondary education, including the need for a more formalized continuous quality improvement approach at the inter-organizational system level. The case for this close and continuous collaborative relationship is based on the following: (1) a close functional relationship, (2) joint responsibility for healthcare provider education, (3) the urgent need to address the workforce and education strategies for almost all healthcare services areas and (4) the factors that characterize successful and sustained quality improvement in complex adaptive systems. A go-forward vision consisting of an integrated web of academic health networks is proposed, each with its particular shared vision and aligned with an overall vision for healthcare in each provincial jurisdiction, as well as with national and global healthcare objectives.

  2. Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2016-03-01

    Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.

  3. International Space Station Execution Replanning Process: Trends and Implications

    NASA Technical Reports Server (NTRS)

    McCormick, Robet J.

    2007-01-01

    International Space Station is a joint venture. Because of this, ISS execution planning- planning within the week for the ISS requires coordination across multiple partner, and the associated processes and tools to allow this coordination to occur. These processes and tools are currently defined and are extensively used. This paper summarizes these processes, and documents the current data trends associated with these processes and tools, with a focus on the metrics provided from the ISS Planning Product Change Request (PPCR) tool. As NASA's Vision for Space Exploration and general Human spaceflight trends are implemented, the probability of joint venture long duration programs such as ISS, with varying levels of intergovernmental and/or corporate partnership, will increase. Therefore, the results of this PPCR analysis serve as current Lessons learned for the ISS and for further similar ventures.

  4. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    NASA Astrophysics Data System (ADS)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  5. Simulation Based Acquisition for NASA's Office of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Hale, Joe

    2004-01-01

    In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OExS enterprise, within the Government, and with the general public. The SBA process features empowered collaborative teams (including industry partners) to integrate requirements, acquisition, training, operations, and sustainment. The SBA process also utilizes an increased reliance on and investment in M&S to reduce design risk. SBA originated as a joint Industry and Department of Defense (DoD) initiative to define and integrate an acquisition process that employs robust, collaborative use of M&S technology across acquisition phases and programs. The SBA process was successfully implemented in the Air Force s Joint Strike Fighter (JSF) Program.

  6. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  7. Dynamic Vision for Control

    DTIC Science & Technology

    2006-07-27

    unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project was to develop analytical and computational tools to make vision a Viable sensor for...vision.ucla. edu July 27, 2006 Abstract The goal of this project was to develop analytical and computational tools to make vision a viable sensor for the ... sensors . We have proposed the framework of stereoscopic segmentation where multiple images of the same obejcts were jointly processed to extract geometry

  8. 2007 Joint Chemical Biological, Radiological and Nuclear (CBRN) Conference and Exhibition - Combating Weapons of Mass Destruction

    DTIC Science & Technology

    2007-06-27

    Selected CB Defense Systems SHAPESENSE Joint Warning and Reporting Network JSLIST CB Protected Shelter Joint Vaccine Acquisition Program Joint Effects...military can operate in any environment, unconstrained by chemical or biological weapons. 21 SHIELD SUSTAIN Selected CB Defense Systems SHAPESENSE Joint...28070625_JCBRN_Conference_Reeves UNCLASSIFIED Decontamination Vision Strippable Barriers Self-Decontaminating Fabrics/Coatings Reduce Logistics Burden

  9. The Cost of an Expeditionary Army: Reduced Corps and Division Reconnaissance and Security

    DTIC Science & Technology

    2013-03-21

    commander with information that informs decisions. Reconnaissance, a mission to obtain information about the enemy or terrain, can be either offensive or...in 1996 through Joint Vision 2010.8 The foundation of the joint transformation, as outlined in the document, was a force focused on utilization of...forces, and/or criminal elements.”14 The Army’s change in vision resulted in a dynamic shift in designated combat power at each level and in its

  10. Current Status of the International Lunar Network (ILN) Anchor Nodes Mission

    NASA Astrophysics Data System (ADS)

    Cohen, Barbara; Bassler, J.; Harris, D.; Morse, B.; Reed, C.; Kirby, K.; Eng, D.

    2009-09-01

    NASA's Science Mission Directorate's (SMD) International Lunar Network Anchor Nodes Mission continues its concept development and is scheduled to complete the first formal milestone gate of a Mission Concept Review (MCR) in late 2009. The mission will establish two-four nodes of the International Lunar Network (ILN), a network of lunar geophysical stations envisioned to be emplaced by the many nations collaborating on this joint endeavor. This mission will operate over six years or more and make significant progress in satisfying many of the National Research Council's lunar science objectives, while strategically contributing to the U.S. Vision for Space Exploration Policy's objective for a robust robotic lunar program. This paper will provide a status report on the ILN Anchor Nodes mission and overview of the concept to date, which is being implemented jointly by NASA's Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory.

  11. From vision to action: roadmapping as a strategic method and tool to implement climate change adaptation - the example of the roadmap 'water sensitive urban design 2020'.

    PubMed

    Hasse, J U; Weingaertner, D E

    2016-01-01

    As the central product of the BMBF-KLIMZUG-funded Joint Network and Research Project (JNRP) 'dynaklim - Dynamic adaptation of regional planning and development processes to the effects of climate change in the Emscher-Lippe region (North Rhine Westphalia, Germany)', the Roadmap 2020 'Regional Climate Adaptation' has been developed by the various regional stakeholders and institutions containing specific regional scenarios, strategies and adaptation measures applicable throughout the region. This paper presents the method, elements and main results of this regional roadmap process by using the example of the thematic sub-roadmap 'Water Sensitive Urban Design 2020'. With a focus on the process support tool 'KlimaFLEX', one of the main adaptation measures of the WSUD 2020 roadmap, typical challenges for integrated climate change adaptation like scattered knowledge, knowledge gaps and divided responsibilities but also potential solutions and promising chances for urban development and urban water management are discussed. With the roadmap and the related tool, the relevant stakeholders of the Emscher-Lippe region have jointly developed important prerequisites to integrate their knowledge, to clarify vulnerabilities, adaptation goals, responsibilities and interests, and to foresightedly coordinate measures, resources, priorities and schedules for an efficient joint urban planning, well-grounded decision-making in times of continued uncertainties and step-by-step implementation of adaptation measures from now on.

  12. Hand-Eye Calibration of Robonaut

    NASA Technical Reports Server (NTRS)

    Nickels, Kevin; Huber, Eric

    2004-01-01

    NASA's Human Space Flight program depends heavily on Extra-Vehicular Activities (EVA's) performed by human astronauts. EVA is a high risk environment that requires extensive training and ground support. In collaboration with the Defense Advanced Research Projects Agency (DARPA), NASA is conducting a ground development project to produce a robotic astronaut's assistant, called Robonaut, that could help reduce human EVA time and workload. The project described in this paper designed and implemented a hand-eye calibration scheme for Robonaut, Unit A. The intent of this calibration scheme is to improve hand-eye coordination of the robot. The basic approach is to use kinematic and stereo vision measurements, namely the joint angles self-reported by the right arm and 3-D positions of a calibration fixture as measured by vision, to estimate the transformation from Robonaut's base coordinate system to its hand coordinate system and to its vision coordinate system. Two methods of gathering data sets have been developed, along with software to support each. In the first, the system observes the robotic arm and neck angles as the robot is operated under external control, and measures the 3-D position of a calibration fixture using Robonaut's stereo cameras, and logs these data. In the second, the system drives the arm and neck through a set of pre-recorded configurations, and data are again logged. Two variants of the calibration scheme have been developed. The full calibration scheme is a batch procedure that estimates all relevant kinematic parameters of the arm and neck of the robot The daily calibration scheme estimates only joint offsets for each rotational joint on the arm and neck, which are assumed to change from day to day. The schemes have been designed to be automatic and easy to use so that the robot can be fully recalibrated when needed such as after repair, upgrade, etc, and can be partially recalibrated after each power cycle. The scheme has been implemented on Robonaut Unit A and has been shown to reduce mismatch between kinematically derived positions and visually derived positions from a mean of 13.75cm using the previous calibration to means of 1.85cm using a full calibration and 2.02cm using a suboptimal but faster daily calibration. This improved calibration has already enabled the robot to more accurately reach for and grasp objects that it sees within its workspace. The system has been used to support an autonomous wrench-grasping experiment and significantly improved the workspace positioning of the hand based on visually derived wrench position. estimates.

  13. A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding

    PubMed Central

    Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo

    2017-01-01

    For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components. PMID:28492481

  14. Shaping future Naval warfare with unmanned systems, the impact across the fleet, and joint considerations

    NASA Astrophysics Data System (ADS)

    Hudson, E. C.; Johnson, Gordon; Summey, Delbert C.; Portmann, Helmut H., Jr.

    2004-09-01

    This paper discusses a comprehensive vision for unmanned systems that will shape the future of Naval Warfare within a larger Joint Force concept, and examines the broad impact that can be anticipated across the Fleet. The vision has been articulated from a Naval perspective in NAVSEA technical report CSS/TR-01/09, Shaping the Future of Naval Warfare with Unmanned Systems, and from a Joint perspective in USJFCOM Rapid Assessment Process (RAP) Report #03-10 (Unmanned Effects (UFX): Taking the Human Out of the Loop). Here, the authors build on this foundation by reviewing the major findings and laying out the roadmap for achieving the vision and truly transforming how we fight wars. The focus is on broad impact across the Fleet - but the implications reach across all Joint forces. The term "Unmanned System" means different things to different people. Most think of vehicles that are remotely teleoperated that perform tasks under remote human control. Actually, unmanned systems are stand-alone systems that can execute missions and tasks without direct physical manned presence under varying levels of human control - from teleoperation to full autonomy. It is important to note that an unmanned system comprises a lot more than just a vehicle - it includes payloads, command and control, and communications and information processing.

  15. A Vision-Aided 3D Path Teaching Method before Narrow Butt Joint Welding.

    PubMed

    Zeng, Jinle; Chang, Baohua; Du, Dong; Peng, Guodong; Chang, Shuhe; Hong, Yuxiang; Wang, Li; Shan, Jiguo

    2017-05-11

    For better welding quality, accurate path teaching for actuators must be achieved before welding. Due to machining errors, assembly errors, deformations, etc., the actual groove position may be different from the predetermined path. Therefore, it is significant to recognize the actual groove position using machine vision methods and perform an accurate path teaching process. However, during the teaching process of a narrow butt joint, the existing machine vision methods may fail because of poor adaptability, low resolution, and lack of 3D information. This paper proposes a 3D path teaching method for narrow butt joint welding. This method obtains two kinds of visual information nearly at the same time, namely 2D pixel coordinates of the groove in uniform lighting condition and 3D point cloud data of the workpiece surface in cross-line laser lighting condition. The 3D position and pose between the welding torch and groove can be calculated after information fusion. The image resolution can reach 12.5 μm. Experiments are carried out at an actuator speed of 2300 mm/min and groove width of less than 0.1 mm. The results show that this method is suitable for groove recognition before narrow butt joint welding and can be applied in path teaching fields of 3D complex components.

  16. Accounting for standard errors of vision-specific latent trait in regression models.

    PubMed

    Wong, Wan Ling; Li, Xiang; Li, Jialiang; Wong, Tien Yin; Cheng, Ching-Yu; Lamoureux, Ecosse L

    2014-07-11

    To demonstrate the effectiveness of Hierarchical Bayesian (HB) approach in a modeling framework for association effects that accounts for SEs of vision-specific latent traits assessed using Rasch analysis. A systematic literature review was conducted in four major ophthalmic journals to evaluate Rasch analysis performed on vision-specific instruments. The HB approach was used to synthesize the Rasch model and multiple linear regression model for the assessment of the association effects related to vision-specific latent traits. The effectiveness of this novel HB one-stage "joint-analysis" approach allows all model parameters to be estimated simultaneously and was compared with the frequently used two-stage "separate-analysis" approach in our simulation study (Rasch analysis followed by traditional statistical analyses without adjustment for SE of latent trait). Sixty-six reviewed articles performed evaluation and validation of vision-specific instruments using Rasch analysis, and 86.4% (n = 57) performed further statistical analyses on the Rasch-scaled data using traditional statistical methods; none took into consideration SEs of the estimated Rasch-scaled scores. The two models on real data differed for effect size estimations and the identification of "independent risk factors." Simulation results showed that our proposed HB one-stage "joint-analysis" approach produces greater accuracy (average of 5-fold decrease in bias) with comparable power and precision in estimation of associations when compared with the frequently used two-stage "separate-analysis" procedure despite accounting for greater uncertainty due to the latent trait. Patient-reported data, using Rasch analysis techniques, do not take into account the SE of latent trait in association analyses. The HB one-stage "joint-analysis" is a better approach, producing accurate effect size estimations and information about the independent association of exposure variables with vision-specific latent traits. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  17. Governance and human resources for health.

    PubMed

    Dieleman, Marjolein; Hilhorst, Thea

    2011-11-24

    Despite an increase in efforts to address shortage and performance of Human Resources for Health (HRH), HRH problems continue to hamper quality service delivery. We believe that the influence of governance is undervalued in addressing the HRH crisis, both globally and at country level. This thematic series has aimed to expand the evidence base on the role of governance in addressing the HRH crisis. The six articles comprising the series present a range of experiences. The articles report on governance in relation to developing a joint vision, building adherence and strengthening accountability, and on governance with respect to planning, implementation, and monitoring. Other governance issues warrant attention as well, such as corruption and transparency in decision-making in HRH policies and strategies. Acknowledging and dealing with governance should be part and parcel of HRH planning and implementation. To date, few experiences have been shared on improving governance for HRH policy making and implementation, and many questions remain unanswered. There is an urgent need to document experiences and for mutual learning.

  18. VibroCV: a computer vision-based vibroarthrography platform with possible application to Juvenile Idiopathic Arthritis.

    PubMed

    Wiens, Andrew D; Prahalad, Sampath; Inan, Omer T

    2016-08-01

    Vibroarthrography, a method for interpreting the sounds emitted by a knee during movement, has been studied for several joint disorders since 1902. However, to our knowledge, the usefulness of this method for management of Juvenile Idiopathic Arthritis (JIA) has not been investigated. To study joint sounds as a possible new biomarker for pediatric cases of JIA we designed and built VibroCV, a platform to capture vibroarthrograms from four accelerometers; electromyograms (EMG) and inertial measurements from four wireless EMG modules; and joint angles from two Sony Eye cameras and six light-emitting diodes with commercially-available off-the-shelf parts and computer vision via OpenCV. This article explains the design of this turn-key platform in detail, and provides a sample recording captured from a pediatric subject.

  19. Implementing Geological Disposal of Radioactive Waste Technology Platform From the Strategic Research Agenda to its Deployment - 12015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouzounian, P.; Palmu, Marjatta; Eng, Torsten

    2012-07-01

    Several European waste management organizations (WMOs) have initiated a technology platform for accelerating the implementation of deep geological disposal of radioactive waste in Europe. The most advanced waste management programmes in Europe (i.e. Finland, Sweden, and France) have already started or are prepared to start the licensing process of deep geological disposal facilities within the next decade. A technology platform called Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) was launched in November 2009. A shared vision report for the platform was published stating that: 'Our vision is that by 2025, the first geological disposal facilities for spent fuel,more » high-level waste, and other long-lived radioactive waste will be operating safely in Europe'. In 2011, the IGD-TP had eleven WMO members and about 70 participants from academia, research, and the industry committed to its vision. The IGD-TP has started to become a tool for reducing overlapping work, to produce savings in total costs of research and implementation and to make better use of existing competence and research infrastructures. The main contributor to this is the deployment of the IGD-TP's newly published Strategic Research Agenda (SRA). The work undertaken for the SRA defined the pending research, development and demonstration (RD and D) issues and needs. The SRA document describing the identified issues that could be worked on collaboratively was published in July 2011. It is available on the project's public web site (www.igdtp.eu). The SRA was organized around 7 Key Topics covering the Safety Case, Waste forms and their behaviour, Technical feasibility and long-term performance of repository components, Development strategy of the repository, Safety of construction and operations, Monitoring, and Governance and stakeholder involvement. Individual Topics were prioritized within the Key Topics. Cross-cutting activities like Education and Training or Knowledge Management as well as activities remaining specific for the WMOs were as well identified in the document. For example, each WMO has to develop their own waste acceptance rules, and plan for the economics and the funding of their waste management programmes. The challenge at hand for the IGD-TP is to deploy the SRA. This is carried out by agreeing on a Deployment Plan (DP) that guides organizing the concrete joint activities between the WMOs and the other participants of the IGD-TP. The first DP points out the coordinated RD and D projects and other activities that need to be launched to produce these results over the next four to five years (by the end of 2016). The DP also describes general principles for how the joint work can be organised and funded. (authors)« less

  20. Parallel asynchronous systems and image processing algorithms

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  1. Beyond speculative robot ethics: a vision assessment study on the future of the robotic caretaker.

    PubMed

    van der Plas, Arjanna; Smits, Martijntje; Wehrmann, Caroline

    2010-11-01

    In this article we develop a dialogue model for robot technology experts and designated users to discuss visions on the future of robotics in long-term care. Our vision assessment study aims for more distinguished and more informed visions on future robots. Surprisingly, our experiment also led to some promising co-designed robot concepts in which jointly articulated moral guidelines are embedded. With our model, we think to have designed an interesting response on a recent call for a less speculative ethics of technology by encouraging discussions about the quality of positive and negative visions on the future of robotics.

  2. Self calibration of the stereo vision system of the Chang'e-3 lunar rover based on the bundle block adjustment

    NASA Astrophysics Data System (ADS)

    Zhang, Shuo; Liu, Shaochuang; Ma, Youqing; Qi, Chen; Ma, Hao; Yang, Huan

    2017-06-01

    The Chang'e-3 was the first lunar soft landing probe of China. It was composed of the lander and the lunar rover. The Chang'e-3 successful landed in the northwest of the Mare Imbrium in December 14, 2013. The lunar rover completed the movement, imaging and geological survey after landing. The lunar rover equipped with a stereo vision system which was made up of the Navcam system, the mast mechanism and the inertial measurement unit (IMU). The Navcam system composed of two cameras with the fixed focal length. The mast mechanism was a robot with three revolute joints. The stereo vision system was used to determine the position of the lunar rover, generate the digital elevation models (DEM) of the surrounding region and plan the moving paths of the lunar rover. The stereo vision system must be calibrated before use. The control field could be built to calibrate the stereo vision system in the laboratory on the earth. However, the parameters of the stereo vision system would change after the launch, the orbital changes, the braking and the landing. Therefore, the stereo vision system should be self calibrated on the moon. An integrated self calibration method based on the bundle block adjustment is proposed in this paper. The bundle block adjustment uses each bundle of ray as the basic adjustment unit and the adjustment is implemented in the whole photogrammetric region. The stereo vision system can be self calibrated with the proposed method under the unknown lunar environment and all parameters can be estimated simultaneously. The experiment was conducted in the ground lunar simulation field. The proposed method was compared with other methods such as the CAHVOR method, the vanishing point method, the Denavit-Hartenberg method, the factorization method and the weighted least-squares method. The analyzed result proved that the accuracy of the proposed method was superior to those of other methods. Finally, the proposed method was practical used to self calibrate the stereo vision system of the Chang'e-3 lunar rover on the moon.

  3. NASA Johnson Space Center: Total quality partnership

    NASA Technical Reports Server (NTRS)

    Harlan, Charlie; Boyd, Alfred A.

    1992-01-01

    The development of and benefits realized from a joint NASA, support contractor continuous improvement process at the Johnson Space Center (JSC) is traced. The joint effort described is the Safety, Reliability, and Quality Assurance Directorate relationship with its three support contractors which began in early 1990. The Continuous Improvement effort started in early 1990 with an initiative to document and simplify numerous engineering change evaluation processes. This effort quickly grew in scope and intensity to include process improvement teams, improvement methodologies, awareness, and training. By early 1991, the support contractor had teams in place and functioning, program goals established and a cultural change effort underway. In mid-l991 it became apparent that a major redirection was needed to counter a growing sense of frustration and dissatisfaction from teams and managers. Sources of frustration were isolated to insufficient joint participation on teams, and to a poorly defined vision. Over the next year, the effort was transformed to a truly joint process. The presentation covers the steps taken to define vision, values, goals, and priorities and to form a joint Steering Committee and joint process improvement teams. The most recent assessment against the President's award criteria is presented as a summary of progress. Small, but important improvement results have already demonstrated the value of the joint effort.

  4. Improving core medical training--innovative and feasible ideas to better training.

    PubMed

    Tasker, Fiona; Dacombe, Peter; Goddard, Andrew F; Burr, Bill

    2014-12-01

    A recent survey of UK core medical training (CMT) training conducted jointly by the Royal College of Physicians (RCP) and Joint Royal College of Physicians Training Board (JRCPTB) identified that trainees perceived major problems with their training. Service work dominated and compromised training opportunities, and of great concern, almost half the respondents felt that they had not been adequately prepared to take on the role of medical registrar. Importantly, the survey not only gathered CMT trainees' views of their current training, it also asked them for their 'innovative and feasible ways to improve CMT'. This article draws together some of these excellent ideas on how the quality of training and the experience of trainees could be improved. It presents a vision for how CMT trainees, consultant supervisors, training programme directors, clinical directors and managers can work together to implement relevant, feasible and affordable ways to improve training for doctors and deliver the best possible care for patients. © 2014 Royal College of Physicians.

  5. Vision: A Conceptual Framework for School Counselors

    ERIC Educational Resources Information Center

    Watkinson, Jennifer Scaturo

    2013-01-01

    Vision is essential to the implementation of the American School Counselor Association (ASCA) National Model. Drawing from research in organizational leadership, this article provides a conceptual framework for how school counselors can incorporate vision as a strategy for implementing school counseling programs within the context of practice.…

  6. Clinic, hospital try to fulfill vision of coordinated care with joint venture company.

    PubMed

    2000-09-01

    Coordinated Care Services Inc., a joint venture of Carle Foundation and Carle Clinic Association in Urbana, IL, shares its initial successes and ongoing challenges after one year of operation. The biggest barrier to further improvements remains insufficient information management capability.

  7. Implementing Vision Research in Special Needs Education

    ERIC Educational Resources Information Center

    Wilhelmsen, Gunvor Birkeland; Aanstad, Monica L.; Leirvik, Eva Iren B.

    2015-01-01

    This article presents experiences from vision research implemented in education and argues for the need for teachers with visual competence and insight into suitable methods for stimulation and learning. A new type of continuing professional development (CPD) focuses on the role of vision in children's learning and development, the consequences of…

  8. Interlacing Mission, Strategic Planning, and Vision to Lean: Powerful DNA for Change

    ERIC Educational Resources Information Center

    Arnold, Alison; Flumerfelt, Shannon

    2012-01-01

    The authors' purpose for this article is to describe a K-12 public school district's journey to internalize and actualize its mission, strategic planning and vision as one coherent engagement using Lean principles and tools. Lean jointly comprises an organizational philosophy and management toolkit prominent in private, government, and nonprofit…

  9. 76 FR 55109 - In the Matter of Certain DC-DC Controllers and Products Containing Same; Notice of Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... named the following respondents: VisionTek Products LLC (``VisionTek'') of Inverness, Illinois; uPI Semiconductor Corp. (``uPI'') of Taiwan; Sapphire Technology Limited (``Sapphire'') of Hong Kong; Advanced Micro...'') initial determination (``ID'') granting uPI's and Sapphire's joint motion to terminate the investigation...

  10. Operationalizing the Joint Information Environment: Achieving Information Dominance with the Undersea Constellation

    DTIC Science & Technology

    2014-11-01

    Approved for public release. OPERATIONALIZING THE JOINT INFORMATION ENVIRONMENT: ACHIEVING INFORMATION DOMINANCE WITH THE UNDERSEA CONSTELLATION* Captain...SUBTITLE Operationalizing the Joint Information Environment: Achieving Information Dominance with the Undersea Constellation (U) 5a. CONTRACT NUMBER...predict what is over the horizon, faster than the adversary. As noted in the U.S. Navy’s Vision for Information Dominance , “The Navy will create a

  11. 2013 Progress Report -- DOE Joint Genome Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-11-01

    In October 2012, we introduced a 10-Year Strategic Vision [http://bit.ly/JGI-Vision] for the Institute. A central focus of this Strategic Vision is to bridge the gap between sequenced genomes and an understanding of biological functions at the organism and ecosystem level. This involves the continued massive-scale generation of sequence data, complemented by orthogonal new capabilities to functionally annotate these large sequence data sets. Our Strategic Vision lays out a path to guide our decisions and ensure that the evolving set of experimental and computational capabilities available to DOE JGI users will continue to enable groundbreaking science.

  12. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation-Vision-Based Control for Precise Reaching Motion of Upper Limb.

    PubMed

    Oguntosin, Victoria W; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments.

  13. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation—Vision-Based Control for Precise Reaching Motion of Upper Limb

    PubMed Central

    Oguntosin, Victoria W.; Mori, Yoshiki; Kim, Hyejong; Nasuto, Slawomir J.; Kawamura, Sadao; Hayashi, Yoshikatsu

    2017-01-01

    We demonstrated the design, production, and functional properties of the Exoskeleton Actuated by the Soft Modules (EAsoftM). Integrating the 3D printed exoskeleton with passive joints to compensate gravity and with active joints to rotate the shoulder and elbow joints resulted in ultra-light system that could assist planar reaching motion by using the vision-based control law. The EAsoftM can support the reaching motion with compliance realized by the soft materials and pneumatic actuation. In addition, the vision-based control law has been proposed for the precise control over the target reaching motion within the millimeter scale. Aiming at rehabilitation exercise for individuals, typically soft actuators have been developed for relatively small motions, such as grasping motion, and one of the challenges has been to extend their use for a wider range reaching motion. The proposed EAsoftM presented one possible solution for this challenge by transmitting the torque effectively along the anatomically aligned with a human body exoskeleton. The proposed integrated systems will be an ideal solution for neurorehabilitation where affordable, wearable, and portable systems are required to be customized for individuals with specific motor impairments. PMID:28736514

  14. Improving Vision

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Many people are familiar with the popular science fiction series Star Trek: The Next Generation, a show featuring a blind character named Geordi La Forge, whose visor-like glasses enable him to see. What many people do not know is that a product very similar to Geordi's glasses is available to assist people with vision conditions, and a NASA engineer's expertise contributed to its development. The JORDY(trademark) (Joint Optical Reflective Display) device, designed and manufactured by a privately-held medical device company known as Enhanced Vision, enables people with low vision to read, write, and watch television. Low vision, which includes macular degeneration, diabetic retinopathy, and glaucoma, describes eyesight that is 20/70 or worse, and cannot be fully corrected with conventional glasses.

  15. Supporting Real-Time Computer Vision Workloads using OpenVX on Multicore+GPU Platforms

    DTIC Science & Technology

    2015-05-01

    a registered trademark of the NVIDIA Corporation . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...from NVIDIA , we adapted an alpha- version of an NVIDIA OpenVX implementation called VisionWorks® [3] to run atop PGMRT (a graph-based mid- dleware...time support to an OpenVX implementation by NVIDIA called VisionWorks. Our modifications were applied to an alpha-version of VisionWorks. This alpha

  16. Echoes of the Vision: When the Rest of the Organization Talks Total Quality.

    ERIC Educational Resources Information Center

    Fairhurst, Gail T.

    1993-01-01

    Describes a case study of an organization that recently began implementing W. E. Deming's Total Quality (TQ). Finds and discusses five framing devices used in routine work conversations between leaders and members to implement the TQ vision: communicated predicaments, possible futures, jargon and vision themes, positive spin, and agenda setting.…

  17. Translational behavioral medicine for population and individual health: gaps, opportunities, and vision for practice-based translational behavior change research.

    PubMed

    Ma, Jun; Lewis, Megan A; Smyth, Joshua M

    2018-04-12

    In this commentary, we propose a vision for "practice-based translational behavior change research," which we define as clinical and public health practice-embedded research on the implementation, optimization, and fundamental mechanisms of behavioral interventions. This vision intends to be inclusive of important research elements for behavioral intervention development, testing, and implementation. We discuss important research gaps and conceptual and methodological advances in three key areas along the discovery (development) to delivery (implementation) continuum of evidence-based interventions to improve behavior and health that could help achieve our vision of practice-based translational behavior change research. We expect our proposed vision to be refined and evolve over time. Through highlighting critical gaps that can be addressed by integrating modern theoretical and methodological approaches across disciplines in behavioral medicine, we hope to inspire the development and funding of innovative research on more potent and implementable behavior change interventions for optimal population and individual health.

  18. The joint center for energy storage research: A new paradigm for battery research and development

    NASA Astrophysics Data System (ADS)

    Crabtree, George

    2015-03-01

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

  19. Using Multiple FPGA Architectures for Real-time Processing of Low-level Machine Vision Functions

    Treesearch

    Thomas H. Drayer; William E. King; Philip A. Araman; Joseph G. Tront; Richard W. Conners

    1995-01-01

    In this paper, we investigate the use of multiple Field Programmable Gate Array (FPGA) architectures for real-time machine vision processing. The use of FPGAs for low-level processing represents an excellent tradeoff between software and special purpose hardware implementations. A library of modules that implement common low-level machine vision operations is presented...

  20. The 3-D vision system integrated dexterous hand

    NASA Technical Reports Server (NTRS)

    Luo, Ren C.; Han, Youn-Sik

    1989-01-01

    Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object.

  1. Study on the special vision sensor for detecting position error in robot precise TIG welding of some key part of rocket engine

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzeng; Chen, Nian; Wang, Bin; Cao, Yipeng

    2005-01-01

    Rocket engine is a hard-core part of aerospace transportation and thrusting system, whose research and development is very important in national defense, aviation and aerospace. A novel vision sensor is developed, which can be used for error detecting in arc length control and seam tracking in precise pulse TIG welding of the extending part of the rocket engine jet tube. The vision sensor has many advantages, such as imaging with high quality, compactness and multiple functions. The optics design, mechanism design and circuit design of the vision sensor have been described in detail. Utilizing the mirror imaging of Tungsten electrode in the weld pool, a novel method is proposed to detect the arc length and seam tracking error of Tungsten electrode to the center line of joint seam from a single weld image. A calculating model of the method is proposed according to the relation of the Tungsten electrode, weld pool, the mirror of Tungsten electrode in weld pool and joint seam. The new methodologies are given to detect the arc length and seam tracking error. Through analyzing the results of the experiments, a system error modifying method based on a linear function is developed to improve the detecting precise of arc length and seam tracking error. Experimental results show that the final precision of the system reaches 0.1 mm in detecting the arc length and the seam tracking error of Tungsten electrode to the center line of joint seam.

  2. The role of vision, speed, and attention in overcoming directional biases during arm movements.

    PubMed

    Dounskaia, Natalia; Goble, Jacob A

    2011-03-01

    Previous research has revealed directional biases (preferences to select movements in specific directions) during horizontal arm movements with the use of a free-stroke drawing task. The biases were interpreted as a result of a tendency to generate motion at either the shoulder or elbow (leading joint) and move the other (subordinate) joint predominantly passively to avoid neural effort for control of interaction torque. Here, we examined influence of vision, movement speed, and attention on the directional biases. Participants performed the free-stroke drawing task, producing center-out strokes in randomly selected directions. Movements were performed with and without vision and at comfortable and fast pace. A secondary, cognitive task was used to distract attention. Preferred directions remained the same in all conditions. Bias strength mildly increased without vision, especially during fast movements. Striking increases in bias strength were caused by the secondary task, pointing to additional cognitive load associated with selection of movements in the non-preferred directions. Further analyses demonstrated that the tendency to minimize active interference with interaction torque at the subordinate joint matched directional biases in all conditions. This match supports the explanation of directional biases as a result of a tendency to minimize neural effort for interaction torque control. The cognitive load may enhance this tendency in two ways, directly, by reducing neural capacity for interaction torque control, and indirectly, by decreasing capacity of working memory that stores visited directions. The obtained results suggest strong directional biases during daily activities because natural arm movements usually subserve cognitive tasks.

  3. A Vision-Based Driver Nighttime Assistance and Surveillance System Based on Intelligent Image Sensing Techniques and a Heterogamous Dual-Core Embedded System Architecture

    PubMed Central

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system. PMID:22736956

  4. A vision-based driver nighttime assistance and surveillance system based on intelligent image sensing techniques and a heterogamous dual-core embedded system architecture.

    PubMed

    Chen, Yen-Lin; Chiang, Hsin-Han; Chiang, Chuan-Yen; Liu, Chuan-Ming; Yuan, Shyan-Ming; Wang, Jenq-Haur

    2012-01-01

    This study proposes a vision-based intelligent nighttime driver assistance and surveillance system (VIDASS system) implemented by a set of embedded software components and modules, and integrates these modules to accomplish a component-based system framework on an embedded heterogamous dual-core platform. Therefore, this study develops and implements computer vision and sensing techniques of nighttime vehicle detection, collision warning determination, and traffic event recording. The proposed system processes the road-scene frames in front of the host car captured from CCD sensors mounted on the host vehicle. These vision-based sensing and processing technologies are integrated and implemented on an ARM-DSP heterogamous dual-core embedded platform. Peripheral devices, including image grabbing devices, communication modules, and other in-vehicle control devices, are also integrated to form an in-vehicle-embedded vision-based nighttime driver assistance and surveillance system.

  5. A New Vector for Air Force Development of Joint Leaders

    DTIC Science & Technology

    2010-05-26

    congressional sanction and a formal definition by the President, the JCS was comprised of the US counterparts to the British leaders of the army, navy, and...hostages held in the US Embassy in Tehran. The operation ended in disaster at the Desert One landing zone when a Navy helicopter piloted by marines...minded, critical thinkers.” The CJCS vision focuses building a pool of joint generalists by inculcation of jointness at the rank of colonel and

  6. The joint center for energy storage research: A new paradigm for battery research and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George

    2015-03-30

    The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomesmore » or legacies and first year accomplishments.« less

  7. Property-driven functional verification technique for high-speed vision system-on-chip processor

    NASA Astrophysics Data System (ADS)

    Nshunguyimfura, Victor; Yang, Jie; Liu, Liyuan; Wu, Nanjian

    2017-04-01

    The implementation of functional verification in a fast, reliable, and effective manner is a challenging task in a vision chip verification process. The main reason for this challenge is the stepwise nature of existing functional verification techniques. This vision chip verification complexity is also related to the fact that in most vision chip design cycles, extensive efforts are focused on how to optimize chip metrics such as performance, power, and area. Design functional verification is not explicitly considered at an earlier stage at which the most sound decisions are made. In this paper, we propose a semi-automatic property-driven verification technique. The implementation of all verification components is based on design properties. We introduce a low-dimension property space between the specification space and the implementation space. The aim of this technique is to speed up the verification process for high-performance parallel processing vision chips. Our experimentation results show that the proposed technique can effectively improve the verification effort up to 20% for the complex vision chip design while reducing the simulation and debugging overheads.

  8. Joint Vision 2010 Command and Control: A Case for Standing Joint Task Forces and Purple Aircraft Carriers

    DTIC Science & Technology

    1998-02-13

    the Department of Joint Military Operations. The contents of this paper reflect my personal views and are not necessarily endorsed by the ...reflect my own personal views and are not necessarily endorsed by the NWC or the Department of the Navy. 14. Ten key words that relate to your paper...Contrast, for example, the redundant following quotes. In one recent article the CNO stressed, The real challenge is in changing our way of

  9. Superintendent Leadership and Districtwide Vision.

    ERIC Educational Resources Information Center

    Lilly, Edward R.

    The concept of superintendent "vision" as a key element of effective leadership is discussed in this paper, which develops a framework for understanding the creation of vision, its implementation and articulation, and organizational impact. Vision differs from strategy in that it represents a set of beliefs about the school district's aspiring…

  10. The Jeffersonian Vision of Legal Education.

    ERIC Educational Resources Information Center

    Douglas, Davison M.

    2001-01-01

    Explores the Jeffersonian vision of legal education. Examines methods of training lawyers in colonial America, noting that colleges offered no such instruction. Considers Jefferson's vision of the role of education in sustaining a republican form of government and describes the implementation of his vision of legal education first at the college…

  11. Vision Hampton Roads : strategy committee minutes & attendance.

    DOT National Transportation Integrated Search

    2010-02-22

    February 20, 2009 : HRP Executive Committee Meeting, Looking Back, Looking Forward : March 20, 2009 : HRP Board Meeting, Accolades & Action, Doing Things Jointly with Comprehensive : Economic Development Strategies : April 17,...

  12. Evidence Based Medicine in Space Flight: Evaluation of Inflight Vision Data for Operational Decision-Making

    NASA Technical Reports Server (NTRS)

    Van Baalen, Mary; Mason, Sara; Foy, Millennia; Wear, Mary; Taiym, Wafa; Moynihan, Shannan; Alexander, David; Hart, Steve; Tarver, William

    2015-01-01

    Due to recently identified vision changes associated with space flight, JSC Space and Clinical Operations (SCO) implemented broad mission-related vision testing starting in 2009. Optical Coherence Tomography (OCT), 3 Tesla Brain and Orbit MRIs, Optical Biometry were implemented terrestrially for clinical monitoring. While no inflight vision testing was in place, already available onorbit technology was leveraged to facilitate in-flight clinical monitoring, including visual acuity, Amsler grid, tonometry, and ultrasonography. In 2013, on-orbit testing capabilities were expanded to include contrast sensitivity testing and OCT. As these additional testing capabilities have been added, resource prioritization, particularly crew time, is under evaluation.

  13. Autoinflammatory Diseases

    MedlinePlus

    ... damage. Vision loss. Hearing loss. Mental retardation. Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS) is associated ... red spots on the skin caused by burst blood vessels (purpura). Joint pain. Permanent shortening of a muscle ...

  14. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    PubMed Central

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187

  15. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    PubMed

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  16. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    NASA Astrophysics Data System (ADS)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  17. A Joint Vision for Secondary and Higher Education for All in Europe: The Road towards Realising Sustainable Development Goal 4 in Europe

    ERIC Educational Resources Information Center

    European Students' Union, 2016

    2016-01-01

    The present joint action programme is proposed by the Organising Bureau of European School Student Unions (OBESSU), the European Students' Union (ESU), and Education International (EI) to their members and partners, in order to advance the 2030 Agenda for Sustainable Development and its 17 related goals, which the United Nations adopted in…

  18. The South Atlantic Migratory Bird Initiative – An Integrated Approach to Conservation of "All Birds Across All Habitats"

    Treesearch

    Craig Watson; Chuck Hayes; Joseph McCauley; Andrew Milliken

    2005-01-01

    In 1999, the Management Board of the Atlantic Coast Joint Venture (ACJV) embraced the vision and framework of the then newly emerging North American Bird Conservation Initiative (NABCI). Traditionally a Joint Venture focused on the conservation of waterfowl and wetlands habitat, the ACJV expanded its role throughout the Atlantic Flyway to all resident and migratory...

  19. Global Methods for Image Motion Analysis

    DTIC Science & Technology

    1992-10-01

    a variant of the same error function as in Adiv [2]. Another related approach was presented by Maybank [46,45]. Nearly all researchers in motion...with an application to stereo vision. In Proc. 7th Intern. Joint Conference on AI, pages 674{679, Vancouver, 1981. [45] S. J. Maybank . Algorithm for...analysing optical ow based on the least-squares method. Image and Vision Computing, 4:38{42, 1986. [46] S. J. Maybank . A Theoretical Study of Optical

  20. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.

    PubMed

    Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen

    2016-01-01

    This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for neurorehabilitation are discussed.

  1. From micro to macro: assessing implementation of integrated care in Australia.

    PubMed

    Angus, Lisa; Valentijn, Pim P

    2018-03-01

    Many countries and health systems are pursuing integrated care as a means of achieving better outcomes. However, no standard approaches exist for comparing integration approaches across models or settings, and for evaluating whether the key components of integrated care are present in different initiatives. This study sheds light on how integrated care is being implemented in Australia, using a new tool to characterise and compare integration strategies at micro, meso and macro levels. In total, 114 staff from a purposive sample of 38 integrated care projects completed a survey based on the Rainbow Model of Integrated Care. Ten key informants gave follow-up interviews. Participating projects reported using multiple strategies to implement integrated care, but descriptions of implementation were often inconsistent. Micro-level strategies, including clinical-professional service coordination and person-centred care, were most commonly reported. A common vision was often described as an essential foundation for joint work. However, performance feedback appeared under-utilised, as did strategies requiring macro-level action such as data linkages or payment reform. The results suggest that current integrated care efforts are unevenly weighted towards micro-level strategies. Increased attention to macro-level strategies may be warranted in order to accelerate progress and sustain integrated care in Australia.

  2. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    NASA Technical Reports Server (NTRS)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  3. Individual vision and peak distribution in collective actions

    NASA Astrophysics Data System (ADS)

    Lu, Peng

    2017-06-01

    People make decisions on whether they should participate as participants or not as free riders in collective actions with heterogeneous visions. Besides of the utility heterogeneity and cost heterogeneity, this work includes and investigates the effect of vision heterogeneity by constructing a decision model, i.e. the revised peak model of participants. In this model, potential participants make decisions under the joint influence of utility, cost, and vision heterogeneities. The outcomes of simulations indicate that vision heterogeneity reduces the values of peaks, and the relative variance of peaks is stable. Under normal distributions of vision heterogeneity and other factors, the peaks of participants are normally distributed as well. Therefore, it is necessary to predict distribution traits of peaks based on distribution traits of related factors such as vision heterogeneity and so on. We predict the distribution of peaks with parameters of both mean and standard deviation, which provides the confident intervals and robust predictions of peaks. Besides, we validate the peak model of via the Yuyuan Incident, a real case in China (2014), and the model works well in explaining the dynamics and predicting the peak of real case.

  4. The Eye and Learning Disabilities

    ERIC Educational Resources Information Center

    Sight-Saving Review, 1971

    1971-01-01

    A joint organizational statement on vision and therapy for learning disabilities and dyslexia is presented by the American Academy of Pediatrics, the American Academy of Ophthalmology and Otolaryngology, and the American Association of Ophthalmology. (CB)

  5. Focused Logistics, Joint Vision 2010: A Joint Logistics Roadmap

    DTIC Science & Technology

    2010-01-01

    AIS). AIT devices include bar codes for individual items, optical memory cards for multipacks and containers, radio frequency tags for containers and...Fortezza Card and Firewall technologies are being developed to prevent unau- thorized access. As for infrastructure, DISA has already made significant in...radio frequency tags and optical memory cards , to continuously update the JTAV database. By September 1998, DSS will be deployed in all wholesale

  6. Multimodal Cues in the Socialization of Joint Attention in Young Children with Varying Degrees of Vision: Getting the POINT Even When You Can't See It

    ERIC Educational Resources Information Center

    Rickard, Carolyn

    2013-01-01

    Research on joint attention and language learning has focused primarily on cues requiring visual access. However, this narrow focus cannot account for the emergence of language among some congenitally blind children who develop language on the same developmental timescale as their sighted peers. Findings from this longitudinal, retrospective study…

  7. Image Registration-Based Bolt Loosening Detection of Steel Joints

    PubMed Central

    2018-01-01

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts. PMID:29597264

  8. Image Registration-Based Bolt Loosening Detection of Steel Joints.

    PubMed

    Kong, Xiangxiong; Li, Jian

    2018-03-28

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts.

  9. Use of 3D vision for fine robot motion

    NASA Technical Reports Server (NTRS)

    Lokshin, Anatole; Litwin, Todd

    1989-01-01

    An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.

