A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
Finite-difference model for 3-D flow in bays and estuaries
Smith, Peter E.; Larock, Bruce E.; ,
1993-01-01
This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.
Implicit finite difference methods on composite grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1987-01-01
Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1971-01-01
An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.
NASA Astrophysics Data System (ADS)
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
NASA Technical Reports Server (NTRS)
Li, Yong; Moorthi, S.; Bates, J. Ray; Suarez, Max J.
1994-01-01
High order horizontal diffusion of the form K Delta(exp 2m) is widely used in spectral models as a means of preventing energy accumulation at the shortest resolved scales. In the spectral context, an implicit formation of such diffusion is trivial to implement. The present note describes an efficient method of implementing implicit high order diffusion in global finite difference models. The method expresses the high order diffusion equation as a sequence of equations involving Delta(exp 2). The solution is obtained by combining fast Fourier transforms in longitude with a finite difference solver for the second order ordinary differential equation in latitude. The implicit diffusion routine is suitable for use in any finite difference global model that uses a regular latitude/longitude grid. The absence of a restriction on the timestep makes it particularly suitable for use in semi-Lagrangian models. The scale selectivity of the high order diffusion gives it an advantage over the uncentering method that has been used to control computational noise in two-time-level semi-Lagrangian models.
NASA Technical Reports Server (NTRS)
Garrett, L. B.; Smith, G. L.; Perkins, J. N.
1972-01-01
An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.
Woodward, Carol S.; Gardner, David J.; Evans, Katherine J.
2015-01-01
Efficient solutions of global climate models require effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a step size governed by accuracy of the processes of interest rather than by stability of the fastest time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton's method is applied to solve these systems. Each iteration of the Newton's method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but thismore » Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite difference approximation which may introduce inaccuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite difference approximations of these matrix-vector products for climate dynamics within the spectral element shallow water dynamical core of the Community Atmosphere Model.« less
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Smith, G. E.; Springer, G. S.; Rimon, Y.
1983-01-01
A method is presented for formulating the boundary conditions in implicit finite-difference form needed for obtaining solutions to the compressible Navier-Stokes equations by the Beam and Warming implicit factored method. The usefulness of the method was demonstrated (a) by establishing the boundary conditions applicable to the analysis of the flow inside an axisymmetric piston-cylinder configuration and (b) by calculating velocities and mass fractions inside the cylinder for different geometries and different operating conditions. Stability, selection of time step and grid sizes, and computer time requirements are discussed in reference to the piston-cylinder problem analyzed.
Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course
ERIC Educational Resources Information Center
Kull, Trent C.
2011-01-01
A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…
Semi-implicit finite difference methods for three-dimensional shallow water flow
Casulli, Vincenzo; Cheng, Ralph T.
1992-01-01
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.
Solidification of a binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.
NASA Technical Reports Server (NTRS)
1982-01-01
Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.
NASA Technical Reports Server (NTRS)
Harten, A.; Tal-Ezer, H.
1981-01-01
An implicit finite difference method of fourth order accuracy in space and time is introduced for the numerical solution of one-dimensional systems of hyperbolic conservation laws. The basic form of the method is a two-level scheme which is unconditionally stable and nondissipative. The scheme uses only three mesh points at level t and three mesh points at level t + delta t. The dissipative version of the basic method given is conditionally stable under the CFL (Courant-Friedrichs-Lewy) condition. This version is particularly useful for the numerical solution of problems with strong but nonstiff dynamic features, where the CFL restriction is reasonable on accuracy grounds. Numerical results are provided to illustrate properties of the proposed method.
NASA Astrophysics Data System (ADS)
Lai, Wencong; Khan, Abdul A.
2018-04-01
A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Technical Feasibility of Centrifugal Techniques for Evaluating Hazardous Waste Migration
1987-12-01
direct evaluation of the -influence of acceleration on soil moisture movement. A fully implicit finite difference solution scheme was used. The...using the finite difference scheme mentioned earlier. 2. The soil test apparatus for the centrifuge tests was designed and constructed. 110 3...npcr3 f~nJPX 115 S.. 0i U 4 I3 u cc/ U) C~j tC LL~~*- Lý u ’ uiu ’ 4-’ Uju x~j~r3np~~r~tj~jpU W3= 116 Finite Difference Model The finite difference
NASA Technical Reports Server (NTRS)
Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.