  10. The PULSE Vision & Change Rubrics, Version 1.0: A Valid and Equitable Tool to Measure Transformation of Life Sciences Departments at All Institution Types

    ERIC Educational Resources Information Center

    Brancaccio-Taras, Loretta; Pape-Lindstrom, Pamela; Peteroy-Kelly, Marcy; Aguirre, Karen; Awong-Taylor, Judy; Balser, Teri; Cahill, Michael J.; Frey, Regina F.; Jack, Thomas; Kelrick, Michael; Marley, Kate; Miller, Kathryn G.; Osgood, Marcy; Romano, Sandra; Uzman, J. Akif; Zhao, Jiuqing

    2016-01-01

    The PULSE Vision & Change Rubrics, version 1.0, assess life sciences departments' progress toward implementation of the principles of the "Vision and Change report." This paper reports on the development of the rubrics, their validation, and their reliability in measuring departmental change aligned with the "Vision and…

  11. Encouragement for Faculty to Implement "Vision and Change"

    ERIC Educational Resources Information Center

    Harvey, Caylyn; Eshleman, Kristen; Koo, Kyosung; Smith, Kevin G.; Paradise, Christopher J.; Campbell, A. Malcolm

    2016-01-01

    The seminal report "Vision and Change" outlined improvements necessary for undergraduate biology courses to accomplish widely recognized learning objectives. Over the past 8 years, we have developed a two-semester introductory biology course that incorporates the core concepts and competencies recommended in "Vision and…

  12. An embedded vision system for an unmanned four-rotor helicopter

    NASA Astrophysics Data System (ADS)

    Lillywhite, Kirt; Lee, Dah-Jye; Tippetts, Beau; Fowers, Spencer; Dennis, Aaron; Nelson, Brent; Archibald, James

    2006-10-01

    In this paper an embedded vision system and control module is introduced that is capable of controlling an unmanned four-rotor helicopter and processing live video for various law enforcement, security, military, and civilian applications. The vision system is implemented on a newly designed compact FPGA board (Helios). The Helios board contains a Xilinx Virtex-4 FPGA chip and memory making it capable of implementing real time vision algorithms. A Smooth Automated Intelligent Leveling daughter board (SAIL), attached to the Helios board, collects attitude and heading information to be processed in order to control the unmanned helicopter. The SAIL board uses an electrolytic tilt sensor, compass, voltage level converters, and analog to digital converters to perform its operations. While level flight can be maintained, problems stemming from the characteristics of the tilt sensor limits maneuverability of the helicopter. The embedded vision system has proven to give very good results in its performance of a number of real-time robotic vision algorithms.

  13. Strategic Options for International Participation in Space Exploration: Lessons from U.S.-Japan Defense Cooperation

    NASA Technical Reports Server (NTRS)

    Hudiburg, John J.; Chinworth, Michael W.

    2005-01-01

    The President's Commission on Implementation of United States Space Exploration Policy suggests that after NASA establishes the Space Exploration vision architecture, it should pursue international partnerships. Two possible approaches were suggested: multiple independently operated missions and an integrated mission with carefully selected international components. The U.S.-Japan defense sectors have learned key lessons from experience with both of these approaches. U.S.-Japan defense cooperation has evolved over forty years from simple military assistance programs to more complex joint development efforts. With the evolution of the political-military alliance and the complexity of defense programs, these cooperative efforts have engaged increasingly industrial resources and capabilities as well as more sophisticated forms of planning, technology transfers and program management. Some periods of this evolution have been marked by significant frictions. The U.S.Japan FS-X program, for example, provides a poor example for management of international cooperation. In November 1988, the United States and Japan signed a Memorandum of Understanding (MOU) to co-develop an aircraft, named FS-X and later renamed F -2, as a replacement to the aging Japan support fighter F-l. The program was marked by numerous political disputes. After over a decade of joint development and testing, F -2 production deliveries finally began in 1999. The production run was curtailed due to much higher than anticipated costs and less than desired aircraft performance. One universally agreed "lesson" from the FSX/F-2 case was that it did not represent the ideal approach to bilateral cooperation. More recent cooperative programs have involved targeted joint research and development, including component development for ballistic missile defense systems. These programs could lay the basis for more ambitious cooperative efforts. This study examines both less-than-stellar international cooperation efforts as well as more successful initiatives to identify lessons from military programs that can help NASA encourage global investment in its Space Exploration Vision. The paper establishes a basis for examining related policy and industrial concerns such as effective utilization of dual-use technologies and trans-Pacific program management of large, complex cooperative programs.

  14. Data-driven approach to human motion modeling with Lua and gesture description language

    NASA Astrophysics Data System (ADS)

    Hachaj, Tomasz; Koptyra, Katarzyna; Ogiela, Marek R.

    2017-03-01

    The aim of this paper is to present the novel proposition of the human motion modelling and recognition approach that enables real time MoCap signal evaluation. By motions (actions) recognition we mean classification. The role of this approach is to propose the syntactic description procedure that can be easily understood, learnt and used in various motion modelling and recognition tasks in all MoCap systems no matter if they are vision or wearable sensor based. To do so we have prepared extension of Gesture Description Language (GDL) methodology that enables movements description and real-time recognition so that it can use not only positional coordinates of body joints but virtually any type of discreetly measured output MoCap signals like accelerometer, magnetometer or gyroscope. We have also prepared and evaluated the cross-platform implementation of this approach using Lua scripting language and JAVA technology. This implementation is called Data Driven GDL (DD-GDL). In tested scenarios the average execution speed is above 100 frames per second which is an acquisition time of many popular MoCap solutions.

  15. VLSI chips for vision-based vehicle guidance

    NASA Astrophysics Data System (ADS)

    Masaki, Ichiro

    1994-02-01

    Sensor-based vehicle guidance systems are gathering rapidly increasing interest because of their potential for increasing safety, convenience, environmental friendliness, and traffic efficiency. Examples of applications include intelligent cruise control, lane following, collision warning, and collision avoidance. This paper reviews the research trends in vision-based vehicle guidance with an emphasis on VLSI chip implementations of the vision systems. As an example of VLSI chips for vision-based vehicle guidance, a stereo vision system is described in detail.

  16. Vision 2020 - the right to sight.

    PubMed

    Resnikoff, S; Kocur, I; Etya'ale, D E; Ukety, T O

    2008-09-01

    The unprecedented partnership for onchocerciasis control that followed Merck's decision to donate Mectizan has inspired the formation of a global initiative for the elimination of all avoidable blindness by the year 2020. 'Vision 2020, the Right to Sight', jointly co-ordinated by the World Health Organization's Programme for the Prevention of Blindness and Deafness and the International Agency for the Prevention of Blindness, was launched in 1999. This initiative's three pillars are disease control, human resource development, and infrastructure development. Vision 2020's achievements to date include the growth of the partnership, to include more than 60 member organizations, the revitalization of prevention activities, the completion of Vision-2020 plans in 40% of all countries and a reduction not only of blindness caused by onchocerciasis but also of blindness caused by trachoma. Cataract remains the leading cause of avoidable blindness.

  17. Implementing the President's Vision: JPL and NASA's Exploration Systems Mission Directorate

    NASA Technical Reports Server (NTRS)

    Sander, Michael J.

    2006-01-01

    As part of the NASA team the Jet Propulsion Laboratory is involved in the Exploration Systems Mission Directorate (ESMD) work to implement the President's Vision for Space exploration. In this slide presentation the roles that are assigned to the various NASA centers to implement the vision are reviewed. The plan for JPL is to use the Constellation program to advance the combination of science an Constellation program objectives. JPL's current participation is to contribute systems engineering support, Command, Control, Computing and Information (C3I) architecture, Crew Exploration Vehicle, (CEV) Thermal Protection System (TPS) project support/CEV landing assist support, Ground support systems support at JSC and KSC, Exploration Communication and Navigation System (ECANS), Flight prototypes for cabin atmosphere instruments

  18. Post-Traumatic Stress Disorder and the Earnings of Military Reservists

    DTIC Science & Technology

    2013-01-01

    such as back pain, fever , rash, and vision problems. After controlling 1 The fact that the PDHA PTSD screen differs from that used by Savoca and...problems Back pain –306**   (100) Chest pain –1,018**   (147) Chronic cough –341*   (136) Diarrhea 48   (107) Fever 538**   (149) Joint problems 108...problems associated with PTSD (for example, fevers and vision problems). However, conditions that tend to co-occur with PTSD, such as memory problems

  19. Operation CHROMITE (INCHON), Offensive, Amphibious Assault, Joint, 15 September 1950

    DTIC Science & Technology

    1984-05-23

    veterans and supported by over 210 [103 pI combat aircraft. (O’Ballance, p. 25) So this was the military system that procured the North Korean military...one; and, the commander then decides which course to adopt. INCHON was a product of MacArthur’s strategic vision. To K make that vision a reality he... systems radiate from Seoul to the east, north, and south. A force which controls Seoul controls the transportation arteries. (X Corps, p. 5) Seoul

  20. Proceedings of the July 2011 Traceability Research Summit.

    PubMed

    Newsome, Rosetta L; Bhatt, Tejas; McEntire, Jennifer C

    2013-12-01

    At a discussion-based forum of 50 leaders in the area of food product tracing, participants recognized the need for the development of a common vision for a simple, low cost and implementable traceability approach. A key theme that emerged during the day's discussions revolved around not reinventing the wheel: there are many efforts underway, including numerous pilots, and these efforts should be collaborative. The group sought more information on current initiatives and felt that learning from the experiences of others could help form a realistic vision for the future. Although any forthcoming actions from the US FDA are unknown, industry fully expects that improvements in product tracing will be necessary, and expects that industry itself (through the "demand" side) will enact requirements that may surpass regulatory mandates. A chief concern is uniform adoption, which will require outreach to and support from the global community as well as small firms that may lack the resources and education to keep up. Ultimately, an approach that is global, economical, scalable, and inclusive of firms of all sizes who handles all types of food products, will have the greatest likelihood of success. While the ability to rapidly link products across the supply chain serves as an ideal goal, there are still substantial concerns to be addressed, particularly regarding confidentiality of data, and who will have access to what information under what circumstances, which was woven into virtually every discussion topic. Who will spearhead the development of the visions is a question, but there was general agreement that a joint partnership which includes all stakeholders is a necessity. © 2012 Institute of Food Technologists®

  1. Implementation of a robotic flexible assembly system

    NASA Technical Reports Server (NTRS)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  2. Exploration Requirements Development Utilizing the Strategy-to-Task-to-Technology Development Approach

    NASA Technical Reports Server (NTRS)

    Drake, Bret G.; Josten, B. Kent; Monell, Donald W.

    2004-01-01

    The Vision for Space Exploration provides direction for the National Aeronautics and Space Administration to embark on a robust space exploration program that will advance the Nation s scientific, security, and economic interests. This plan calls for a progressive expansion of human capabilities beyond low earth orbit seeking to answer profound scientific and philosophical questions while responding to discoveries along the way. In addition, the Vision articulates the strategy for developing the revolutionary new technologies and capabilities required for the future exploration of the solar system. The National Aeronautics and Space Administration faces new challenges in successfully implementing the Vision. In order to implement a sustained and affordable exploration endeavor it is vital for NASA to do business differently. This paper provides an overview of the strategy-to-task-to-technology process being used by NASA s Exploration Systems Mission Directorate to develop the requirements and system acquisition details necessary for implementing a sustainable exploration vision.

  3. JCESR: Moving Beyond Lithium-Ion

    ScienceCinema

    Zavadil, Kevin; Crabtree, George; Gallagher, Kevin; Trahey, Lynn; Srinivasan, Venkat; Chiang, Yet-Ming; Chamberlain, Jeff

    2018-01-16

    The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic, and industrial researchers from many disciplines. JCESR's vision is to transform transportation and the electricity grid with high-performance, low cost energy storage.

  4. Accelerating the Development of 21st-Century Toxicology: Outcome of a Human Toxicology Project Consortium Workshop

    PubMed Central

    Stephens, Martin L.; Barrow, Craig; Andersen, Melvin E.; Boekelheide, Kim; Carmichael, Paul L.; Holsapple, Michael P.; Lafranconi, Mark

    2012-01-01

    The U.S. National Research Council (NRC) report on “Toxicity Testing in the 21st century” calls for a fundamental shift in the way that chemicals are tested for human health effects and evaluated in risk assessments. The new approach would move toward in vitro methods, typically using human cells in a high-throughput context. The in vitro methods would be designed to detect significant perturbations to “toxicity pathways,” i.e., key biological pathways that, when sufficiently perturbed, lead to adverse health outcomes. To explore progress on the report’s implementation, the Human Toxicology Project Consortium hosted a workshop on 9–10 November 2010 in Washington, DC. The Consortium is a coalition of several corporations, a research institute, and a non-governmental organization dedicated to accelerating the implementation of 21st-century Toxicology as aligned with the NRC vision. The goal of the workshop was to identify practical and scientific ways to accelerate implementation of the NRC vision. The workshop format consisted of plenary presentations, breakout group discussions, and concluding commentaries. The program faculty was drawn from industry, academia, government, and public interest organizations. Most presentations summarized ongoing efforts to modernize toxicology testing and approaches, each with some overlap with the NRC vision. In light of these efforts, the workshop identified recommendations for accelerating implementation of the NRC vision, including greater strategic coordination and planning across projects (facilitated by a steering group), the development of projects that test the proof of concept for implementation of the NRC vision, and greater outreach and communication across stakeholder communities. PMID:21948868

  5. Neural Networks for Computer Vision: A Framework for Specifications of a General Purpose Vision System

    NASA Astrophysics Data System (ADS)

    Skrzypek, Josef; Mesrobian, Edmond; Gungner, David J.

    1989-03-01

    The development of autonomous land vehicles (ALV) capable of operating in an unconstrained environment has proven to be a formidable research effort. The unpredictability of events in such an environment calls for the design of a robust perceptual system, an impossible task requiring the programming of a system bases on the expectation of future, unconstrained events. Hence, the need for a "general purpose" machine vision system that is capable of perceiving and understanding images in an unconstrained environment in real-time. The research undertaken at the UCLA Machine Perception Laboratory addresses this need by focusing on two specific issues: 1) the long term goals for machine vision research as a joint effort between the neurosciences and computer science; and 2) a framework for evaluating progress in machine vision. In the past, vision research has been carried out independently within different fields including neurosciences, psychology, computer science, and electrical engineering. Our interdisciplinary approach to vision research is based on the rigorous combination of computational neuroscience, as derived from neurophysiology and neuropsychology, with computer science and electrical engineering. The primary motivation behind our approach is that the human visual system is the only existing example of a "general purpose" vision system and using a neurally based computing substrate, it can complete all necessary visual tasks in real-time.

  6. A conceptual model for vision rehabilitation

    PubMed Central

    Roberts, Pamela S.; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August

    2017-01-01

    Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines. PMID:27997671

  7. A conceptual model for vision rehabilitation.

    PubMed

    Roberts, Pamela S; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August

    2016-01-01

    Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines.

  8. Defense Science Board 1998 Summer Study. Joint Operations Superiority in the 21st Century: Integrating Capabilities Underwriting Joint Vision 2010 and Beyond. Volume 2: Supporting Reports

    DTIC Science & Technology

    1998-10-01

    of motivation , acculturation, education, training and potentially action. This is a process of years. The timelines associated with each level of...payload and approximately $5K cost). This backpack robot clearly is most suited to visual scouting of threatening environments, including inside...Organic Man Portable, Ground Vehicle Backpack , Reusable Launch Techniques Command, Telemetry, and Image Return Deployment VTOL, Ship-Capable Autonomous

  9. Robust Hand Motion Tracking through Data Fusion of 5DT Data Glove and Nimble VR Kinect Camera Measurements

    PubMed Central

    Arkenbout, Ewout A.; de Winter, Joost C. F.; Breedveld, Paul

    2015-01-01

    Vision based interfaces for human computer interaction have gained increasing attention over the past decade. This study presents a data fusion approach of the Nimble VR vision based system, using the Kinect camera, with the contact based 5DT Data Glove. Data fusion was achieved through a Kalman filter. The Nimble VR and filter output were compared using measurements performed on (1) a wooden hand model placed in various static postures and orientations; and (2) three differently sized human hands during active finger flexions. Precision and accuracy of joint angle estimates as a function of hand posture and orientation were determined. Moreover, in light of possible self-occlusions of the fingers in the Kinect camera images, data completeness was assessed. Results showed that the integration of the Data Glove through the Kalman filter provided for the proximal interphalangeal (PIP) joints of the fingers a substantial improvement of 79% in precision, from 2.2 deg to 0.9 deg. Moreover, a moderate improvement of 31% in accuracy (being the mean angular deviation from the true joint angle) was established, from 24 deg to 17 deg. The metacarpophalangeal (MCP) joint was relatively unaffected by the Kalman filter. Moreover, the Data Glove increased data completeness, thus providing a substantial advantage over the sole use of the Nimble VR system. PMID:26694395

  10. Robust Hand Motion Tracking through Data Fusion of 5DT Data Glove and Nimble VR Kinect Camera Measurements.

    PubMed

    Arkenbout, Ewout A; de Winter, Joost C F; Breedveld, Paul

    2015-12-15

    Vision based interfaces for human computer interaction have gained increasing attention over the past decade. This study presents a data fusion approach of the Nimble VR vision based system, using the Kinect camera, with the contact based 5DT Data Glove. Data fusion was achieved through a Kalman filter. The Nimble VR and filter output were compared using measurements performed on (1) a wooden hand model placed in various static postures and orientations; and (2) three differently sized human hands during active finger flexions. Precision and accuracy of joint angle estimates as a function of hand posture and orientation were determined. Moreover, in light of possible self-occlusions of the fingers in the Kinect camera images, data completeness was assessed. Results showed that the integration of the Data Glove through the Kalman filter provided for the proximal interphalangeal (PIP) joints of the fingers a substantial improvement of 79% in precision, from 2.2 deg to 0.9 deg. Moreover, a moderate improvement of 31% in accuracy (being the mean angular deviation from the true joint angle) was established, from 24 deg to 17 deg. The metacarpophalangeal (MCP) joint was relatively unaffected by the Kalman filter. Moreover, the Data Glove increased data completeness, thus providing a substantial advantage over the sole use of the Nimble VR system.

  11. Navy CALS Vision. Draft 2.0. Volume 25

    DOT National Transportation Integrated Search

    1990-10-01

    Computer-aided Acquisition and Logistic Support (CALS) is a joint initiative between industry and the Department of Defense (DoD) that is targeted at: (1) Improving designs for weapon systems; (2) Reducing both acquisition and logistic support costs ...

  12. Automatic human body modeling for vision-based motion capture system using B-spline parameterization of the silhouette

    NASA Astrophysics Data System (ADS)

    Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.

    2012-02-01

    Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.

  13. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  14. New Term, New Vision?

    ERIC Educational Resources Information Center

    Ravenhall, Mark

    2011-01-01

    During the affluent noughties it was sometimes said of government that it had "more visions than Mystic Meg and more pilots than British Airways". In 2011, the pilots, the pathfinders, the new initiatives are largely gone--implementation is the name of the game--but the visions remain. The latest one, as it affects adult learners, is in…

  15. Roles for County Offices of Education to Support College and Career Readiness: Bridging California's Vision with Local Implementation Needs. Policy Brief

    ERIC Educational Resources Information Center

    Lewis, Jodi; Nodine, Thad; Venezia, Andrea

    2017-01-01

    This brief focuses on the potential role of County Offices of Education (COEs) in bridging the state's vision for college and career readiness with the implementation needs of local districts and schools. After summarizing the work of 10 COEs that are known for supporting districts in increasing college and career readiness, the brief raises…

  16. A Common Vision: Teacher Quality Enhancement in the Middle Grades in Illinois. Collaborating for Success: Lessons Learned from Illinois' TQE Grant Implementation

    ERIC Educational Resources Information Center

    Klostermann, Brenda K.; Presley, Jennifer B.

    2005-01-01

    Findings are presented from our case study evaluating the implementation of the IBHE's federally funded grant, "A Common Vision: Teacher Quality Enhancement in the Middle Grades in Illinois." Four sites were examined in terms of how they organized to attain the grant goals, and what aspects of organizational culture and leadership…

  17. Unifying Faculty, Staff, Students, and Community by Establishing and Implementing a Unique Vision for a New Elementary School.

    ERIC Educational Resources Information Center

    Currie, John R.

    The principal of a newly opened elementary school implemented a practicum study designed to unify faculty, parents, staff, and children; add direction to the program; develop a sense of purpose; and increase participation. It was expected that a vision statement would be developed in the school's first year of operation, and that parents and staff…

  18. Trusted Truck(R) II (phase A).

    DOT National Transportation Integrated Search

    2009-01-01

    The Trusted Truck Program was initiated in 2003 as a joint effort by NTRCI, Volvo and UT. The vision of the Trusted Truck program is to develop a secure and "trusted" transport solution from pickup to delivery. The program's objective is to incre...

  19. Implementing An Image Understanding System Architecture Using Pipe

    NASA Astrophysics Data System (ADS)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  20. Computer vision camera with embedded FPGA processing

    NASA Astrophysics Data System (ADS)

    Lecerf, Antoine; Ouellet, Denis; Arias-Estrada, Miguel

    2000-03-01

    Traditional computer vision is based on a camera-computer system in which the image understanding algorithms are embedded in the computer. To circumvent the computational load of vision algorithms, low-level processing and imaging hardware can be integrated in a single compact module where a dedicated architecture is implemented. This paper presents a Computer Vision Camera based on an open architecture implemented in an FPGA. The system is targeted to real-time computer vision tasks where low level processing and feature extraction tasks can be implemented in the FPGA device. The camera integrates a CMOS image sensor, an FPGA device, two memory banks, and an embedded PC for communication and control tasks. The FPGA device is a medium size one equivalent to 25,000 logic gates. The device is connected to two high speed memory banks, an IS interface, and an imager interface. The camera can be accessed for architecture programming, data transfer, and control through an Ethernet link from a remote computer. A hardware architecture can be defined in a Hardware Description Language (like VHDL), simulated and synthesized into digital structures that can be programmed into the FPGA and tested on the camera. The architecture of a classical multi-scale edge detection algorithm based on a Laplacian of Gaussian convolution has been developed to show the capabilities of the system.

  1. A 16 x 16-pixel retinal-prosthesis vision chip with in-pixel digital image processing in a frequency domain by use of a pulse-frequency-modulation photosensor

    NASA Astrophysics Data System (ADS)

    Kagawa, Keiichiro; Furumiya, Tetsuo; Ng, David C.; Uehara, Akihiro; Ohta, Jun; Nunoshita, Masahiro

    2004-06-01

    We are exploring the application of pulse-frequency-modulation (PFM) photosensor to retinal prosthesis for the blind because behavior of PFM photosensors is similar to retinal ganglion cells, from which visual data are transmitted from the retina toward the brain. We have developed retinal-prosthesis vision chips that reshape the output pulses of the PFM photosensor to biphasic current pulses suitable for electric stimulation of retinal cells. In this paper, we introduce image-processing functions to the pixel circuits. We have designed a 16x16-pixel retinal-prosthesis vision chip with several kinds of in-pixel digital image processing such as edge enhancement, edge detection, and low-pass filtering. This chip is a prototype demonstrator of the retinal prosthesis vision chip applicable to in-vitro experiments. By utilizing the feature of PFM photosensor, we propose a new scheme to implement the above image processing in a frequency domain by digital circuitry. Intensity of incident light is converted to a 1-bit data stream by a PFM photosensor, and then image processing is executed by a 1-bit image processor based on joint and annihilation of pulses. The retinal prosthesis vision chip is composed of four blocks: a pixels array block, a row-parallel stimulation current amplifiers array block, a decoder block, and a base current generators block. All blocks except PFM photosensors and stimulation current amplifiers are embodied as digital circuitry. This fact contributes to robustness against noises and fluctuation of power lines. With our vision chip, we can control photosensitivity and intensity and durations of stimulus biphasic currents, which are necessary for retinal prosthesis vision chip. The designed dynamic range is more than 100 dB. The amplitude of the stimulus current is given by a base current, which is common for all pixels, multiplied by a value in an amplitude memory of pixel. Base currents of the negative and positive pulses are common for the all pixels, and they are set in a linear manner. Otherwise, the value in the amplitude memory of the pixel is presented in an exponential manner to cover the wide range. The stimulus currents are put out column by column by scanning. The pixel size is 240um x 240um. Each pixel has a bonding pad on which stimulus electrode is to be formed. We will show the experimental results of the test chip.

  2. Strengthening Teachers' Abilities to Implement a Vision Health Program in Taiwanese Schools

    ERIC Educational Resources Information Center

    Chang, L. C.; Liao, L. L.; Chen, M. I.; Niu, Y. Z.; Hsieh, P. L.

    2017-01-01

    We designed a school-based, nationwide program called the "New Era in Eye Health" to strengthen teacher training and to examine whether the existence of a government vision care policy influenced teachers' vision care knowledge and students' behavior. Baseline data and 3-month follow-up data were compared. A random sample of teachers (n…

  3. Two-Year Community: Implementing Vision and Change in a Community College Classroom

    ERIC Educational Resources Information Center

    Lysne, Steven; Miller, Brant

    2015-01-01

    The purpose of this article is to describe a model for teaching introductory biology coursework within the Vision and Change framework (American Association for the Advancement of Science, 2011). The intent of the new model is to transform instruction by adopting an active, student-centered, and inquiry-based pedagogy consistent with Vision and…

  4. Integrated Unmanned Air-Ground Robotics System, Volume 4

    DTIC Science & Technology

    2001-08-20

    3) IPT Integrated Product Team IRP Intermediate Power Rating JAUGS TBD JCDL TBD Joint Vision 2020 TBD Km Kilometer lbs. pounds MAE Mechanical and...compatible with emerging JCDL and/or JAUGS . 2.3.2.2. Payload must be “plug and play.” 2.3.3. Communications 2.3.3.1. System communications shall be robust...Power JCDL JAUGS Joint Architecture for Unmanned Ground Systems JP-8 Jet Propulsion Fuel 8 km Kilometer lbs. Pounds LOS Line Of Sight MAE Mechanical

  5. Vision-sensing image analysis for GTAW process control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, D.D.

    1994-11-01

    Image analysis of a gas tungsten arc welding (GTAW) process was completed using video images from a charge coupled device (CCD) camera inside a specially designed coaxial (GTAW) electrode holder. Video data was obtained from filtered and unfiltered images, with and without the GTAW arc present, showing weld joint features and locations. Data Translation image processing boards, installed in an IBM PC AT 386 compatible computer, and Media Cybernetics image processing software were used to investigate edge flange weld joint geometry for image analysis.

  6. Temporomandibular Joint Ankylosis: "A Pediatric Difficult Airway Management".

    PubMed

    Sharma, Anoop; Dwivedi, Deepak; Sharma, Ram Murti

    2018-01-01

    Intubating a pediatric patient with temporomandibular joint ankylosis is a daunting task, and it becomes more challenging with limited mouth opening. Fiberoptic nasotracheal intubation technique is considered a gold standard. We describe an improvised technique of securing airway in the absence of appropriate-sized fiberoptic scope. The endotracheal tube inserted in the left nostril for maintaining depth of anesthesia was advanced under vision by the fiberoptic scope inserted into the right nostril, and with external laryngeal manipulation, the airway was secured with no complications.

  7. Neural network expert system for X-ray analysis of welded joints

    NASA Astrophysics Data System (ADS)

    Kozlov, V. V.; Lapik, N. V.; Popova, N. V.

    2018-03-01

    The use of intelligent technologies for the automated analysis of product quality is one of the main trends in modern machine building. At the same time, rapid development in various spheres of human activity is experienced by methods associated with the use of artificial neural networks, as the basis for building automated intelligent diagnostic systems. Technologies of machine vision allow one to effectively detect the presence of certain regularities in the analyzed designation, including defects of welded joints according to radiography data.

  8. Vertically integrated photonic multichip module architecture for vision applications

    NASA Astrophysics Data System (ADS)

    Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong

    2000-05-01

    The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.

  9. Application of digital human modeling and simulation for vision analysis of pilots in a jet aircraft: a case study.

    PubMed

    Karmakar, Sougata; Pal, Madhu Sudan; Majumdar, Deepti; Majumdar, Dhurjati

    2012-01-01

    Ergonomic evaluation of visual demands becomes crucial for the operators/users when rapid decision making is needed under extreme time constraint like navigation task of jet aircraft. Research reported here comprises ergonomic evaluation of pilot's vision in a jet aircraft in virtual environment to demonstrate how vision analysis tools of digital human modeling software can be used effectively for such study. Three (03) dynamic digital pilot models, representative of smallest, average and largest Indian pilot population were generated from anthropometric database and interfaced with digital prototype of the cockpit in Jack software for analysis of vision within and outside the cockpit. Vision analysis tools like view cones, eye view windows, blind spot area, obscuration zone, reflection zone etc. were employed during evaluation of visual fields. Vision analysis tool was also used for studying kinematic changes of pilot's body joints during simulated gazing activity. From present study, it can be concluded that vision analysis tool of digital human modeling software was found very effective in evaluation of position and alignment of different displays and controls in the workstation based upon their priorities within the visual fields and anthropometry of the targeted users, long before the development of its physical prototype.

  10. Simplifying applications software for vision guided robot implementation

    NASA Technical Reports Server (NTRS)

    Duncheon, Charlie

    1994-01-01

    A simple approach to robot applications software is described. The idea is to use commercially available software and hardware wherever possible to minimize system costs, schedules and risks. The U.S. has been slow in the adaptation of robots and flexible automation compared to the fluorishing growth of robot implementation in Japan. The U.S. can benefit from this approach because of a more flexible array of vision guided robot technologies.

  11. Robust and efficient vision system for group of cooperating mobile robots with application to soccer robots.

    PubMed

    Klancar, Gregor; Kristan, Matej; Kovacic, Stanislav; Orqueda, Omar

    2004-07-01

    In this paper a global vision scheme for estimation of positions and orientations of mobile robots is presented. It is applied to robot soccer application which is a fast dynamic game and therefore needs an efficient and robust vision system implemented. General applicability of the vision system can be found in other robot applications such as mobile transport robots in production, warehouses, attendant robots, fast vision tracking of targets of interest and entertainment robotics. Basic operation of the vision system is divided into two steps. In the first, the incoming image is scanned and pixels are classified into a finite number of classes. At the same time, a segmentation algorithm is used to find corresponding regions belonging to one of the classes. In the second step, all the regions are examined. Selection of the ones that are a part of the observed object is made by means of simple logic procedures. The novelty is focused on optimization of the processing time needed to finish the estimation of possible object positions. Better results of the vision system are achieved by implementing camera calibration and shading correction algorithm. The former corrects camera lens distortion, while the latter increases robustness to irregular illumination conditions.

  12. 75 FR 28852 - Ninth Meeting: Joint RTCA Special Committee 213: EUROCAE WG-79: Enhanced Flight Vision Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... approach and landing. FOR FURTHER INFORMATION CONTACT: (1) RTCA Secretariat, 1828 L Street, NW., Suite 805, Washington, DC 20036; telephone (202) 833-9339; fax (202) 833-9434; Web site http://www.rtca.org...

  13. 76 FR 45311 - International Joint Commission Public Hearings on Binational Management of Lake of the Woods and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... United States of America and Canada under the 1909 Boundary Waters Treaty and pursues the common good of... summit convened by the IJC to encourage the development of a watershed vision, common goals and...

  14. National Action Plan Vision for 2025: A Framework for Change

    EPA Pesticide Factsheets

    The National Action Plan Vision establishes a goal of achieving all cost-effective energy efficiency by 2025 and presents 10 implementation goals as a framework for advancing its five key policy recommendations.

  15. The effect of vision on knee biomechanics during functional activities - A systematic review.

    PubMed

    Louw, Quinette; Gillion, Nadia; van Niekerk, Sjan-Mari; Morris, Linzette; Baumeister, Jochen

    2015-07-01

    The objective of this study was to assess the effect of occluded vision on lower limb kinematics and kinetics of the knee joint during functional tasks including drop landing (single or double leg), squatting (single or double leg), stepping down, cutting movement and hopping in healthy individuals, or individuals who had an ACL reconstruction or deficiency with no vision impairments. A systematic review was conducted. A systematic review was conducted and electronic databases were searched between March 2012 and April 2013 for eligible papers. Methodological quality of each study was assessed using the Downs and Black revised checklist. Six studies met the eligibility criteria and a wide variation in methodological approaches was reported. This small evidence base indicated equivocal evidence about the effect of vision on knee biomechanics in individuals with healthy and compromised somatosensory function post an ACL reconstruction or injury. Clinicians should consider innovative, individualised ACL rehabilitation strategies when prescribing exercises which involve visual occlusion. Further research to increase the relatively small evidence base for the effect of vision on knee biomechanics is warranted. Copyright © 2014 Sports Medicine Australia. All rights reserved.

  16. Trauma-Informed Part C Early Intervention: A Vision, A Challenge, A New Reality

    ERIC Educational Resources Information Center

    Gilkerson, Linda; Graham, Mimi; Harris, Deborah; Oser, Cindy; Clarke, Jane; Hairston-Fuller, Tody C.; Lertora, Jessica

    2013-01-01

    Federal directives require that any child less than 3 years old with a substantiated case of abuse be referred to the early intervention (EI) system. This article details the need and presents a vision for a trauma-informed EI system. The authors describe two exemplary program models which implement this vision and recommend steps which the field…

  17. A Critical Reading of "The National Youth White Paper on Global Citizenship": What Are Youth Saying and What Is Missing?

    ERIC Educational Resources Information Center

    Arshad-Ayaz, Adeela; Andreotti, Vanessa; Sutherland, Ali

    2017-01-01

    In the recent "National Youth White Paper on Global Citizenship" (2015), a selection of Canadian youth identified their vision for global citizenship education (GCE). The document articulates the Canadian youths' vision for global citizenship and outlines changes that need to be implemented in order for that vision to be achieved.…

  18. Transforming revenue management.

    PubMed

    Silveria, Richard; Alliegro, Debra; Nudd, Steven

    2008-11-01

    Healthcare organizations that want to undertake a patient administrative/revenue management transformation should: Define the vision with underlying business objectives and key performance measures. Strategically partner with key vendors for business process development and technology design. Create a program organization and governance infrastructure. Develop a corporate design model that defines the standards for operationalizing the vision. Execute the vision through technology deployment and corporate design model implementation.

  19. Challenges and Strategies of Working with Learners with Low Vision: Implications for Teacher Training

    ERIC Educational Resources Information Center

    Yalo, J. A.; Indoshi, F. C.; Agak, J. O.

    2012-01-01

    Learners with low vision can be trained to increase their visual functioning through a planned programme of visual experiences. Such a low vision training programme was introduced in Kenya in 1994. However, despite its implementation over the last 15 years, challenges still persist among teachers who work with such learners. The purpose of this…

  20. The role of vision on hand preshaping during reach to grasp.

    PubMed

    Winges, Sara A; Weber, Douglas J; Santello, Marco

    2003-10-01

    During reaching to grasp objects with different shapes hand posture is molded gradually to the object's contours. The present study examined the extent to which the temporal evolution of hand posture depends on continuous visual feedback. We asked subjects to reach and grasp objects with different shapes under five vision conditions (VCs). Subjects wore liquid crystal spectacles that occluded vision at four different latencies from onset of the reach. As a control, full-vision trials (VC5) were interspersed among the blocked vision trials. Object shapes and all VCs were presented to the subjects in random order. Hand posture was measured by 15 sensors embedded in a glove. Linear regression analysis, discriminant analysis, and information theory were used to assess the effect of removing vision on the temporal evolution of hand shape. We found that reach duration increased when vision was occluded early in the reach. This was caused primarily by a slower approach of the hand toward the object near the end of the reach. However, vision condition did not have a significant effect on the covariation patterns of joint rotations, indicating that the gradual evolution of hand posture occurs in a similar fashion regardless of vision. Discriminant analysis further supported this interpretation, as the extent to which hand posture resembled object shape and the rate at which hand posture discrimination occurred throughout the movement were similar across vision conditions. These results extend previous observations on memory-guided reaches by showing that continuous visual feedback of the hand and/or object is not necessary to allow the hand to gradually conform to object contours.

  1. Vision servo of industrial robot: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Yujin

    2018-04-01

    Robot technology has been implemented to various areas of production and life. With the continuous development of robot applications, requirements of the robot are also getting higher and higher. In order to get better perception of the robots, vision sensors have been widely used in industrial robots. In this paper, application directions of industrial robots are reviewed. The development, classification and application of robot vision servo technology are discussed, and the development prospect of industrial robot vision servo technology is proposed.

  2. National Positioning, Navigation, and Timing Architecture Study

    NASA Astrophysics Data System (ADS)

    van Dyke, K.; Vicario, J.; Hothem, L.

    2007-12-01

    The purpose of the National Positioning, Navigation and Timing (PNT) Architecture effort is to help guide future PNT system-of-systems investment and implementation decisions. The Assistant Secretary of Defense for Networks and Information Integration and the Under Secretary of Transportation for Policy sponsored a National PNT Architecture study to provide more effective and efficient PNT capabilities focused on the 2025 timeframe and an evolutionary path for government provided systems and services. U.S. Space-Based PNT Policy states that the U.S. must continue to improve and maintain GPS, augmentations to GPS, and back-up capabilities to meet growing national, homeland, and economic security needs. PNT touches almost every aspect of people´s lives today. PNT is essential for Defense and Civilian applications ranging from the Department of Defense´s Joint network centric and precision operations to the transportation and telecommunications sectors, improving efficiency, increasing safety, and being more productive. Absence of an approved PNT architecture results in uncoordinated research efforts, lack of clear developmental paths, potentially wasteful procurements and inefficient deployment of PNT resources. The national PNT architecture effort evaluated alternative future mixes of global (space and non space-based) and regional PNT solutions, PNT augmentations, and autonomous PNT capabilities to address priorities identified in the DoD PNT Joint Capabilities Document (JCD) and civil equivalents. The path to achieving the Should-Be architecture is described by the National PNT Architecture's Guiding Principles, representing an overarching Vision of the US' role in PNT, an architectural Strategy to fulfill that Vision, and four Vectors which support the Strategy. The National PNT Architecture effort has developed nineteen recommendations. Five foundational recommendations are tied directly to the Strategy while the remaining fourteen individually support one of the Vectors, as will be described in this presentation. The results of this effort will support future decisions of bodies such as the DoD PNT and Civil Pos/Nav Executive Committees, as well as the National Space-Based PNT Executive Committee (EXCOM).

  3. Image processing for a tactile/vision substitution system using digital CNN.

    PubMed

    Lin, Chien-Nan; Yu, Sung-Nien; Hu, Jin-Cheng

    2006-01-01

    In view of the parallel processing and easy implementation properties of CNN, we propose to use digital CNN as the image processor of a tactile/vision substitution system (TVSS). The digital CNN processor is used to execute the wavelet down-sampling filtering and the half-toning operations, aiming to extract important features from the images. A template combination method is used to embed the two image processing functions into a single CNN processor. The digital CNN processor is implemented on an intellectual property (IP) and is implemented on a XILINX VIRTEX II 2000 FPGA board. Experiments are designated to test the capability of the CNN processor in the recognition of characters and human subjects in different environments. The experiments demonstrates impressive results, which proves the proposed digital CNN processor a powerful component in the design of efficient tactile/vision substitution systems for the visually impaired people.

  4. Knowledge Translation in Rehabilitation: A Shared Vision.

    PubMed

    Moore, Jennifer L; Shikako-Thomas, Keiko; Backus, Deborah

    2017-07-01

    Advances in rehabilitation provide the infrastructure for research and clinical data to improve care and patient outcomes. However, gaps between research and practice are prevalent. Knowledge translation (KT) aims to decrease the gap between research and its clinical use. This special communication summarizes KT-related proceedings from the 2016 IV STEP conference, describes current KT in rehabilitation science, and provides suggestions for its application in clinical care. We propose a vision for rehabilitation clinical practice and research that includes the development, adaptation, and implementation of evidence-based practice recommendations, which will contribute to a learning health care system. A clinical research culture that supports this vision and methods to engage key stakeholders to innovate rehabilitation science and practice are described. Through implementation of this vision, we can lead an evolution in rehabilitation practice to ultimately prevent disabilities, predict better outcomes, exploit plasticity, and promote participation.

  5. Quantum vision in three dimensions

    NASA Astrophysics Data System (ADS)

    Roth, Yehuda

    We present four models for describing a 3-D vision. Similar to the mirror scenario, our models allow 3-D vision with no need for additional accessories such as stereoscopic glasses or a hologram film. These four models are based on brain interpretation rather than pure objective encryption. We consider the observer "subjective" selection of a measuring device and the corresponding quantum collapse into one of his selected states, as a tool for interpreting reality in according to the observer concepts. This is the basic concept of our study and it is introduced in the first model. Other models suggests "soften" versions that might be much easier to implement. Our quantum interpretation approach contribute to the following fields. In technology the proposed models can be implemented into real devices, allowing 3-D vision without additional accessories. Artificial intelligence: In the desire to create a machine that exchange information by using human terminologies, our interpretation approach seems to be appropriate.

  6. Aircraft cockpit vision: Math model

    NASA Technical Reports Server (NTRS)

    Bashir, J.; Singh, R. P.

    1975-01-01

    A mathematical model was developed to describe the field of vision of a pilot seated in an aircraft. Given the position and orientation of the aircraft, along with the geometrical configuration of its windows, and the location of an object, the model determines whether the object would be within the pilot's external vision envelope provided by the aircraft's windows. The computer program using this model was implemented and is described.

  7. Kernelized Locality-Sensitive Hashing for Fast Image Landmark Association

    DTIC Science & Technology

    2011-03-24

    based Simultaneous Localization and Mapping ( SLAM ). The problem, however, is that vision-based navigation techniques can re- quire excessive amounts of...up and optimizing the data association process in vision-based SLAM . Specifically, this work studies the current methods that algorithms use to...required for location identification than that of other methods. This work can then be extended into a vision- SLAM implementation to subsequently

  8. The power of a vision.... A leader's journey.

    PubMed

    Mintzer, B

    2001-07-01

    Being a leader in health care today requires the ability to implement a visionary style of leadership. The visionary leader has the challenge of formulating and articulating a corporate vision that employees can buy into and work toward.

  9. Experimental evaluation of a Dielectric Elastomer robotic arm for space applications

    NASA Astrophysics Data System (ADS)

    Branz, F.; Francesconi, A.

    2017-04-01

    A growing interest within the space community focuses on robotics due to the large number of possible applications in many mission scenarios. On-Orbit Servicing (OOS) is arguably the most appealing implementation of space automatic systems. In several cases, OOS requires the capture of orbital objects, which is a complex and risky operation that can be successfully performed by robotic manipulators. Soft robotics, in particular, seems to be suitable for such applications given its intrinsic compliance to the operative environment. Devices based on Dielectric Elastomers (DE) can be employed for the implementation of soft robotic systems and showed promising performances. The introduction of DEs to orbital systems would represent a breakthrough in space technologies. In addition, space conditions could further advantage DE robotics, given the reduced environmental loads experienced and the longer times for operations. Nevertheless, Dielectric Elastomer Actuators (DEA) are a low-TRL (Technology Readiness Level) technology that needs to prove its maturity and suitability to space implementation. In this work, the performances of a redundant manipulator based on DEAs are presented in terms of numerical and experimental results. A 4-DoF planar manipulator has been tested in a gravity-compensated setup. The system is composed by two double-cone actuators mounted in series, each of them providing actuation of two DoF. The end-effector is an optical marker whose position is detected by a vision system. The system has a total of four joint DoF and operates in the xy horizontal plane; only the x and y positions of the end-effector are controlled. Two degrees of redundancy are obtained and exploited for the optimization of joint torques to avoid the saturation of actuators. Numerical simulations have been conducted to predict the system behaviour. The laboratory facility emulates the zero-gravity orbital environment by means of a suspending cable. Detailed experimental results are presented and exploited for the validation of control algorithm and numerical models.

  10. Empowerment of the General Educator through Effective Teaching Strategies.

    ERIC Educational Resources Information Center

    Bradley, Dianne F.; And Others

    Johns Hopkins University and Montgomery County Public Schools, Maryland, jointly sponsor the program "SUPPORTS for Least Restrictive Environment," a graduate program in special education which supports the vision of educating all students together in the general education classroom. In the practicum phase of their program, general…

  11. Knowledge-based machine vision systems for space station automation

    NASA Technical Reports Server (NTRS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1989-01-01

    Computer vision techniques which have the potential for use on the space station and related applications are assessed. A knowledge-based vision system (expert vision system) and the development of a demonstration system for it are described. This system implements some of the capabilities that would be necessary in a machine vision system for the robot arm of the laboratory module in the space station. A Perceptics 9200e image processor, on a host VAXstation, was used to develop the demonstration system. In order to use realistic test images, photographs of actual space shuttle simulator panels were used. The system's capabilities of scene identification and scene matching are discussed.

  12. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > NOAH > IMPLEMENTATION SCHEDULLE Home Operational Products Experimental Data Verification Model Configuration Implementation Schedule Collaborators Documentation FAQ Code

  13. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > GEFS > IMPLEMENTATION SCHEDULLE Home Operational Products Experimental Data Verification Model Configuration Implementation Schedule Collaborators Documentation FAQ Code

  14. 75 FR 81454 - Privacy Act of 1974; Implementation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... JOINT BOARD FOR ENROLLMENT OF ACTUARIES 20 CFR Part 903 Privacy Act of 1974; Implementation AGENCY... requirements of the Privacy Act of 1974, as amended, the Joint Board for the Enrollment of Actuaries (Joint... Privacy Act, from certain of the Privacy Act's provisions, to revise language that incorrectly implies...

  15. 77 FR 30900 - Approval and Promulgation of Implementation Plans; New Mexico; Albuquerque/Bernalillo County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... in implementing the New Mexico Air Quality Control Act, the joint Air Quality Control Board (AQCB... Department in implementing the New Mexico Air Quality Control Act, the joint Air Quality Control Board (AQCB... Promulgation of Implementation Plans; New Mexico; Albuquerque/Bernalillo County; Fees for Permits and...

  16. The PULSE Vision & Change Rubrics, Version 1.0: A Valid and Equitable Tool to Measure Transformation of Life Sciences Departments at All Institution Types

    PubMed Central

    Brancaccio-Taras, Loretta; Pape-Lindstrom, Pamela; Peteroy-Kelly, Marcy; Aguirre, Karen; Awong-Taylor, Judy; Balser, Teri; Cahill, Michael J.; Frey, Regina F.; Jack, Thomas; Kelrick, Michael; Marley, Kate; Miller, Kathryn G.; Osgood, Marcy; Romano, Sandra; Uzman, J. Akif; Zhao, Jiuqing

    2016-01-01

    The PULSE Vision & Change Rubrics, version 1.0, assess life sciences departments’ progress toward implementation of the principles of the Vision and Change report. This paper reports on the development of the rubrics, their validation, and their reliability in measuring departmental change aligned with the Vision and Change recommendations. The rubrics assess 66 different criteria across five areas: Curriculum Alignment, Assessment, Faculty Practice/Faculty Support, Infrastructure, and Climate for Change. The results from this work demonstrate the rubrics can be used to evaluate departmental transformation equitably across institution types and represent baseline data about the adoption of the Vision and Change recommendations by life sciences programs across the United States. While all institution types have made progress, liberal arts institutions are farther along in implementing these recommendations. Generally, institutions earned the highest scores on the Curriculum Alignment rubric and the lowest scores on the Assessment rubric. The results of this study clearly indicate that the Vision & Change Rubrics, version 1.0, are valid and equitable and can track long-term progress of the transformation of life sciences departments. In addition, four of the five rubrics have broad applicability and can be used to evaluate departmental transformation by other science, technology, engineering, and mathematics disciplines. PMID:27856548

  17. Joint remote control of an arbitrary single-qubit state by using a multiparticle entangled state as the quantum channel

    NASA Astrophysics Data System (ADS)

    Lv, Shu-Xin; Zhao, Zheng-Wei; Zhou, Ping

    2018-01-01

    We present a scheme for joint remote implementation of an arbitrary single-qubit operation following some ideas in one-way quantum computation. All the senders share the information of implemented quantum operation and perform corresponding single-qubit measurements according to their information of implemented operation. An arbitrary single-qubit operation can be implemented upon the remote receiver's quantum system if the receiver cooperates with all the senders. Moreover, we study the protocol of multiparty joint remote implementation of an arbitrary single-qubit operation with many senders by using a multiparticle entangled state as the quantum channel.

  18. Reflections on a Strategic Vision for Computer Network Operations

    DTIC Science & Technology

    2010-05-25

    either a traditional or an irregular war. It cannot include the disarmament or destruction of enemy forces or the occupation of its geographic territory...Washington, DC: Chairman of the Joint Chiefs of Staff, 15 August 2007), GL-7. 34 Mr. John Mense , Basic Computer Network Operations Planners Course

  19. Co-Creating Nano-Imaginaries: Report of a Delphi-Exercise

    ERIC Educational Resources Information Center

    Deblonde, Marian; Van Oudheusden, Michiel; Evers, Johan; Goorden, Lieve

    2008-01-01

    In the first phase of the research project Nanotechnologies for Tomorrow's Society (www.nanosoc.be), the research consortium explored a variety of futuristic visions or technoscientific imaginaries. This exploration took the form of a Policy Delphi, adapted to the particular objective of jointly constructing nano-imaginaries, taking participants'…

  20. An architecture for real-time vision processing

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong

    1994-01-01

    To study the feasibility of developing an architecture for real time vision processing, a task queue server and parallel algorithms for two vision operations were designed and implemented on an i860-based Mercury Computing System 860VS array processor. The proposed architecture treats each vision function as a task or set of tasks which may be recursively divided into subtasks and processed by multiple processors coordinated by a task queue server accessible by all processors. Each idle processor subsequently fetches a task and associated data from the task queue server for processing and posts the result to shared memory for later use. Load balancing can be carried out within the processing system without the requirement for a centralized controller. The author concludes that real time vision processing cannot be achieved without both sequential and parallel vision algorithms and a good parallel vision architecture.

  1. Enhanced Flight Vision Systems and Synthetic Vision Systems for NextGen Approach and Landing Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Williams, Steven P.; Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.

    2013-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory standards and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility approach and landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O'Hare environment. Various scenarios tested the potential for using EFVS to conduct approach, landing, and roll-out operations in visibility as low as 1000 feet runway visual range (RVR). Also, SVS was tested to evaluate the potential for lowering decision heights (DH) on certain instrument approach procedures below what can be flown today. Expanding the portion of the visual segment in which EFVS can be used in lieu of natural vision from 100 feet above the touchdown zone elevation to touchdown and rollout in visibilities as low as 1000 feet RVR appears to be viable as touchdown performance was acceptable without any apparent workload penalties. A lower DH of 150 feet and/or possibly reduced visibility minima using SVS appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  2. 25 CFR 217.7 - Implementation of decision.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... expendient to implement the decisions of the joint managers, insofar as such issuance is authorized by law, and he shall execute and/or approve such documents for and on behalf of the joint managers, or either... to execute an instrument on behalf of one or both of the joint managers and to approve the same...

  3. Human body motion tracking based on quantum-inspired immune cloning algorithm

    NASA Astrophysics Data System (ADS)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  4. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  5. On the performances of computer vision algorithms on mobile platforms

    NASA Astrophysics Data System (ADS)

    Battiato, S.; Farinella, G. M.; Messina, E.; Puglisi, G.; Ravì, D.; Capra, A.; Tomaselli, V.

    2012-01-01

    Computer Vision enables mobile devices to extract the meaning of the observed scene from the information acquired with the onboard sensor cameras. Nowadays, there is a growing interest in Computer Vision algorithms able to work on mobile platform (e.g., phone camera, point-and-shot-camera, etc.). Indeed, bringing Computer Vision capabilities on mobile devices open new opportunities in different application contexts. The implementation of vision algorithms on mobile devices is still a challenging task since these devices have poor image sensors and optics as well as limited processing power. In this paper we have considered different algorithms covering classic Computer Vision tasks: keypoint extraction, face detection, image segmentation. Several tests have been done to compare the performances of the involved mobile platforms: Nokia N900, LG Optimus One, Samsung Galaxy SII.

  6. An augmented-reality edge enhancement application for Google Glass.

    PubMed

    Hwang, Alex D; Peli, Eli

    2014-08-01

    Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer's real-world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Google Glass' camera lens distortions were corrected by using an image warping. Because the camera and virtual display are horizontally separated by 16 mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of three-dimensional transformations to minimize parallax errors before the final projection to the Glass' see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal-vision subjects, with and without a diffuser film to simulate vision loss. For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera's performance. The authors assume that this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration.

  7. Solar Orbiter Status Report

    NASA Astrophysics Data System (ADS)

    Gilbert, Holly; St. Cyr, Orville Chris; Mueller, Daniel; Zouganelis, Yannis; Velli, Marco

    2017-08-01

    With the delivery of the instruments to the spacecraft builder, the Solar Orbiter mission is in the midst of Integration & Testing phase at Airbus in Stevenage, U.K. This mission to “Explore the Sun-Heliosphere Connection” is the first medium-class mission of ESA’s Cosmic Vision 2015-2025 program and is being jointly implemented with NASA. The dedicated payload of 10 remote-sensing and in-situ instruments will orbit the Sun as close as 0.3 A.U. and will provide measurments from the photosphere into the solar wind. The three-axis stabilized spacecraft will use Venus gravity assists to increase the orbital inclination out of the ecliptic to solar latitudes as high as 34 degrees in the extended mission. The science team of Solar Orbiter has been working closely with the Solar Probe Plus scientists to coordinate observations between these two highly-complementary missions. This will be a status report on the mission development; the interested reader is referred to the recent summary by Müller et al., Solar Physics 285 (2013).

  8. The real-time learning mechanism of the Scientific Research Associates Advanced Robotic System (SRAARS)

    NASA Technical Reports Server (NTRS)

    Chen, Alexander Y.

    1990-01-01

    Scientific research associates advanced robotic system (SRAARS) is an intelligent robotic system which has autonomous learning capability in geometric reasoning. The system is equipped with one global intelligence center (GIC) and eight local intelligence centers (LICs). It controls mainly sixteen links with fourteen active joints, which constitute two articulated arms, an extensible lower body, a vision system with two CCD cameras and a mobile base. The on-board knowledge-based system supports the learning controller with model representations of both the robot and the working environment. By consecutive verifying and planning procedures, hypothesis-and-test routines and learning-by-analogy paradigm, the system would autonomously build up its own understanding of the relationship between itself (i.e., the robot) and the focused environment for the purposes of collision avoidance, motion analysis and object manipulation. The intelligence of SRAARS presents a valuable technical advantage to implement robotic systems for space exploration and space station operations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schalkoff, R.J.

    This report summarizes work after 4 years of a 3-year project (no-cost extension of the above-referenced project for a period of 12 months granted). The fourth generation of a vision sensing head for geometric and photometric scene sensing has been built and tested. Estimation algorithms for automatic sensor calibration updating under robot motion have been developed and tested. We have modified the geometry extraction component of the rendering pipeline. Laser scanning now produces highly accurate points on segmented curves. These point-curves are input to a NURBS (non-uniform rational B-spline) skinning procedure to produce interpolating surface segments. The NURBS formulation includesmore » quadrics as a sub-class, thus this formulation allows much greater flexibility without the attendant instability of generating an entire quadric surface. We have also implemented correction for diffuse lighting and specular effects. The QRobot joint level control was extended to a complete semi-autonomous robot control system for D and D operations. The imaging and VR subsystems have been integrated and tested.« less

  10. A simple, inexpensive, and effective implementation of a vision-guided autonomous robot

    NASA Astrophysics Data System (ADS)

    Tippetts, Beau; Lillywhite, Kirt; Fowers, Spencer; Dennis, Aaron; Lee, Dah-Jye; Archibald, James

    2006-10-01

    This paper discusses a simple, inexpensive, and effective implementation of a vision-guided autonomous robot. This implementation is a second year entrance for Brigham Young University students to the Intelligent Ground Vehicle Competition. The objective of the robot was to navigate a course constructed of white boundary lines and orange obstacles for the autonomous competition. A used electric wheelchair was used as the robot base. The wheelchair was purchased from a local thrift store for $28. The base was modified to include Kegresse tracks using a friction drum system. This modification allowed the robot to perform better on a variety of terrains, resolving issues with last year's design. In order to control the wheelchair and retain the robust motor controls already on the wheelchair the wheelchair joystick was simply removed and replaced with a printed circuit board that emulated joystick operation and was capable of receiving commands through a serial port connection. Three different algorithms were implemented and compared: a purely reactive approach, a potential fields approach, and a machine learning approach. Each of the algorithms used color segmentation methods to interpret data from a digital camera in order to identify the features of the course. This paper will be useful to those interested in implementing an inexpensive vision-based autonomous robot.

  11. [The evolution of surgical arthroscopy in Israel and worldwide].

    PubMed

    Haviv, Barak; Bronak, Shlomo; Thein, Rafael

    2015-04-01

    Arthroscopy is a minimal invasive surgical technique to treat joint disorders with the use of fiber optics for indirect vision and small surgical tools. The first endoscopic direct inspection of the knee joint was documented at the beginning of the 20th century; however, the clinical practice of arthroscopy started only fifty years later. The "historical fathers" of surgical arthroscopy were Kenji Takagi from Japan and Eugen Bircher from Switzerland. The arthroscopes had become safer and more dependable since the 1970's with the introduction of fiber optics, while vision became easier with the invention of television. Subsequently, in the 1980's and 90's instruments were refined and arthroscopy evolved from a diagnostic to a therapeutic tool with the advantages of minimal approach, few complications and short rehabilitation. The beginning of knee arthroscopy in Israel followed the development in North America in the1970's. Within a few years, knee arthroscopy in Israel had also evolved to be therapeutic rather than diagnostic and was specifically used for partial meniscectomies. Currently, arthroscopic surgery, particularly of the knee and shoulder, has become common practice worldwide. Arthroscopic procedures constitute more than a third of all orthopedic procedures performed at the Israeli Assuta private hospitals. With the development of various technologies, it is anticipated that arthroscopic techniques will further evolve and play an ever greater role in diagnosing and treating joint pathology.

  12. Nonlinear dynamics analysis of the human balance control subjected to physical and sensory perturbations.

    PubMed

    Ashtiani, Mohammed N; Mahmood-Reza, Azghani

    2017-01-01

    Postural control after applying perturbation involves neural and muscular efforts to limit the center of mass (CoM) motion. Linear dynamical approaches may not unveil all complexities of body efforts. This study was aimed at determining two nonlinear dynamics parameters (fractal dimension (FD) and largest Lyapunov exponent (LLE)) in addition to the linear standing metrics of balance in perturbed stance. Sixteen healthy young males were subjected to sudden rotations of the standing platform. The vision and cognition during the standing were also interfered. Motion capturing was used to measure the lower limb joints and the CoM displacements. The CoM path length as a linear parameter was increased by elimination of vision (p<0.01) and adding a cognitive load (p<0.01). The CoM nonlinear metric FD was decreased due to the cognitive loads (p<0.001). The visual interference increased the FD of all joints when the task included the cognitive loads (p<0.01). The slightly positive LLE values showed weakly-chaotic behavior of the whole body. The local joint rotations indicated higher LLEs. Results indicated weakly chaotic response of the whole body. Increase in the task difficulty by adding sensory interference had difference effects on parameters. Linear and nonlinear metrics of the perturbed stance showed that a combination of them may properly represent the body behavior.

  13. Joint Vision 2010 and Accelerated Cumulative Warfare: The Masters of War Evaluate a Future Strategy

    DTIC Science & Technology

    1997-01-01

    dunennonal protemon, and focused loglstxs-to obtam Full Spectrum Dommance over a future enem ) Bnefly, the \\ talon defines these operauonal concepts...Access, and Informanon Domrnance The Tear 1s 2018 Over a decade earlier the “Great Islamzc Revolution of 2005” had swept several of the estabhshed

  14. A Vision of Change for America.

    ERIC Educational Resources Information Center

    Clinton, William J.

    This report was prepared to accompany President Clinton's first address to a Joint Session of Congress. It describes in detail the comprehensive economic plan being proposed by the new administration for the nation. The plan has three key elements: economic stimulus to create jobs now while laying the foundation for long-term economic growth; long…

  15. Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding

    PubMed Central

    Li, Xin; Guo, Rui; Chen, Chao

    2014-01-01

    Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216

  16. Simple laser vision sensor calibration for surface profiling applications

    NASA Astrophysics Data System (ADS)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.

    2016-09-01

    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.

  17. Flight Testing an Integrated Synthetic Vision System

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  18. Toward an Online Community of Educators: The Modular Curriculum for Hydrologic Advancement (MOCHA)

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; Wagener, T.; Gooseff, M. N.; Gregg, S.; McGlynn, B. L.; Sharma, P.; Meixner, T.; Marshall, L. A.; McGuire, K. J.; Weiler, M.

    2009-12-01

    The field of hydrology encompasses a wide range of departments and disciplines, ranging from civil engineering to geography to geosciences. As a consequence, in-class hydrology education is often strongly biased towards the background of a single instructor, limiting the educational experience of the students and not allowing for a holistic approach to hydrology education. Recently established, the Modular Curriculum for Hydrologic Advancement (MOCHA) creates an online community of hydrologists from a range of backgrounds and disciplines to define the boundaries of an unbiased hydrology education and to jointly develop resources to overcome previous instructional limitations (http://www.mocha.psu.edu/). Our first objective is to create an evolving core curriculum for hydrology education freely available to, developed, evolved and reviewed by the worldwide hydrologic community. On a larger scale, we hope to raise the standard of hydrology education and to foster international collaboration and exchange. Our work began with an initial survey including over 100 hydrology educators to assess the state of current hydrology education. Based on the survey results, the MOCHA project was designed and implemented, and initial teaching material and pedagogical guidelines for good practice in teaching were prepared. This past fall and spring, we piloted the website and teaching material across several universities. The web-based MOCHA project has recently been opened to solicit contributions from the global hydrology community. Our presentation will focus on the overall vision behind MOCHA, lessons learned from our initial piloting, and current steps to achieve our vision.

  19. Working together toward a shared vision for care.

    PubMed

    Halley, Marc D

    2012-12-01

    To work together, physicians, finance leaders, and other executives need: A shared vision that is compelling enough to promote cooperation, A culture of accountability, which helps weed out the disrupters who can stall change, Forums to identify implementation tactics, Leadership skills, which help them come together to solve problems.

  20. Sustaining a Vision of Rigor

    ERIC Educational Resources Information Center

    Williamson, Ronald; Blackburn, Barbara R.

    2010-01-01

    Even with the best planning and supportive implementation, one's school will experience challenges to achieving its vision of increased rigor. One of today's most serious issues is how schools can improve when resources are stagnant or even declining. Virtually every school faces dwindling resources and is caught between the expectation that…

  1. Visions for Children: African American Early Childhood Education Program.

    ERIC Educational Resources Information Center

    Hale-Benson, Janice

    The features of an early childhood education demonstration program, Visions for Children, are delineated in this paper. The program was designed to facilitate the intellectual development, boost the academic achievement, and enhance the self-concepts of African-American preschool children. The program implements a curriculum that focuses on…

  2. An Augmented-Reality Edge Enhancement Application for Google Glass

    PubMed Central

    Hwang, Alex D.; Peli, Eli

    2014-01-01

    Purpose Google Glass provides a platform that can be easily extended to include a vision enhancement tool. We have implemented an augmented vision system on Glass, which overlays enhanced edge information over the wearer’s real world view, to provide contrast-improved central vision to the Glass wearers. The enhanced central vision can be naturally integrated with scanning. Methods Goggle Glass’s camera lens distortions were corrected by using an image warping. Since the camera and virtual display are horizontally separated by 16mm, and the camera aiming and virtual display projection angle are off by 10°, the warped camera image had to go through a series of 3D transformations to minimize parallax errors before the final projection to the Glass’ see-through virtual display. All image processes were implemented to achieve near real-time performance. The impacts of the contrast enhancements were measured for three normal vision subjects, with and without a diffuser film to simulate vision loss. Results For all three subjects, significantly improved contrast sensitivity was achieved when the subjects used the edge enhancements with a diffuser film. The performance boost is limited by the Glass camera’s performance. The authors assume this accounts for why performance improvements were observed only with the diffuser filter condition (simulating low vision). Conclusions Improvements were measured with simulated visual impairments. With the benefit of see-through augmented reality edge enhancement, natural visual scanning process is possible, and suggests that the device may provide better visual function in a cosmetically and ergonomically attractive format for patients with macular degeneration. PMID:24978871

  3. A Machine Vision Quality Control System for Industrial Acrylic Fibre Production

    NASA Astrophysics Data System (ADS)

    Heleno, Paulo; Davies, Roger; Correia, Bento A. Brázio; Dinis, João

    2002-12-01

    This paper describes the implementation of INFIBRA, a machine vision system used in the quality control of acrylic fibre production. The system was developed by INETI under a contract with a leading industrial manufacturer of acrylic fibres. It monitors several parameters of the acrylic production process. This paper presents, after a brief overview of the system, a detailed description of the machine vision algorithms developed to perform the inspection tasks unique to this system. Some of the results of online operation are also presented.

  4. Computer vision in cell biology.

    PubMed

    Danuser, Gaudenz

    2011-11-23

    Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists for visualization and measurement, interpretation of image content, i.e., the selection of events worth observing and the definition of what they mean in terms of cellular mechanisms, is mostly left to human intuition. This Essay attempts to outline roles computer vision may play and should play in image-based studies of cellular life. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  6. Hierarchical Modelling Of Mobile, Seeing Robots

    NASA Astrophysics Data System (ADS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1990-03-01

    This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.

  7. Hierarchical modelling of mobile, seeing robots

    NASA Technical Reports Server (NTRS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1990-01-01

    This paper describes the implementation of a hierarchical robot simulation which supports the design of robots with vision and mobility. A seeing robot applies a classification expert system for visual identification of laboratory objects. The visual data acquisition algorithm used by the robot vision system has been developed to exploit multiple viewing distances and perspectives. Several different simulations have been run testing the visual logic in a laboratory environment. Much work remains to integrate the vision system with the rest of the robot system.

  8. Team behavioral norms: a shared vision for a healthy patient care workplace.

    PubMed

    Parsons, Mickey L; Clark, Paul; Marshall, Michelle; Cornett, Patricia A

    2007-01-01

    Leaders are bombarded with healthy workplace articles and advice. This article outlines a strategy for laying the foundation for healthy patient care workplaces at the pivotal unit level. This process facilitates the nursing unit staff to create and implement a shared vision for staff working relationships. Fourteen acute care hospital units, all participants in a healthy workplace intervention, were selected for this analysis because they chose team behavioral norms as a top priority to begin to implement their vision for a desired future for their units, a healthy workplace. These units developed specific team behavioral norms for their expectations of each other. The findings revealed 3 major norm themes and attributes: norms for effective communication, positive attitude, and accountability. Attributes of each norm are described to assist nurses to positively influence their core unit work culture.

  9. HMA Longitudinal Joint Evaluation and Construction

    DOT National Transportation Integrated Search

    2011-02-01

    Longitudinal joint quality is essential to the successful performance of asphalt pavements. A number of states have begun to implement longitudinal joint specifications, and most are based on determinations of density. However, distress at the joint ...

  10. A Practical Solution Using A New Approach To Robot Vision

    NASA Astrophysics Data System (ADS)

    Hudson, David L.

    1984-01-01

    Up to now, robot vision systems have been designed to serve both application development and operational needs in inspection, assembly and material handling. This universal approach to robot vision is too costly for many practical applications. A new industrial vision system separates the function of application program development from on-line operation. A Vision Development System (VDS) is equipped with facilities designed to simplify and accelerate the application program development process. A complimentary but lower cost Target Application System (TASK) runs the application program developed with the VDS. This concept is presented in the context of an actual robot vision application that improves inspection and assembly for a manufacturer of electronic terminal keyboards. Applications developed with a VDS experience lower development cost when compared with conventional vision systems. Since the TASK processor is not burdened with development tools, it can be installed at a lower cost than comparable "universal" vision systems that are intended to be used for both development and on-line operation. The VDS/TASK approach opens more industrial applications to robot vision that previously were not practical because of the high cost of vision systems. Although robot vision is a new technology, it has been applied successfully to a variety of industrial needs in inspection, manufacturing, and material handling. New developments in robot vision technology are creating practical, cost effective solutions for a variety of industrial needs. A year or two ago, researchers and robot manufacturers interested in implementing a robot vision application could take one of two approaches. The first approach was to purchase all the necessary vision components from various sources. That meant buying an image processor from one company, a camera from another and lens and light sources from yet others. The user then had to assemble the pieces, and in most instances he had to write all of his own software to test, analyze and process the vision application. The second and most common approach was to contract with the vision equipment vendor for the development and installation of a turnkey inspection or manufacturing system. The robot user and his company paid a premium for their vision system in an effort to assure the success of the system. Since 1981, emphasis on robotics has skyrocketed. New groups have been formed in many manufacturing companies with the charter to learn about, test and initially apply new robot and automation technologies. Machine vision is one of new technologies being tested and applied. This focused interest has created a need for a robot vision system that makes it easy for manufacturing engineers to learn about, test, and implement a robot vision application. A newly developed vision system addresses those needs. Vision Development System (VDS) is a complete hardware and software product for the development and testing of robot vision applications. A complimentary, low cost Target Application System (TASK) runs the application program developed with the VDS. An actual robot vision application that demonstrates inspection and pre-assembly for keyboard manufacturing is used to illustrate the VDS/TASK approach.

  11. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    NASA Astrophysics Data System (ADS)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  12. TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND A STRATEGY

    PubMed Central

    Krewski, Daniel; Acosta, Daniel; Andersen, Melvin; Anderson, Henry; Bailar, John C.; Boekelheide, Kim; Brent, Robert; Charnley, Gail; Cheung, Vivian G.; Green, Sidney; Kelsey, Karl T.; Kerkvliet, Nancy I.; Li, Abby A.; McCray, Lawrence; Meyer, Otto; Patterson, Reid D.; Pennie, William; Scala, Robert A.; Solomon, Gina M.; Stephens, Martin; Yager, James; Zeise, Lauren

    2015-01-01

    With the release of the landmark report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences, in 2007, precipitated a major change in the way toxicity testing is conducted. It envisions increased efficiency in toxicity testing and decreased animal usage by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters. Risk assessment in the exposed human population would focus on avoiding significant perturbations in these toxicity pathways. Computational systems biology models would be implemented to determine the dose-response models of perturbations of pathway function. Extrapolation of in vitro results to in vivo human blood and tissue concentrations would be based on pharmacokinetic models for the given exposure condition. This practice would enhance human relevance of test results, and would cover several test agents, compared to traditional toxicological testing strategies. As all the tools that are necessary to implement the vision are currently available or in an advanced stage of development, the key prerequisites to achieving this paradigm shift are a commitment to change in the scientific community, which could be facilitated by a broad discussion of the vision, and obtaining necessary resources to enhance current knowledge of pathway perturbations and pathway assays in humans and to implement computational systems biology models. Implementation of these strategies would result in a new toxicity testing paradigm firmly based on human biology. PMID:20574894

  13. Impaired Waters and TMDLs: New Vision for the CWA 303(d) Program – An Updated Framework for Implementing the CWA 303(d) Program Responsibilities

    EPA Pesticide Factsheets

    A vision detailing enhancements made to the Clean Water Act 303(d) Program informed by the experience gained over the past two decades in assessing and reporting on water quality and in developing approximately 65,000 TMDLs.

  14. The Power of 2: Partnership Paves the Way for Teacher Leadership Academy

    ERIC Educational Resources Information Center

    Harmon, Jeanne; Herren, Kip; Luke, Rod; Emry, Terese

    2012-01-01

    A clear vision is the essential foundation for making decisions about precious resources for implementing professional learning: (1) people; (2) time; and (3) money. The Auburn School District in Washington state learned firsthand how a clear vision drives resource allocation to support strategic actions and how effective partnerships can be the…

  15. Real-Time Implementation of an Asynchronous Vision-Based Target Tracking System for an Unmanned Aerial Vehicle

    DTIC Science & Technology

    2007-06-01

    Chin Khoon Quek. “Vision Based Control and Target Range Estimation for Small Unmanned Aerial Vehicle.” Master’s Thesis, Naval Postgraduate School...December 2005. [6] Kwee Chye Yap. “Incorporating Target Mensuration System for Target Motion Estimation Along a Road Using Asynchronous Filter

  16. The Transformation of Higher Education in Vietnam after DoiMoi: A Story of "Dualism"

    ERIC Educational Resources Information Center

    Tran, Hien

    2009-01-01

    This research was undertaken to investigate the transformation of higher education reform in Vietnam since "DoiMoi," which involves examining its rationale and practical implementation. The reform reveals an interesting picture of Vietnam's higher education system, in which two development visions--a "market-led" vision and a…

  17. Rationale, Design and Implementation of a Computer Vision-Based Interactive E-Learning System

    ERIC Educational Resources Information Center

    Xu, Richard Y. D.; Jin, Jesse S.

    2007-01-01

    This article presents a schematic application of computer vision technologies to e-learning that is synchronous, peer-to-peer-based, and supports an instructor's interaction with non-computer teaching equipments. The article first discusses the importance of these focused e-learning areas, where the properties include accurate bidirectional…

  18. 49 CFR 240.207 - Procedures for making the determination on vision and hearing acuity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... writing that the person can safely operate without using the device. [56 FR 28254, June 19, 1991, as... 49 Transportation 4 2014-10-01 2014-10-01 false Procedures for making the determination on vision... CERTIFICATION OF LOCOMOTIVE ENGINEERS Implementation of the Certification Process § 240.207 Procedures for...

  19. 49 CFR 240.207 - Procedures for making the determination on vision and hearing acuity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... writing that the person can safely operate without using the device. [56 FR 28254, June 19, 1991, as... 49 Transportation 4 2012-10-01 2012-10-01 false Procedures for making the determination on vision... CERTIFICATION OF LOCOMOTIVE ENGINEERS Implementation of the Certification Process § 240.207 Procedures for...

  20. 49 CFR 240.207 - Procedures for making the determination on vision and hearing acuity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... writing that the person can safely operate without using the device. [56 FR 28254, June 19, 1991, as... 49 Transportation 4 2013-10-01 2013-10-01 false Procedures for making the determination on vision... CERTIFICATION OF LOCOMOTIVE ENGINEERS Implementation of the Certification Process § 240.207 Procedures for...

  1. Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control.

    DTIC Science & Technology

    1983-08-15

    obtainable from real data, rather than relying on a stock database. Often, computer vision and image processing algorithms become subconsciously tuned to...two coils on the same mount structure. Since it was not possible to reprogram the binary system, we turned to the POPEYE system for both its grey

  2. A vision-based approach for the direct measurement of displacements in vibrating systems

    NASA Astrophysics Data System (ADS)

    Mazen Wahbeh, A.; Caffrey, John P.; Masri, Sami F.

    2003-10-01

    This paper reports the results of an analytical and experimental study to develop, calibrate, implement and evaluate the feasibility of a novel vision-based approach for obtaining direct measurements of the absolute displacement time history at selectable locations of dispersed civil infrastructure systems such as long-span bridges. The measurements were obtained using a highly accurate camera in conjunction with a laser tracking reference. Calibration of the vision system was conducted in the lab to establish performance envelopes and data processing algorithms to extract the needed information from the captured vision scene. Subsequently, the monitoring apparatus was installed in the vicinity of the Vincent Thomas Bridge in the metropolitan Los Angeles region. This allowed the deployment of the instrumentation system under realistic conditions so as to determine field implementation issues that need to be addressed. It is shown that the proposed approach has the potential of leading to an economical and robust system for obtaining direct, simultaneous, measurements at several locations of the displacement time histories of realistic infrastructure systems undergoing complex three-dimensional deformations.

  3. Development of a volumetric projection technique for the digital evaluation of field of view.

    PubMed

    Marshall, Russell; Summerskill, Stephen; Cook, Sharon

    2013-01-01

    Current regulations for field of view requirements in road vehicles are defined by 2D areas projected on the ground plane. This paper discusses the development of a new software-based volumetric field of view projection tool and its implementation within an existing digital human modelling system. In addition, the exploitation of this new tool is highlighted through its use in a UK Department for Transport funded research project exploring the current concerns with driver vision. Focusing specifically on rearwards visibility in small and medium passenger vehicles, the volumetric approach is shown to provide a number of distinct advantages. The ability to explore multiple projections of both direct vision (through windows) and indirect vision (through mirrors) provides a greater understanding of the field of view environment afforded to the driver whilst still maintaining compatibility with the 2D projections of the regulatory standards. Field of view requirements for drivers of road vehicles are defined by simplified 2D areas projected onto the ground plane. However, driver vision is a complex 3D problem. This paper presents the development of a new software-based 3D volumetric projection technique and its implementation in the evaluation of driver vision in small- and medium-sized passenger vehicles.

  4. The Older Person's Guide to Safe Driving. Public Affairs Pamphlet No. 641.

    ERIC Educational Resources Information Center

    Brenton, Myron

    This pamphlet is a practical guide with helpful suggestions on safe driving for older people. A discussion of the controversy surrounding older people's driving ability begins the pamphlet. Effects of aging on driving are discussed, including affects on vision, twilight and night driving, hearing, muscles and joints, and mental functions. It is…

  5. Building a Knowledge Culture: An Education and Training Action Plan for the Information Economy, 2005-2007

    ERIC Educational Resources Information Center

    Ministerial Council on Education, Employment, Training and Youth Affairs (NJ1), 2005

    2005-01-01

    The Ministerial Council on Education, Employment, Training and Youth Affairs (MCEETYA) Joint Statement on Education and Training in the Information Economy released in 2005 provides a national vision for improving education and training outcomes for all Australians through the ubiquitous use of information and communications technology (ICT). In…

  6. Towards a Theory on the Design of Adaptive Transformation: A Systemic Approach

    DTIC Science & Technology

    2010-05-21

    guarantee your success.” Ibid., 10. 130 “Peter Checkland notes that “while a technique tells you ‘how’ and a philosophy tells you ‘what,’ a methodology...Joint Vision 2010, 1996. http://www.dtic.mil/ jointvision/ history/jv2010.pdf (accessed on Nov 29, 2008). Checkland , Peter, and John Poulter

  7. 75 FR 76444 - Department of the Air Force and U.S. Army; Notice of Intent To Prepare an Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... enhancements would enable realistic, joint training and testing to support emerging technologies, respond to... visibility require using advanced night vision technology. Training with this equipment can only be conducted... justice and risks to children, subsistence, and cumulative impacts. Public and agency scoping may identify...

  8. Virtual environment assessment for laser-based vision surface profiling

    NASA Astrophysics Data System (ADS)

    ElSoussi, Adnane; Al Alami, Abed ElRahman; Abu-Nabah, Bassam A.

    2015-03-01

    Oil and gas businesses have been raising the demand from original equipment manufacturers (OEMs) to implement a reliable metrology method in assessing surface profiles of welds before and after grinding. This certainly mandates the deviation from the commonly used surface measurement gauges, which are not only operator dependent, but also limited to discrete measurements along the weld. Due to its potential accuracy and speed, the use of laser-based vision surface profiling systems have been progressively rising as part of manufacturing quality control. This effort presents a virtual environment that lends itself for developing and evaluating existing laser vision sensor (LVS) calibration and measurement techniques. A combination of two known calibration techniques is implemented to deliver a calibrated LVS system. System calibration is implemented virtually and experimentally to scan simulated and 3D printed features of known profiles, respectively. Scanned data is inverted and compared with the input profiles to validate the virtual environment capability for LVS surface profiling and preliminary assess the measurement technique for weld profiling applications. Moreover, this effort brings 3D scanning capability a step closer towards robust quality control applications in a manufacturing environment.

  9. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision.

    PubMed

    Zhong, Bineng; Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method.

  10. Convolutional Deep Belief Networks for Single-Cell/Object Tracking in Computational Biology and Computer Vision

    PubMed Central

    Pan, Shengnan; Zhang, Hongbo; Wang, Tian; Du, Jixiang; Chen, Duansheng; Cao, Liujuan

    2016-01-01

    In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to transfer features learned from CDBNs on the source tasks for generic purpose to the object tracking tasks using only limited amount of training data. Finally, to alleviate the tracker drifting problem caused by model updating, we jointly consider three different types of positive samples. Extensive experiments validate the robustness and effectiveness of the proposed method. PMID:27847827

  11. The research on visual industrial robot which adopts fuzzy PID control algorithm

    NASA Astrophysics Data System (ADS)

    Feng, Yifei; Lu, Guoping; Yue, Lulin; Jiang, Weifeng; Zhang, Ye

    2017-03-01

    The control system of six degrees of freedom visual industrial robot based on the control mode of multi-axis motion control cards and PC was researched. For the variable, non-linear characteristics of industrial robot`s servo system, adaptive fuzzy PID controller was adopted. It achieved better control effort. In the vision system, a CCD camera was used to acquire signals and send them to video processing card. After processing, PC controls the six joints` motion by motion control cards. By experiment, manipulator can operate with machine tool and vision system to realize the function of grasp, process and verify. It has influence on the manufacturing of the industrial robot.

  12. ROS-based ground stereo vision detection: implementation and experiments.

    PubMed

    Hu, Tianjiang; Zhao, Boxin; Tang, Dengqing; Zhang, Daibing; Kong, Weiwei; Shen, Lincheng

    This article concentrates on open-source implementation on flying object detection in cluttered scenes. It is of significance for ground stereo-aided autonomous landing of unmanned aerial vehicles. The ground stereo vision guidance system is presented with details on system architecture and workflow. The Chan-Vese detection algorithm is further considered and implemented in the robot operating systems (ROS) environment. A data-driven interactive scheme is developed to collect datasets for parameter tuning and performance evaluating. The flying vehicle outdoor experiments capture the stereo sequential images dataset and record the simultaneous data from pan-and-tilt unit, onboard sensors and differential GPS. Experimental results by using the collected dataset validate the effectiveness of the published ROS-based detection algorithm.

  13. Heuristics in primary care for recognition of unreported vision loss in older people: a technology development study.

    PubMed

    Wijeyekoon, Skanda; Kharicha, Kalpa; Iliffe, Steve

    2015-09-01

    To evaluate heuristics (rules of thumb) for recognition of undetected vision loss in older patients in primary care. Vision loss is associated with ageing, and its prevalence is increasing. Visual impairment has a broad impact on health, functioning and well-being. Unrecognised vision loss remains common, and screening interventions have yet to reduce its prevalence. An alternative approach is to enhance practitioners' skills in recognising undetected vision loss, by having a more detailed picture of those who are likely not to act on vision changes, report symptoms or have eye tests. This paper describes a qualitative technology development study to evaluate heuristics for recognition of undetected vision loss in older patients in primary care. Using a previous modelling study, two heuristics in the form of mnemonics were developed to aid pattern recognition and allow general practitioners to identify potential cases of unreported vision loss. These heuristics were then analysed with experts. Findings It was concluded that their implementation in modern general practice was unsuitable and an alternative solution should be sort.

  14. On Applications of Pyramid Doubly Joint Bilateral Filtering in Dense Disparity Propagation

    NASA Astrophysics Data System (ADS)

    Abadpour, Arash

    2014-06-01

    Stereopsis is the basis for numerous tasks in machine vision, robotics, and 3D data acquisition and processing. In order for the subsequent algorithms to function properly, it is important that an affordable method exists that, given a pair of images taken by two cameras, can produce a representation of disparity or depth. This topic has been an active research field since the early days of work on image processing problems and rich literature is available on the topic. Joint bilateral filters have been recently proposed as a more affordable alternative to anisotropic diffusion. This class of image operators utilizes correlation in multiple modalities for purposes such as interpolation and upscaling. In this work, we develop the application of bilateral filtering for converting a large set of sparse disparity measurements into a dense disparity map. This paper develops novel methods for utilizing bilateral filters in joint, pyramid, and doubly joint settings, for purposes including missing value estimation and upscaling. We utilize images of natural and man-made scenes in order to exhibit the possibilities offered through the use of pyramid doubly joint bilateral filtering for stereopsis.

  15. A trunk ranging system based on binocular stereo vision

    NASA Astrophysics Data System (ADS)

    Zhao, Xixuan; Kan, Jiangming

    2017-07-01

    Trunk ranging is an essential function for autonomous forestry robots. Traditional trunk ranging systems based on personal computers are not convenient in practical application. This paper examines the implementation of a trunk ranging system based on the binocular vision theory via TI's DaVinc DM37x system. The system is smaller and more reliable than that implemented using a personal computer. It calculates the three-dimensional information from the images acquired by binocular cameras, producing the targeting and ranging results. The experimental results show that the measurement error is small and the system design is feasible for autonomous forestry robots.

  16. Adaptive independent joint control of manipulators - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1988-01-01

    The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.

  17. Evolving EO-1 Sensor Web Testbed Capabilities in Pursuit of GEOSS

    NASA Technical Reports Server (NTRS)

    Mandi, Dan; Ly, Vuong; Frye, Stuart; Younis, Mohamed

    2006-01-01

    A viewgraph presentation to evolve sensor web capabilities in pursuit of capabilities to support Global Earth Observing System of Systems (GEOSS) is shown. The topics include: 1) Vision to Enable Sensor Webs with "Hot Spots"; 2) Vision Extended for Communication/Control Architecture for Missions to Mars; 3) Key Capabilities Implemented to Enable EO-1 Sensor Webs; 4) One of Three Experiments Conducted by UMBC Undergraduate Class 12-14-05 (1 - 3); 5) Closer Look at our Mini-Rovers and Simulated Mars Landscae at GSFC; 6) Beginning to Implement Experiments with Standards-Vision for Integrated Sensor Web Environment; 7) Goddard Mission Services Evolution Center (GMSEC); 8) GMSEC Component Catalog; 9) Core Flight System (CFS) and Extension for GMSEC for Flight SW; 10) Sensor Modeling Language; 11) Seamless Ground to Space Integrated Message Bus Demonstration (completed December 2005); 12) Other Experiments in Queue; 13) Acknowledgements; and 14) References.

  18. Awareness and Detection of Traffic and Obstacles Using Synthetic and Enhanced Vision Systems

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.

    2012-01-01

    Research literature are reviewed and summarized to evaluate the awareness and detection of traffic and obstacles when using Synthetic Vision Systems (SVS) and Enhanced Vision Systems (EVS). The study identifies the critical issues influencing the time required, accuracy, and pilot workload associated with recognizing and reacting to potential collisions or conflicts with other aircraft, vehicles and obstructions during approach, landing, and surface operations. This work considers the effect of head-down display and head-up display implementations of SVS and EVS as well as the influence of single and dual pilot operations. The influences and strategies of adding traffic information and cockpit alerting with SVS and EVS were also included. Based on this review, a knowledge gap assessment was made with recommendations for ground and flight testing to fill these gaps and hence, promote the safe and effective implementation of SVS/EVS technologies for the Next Generation Air Transportation System

  19. Application of the Modular Automated Reconfigurable Assembly System (MARAS) concept to adaptable vision gauging and parts feeding

    NASA Technical Reports Server (NTRS)

    By, Andre Bernard; Caron, Ken; Rothenberg, Michael; Sales, Vic

    1994-01-01

    This paper presents the first phase results of a collaborative effort between university researchers and a flexible assembly systems integrator to implement a comprehensive modular approach to flexible assembly automation. This approach, named MARAS (Modular Automated Reconfigurable Assembly System), has been structured to support multiple levels of modularity in terms of both physical components and system control functions. The initial focus of the MARAS development has been on parts gauging and feeding operations for cylinder lock assembly. This phase is nearing completion and has resulted in the development of a highly configurable system for vision gauging functions on a wide range of small components (2 mm to 100 mm in size). The reconfigurable concepts implemented in this adaptive Vision Gauging Module (VGM) are now being extended to applicable aspects of the singulating, selecting, and orienting functions required for the flexible feeding of similar mechanical components and assemblies.