1991-01-01
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
NASA Technical Reports Server (NTRS)
Moorthi, Shrinivas; Higgins, R. W.
1993-01-01
An efficient, direct, second-order solver for the discrete solution of a class of two-dimensional separable elliptic equations on the sphere (which generally arise in implicit and semi-implicit atmospheric models) is presented. The method involves a Fourier transformation in longitude and a direct solution of the resulting coupled second-order finite-difference equations in latitude. The solver is made efficient by vectorizing over longitudinal wave-number and by using a vectorized fast Fourier transform routine. It is evaluated using a prescribed solution method and compared with a multigrid solver and the standard direct solver from FISHPAK.
Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Hathaway, A. W.
1978-01-01
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.
Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
Application of the implicit MacCormack scheme to the PNS equations
NASA Technical Reports Server (NTRS)
Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.
1983-01-01
The two-dimensional parabolized Navier-Stokes equations are solved using MacCormack's (1981) implicit finite-difference scheme. It is shown that this method for solving the parabolized Navier-Stokes equations does not require the inversion of block tridiagonal systems of algebraic equations and allows the original explicit scheme to be employed in those regions where implicit treatment is not needed. The finite-difference algorithm is discussed and the computational results for two laminar test cases are presented. Results obtained using this method for the case of a flat plate boundary layer are compared with those obtained using the conventional Beam-Warming scheme, as well as those obtained from a boundary layer code. The computed results for a more severe test of the method, the hypersonic flow past a 15 deg compression corner, are found to compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.
Analysis of composite ablators using massively parallel computation
NASA Technical Reports Server (NTRS)
Shia, David
1995-01-01
In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.
NASA Technical Reports Server (NTRS)
Harten, A.; Tal-Ezer, H.
1981-01-01
This paper presents a family of two-level five-point implicit schemes for the solution of one-dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are nondissipative and unconditionally stable. Special attention is given to the system of linear equations associated with these 4-4 implicit schemes. The regularity of this system is analyzed and efficiency of solution-algorithms is examined. A two-datum representation of these 4-4 implicit schemes brings about a compactification of the stencil to three mesh points at each time-level. This compact two-datum representation is particularly useful in deriving boundary treatments. Numerical results are presented to illustrate some properties of the proposed scheme.
NASA Technical Reports Server (NTRS)
Desideri, J. A.; Steger, J. L.; Tannehill, J. C.
1978-01-01
The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed.
Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods
NASA Astrophysics Data System (ADS)
Park, Brian T.; Petrosian, Vahe
1996-03-01
Stochastic wave-particle acceleration may be responsible for producing suprathermal particles in many astrophysical situations. The process can be described as a diffusion process through the Fokker-Planck equation. If the acceleration region is homogeneous and the scattering mean free path is much smaller than both the energy change mean free path and the size of the acceleration region, then the Fokker-Planck equation reduces to a simple form involving only the time and energy variables. in an earlier paper (Park & Petrosian 1995, hereafter Paper 1), we studied the analytic properties of the Fokker-Planck equation and found analytic solutions for some simple cases. In this paper, we study the numerical methods which must be used to solve more general forms of the equation. Two classes of numerical methods are finite difference methods and Monte Carlo simulations. We examine six finite difference methods, three fully implicit and three semi-implicit, and a stochastic simulation method which uses the exact correspondence between the Fokker-Planck equation and the it5 stochastic differential equation. As discussed in Paper I, Fokker-Planck equations derived under the above approximations are singular, causing problems with boundary conditions and numerical overflow and underflow. We evaluate each method using three sample equations to test its stability, accuracy, efficiency, and robustness for both time-dependent and steady state solutions. We conclude that the most robust finite difference method is the fully implicit Chang-Cooper method, with minor extensions to account for the escape and injection terms. Other methods suffer from stability and accuracy problems when dealing with some Fokker-Planck equations. The stochastic simulation method, although simple to implement, is susceptible to Poisson noise when insufficient test particles are used and is computationally very expensive compared to the finite difference method.