  20. Neuromorphic vision sensors and preprocessors in system applications

    NASA Astrophysics Data System (ADS)

    Kramer, Joerg; Indiveri, Giacomo

    1998-09-01

    A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.

  1. Fractal tomography and its application in 3D vision

    NASA Astrophysics Data System (ADS)

    Trubochkina, N.

    2018-01-01

    A three-dimensional artistic fractal tomography method that implements a non-glasses 3D visualization of fractal worlds in layered media is proposed. It is designed for the glasses-free 3D vision of digital art objects and films containing fractal content. Prospects for the development of this method in art galleries and the film industry are considered.

  2. Jordan Reforms Public Education to Compete in a Global Economy

    ERIC Educational Resources Information Center

    Erickson, Paul W.

    2009-01-01

    The King of Jordan's vision for education is resulting in innovative projects for the country. King Abdullah II wants Jordan to develop its human resources through public education to equip the workforce with skills for the future. From King Abdullah II's vision, the Education Reform for a Knowledge Economy (ERfKE) project implemented by the…

  3. A "Vision and Change" Reform of Introductory Biology Shifts Faculty Perceptions and Use of Active Learning

    ERIC Educational Resources Information Center

    Auerbach, Anna Jo; Schussler, Elisabeth

    2017-01-01

    Increasing faculty use of active-learning (AL) pedagogies in college classrooms is a persistent challenge in biology education. A large research-intensive university implemented changes to its biology majors' two-course introductory sequence as outlined by the "Vision and Change in Undergraduate Biology Education" final report. One goal…

  4. 75 FR 39493 - United States Patent and Trademark Office Draft Strategic Plan for FY 2010-2015

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... plan includes the USPTO's mission statement, vision statement and a description of the strategic goals... achieve its vision. Full details on how the USPTO plans to implement the strategic plan, including funding...] United States Patent and Trademark Office Draft Strategic Plan for FY 2010-2015 AGENCY: United States...

  5. The Vision Is Set, Now Help Chronicle the Change

    ERIC Educational Resources Information Center

    Woodin, Terry; Feser, Jason; Herrera, Jose

    2012-01-01

    The Vision and Change effort to explore and implement needed changes in undergraduate biology education has been ongoing since 2006. It is now time to take stock of changes that have occurred at the faculty and single-course levels, and to consider how to accomplish the larger-scale changes needed at departmental and institutional levels. This…

  6. Implementation Plan for Chemical Industry R&D Roadmap for Nanomaterials by Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2006-04-01

    The purpose of this effort is to develop an implementation plan to realize the vision and goals identified in the Chemical Industry R&D Roadmap for Nanomaterials By Design: From Fundamentals to Function.

  7. Exploring the Process of Implementing Healthy Workplace Initiatives: Mapping to Kotter's Leading Change Model.

    PubMed

    Chappell, Stacie; Pescud, Melanie; Waterworth, Pippa; Shilton, Trevor; Roche, Dee; Ledger, Melissa; Slevin, Terry; Rosenberg, Michael

    2016-10-01

    The aim of this study was to use Kotter's leading change model to explore the implementation of workplace health and wellbeing initiatives. Qualitative interviews were conducted with 31 workplace representatives with a healthy workplace initiative. None of the workplaces used a formal change management model when implementing their healthy workplace initiatives. Not all of the steps in Kotter model were considered necessary and the order of the steps was challenged. For example, interviewees perceived that communicating the vision, developing the vision, and creating a guiding coalition were integral parts of the process, although there was less emphasis on the importance of creating a sense of urgency and consolidating change. Although none of the workplaces reported using a formal organizational change model when implementing their healthy workplace initiatives, there did appear to be perceived merit in using the steps in Kotter's model.

  8. Role of optometry school in single day large scale school vision testing

    PubMed Central

    Anuradha, N; Ramani, Krishnakumar

    2015-01-01

    Background: School vision testing aims at identification and management of refractive errors. Large-scale school vision testing using conventional methods is time-consuming and demands a lot of chair time from the eye care professionals. A new strategy involving a school of optometry in single day large scale school vision testing is discussed. Aim: The aim was to describe a new approach of performing vision testing of school children on a large scale in a single day. Materials and Methods: A single day vision testing strategy was implemented wherein 123 members (20 teams comprising optometry students and headed by optometrists) conducted vision testing for children in 51 schools. School vision testing included basic vision screening, refraction, frame measurements, frame choice and referrals for other ocular problems. Results: A total of 12448 children were screened, among whom 420 (3.37%) were identified to have refractive errors. 28 (1.26%) children belonged to the primary, 163 to middle (9.80%), 129 (4.67%) to secondary and 100 (1.73%) to the higher secondary levels of education respectively. 265 (2.12%) children were referred for further evaluation. Conclusion: Single day large scale school vision testing can be adopted by schools of optometry to reach a higher number of children within a short span. PMID:25709271

  9. Mobile camera-space manipulation

    NASA Technical Reports Server (NTRS)

    Seelinger, Michael J. (Inventor); Yoder, John-David S. (Inventor); Skaar, Steven B. (Inventor)

    2001-01-01

    The invention is a method of using computer vision to control systems consisting of a combination of holonomic and nonholonomic degrees of freedom such as a wheeled rover equipped with a robotic arm, a forklift, and earth-moving equipment such as a backhoe or a front-loader. Using vision sensors mounted on the mobile system and the manipulator, the system establishes a relationship between the internal joint configuration of the holonomic degrees of freedom of the manipulator and the appearance of features on the manipulator in the reference frames of the vision sensors. Then, the system, perhaps with the assistance of an operator, identifies the locations of the target object in the reference frames of the vision sensors. Using this target information, along with the relationship described above, the system determines a suitable trajectory for the nonholonomic degrees of freedom of the base to follow towards the target object. The system also determines a suitable pose or series of poses for the holonomic degrees of freedom of the manipulator. With additional visual samples, the system automatically updates the trajectory and final pose of the manipulator so as to allow for greater precision in the overall final position of the system.

  10. Dynamic Database. Efficiently Convert Massive Quantities of Sensor Data into Actionable Information for Tactical Commanders

    DTIC Science & Technology

    2000-06-01

    As the number of sensors, platforms, exploitation sites, and command and control nodes continues to grow in response to Joint Vision 2010 information ... dominance requirements, Commanders and analysts will have an ever increasing need to collect and process vast amounts of data over wide areas using a large number of disparate sensors and information gathering sources.

  11. Leveraging Simulation Against the F-16 Flying Training Gap

    DTIC Science & Technology

    2005-11-01

    must leverage emerging simulation technology into combined flight training to counter mission employment complexity created by technology itself...two or more of these stand-alone simulators creates a mission training center (MTC), which when further networked create distributed mission...operations (DMO). Ultimately, the grand operational vision of DMO is to interconnect non-collocated users creating a “virtual” joint training environment

  12. A Summary of Proceedings for the Advanced Deployable Day/Night Simulation Symposium

    DTIC Science & Technology

    2009-07-01

    initiated to design , develop, and deliver transportable visual simulations that jointly provide night-vision and high-resolution daylight capability. The...Deployable Day/Night Simulation (ADDNS) Technology Demonstration Project was initiated to design , develop, and deliver transportable visual...was Dr. Richard Wildes (York University); Mr. Vitaly Zholudev (Department of Computer Science, York University), Mr. X. Zhu (Neptec Design Group), and

  13. Compilation of Theses Abstracts

    DTIC Science & Technology

    2005-06-01

    allies; 2) institutes that focus on the integration of teaching and research in direct support of the four pillars of Joint Visions 2010 and 2020 and...in Performance Based Contracts ................. 7 An Analysis of the Marriage and Dependency Premium Among Active Duty Navy Personnel...Decision Support Tool MASTER OF BUSINESS ADMINISTRATION 8 AN ANALYSIS OF THE MARRIAGE AND DEPENDENCY PREMIUM AMONG ACTIVE DUTY NAVY

  14. Improvement of Hungarian Joint Terminal Attack Program

    DTIC Science & Technology

    2013-06-13

    LST Laser Spot Tracker NVG Night Vision Goggle ROMAD Radio Operator Maintainer and Driver ROVER Remotely Operated Video Enhanced Receiver TACP...visual target designation. The other component consists of a laser spot tracker (LST), which identifies targets by tracking laser energy reflecting...capability for every type of night time missions, laser spot tracker for laser spot search missions, remotely operated video enhanced receiver

  15. Air Force Handbook. 109th Congress

    DTIC Science & Technology

    2009-01-01

    FY06 Combat Survivor Evader Locator (CSEL) Acquisition Status Capabilities/Profile Functions /Performance Parameters 38 • Air Force’s primary source for...Broadcast Service (GBS) Capabilities/Profile Acquisition Status Functions /Performance Parameters • Purchase Requirements (Phase 2): • 3 primary ...Operations (AF CONOPS) that support the CSAF and joint vision of combat operations. • AF CONOPS describe key Air Force mission and/or functional areas

  16. Ruminant methane reduction through livestock development in Tanzania. Final report for US Department of Energy and US Initiative on Joint Implementation--Activities Implemented Jointly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Livingston, Roderick

    1999-07-01

    This project was designed to help develop the US Initiative on Joint Implementation activities in Eastern Africa. It has been communicated in meetings with representatives from the Ministry of Environment of Tanzania and the consultant group that developed Tanzania's National Climate Change Action Plan, the Centre for Energy, Environment, Science and Technology, that this project fits very well with the developmental and environmental goals of the Government of Tanzania. The goal of the Activities Implemented Jointly ruminant livestock project is to reduce ruminant methane emissions in Eastern Africa. The project plans a sustainable cattle multiplication unit (CMU) at Mabuki Ranchmore » in the Mwanza Region of Tanzania. This CMU will focus on raising genetically improved animals to be purchased by farmers, developmental organizations, and other CMUs in Tanzania. Through the purchase of these animals farmers will raise their income generation potential and reduce ruminant methane emissions.« less

  17. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force

    NASA Astrophysics Data System (ADS)

    Rizzo, Joseph F., III; Ayton, Lauren N.

    2014-04-01

    Recent advances in the field of visual prostheses, as showcased in this special feature of Journal of Neural Engineering , have led to promising results from clinical trials of a number of devices. However, as noted by these groups there are many challenges involved in assessing vision of people with profound vision loss. As such, it is important that there is consistency in the methodology and reporting standards for clinical trials of visual prostheses and, indeed, the broader vision restoration research field. Two visual prosthesis research groups, the Boston Retinal Implant Project (BRIP) and Bionic Vision Australia (BVA), have agreed to work cooperatively to establish a multi-national Joint Task Force. The aim of this Task Force will be to develop a consensus statement to guide the methods used to conduct and report psychophysical and clinical results of humans who receive visual prosthetic devices. The overarching goal is to ensure maximum benefit to the implant recipients, not only in the outcomes of the visual prosthesis itself, but also in enabling them to obtain accurate information about this research with ease. The aspiration to develop a Joint Task Force was first promulgated at the inaugural 'The Eye and the Chip' meeting in September 2000. This meeting was established to promote the development of the visual prosthetic field by applying the principles of inclusiveness, openness, and collegiality among the growing body of researchers in this field. These same principles underlie the intent of this Joint Task Force to enhance the quality of psychophysical research within our community. Despite prior efforts, a critical mass of interested parties could not congeal. Renewed interest for developing joint guidelines has developed recently because of a growing awareness of the challenges of obtaining reliable measurements of visual function in patients who are severely visually impaired (in whom testing is inherently noisy), and of the importance of comparing outcomes amongst the many research teams that have entered this field, all of which are using different devices implanted at various locations within the visual system and different methods of assessing efficacy. Researchers at the BRIP and BVA believe that use of common methods for testing and for reporting results would benefit all scientists and clinicians in the field, the agencies that regulate human testing, corporations that are invested in the success of this field, and, most importantly, potential patients. The Task Force will be formed with the intent of developing substantive recommendations to provide a measure of consistency and quality control within the field. The guidelines will offer recommendations for the assessment of the: (1) baseline (pre-implant) visual status of potential patients (including specification of the disease diagnosis and impact on visual functioning) and (2) post-operative visual function. The guidelines will be available to the public, research groups and companies. Any groups that choose to adopt the recommendations would be encouraged to include a formal statement of compliance in their presentations and publications. The Task Force will develop these guidelines with the understanding that the ability to perform experiments in the suggested manner might be limited by the particular engineering design and functionality of different prosthesis devices. It is not the intent of the Task Force to write strict test protocols for all parties to follow, but instead to work cooperatively as a research field to develop guidelines about the types of tests that should be implemented, and how they could be reported in a similar format between groups. The opportunity to participate on the Task Force is open to all researchers, clinicians and other specialists who work in the fields of sensory prostheses (both visual and cochlear implants), molecular therapy, stem cells, optogenetics or other fields that share a similar goal of restoring vision to the blind. Decisions about the guidelines will be made democratically, with precautions to prevent any one group or company from having a more dominant voice than any other. One or more smaller working groups may be established to delve more deeply into specific issues, like the ethics of testing or governance structure, and to develop specific wording for recommendations that would be voted on by the entire Task Force group. Ultimately, the various recommendations, once approved democratically, will serve as the consensus document for the Multi-National Joint Task Force. The full list of members of the Task Force and the rules of governance will be published to promote transparency. The Joint Task force will post its guidelines with all signatories on a dedicated page within the website of the Henry Ford Department of Ophthalmology (Detroit). This site was chosen in recognition of the consistent support that Phillip Hessburg MD and the Board of Directors of the Detroit Institute of Ophthalmology, which has recently merged with the Henry Ford Department of Ophthalmology, have so generously and selflessly provided to our field over the past 14 years. This website will also contain a list of all human psychophysical testing that has been performed in the visual prosthetic field, with designations for those studies that were performed in accordance with the guidelines of the Multi-National Task Force, which will assume responsibility for the accuracy of the material. For those who wish to join this Task Force or have further questions, Dr Rizzo and Dr Ayton can be contacted at the email addresses listed above. The founding members of the Task Force anticipate that this digital resource will prove valuable to anyone who has interest in learning more about the achievements in our field, especially our prospective patients, to whom we dedicate our work.

  18. Street-level bureaucracy and policy implementation in community public health nursing: a qualitative study of the experiences of student and novice health visitors.

    PubMed

    Hughes, Alison; Condon, Louise

    2016-11-01

    Aim To explore the experiences of student and novice health visitors in implementing health visiting policy reform pre- and post-qualification. In England, public health nursing has been subject to major policy reform. The Health Visitor Implementation Plan (2011) set out a plan to recruit increasing numbers of nurses and midwives to the profession to deliver an expanded and refocussed health visiting service. Exploring this policy change from the viewpoint of those new to health visiting offers a unique perspective into how a specific policy vision is translated into nursing practice. A descriptive qualitative study in which participants were enrolled on a one-year post-graduate health visiting course at a University in South West of England. Qualitative data were collected pre- and post-qualification. A total of 16 interviews and a focus group were conducted with nine participants between September 2012 and March 2013. Findings Descriptive data were interpreted using Lipsky's theoretical framework of street-level bureaucracy. Three themes emerged which relate to this 'bottom-up' perspective on policy implementation; readiness to operationalise policy, challenges in delivering the service vision; and using discretion in delivering the vision. Community public health nurses operate as street-level bureaucrats in negotiating the demands of policy and practice, and by this means, attempt to reconcile professional values with institutional constraints. Barriers to policy implementation at a local level mediate the effects of policy reform, ultimately impacting upon outcomes for children and families.

  19. Enhanced and Synthetic Vision for Terminal Maneuvering Area NextGen Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K. E.; Norman, R. Michael; Williams, Steven P.; Arthur, Jarvis J., III; Shelton, Kevin J.; Prinzel, Lawrence J., III

    2011-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment with equivalent efficiency as visual operations. To meet this potential, research is needed for effective technology development and implementation of regulatory and design guidance to support introduction and use of SVS/EFVS advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. A fixed-base pilot-in-the-loop simulation test was conducted at NASA Langley Research Center that evaluated the use of SVS/EFVS in NextGen low visibility ground (taxi) operations and approach/landing operations. Twelve crews flew approach and landing operations in a simulated NextGen Chicago O Hare environment. Various scenarios tested the potential for EFVS for operations in visibility as low as 1000 ft runway visibility range (RVR) and SVS to enable lower decision heights (DH) than can currently be flown today. Expanding the EFVS visual segment from DH to the runway in visibilities as low as 1000 RVR appears to be viable as touchdown performance was excellent without any workload penalties noted for the EFVS concept tested. A lower DH to 150 ft and/or possibly reduced visibility minima by virtue of SVS equipage appears to be viable when implemented on a Head-Up Display, but the landing data suggests further study for head-down implementations.

  20. Using Vision System Technologies to Enable Operational Improvements for Low Visibility Approach and Landing Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Ellis, Kyle K. E.; Bailey, Randall E.; Williams, Steven P.; Severance, Kurt; Le Vie, Lisa R.; Comstock, James R.

    2014-01-01

    Flight deck-based vision systems, such as Synthetic and Enhanced Vision System (SEVS) technologies, have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. To achieve this potential, research is required for effective technology development and implementation based upon human factors design and regulatory guidance. This research supports the introduction and use of Synthetic Vision Systems and Enhanced Flight Vision Systems (SVS/EFVS) as advanced cockpit vision technologies in Next Generation Air Transportation System (NextGen) operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in NextGen low visibility approach and landing operations. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and two color head-down primary flight display (PFD) concepts (conventional PFD, SVS PFD) were evaluated in a simulated NextGen Chicago O'Hare terminal environment. Additionally, the instrument approach type (no offset, 3 degree offset, 15 degree offset) was experimentally varied to test the efficacy of the HUD concepts for offset approach operations. The data showed that touchdown landing performance were excellent regardless of SEVS concept or type of offset instrument approach being flown. Subjective assessments of mental workload and situation awareness indicated that making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD may be feasible.

  1. Development of embedded real-time and high-speed vision platform

    NASA Astrophysics Data System (ADS)

    Ouyang, Zhenxing; Dong, Yimin; Yang, Hua

    2015-12-01

    Currently, high-speed vision platforms are widely used in many applications, such as robotics and automation industry. However, a personal computer (PC) whose over-large size is not suitable and applicable in compact systems is an indispensable component for human-computer interaction in traditional high-speed vision platforms. Therefore, this paper develops an embedded real-time and high-speed vision platform, ER-HVP Vision which is able to work completely out of PC. In this new platform, an embedded CPU-based board is designed as substitution for PC and a DSP and FPGA board is developed for implementing image parallel algorithms in FPGA and image sequential algorithms in DSP. Hence, the capability of ER-HVP Vision with size of 320mm x 250mm x 87mm can be presented in more compact condition. Experimental results are also given to indicate that the real-time detection and counting of the moving target at a frame rate of 200 fps at 512 x 512 pixels under the operation of this newly developed vision platform are feasible.

  2. Two-Year Community: Time for Action: Vision and Change Implementation in an Online Biology Course at a Community College

    ERIC Educational Resources Information Center

    Gonzalez, Beatriz

    2016-01-01

    The author discusses an Introduction to Biology course they created. The course was designed by following the recommendations from the Vision and Change in Undergraduate Biology Education: A Call to Action report, which stresses the need for engaging students through hands-on and student-centered activities. In the course, students perform…

  3. Context-specific energy strategies: coupling energy system visions with feasible implementation scenarios.

    PubMed

    Trutnevyte, Evelina; Stauffacher, Michael; Schlegel, Matthias; Scholz, Roland W

    2012-09-04

    Conventional energy strategy defines an energy system vision (the goal), energy scenarios with technical choices and an implementation mechanism (such as economic incentives). Due to the lead of a generic vision, when applied in a specific regional context, such a strategy can deviate from the optimal one with, for instance, the lowest environmental impacts. This paper proposes an approach for developing energy strategies by simultaneously, rather than sequentially, combining multiple energy system visions and technically feasible, cost-effective energy scenarios that meet environmental constraints at a given place. The approach is illustrated by developing a residential heat supply strategy for a Swiss region. In the analyzed case, urban municipalities should focus on reducing heat demand, and rural municipalities should focus on harvesting local energy sources, primarily wood. Solar thermal units are cost-competitive in all municipalities, and their deployment should be fostered by information campaigns. Heat pumps and building refurbishment are not competitive; thus, economic incentives are essential, especially for urban municipalities. In rural municipalities, wood is cost-competitive, and community-based initiatives are likely to be most successful. Thus, the paper shows that energy strategies should be spatially differentiated. The suggested approach can be transferred to other regions and spatial scales.

  4. Basic design principles of colorimetric vision systems

    NASA Astrophysics Data System (ADS)

    Mumzhiu, Alex M.

    1998-10-01

    Color measurement is an important part of overall production quality control in textile, coating, plastics, food, paper and other industries. The color measurement instruments such as colorimeters and spectrophotometers, used for production quality control have many limitations. In many applications they cannot be used for a variety of reasons and have to be replaced with human operators. Machine vision has great potential for color measurement. The components for color machine vision systems, such as broadcast quality 3-CCD cameras, fast and inexpensive PCI frame grabbers, and sophisticated image processing software packages are available. However the machine vision industry has only started to approach the color domain. The few color machine vision systems on the market, produced by the largest machine vision manufacturers have very limited capabilities. A lack of understanding that a vision based color measurement system could fail if it ignores the basic principles of colorimetry is the main reason for the slow progress of color vision systems. the purpose of this paper is to clarify how color measurement principles have to be applied to vision systems and how the electro-optical design features of colorimeters have to be modified in order to implement them for vision systems. The subject of this presentation far exceeds the limitations of a journal paper so only the most important aspects will be discussed. An overview of the major areas of applications for colorimetric vision system will be discussed. Finally, the reasons why some customers are happy with their vision systems and some are not will be analyzed.

  5. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    NASA Astrophysics Data System (ADS)

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  6. Protyping machine vision software on the World Wide Web

    NASA Astrophysics Data System (ADS)

    Karantalis, George; Batchelor, Bruce G.

    1998-10-01

    Interactive image processing is a proven technique for analyzing industrial vision applications and building prototype systems. Several of the previous implementations have used dedicated hardware to perform the image processing, with a top layer of software providing a convenient user interface. More recently, self-contained software packages have been devised and these run on a standard computer. The advent of the Java programming language has made it possible to write platform-independent software, operating over the Internet, or a company-wide Intranet. Thus, there arises the possibility of designing at least some shop-floor inspection/control systems, without the vision engineer ever entering the factories where they will be used. It successful, this project will have a major impact on the productivity of vision systems designers.

  7. Neighborhood Discriminant Hashing for Large-Scale Image Retrieval.

    PubMed

    Tang, Jinhui; Li, Zechao; Wang, Meng; Zhao, Ruizhen

    2015-09-01

    With the proliferation of large-scale community-contributed images, hashing-based approximate nearest neighbor search in huge databases has aroused considerable interest from the fields of computer vision and multimedia in recent years because of its computational and memory efficiency. In this paper, we propose a novel hashing method named neighborhood discriminant hashing (NDH) (for short) to implement approximate similarity search. Different from the previous work, we propose to learn a discriminant hashing function by exploiting local discriminative information, i.e., the labels of a sample can be inherited from the neighbor samples it selects. The hashing function is expected to be orthogonal to avoid redundancy in the learned hashing bits as much as possible, while an information theoretic regularization is jointly exploited using maximum entropy principle. As a consequence, the learned hashing function is compact and nonredundant among bits, while each bit is highly informative. Extensive experiments are carried out on four publicly available data sets and the comparison results demonstrate the outperforming performance of the proposed NDH method over state-of-the-art hashing techniques.

  8. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage.

    PubMed

    Mononen, Mika E; Jurvelin, Jukka S; Korhonen, Rami K

    2015-01-01

    Computational models can be used to evaluate the functional properties of knee joints and possible risk locations within joints. Current models with fibril-reinforced cartilage layers do not provide information about realistic human movement during walking. This study aimed to evaluate stresses and strains within a knee joint by implementing load data from a gait cycle in healthy and meniscectomised knee joint models with fibril-reinforced cartilages. A 3D finite element model of a knee joint with cartilages and menisci was created from magnetic resonance images. The gait cycle data from varying joint rotations, translations and axial forces were taken from experimental studies and implemented into the model. Cartilage layers were modelled as a fibril-reinforced poroviscoelastic material with the menisci considered as a transversely isotropic elastic material. In the normal knee joint model, relatively high maximum principal stresses were specifically predicted to occur in the medial condyle of the knee joint during the loading response. Bilateral meniscectomy increased stresses, strains and fluid pressures in cartilage on the lateral side, especially during the first 50% of the stance phase of the gait cycle. During the entire stance phase, the superficial collagen fibrils modulated stresses of cartilage, especially in the medial tibial cartilage. The present computational model with a gait cycle and fibril-reinforced biphasic cartilage revealed time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking. The lateral meniscus was observed to have a more significant role in distributing loads across the knee joint than the medial meniscus, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.

  9. Designing and validating the joint battlespace infosphere

    NASA Astrophysics Data System (ADS)

    Peterson, Gregory D.; Alexander, W. Perry; Birdwell, J. Douglas

    2001-08-01

    Fielding and managing the dynamic, complex information systems infrastructure necessary for defense operations presents significant opportunities for revolutionary improvements in capabilities. An example of this technology trend is the creation and validation of the Joint Battlespace Infosphere (JBI) being developed by the Air Force Research Lab. The JBI is a system of systems that integrates, aggregates, and distributes information to users at all echelons, from the command center to the battlefield. The JBI is a key enabler of meeting the Air Force's Joint Vision 2010 core competencies such as Information Superiority, by providing increased situational awareness, planning capabilities, and dynamic execution. At the same time, creating this new operational environment introduces significant risk due to an increased dependency on computational and communications infrastructure combined with more sophisticated and frequent threats. Hence, the challenge facing the nation is the most effective means to exploit new computational and communications technologies while mitigating the impact of attacks, faults, and unanticipated usage patterns.

  10. Information Management Utilizing Valued Information at the Right Time (VIRT) as Applied to a Joint Terminal Attack Controller (JTAC) Mission

    DTIC Science & Technology

    2008-03-01

    technology in an effective way without taking a decade for implementation. 15. NUMBER OF PAGES 77 14. SUBJECT TERMS VIRT, Model Based... effective way without taking a decade for implementation. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I. INTRODUCTION...To build the most effective force for 2020, we must be fully joint.”2 What does being fully joint mean and how does the DoD take advantage of

  11. A computer vision system for the recognition of trees in aerial photographs

    NASA Technical Reports Server (NTRS)

    Pinz, Axel J.

    1991-01-01

    Increasing problems of forest damage in Central Europe set the demand for an appropriate forest damage assessment tool. The Vision Expert System (VES) is presented which is capable of finding trees in color infrared aerial photographs. Concept and architecture of VES are discussed briefly. The system is applied to a multisource test data set. The processing of this multisource data set leads to a multiple interpretation result for one scene. An integration of these results will provide a better scene description by the vision system. This is achieved by an implementation of Steven's correlation algorithm.

  12. Optimized feature-detection for on-board vision-based surveillance

    NASA Astrophysics Data System (ADS)

    Gond, Laetitia; Monnin, David; Schneider, Armin

    2012-06-01

    The detection and matching of robust features in images is an important step in many computer vision applications. In this paper, the importance of the keypoint detection algorithms and their inherent parameters in the particular context of an image-based change detection system for IED detection is studied. Through extensive application-oriented experiments, we draw an evaluation and comparison of the most popular feature detectors proposed by the computer vision community. We analyze how to automatically adjust these algorithms to changing imaging conditions and suggest improvements in order to achieve more exibility and robustness in their practical implementation.

  13. IO Sphere: The Professional Journal of Joint Information Operations. Special Edition 2008

    DTIC Science & Technology

    2008-01-01

    members, disseminate propaganda, videos , brochures, and training materials, as well as to coordinate terrorist acts in an anonymous and...collaboration among larger communities of cyber Porn versus Terror Years ago, authorities noticed that child pornography websites, though often...stepping foot on them. Moreover, video information can be analyzed by computer vision algorithms. Based on technology available today, it’s not

  14. Moving from Good Ideas in Educational Systems Change to Sustainable Program Implementation: Coming to Terms with Some of the Realities

    ERIC Educational Resources Information Center

    Noell, George H.; Gansle, Kristin A.

    2009-01-01

    Proponents of systemic changes in education commonly encounter ethical, theoretical, and pragmatic challenges in moving from possibility to implementation of their vision of change. Although ethical and theoretical issues are critically important to a successful change initiative, pragmatic issues relevant to assuring program implementation have…

  15. Examination of factors affecting gait properties in healthy older adults: focusing on knee extension strength, visual acuity, and knee joint pain.

    PubMed

    Demura, Tomohiro; Demura, Shin-ichi; Uchiyama, Masanobu; Sugiura, Hiroki

    2014-01-01

    Gait properties change with age because of a decrease in lower limb strength and visual acuity or knee joint disorders. Gait changes commonly result from these combined factors. This study aimed to examine the effects of knee extension strength, visual acuity, and knee joint pain on gait properties of for 181 healthy female older adults (age: 76.1 (5.7) years). Walking speed, cadence, stance time, swing time, double support time, step length, step width, walking angle, and toe angle were selected as gait parameters. Knee extension strength was measured by isometric dynamometry; and decreased visual acuity and knee joint pain were evaluated by subjective judgment whether or not such factors created a hindrance during walking. Among older adults without vision problems and knee joint pain that affected walking, those with superior knee extension strength had significantly greater walking speed and step length than those with inferior knee extension strength (P < .05). Persons with visual acuity problems had higher cadence and shorter stance time. In addition, persons with pain in both knees showed slower walking speed and longer stance time and double support time. A decrease of knee extension strength and visual acuity and knee joint pain are factors affecting gait in the female older adults. Decreased knee extension strength and knee joint pain mainly affect respective distance and time parameters of the gait.

  16. FE analysis of SMA-based bio-inspired bone-joint system

    NASA Astrophysics Data System (ADS)

    Yang, S.; Seelecke, S.

    2009-10-01

    This paper presents the finite element (FE) analysis of a bio-inspired bone-joint system. Motivated by the BATMAV project, which aims at the development of a micro-air-vehicle platform that implements bat-like flapping flight capabilities, we study the actuation of a typical elbow joint, using shape memory alloy (SMA) in a dual manner. Micro-scale martensitic SMA wires are used as 'metal muscles' to actuate a system of humerus, elbow joint and radius, in concert with austenitic wires, which operate as flexible joints due to their superelastic character. For the FE analysis, the humerus and radius are modeled as standard elastic beams, while the elbow joint and muscle wires use the Achenbach-Muller-Seelecke SMA model as beams and cable elements, respectively. The particular focus of the paper is on the implementation of the above SMA model in COMSOL.

  17. Vision into Reality: Planning and Budgeting Processes Implemented at NMSU-Carlsbad through the Year 2000.

    ERIC Educational Resources Information Center

    Cowen, Sonia S.

    Prepared for a site visit by the North Central Association (NCA), this report describes the goals and vision of New Mexico State University's two-year branch campus at Carlsbad (NMSU-C) through the year 2000. The first section states the mission, goals, and purposes of NMSU-C, while the second describes six campus-wide initiatives to be completed…

  18. Blurry Vision: Institutional Impediments to Reform in Saudi Arabia

    DTIC Science & Technology

    2017-09-01

    implement economic and social reform. Analyzing interconnected political, economic , and social causes that manifest in the structure of the state and...governance and modifications to the country’s patronage policies, economic change will be limited at best. Elites’ preferences for blocking political...reform has hampered achievement of economic goals and will continue to prove problematic if not rescinded. 14. SUBJECT TERMS Saudi Arabia, Vision

  19. Education for a New Era: Design and Implementation of K-12 Education Reform in Qatar. Monograph

    ERIC Educational Resources Information Center

    Brewer, Dominic J.; Augustine, Catherine H.; Zellman, Gail L.; Ryan, Gery; Goldman, Charles A.; Stasz, Cathleen; Constant, Louay

    2007-01-01

    The leadership of Qatar has a social and political vision that calls for improving the outcomes of the Qatari K-12 education system. With this vision in mind, the leadership asked RAND to examine Qatar's K-12 education system, to recommend options for building a world-class system, and, subsequently, to develop the chosen option and support its…

  20. The climate adaptation programs and activities of the Yellowstone to Yukon Conservation Initiative

    Treesearch

    Wendy L. Francis

    2011-01-01

    The Yellowstone to Yukon Conservation Initiative (Y2Y) is an innovative transboundary effort to protect biodiversity and facilitate climate adaptation by linking large protected core areas through compatible land uses on matrix lands. The Y2Y organization acts as the keeper of the Y2Y vision and implements two interconnected programs - Science and Action, and Vision...

  1. Numerical built-in method for the nonlinear JRC/JCS model in rock joint.

    PubMed

    Liu, Qunyi; Xing, Wanli; Li, Ying

    2014-01-01

    The joint surface is widely distributed in the rock, thus leading to the nonlinear characteristics of rock mass strength and limiting the effectiveness of the linear model in reflecting characteristics. The JRC/JCS model is the nonlinear failure criterion and generally believed to describe the characteristics of joints better than other models. In order to develop the numerical program for JRC/JCS model, this paper established the relationship between the parameters of the JRC/JCS and Mohr-Coulomb models. Thereafter, the numerical implement method and implementation process of the JRC/JCS model were discussed and the reliability of the numerical method was verified by the shear tests of jointed rock mass. Finally, the effect of the JRC/JCS model parameters on the shear strength of the joint was analyzed.

  2. Operational Components of Telemedicine Programs for Diabetic Retinopathy.

    PubMed

    Horton, Mark B; Silva, Paolo S; Cavallerano, Jerry D; Aiello, Lloyd Paul

    2016-12-01

    Diabetic retinopathy is a leading cause of new-onset vision loss worldwide. Treatments supported by large clinical trials are effective in preserving vision, but many persons do not receive timely diagnosis and treatment of diabetic retinopathy, which is typically asymptomatic when most treatable. Telemedicine evaluation to identify diabetic retinopathy has the potential to improve access to care and improve outcomes, but incomplete implementation of published standards creates a risk to program utility and sustainability. In a prior article, we reviewed the literature regarding the impact of imaging device, number and size of retinal images, pupil dilation, type of image grader, and diagnostic accuracy on telemedicine assessment for diabetic retinopathy. This article reviews the literature regarding the impact of automated image grading, cost effectiveness, program standards, and quality assurance (QA) on telemedicine assessment of diabetic retinopathy. Telemedicine assessment of diabetic retinopathy has the potential to preserve vision, but greater attention to development and implementation of standards is needed to better realize its potential.

  3. Ohio Route 50 joint sealant experiment : research implementation plan.

    DOT National Transportation Integrated Search

    2005-05-01

    Research in the state of Wisconsin over the past forty years has found no noticeable difference in : performance between jointed concrete pavement (JCP) constructed with a sealed contraction joint and : JCP constructed with a single, narrow, unsealed...

  4. Leadership, Diversity and the Campus Community.

    ERIC Educational Resources Information Center

    Chahin, Jaime

    To develop and implement diversity initiatives in the university community requires the effective implementation of initiatives in many areas. Diversity leaders should be cognizant of institutional values and attitudes and the vision espoused by the university's president. The diversity leader should inform the university community about…

  5. A self-learning camera for the validation of highly variable and pseudorandom patterns

    NASA Astrophysics Data System (ADS)

    Kelley, Michael

    2004-05-01

    Reliable and productive manufacturing operations have depended on people to quickly detect and solve problems whenever they appear. Over the last 20 years, more and more manufacturing operations have embraced machine vision systems to increase productivity, reliability and cost-effectiveness, including reducing the number of human operators required. Although machine vision technology has long been capable of solving simple problems, it has still not been broadly implemented. The reason is that until now, no machine vision system has been designed to meet the unique demands of complicated pattern recognition. The ZiCAM family was specifically developed to be the first practical hardware to meet these needs. To be able to address non-traditional applications, the machine vision industry must include smart camera technology that meets its users" demands for lower costs, better performance and the ability to address applications of irregular lighting, patterns and color. The next-generation smart cameras will need to evolve as a fundamentally different kind of sensor, with new technology that behaves like a human but performs like a computer. Neural network based systems, coupled with self-taught, n-space, non-linear modeling, promises to be the enabler of the next generation of machine vision equipment. Image processing technology is now available that enables a system to match an operator"s subjectivity. A Zero-Instruction-Set-Computer (ZISC) powered smart camera allows high-speed fuzzy-logic processing, without the need for computer programming. This can address applications of validating highly variable and pseudo-random patterns. A hardware-based implementation of a neural network, Zero-Instruction-Set-Computer, enables a vision system to "think" and "inspect" like a human, with the speed and reliability of a machine.

  6. Bio-inspired approach for intelligent unattended ground sensors

    NASA Astrophysics Data System (ADS)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  7. Low Gravity Materials Science Research for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Semmes, Edmund B.; Schlagheck, Ronald A.; Bassler, Julie A.; Cook, Mary Beth; Wargo, Michael J.; Sanders, Gerald B.; Marzwell, Neville I.

    2004-01-01

    On January 14, 2004, the President of the United States announced a new vision for the United States civil space program. The Administrator of the National Aeronautics and Space Administration (NASA) has the responsibility to implement this new vision. The President also created a Presidential Commission 'to obtain recommendations concerning implementation of the new vision for space exploration.' The President's Commission recognized that achieving the exploration objectives would require significant technical innovation, research, and development in focal areas defined as 'enabling technologies.' Among the 17 enabling technologies identified for initial focus were advanced structures; advanced power and propulsion; closed-loop life support and habitability; extravehicular activity system; autonomous systems and robotics; scientific data collection and analysis; biomedical risk mitigation; and planetary in situ resource utilization. The Commission also recommended realignment of NASA Headquarters organizations to support the vision for space exploration. NASA has aggressively responded in its planning to support the vision for space exploration and with the current considerations of the findings and recommendations from the Presidential Commission. This presentation will examine the transformation and realignment activities to support the vision for space exploration that are underway in the microgravity materials science program. The heritage of the microgravity materials science program, in the context of residence within the organizational structure of the Office of Biological and Physical Research, and thematic and sub-discipline based research content areas, will be briefly examined as the starting point for the ongoing transformation. Overviews of future research directions will be presented and the status of organizational restructuring at NASA Headquarters, with respect to influences on the microgravity materials science program, will be discussed. Additional information is included in the original extended abstract.

  8. An early underwater artificial vision model in ocean investigations via independent component analysis.

    PubMed

    Nian, Rui; Liu, Fang; He, Bo

    2013-07-16

    Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs).

  9. An Early Underwater Artificial Vision Model in Ocean Investigations via Independent Component Analysis

    PubMed Central

    Nian, Rui; Liu, Fang; He, Bo

    2013-01-01

    Underwater vision is one of the dominant senses and has shown great prospects in ocean investigations. In this paper, a hierarchical Independent Component Analysis (ICA) framework has been established to explore and understand the functional roles of the higher order statistical structures towards the visual stimulus in the underwater artificial vision system. The model is inspired by characteristics such as the modality, the redundancy reduction, the sparseness and the independence in the early human vision system, which seems to respectively capture the Gabor-like basis functions, the shape contours or the complicated textures in the multiple layer implementations. The simulation results have shown good performance in the effectiveness and the consistence of the approach proposed for the underwater images collected by autonomous underwater vehicles (AUVs). PMID:23863855

  10. CAD-model-based vision for space applications

    NASA Technical Reports Server (NTRS)

    Shapiro, Linda G.

    1988-01-01

    A pose acquisition system operating in space must be able to perform well in a variety of different applications including automated guidance and inspections tasks with many different, but known objects. Since the space station is being designed with automation in mind, there will be CAD models of all the objects, including the station itself. The construction of vision models and procedures directly from the CAD models is the goal of this project. The system that is being designed and implementing must convert CAD models to vision models, predict visible features from a given view point from the vision models, construct view classes representing views of the objects, and use the view class model thus derived to rapidly determine the pose of the object from single images and/or stereo pairs.

  11. Greening America's Communities

    EPA Pesticide Factsheets

    Technical assistance program to help cities and towns develop an implementable vision of distinctive, environmentally friendly neighborhoods using green infrastructure and other sustainable design strategies.

  12. Joint reconstruction of multiview compressed images.

    PubMed

    Thirumalai, Vijayaraghavan; Frossard, Pascal

    2013-05-01

    Distributed representation of correlated multiview images is an important problem that arises in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed images are decoded together in order to take benefit from the image correlation. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG) with a balanced rate distribution among different cameras. A central decoder first estimates the inter-view image correlation from the independently compressed data. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images, which comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to their compressed versions. We show through experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our algorithm compares advantageously to state-of-the-art distributed coding schemes based on motion learning and on the DISCOVER algorithm.

  13. Visual and hearing impairments are associated with cognitive decline in older people.

    PubMed

    Maharani, Asri; Dawes, Piers; Nazroo, James; Tampubolon, Gindo; Pendleton, Neil

    2018-04-25

    highly prevalagent hearing and vision sensory impairments among older people may contribute to the risk of cognitive decline and pathological impairments including dementia. This study aims to determine whether single and dual sensory impairment (hearing and/or vision) are independently associated with cognitive decline among older adults and to describe cognitive trajectories according to their impairment pattern. we used data from totals of 13,123, 11,417 and 21,265 respondents aged 50+ at baseline from the Health and Retirement Study (HRS), the English Longitudinal Study of Ageing (ELSA) and the Survey of Health, Ageing and Retirement in Europe (SHARE), respectively. We performed growth curve analysis to identify cognitive trajectories, and a joint model was used to deal with attrition problems in longitudinal ageing surveys. respondents with a single sensory impairment had lower episodic memory score than those without sensory impairment in HRS (β = -0.15, P < 0.001), ELSA (β= -0.14, P< 0.001) and SHARE (β= -0.26, P < 0.001). The analysis further shows that older adults with dual sensory impairment in HRS (β= -0.25, P < 0.001), ELSA (β= -0.35, P< 0.001) and SHARE (β= -0.68, P < 0.001) remembered fewer words compared with those with no sensory impairment. The stronger associations between sensory impairment and lower episodic memory levels were found in the joint model which accounted for attrition. hearing and/or vision impairments are a marker for the risk of cognitive decline that could inform preventative interventions to maximise cognitive health and longevity. Further studies are needed to investigate how sensory markers could inform strategies to improve cognitive ageing.

  14. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  15. The severity of the visual impairment and practice matter for drawing ability in children.

    PubMed

    Vinter, Annie; Bonin, Patrick; Morgan, Pascal

    2018-07-01

    Astonishing drawing capacities have been reported in children with early visual impairments. However, most of the evidence relies on single case studies. Hitherto, no study has systematically jointly investigated, in these children, the role of (1) the severity of the visual handicap, (2) age and (3) practice in drawing. The study aimed at revealing the specificities of the drawing in children deprived from vision, as compared to children with less severe visual handicap and to sighted children performing under haptic or usual visual control. 148 children aged 6-14 years had to produce 12 drawings of familiar objects. 38 had a severe visual impairment, 41 suffered from low vision, and 69 were sighted children performing either under visual condition or blindfolded under haptic control. Recognizability and other characteristics of the drawings were highly dependent on the child's degree of vision and level of drawing practice, and progressed with chronological age more clearly in the sighted children or those with low vision than in those deprived of vision. The study confirmed that all groups showed significant drawing ability, even the group totally deprived of visual experience. Furthermore, the specificities of the drawings produced by visually-impaired children appeared clearly related to their practice and the severity of their visual impairment. This should incite parents and professionals to encourage these children to practice drawing as early as possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. 76 FR 23221 - Joint Public Roundtable on Issues Related to the Schedule for Implementing Final Rules for Swaps...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... submissions will be reviewed jointly by the Agencies. All comments must be in English or be accompanied by an English translation. All submissions provided to either Agency in any electronic form or on paper will be... of CFTC Commissioner Scott D. O'Malia; Implementation Roundtable Seriatim; Certainty & Transparency I...

  17. A real-time camera calibration system based on OpenCV

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Wang, Hua; Guo, Huinan; Ren, Long; Zhou, Zuofeng

    2015-07-01

    Camera calibration is one of the essential steps in the computer vision research. This paper describes a real-time OpenCV based camera calibration system, and developed and implemented in the VS2008 environment. Experimental results prove that the system to achieve a simple and fast camera calibration, compared with MATLAB, higher precision and does not need manual intervention, and can be widely used in various computer vision system.

  18. Analog "neuronal" networks in early vision.

    PubMed Central

    Koch, C; Marroquin, J; Yuille, A

    1986-01-01

    Many problems in early vision can be formulated in terms of minimizing a cost function. Examples are shape from shading, edge detection, motion analysis, structure from motion, and surface interpolation. As shown by Poggio and Koch [Poggio, T. & Koch, C. (1985) Proc. R. Soc. London, Ser. B 226, 303-323], quadratic variational problems, an important subset of early vision tasks, can be "solved" by linear, analog electrical, or chemical networks. However, in the presence of discontinuities, the cost function is nonquadratic, raising the question of designing efficient algorithms for computing the optimal solution. Recently, Hopfield and Tank [Hopfield, J. J. & Tank, D. W. (1985) Biol. Cybern. 52, 141-152] have shown that networks of nonlinear analog "neurons" can be effective in computing the solution of optimization problems. We show how these networks can be generalized to solve the nonconvex energy functionals of early vision. We illustrate this approach by implementing a specific analog network, solving the problem of reconstructing a smooth surface from sparse data while preserving its discontinuities. These results suggest a novel computational strategy for solving early vision problems in both biological and real-time artificial vision systems. PMID:3459172

  19. Vision-based obstacle recognition system for automated lawn mower robot development

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Zalhan; Ibrahim, Ratnawati

    2011-06-01

    Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.

  20. Computer vision-based sorting of Atlantic salmon (Salmo salar) fillets according to their color level.

    PubMed

    Misimi, E; Mathiassen, J R; Erikson, U

    2007-01-01

    Computer vision method was used to evaluate the color of Atlantic salmon (Salmo salar) fillets. Computer vision-based sorting of fillets according to their color was studied on 2 separate groups of salmon fillets. The images of fillets were captured using a digital camera of high resolution. Images of salmon fillets were then segmented in the regions of interest and analyzed in red, green, and blue (RGB) and CIE Lightness, redness, and yellowness (Lab) color spaces, and classified according to the Roche color card industrial standard. Comparisons of fillet color between visual evaluations were made by a panel of human inspectors, according to the Roche SalmoFan lineal standard, and the color scores generated from computer vision algorithm showed that there were no significant differences between the methods. Overall, computer vision can be used as a powerful tool to sort fillets by color in a fast and nondestructive manner. The low cost of implementing computer vision solutions creates the potential to replace manual labor in fish processing plants with automation.

  1. Connectionist Models and Parallelism in High Level Vision.

    DTIC Science & Technology

    1985-01-01

    GRANT NUMBER(s) Jerome A. Feldman N00014-82-K-0193 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENt. PROJECT, TASK Computer Science...Connectionist Models 2.1 Background and Overviev % Computer science is just beginning to look seriously at parallel computation : it may turn out that...the chair. The program includes intermediate level networks that compute more complex joints and ones that compute parallelograms in the image. These

  2. United States Marine Corps Cost Reduction and the Joint Battle Command Platform

    DTIC Science & Technology

    2013-09-01

    2013) ...................... 20   Figure 4.   Hierarchical multi- level representation of the JBC-P FoS capability areas and metrics (After Han et...Technician FY Fiscal Year GAO Government Accountability Office GCE Ground Combat Element GOTS Government off the Shelf HMMWV High...widely dispersed units across the battlefield (HQMC, 2013). This control is desired to be extended down to the company level and below. The vision

  3. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 2

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James A. (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Texas, Houston. Topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  4. Crossing the quality chasm in resource-limited settings.

    PubMed

    Maru, Duncan Smith-Rohrberg; Andrews, Jason; Schwarz, Dan; Schwarz, Ryan; Acharya, Bibhav; Ramaiya, Astha; Karelas, Gregory; Rajbhandari, Ruma; Mate, Kedar; Shilpakar, Sona

    2012-11-30

    Over the last decade, extensive scientific and policy innovations have begun to reduce the "quality chasm"--the gulf between best practices and actual implementation that exists in resource-rich medical settings. While limited data exist, this chasm is likely to be equally acute and deadly in resource-limited areas. While health systems have begun to be scaled up in impoverished areas, scale-up is just the foundation necessary to deliver effective healthcare to the poor. This perspective piece describes a vision for a global quality improvement movement in resource-limited areas. The following action items are a first step toward achieving this vision: 1) revise global health investment mechanisms to value quality; 2) enhance human resources for improving health systems quality; 3) scale up data capacity; 4) deepen community accountability and engagement initiatives; 5) implement evidence-based quality improvement programs; 6) develop an implementation science research agenda.

  5. Model-based object classification using unification grammars and abstract representations

    NASA Astrophysics Data System (ADS)

    Liburdy, Kathleen A.; Schalkoff, Robert J.

    1993-04-01

    The design and implementation of a high level computer vision system which performs object classification is described. General object labelling and functional analysis require models of classes which display a wide range of geometric variations. A large representational gap exists between abstract criteria such as `graspable' and current geometric image descriptions. The vision system developed and described in this work addresses this problem and implements solutions based on a fusion of semantics, unification, and formal language theory. Object models are represented using unification grammars, which provide a framework for the integration of structure and semantics. A methodology for the derivation of symbolic image descriptions capable of interacting with the grammar-based models is described and implemented. A unification-based parser developed for this system achieves object classification by determining if the symbolic image description can be unified with the abstract criteria of an object model. Future research directions are indicated.

  6. Eye vision system using programmable micro-optics and micro-electronics

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Amin, M. Junaid; Riza, Mehdi N.

    2014-02-01

    Proposed is a novel eye vision system that combines the use of advanced micro-optic and microelectronic technologies that includes programmable micro-optic devices, pico-projectors, Radio Frequency (RF) and optical wireless communication and control links, energy harvesting and storage devices and remote wireless energy transfer capabilities. This portable light weight system can measure eye refractive powers, optimize light conditions for the eye under test, conduct color-blindness tests, and implement eye strain relief and eye muscle exercises via time sequenced imaging. Described is the basic design of the proposed system and its first stage system experimental results for vision spherical lens refractive error correction.

  7. Arthroscopy of the fetlock joint of the dromedary camel.

    PubMed

    Ali, M M; Abd-Elnaeim, M

    2012-01-01

    To describe a technique for arthroscopy of the fetlock joint of the dromedary camel, and the problems that could occur during and after arthroscopy. Seven animals (4 cadaveric limbs and 3 living camels) were used in this study. Two dorsal arthroscopic portals (lateral and medial) and one palmaro-lateral portal were used. Distension of the joint capsule was effected by injecting Ringer´s lactate solution into the joint cavity. Landmarks for the dorsal arthroscopic portals were located at the centre of the groove bounded by the lateral branch of the suspensory ligament and the large metacarpus at a point 1 cm proximal to the joint. The palmaro-lateral portal was located in a triangular area between the branch of the suspensory ligament, the large metacarpus, and the sesamoid bone, with insertion of the arthroscope in a 45° joint flexion angle. Arthroscopy of the fetlock joint via the dorso-lateral portal allowed examination of the distal end of the large metacarpus and the proximal end of the first phalanx of the fourth digit. Arthroscopy via a dorso-medial approach allowed examination of the distal end of the large metacarpus and the proximal end of the first phalanx and the distal end of the third digit. The palmaro-lateral portal allowed examination of the sesamoid bones, the synovial membrane, and the synovial villi. The main complications recorded during arthroscopy were iatrogenic articular surface injury as well as obstruction of vision with the synovial villi. This is the first work to describe the normal arthroscopy of the fetlock joint in the dromedary camel, the arthroscopic portals, and the complications that could occur during and after arthroscopy. Further studies are required for diagnosis of pathological changes in the fetlock joint of the dromedary camel and for arthroscopy of other joints in the dromedary camel.

  8. National Centers for Environmental Prediction

    Science.gov Websites

    Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post / VISION | About EMC EMC > Mesoscale Modeling > IMPLEMENTATION INFO Home Mission Models R & D ; Extratropical Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING

  9. From Vision to Implementation: KELI's First Year

    ERIC Educational Resources Information Center

    Devin, Mary

    2013-01-01

    This article is a follow-up to Mary Devin's report on the collaborative efforts required to create the "Kansas Educational Leadership Institute" in 2010. The Kansas Educational Leadership Institute (KELI) moved from planning to implementation on March 30, 2011, as a statewide systematic support system for the recruitment, development,…

  10. Evaluation of the Implementation of Professional Learning Communities and the Impact on Student Achievement

    ERIC Educational Resources Information Center

    Bostic, Cristi M.

    2013-01-01

    This dissertation evaluated the implementation of professional learning communities in a large suburban school district in North Carolina. The presence of shared and supportive leadership, shared values and vision, collective learning and application, shared personal practice, supportive conditions for relationships, and supportive conditions for…

  11. Implementing the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Penuel, William R.; Harris, Christopher J.; DeBarger, Angela Haydel

    2015-01-01

    The Next Generation Science Standards embody a new vision for science education grounded in the idea that science is both a body of knowledge and a set of linked practices for developing knowledge. The authors describe strategies that they suggest school and district leaders consider when designing strategies to support NGSS implementation.

  12. New, Patented Technique for Naturally Restoring Healthy Vision

    NASA Astrophysics Data System (ADS)

    Anganes, Andrew A.; McLeod, Roger David; Machado, Milena

    2009-05-01

    The patented NATUROPTIC METHOD FOR RESTORING HEALTHY VISION claims to be a novel teaching method for safely and naturally improving vision. It is a simple tutoring process designed to work quickly, requiring only a minimal number of sessions for improvement. We investigated these claims, implementing Naturoptics for safe recovery of vision, ourselves, over a period of time. Research was conducted at off campus locations, mentored by the creator of the Naturoptic Method. We assessed our initial visual acuity and subsequent progress, using standard Snellen Eye Charts. Our research is designed to document successive improvements in vision, and to assess our potential for teaching the method. Naturoptics' Board encourages work-study memorial awards for students. They are: ``The David Matthew McLeod Memorial Award,'' or ``The Kaan Balam Matagamon Memorial Award,'' with net earnings shared by the designees, academic entities, the American Indians in Science and Engineering Society, AISES, or charity. The Board requires awardees, students, and associated entities, to sign non-disclosure agreements.

  13. Design And Implementation Of Integrated Vision-Based Robotic Workcells

    NASA Astrophysics Data System (ADS)

    Chen, Michael J.

    1985-01-01

    Reports have been sparse on large-scale, intelligent integration of complete robotic systems for automating the microelectronics industry. This paper describes the application of state-of-the-art computer-vision technology for manufacturing of miniaturized electronic components. The concepts of FMS - Flexible Manufacturing Systems, work cells, and work stations and their control hierarchy are illustrated in this paper. Several computer-controlled work cells used in the production of thin-film magnetic heads are described. These cells use vision for in-process control of head-fixture alignment and real-time inspection of production parameters. The vision sensor and other optoelectronic sensors, coupled with transport mechanisms such as steppers, x-y-z tables, and robots, have created complete sensorimotor systems. These systems greatly increase the manufacturing throughput as well as the quality of the final product. This paper uses these automated work cells as examples to exemplify the underlying design philosophy and principles in the fabrication of vision-based robotic systems.

  14. The precision measurement and assembly for miniature parts based on double machine vision systems

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.

    2015-02-01

    In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.

  15. Determination of Parachute Joint Factors using Seam and Joint Testing

    NASA Technical Reports Server (NTRS)

    Mollmann, Catherine

    2015-01-01

    This paper details the methodology for determining the joint factor for all parachute components. This method has been successfully implemented on the Capsule Parachute Assembly System (CPAS) for the NASA Orion crew module for use in determining the margin of safety for each component under peak loads. Also discussed are concepts behind the joint factor and what drives the loss of material strength at joints. The joint factor is defined as a "loss in joint strength...relative to the basic material strength" that occurs when "textiles are connected to each other or to metals." During the CPAS engineering development phase, a conservative joint factor of 0.80 was assumed for each parachute component. In order to refine this factor and eliminate excess conservatism, a seam and joint testing program was implemented as part of the structural validation. This method split each of the parachute structural joints into discrete tensile tests designed to duplicate the loading of each joint. Breaking strength data collected from destructive pull testing was then used to calculate the joint factor in the form of an efficiency. Joint efficiency is the percentage of the base material strength that remains after degradation due to sewing or interaction with other components; it is used interchangeably with joint factor in this paper. Parachute materials vary in type-mainly cord, tape, webbing, and cloth -which require different test fixtures and joint sample construction methods. This paper defines guidelines for designing and testing samples based on materials and test goals. Using the test methodology and analysis approach detailed in this paper, the minimum joint factor for each parachute component can be formulated. The joint factors can then be used to calculate the design factor and margin of safety for that component, a critical part of the design verification process.

  16. Neural joint control for Space Shuttle Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Atkins, Mark A.; Cox, Chadwick J.; Lothers, Michael D.; Pap, Robert M.; Thomas, Charles R.

    1992-01-01

    Neural networks are being used to control a robot arm in a telerobotic operation. The concept uses neural networks for both joint and inverse kinematics in a robotic control application. An upper level neural network is trained to learn inverse kinematic mappings. The output, a trajectory, is then fed to the Decentralized Adaptive Joint Controllers. This neural network implementation has shown that the controlled arm recovers from unexpected payload changes while following the reference trajectory. The neural network-based decentralized joint controller is faster, more robust and efficient than conventional approaches. Implementations of this architecture are discussed that would relax assumptions about dynamics, obstacles, and heavy loads. This system is being developed to use with the Space Shuttle Remote Manipulator System.

  17. Youth Excel: towards a pan-Canadian platform linking evidence and action for prevention.

    PubMed

    Riley, Barbara L; Manske, Steve; Cameron, Roy

    2011-05-15

    Population-level intervention is required to prevent cancer and other chronic diseases. It also promotes health for those living with established risk factors and illness. In this article, the authors describe a vision and approach for continuously improving population-level programs and policies within and beyond the health sector. The vision and approach are anchored in contemporary thinking about what is required to link evidence and action in the field of population and public health. The authors believe that, as a cancer prevention and control community, organizations and practitioners must be able to use the best available evidence to inform action and continually generate evidence that improves prevention policies and programs on an ongoing basis. These imperatives require leaders in policy, practice, and research fields to work together to jointly plan, conduct, and act on relevant evidence. The Propel Center and colleagues are implementing this approach in Youth Excel-a pan-Canadian initiative that brings together national and provincial organizations from health and education sectors and capitalizes on a history of collaboration. The objective of Youth Excel is to build sustainable capacity for knowledge development and exchange that can guide and redirect prevention efforts in a rapidly evolving social environment. This goal is to contribute to creating health-promoting environments and to accelerate progress in preventing cancer and other diseases among youth and young adults and in the wider population. Although prevention is the aim, health-promoting environments also can support health gains for individuals of all ages and with established illness. In addition, the approach Youth Excel is taking to link evidence and action may be applicable to early intervention and treatment components of cancer control. © 2011 American Cancer Society

  18. Response to Intervention and Continuous School Improvement: Using Data, Vision, and Leadership to Design, Implement, and Evaluate a Schoolwide Prevention System

    ERIC Educational Resources Information Center

    Bernhardt, Victoria L.; Hebert, Connie L.

    2011-01-01

    Ensure the success of your school and improve the learning of "all" students by implementing Response-to-Intervention (RTI) as part of a continuous school improvement (CSI) process. This book shows you how to get your entire staff working together to design, implement, and evaluate a schoolwide prevention system. With specific examples, CSI expert…

  19. Influence of Selected Factors on the Implementation of Information and Communication Technology Policy in Public Secondary Schools in Naivasha Sub-County, Kenya

    ERIC Educational Resources Information Center

    Francis, Njoroge Ngugi; Ngugi, Margaret; Kinzi, Joab

    2017-01-01

    The aim of this study was to examine the influence of selected factors on implementation of Information and Communication Technology in public secondary schools in Naivasha sub-county, Kenya. The study investigated whether the ICT infrastructural cost, schools' visions, and teachers' ICT skills hinder effective implementation of ICT policy in…

  20. POSNA Quality Safety Value Initiative: From Vision to Implementation to Early Results.

    PubMed

    Waters, Peter M; Flynn, John M

    2015-01-01

    The POSNA Quality, Safety and Value Initiative (QSVI) formally started with POSNA board approval in early 2011. The initial vision statement was: "To lead in defining our members' value based clinical care. To partner with hospital based and orthopedic organizational efforts to guarantee safe, high quality outcomes for our patients. To communicate our initiatives and results cooperatively with payer, credentialing, and compliance organizations to improve pediatric orthopedic care in North America."

  1. Building a Better NASA Workforce: Meeting the Workforce Needs for the National Vision for Space Exploration

    ERIC Educational Resources Information Center

    National Academies Press, 2007

    2007-01-01

    The Vision for Space Exploration (VSE) announced by President George W. Bush in 2004 sets NASA and the nation on a bold path to return to the Moon and one day put a human on Mars. The long-term endeavor represented by the VSE is, however, subject to the constraints imposed by annual funding. Given that the VSE may take tens of years to implement,…

  2. A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces

    NASA Astrophysics Data System (ADS)

    Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang

    2018-02-01

    Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.

  3. A computer architecture for intelligent machines

    NASA Technical Reports Server (NTRS)

    Lefebvre, D. R.; Saridis, G. N.

    1992-01-01

    The theory of intelligent machines proposes a hierarchical organization for the functions of an autonomous robot based on the principle of increasing precision with decreasing intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed. The authors present a computer architecture that implements the lower two levels of the intelligent machine. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Execution-level controllers for motion and vision systems are briefly addressed, as well as the Petri net transducer software used to implement coordination-level functions. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  4. Transition of Attention in Terminal Area NextGen Operations Using Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Ellis, Kyle K. E.; Kramer, Lynda J.; Shelton, Kevin J.; Arthur, Shelton, J. J., III; Prinzel, Lance J., III; Norman, Robert M.

    2011-01-01

    This experiment investigates the capability of Synthetic Vision Systems (SVS) to provide significant situation awareness in terminal area operations, specifically in low visibility conditions. The use of a Head-Up Display (HUD) and Head-Down Displays (HDD) with SVS is contrasted to baseline standard head down displays in terms of induced workload and pilot behavior in 1400 RVR visibility levels. Variances across performance and pilot behavior were reviewed for acceptability when using HUD or HDD with SVS under reduced minimums to acquire the necessary visual components to continue to land. The data suggest superior performance for HUD implementations. Improved attentional behavior is also suggested for HDD implementations of SVS for low-visibility approach and landing operations.

  5. A FPGA-based architecture for real-time image matching

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Zhong, Sheng; Xu, Wenhui; Zhang, Weijun; Cao, Zhiguo

    2013-10-01

    Image matching is a fundamental task in computer vision. It is used to establish correspondence between two images taken at different viewpoint or different time from the same scene. However, its large computational complexity has been a challenge to most embedded systems. This paper proposes a single FPGA-based image matching system, which consists of SIFT feature detection, BRIEF descriptor extraction and BRIEF matching. It optimizes the FPGA architecture for the SIFT feature detection to reduce the FPGA resources utilization. Moreover, we implement BRIEF description and matching on FPGA also. The proposed system can implement image matching at 30fps (frame per second) for 1280x720 images. Its processing speed can meet the demand of most real-life computer vision applications.

  6. Regional implementation of a national cancer policy: taking forward multiprofessional, collaborative cancer care.

    PubMed

    Ferguson, A; Makin, W; Walker, B; Dublon, G

    1998-09-01

    The vision of the Calman-Hine paper is of patient-centred care, delivered by co-ordinated services which have genuine partnerships with each other. There is integration of other providers of support, to meet psychological and non-clinical needs. There is access to palliative care when required, from diagnosis onwards, and not just in the terminal stage. Effective communications and networks are the keys to making this vision a reality. Our recommendations are based upon in-depth discussions with purchasers, doctors and nurses, and others involved with cancer services within hospitals or the community across the region. They reflect the priorities placed on the development of good practice. Purchasers and providers should work together to implement these guidelines.

  7. Implementing an International Consultation on Earth System Research Priorities Using Web 2.0 Tools

    NASA Astrophysics Data System (ADS)

    Goldfarb, L.; Yang, A.

    2009-12-01

    Leah Goldfarb, Paul Cutler, Andrew Yang*, Mustapha Mokrane, Jacinta Legg and Deliang Chen The scientific community has been engaged in developing an international strategy on Earth system research. The initial consultation in this “visioning” process focused on gathering suggestions for Earth system research priorities that are interdisciplinary and address the most pressing societal issues. It was implemented this through a website that utilized Web 2.0 capabilities. The website (http://www.icsu-visioning.org/) collected input from 15 July to 1 September 2009. This consultation was the first in which the international scientific community was asked to help shape the future of a research theme. The site attracted over 7000 visitors from 133 countries, more than 1000 of whom registered and took advantage of the site’s functionality to contribute research questions (~300 questions), comment on posts, and/or vote on questions. To facilitate analysis of results, the site captured a small set of voluntary information about each contributor and their contribution. A group of ~50 international experts were invited to analyze the inputs at a “Visioning Earth System Research” meeting held in September 2009. The outcome of this meeting—a prioritized list of research questions to be investigated over the next decade—was then posted on the visioning website for additional comment from the community through an online survey tool. In general, many lessons were learned in the development and implementation of this website, both in terms of the opportunities offered by Web 2.0 capabilities and the application of these capabilities. It is hoped that this process may serve as a model for other scientific communities. The International Council for Science (ICSU) in cooperation with the International Social Science Council (ISSC) is responsible for organizing this Earth system visioning process.

  8. The Impact of Providing Vision Screening and Free Eyeglasses on Academic Outcomes: Evidence from a Randomized Trial in Title I Elementary Schools in Florida

    PubMed Central

    West, Kristine L.; Lee, Jongwook

    2018-01-01

    More than 20 percent of all school-aged children in the United States have vision problems, and low-income and minority children are disproportionately likely to have unmet vision care needs. Vision screening is common in U.S. schools, but it remains an open question whether screening alone is sufficient to improve student outcomes. We implemented a multi-armed randomized controlled trial to evaluate the impact of vision screening, and of vision screening accompanied by eye exams and eyeglasses, provided by a non-profit organization to Title I elementary schools in three large central Florida school districts. We find that providing additional/enhanced screening alone is generally insufficient to improve student achievement in math and reading. In contrast, providing screening along with free eye exams and free eyeglasses to students with vision problems improved student achievement as measured by standardized test scores. We find, averaging over all students (including those without vision problems), that this more comprehensive intervention increased the probability of passing the Florida Comprehensive Achievement Tests (FCAT) in reading and math by approximately 2.0 percentage points. We also present evidence that indicates that this impact fades out over time, indicating that follow-up actions after the intervention may be necessary to sustain these estimated achievement gains. PMID:29693366

  9. Transforming from a Service-Centric to a Joint Recruiting Environment

    DTIC Science & Technology

    2011-03-09

    Manpower Policy, (Lawrence, Kansas, University Press of Kansas, 1989), 170. 9 Rostker, I Want You!, 52. 10 Milton Friedman (Why not a Volunteer Army...partial fulfillment of the requirements of the Master of Strategic Studies Degree. The views expressed in this student academic research paper are those...centric with a narrow vision. Why does DoD recruit with a service-centric mindset? Why does DoD have separate headquarters to command and control

  10. Automation and robotics for Space Station in the twenty-first century

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.; Pivirotto, D. L.

    1986-01-01

    Space Station telerobotics will evolve beyond the initial capability into a smarter and more capable system as we enter the twenty-first century. Current technology programs including several proposed ground and flight experiments to enable development of this system are described. Advancements in the areas of machine vision, smart sensors, advanced control architecture, manipulator joint design, end effector design, and artificial intelligence will provide increasingly more autonomous telerobotic systems.

  11. Tactical Cyber: Building A Strategy For Cyber Support To Corps And Below

    DTIC Science & Technology

    Future U.S. Army cyber operations will need to be conducted jointly and at all echelons and must include both defensive and offensive components.1...The Army is now developing doctrine, concepts, and capabilities to conduct and support tactical cyber operations. We propose the following vision...statement: The Army will be able to employ organic cyber capabilities at the tactical echelon with dedicated personnel in support of tactical units while

  12. ARC-1969-AC90-0178-97

    NASA Image and Video Library

    1990-06-04

    Bell NAH-1G (USA 70-15979 NASA-736) FLITE Cobra helicopter hovering on Ames ramp is successor to the original FLITE Cobra. It has been used extensively in joint NASA/Army human factors research in the areas of night vision displays and voice communications since its arrival in 1987. Note: Used in publication in Flight Research at Ames; 57 Years of Development and Validation of Aeronautical Technology NASA SP-1998-3300 fig 140

  13. Promoting vision and hearing aids use in an intensive care unit.

    PubMed

    Zhou, Qiaoling; Faure Walker, Nicholas

    2015-01-01

    Vision and hearing impairments have long been recognised as modifiable risk factors for delirium.[1,2,3] Delirium in critically ill patients is a frequent complication (reported as high as 60% to 80% of intensive care patients), and is associated with a three-fold increase in mortality and prolonged hospital stay.[1] Guidelines by the UK Clinical Pharmacy Association recommend minimising risk factors to prevent delirium, rather than to treat it with pharmacological agents which may themselves cause delirium.[4] To address risk factors is a measure of multi-system management, such as sleep-wake cycle correction, orientation and use of vision and hearing aids, etc.[5] We designed an audit to survey the prevalence and availability of vision and hearing aids use in the intensive care unit (ICU) of one university hospital. The baseline data demonstrated a high level of prevalence and low level of availability of vision /hearing aid use. We implemented changes to the ICU Innovian assessment system, which serves to remind nursing staff performing daily checks on delirium reduction measures. This has improved practice in promoting vision and hearing aids use in ICU as shown by re-audit at six month. Further amendments to the Innovian risk assessments have increased the rate of assessment to 100% and vision aid use to near 100%.

  14. The implementation of contour-based object orientation estimation algorithm in FPGA-based on-board vision system

    NASA Astrophysics Data System (ADS)

    Alpatov, Boris; Babayan, Pavel; Ershov, Maksim; Strotov, Valery

    2016-10-01

    This paper describes the implementation of the orientation estimation algorithm in FPGA-based vision system. An approach to estimate an orientation of objects lacking axial symmetry is proposed. Suggested algorithm is intended to estimate orientation of a specific known 3D object based on object 3D model. The proposed orientation estimation algorithm consists of two stages: learning and estimation. Learning stage is devoted to the exploring of studied object. Using 3D model we can gather set of training images by capturing 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the estimation stage of the algorithm. The estimation stage is focusing on matching process between an observed image descriptor and the training image descriptors. The experimental research was performed using a set of images of Airbus A380. The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.

  15. Planning and implementing forest operations to achieve sustainable forests: Proceedings of papers presented at the joint meeting of the Council on Forest Engineering and International Union of Forest Research Organizations.

    Treesearch

    Charles R. Blinn; Michael A. Thompson

    1996-01-01

    Contains a variety of papers presented at the joint meeting of the Council on Forest Engineering and International Union of Forest Research Organizations Subject Group S3.04 and that support the meeting theme "Planning and Implementing Forest Operations to Achieve Sustainable Forests."

  16. Joint ETV/NOWATECH test plan for the Sorbisense GSW40 passive sampler

    EPA Science Inventory

    The joint test plan is the implementation of a test design developed for verification of the performance of an environmental technology following the NOWATECH ETV method. The verification is a joint verification with the US EPA ETV scheme and the Advanced Monitoring Systems Cent...

  17. RSRM Nozzle-to-Case Joint J-leg Development

    NASA Technical Reports Server (NTRS)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  18. Examples of design and achievement of vision systems for mobile robotics applications

    NASA Astrophysics Data System (ADS)

    Bonnin, Patrick J.; Cabaret, Laurent; Raulet, Ludovic; Hugel, Vincent; Blazevic, Pierre; M'Sirdi, Nacer K.; Coiffet, Philippe

    2000-10-01

    Our goal is to design and to achieve a multiple purpose vision system for various robotics applications : wheeled robots (like cars for autonomous driving), legged robots (six, four (SONY's AIBO) legged robots, and humanoid), flying robots (to inspect bridges for example) in various conditions : indoor or outdoor. Considering that the constraints depend on the application, we propose an edge segmentation implemented either in software, or in hardware using CPLDs (ASICs or FPGAs could be used too). After discussing the criteria of our choice, we propose a chain of image processing operators constituting an edge segmentation. Although this chain is quite simple and very fast to perform, results appear satisfactory. We proposed a software implementation of it. Its temporal optimization is based on : its implementation under the pixel data flow programming model, the gathering of local processing when it is possible, the simplification of computations, and the use of fast access data structures. Then, we describe a first dedicated hardware implementation of the first part, which requires 9CPLS in this low cost version. It is technically possible, but more expensive, to implement these algorithms using only a signle FPGA.

  19. Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

    NASA Technical Reports Server (NTRS)

    Aldridge, Hal A.; Juang, Jer-Nan

    1997-01-01

    This paper presents a control method based on virtual passive dynamic control that will stabilize a robot manipulator using joint torque sensors and a simple joint model. The method does not require joint position or velocity feedback for stabilization. The proposed control method is stable in the sense of Lyaponov. The control method was implemented on several joints of a laboratory robot. The controller showed good stability robustness to system parameter error and to the exclusion of nonlinear dynamic effects on the joints. The controller enhanced position tracking performance and, in the absence of position control, dissipated joint energy.

  20. Low Cost Night Vision System for Intruder Detection

    NASA Astrophysics Data System (ADS)

    Ng, Liang S.; Yusoff, Wan Azhar Wan; R, Dhinesh; Sak, J. S.

    2016-02-01

    The growth in production of Android devices has resulted in greater functionalities as well as lower costs. This has made previously more expensive systems such as night vision affordable for more businesses and end users. We designed and implemented robust and low cost night vision systems based on red-green-blue (RGB) colour histogram for a static camera as well as a camera on an unmanned aerial vehicle (UAV), using OpenCV library on Intel compatible notebook computers, running Ubuntu Linux operating system, with less than 8GB of RAM. They were tested against human intruders under low light conditions (indoor, outdoor, night time) and were shown to have successfully detected the intruders.

  1. Implementation of lung cancer CT screening in the Nordic countries.

    PubMed

    Pedersen, Jesper Holst; Sørensen, Jens Benn; Saghir, Zaigham; Fløtten, Øystein; Brustugun, Odd Terje; Ashraf, Haseem; Strand, Trond-Eirik; Friesland, Signe; Koyi, Hirsh; Ek, Lars; Nyrén, Sven; Bergman, Per; Jekunen, Antti; Nieminen, Eeva-Maija; Gudbjartsson, Tomas

    2017-10-01

    We review the current knowledge of CT screening for lung cancer and present an expert-based, joint protocol for the proper implementation of screening in the Nordic countries. Experts representing all the Nordic countries performed literature review and concensus for a joint protocol for lung cancer screening. Areas of concern and caution are presented and discussed. We suggest to perform CT screening pilot studies in the Nordic countries in order to gain experience and develop specific and safe protocols for the implementation of such a program.

  2. VISIONS2 Learning for Life Initiative. Workplace Literacy Implementation Model.

    ERIC Educational Resources Information Center

    Walsh, Chris L.; Ferguson, Susan E.; Taylor, Mary Lou

    This document presents a model for implementing workplace literacy education that focuses on giving front-line workers or first-line workers basic skills instruction and an appreciation for lifelong learning. The introduction presents background information on the model, which was developed during a partnership between a technical college and an…

  3. Combining Vision with Voice: A Learning and Implementation Structure Promoting Teachers' Internalization of Practices Based on Self-Determination Theory

    ERIC Educational Resources Information Center

    Assor, Avi; Kaplan, Haya; Feinberg, Ofra; Tal, Karen

    2009-01-01

    We propose that self-determination theory's conceptualization of internalization may help school reformers overcome the recurrent problem of "the predictable failure of educational reform" (Sarason, 1993). Accordingly, we present a detailed learning and implementation structure to promote teachers' internalization and application of ideas and…

  4. Implementing Strategic Change: A Practical Guide for Business.

    ERIC Educational Resources Information Center

    Grundy, Tony

    This book is designed to serve as a practical guide to planning and managing change within a business, and as a text for graduate business students studying change strategies. It focuses on the rationale for change, managing the change process, tools for change, creating a strategic vision for change, and checklists for implementing strategic…

  5. Agriscience Teachers' Implementation of Digital Game-Based Learning in an Introductory Animal Science Course

    ERIC Educational Resources Information Center

    Webb, Angela W.; Bunch, J. C.; Wallace, Maria F.

    2015-01-01

    In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based…

  6. COMET strongly supported the development and implementation of medium-term topical research roadmaps consistent with the ALLIANCE Strategic Research Agenda.

    PubMed

    Garnier-Laplace, J; Vandenhove, H; Beresford, N; Muikku, M; Real, A

    2018-03-01

    The ALLIANCE 6 Strategic Research Agenda (SRA) initiated by the STAR 7 Network of Excellence and integrated in the research strategy implemented by the COMET consortium, defines a long-term vision of the needs for, and implementation of, research in radioecology. This reference document, reflecting views from many stakeholders groups and researchers, serves as an input to those responsible for defining EU research call topics through the ALLIANCE SRA statement delivered each year to the EJP-CONCERT 8 (2015-2020). This statement highlights a focused number of priorities for funding. Research in radioecology and related sciences is justified by various drivers, such as policy changes, scientific advances and knowledge gaps, radiological risk perception by the public, and a growing awareness of interconnections between human and ecosystem health. The SRA is being complemented by topical roadmaps that have been initiated by the COMET 9 EC-funded project, with the help and endorsement of the ALLIANCE. The strategy underlying roadmap development is driven by the need for improved mechanistic understanding across radioecology. By meeting this need, we can provide fit-for-purpose human and environmental impact/risk assessments in support of the protection of man and the environment in interaction with society and for the three exposure situations defined by the ICRP (i.e., planned, existing and emergency). Within the framework of the EJP-CONCERT the development of a joint roadmap is under discussion among all the European research platforms and will highlight the major research needs for the whole radiation protection field and how these are likely to be addressed by 2030.

  7. Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.

    2014-01-01

    Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.

  8. Solutions for North American Water Security Challenge: Colorado and Bravo transboundary basins cases

    NASA Astrophysics Data System (ADS)

    López Pérez, M.

    2013-12-01

    The transboundary basins of Colorado (Baja California) and Rio Bravo (Grande) have low water availability figures and water will be appreciated as a highly valued good. In the Rio Grande basin, the strategies and actions have been developed with the River Basin Council: a new surface water management, new water allocation rules for different rainfall and runoff scenarios (climate change included), new sources of water and establishment of water reserves for human consumption and for environmental purposes. In the Colorado River, with an integrated watershed management vision, Mexican and US federal, state and non-governmental organizations representatives signed Minute 319 for 5 years without changing the 1944 Water Treaty. Concepts and rules for surplus, shortage, Intentionally Created Mexican Water (ICMA), salinity, water for the environment and international projects were included and are been implemented. Parallel drinking water and sanitation services in both sides of the border through the Joint Investment Program, EPA-CONAGUA invested 979.2 million dollars from grants to improve the quality of the environment and the inhabitants. Accomplishments are high and the reduction in river health is a good indicator. The implementation of this binational cooperation actions under the framework of the 1944 Water Treaty are considered global solutions in the field of integrated water management in transboundary basins and for creating water security in highly pressured basins. Keywords: Colorado River, Rio Grande or Bravo River, water security, Transboundary basins, environmental water reserves

  9. Developing a common framework for integrated solid waste management advances in Managua, Nicaragua.

    PubMed

    Olley, Jane E; IJgosse, Jeroen; Rudin, Victoria; Alabaster, Graham

    2014-09-01

    This article describes the municipal solid waste management system in Managua, Nicaragua. It updates an initial profile developed by the authors for the 2010 UN-HABITAT publication Solid Waste Management in the World's Cities and applies the methodology developed in that publication. In recent years, the municipality of Managua has been the beneficiary of a range of international cooperation projects aimed at improving municipal solid waste management in the city. The article describes how these technical assistance and infrastructure investments have changed the municipal solid waste management panorama in the city and analyses the sustainability of these changes. The article concludes that by working closely with the municipal government, the UN-HABITAT project Strengthening Capacities for Solid Waste Management in Managua was able to unite these separate efforts and situate them within a strategic framework to guide the evolution of the municipal solid waste management system in the forthcoming years. The creation of this multi-stakeholder platform allowed for the implementation of joint activities and ensured coherence in the products generated by the different projects. This approach could be replicated in other cities and in other sectors with similar effect. Developing a long term vision was essential for the advancement of municipal solid waste management in the city. Nevertheless, plan implementation may still be undermined by the pressures of the short term municipal administrative government, which emphasize operational over strategic investment. © The Author(s) 2014.

  10. Concrete bridge deck early problem detection and mitigation using robotics

    NASA Astrophysics Data System (ADS)

    Gucunski, Nenad; Yi, Jingang; Basily, Basily; Duong, Trung; Kim, Jinyoung; Balaguru, Perumalsamy; Parvardeh, Hooman; Maher, Ali; Najm, Husam

    2015-04-01

    More economical management of bridges can be achieved through early problem detection and mitigation. The paper describes development and implementation of two fully automated (robotic) systems for nondestructive evaluation (NDE) and minimally invasive rehabilitation of concrete bridge decks. The NDE system named RABIT was developed with the support from Federal Highway Administration (FHWA). It implements multiple NDE technologies, namely: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW). In addition, the system utilizes advanced vision to substitute traditional visual inspection. The RABIT system collects data at significantly higher speeds than it is done using traditional NDE equipment. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. The interpretation and visualization platform specifically addresses data integration and fusion from the four NDE technologies. The data visualization platform facilitates an intuitive presentation of the main deterioration due to: corrosion, delamination, and concrete degradation, by integrating NDE survey results and high resolution deck surface imaging. The rehabilitation robotic system was developed with the support from National Institute of Standards and Technology-Technology Innovation Program (NIST-TIP). The system utilizes advanced robotics and novel materials to repair problems in concrete decks, primarily early stage delamination and internal cracking, using a minimally invasive approach. Since both systems use global positioning systems for navigation, some of the current efforts concentrate on their coordination for the most effective joint evaluation and rehabilitation.

  11. The Survey of Vision-based 3D Modeling Techniques

    NASA Astrophysics Data System (ADS)

    Ruan, Mingzhe

    2017-10-01

    This paper reviews the vision-based localization and map construction methods from the perspectives of VSLAM, SFM, 3DMax and Unity3D. It focuses on the key technologies and the latest research progress on each aspect, analyzes the advantages and disadvantages of each method, illustrates their implementation process and system framework, and further discusses the way to promote the combination for their complementary strength. Finally, the future opportunity of the combination of the four techniques is expected.

  12. Function-based design process for an intelligent ground vehicle vision system

    NASA Astrophysics Data System (ADS)

    Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.

    2010-10-01

    An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.

  13. Summary of "Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium"

    NASA Astrophysics Data System (ADS)

    Cole, Gerald S.

    This paper summarizes the monograph, "Magnesium Vision 2020. A North American Automotive Strategic Vision for Magnesium"1 prepared under the auspices of the United States Automotive Materials Partnership The objective was to understand the infrastructural and technical challenge that can increase the use of magnesium in the automotive industry. One hundred sixty three (163) Research and Technology Development Themes (RTDTs), or RTD projects were developed that addressed issues of corrosion, fastening, and processing-other-than-high pressure die casting to produce automotive magnesium parts. A major problem identified in the study is the limited ability of the current magnesium industrial infrastructure to supply RTD and implementation-ready automotive magnesium components. One solution is to create a magnesium cyber center wrhere globally networked experts would be able to innovate in process and product development, model metalworking and non-HPDC foundry processes, and integrate theoretical predictions/models of metallurgical structure with component function.

  14. Non-Rigid Structure Estimation in Trajectory Space from Monocular Vision

    PubMed Central

    Wang, Yaming; Tong, Lingling; Jiang, Mingfeng; Zheng, Junbao

    2015-01-01

    In this paper, the problem of non-rigid structure estimation in trajectory space from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), based on characteristic points’ trajectories described by a predefined Discrete Cosine Transform (DCT) basis, the structure matrix was also calculated by using a factorization method. To further optimize the non-rigid structure estimation from monocular vision, the rank minimization problem about structure matrix is proposed to implement the non-rigid structure estimation by introducing the basic low-rank condition. Moreover, the Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank minimization problem, and the initial structure matrix calculated by the PTA method is optimized. The APG algorithm can converge to efficient solutions quickly and lessen the reconstruction error obviously. The reconstruction results of real image sequences indicate that the proposed approach runs reliably, and effectively improves the accuracy of non-rigid structure estimation from monocular vision. PMID:26473863

  15. Encouragement for Faculty to Implement Vision and Change

    PubMed Central

    Harvey, Caylyn; Eshleman, Kristen; Koo, Kyosung; Smith, Kevin G.; Paradise, Christopher J.; Campbell, A. Malcolm

    2016-01-01

    The seminal report Vision and Change outlined improvements necessary for undergraduate biology courses to accomplish widely recognized learning objectives. Over the past 8 years, we have developed a two-semester introductory biology course that incorporates the core concepts and competencies recommended in Vision and Change. Using published research on how students learn, we focused our efforts on three main areas of change: pedagogy, course content, and technology. We introduced active-learning strategies to improve our classroom environments, wrote an e-textbook that provides students with the tools they need to construct their own knowledge, and employed an online learning hub to assist students who needed extra support. The redesigned courses have been well received by students, and we have seen good student learning outcomes. The purpose of this essay is to demonstrate to faculty that Vision and Change’s recommendations are feasible and students welcome the improvements. PMID:27810871

  16. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing.

    PubMed

    Kriegeskorte, Nikolaus

    2015-11-24

    Recent advances in neural network modeling have enabled major strides in computer vision and other artificial intelligence applications. Human-level visual recognition abilities are coming within reach of artificial systems. Artificial neural networks are inspired by the brain, and their computations could be implemented in biological neurons. Convolutional feedforward networks, which now dominate computer vision, take further inspiration from the architecture of the primate visual hierarchy. However, the current models are designed with engineering goals, not to model brain computations. Nevertheless, initial studies comparing internal representations between these models and primate brains find surprisingly similar representational spaces. With human-level performance no longer out of reach, we are entering an exciting new era, in which we will be able to build biologically faithful feedforward and recurrent computational models of how biological brains perform high-level feats of intelligence, including vision.