The assessment of nanofluid in a Von Karman flow with temperature relied viscosity
NASA Astrophysics Data System (ADS)
Tanveer, Anum; Salahuddin, T.; Khan, Mumtaz; Alshomrani, Ali Saleh; Malik, M. Y.
2018-06-01
This work endeavor to study the heat and mass transfer viscous nanofluid features in a Von Karman flow invoking the variable viscosity mechanism. Moreover, we have extended our study in view of heat generation and uniform suction effects. The flow triggering non-linear partial differential equations are inscribed in the non-dimensional form by manipulating suitable transformations. The resulting non-linear ordinary differential equations are solved numerically via implicit finite difference scheme in conjecture with the Newton's linearization scheme afterwards. The sought solutions are plotted graphically to present comparison between MATLAB routine bvp4c and implicit finite difference schemes. Impact of different parameters on the concentration/temperature/velocity profiles are highlighted. Further Nusselt number, skin friction and Sherwood number characteristics are discussed for better exposition.
Stability analysis of Eulerian-Lagrangian methods for the one-dimensional shallow-water equations
Casulli, V.; Cheng, R.T.
1990-01-01
In this paper stability and error analyses are discussed for some finite difference methods when applied to the one-dimensional shallow-water equations. Two finite difference formulations, which are based on a combined Eulerian-Lagrangian approach, are discussed. In the first part of this paper the results of numerical analyses for an explicit Eulerian-Lagrangian method (ELM) have shown that the method is unconditionally stable. This method, which is a generalized fixed grid method of characteristics, covers the Courant-Isaacson-Rees method as a special case. Some artificial viscosity is introduced by this scheme. However, because the method is unconditionally stable, the artificial viscosity can be brought under control either by reducing the spatial increment or by increasing the size of time step. The second part of the paper discusses a class of semi-implicit finite difference methods for the one-dimensional shallow-water equations. This method, when the Eulerian-Lagrangian approach is used for the convective terms, is also unconditionally stable and highly accurate for small space increments or large time steps. The semi-implicit methods seem to be more computationally efficient than the explicit ELM; at each time step a single tridiagonal system of linear equations is solved. The combined explicit and implicit ELM is best used in formulating a solution strategy for solving a network of interconnected channels. The explicit ELM is used at channel junctions for each time step. The semi-implicit method is then applied to the interior points in each channel segment. Following this solution strategy, the channel network problem can be reduced to a set of independent one-dimensional open-channel flow problems. Numerical results support properties given by the stability and error analyses. ?? 1990.
NASA Technical Reports Server (NTRS)
Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.
1978-01-01
Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.
A split finite element algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1979-01-01
An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.
Parallelized implicit propagators for the finite-difference Schrödinger equation
NASA Astrophysics Data System (ADS)
Parker, Jonathan; Taylor, K. T.
1995-08-01
We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.
NASA Astrophysics Data System (ADS)
Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman
2017-07-01
This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.
NASA Technical Reports Server (NTRS)
Rudy, D. H.; Morris, D. J.; Blanchard, D. K.; Cooke, C. H.; Rubin, S. G.
1975-01-01
The status of an investigation of four numerical techniques for the time-dependent compressible Navier-Stokes equations is presented. Results for free shear layer calculations in the Reynolds number range from 1000 to 81000 indicate that a sequential alternating-direction implicit (ADI) finite-difference procedure requires longer computing times to reach steady state than a low-storage hopscotch finite-difference procedure. A finite-element method with cubic approximating functions was found to require excessive computer storage and computation times. A fourth method, an alternating-direction cubic spline technique which is still being tested, is also described.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.
1995-01-01
This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.
GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules
Bertelshofer, Franziska; Sun, Liping; Greiner, Günther; Böckmann, Rainer A.