  17. Cortical visual dysfunction in children: a clinical study.

    PubMed

    Dutton, G; Ballantyne, J; Boyd, G; Bradnam, M; Day, R; McCulloch, D; Mackie, R; Phillips, S; Saunders, K

    1996-01-01

    Damage to the cerebral cortex was responsible for impairment in vision in 90 of 130 consecutive children referred to the Vision Assessment Clinic in Glasgow. Cortical blindness was seen in 16 children. Only 2 were mobile, but both showed evidence of navigational blind-sight. Cortical visual impairment, in which it was possible to estimate visual acuity but generalised severe brain damage precluded estimation of cognitive visual function, was observed in 9 children. Complex disorders of cognitive vision were seen in 20 children. These could be divided into five categories and involved impairment of: (1) recognition, (2) orientation, (3) depth perception, (4) perception of movement and (5) simultaneous perception. These disorders were observed in a variety of combinations. The remaining children showed evidence of reduced visual acuity and/ or visual field loss, but without detectable disorders of congnitive visual function. Early recognition of disorders of cognitive vision is required if active training and remediation are to be implemented.

  18. Mediated-reality magnification for macular degeneration rehabilitation

    NASA Astrophysics Data System (ADS)

    Martin-Gonzalez, Anabel; Kotliar, Konstantin; Rios-Martinez, Jorge; Lanzl, Ines; Navab, Nassir

    2014-10-01

    Age-related macular degeneration (AMD) is a gradually progressive eye condition, which is one of the leading causes of blindness and low vision in the Western world. Prevailing optical visual aids compensate part of the lost visual function, but omitting helpful complementary information. This paper proposes an efficient magnification technique, which can be implemented on a head-mounted display, for improving vision of patients with AMD, by preserving global information of the scene. Performance of the magnification approach is evaluated by simulating central vision loss in normally sighted subjects. Visual perception was measured as a function of text reading speed and map route following speed. Statistical analysis of experimental results suggests that our magnification method improves reading speed 1.2 times and spatial orientation to find routes on a map 1.5 times compared to a conventional magnification approach, being capable to enhance peripheral vision of AMD subjects along with their life quality.

  19. Indirect Correspondence-Based Robust Extrinsic Calibration of LiDAR and Camera

    PubMed Central

    Sim, Sungdae; Sock, Juil; Kwak, Kiho

    2016-01-01

    LiDAR and cameras have been broadly utilized in computer vision and autonomous vehicle applications. However, in order to convert data between the local coordinate systems, we must estimate the rigid body transformation between the sensors. In this paper, we propose a robust extrinsic calibration algorithm that can be implemented easily and has small calibration error. The extrinsic calibration parameters are estimated by minimizing the distance between corresponding features projected onto the image plane. The features are edge and centerline features on a v-shaped calibration target. The proposed algorithm contributes two ways to improve the calibration accuracy. First, we use different weights to distance between a point and a line feature according to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude the influence of outliers in the calibration datasets. Additionally, based on our robust calibration approach for a single LiDAR-camera pair, we introduce a joint calibration that estimates the extrinsic parameters of multiple sensors at once by minimizing one objective function with loop closing constraints. We conduct several experiments to evaluate the performance of our extrinsic calibration algorithm. The experimental results show that our calibration method has better performance than the other approaches. PMID:27338416

  20. Changes, trends and challenges of medical education in Latin America.

    PubMed

    Pulido M, Pablo A; Cravioto, Alejandro; Pereda, Ana; Rondón, Roberto; Pereira, Gloria

    2006-02-01

    This paper briefly reviews the current situation of Latin American medical schools and the search to improve the quality and professionalism of medical education through the region. Institutional evaluation and accreditation programs based on nationally ongoing developing standards have been accepted, now optimized and complemented by the framework of the Global & International Standards of Medical Education working jointly with the WFME. More recently, the process has evolved to look into the quality of the outcomes of the medicals as seen by examinations implemented at the end of medical studies and the initiation of medical practice. In addition, there is vision for the application of new programs such as the global minimum essential requirements advanced by the Institute for International Medical Education (IIME). The PanAmerican Federation of Associations of Medical Schools (PAFAMS), an academic, non-governmental organization, is fostering the exchange of ideas and experiences among members, associations and affiliated medical schools geared to focus on the quality and professionalism of the graduates of medical schools in Latin America. These actions also aim to consolidate databases of information on medical education and innovative endeavors in continuing professional education and development through e-learning projects in the region.

  1. [Organizational recommendations for day surgery].

    PubMed

    Bontemps, Gilles

    2014-03-01

    In France, the delayed development of day surgery compared to other countries led the ANAP and the HAS in 2011 to enter into a joint work program to provide some reference guide for hospitals to change their practices to outpatient. In this context, organizational guidelines and operational tools were published in May 2013. The method of construction of the recommendations resulting from an original work that combined a three-fold approach: field vision by identifying the highlights of 15 hospitals selected for their representative performance and analyzing the risks of five voluntary hospitals, mobilization organizational theories from the social sciences, using 53 professional experts. The work concluded on 16 organizational recommendations under four forms (basic principles, strategic elements, operational elements and perspectives). These recommendations are accompanied by tools and guides diagnosis and implementation, as well as productions for further reflection. These organizational recommendations confirmed the specificity of day surgery, which is not related to the act, but to the organization, management and optimization of different flows of a hospital (patient flow, professional flows, logistical, informational…). The performance of a day surgery organization is linked to its ability to control its flow and anticipation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Louisiana CVO/ITS business plan

    DOT National Transportation Integrated Search

    1998-06-01

    Louisianas CVO / ITS Business Plan provides a long-term strategic vision and implementation program for meeting Louisianas Commercial Vehicle Operations / Intelligent Transportation Systems (CVO / ITS) needs. Commercial Vehicle Operations - CVO...

  3. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Thermomechanical Modeling of Dual-Phase Microstructures and Dissimilar Material Joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2016-09-30

    Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.

  4. A play and joint attention intervention for teachers of young children with autism: a randomized controlled pilot study.

    PubMed

    Wong, Connie S

    2013-05-01

    The aim of this study was to pilot test a classroom-based intervention focused on facilitating play and joint attention for young children with autism in self-contained special education classrooms. Thirty-three children with autism between the ages of 3 and 6 years participated in the study with their classroom teachers (n = 14). The 14 preschool special education teachers were randomly assigned to one of three groups: (1) symbolic play then joint attention intervention, (2) joint attention then symbolic intervention, and (3) wait-list control period then further randomized to either group 1 or group 2. In the intervention, teachers participated in eight weekly individualized 1-h sessions with a researcher that emphasized embedding strategies targeting symbolic play and joint attention into their everyday classroom routines and activities. The main child outcome variables of interest were collected through direct classroom observations. Findings indicate that teachers can implement an intervention to significantly improve joint engagement of young children with autism in their classrooms. Furthermore, multilevel analyses showed significant increases in joint attention and symbolic play skills. Thus, these pilot data emphasize the need for further research and implementation of classroom-based interventions targeting play and joint attention skills for young children with autism.

  5. Prevalence of vision loss among hospital in-patients; a risk factor for falls?

    PubMed

    Leat, Susan J; Zecevic, Aleksandra A; Keeling, Alexis; Hileeto, Denise; Labreche, Tammy; Brymer, Christopher

    2018-01-01

    Despite poor vision being a risk factor for falls, current hospital policies and practices often do not include a vision assessment at patient admission or in the hospital's incident reporting system when a fall occurs. Our purpose was to document the prevalence of vision loss in hospital general medicine units to increase awareness of poor vision as a potential risk factor for falls that occur within the hospital, and inform future preventative practice. This cross-sectional study took place in medicine units of an acute care hospital. Participants were adult in-patients. Visual acuity (VA), contrast sensitivity and stereoacuity were measured, and patients were screened for field loss, extinction and neglect. 115 participants took part (average age 67 ± 17, 48% female). Overall, 89% had a visual impairment defined as being outside the age-norms for one or more vision measure, 62% had low vision, and 36% had vision loss equivalent to legal blindness [VA equal to or poorer than 1.0 logMAR (6/60, 20/200) or ≥10x below age-norms]. There was a considerable discrepancy between the prevalence of low vision and the percentage of patients who reported an ocular diagnosis that would result in visual loss (30%). Ten patients fell during the study period, and of these 100% had visual impairment, 90% had low vision and 60% had vision loss equivalent to legal blindness, which compares to 58%, 22% and 9% for non-fallers. Similar high prevalences were found in those whose reason for admission to the hospital was a fall (92%, 63% and 33% respectively). Vision loss has a high prevalence among patients in hospital medicine units, and is higher still among those who fall. Since vision loss may be a contributing factor to falls that occur in hospitals, implementing an assessment of vision at hospital admission would be useful to alert staff to those patients who are at risk for falls due to poor vision, so that preventative measures can be applied. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  6. 2007 Precision Strike PEO Summer Forum - Joint Perspectives on Precision Engagement

    DTIC Science & Technology

    2007-07-11

    Status,” Colonel Richard Justice, USAF—Commander of the Miniature Munitions Systems Group (MMSG), Eglin Air Force Base “Unmanned Systems (UAS) Roadmap...Role in the Roadmap Implementation Methods & Processes Working Group Issues delineated in Implementation Plan form basis for JTEM methodology...Test and Evaluation JMETC – Joint Mission Environment Test Capability WG – Working Group DOT&E AT&L DOT&E Unclassified 5 Background: JTEM Problem

  7. Joint Venture Health Plans May Give ACOs a Run for Their Money.

    PubMed

    Reinke, Thomas

    2016-12-01

    Joint venture plans are starting to demonstrate their ability to implement clinical management and financial management reforms. A JV health plan replaces the offloading of financial risk by health plans to ill-equipped providers with an executive-level cost management committee stated jointly by the hospital and payer.

  8. Multi-Center Evaluation of the Automated Immunohematology Instrument, the ORTHO VISION Analyzer.

    PubMed

    Aysola, Agnes; Wheeler, Leslie; Brown, Richard; Denham, Rebecca; Colavecchia, Connie; Pavenski, Katerina; Krok, Elizabeth; Hayes, Chelsea; Klapper, Ellen

    2017-02-01

    ORTHO VISION Analyzer (Vision), is an immunohematology instrument using ID-MT gel card technology with digital image processing. It has a continuous, random sample access with STAT priority processing. The efficiency and ease of operation of Vision was evaluated at 5 medical centers. De-identified patient samples were tested on the ORTHO ProVue Analyzer (ProVue) and repeated on the Vision mimicking the daily workload pattern. Turnaround times (TAT) were collected and compared. Operators rated key features of the analyzer on a scale of 1 to 5. A total of 507 samples were tested on both instruments at the 5 trial sites. The mean TAT (SD) were 31.6 minutes (5.5) with Vision and 35.7 minutes (8.4) with ProVue, which renders a 12% reduction. Type and screens were performed on 381 samples; the mean TAT (SD) was 32.2 minutes (4.5) with Vision and 37.0 minutes (7.4) with ProVue. Antibody identification with eleven panel cells was performed on 134 samples on Vision; TAT (SD) was 43.2 minutes (8.3). The installation, training, configuration, maintenance and validation processes are all streamlined to provide a short implementation time. The average rating of main functions by the operators was 4.1 to 4.8. Opportunities for improvement, such as flexibility with editing QC results, maintenance schedule, and printing options were identified. The capabilities to perform serial dilutions, to accept pediatric tubes, and review results by e-Connectivity are enhancements over the ProVue. Vision provides shorter TAT compared to ProVue. Every site described a positive experience using Vision. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Planetary exploration, Horizon 2061: A joint ISSI-EUROPLANET community foresight exercisse

    NASA Astrophysics Data System (ADS)

    Blanc, Michel

    2017-04-01

    We will present the preliminary results of a foresight exercise jointly implemented by the Europlanet Research Infrastructure project of the European Union and by the International Space Science Institute (ISSI) to produce a community Vision of Planetary Exploration up to the 2061 horizon, named H2061 for short. 2061 was chosen as a symbolic date corresponding to the return of Halley's comet into the inner Solar System and to the centennial of the first Human space flight. This Vision will be built on a con-current analysis of the four "pillars" of planetary exploration: (1) The key priority questions to be addressed in Solar System science; (2) The representative planetary missions that need to be flown to address and hopefully answer these questions; (3) The enabling technologies that will need to be available to fly this set of ambitious mis-sions; (4) The supporting infrastructures, both space-based and ground-based, to be made available. In this science-driven approach, we will build our Horizon 2061 Vision in three following steps. In step 1, an international community forum convened in Bern, Switzerland on September 13th to 15th, 2016 by ISSI and Europlanet identified the first two pillars: key questions and representative planetary missions. The outputs of step 1 will be used as inputs to step 2, an open community meeting focusing on the identification of pillars 3 and 4 which will be hosted by the EPFL in Lausanne, Switzerland, on Jan. 29th to Feb. 1st, 2018. Ultimately, the four pillars identified by steps 1 and 2 will be discussed and compared in the "synthesis" meeting of step 3, which will take place in Toulouse, France, on the occasion of the European Open Science Forum 2018 (ESOF 2018). Planetary Exploration Horizon 2061: scientific approach. Since 1995 and the discovery of the first exoplanet orbiting a main sequence star, we are living a revolution in planetary science: as of today, over 3000 exoplanets have been identified by a diversity of techniques, first by ground-based telescopes and more recently by space missions like Corot and Kepler. Many more are to come in the few decades ahead of us, bringing to our knowledge an ever-increasing num-ber of exoplanets. While the "exploration" of exoplan-etary systems will remain the privilege of space-based telescopes and remote sensing techniques for a long time, space exploration opens a far more detailed ac-cess to a far more limited number of systems and of constituting objects in the Solar System. Linking these two uniquely complementary lines of research lays the foundations of a new type of comparative science: the science of planetary systems. The science-based com-ponent of our foresight exercise is a contribution to this perspective which we will share with the EGU com-munity.

  10. Awareness of Vision Zero among United States' road safety professionals.

    PubMed

    Evenson, Kelly R; LaJeunesse, Seth; Heiny, Stephen

    2018-05-08

    Vision Zero is a strategy to eliminate all fatalities and serious injuries from road traffic crashes, while increasing safe and equitable mobility for all. In 2015, the United States' Department of Transportation announced the official target of the federal government transportation safety policy was zero deaths. In 2017, we assessed the dissemination of Vision Zero in the United States. We conducted a web-based survey in 2017 among road safety professionals. Email invitations were sent using relevant membership directories and conference lists. We surveyed 192 road safety professionals, including planning/engineering (57.8%), public health (16.7%), and law enforcement/emergency medical services (EMS) (8.9%). Awareness of Vision Zero was higher among planning/engineering fields (97.3%) compared to law enforcement/EMS (76.5%) and public health (75.0%). Awareness was similar by number of years working in the field. Awareness was higher in the South (95.9%) and Northeast (95.0%) regions, followed by the West (90.8%) and Midwest (85.2%) Census regions. Among those that heard of Vision Zero (n = 174), 41.8% worked at a municipality with a Vision Zero campaign, while 41.2% did not. Among those working at a municipality with a Vision Zero campaign (n = 71), about half participated in the campaign (54.9%) while the other half did not (45.1%). With widespread dissemination of the Vision Zero strategy to road safety professionals, next steps include evaluating how Vision Zero is being adopted, implemented, and maintained in communities, as well as the awareness and acceptability by community members, and to identify the most promising policies and practices.

  11. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  12. Business as Usual: An Assessment of Donald Rumsfeld’s Transformation Vision and Transformation’s Prospects for the Future

    DTIC Science & Technology

    2008-06-01

    capabilities: • Goal 1: Protecting critical bases and defeating chemical, biological, rad and nuclear weapons. • Goal 2: Projecting and sustaining ...bases is the supply side of the equation, whereas projecting and sustaining forces is the equation’s consumption side. The product of this equation...dominance through comprehensive knowledge, focused execution, and coordinated sustainment shared cross fully netted maritime, joint, and combined forces.123

  13. Corona: America’s First Satellite Program

    DTIC Science & Technology

    1995-01-01

    had asked for a joint report from them on the status of the advanced systems. Secretary. Quarks responded on behalf of himseIf and Mr. Dulles on 5...terrain, vegetation, rain, snow, fog, time of day (light or darkness ), and man-made obstacles of various types. 2. Limitation of vision to one side of the...snow cover, the prospect appeared as a small dark area, and tracks connected it with a village around the mountain. The December 1962 photography

  14. Evaluation of the Joint Service General Purpose Mask, XM50

    DTIC Science & Technology

    2005-07-01

    and vision Trial 7 Trial 8 Trial 12 correction E-2 TRIAL 3299 7795 2079 Did not finish exercises. No No comment on sweat or No comment on sweat or...lhr 50 min playing time). Duringboth activities, slight Reported slight intermittent No comment on. swet or fogging with slight impact on fogging...right eye. During steam No comment on Mask was stationary. engine exercise, reported 4 sweat or fogging Reported that seal mask seal leakage at

  15. Joint Vision 2010: Developing the System of Systems

    DTIC Science & Technology

    1998-04-01

    The system engineering model, as described in Defense Acquisition University Coursebook , consists of five main parts and three feedback loops.4 The... physical architecture is defined and each subsystem developed. In the case of JV2010’s “system of systems” the subsystems would be the items...verify that each requirement can be traced to a system function. The purpose of the design loop is to ensure all the functions can be traced to physical

  16. Obstacle Detection using Binocular Stereo Vision in Trajectory Planning for Quadcopter Navigation

    NASA Astrophysics Data System (ADS)

    Bugayong, Albert; Ramos, Manuel, Jr.

    2018-02-01

    Quadcopters are one of the most versatile unmanned aerial vehicles due to its vertical take-off and landing as well as hovering capabilities. This research uses the Sum of Absolute Differences (SAD) block matching algorithm for stereo vision. A complementary filter was used in sensor fusion to combine obtained quadcopter orientation data from the accelerometer and the gyroscope. PID control was implemented for the motor control and VFH+ algorithm was implemented for trajectory planning. Results show that the quadcopter was able to consistently actuate itself in the roll, yaw and z-axis during obstacle avoidance but was however found to be inconsistent in the pitch axis during forward and backward maneuvers due to the significant noise present in the pitch axis angle outputs compared to the roll and yaw axes.

  17. Real Time Target Tracking Using Dedicated Vision Hardware

    NASA Astrophysics Data System (ADS)

    Kambies, Keith; Walsh, Peter

    1988-03-01

    This paper describes a real-time vision target tracking system developed by Adaptive Automation, Inc. and delivered to NASA's Launch Equipment Test Facility, Kennedy Space Center, Florida. The target tracking system is part of the Robotic Application Development Laboratory (RADL) which was designed to provide NASA with a general purpose robotic research and development test bed for the integration of robot and sensor systems. One of the first RADL system applications is the closing of a position control loop around a six-axis articulated arm industrial robot using a camera and dedicated vision processor as the input sensor so that the robot can locate and track a moving target. The vision system is inside of the loop closure of the robot tracking system, therefore, tight throughput and latency constraints are imposed on the vision system that can only be met with specialized hardware and a concurrent approach to the processing algorithms. State of the art VME based vision boards capable of processing the image at frame rates were used with a real-time, multi-tasking operating system to achieve the performance required. This paper describes the high speed vision based tracking task, the system throughput requirements, the use of dedicated vision hardware architecture, and the implementation design details. Important to the overall philosophy of the complete system was the hierarchical and modular approach applied to all aspects of the system, hardware and software alike, so there is special emphasis placed on this topic in the paper.

  18. Reconfigurable vision system for real-time applications

    NASA Astrophysics Data System (ADS)

    Torres-Huitzil, Cesar; Arias-Estrada, Miguel

    2002-03-01

    Recently, a growing community of researchers has used reconfigurable systems to solve computationally intensive problems. Reconfigurability provides optimized processors for systems on chip designs, and makes easy to import technology to a new system through reusable modules. The main objective of this work is the investigation of a reconfigurable computer system targeted for computer vision and real-time applications. The system is intended to circumvent the inherent computational load of most window-based computer vision algorithms. It aims to build a system for such tasks by providing an FPGA-based hardware architecture for task specific vision applications with enough processing power, using the minimum amount of hardware resources as possible, and a mechanism for building systems using this architecture. Regarding the software part of the system, a library of pre-designed and general-purpose modules that implement common window-based computer vision operations is being investigated. A common generic interface is established for these modules in order to define hardware/software components. These components can be interconnected to develop more complex applications, providing an efficient mechanism for transferring image and result data among modules. Some preliminary results are presented and discussed.

  19. Clinical characteristics and causes of visual impairment in a low vision clinic in northern Jordan.

    PubMed

    Bakkar, May M; Alzghoul, Eman A; Haddad, Mera F

    2018-01-01

    The aim of the study was to identify causes of visual impairment among patients attending a low vision clinic in the north of Jordan and to study the relevant demographic characteristics of these patients. The retrospective study was conducted through a review of clinical records of 135 patients who attended a low vision clinic in Irbid. Clinical characteristics of the patients were collected, including age, gender, primary cause of low vision, best corrected visual acuity, and current prescribed low vision aids. Descriptive statistics analysis using numbers and percentages were calculated to summarize categorical and nominal data. A total of 135 patients (61 [45.2%] females and 74 [54.8%] males) were recruited in the study. Mean age ± standard deviation for the study population was 24.53 ± 16.245 years; age range was 5-90 years. Of the study population, 26 patients (19.3%) had mild visual impairment, 61 patients (45.2%) had moderate visual impairment, 27 patients (20.0%) had severe visual impairment, and 21 patients (15.6%) were blind. The leading causes of visual impairment across all age groups were albinism (31.9%) and retinitis pigmentosa (RP) (18.5%). Albinism also accounted for the leading cause of visual impairment among the pediatric age group (0-15 years) while albinism, RP, and keratoconus were the primary causes of visual impairment for older patients. A total of 59 patients (43.7%) were given low vision aids either for near or distance. The only prescribed low vision aids for distances were telescopes. For near, spectacle-type low vision aid was the most commonly prescribed low vision aids. Low vision services in Jordan are still very limited. A national strategy programme to increase awareness of low vision services should be implemented, and health care policies should be enforced to cover low vision aids through the national medical insurance.

  20. A stakeholder visioning exercise to enhance chronic care and the integration of community pharmacy services.

    PubMed

    Franco-Trigo, L; Tudball, J; Fam, D; Benrimoj, S I; Sabater-Hernández, D

    2018-02-21

    Collaboration between relevant stakeholders in health service planning enables service contextualization and facilitates its success and integration into practice. Although community pharmacy services (CPSs) aim to improve patients' health and quality of life, their integration in primary care is far from ideal. Key stakeholders for the development of a CPS intended at preventing cardiovascular disease were identified in a previous stakeholder analysis. Engaging these stakeholders to create a shared vision is the subsequent step to focus planning directions and lay sound foundations for future work. This study aims to develop a stakeholder-shared vision of a cardiovascular care model which integrates community pharmacists and to identify initiatives to achieve this vision. A participatory visioning exercise involving 13 stakeholders across the healthcare system was performed. A facilitated workshop, structured in three parts (i.e., introduction; developing the vision; defining the initiatives towards the vision), was designed. The Chronic Care Model inspired the questions that guided the development of the vision. Workshop transcripts, researchers' notes and materials produced by participants were analyzed using qualitative content analysis. Stakeholders broadened the objective of the vision to focus on the management of chronic diseases. Their vision yielded 7 principles for advanced chronic care: patient-centered care; multidisciplinary team approach; shared goals; long-term care relationships; evidence-based practice; ease of access to healthcare settings and services by patients; and good communication and coordination. Stakeholders also delineated six environmental factors that can influence their implementation. Twenty-four initiatives to achieve the developed vision were defined. The principles and factors identified as part of the stakeholder shared-vision were combined in a preliminary model for chronic care. This model and initiatives can guide policy makers as well as healthcare planners and researchers to develop and integrate chronic disease services, namely CPSs, in real-world settings. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Clinical characteristics and causes of visual impairment in a low vision clinic in northern Jordan

    PubMed Central

    Bakkar, May M; Alzghoul, Eman A; Haddad, Mera F

    2018-01-01

    Aim The aim of the study was to identify causes of visual impairment among patients attending a low vision clinic in the north of Jordan and to study the relevant demographic characteristics of these patients. Subjects and methods The retrospective study was conducted through a review of clinical records of 135 patients who attended a low vision clinic in Irbid. Clinical characteristics of the patients were collected, including age, gender, primary cause of low vision, best corrected visual acuity, and current prescribed low vision aids. Descriptive statistics analysis using numbers and percentages were calculated to summarize categorical and nominal data. Results A total of 135 patients (61 [45.2%] females and 74 [54.8%] males) were recruited in the study. Mean age ± standard deviation for the study population was 24.53 ± 16.245 years; age range was 5–90 years. Of the study population, 26 patients (19.3%) had mild visual impairment, 61 patients (45.2%) had moderate visual impairment, 27 patients (20.0%) had severe visual impairment, and 21 patients (15.6%) were blind. The leading causes of visual impairment across all age groups were albinism (31.9%) and retinitis pigmentosa (RP) (18.5%). Albinism also accounted for the leading cause of visual impairment among the pediatric age group (0–15 years) while albinism, RP, and keratoconus were the primary causes of visual impairment for older patients. A total of 59 patients (43.7%) were given low vision aids either for near or distance. The only prescribed low vision aids for distances were telescopes. For near, spectacle-type low vision aid was the most commonly prescribed low vision aids. Conclusion Low vision services in Jordan are still very limited. A national strategy programme to increase awareness of low vision services should be implemented, and health care policies should be enforced to cover low vision aids through the national medical insurance. PMID:29662299

  2. Transitioning a Fundamental Research Program to Align with the NASA Exploration Initiative-Perspectives from Microgravity Combustion Science and Fluid Physics

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Kohl, Fred J.

    2004-01-01

    A new Vision for Space Exploration was announced earlier this year by U.S. President George W. Bush. NASA has evaluated on-going programs for strategic alignment with this vision. The evaluation proceeded at a rapid pace and is resulting in changes to the scope and focus of experimental research that will be conducted in support of the new vision. The existing network of researchers in the physical sciences - a highly capable, independent, and loosely knitted community - typically have shared conclusions derived from their work within appropriate discipline-specific peer reviewed journals and publications. The initial result of introducing this Vision for Space Exploration has been to shift research focus from a broad coverage of numerous, widely varying topics into a research program focused on a nearly-singular set of supporting research objectives to enable advances in space exploration. Two of these traditional physical science research disciplines, Combustion Science and Fluid Physics, are implementing a course adjustment from a portfolio dominated by "Fundamental Science Research" to one focused nearly exclusively on supporting the Exploration Vision. Underlying scientific and engineering competencies and infrastructure of the Microgravity Combustion Science and Fluid Physics disciplines do provide essential research capabilities to support the contemporary thrusts of human life support, radiation countermeasures, human health, low gravity research for propulsion and materials and, ultimately, research conducted on the Moon and Mars. A perspective on how these two research disciplines responded to the course change will be presented. The relevance to the new NASA direction is provided, while demonstrating through two examples how the prior investment in fundamental research is being brought to bear on solving the issues confronting the successful implementation of the exploration goals.

  3. Renewable Energy Opportunities Saginaw Chippewa Indian Tribe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saginaw Chippewa Indian Tribe Planning Department; Smiley, Steve; Bennett, Keith, DOE Project Officer

    2008-10-22

    The Saginaw Chippewa Indian Tribe has a vision to become self-sufficient in its energy needs and to maintain its culture and protect Mother Earth with respect and honor for the next seven generations. To achieve this vision, green energy sources such as solar, wind and biomass energy are the best energy paths to travel. In this feasibility study the Tribe has analyzed and provided data on the nature of the renewable resources available to the Tribe and the costs of implementing these technologies.

  4. Peripheral vision horizon display on the single seat night attack A-10

    NASA Technical Reports Server (NTRS)

    Nims, D. F.

    1984-01-01

    The concept of the peripheral vision horizon display (PVHD) held promise for significant reduction in workload for the single seat night attack pilot. For this reason it was incorporated in the single seat night attack (SSNA) A-10. The implementation and results of the PVHD on the SSNA A-10 are discussed as well as the SSNA program. The part the PVHD played in the test and the results and conclusions of that effort are also considered.

  5. Feasibility Study and Cost Benefit Analysis of Thin-Client Computer System Implementation Onboard United States Navy Ships

    DTIC Science & Technology

    2007-06-01

    management issues he encountered ruled out the Expanion as a viable option for thin-client computing in the Navy. An improvement in thin-client...44 Requirements to capabilities (2004). Retrieved April 29, 2007, from Vision Presence Power: A Program Guide to the U.S. Navy – 2004...Retrieved April 29, 2007, from Vision Presence Power: A Program Guide to the U.S. Navy – 2004 Edition, p. 128. Web site: http://www.chinfo.navy.mil

  6. The Washington State Technology Plan for the K-12 Common School System. Sections 701-703, Chapter 336, Laws of 1993 (Engrossed Substitute House Bill 1209) as Amended by Chapter 245, Laws of 1994. Report to the Legislature.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    This final report for the Washington State Technology Plan for K-12 Common Schools provides a vision, long-term framework, and recommendations for implementation. Following an executive summary and a list of committee members, the first section of the report discusses technology in K-12 schools of tomorrow, including legislative charge, vision,…

  7. An Experimental Study of an Ultra-Mobile Vehicle for Off-Road Transportation.

    DTIC Science & Technology

    1983-07-01

    implemented. 2.2.3 Image Processing Algorithms The ultimate goal of a vision system is to understand the content of a scene and to extract useful...to extract useful information from it. Four existing robot-vision systems, the General Motors CONSIGHT system, the UNIVISIUN system, the Westinghouse...cos + C . sino A (5.48) By taking out a comon factor, Eq. (5.48) can be rewritten as /-- c. ( B coso + C sine) A (5.49) 203 !_ - Let Z B sie4 = : v, VB2

  8. Design and Implementation of Embedded Computer Vision Systems Based on Particle Filters

    DTIC Science & Technology

    2010-01-01

    for hardware/software implementa- tion of multi-dimensional particle filter application and we explore this in the third application which is a 3D...methodology for hardware/software implementation of multi-dimensional particle filter application and we explore this in the third application which is a...and hence multiprocessor implementation of parti- cle filters is an important option to examine. A significant body of work exists on optimizing generic

  9. Strategy-Based Development of Teacher Educators' ICT Competence through a Co-operative Staff Development Project

    ERIC Educational Resources Information Center

    Lavonen, Jari; Lattu, Matti; Juuti, Kalle; Meisalo, Veijo

    2006-01-01

    An ICT strategy and an implementation plan for teacher education were created in a co-operative process. Visions and expectations of staff members and students were registered by questionnaires and by making notes during sessions in which the strategy was created. Thereafter, an implementation document, where the staff development programme and…

  10. A Decade of Education Reform in Thailand: Broken Promise or Impossible Dream?

    ERIC Educational Resources Information Center

    Hallinger, Philip; Lee, Moosung

    2011-01-01

    This study addresses the perceived gap between the vision of education reform in Thailand embodied in its Education Reform Law of 1999 and the results of implementation a decade later. Drawing upon opportunistic data obtained from a sample of 162 Thai school principals, we analyze trends in reform implementation across schools in all regions and…

  11. Improving Real World Performance of Vision Aided Navigation in a Flight Environment

    DTIC Science & Technology

    2016-09-15

    Introduction . . . . . . . 63 4.2 Wide Area Search Extent . . . . . . . . . . . . . . . . . 64 4.3 Large-Scale Image Navigation Histogram Filter ...65 4.3.1 Location Model . . . . . . . . . . . . . . . . . . 66 4.3.2 Measurement Model . . . . . . . . . . . . . . . 66 4.3.3 Histogram Filter ...Iteration of Histogram Filter . . . . . . . . . . . 70 4.4 Implementation and Flight Test Campaign . . . . . . . . 71 4.4.1 Software Implementation

  12. Innovation through developing consumers’ community. Part I: Innovation in action

    NASA Astrophysics Data System (ADS)

    Gălăţanu (Avram, E.; Avasilcăi, S.

    2015-11-01

    Technological changes and need for innovation represents the main concerns for organizational growth and profitability. However the main priority is still about achieving high performance through product development and consumers' engagement activities. As implementation of open innovation applications increased and value co — creation became well known and major process, companies were engaged into value co — innovation activities. From this point of view the need for joint efforts with consumers in product development arose. Thus the primary condition for an organization to be consumer centric is to define clear the vision and mission which reflects the common efforts for co — creation and diffusion of innovation. As Research & Development processes evolved and interest for innovative concepts and products arose, companies started to implement the specific instruments for consumers' attraction and engagement into design and product development. The digitalized innovation became the main source for establishing the direct communication with the consumers. In order to achieve organization growth, profitability and recognition, the companies should be aware of the innovation importance and the need for internal change. From this point of view, there is necessary to assess the organizational structures, to implement new policies and to establish strategic targets. Basically it is justified the need for platform occurrence and development. Based on case study of BMW Group, recognised leader in automotive industry for innovative concepts, there will be analysed main features within organizational context which promotes the innovation implementation. There will be provided the review of the BMW Group experience of innovation activities, main consumers' engagement strategies, the values which promote the consumer — centric product development, new opportunities assessment, major policies and concerns. The foreseen result is to understand how companies are adapting to the technical and innovation changes as the main criteria for future product development and consumers' engagement motivation through the platform — based communication.

  13. Mobility and orientation aid for blind persons using artificial vision

    NASA Astrophysics Data System (ADS)

    Costa, Gustavo; Gusberti, Adrián; Graffigna, Juan Pablo; Guzzo, Martín; Nasisi, Oscar

    2007-11-01

    Blind or vision-impaired persons are limited in their normal life activities. Mobility and orientation of blind persons is an ever-present research subject because no total solution has yet been reached for these activities that pose certain risks for the affected persons. The current work presents the design and development of a device conceived on capturing environment information through stereoscopic vision. The images captured by a couple of video cameras are transferred and processed by configurable and sequential FPGA and DSP devices that issue action signals to a tactile feedback system. Optimal processing algorithms are implemented to perform this feedback in real time. The components selected permit portability; that is, to readily get used to wearing the device.

  14. High-Resolution Adaptive Optics Test-Bed for Vision Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Thomspon, C A; Olivier, S S

    2001-09-27

    We discuss the design and implementation of a low-cost, high-resolution adaptive optics test-bed for vision research. It is well known that high-order aberrations in the human eye reduce optical resolution and limit visual acuity. However, the effects of aberration-free eyesight on vision are only now beginning to be studied using adaptive optics to sense and correct the aberrations in the eye. We are developing a high-resolution adaptive optics system for this purpose using a Hamamatsu Parallel Aligned Nematic Liquid Crystal Spatial Light Modulator. Phase-wrapping is used to extend the effective stroke of the device, and the wavefront sensing and wavefrontmore » correction are done at different wavelengths. Issues associated with these techniques will be discussed.« less

  15. Polish Experience of Implementing Vision Zero.

    PubMed

    Jamroz, Kazimierz; Michalski, Lech; Żukowska, Joanna

    2017-01-01

    The aim of this study is to present an outline and the principles of Poland's road safety strategic programming as it has developed over the last 25 years since the first Integrated Road Safety System with a strong focus on Sweden's "Vision Zero". Countries that have successfully improved road safety have done so by following strategies centred around the idea that people are not infallible and will make mistakes. The human body can only take a limited amount of energy upon impact, so roads, vehicles and road safety programmes must be designed to address this. The article gives a summary of Poland's experience of programming preventative measures that have "Vision Zero" as their basis. It evaluates the effectiveness of relevant programmes.

  16. System of error detection in the manufacture of garments using artificial vision

    NASA Astrophysics Data System (ADS)

    Moreno, J. J.; Aguila, A.; Partida, E.; Martinez, C. L.; Morales, O.; Tejeida, R.

    2017-12-01

    A computer vision system is implemented to detect errors in the cutting stage within the manufacturing process of garments in the textile industry. It provides solution to errors within the process that cannot be easily detected by any employee, in addition to significantly increase the speed of quality review. In the textile industry as in many others, quality control is required in manufactured products and this has been carried out manually by means of visual inspection by employees over the years. For this reason, the objective of this project is to design a quality control system using computer vision to identify errors in the cutting stage within the garment manufacturing process to increase the productivity of textile processes by reducing costs.

  17. Composite SAR imaging using sequential joint sparsity

    NASA Astrophysics Data System (ADS)

    Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.

    2017-06-01

    This paper investigates accurate and efficient ℓ1 regularization methods for generating synthetic aperture radar (SAR) images. Although ℓ1 regularization algorithms are already employed in SAR imaging, practical and efficient implementation in terms of real time imaging remain a challenge. Here we demonstrate that fast numerical operators can be used to robustly implement ℓ1 regularization methods that are as or more efficient than traditional approaches such as back projection, while providing superior image quality. In particular, we develop a sequential joint sparsity model for composite SAR imaging which naturally combines the joint sparsity methodology with composite SAR. Our technique, which can be implemented using standard, fractional, or higher order total variation regularization, is able to reduce the effects of speckle and other noisy artifacts with little additional computational cost. Finally we show that generalizing total variation regularization to non-integer and higher orders provides improved flexibility and robustness for SAR imaging.

  18. Dual Use of Image Based Tracking Techniques: Laser Eye Surgery and Low Vision Prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.; Barton, R. Shane

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  19. Dual use of image based tracking techniques: Laser eye surgery and low vision prosthesis

    NASA Technical Reports Server (NTRS)

    Juday, Richard D.

    1994-01-01

    With a concentration on Fourier optics pattern recognition, we have developed several methods of tracking objects in dynamic imagery to automate certain space applications such as orbital rendezvous and spacecraft capture, or planetary landing. We are developing two of these techniques for Earth applications in real-time medical image processing. The first is warping of a video image, developed to evoke shift invariance to scale and rotation in correlation pattern recognition. The technology is being applied to compensation for certain field defects in low vision humans. The second is using the optical joint Fourier transform to track the translation of unmodeled scenes. Developed as an image fixation tool to assist in calculating shape from motion, it is being applied to tracking motions of the eyeball quickly enough to keep a laser photocoagulation spot fixed on the retina, thus avoiding collateral damage.

  20. Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree

    NASA Astrophysics Data System (ADS)

    Zheng, Amin; Cheung, Gene; Florencio, Dinei

    2018-07-01

    With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.

  1. Biomechanics of an orthosis-managed cranial cruciate ligament-deficient canine stifle joint predicted by use of a computer model.

    PubMed

    Bertocci, Gina E; Brown, Nathan P; Mich, Patrice M

    2017-01-01

    OBJECTIVE To evaluate effects of an orthosis on biomechanics of a cranial cruciate ligament (CrCL)-deficient canine stifle joint by use of a 3-D quasistatic rigid-body pelvic limb computer model simulating the stance phase of gait and to investigate influences of orthosis hinge stiffness (durometer). SAMPLE A previously developed computer simulation model for a healthy 33-kg 5-year-old neutered Golden Retriever. PROCEDURES A custom stifle joint orthosis was implemented in the CrCL-deficient pelvic limb computer simulation model. Ligament loads, relative tibial translation, and relative tibial rotation in the orthosis-stabilized stifle joint (baseline scenario; high-durometer hinge]) were determined and compared with values for CrCL-intact and CrCL-deficient stifle joints. Sensitivity analysis was conducted to evaluate the influence of orthosis hinge stiffness on model outcome measures. RESULTS The orthosis decreased loads placed on the caudal cruciate and lateral collateral ligaments and increased load placed on the medial collateral ligament, compared with loads for the CrCL-intact stifle joint. Ligament loads were decreased in the orthosis-managed CrCL-deficient stifle joint, compared with loads for the CrCL-deficient stifle joint. Relative tibial translation and rotation decreased but were not eliminated after orthosis management. Increased orthosis hinge stiffness reduced tibial translation and rotation, whereas decreased hinge stiffness increased internal tibial rotation, compared with values for the baseline scenario. CONCLUSIONS AND CLINICAL RELEVANCE Stifle joint biomechanics were improved following orthosis implementation, compared with biomechanics of the CrCL-deficient stifle joint. Orthosis hinge stiffness influenced stifle joint biomechanics. An orthosis may be a viable option to stabilize a CrCL-deficient canine stifle joint.

  2. Using Vision System Technologies for Offset Approaches in Low Visibility Operations

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Bailey, Randall E.; Ellis, Kyle K.

    2015-01-01

    Flight deck-based vision systems, such as Synthetic Vision Systems (SVS) and Enhanced Flight Vision Systems (EFVS), have the potential to provide additional margins of safety for aircrew performance and enable the implementation of operational improvements for low visibility surface, arrival, and departure operations in the terminal environment with equivalent efficiency to visual operations. Twelve air transport-rated crews participated in a motion-base simulation experiment to evaluate the use of SVS/EFVS in Next Generation Air Transportation System low visibility approach and landing operations at Chicago O'Hare airport. Three monochromatic, collimated head-up display (HUD) concepts (conventional HUD, SVS HUD, and EFVS HUD) and three instrument approach types (straight-in, 3-degree offset, 15-degree offset) were experimentally varied to test the efficacy of the SVS/EFVS HUD concepts for offset approach operations. The findings suggest making offset approaches in low visibility conditions with an EFVS HUD or SVS HUD appear feasible. Regardless of offset approach angle or HUD concept being flown, all approaches had comparable ILS tracking during the instrument segment and were within the lateral confines of the runway with acceptable sink rates during the visual segment of the approach. Keywords: Enhanced Flight Vision Systems; Synthetic Vision Systems; Head-up Display; NextGen

  3. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms.

    PubMed

    Hu, Qijun; He, Songsheng; Wang, Shilong; Liu, Yugang; Zhang, Zutao; He, Leping; Wang, Fubin; Cai, Qijie; Shi, Rendan; Yang, Yuan

    2017-06-06

    Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

  4. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms

    PubMed Central

    Hu, Qijun; He, Songsheng; Wang, Shilong; Liu, Yugang; Zhang, Zutao; He, Leping; Wang, Fubin; Cai, Qijie; Shi, Rendan; Yang, Yuan

    2017-01-01

    Bus Rapid Transit (BRT) has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and further developed together with oriented brief (ORB) keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable. PMID:28587275

  5. An Operationally Based Vision Assessment Simulator for Domes

    NASA Technical Reports Server (NTRS)

    Archdeacon, John; Gaska, James; Timoner, Samson

    2012-01-01

    The Operational Based Vision Assessment (OBVA) simulator was designed and built by NASA and the United States Air Force (USAF) to provide the Air Force School of Aerospace Medicine (USAFSAM) with a scientific testing laboratory to study human vision and testing standards in an operationally relevant environment. This paper describes the general design objectives and implementation characteristics of the simulator visual system being created to meet these requirements. A key design objective for the OBVA research simulator is to develop a real-time computer image generator (IG) and display subsystem that can display and update at 120 frame s per second (design target), or at a minimum, 60 frames per second, with minimal transport delay using commercial off-the-shelf (COTS) technology. There are three key parts of the OBVA simulator that are described in this paper: i) the real-time computer image generator, ii) the various COTS technology used to construct the simulator, and iii) the spherical dome display and real-time distortion correction subsystem. We describe the various issues, possible COTS solutions, and remaining problem areas identified by NASA and the USAF while designing and building the simulator for future vision research. We also describe the critically important relationship of the physical display components including distortion correction for the dome consistent with an objective of minimizing latency in the system. The performance of the automatic calibration system used in the dome is also described. Various recommendations for possible future implementations shall also be discussed.

  6. Perception for mobile robot navigation: A survey of the state of the art

    NASA Technical Reports Server (NTRS)

    Kortenkamp, David

    1994-01-01

    In order for mobile robots to navigate safely in unmapped and dynamic environments they must perceive their environment and decide on actions based on those perceptions. There are many different sensing modalities that can be used for mobile robot perception; the two most popular are ultrasonic sonar sensors and vision sensors. This paper examines the state-of-the-art in sensory-based mobile robot navigation. The first issue in mobile robot navigation is safety. This paper summarizes several competing sonar-based obstacle avoidance techniques and compares them. Another issue in mobile robot navigation is determining the robot's position and orientation (sometimes called the robot's pose) in the environment. This paper examines several different classes of vision-based approaches to pose determination. One class of approaches uses detailed, a prior models of the robot's environment. Another class of approaches triangulates using fixed, artificial landmarks. A third class of approaches builds maps using natural landmarks. Example implementations from each of these three classes are described and compared. Finally, the paper presents a completely implemented mobile robot system that integrates sonar-based obstacle avoidance with vision-based pose determination to perform a simple task.

  7. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.

    PubMed

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Younes, Mohammed Y

    2016-09-01

    Solid waste prediction is crucial for sustainable solid waste management. The collection of accurate waste data records is challenging in developing countries. Solid waste generation is usually correlated with economic, demographic and social factors. However, these factors are not constant due to population and economic growth. The objective of this research is to minimize the land requirements for solid waste disposal for implementation of the Malaysian vision of waste disposal options. This goal has been previously achieved by integrating the solid waste forecasting model, waste composition and the Malaysian vision. The modified adaptive neural fuzzy inference system (MANFIS) was employed to develop a solid waste prediction model and search for the optimum input factors. The performance of the model was evaluated using the root mean square error (RMSE) and the coefficient of determination (R(2)). The model validation results are as follows: RMSE for training=0.2678, RMSE for testing=3.9860 and R(2)=0.99. Implementation of the Malaysian vision for waste disposal options can minimize the land requirements for waste disposal by up to 43%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Rapid prototyping of SoC-based real-time vision system: application to image preprocessing and face detection

    NASA Astrophysics Data System (ADS)

    Jridi, Maher; Alfalou, Ayman

    2017-05-01

    By this paper, the major goal is to investigate the Multi-CPU/FPGA SoC (System on Chip) design flow and to transfer a know-how and skills to rapidly design embedded real-time vision system. Our aim is to show how the use of these devices can be benefit for system level integration since they make possible simultaneous hardware and software development. We take the facial detection and pretreatments as case study since they have a great potential to be used in several applications such as video surveillance, building access control and criminal identification. The designed system use the Xilinx Zedboard platform. The last is the central element of the developed vision system. The video acquisition is performed using either standard webcam connected to the Zedboard via USB interface or several camera IP devices. The visualization of video content and intermediate results are possible with HDMI interface connected to HD display. The treatments embedded in the system are as follow: (i) pre-processing such as edge detection implemented in the ARM and in the reconfigurable logic, (ii) software implementation of motion detection and face detection using either ViolaJones or LBP (Local Binary Pattern), and (iii) application layer to select processing application and to display results in a web page. One uniquely interesting feature of the proposed system is that two functions have been developed to transmit data from and to the VDMA port. With the proposed optimization, the hardware implementation of the Sobel filter takes 27 ms and 76 ms for 640x480, and 720p resolutions, respectively. Hence, with the FPGA implementation, an acceleration of 5 times is obtained which allow the processing of 37 fps and 13 fps for 640x480, and 720p resolutions, respectively.

  9. Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor

    PubMed Central

    Rueckauer, Bodo; Delbruck, Tobi

    2016-01-01

    In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS). For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240 × 180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS). This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera. PMID:27199639

  10. Causes of Childhood Vision Impairment in the School for the Blind in Eritrea.

    PubMed

    Gyawali, Rajendra; Moodley, Vanessa R

    2017-12-01

    Our study provides the much-needed evidence on causes of childhood blindness in Eritrea. This will assist authorities to plan appropriate strategies and implement preventive, curative, and rehabilitative services to address these causes of vision loss in children in this resource-limited country. This study aims to identify the causes of severe vision impairment and blindness in children attending the only school for the blind in Eritrea. All children enrolled in the school were examined, and the World Health Organization form for the examination of visually impaired children was used to record the data. Examination included visual acuity, refraction, anterior segment, and fundus assessment. Causes of vision loss for children with severe vision impairment (visual acuity <6/60 to 3/60) and blindness (visual acuity <3/60) are reported. Causes were classified by the anatomical site affected and by underlying etiology based on the timing of the insult and causal factor. A total of 92 children were examined, and 71 (77.2%) of them had severe vision impairment and blindness. The major causes of vision loss were corneal scars (16.9%), cataract (12.7%), phthisis bulbi (11.3%), congenital eye deformities (11.3%), optic atrophy (9.3%), and presumed chorioretinal Toxoplasma scars (7.0%). Hereditary factors were the major known etiological category (15.5%) followed by the sequel of eye injuries (12.7%). Blindness due to vitamin A deficiency was not found, whereas infectious causes such as measles and ophthalmia neonatorum were relatively absent (one case each). Potentially avoidable causes of vision impairment were accounted for in 47.9% of children. This study provides the first direct evidence on childhood vision impairment in Eritrea. Despite the limitations, it is clearly shown that nearly half of the vision loss is due to avoidable causes. Thus, preventive public health strategies, specialist pediatric eye care, and rehabilitative services are recommended to address childhood vision impairment in Eritrea.

  11. Focused Lens on Unmanned Aerial Systems: An Evaluation of Department of Defense’s Unmanned Aerial Vision 2011

    DTIC Science & Technology

    2014-06-13

    Break Free of Regulations.” 69Barbara Opall -Rome, “ Israel Tackles The Last Frontier Of UAS Technology: Israel Moves Closer Toward Flying UASs In...with the new F-35 Joint Strike Fighter once it comes online, or with helicopters aboard the Littoral Combat Ship. Unmanned mine hunters could operate...Office, 2002. ———. Unmanned Aircraft Systems Roadmap 2005-2030. Washington, DC: Government Publishing Office, 2005. Opall -Rome, Barbra. “Israel

  12. Proceedings of the Second Joint Technology Workshop on Neural Networks and Fuzzy Logic, volume 1

    NASA Technical Reports Server (NTRS)

    Lea, Robert N. (Editor); Villarreal, James (Editor)

    1991-01-01

    Documented here are papers presented at the Neural Networks and Fuzzy Logic Workshop sponsored by NASA and the University of Houston, Clear Lake. The workshop was held April 11 to 13 at the Johnson Space Flight Center. Technical topics addressed included adaptive systems, learning algorithms, network architectures, vision, robotics, neurobiological connections, speech recognition and synthesis, fuzzy set theory and application, control and dynamics processing, space applications, fuzzy logic and neural network computers, approximate reasoning, and multiobject decision making.

  13. U.S. Navy Capstone Strategy Policy, Vision and Concept Documents. What to Consider Before You Write One

    DTIC Science & Technology

    2009-03-01

    Richard M. Nixon was President of the United States and Admiral Elmo R. Zumwalt, Jr. was Chief of Naval Operations. The listing above captures only...Moreover, since the 1980s, and largely mandated by the U.S. Congress, a torrent of unclassified U.S. government strategy documents has been released...documents? (IV) CNA • Personalities change • 8 U.S. Presidents • 13 Secretaries of Defense • 11 Chairmen of the Joint Chiefs of Staff • 15

  14. Coalition Warfare Program Presentation to: 2009 EUCOM/AFRICOM Science and Technology Conference

    DTIC Science & Technology

    2009-06-01

    compac an nexpens ve m cro- fluxgate magnetometer for use in multiple COCOMs. To continue T&E with joint services and apply lessons learned to...Partners in EUCOM/AFRICOM FY08 Starts • Advanced Dynamic Magnetometer FY09 Starts • ADNS Coalition Network FY10 New Starts • Clip-on Night Vision...Partner 2008 New Starts Advanced Dynamic Magnetometer for Static and Moving Applications T d l t d i i i US Navy (SPAWAR) Italy, Sweden o eve op a a

  15. Adjustable Bracket For Entry Of Welding Wire

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Gutow, David A.

    1993-01-01

    Wire-entry bracket on welding torch in robotic welding system provides for adjustment of angle of entry of welding wire over range of plus or minus 30 degrees from nominal entry angle. Wire positioned so it does not hide weld joint in view of through-the-torch computer-vision system part of robot-controlling and -monitoring system. Swiveling bracket also used on nonvision torch on which wire-feed-through tube interferes with workpiece. Angle simply changed to one giving sufficient clearance.

  16. The Dragonian Subsurface Abyss and Submarine Force’s Ability to Counter the Rising Threat

    DTIC Science & Technology

    2013-05-23

    large expanse of the Pacific while helping to turn China’s navy into one of the world’s most formidable blue water forces. Planned reductions in...most formidable blue water forces. While the U.S. joint force operates many platforms that can contend with various elements of China’s anti...shores of Chinese claimed territory. With a long-term vision in mind, Beijing has openly affirmed intentions to shift to a global, blue -water navy

  17. Direct adaptive control of a PUMA 560 industrial robot

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Lee, Thomas; Delpech, Michel

    1989-01-01

    The implementation and experimental validation of a new direct adaptive control scheme on a PUMA 560 industrial robot is described. The testbed facility consists of a Unimation PUMA 560 six-jointed robot and controller, and a DEC MicroVAX II computer which hosts the Robot Control C Library software. The control algorithm is implemented on the MicroVAX which acts as a digital controller for the PUMA robot, and the Unimation controller is effectively bypassed and used merely as an I/O device to interface the MicroVAX to the joint motors. The control algorithm for each robot joint consists of an auxiliary signal generated by a constant-gain Proportional plus Integral plus Derivative (PID) controller, and an adaptive position-velocity (PD) feedback controller with adjustable gains. The adaptive independent joint controllers compensate for the inter-joint couplings and achieve accurate trajectory tracking without the need for the complex dynamic model and parameter values of the robot. Extensive experimental results on PUMA joint control are presented to confirm the feasibility of the proposed scheme, in spite of strong interactions between joint motions. Experimental results validate the capabilities of the proposed control scheme. The control scheme is extremely simple and computationally very fast for concurrent processing with high sampling rates.

  18. Supporting High School Teachers' College and Career Readiness Efforts: Bridging California's Vision with Local Implementation Needs. Policy Brief

    ERIC Educational Resources Information Center

    Lewis, Jodi; Nodine, Thad; Venezia, Andrea

    2016-01-01

    This brief shares the perspectives and concerns of high school teachers in two districts regarding implementing the Common Core State Standards, specifically as the Common Core pertains to preparing more students for college and well-paying careers. The brief also makes state policy recommendations for ways to support teachers in their efforts to…

  19. [On practicability of implementing the speciality "podiatry" in traumatology and orthopedics].

    PubMed

    2011-01-01

    The absence of single opinion concerning the classification of foot and ankle joint pathology does not permit to formulate universal and practical approach to the identification of pathological syndromes in case of patient foot lesion. The situation is aggravated by the unsolved issues related to the terminological definition of podiatry as a direction in orthopedics to solve the issues of foot and ankle joint pathology. In actual conditions the implementation of new technologies into the structure of traumatological orthopedics care is needed. This approach permits to combine the qualities of models of effective and optimized care to patients with foot and ankle joint pathology. The study of issue related to the systematization of podiatric pathology revealed that actually no single universal classification easy-to-use in practice exists. Hence the development of original applied working scheme of foot and ankle joint pathology is proposed.

  20. Implementation of Kane's Method for a Spacecraft Composed of Multiple Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.

    2013-01-01

    Equations of motion are derived for a general spacecraft composed of rigid bodies connected via rotary (spherical or gimballed) joints in a tree topology. Several supporting concepts are developed in depth. Basis dyads aid in the transition from basis-free vector equations to component-wise equations. Joint partials allow abstraction of 1-DOF, 2-DOF, 3-DOF gimballed and spherical rotational joints to a common notation. The basic building block consisting of an "inner" body and an "outer" body connected by a joint enables efficient organization of arbitrary tree structures. Kane's equation is recast in a form which facilitates systematic assembly of large systems of equations, and exposes a relationship of Kane's equation to Newton and Euler's equations which is obscured by the usual presentation. The resulting system of dynamic equations is of minimum dimension, and is suitable for numerical solution by computer. Implementation is ·discussed, and illustrative simulation results are presented.

  1. Application of color mixing for safety and quality inspection of agricultural products

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin

    2005-11-01

    In this paper, color-mixing applications for food safety and quality was studied, including two-color mixing and three-color mixing. It was shown that the chromaticness of the visual signal resulting from two- or three-color mixing is directly related to the band ratio of light intensity at the two or three selected wavebands. An optical visual device using color mixing to implement the band ratio criterion was presented. Inspection through human vision assisted by an optical device that implements the band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical color mixing technique were given for the inspection of chicken carcasses with various diseases and for the detection of chilling injury in cucumbers. Simulation results showed that discrimination by chromaticness that has a direct relation with band ratio can work very well with proper selection of the two or three narrow wavebands. This novel color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.

  2. Converging technologies in higher education: paradigm for the "new" liberal arts?

    PubMed

    Balmer, Robert T

    2006-12-01

    This article discusses the historic relationship between the practical arts (technology) and the mental (liberal) arts, suggesting that Converging Technologies is a new higher education paradigm that integrates the arts, humanities, and sciences with modern technology. It explains that the paradigm really includes all fields in higher education from philosophy to art to music to modern languages and beyond. To implement a transformation of this magnitude, it is necessary to understand the psychology of change in academia. Union College in Schenectady, New York, implemented a Converging Technologies Educational Paradigm in five steps: (1) create a compelling vision, (2) communicate the vision, (3) empower the faculty, (4) create short-term successes, and (5) institutionalize the results. This case study of Union College demonstrates it is possible to build a pillar of educational excellence based on Converging Technologies.

  3. Smart lighting using a liquid crystal modulator

    NASA Astrophysics Data System (ADS)

    Baril, Alexandre; Thibault, Simon; Galstian, Tigran

    2017-08-01

    Now that LEDs have massively invaded the illumination market, a clear trend has emerged for more efficient and targeted lighting. The project described here is at the leading edge of the trend and aims at developing an evaluation board to test smart lighting applications. This is made possible thanks to a new liquid crystal light modulator recently developed for broadening LED light beams. The modulator is controlled by electrical signals and is characterized by a linear working zone. This feature allows the implementation of a closed loop control with a sensor feedback. This project shows that the use of computer vision is a promising opportunity for cheap closed loop control. The developed evaluation board integrates the liquid crystal modulator, a webcam, a LED light source and all the required electronics to implement a closed loop control with a computer vision algorithm.

  4. Parametric dense stereovision implementation on a system-on chip (SoC).

    PubMed

    Gardel, Alfredo; Montejo, Pablo; García, Jorge; Bravo, Ignacio; Lázaro, José L

    2012-01-01

    This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.

  5. Synergistic Approach Integrating Joint Capabilities for USSOCOM Contingency Contracting: Construction Management Module

    DTIC Science & Technology

    2010-12-01

    59 a. The Joint Uniform Lessons Learned System (JULLS) .........59 b. Acquisition Community Connection (ACC) ..........................59 c...Report ACC Acquisition Community Connection ADDIE Analyze, Design, Develop, Implement, Evaluate AFFARS Air Force Federal Acquisition Regulation...Operations J4 Logistics J5 Plans J6 Communications J8 Programming and Comptroller J&A Justification and Approval JARB Joint Acquisition

  6. Bird Habitat Conservation at Various Scales in the Atlantic Coast Joint Venture

    Treesearch

    Andrew Milliken; Craig Watson; Chuck Hayes

    2005-01-01

    The Atlantic Coast Joint Venture is a partnership focused on the conservation of habitats for migratory birds within the Atlantic Flyway/Atlantic Coast Region from Maine south to Puerto Rico. In order to be effective in planning and implementing conservation in this large and diverse area, the joint venture must work at multiple spatial scales, from the largest ?...

  7. Biological basis for space-variant sensor design I: parameters of monkey and human spatial vision

    NASA Astrophysics Data System (ADS)

    Rojer, Alan S.; Schwartz, Eric L.

    1991-02-01

    Biological sensor design has long provided inspiration for sensor design in machine vision. However relatively little attention has been paid to the actual design parameters provided by biological systems as opposed to the general nature of biological vision architectures. In the present paper we will provide a review of current knowledge of primate spatial vision design parameters and will present recent experimental and modeling work from our lab which demonstrates that a numerical conformal mapping which is a refinement of our previous complex logarithmic model provides the best current summary of this feature of the primate visual system. In this paper we will review recent work from our laboratory which has characterized some of the spatial architectures of the primate visual system. In particular we will review experimental and modeling studies which indicate that: . The global spatial architecture of primate visual cortex is well summarized by a numerical conformal mapping whose simplest analytic approximation is the complex logarithm function . The columnar sub-structure of primate visual cortex can be well summarized by a model based on a band-pass filtered white noise. We will also refer to ongoing work in our lab which demonstrates that: . The joint columnar/map structure of primate visual cortex can be modeled and summarized in terms of a new algorithm the ''''proto-column'''' algorithm. This work provides a reference-point for current engineering approaches to novel architectures for

  8. Acceleration and torque feedback for robotic control - Experimental results

    NASA Technical Reports Server (NTRS)

    Mclnroy, John E.; Saridis, George N.

    1990-01-01

    Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.

  9. Evaluation of a gaze-controlled vision enhancement system for reading in visually impaired people

    PubMed Central

    Aguilar, Carlos; Castet, Eric

    2017-01-01

    People with low vision, especially those with Central Field Loss (CFL), need magnification to read. The flexibility of Electronic Vision Enhancement Systems (EVES) offers several ways of magnifying text. Due to the restricted field of view of EVES, the need for magnification is conflicting with the need to navigate through text (panning). We have developed and implemented a real-time gaze-controlled system whose goal is to optimize the possibility of magnifying a portion of text while maintaining global viewing of the other portions of the text (condition 1). Two other conditions were implemented that mimicked commercially available advanced systems known as CCTV (closed-circuit television systems)—conditions 2 and 3. In these two conditions, magnification was uniformly applied to the whole text without any possibility to specifically select a region of interest. The three conditions were implemented on the same computer to remove differences that might have been induced by dissimilar equipment. A gaze-contingent artificial 10° scotoma (a mask continuously displayed in real time on the screen at the gaze location) was used in the three conditions in order to simulate macular degeneration. Ten healthy subjects with a gaze-contingent scotoma read aloud sentences from a French newspaper in nine experimental one-hour sessions. Reading speed was measured and constituted the main dependent variable to compare the three conditions. All subjects were able to use condition 1 and they found it slightly more comfortable to use than condition 2 (and similar to condition 3). Importantly, reading speed results did not show any significant difference between the three systems. In addition, learning curves were similar in the three conditions. This proof of concept study suggests that the principles underlying the gaze-controlled enhanced system might be further developed and fruitfully incorporated in different kinds of EVES for low vision reading. PMID:28380004

  10. Virtual expansion of the technical vision system for smart vehicles based on multi-agent cooperation model

    NASA Astrophysics Data System (ADS)

    Krapukhina, Nina; Senchenko, Roman; Kamenov, Nikolay

    2017-12-01

    Road safety and driving in dense traffic flows poses some challenges in receiving information about surrounding moving object, some of which can be in the vehicle's blind spot. This work suggests an approach to virtual monitoring of the objects in a current road scene via a system with a multitude of cooperating smart vehicles exchanging information. It also describes the intellectual agent model, and provides methods and algorithms of identifying and evaluating various characteristics of moving objects in video flow. Authors also suggest ways for integrating the information from the technical vision system into the model with further expansion of virtual monitoring for the system's objects. Implementation of this approach can help to expand the virtual field of view for a technical vision system.

  11. Design of a Vision-Based Sensor for Autonomous Pig House Cleaning

    NASA Astrophysics Data System (ADS)

    Braithwaite, Ian; Blanke, Mogens; Zhang, Guo-Qiang; Carstensen, Jens Michael

    2005-12-01

    Current pig house cleaning procedures are hazardous to the health of farm workers, and yet necessary if the spread of disease between batches of animals is to be satisfactorily controlled. Autonomous cleaning using robot technology offers salient benefits. This paper addresses the feasibility of designing a vision-based system to locate dirty areas and subsequently direct a cleaning robot to remove dirt. Novel results include the characterisation of the spectral properties of real surfaces and dirt in a pig house and the design of illumination to obtain discrimination of clean from dirty areas with a low probability of misclassification. A Bayesian discriminator is shown to be efficient in this context and implementation of a prototype tool demonstrates the feasibility of designing a low-cost vision-based sensor for autonomous cleaning.

  12. Tactile Robotic Topographical Mapping Without Force or Contact Sensors

    NASA Technical Reports Server (NTRS)

    Burke, Kevin; Melko, Joseph; Krajewski, Joel; Cady, Ian

    2008-01-01

    A method of topographical mapping of a local solid surface within the range of motion of a robot arm is based on detection of contact between the surface and the end effector (the fixture or tool at the tip of the robot arm). The method was conceived to enable mapping of local terrain by an exploratory robot on a remote planet, without need to incorporate delicate contact switches, force sensors, a vision system, or other additional, costly hardware. The method could also be used on Earth for determining the size and shape of an unknown surface in the vicinity of a robot, perhaps in an unanticipated situation in which other means of mapping (e.g., stereoscopic imaging or laser scanning with triangulation) are not available. The method uses control software modified to utilize the inherent capability of the robotic control system to measure the joint positions, the rates of change of the joint positions, and the electrical current demanded by the robotic arm joint actuators. The system utilizes these coordinate data and the known robot-arm kinematics to compute the position and velocity of the end effector, move the end effector along a specified trajectory, place the end effector at a specified location, and measure the electrical currents in the joint actuators. Since the joint actuator current is approximately proportional to the actuator forces and torques, a sudden rise in joint current, combined with a slowing of the joint, is a possible indication of actuator stall and surface contact. Hence, even though the robotic arm is not equipped with contact sensors, it is possible to sense contact (albeit with reduced sensitivity) as the end effector becomes stalled against a surface that one seeks to measure.

  13. Fading vision: knowledge translation in the implementation of a public health policy intervention

    PubMed Central

    2013-01-01

    Background In response to several high profile public health crises, public health renewal is underway in Canada. In the province of British Columbia, the Ministry of Health initiated a collaborative evidence-informed process involving a steering committee of representatives from the six health authorities. A Core Functions (CF) Framework was developed, identifying 21 core public health programs. For each core program, an evidence review was conducted and a model core program paper developed. These documents were distributed to health authorities to guide development of their own renewed public health services. The CF implementation was conceptualized as an embedded knowledge translation process. A CF coordinator in each health authority was to facilitate a gap analysis and development of a performance improvement plan for each core program, and post these publically on the health authority website. Methods Interviews (n = 19) and focus groups (n = 8) were conducted with a total of 56 managers and front line staff from five health authorities working in the Healthy Living and Sexually Transmitted Infection Prevention core programs. All interviews and focus groups were digitally recorded, transcribed and verified by the project coordinator. Five members of the research team used NVivo 9 to manage data and conducted a thematic analysis. Results Four main themes emerged concerning implementation of the CF Framework generally, and the two programs specifically. The themes were: ‘you’ve told me what, now tell me how’; ‘the double bind’; ‘but we already do that’; and the ‘selling game.’ Findings demonstrate the original vision of the CF process was lost in the implementation process and many participants were unaware of the CF framework or process. Conclusions Results are discussed with respect to a well-known framework on the adoption, assimilation, and implementation of innovations in health services organizations. Despite attempts of the Ministry of Health and the Steering Committee to develop and implement a collaborative, evidence-informed policy intervention, there were several barriers to the realization of the vision for core public health functions implementation, at least in the early stages. In neglecting the implementation process, it seems unlikely that the expected benefits of the public health renewal process will be realized. PMID:23734672

  14. Quality grading of Atlantic salmon (Salmo salar) by computer vision.

    PubMed

    Misimi, E; Erikson, U; Skavhaug, A

    2008-06-01

    In this study, we present a promising method of computer vision-based quality grading of whole Atlantic salmon (Salmo salar). Using computer vision, it was possible to differentiate among different quality grades of Atlantic salmon based on the external geometrical information contained in the fish images. Initially, before the image acquisition, the fish were subjectively graded and labeled into grading classes by a qualified human inspector in the processing plant. Prior to classification, the salmon images were segmented into binary images, and then feature extraction was performed on the geometrical parameters of the fish from the grading classes. The classification algorithm was a threshold-based classifier, which was designed using linear discriminant analysis. The performance of the classifier was tested by using the leave-one-out cross-validation method, and the classification results showed a good agreement between the classification done by human inspectors and by the computer vision. The computer vision-based method classified correctly 90% of the salmon from the data set as compared with the classification by human inspector. Overall, it was shown that computer vision can be used as a powerful tool to grade Atlantic salmon into quality grades in a fast and nondestructive manner by a relatively simple classifier algorithm. The low cost of implementation of today's advanced computer vision solutions makes this method feasible for industrial purposes in fish plants as it can replace manual labor, on which grading tasks still rely.

  15. Processor design optimization methodology for synthetic vision systems

    NASA Astrophysics Data System (ADS)

    Wren, Bill; Tarleton, Norman G.; Symosek, Peter F.

    1997-06-01

    Architecture optimization requires numerous inputs from hardware to software specifications. The task of varying these input parameters to obtain an optimal system architecture with regard to cost, specified performance and method of upgrade considerably increases the development cost due to the infinitude of events, most of which cannot even be defined by any simple enumeration or set of inequalities. We shall address the use of a PC-based tool using genetic algorithms to optimize the architecture for an avionics synthetic vision system, specifically passive millimeter wave system implementation.

  16. Multiple Optical Filter Design Simulation Results

    NASA Astrophysics Data System (ADS)

    Mendelsohn, J.; Englund, D. C.

    1986-10-01

    In this paper we continue our investigation of the application of matched filters to robotic vision problems. Specifically, we are concerned with the tray-picking problem. Our principal interest in this paper is the examination of summation affects which arise from attempting to reduce the matched filter memory size by averaging of matched filters. While the implementation of matched filtering theory to applications in pattern recognition or machine vision is ideally through the use of optics and optical correlators, in this paper the results were obtained through a digital simulation of the optical process.

  17. Education and Public Outreach at the American Astronomical Society

    NASA Astrophysics Data System (ADS)

    Fienberg, R. T.

    2011-09-01

    Recently the Council of the American Astronomical Society (AAS) adopted its first-ever mission-and-vision statement. Independently, the Astronomy Education Board (AEB), which has oversight of the Society's educational activities, adopted new goals for the AAS education program. Much of the responsibility for aligning the AAS mission-and-vision statement and AEB goals and implementing them is vested in a new position: AAS Press Officer and Education and Outreach Coordinator. Here I describe the AAS's priorities for education and public outreach and explain how they are being, or will be, achieved.

  18. Computing motion using resistive networks

    NASA Technical Reports Server (NTRS)

    Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James

    1988-01-01

    Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.

  19. NASA's strategic plan for education. A strategy for change, 1993-1998

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA's education vision is to promote excellence in America's education system through enhancing and expanding scientific and technological competence. In doing so, NASA strives to be recognized by the education community as the premier mission agency in support of the National Education Goals and in the development and implementation of education standards. To realize this vision, NASA has clearly defined and developed three specific goals to promote excellence in education. Specific objectives and milestones are defined for each goal in the body of this strategic plan.

  20. Experience of international collaboration in preparation of masters in “Mechatronics” with call for funds from Tempus and Erasmus programs

    NASA Astrophysics Data System (ADS)

    Zhmud, V. A.; Frantsuzova, G. A.; Dimitrov, L. V.; Nosek, J.

    2018-05-01

    This paper reveals the main problems of creating and implementing double diploma programs between universities of Russia and Europe. Novosibirsk State Technical University implements such programs with Technical Universities of Sofia (Bulgaria) and Liberec (Czech Republic). The paper presents the latest results of this activity and discusses the possibilities of its development in the field of joint postgraduate training, as well as joint scientific research with the involvement of students and postgraduate.

  1. This Is Smart Growth - Publication

    EPA Pesticide Factsheets

    This Is Smart Growth illustrates how communities can turn their visions into reality, using smart growth techniques to improve development. The report features 40 places around the country that have found success by implementing smart growth principles.

  2. Review On Applications Of Neural Network To Computer Vision

    NASA Astrophysics Data System (ADS)

    Li, Wei; Nasrabadi, Nasser M.

    1989-03-01

    Neural network models have many potential applications to computer vision due to their parallel structures, learnability, implicit representation of domain knowledge, fault tolerance, and ability of handling statistical data. This paper demonstrates the basic principles, typical models and their applications in this field. Variety of neural models, such as associative memory, multilayer back-propagation perceptron, self-stabilized adaptive resonance network, hierarchical structured neocognitron, high order correlator, network with gating control and other models, can be applied to visual signal recognition, reinforcement, recall, stereo vision, motion, object tracking and other vision processes. Most of the algorithms have been simulated on com-puters. Some have been implemented with special hardware. Some systems use features, such as edges and profiles, of images as the data form for input. Other systems use raw data as input signals to the networks. We will present some novel ideas contained in these approaches and provide a comparison of these methods. Some unsolved problems are mentioned, such as extracting the intrinsic properties of the input information, integrating those low level functions to a high-level cognitive system, achieving invariances and other problems. Perspectives of applications of some human vision models and neural network models are analyzed.

  3. Synthetic Vision Workshop 2

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J. (Compiler)

    1999-01-01

    The second NASA sponsored Workshop on Synthetic/Enhanced Vision (S/EV) Display Systems was conducted January 27-29, 1998 at the NASA Langley Research Center. The purpose of this workshop was to provide a forum for interested parties to discuss topics in the Synthetic Vision (SV) element of the NASA Aviation Safety Program and to encourage those interested parties to participate in the development, prototyping, and implementation of S/EV systems that enhance aviation safety. The SV element addresses the potential safety benefits of synthetic/enhanced vision display systems for low-end general aviation aircraft, high-end general aviation aircraft (business jets), and commercial transports. Attendance at this workshop consisted of about 112 persons including representatives from industry, the FAA, and other government organizations (NOAA, NIMA, etc.). The workshop provided opportunities for interested individuals to give presentations on the state of the art in potentially applicable systems, as well as to discuss areas of research that might be considered for inclusion within the Synthetic Vision Element program to contribute to the reduction of the fatal aircraft accident rate. Panel discussions on topical areas such as databases, displays, certification issues, and sensors were conducted, with time allowed for audience participation.

  4. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.

    PubMed

    Wu, J Z; Herzog, W; Epstein, M

    1998-02-01

    The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.

  5. Health and equity in all policies in local government: processes and outcomes in two Norwegian municipalities.

    PubMed

    Von Heimburg, Dina; Hakkebo, Berit

    2017-08-01

    To identify key factors in implementing Health and Equity in All Policies (HEiAP) at the local level in two Norwegian municipalities in order to accelerate the progress of promoting health, well-being and equity in other local governments. This case study is presented as a narrative from policy-making processes in two Norwegian municipalities. The story is told from an insider perspective, with a focus on HEiAP policy makers in these two municipalities. The narrative identified key learning from implementing HEiAP at the local level, i.e. the importance of strengthening system and human capacities. System capacity is strengthened by governing HEiAP according to national legislation and a holistic governance system at the local level. Municipal plans are based on theory, evidence and local data. A 'main story' is developed to support the vision, defining joint societal goals and co-creation strategies. Policies are anchored by measuring and monitoring outcomes, sharing accountability and continuous dialogue to ensure political commitment. Human capacity is strengthened through participatory leadership, soft skills and health promotion competences across sectors. Health promotion competence at a strategic level in the organization, participation in professional networks, crowd sourcing toward common goals, and commitment through winning hearts and minds of politicians and other stakeholders are vital aspects. Our experience pinpoints the importance of strengthening system and human capacity in local governments. Further, we found it important to focus on the two strategic objectives in the European strategy 'Health 2020': (1) Improving health for all and reducing health inequalities; (2) improving leadership and participatory governance for health.

  6. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods.

    PubMed

    Schwartz, Mathew; Dixon, Philippe C

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM.

  7. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods

    PubMed Central

    Dixon, Philippe C.

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM. PMID:29293565

  8. Implementing Network-Centric Operations in Joint Task Forces: Changes in Joint Doctrine

    DTIC Science & Technology

    2006-06-16

    the hierarchy, explaining the relationship between vertically connected components (Gibson, Ivancevich , and Donnelly 1973, 289). The flow of...John M. Ivancevich , and James H. Donnelly. 1973. Organizations: Structure, Processes, Behavior. Dallas, TX: Business Publication, Inc. Gonzales

  9. WisDOT asphaltic mixture new specifications implementation : field compaction and density.

    DOT National Transportation Integrated Search

    2016-06-01

    The main research objectives of this study were to evaluate HMA Longitudinal Joint type, method and compaction data to produce specification recommendations that will ensure the highest density longitudinal joint, as well as evaluate and produce a sp...

  10. The WebACS - An Accessible Graphical Editor.

    PubMed

    Parker, Stefan; Nussbaum, Gerhard; Pölzer, Stephan

    2017-01-01

    This paper is about the solution to accessibility problems met when implementing a graphical editor, a major challenge being the comprehension of the relationships between graphical components, which needs to be guaranteed for blind and vision impaired users. In the concrete case the HTML5 canvas and Javascript were used. Accessibility was reached by implementing a list view of elements, which also enhances the usability of the editor.

  11. Learning in Neural Networks: VLSI Implementation Strategies

    NASA Technical Reports Server (NTRS)

    Duong, Tuan Anh

    1995-01-01

    Fully-parallel hardware neural network implementations may be applied to high-speed recognition, classification, and mapping tasks in areas such as vision, or can be used as low-cost self-contained units for tasks such as error detection in mechanical systems (e.g. autos). Learning is required not only to satisfy application requirements, but also to overcome hardware-imposed limitations such as reduced dynamic range of connections.

  12. An Analysis of the Effects of Varying Levels of Implementation of Disciplines Associated with Learning Organizations and Student Achievement at California Schools with Similar Demographic Characteristics

    ERIC Educational Resources Information Center

    Frisby, Sandra

    2012-01-01

    Purpose: The purpose of this study was to describe, measure, compare, and contrast the perceptions of elementary teachers and principals regarding the degree to which the schools in which they are employed have implemented learning organizations conforming to Senge's (1990) 5 disciplines: mental models, personal mastery, shared vision, team…

  13. Dutch modality exclusivity norms: Simulating perceptual modality in space.

    PubMed

    Speed, Laura J; Majid, Asifa

    2017-12-01

    Perceptual information is important for the meaning of nouns. We present modality exclusivity norms for 485 Dutch nouns rated on visual, auditory, haptic, gustatory, and olfactory associations. We found these nouns are highly multimodal. They were rated most dominant in vision, and least in olfaction. A factor analysis identified two main dimensions: one loaded strongly on olfaction and gustation (reflecting joint involvement in flavor), and a second loaded strongly on vision and touch (reflecting joint involvement in manipulable objects). In a second study, we validated the ratings with similarity judgments. As expected, words from the same dominant modality were rated more similar than words from different dominant modalities; but - more importantly - this effect was enhanced when word pairs had high modality strength ratings. We further demonstrated the utility of our ratings by investigating whether perceptual modalities are differentially experienced in space, in a third study. Nouns were categorized into their dominant modality and used in a lexical decision experiment where the spatial position of words was either in proximal or distal space. We found words dominant in olfaction were processed faster in proximal than distal space compared to the other modalities, suggesting olfactory information is mentally simulated as "close" to the body. Finally, we collected ratings of emotion (valence, dominance, and arousal) to assess its role in perceptual space simulation, but the valence did not explain the data. So, words are processed differently depending on their perceptual associations, and strength of association is captured by modality exclusivity ratings.

  14. Decadal Vision Progress Report Implementation Plans and Status for the Next Generation ARM Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, James

    The reconfiguration of the ARM facility, formally initiated in early 2014, is geared toward implementing the Next Generation of the ARM Facility, which will more tightly link ARM measurements and atmospheric models. The strategy is outlined in the ARM Climate Research Facility Decadal Vision (DOE 2014a). The strategy includes the implementation of a high-resolution model, initially at the Southern Great Plains (SGP) site, and enhancements at the SGP and North Slope of Alaska (NSA) sites to provide additional observations to support modeling and process studies. Enhancements at the SGP site focus on ground-based instruments while enhancements at the NSA makemore » use of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). It is also recognized that new data tools and data products will need to be developed to take full advantage of these improvements. This document provides an update on the status of these ARM facility enhancements, beginning with the measurement enhancements at the SGP and NSA, followed by a discussion of the modeling project including associated data-processing activities.« less

  15. [Leadership and vision in the improvement of universal health care coverage in low-income countries].

    PubMed

    Meda, Ziemlé Clément; Konate, Lassina; Ouedraogo, Hyacinthe; Sanou, Moussa; Hercot, David; Sombie, Issiaka

    2011-01-01

    In Burkina Faso, as in most developing countries, the operational level of the health system is made up of Health Districts (HDs), the activities of which are typically coordinated by the District Team (DT). Assessing the the core functions of DTs, as described by WHO, shows two important weaknesses. Firstly, instructions from "above" are often implemented rather passively: DTs tend not to display much leadership. Secondly, the current organisation, based on input financing and centralised planning, does not sufficiently promote either the vision or research functions of DTs. In this article, we report our experience in the Orodora HD in Burkina Faso, where the DT's leadership and vision proved to be essential ingredients for effective health action in the district. Our description of six interventions implemented between 2004 and 2008 shows how DT leadership and vision have improved outputs at the HD level. Until 2004, the district applied static health planning. The health system was insufficiently financed and performed poorly. Faced with this situation, the DT decided to set up several priority interventions based on health care access criteria and patient concerns, while respecting and contextualizing national norms and objectives. Six interventions were then implemented. The first was ensure that quality blood (meeting transfusion security norms) was available at the District Hospital (DH), by picking blood up from the regional blood transfusion center weekly. This speeded up care at the DH, reduced the number of cases referred to the regional hospital for transfusion, and reduced neonatal and maternal mortality. The second intervention sought to improve the skills of health workers in managing emergency cases and to improve relationships with the referral hospital through the reintroduction of counter-referral procedures. This led to a decrease in unnecessary referrals and also reduced the mortality rates of serious cases. The third intervention, by implementing a decentralized approach to tuberculosis detection, succeeded in improving access to care and enabled us to quantify the rate of tuberculosis-HIV co-infection in the HD. The fourth intervention improved financial access to emergency obstetric care by providing essential drugs and consumables for emergency obstetric surgery free of charge. The fifth intervention boosted the motivation of health workers by an annual 'competition of excellence', organised for workers and teams in the HD. Finally, our sixth intervention was the introduction of a "culture" of evaluation and transparency, by means of a local health journal, used to interact with stakeholders both at the local level and in the health sector more broadly. We also present our experiences regularly during national health science symposia. Although the DT operates with limited resources, it has over time managed to improve care and services in the HD, through its dynamic management and strategic planning. It has reduced inpatient mortality and improved access to care, particularly for vulnerable groups, in line with the Primary Health Care and Bamako Initiative principles. This case study would have benefited from a stronger methodology. However, it shows that in a context of limited resources it is still possible to strengthen the local health system by improving management practices. To progress towards universal health coverage, all core functions of a DT are worth implementing, including leadership and vision. National and international health strategies should thus include a plan to provide for and train local health system managers who can provide both leadership and strategic vision.

  16. Emergence of postural patterns as a function of vision and translation frequency

    NASA Technical Reports Server (NTRS)

    Buchanan, J. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Emergence of postural patterns as a function of vision and translation frequency. We examined the frequency characteristics of human postural coordination and the role of visual information in this coordination. Eight healthy adults maintained balance in stance during sinusoidal support surface translations (12 cm peak to peak) in the anterior-posterior direction at six different frequencies. Changes in kinematic and dynamic measures revealed that both sensory and biomechanical constraints limit postural coordination patterns as a function of translation frequency. At slow frequencies (0.1 and 0.25 Hz), subjects ride the platform (with the eyes open or closed). For fast frequencies (1.0 and 1.25 Hz) with the eyes open, subjects fix their head and upper trunk in space. With the eyes closed, large-amplitude, slow-sway motion of the head and trunk occurred for fast frequencies above 0.5 Hz. Visual information stabilized posture by reducing the variability of the head's position in space and the position of the center of mass (CoM) within the support surface defined by the feet for all but the slowest translation frequencies. When subjects rode the platform, there was little oscillatory joint motion, with muscle activity limited mostly to the ankles. To support the head fixed in space and slow-sway postural patterns, subjects produced stable interjoint hip and ankle joint coordination patterns. This increase in joint motion of the lower body dissipated the energy input by fast translation frequencies and facilitated the control of upper body motion. CoM amplitude decreased with increasing translation frequency, whereas the center of pressure amplitude increased with increasing translation frequency. Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs. The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.

  17. Vision-Aided Inertial Navigation

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Stergios I. (Inventor); Mourikis, Anastasios I. (Inventor)

    2017-01-01

    This document discloses, among other things, a system and method for implementing an algorithm to determine pose, velocity, acceleration or other navigation information using feature tracking data. The algorithm has computational complexity that is linear with the number of features tracked.

  18. FPGA implementation of Santos-Victor optical flow algorithm for real-time image processing: an useful attempt

    NASA Astrophysics Data System (ADS)

    Cobos Arribas, Pedro; Monasterio Huelin Macia, Felix

    2003-04-01

    A FPGA based hardware implementation of the Santos-Victor optical flow algorithm, useful in robot guidance applications, is described in this paper. The system used to do contains an ALTERA FPGA (20K100), an interface with a digital camera, three VRAM memories to contain the data input and some output memories (a VRAM and a EDO) to contain the results. The system have been used previously to develop and test other vision algorithms, such as image compression, optical flow calculation with differential and correlation methods. The designed system let connect the digital camera, or the FPGA output (results of algorithms) to a PC, throw its Firewire or USB port. The problems take place in this occasion have motivated to adopt another hardware structure for certain vision algorithms with special requirements, that need a very hard code intensive processing.

  19. An Asset-Based Approach to Tribal Community Energy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Rachael A.; Martino, Anthony; Begay, Sandra K.

    Community energy planning is a vital component of successful energy resource development and project implementation. Planning can help tribes develop a shared vision and strategies to accomplish their energy goals. This paper explores the benefits of an asset-based approach to tribal community energy planning. While a framework for community energy planning and federal funding already exists, some areas of difficulty in the planning cycle have been identified. This paper focuses on developing a planning framework that offsets those challenges. The asset-based framework described here takes inventory of a tribe’s capital assets, such as: land capital, human capital, financial capital, andmore » political capital. Such an analysis evaluates how being rich in a specific type of capital can offer a tribe unique advantages in implementing their energy vision. Finally, a tribal case study demonstrates the practical application of an asset-based framework.« less

  20. Beyond the computer-based patient record: re-engineering with a vision.

    PubMed

    Genn, B; Geukers, L

    1995-01-01

    In order to achieve real benefit from the potential offered by a Computer-Based Patient Record, the capabilities of the technology must be applied along with true re-engineering of healthcare delivery processes. University Hospital recognizes this and is using systems implementation projects, such as the catalyst, for transforming the way we care for our patients. Integration is fundamental to the success of these initiatives and this must be explicitly planned against an organized systems architecture whose standards are market-driven. University Hospital also recognizes that Community Health Information Networks will offer improved quality of patient care at a reduced overall cost to the system. All of these implementation factors are considered up front as the hospital makes its initial decisions on to how to computerize its patient records. This improves our chances for success and will provide a consistent vision to guide the hospital's development of new and better patient care.

  1. A computer architecture for intelligent machines

    NASA Technical Reports Server (NTRS)

    Lefebvre, D. R.; Saridis, G. N.

    1991-01-01

    The Theory of Intelligent Machines proposes a hierarchical organization for the functions of an autonomous robot based on the Principle of Increasing Precision With Decreasing Intelligence. An analytic formulation of this theory using information-theoretic measures of uncertainty for each level of the intelligent machine has been developed in recent years. A computer architecture that implements the lower two levels of the intelligent machine is presented. The architecture supports an event-driven programming paradigm that is independent of the underlying computer architecture and operating system. Details of Execution Level controllers for motion and vision systems are addressed, as well as the Petri net transducer software used to implement Coordination Level functions. Extensions to UNIX and VxWorks operating systems which enable the development of a heterogeneous, distributed application are described. A case study illustrates how this computer architecture integrates real-time and higher-level control of manipulator and vision systems.

  2. 75 FR 6250 - ITS Joint Program Office; Intelligent Transportation Systems Program Advisory Committee; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Intelligent Transportation Systems Program... the Intelligent Transportation Systems (ITS) Program Advisory Committee (ITSPAC). The Web conference... Transportation on all matters relating to the study, development, and implementation of intelligent...

  3. Case Study Approaches for Implementing the 2007 NRC Report “Toxicity Testing in the 21st Century: A Vision and A Strategy”

    PubMed Central

    Andersen, Melvin E.; Clewell, Harvey J.; Carmichael, Paul L.; Boekelheide, Kim

    2013-01-01

    The 2007 report “Toxicity Testing in the 21st Century: A Vision and A Strategy” argued for a change in toxicity testing for environmental agents and discussed federal funding mechanisms that could be used to support this transformation within the USA. The new approach would test for in vitro perturbations of toxicity pathways using human cells with high throughput testing platforms. The NRC report proposed a deliberate timeline, spanning about 20 years, to implement a wholesale replacement of current in-life toxicity test approaches focused on apical responses with in vitro assays. One approach to accelerating implementation is to focus on well-studied prototype compounds with known toxicity pathway targets. Through a series of carefully executed case studies with four or five pathway prototypes, the various steps required for implementation of an in vitro toxicity pathway approach to risk assessment could be developed and refined. In this article, we discuss alternative approaches for implementation and also outline advantages of a case study approach and the manner in which the cases studies could be pursued using current methodologies. A case study approach would be complementary to recently proposed efforts to map the human toxome, while representing a significant extension toward more formal risk assessment compared to the profiling and prioritization approaches offered by programs such as the EPA’s ToxCast effort. PMID:21993955

  4. JOMAR: Joint Operations with Mobile Autonomous Robots

    DTIC Science & Technology

    2015-12-21

    AFRL-AFOSR-JP-TR-2015-0009 JOMAR: Joint Operations with Mobile Autonomous Robots Edwin Olson UNIVERSITY OF MICHIGAN Final Report 12/21/2015...SUBTITLE JOMAR: Joint Operations with Mobile Autonomous Robots 5a. CONTRACT NUMBER FA23861114024 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT Under this grant, we formulated and implemented a variety of novel algorithms that address core problems in multi- robot systems. These

  5. Ethics in American Health 2: An Ethical Framework for Health System Reform

    PubMed Central

    2008-01-01

    I argue that an ethical vision resting on explicitly articulated values and norms is critical to ensuring comprehensive health reform. Reform requires a consensus on the public good transcending self-interest and narrow agendas and underpinning collective action for universal coverage. In what I call shared health governance, individuals, providers, and institutions all have essential roles in achieving health goals and work together to create a positive environment for health. This ethical paradigm provides (1) reasoned consensus through a joint scientific and deliberative approach to judge the value of a health care intervention; (2) a method for achieving consensus that differs from aggregate tools such as a strict majority vote; (3) combined technical and ethical rationality for collective choice; (4) a joint clinical and economic approach combining efficiency with equity, but with economic solutions following and complementing clinical progress; and (5) protection for disabled individuals from discrimination. PMID:18703448

  6. Ethics in American health 2: an ethical framework for health system reform.

    PubMed

    Ruger, Jennifer Prah

    2008-10-01

    I argue that an ethical vision resting on explicitly articulated values and norms is critical to ensuring comprehensive health reform. Reform requires a consensus on the public good transcending self-interest and narrow agendas and underpinning collective action for universal coverage. In what I call shared health governance, individuals, providers, and institutions all have essential roles in achieving health goals and work together to create a positive environment for health. This ethical paradigm provides (1) reasoned consensus through a joint scientific and deliberative approach to judge the value of a health care intervention; (2) a method for achieving consensus that differs from aggregate tools such as a strict majority vote; (3) combined technical and ethical rationality for collective choice; (4) a joint clinical and economic approach combining efficiency with equity, but with economic solutions following and complementing clinical progress; and (5) protection for disabled individuals from discrimination.

  7. Can Exceptional, Visually Impaired Graduate Students, Educationally Funded by their use of Initially Profit-free Franchised Naturoptics, be Recruited to Proposed Native American Universities, and their Mentor Partners with Joint-degree Agreements?

    NASA Astrophysics Data System (ADS)

    Ferreira, Nadja; McLeod, David; McLeod, Roger

    2006-10-01

    Naturoptic Vision Improvement Methods developed and first propagated in the Americas can be transferred to other locales, particularly to Germany, Austria, and German-speaking areas of Switzerland, and to British (or former) Commonwealth areas, France, Greece, Russia, and diverse areas of Africa and Asia, particularly Japan. The method will attempt to mimic any successful transplants already in progress, or in the planning stages. It will consist primarily in recruiting visually impaired students who have finished their undergraduate work, and who are outstanding enough to be admitted into an appropriate university of their choice. Joint-degree linkages with universities in mentoring agreements with any potential universities, naturopathic or otherwise, are among our favorites. Potential faculty for proposed universities will have longer term use of an appropriate franchise in some profit- free franchisor agreements.

  8. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and themore » nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.« less

  9. High-precision shape representation using a neuromorphic vision sensor with synchronous address-event communication interface

    NASA Astrophysics Data System (ADS)

    Belbachir, A. N.; Hofstätter, M.; Litzenberger, M.; Schön, P.

    2009-10-01

    A synchronous communication interface for neuromorphic temporal contrast vision sensors is described and evaluated in this paper. This interface has been designed for ultra high-speed synchronous arbitration of a temporal contrast image sensors pixels' data. Enabling high-precision timestamping, this system demonstrates its uniqueness for handling peak data rates and preserving the main advantage of the neuromorphic electronic systems, that is high and accurate temporal resolution. Based on a synchronous arbitration concept, the timestamping has a resolution of 100 ns. Both synchronous and (state-of-the-art) asynchronous arbiters have been implemented in a neuromorphic dual-line vision sensor chip in a standard 0.35 µm CMOS process. The performance analysis of both arbiters and the advantages of the synchronous arbitration over asynchronous arbitration in capturing high-speed objects are discussed in detail.

  10. Vision-based vehicle detection and tracking algorithm design

    NASA Astrophysics Data System (ADS)

    Hwang, Junyeon; Huh, Kunsoo; Lee, Donghwi

    2009-12-01

    The vision-based vehicle detection in front of an ego-vehicle is regarded as promising for driver assistance as well as for autonomous vehicle guidance. The feasibility of vehicle detection in a passenger car requires accurate and robust sensing performance. A multivehicle detection system based on stereo vision has been developed for better accuracy and robustness. This system utilizes morphological filter, feature detector, template matching, and epipolar constraint techniques in order to detect the corresponding pairs of vehicles. After the initial detection, the system executes the tracking algorithm for the vehicles. The proposed system can detect front vehicles such as the leading vehicle and side-lane vehicles. The position parameters of the vehicles located in front are obtained based on the detection information. The proposed vehicle detection system is implemented on a passenger car, and its performance is verified experimentally.

  11. Issues in Humanoid Audition and Sound Source Localization by Active Audition

    NASA Astrophysics Data System (ADS)

    Nakadai, Kazuhiro; Okuno, Hiroshi G.; Kitano, Hiroaki

    In this paper, we present an active audition system which is implemented on the humanoid robot "SIG the humanoid". The audition system for highly intelligent humanoids localizes sound sources and recognizes auditory events in the auditory scene. Active audition reported in this paper enables SIG to track sources by integrating audition, vision, and motor movements. Given the multiple sound sources in the auditory scene, SIG actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. However, such an active head movement inevitably creates motor noises.The system adaptively cancels motor noises using motor control signals and the cover acoustics. The experimental result demonstrates that active audition by integration of audition, vision, and motor control attains sound source tracking in variety of conditions.onditions.

  12. A reflective learning report about the implementation and impacts of Psychological First Aid (PFA) in Gaza.

    PubMed

    Schafer, Alison; Snider, Leslie; Sammour, Rania

    2016-01-01

    Psychological First Aid (PFA) is the recommended immediate psychosocial response during crises. As PFA is now widely implemented in crises worldwide, there are increasing calls to evaluate its effectiveness. World Vision used PFA as a fundamental component of their emergency response following the 2014 conflict in Gaza. Anecdotal reports from Gaza suggest a range of benefits for those who received PFA. Though not intending to undertake rigorous research, World Vision explored learnings about PFA in Gaza through Focus Group Discussions with PFA providers, Gazan women, men and children and a Key Informant Interview with a PFA trainer. The qualitative analyses aimed to determine if PFA helped individuals to feel safe, calm, connected to social supports, hopeful and efficacious - factors suggested by the disaster literature to promote coping and recovery (Hobfoll et al., 2007). Results show positive psychosocial benefits for children, women and men receiving PFA, confirming that PFA contributed to: safety, reduced distress, ability to engage in calming practices and to support each other, and a greater sense of control and hopefulness irrespective of their adverse circumstances. The data shows that PFA formed an important part of a continuum of care to meet psychosocial needs in Gaza and served as a gateway for addressing additional psychosocial support needs. A "whole-of-family" approach to PFA showed particularly strong impacts and strengthened relationships. Of note, the findings from World Vision's implementation of PFA in Gaza suggests that future PFA research go beyond a narrow focus on clinical outcomes, to a wider examination of psychosocial, familial and community-based outcomes.

  13. Thoughts turned into high-level commands: Proof-of-concept study of a vision-guided robot arm driven by functional MRI (fMRI) signals.

    PubMed

    Minati, Ludovico; Nigri, Anna; Rosazza, Cristina; Bruzzone, Maria Grazia

    2012-06-01

    Previous studies have demonstrated the possibility of using functional MRI to control a robot arm through a brain-machine interface by directly coupling haemodynamic activity in the sensory-motor cortex to the position of two axes. Here, we extend this work by implementing interaction at a more abstract level, whereby imagined actions deliver structured commands to a robot arm guided by a machine vision system. Rather than extracting signals from a small number of pre-selected regions, the proposed system adaptively determines at individual level how to map representative brain areas to the input nodes of a classifier network. In this initial study, a median action recognition accuracy of 90% was attained on five volunteers performing a game consisting of collecting randomly positioned coloured pawns and placing them into cups. The "pawn" and "cup" instructions were imparted through four mental imaginery tasks, linked to robot arm actions by a state machine. With the current implementation in MatLab language the median action recognition time was 24.3s and the robot execution time was 17.7s. We demonstrate the notion of combining haemodynamic brain-machine interfacing with computer vision to implement interaction at the level of high-level commands rather than individual movements, which may find application in future fMRI approaches relevant to brain-lesioned patients, and provide source code supporting further work on larger command sets and real-time processing. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Novel techniques for data decomposition and load balancing for parallel processing of vision systems: Implementation and evaluation using a motion estimation system

    NASA Technical Reports Server (NTRS)

    Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.

    1989-01-01

    Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.

  15. Building a vision for the future: strategic planning in a shared governance nursing organization.

    PubMed

    Baker, C; Beglinger, J E; Bowles, K; Brandt, C; Brennan, K M; Engelbaugh, S; Hallock, T; LaHam, M

    2000-06-01

    Today's health care delivery environment is marked by extreme turbulence and ever-increasing complexity. Now, more than ever, an organization's strategic plan must do more than outline a business plan. Rather, the strategic plan is a fundamental tool for building and sustaining an organizational vision for the future. The strong, dynamic strategic plan (1) represents a long-range vision for improving organizational performance, (2) provides a model for planning and implementing structures and processes for the management of outcomes, (3) reflects and shapes the organizational culture and customer focus, (4) provides decision support for difficult operational choices made day to day, and (5) integrates and aligns the work of the organization. This article describes the development, implementation, and evaluation of a methodology for strategic planning within a shared governance nursing organization. Built upon the strategic plan of the hospital, the process undertaken by the nursing organization reflects the following commitments: (1) to develop a strategic plan that is meaningful and part of daily work life at all levels of the nursing organization, (2) to make the plan practical and realistic through incremental building, (3) to locate and articulate accountability for each step, and (4) to build in a process for checking progress toward goal achievement and readjusting the plan as necessary.

  16. Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.

    2005-01-01

    NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.

  17. Local spatio-temporal analysis in vision systems

    NASA Astrophysics Data System (ADS)

    Geisler, Wilson S.; Bovik, Alan; Cormack, Lawrence; Ghosh, Joydeep; Gildeen, David

    1994-07-01

    The aims of this project are the following: (1) develop a physiologically and psychophysically based model of low-level human visual processing (a key component of which are local frequency coding mechanisms); (2) develop image models and image-processing methods based upon local frequency coding; (3) develop algorithms for performing certain complex visual tasks based upon local frequency representations, (4) develop models of human performance in certain complex tasks based upon our understanding of low-level processing; and (5) develop a computational testbed for implementing, evaluating and visualizing the proposed models and algorithms, using a massively parallel computer. Progress has been substantial on all aims. The highlights include the following: (1) completion of a number of psychophysical and physiological experiments revealing new, systematic and exciting properties of the primate (human and monkey) visual system; (2) further development of image models that can accurately represent the local frequency structure in complex images; (3) near completion in the construction of the Texas Active Vision Testbed; (4) development and testing of several new computer vision algorithms dealing with shape-from-texture, shape-from-stereo, and depth-from-focus; (5) implementation and evaluation of several new models of human visual performance; and (6) evaluation, purchase and installation of a MasPar parallel computer.

  18. The software for automatic creation of the formal grammars used by speech recognition, computer vision, editable text conversion systems, and some new functions

    NASA Astrophysics Data System (ADS)

    Kardava, Irakli; Tadyszak, Krzysztof; Gulua, Nana; Jurga, Stefan

    2017-02-01

    For more flexibility of environmental perception by artificial intelligence it is needed to exist the supporting software modules, which will be able to automate the creation of specific language syntax and to make a further analysis for relevant decisions based on semantic functions. According of our proposed approach, of which implementation it is possible to create the couples of formal rules of given sentences (in case of natural languages) or statements (in case of special languages) by helping of computer vision, speech recognition or editable text conversion system for further automatic improvement. In other words, we have developed an approach, by which it can be achieved to significantly improve the training process automation of artificial intelligence, which as a result will give us a higher level of self-developing skills independently from us (from users). At the base of our approach we have developed a software demo version, which includes the algorithm and software code for the entire above mentioned component's implementation (computer vision, speech recognition and editable text conversion system). The program has the ability to work in a multi - stream mode and simultaneously create a syntax based on receiving information from several sources.

  19. Joint implementation: Biodiversity and greenhouse gas offsets

    NASA Astrophysics Data System (ADS)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  20. A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee and Ankle Torques

    PubMed Central

    Sánchez, Natalia; Acosta, Ana Maria; Stienen, Arno H.A.

    2015-01-01

    Characterization of the joint torque coupling strategies used in the lower extremity to generate maximal and submaximal levels of torque at either the hip, knee or ankle is lacking. Currently, there are no available isometric devices that quantify all concurrent joint torques in the hip, knee and ankle of a single leg during maximum voluntary torque generation. Thus, joint-torque coupling strategies in the hip, knee and concurrent torques at ankle and/or coupling patterns at the hip and knee driven by the ankle have yet to be quantified. This manuscript describes the design, implementation and validation of a multiple degree of freedom, lower extremity isometric device (the MultiLEIT) that accurately quantifies simultaneous torques at the hip, knee and ankle. The system was mechanically validated and then implemented with two healthy control individuals and two post-stroke individuals to test usability and patient acceptance. Data indicated different joint torque coupling strategies used by both healthy individuals. In contrast, data showed the same torque coupling patterns in both post-stroke individuals, comparable to those described in the clinic. Successful implementation of the MultiLEIT can contribute to the understanding of the underlying mechanisms responsible for abnormal movement patterns and aid in the design of therapeutic interventions. PMID:25163064

  1. A universal six-joint robot controller

    NASA Technical Reports Server (NTRS)

    Bihn, D. G.; Hsia, T. C.

    1987-01-01

    A general purpose six-axis robotic manipulator controller was designed and implemented to serve as a research tool for the investigation of the practical and theoretical aspects of various control strategies in robotics. A 80286-based Intel System 310 running the Xenix operating servo software as well as the higher level software (e.g., kinematics and path planning) were employed. A Multibus compatible interface board was designed and constructed to handle I/O signals from the robot manipulator's joint motors. From the design point of view, the universal controller is capable of driving robot manipulators equipped with D.C. joint motors and position optical encoders. To test its functionality, the controller is connected to the joint motor D.C. power amplifier of a PUMA 560 arm bypassing completely the manufacturer-supplied Unimation controller. A controller algorithm consisting of local PD control laws was written and installed into the Xenix operating system. Additional software drivers were implemented to allow application programs access to the interface board. All software was written in the C language.

  2. Implementation of a stereofluoroscopic system

    NASA Technical Reports Server (NTRS)

    Rivers, D. B.

    1976-01-01

    Clinical applications of a 3-D video imaging technique developed by NASA for observation and control of remote manipulators are discussed. Incorporation of this technique in a stereo fluoroscopic system provides reduced radiation dosage and greater vision and mobility of the user.

  3. Ten Tips for Leadership.

    ERIC Educational Resources Information Center

    Howe, Eleanor B.

    2001-01-01

    Discusses ten attributes of leadership and offers suggestions for school librarians to implement them. Highlights include communicating vision and ideas; ethical values and integrity; self-awareness and self-knowledge; context; cooperation; diverse skills and flexibility; organizational development; personal growth; and taking action. (LRW)

  4. National Centers for Environmental Prediction

    Science.gov Websites

    / VISION | About EMC EMC > Mesoscale Modeling > PEOPLE Home Mission Models R & D Collaborators Documentation Change Log People Calendar References Verification/Diagnostics Tropical & Extratropical Cyclone Tracks & Verification Implementation Info FAQ Disclaimer More Info MESOSCALE MODELING PEOPLE

  5. Metropolitan centers : evaluating local implementation of regional plans and policies : final report

    DOT National Transportation Integrated Search

    2017-03-01

    The Denver and Salt Lake City Metropolitan Planning Organizations (MPOs) have embarked upon regional visioning strategies that promote : development around higher density, mixed use centers with current or future access to transit. This study examine...

  6. Three-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Kim, Moon S.

    2006-05-01

    A three-color mixing application for food safety inspection is presented. It is shown that the chromaticness of the visual signal resulting from the three-color mixing achieved through our device is directly related to the three-band ratio of light intensity at three selected wavebands. An optical visual device using three-color mixing to implement the three-band ratio criterion is presented. Inspection through human vision assisted by an optical device that implements the three-band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical three-color mixing technique are given for the inspection of chicken carcasses with various diseases and for apples with fecal contamination. With proper selection of the three narrow wavebands, discrimination by chromaticness that has a direct relation with the three-band ratio can work very well. In particular, compared with the previously presented two-color mixing application, the conditions of chicken carcasses were more easily identified using the three-color mixing application. The novel three-color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.

  7. Study of high-definition and stereoscopic head-aimed vision for improved teleoperation of an unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Tyczka, Dale R.; Wright, Robert; Janiszewski, Brian; Chatten, Martha Jane; Bowen, Thomas A.; Skibba, Brian

    2012-06-01

    Nearly all explosive ordnance disposal robots in use today employ monoscopic standard-definition video cameras to relay live imagery from the robot to the operator. With this approach, operators must rely on shadows and other monoscopic depth cues in order to judge distances and object depths. Alternatively, they can contact an object with the robot's manipulator to determine its position, but that approach carries with it the risk of detonation from unintentionally disturbing the target or nearby objects. We recently completed a study in which high-definition (HD) and stereoscopic video cameras were used in addition to conventional standard-definition (SD) cameras in order to determine if higher resolutions and/or stereoscopic depth cues improve operators' overall performance of various unmanned ground vehicle (UGV) tasks. We also studied the effect that the different vision modes had on operator comfort. A total of six different head-aimed vision modes were used including normal-separation HD stereo, SD stereo, "micro" (reduced separation) SD stereo, HD mono, and SD mono (two types). In general, the study results support the expectation that higher resolution and stereoscopic vision aid UGV teleoperation, but the degree of improvement was found to depend on the specific task being performed; certain tasks derived notably more benefit from improved depth perception than others. This effort was sponsored by the Joint Ground Robotics Enterprise under Robotics Technology Consortium Agreement #69-200902 T01. Technical management was provided by the U.S. Air Force Research Laboratory's Robotics Research and Development Group at Tyndall AFB, Florida.

  8. A NASA/RAE cooperation in the development of a real-time knowledge-based autopilot

    NASA Technical Reports Server (NTRS)

    Daysh, Colin; Corbin, Malcolm; Butler, Geoff; Duke, Eugene L.; Belle, Steven D.; Brumbaugh, Randal W.

    1991-01-01

    As part of a US/UK cooperative aeronautical research program, a joint activity between the NASA Dryden Flight Research Facility and the Royal Aerospace Establishment on knowledge-based systems was established. This joint activity is concerned with tools and techniques for the implementation and validation of real-time knowledge-based systems. The proposed next stage of this research is described, in which some of the problems of implementing and validating a knowledge-based autopilot for a generic high-performance aircraft are investigated.

  9. System of technical vision for autonomous unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Bondarchuk, A. S.

    2018-05-01

    This paper is devoted to the implementation of image recognition algorithm using the LabVIEW software. The created virtual instrument is designed to detect the objects on the frames from the camera mounted on the UAV. The trained classifier is invariant to changes in rotation, as well as to small changes in the camera's viewing angle. Finding objects in the image using particle analysis, allows you to classify regions of different sizes. This method allows the system of technical vision to more accurately determine the location of the objects of interest and their movement relative to the camera.

  10. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  11. Three-dimensional displays and stereo vision

    PubMed Central

    Westheimer, Gerald

    2011-01-01

    Procedures for three-dimensional image reconstruction that are based on the optical and neural apparatus of human stereoscopic vision have to be designed to work in conjunction with it. The principal methods of implementing stereo displays are described. Properties of the human visual system are outlined as they relate to depth discrimination capabilities and achieving optimal performance in stereo tasks. The concept of depth rendition is introduced to define the change in the parameters of three-dimensional configurations for cases in which the physical disposition of the stereo camera with respect to the viewed object differs from that of the observer's eyes. PMID:21490023

  12. Active vision in satellite scene analysis

    NASA Technical Reports Server (NTRS)

    Naillon, Martine

    1994-01-01

    In earth observation or planetary exploration it is necessary to have more and, more autonomous systems, able to adapt to unpredictable situations. This imposes the use, in artificial systems, of new concepts in cognition, based on the fact that perception should not be separated from recognition and decision making levels. This means that low level signal processing (perception level) should interact with symbolic and high level processing (decision level). This paper is going to describe the new concept of active vision, implemented in Distributed Artificial Intelligence by Dassault Aviation following a 'structuralist' principle. An application to spatial image interpretation is given, oriented toward flexible robotics.

  13. A greater voice for academic health sciences libraries: the Association of Academic Health Sciences Libraries' vision

    PubMed Central

    Bunting, Alison

    2003-01-01

    The founders of the Association of Academic Health Sciences Libraries (AAHSL) envisioned the development of a professional organization that would provide a greater voice for academic health sciences libraries, facilitate cooperation and communication with the Association of American Medical Colleges, and create a forum for identifying problems and solutions that are common to academic health sciences libraries. This article focuses on the fulfillment of the “greater voice” vision by describing action and leadership by AAHSL and its members on issues that directly influenced the role of academic health sciences libraries. These include AAHSL's participation in the work that led to the publication of the landmark report, Academic Information in the Academic Health Sciences Center: Roles for the Library in Information Management; its contributions to the recommendations of the Physicians for the Twenty-first Century: The GPEP Report; and the joint publication with the Medical Library Association of Challenge to Action: Planning and Evaluation Guidelines for Academic Health Sciences Libraries. PMID:12883583

  14. A Developmental Approach to Machine Learning?

    PubMed Central

    Smith, Linda B.; Slone, Lauren K.

    2017-01-01

    Visual learning depends on both the algorithms and the training material. This essay considers the natural statistics of infant- and toddler-egocentric vision. These natural training sets for human visual object recognition are very different from the training data fed into machine vision systems. Rather than equal experiences with all kinds of things, toddlers experience extremely skewed distributions with many repeated occurrences of a very few things. And though highly variable when considered as a whole, individual views of things are experienced in a specific order – with slow, smooth visual changes moment-to-moment, and developmentally ordered transitions in scene content. We propose that the skewed, ordered, biased visual experiences of infants and toddlers are the training data that allow human learners to develop a way to recognize everything, both the pervasively present entities and the rarely encountered ones. The joint consideration of real-world statistics for learning by researchers of human and machine learning seems likely to bring advances in both disciplines. PMID:29259573

  15. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  16. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision

    PubMed Central

    Solanki, Narendra; Rien, Diana; Jaciuch, David; Dongre, Sidhartha Anil; Blanchard, Florence; de Polavieja, Gonzalo G; Hardie, Roger C; Takalo, Jouni

    2017-01-01

    Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here we demonstrate that Drosophila see the world far better than predicted from the classic theories. By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects in space-time, enabling hyperacute vision, and explain how such microsaccadic information sampling exceeds the compound eyes’ optical limits. These discoveries elucidate how acuity depends upon photoreceptor function and eye movements. PMID:28870284

  17. Forging partnerships between optometrists and ergonomists to improve visual comfort and productivity in the workplace.

    PubMed

    Long, Jennifer

    2014-01-01

    Ergonomists and optometrists often have mutual clients/patients with complex visual needs in the workplace but communication between the professionals is usually indirect through the client/patient. This paper describes a joint professional development meeting between optometrists and ergonomists in Canberra, Australia, which included a discussion to explore how to improve communication between the two professions. Optometrists and ergonomists reported they would prefer more information before conducting assessments and providing advice. Vision screening forms commonly in use for computer workers were viewed as inadequate to meet these needs. Communication between the two professions was hampered by absence of contact details of the optometrist/ergonomist, perceptions that the other profession is too busy to talk, privacy considerations in sharing information and funding issues for shared care arrangements. There are opportunities for increasing awareness of good vision in workplaces. Communication between optometrists and ergonomists can be improved by developing information-sharing documents relevant to modern workplaces.

  18. Use of Virtual Mission Operations Center Technology to Achieve JPDO's Virtual Tower Vision

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.

    2006-01-01

    The Joint Program Development Office has proposed that the Next Generation Air Transportation System (NGATS) consolidate control centers. NGATS would be managed from a few strategically located facilities with virtual towers and TRACONS. This consolidation is about combining the delivery locations for these services not about decreasing service. By consolidating these locations, cost savings in the order of $500 million have been projected. Evolving to spaced-based communication, navigation, and surveillance offers the opportunity to reduce or eliminate much of the ground-based infrastructure cost. Dynamically adjusted airspace offers the opportunity to reduce the number of sectors and boundary inconsistencies; eliminate or reduce "handoffs;" and eliminate the distinction between Towers, TRACONS, and Enroute Centers. To realize a consolidation vision for air traffic management there must be investment in networking. One technology that holds great potential is the use of Virtual Mission Operations Centers to provide secure, automated, intelligent management of the NGATS. This paper provides a conceptual framework for incorporating VMOC into the NGATS.

  19. Joint Common Architecture Demonstration (JCA Demo) Final Report

    DTIC Science & Technology

    2016-07-28

    approach for implementing open systems [16], formerly known as the Modular Open Systems Approach (MOSA). OSA is a business and technical strategy to... TECHNICAL REPORT RDMR-AD-16-01 JOINT COMMON ARCHITECTURE DEMONSTRATION (JCA DEMO) FINAL REPORT Scott A. Wigginton... Modular Avionics .......................................................................... 5 E. Model-Based Engineering

  20. 32 CFR 199.1 - General provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., management control and coordination as required for CHAMPUS, and to develop, issue, and maintain regulations..., to consult with the Secretary of Defense or a designee and to approve and issue joint regulations... an issue joint regulations implementing 10 U.S.C., chapter 55. (iv) Office of CHAMPUS (OCHAMPUS). By...

  1. 32 CFR 199.1 - General provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., management control and coordination as required for CHAMPUS, and to develop, issue, and maintain regulations..., to consult with the Secretary of Defense or a designee and to approve and issue joint regulations... an issue joint regulations implementing 10 U.S.C., chapter 55. (iv) Office of CHAMPUS (OCHAMPUS). By...

  2. 32 CFR 199.1 - General provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., management control and coordination as required for CHAMPUS, and to develop, issue, and maintain regulations..., to consult with the Secretary of Defense or a designee and to approve and issue joint regulations... an issue joint regulations implementing 10 U.S.C., chapter 55. (iv) Office of CHAMPUS (OCHAMPUS). By...

  3. Raiders of the Lost Art -- Recovering and Implementing the Intellectual Lineage of Campaign Planning for 21st Century Joint Planning

    DTIC Science & Technology

    2008-10-30

    American billionaire and financier Warren Buffett , “is the enemy of good thinking.”42 And there is “bad terminology” spilling from the pages of JP...be productive and become a meaningless catch-all word? 42 Warren Buffett , Berkshire Hathaway, 2001...Harrisburg, PA: The Telegraph Press (1940). Buffett , Warren . Berkshire Hathaway, 2001 Annual Report. Chairman of the Joint Chiefs of Staff. Joint

  4. Present and future of vision systems technologies in commercial flight operations

    NASA Astrophysics Data System (ADS)

    Ward, Jim

    2016-05-01

    The development of systems to enable pilots of all types of aircraft to see through fog, clouds, and sandstorms and land in low visibility has been widely discussed and researched across aviation. For military applications, the goal has been to operate in a Degraded Visual Environment (DVE), using sensors to enable flight crews to see and operate without concern to weather that limits human visibility. These military DVE goals are mainly oriented to the off-field landing environment. For commercial aviation, the Federal Aviation Agency (FAA) implemented operational regulations in 2004 that allow the flight crew to see the runway environment using an Enhanced Flight Vision Systems (EFVS) and continue the approach below the normal landing decision height. The FAA is expanding the current use and economic benefit of EFVS technology and will soon permit landing without any natural vision using real-time weather-penetrating sensors. The operational goals of both of these efforts, DVE and EFVS, have been the stimulus for development of new sensors and vision displays to create the modern flight deck.

  5. A robust embedded vision system feasible white balance algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Yu, Feihong

    2018-01-01

    White balance is a very important part of the color image processing pipeline. In order to meet the need of efficiency and accuracy in embedded machine vision processing system, an efficient and robust white balance algorithm combining several classical ones is proposed. The proposed algorithm mainly has three parts. Firstly, in order to guarantee higher efficiency, an initial parameter calculated from the statistics of R, G and B components from raw data is used to initialize the following iterative method. After that, the bilinear interpolation algorithm is utilized to implement demosaicing procedure. Finally, an adaptive step adjustable scheme is introduced to ensure the controllability and robustness of the algorithm. In order to verify the proposed algorithm's performance on embedded vision system, a smart camera based on IMX6 DualLite, IMX291 and XC6130 is designed. Extensive experiments on a large amount of images under different color temperatures and exposure conditions illustrate that the proposed white balance algorithm avoids color deviation problem effectively, achieves a good balance between efficiency and quality, and is suitable for embedded machine vision processing system.

  6. Image processing and pattern recognition with CVIPtools MATLAB toolbox: automatic creation of masks for veterinary thermographic images

    NASA Astrophysics Data System (ADS)

    Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph

    2016-09-01

    CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.

  7. KSC-04PD-2633

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. NASA Deputy Administrator Fred Gregory updates attendees of the One NASA Leader-Led Workshop about the Agencys Transformation and implementation strategies. The workshop included senior leadership in the Agency. Other speakers explained Kennedys role in the Vision for Space Exploration.

  8. Florida Department of Transportation peer exchange, September 24 - 27, 2007.

    DOT National Transportation Integrated Search

    2007-09-01

    The theme of this Peer Exchange was to identify research opportunities through visioning. : FDOT implemented a new process for identifying research needs which called for a statewide : meeting of transportation experts from both FDOT and the state un...

  9. Topology of Functional Connectivity and Hub Dynamics in the Beta Band As Temporal Prior for Natural Vision in the Human Brain.

    PubMed

    Betti, Viviana; Corbetta, Maurizio; de Pasquale, Francesco; Wens, Vincent; Della Penna, Stefania

    2018-04-11

    Networks hubs represent points of convergence for the integration of information across many different nodes and systems. Although a great deal is known on the topology of hub regions in the human brain, little is known about their temporal dynamics. Here, we examine the static and dynamic centrality of hub regions when measured in the absence of a task (rest) or during the observation of natural or synthetic visual stimuli. We used Magnetoencephalography (MEG) in humans (both sexes) to measure static and transient regional and network-level interaction in α- and β-band limited power (BLP) in three conditions: visual fixation (rest), viewing of movie clips (natural vision), and time-scrambled versions of the same clips (scrambled vision). Compared with rest, we observed in both movie conditions a robust decrement of α-BLP connectivity. Moreover, both movie conditions caused a significant reorganization of connections in the α band, especially between networks. In contrast, β-BLP connectivity was remarkably similar between rest and natural vision. Not only the topology did not change, but the joint dynamics of hubs in a core network during natural vision was predicted by similar fluctuations in the resting state. We interpret these findings by suggesting that slow-varying fluctuations of integration occurring in higher-order regions in the β band may be a mechanism to anticipate and predict slow-varying temporal patterns of the visual environment. SIGNIFICANCE STATEMENT A fundamental question in neuroscience concerns the function of spontaneous brain connectivity. Here, we tested the hypothesis that topology of intrinsic brain connectivity and its dynamics might predict those observed during natural vision. Using MEG, we tracked the static and time-varying brain functional connectivity when observers were either fixating or watching different movie clips. The spatial distribution of connections and the dynamics of centrality of a set of regions were similar during rest and movie in the β band, but not in the α band. These results support the hypothesis that the intrinsic β-rhythm integration occurs with a similar temporal structure during natural vision, possibly providing advanced information about incoming stimuli. Copyright © 2018 the authors 0270-6474/18/383858-14$15.00/0.

  10. 10 CFR 1021.216 - Procurement, financial assistance, and joint ventures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a decision on proposals and will include: (1) A brief discussion of the purpose of the procurement... 10 Energy 4 2010-01-01 2010-01-01 false Procurement, financial assistance, and joint ventures... POLICY ACT IMPLEMENTING PROCEDURES DOE Decisionmaking § 1021.216 Procurement, financial assistance, and...

  11. Bayesian and Frequentist Methods for Estimating Joint Uncertainty of Freundlich Adsorption Isotherm Fitting Parameters

    EPA Science Inventory

    In this paper, we present methods for estimating Freundlich isotherm fitting parameters (K and N) and their joint uncertainty, which have been implemented into the freeware software platforms R and WinBUGS. These estimates were determined by both Frequentist and Bayesian analyse...

  12. Chondromalacia as pathological finding in arthroscopy of the temporomandibular joint: A retrospective study.

    PubMed

    Martin-Granizo, Rafael; Correa-Muñoz, Diana Carolina

    2018-01-01

    The objective of this study was to describe the arthroscopic findings of chondromalacia and its relation with the internal derangement of the temporomandibular joint (TMJ). A total of 161 patients (299 TMJs) who underwent arthroscopy were included in the study. The TMJs were evaluated objectively under arthroscopic vision, and 4 groups of patients were established according to the degree of involvement, degree I, II, III and IV. Statistical analyses were conducted using logistic regression models (P < 0.05). It was observed that 95 patients (59%) had no sign of chondromalacia and 66 (41%) in 88 joints exhibited some degree of chondromalacia (44 patients unilaterally and 22 bilaterally). Of the 88 joints with chondromalacia, 14 (15.9%) had chondromalacia degree I, 12 (13.6%) chondromalacia degree II, 20 (22.7%) chondromalacia degree III and 42 (47.7%) chondromalacia degree IV. The chondromalacia was more significantly found in patients with ADDwR and discal perforation (P < 0.05), even as a common finding in patients without any internal deragement. Chondromalacia degree IV was a significant finding in cases of ADDwoR (P = 0.000619). Chondromalacia of the TMJ is a common finding in patients with internal derangement even at the early stages. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion.

    PubMed

    Guo, Lan-Yuen; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2003-02-01

    To investigate the characteristics of mechanical energy and power flow of the upper limb during wheelchair propulsion. Mechanical energy and power flow of segments were calculated. Very few studies have taken into account the mechanical energy and power flow of the musculoskeletal system during wheelchair propulsion. Mechanical energy and power flow have proven to be useful tools for investigating locomotion disorders during human gait. Twelve healthy male adults (mean age, 23.5 years) were recruited for this study. Three-dimensional kinematic and kinetic data of the upper extremity were collected during wheelchair propulsion using a Hi-Res Expert Vision system and an instrumented wheel, respectively. During the initiation of the propulsion phase, joint power is generated in the upper arm or is transferred from the trunk downward to the forearm and hand to propel the wheel forward. During terminal propulsion, joint power is transferred upward to the trunk from the forearm and upper arm. The rate of change of mechanical energy and power flow for the forearm and hand have similar patterns, but the upper arm values differ. Joint power plays an important role in energy transfer as well as the energy generated and absorbed by muscles spanning the joints during wheelchair propulsion. Energy and power flow information during wheelchair propulsion allows us to gain a better understanding of the coordination of the movement by the musculoskeletal system.

  14. Tunnel vision information: a paradox of ethics, economics, politics and science.

    PubMed

    Bilton, D; Stephens, D; Gorman, F

    1998-09-01

    Improvement in vision with spinal manipulation was first observed in the early 1970s. Reports of the phenomenon appeared in the 1980s in the popular press and at scientific meetings, but it was not until the mid-1990s that general discussion of the potential value of this knowledge occurred. Considering the far-reaching implications of the possible ability to improve brain function by spinal manipulation, the delay in consideration and implementation of this concept is a paradox in general terms and a total mystery in the case of the chiropractic profession. To provide explanations for the delay in scientific assessment of the discovery that vision improves, in appropriate patients, when the spine is manipulated and to discuss the implications of this finding. This discovery is now called the "tunnel vision information." A schema of pathological hierarchy is depicted in which the level of intervention of spinal manipulation outranks other forms of treatment. The significance of this precedence is portrayed. Possible reasons for the failure to address this hierarchy in light of the tunnel vision information are discussed with reference to established protocols, medical politics, the presentation of the data, the failure of scientific editorship and the illogical aspects of the illness itself. In the future, the delay from the initial observation of the tunnel vision discovery to its free discussion in scientific literature may seem incongruous, particularly if the health benefits which it augurs are realized.

  15. Advancement and Implementation of Integrated Computational Materials Engineering (ICME) for Aerospace Applications

    DTIC Science & Technology

    2010-03-01

    of sub-routines Thermal history • Abaqus FEM engine mature applied within ABAQUS Residual stress & Distortion • Unknown maturity for HTC • Focused...investment. The committee’s ICME vision is comprehensive, expansive , and involves the entire materials community. The scope of this white paper is...Software • Continuum FEM for fluid flow, heat Mold Fill • FEM implementation mature flow and stress analysis Thermal & mushy zone history • Needs

  16. Development of Vision Based Multiview Gait Recognition System with MMUGait Database

    PubMed Central

    Ng, Hu; Tan, Wooi-Haw; Tong, Hau-Lee

    2014-01-01

    This paper describes the acquisition setup and development of a new gait database, MMUGait. This database consists of 82 subjects walking under normal condition and 19 subjects walking with 11 covariate factors, which were captured under two views. This paper also proposes a multiview model-based gait recognition system with joint detection approach that performs well under different walking trajectories and covariate factors, which include self-occluded or external occluded silhouettes. In the proposed system, the process begins by enhancing the human silhouette to remove the artifacts. Next, the width and height of the body are obtained. Subsequently, the joint angular trajectories are determined once the body joints are automatically detected. Lastly, crotch height and step-size of the walking subject are determined. The extracted features are smoothened by Gaussian filter to eliminate the effect of outliers. The extracted features are normalized with linear scaling, which is followed by feature selection prior to the classification process. The classification experiments carried out on MMUGait database were benchmarked against the SOTON Small DB from University of Southampton. Results showed correct classification rate above 90% for all the databases. The proposed approach is found to outperform other approaches on SOTON Small DB in most cases. PMID:25143972

  17. Robust range estimation with a monocular camera for vision-based forward collision warning system.

    PubMed

    Park, Ki-Yeong; Hwang, Sun-Young

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments.

  18. Robust Range Estimation with a Monocular Camera for Vision-Based Forward Collision Warning System

    PubMed Central

    2014-01-01

    We propose a range estimation method for vision-based forward collision warning systems with a monocular camera. To solve the problem of variation of camera pitch angle due to vehicle motion and road inclination, the proposed method estimates virtual horizon from size and position of vehicles in captured image at run-time. The proposed method provides robust results even when road inclination varies continuously on hilly roads or lane markings are not seen on crowded roads. For experiments, a vision-based forward collision warning system has been implemented and the proposed method is evaluated with video clips recorded in highway and urban traffic environments. Virtual horizons estimated by the proposed method are compared with horizons manually identified, and estimated ranges are compared with measured ranges. Experimental results confirm that the proposed method provides robust results both in highway and in urban traffic environments. PMID:24558344

  19. Translating eHealth Visions from Strategy to Practice - A Benefit Management Approach.

    PubMed

    Villumsen, Sidsel; Nøhr, Christian; Faxvaag, Arild

    2018-01-01

    The municipalities and the Regional Health Authorities in Central Norway have been assigned a mandate to implement a shared electronic health record, Helseplattformen, reflecting the visions set out in the national eHealth white paper 'One Citizen - One Record'. This study identifies and describe anticipated benefit streams of clinical decision support in 'One Citizen - One Record' and the user requirement specification documents of Helseplattformen. This study found that the benefit stream of clinical decision support translates from the health policy visions stated in 'One Citizen - One Record' into Helseplattformen. However, business changes, although a critical element of achieving benefits, were not emphasised in either. This calls for the programme of Helseplattformen to pay careful attention to how the information system and information technology requirements must be accompanied by enabling changes as well as business changes in order to achieve the identified benefits of 'One Citizen - One Record' and Helseplattformen.

  20. Algorithms and architectures for robot vision

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.

    1990-01-01

    The scope of the current work is to develop practical sensing implementations for robots operating in complex, partially unstructured environments. A focus in this work is to develop object models and estimation techniques which are specific to requirements of robot locomotion, approach and avoidance, and grasp and manipulation. Such problems have to date received limited attention in either computer or human vision - in essence, asking not only how perception is in general modeled, but also what is the functional purpose of its underlying representations. As in the past, researchers are drawing on ideas from both the psychological and machine vision literature. Of particular interest is the development 3-D shape and motion estimates for complex objects when given only partial and uncertain information and when such information is incrementally accrued over time. Current studies consider the use of surface motion, contour, and texture information, with the longer range goal of developing a fused sensing strategy based on these sources and others.

Top