2015-01-01
Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and, in particular, also their interactions with each other. Additionally, knowledge about solution electrostatics may also guide the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson–Boltzmann equation (PBE). Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss–Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and, thus, needs to be carefully considered, e.g., in design studies on membrane proteins. PMID:26636074
Macías-Díaz, J E; Macías, Siegfried; Medina-Ramírez, I E
2013-12-01
In this manuscript, we present a computational model to approximate the solutions of a partial differential equation which describes the growth dynamics of microbial films. The numerical technique reported in this work is an explicit, nonlinear finite-difference methodology which is computationally implemented using Newton's method. Our scheme is compared numerically against an implicit, linear finite-difference discretization of the same partial differential equation, whose computer coding requires an implementation of the stabilized bi-conjugate gradient method. Our numerical results evince that the nonlinear approach results in a more efficient approximation to the solutions of the biofilm model considered, and demands less computer memory. Moreover, the positivity of initial profiles is preserved in the practice by the nonlinear scheme proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Formulation of the relativistic moment implicit particle-in-cell method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Koichi; Tronci, Cesare; Zuccaro, Gianluca
2007-04-15
A new formulation is presented for the implicit moment method applied to the time-dependent relativistic Vlasov-Maxwell system. The new approach is based on a specific formulation of the implicit moment method that allows us to retain the same formalism that is valid in the classical case despite the formidable complication introduced by the nonlinear nature of the relativistic equations of motion. To demonstrate the validity of the new formulation, an implicit finite difference algorithm is developed to solve the Maxwell's equations and equations of motion. A number of benchmark problems are run: two stream instability, ion acoustic wave damping, Weibelmore » instability, and Poynting flux acceleration. The numerical results are all in agreement with analytical solutions.« less
NASA Technical Reports Server (NTRS)
Yee, H. C.; Shinn, J. L.
1986-01-01
Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the soruce terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.
Jobson, Harvey E.; Keefer, Thomas N.
1979-01-01
A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. A linear, implicit finite-difference flow model was coupled with implicit, finite-difference transport and temperature models. Both the conservative and nonconservative forms of the transport equation were solved, and the difference in the predicted concentrations of dye were found to be insignificant. The temperature model, therefore, was based on the simpler nonconservative form of the transport equation. (Woodard-USGS)
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Lesoinne, Michel
1993-01-01
Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.
NASA Technical Reports Server (NTRS)
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-01-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
NASA Astrophysics Data System (ADS)
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-12-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi)
NASA Technical Reports Server (NTRS)
Warner, James E.; Bomarito, Geoffrey F.; Heber, Gerd; Hochhalter, Jacob D.
2016-01-01
Scalable Implementation of Finite Elements by NASA (ScIFEN) is a parallel finite element analysis code written in C++. ScIFEN is designed to provide scalable solutions to computational mechanics problems. It supports a variety of finite element types, nonlinear material models, and boundary conditions. This report provides an overview of ScIFEi (\\Sci-Fi"), the implicit solid mechanics driver within ScIFEN. A description of ScIFEi's capabilities is provided, including an overview of the tools and features that accompany the software as well as a description of the input and output le formats. Results from several problems are included, demonstrating the efficiency and scalability of ScIFEi by comparing to finite element analysis using a commercial code.
Viscous-shock-layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous-shock-layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially-symmetric flow fields. Solutions were obtained using an implicit finite-difference scheme and results are presented for hypersonic flow over spherically-blunted cone configurations at freestream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.
Viscous shock layer solutions for turbulent flow of radiating gas mixtures in chemical equilibrium
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations for hypersonic laminar and turbulent flows of radiating or nonradiating gas mixtures in chemical equilibrium are presented for two-dimensional and axially symmetric flow fields. Solutions are obtained using an implicit finite difference scheme and results are presented for hypersonic flow over spherically blunted cone configurations at free stream conditions representative of entry into the atmosphere of Venus. These data are compared with solutions obtained using other methods of analysis.
Numerical solution of a coupled pair of elliptic equations from solid state electronics
NASA Technical Reports Server (NTRS)
Phillips, T. N.
1983-01-01
Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-09-29
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
NASA Astrophysics Data System (ADS)
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model
Kipp, K.L.; Konikow, Leonard F.; Hornberger, G.Z.
1998-01-01
This report documents an extension to the U.S. Geological Survey MOC3D transport model that incorporates an implicit-in-time difference approximation for the dispersive transport equation, including source/sink terms. The original MOC3D transport model (Version 1) uses the method of characteristics to solve the transport equation on the basis of the velocity field. The original MOC3D solution algorithm incorporates particle tracking to represent advective processes and an explicit finite-difference formulation to calculate dispersive fluxes. The new implicit procedure eliminates several stability criteria required for the previous explicit formulation. This allows much larger transport time increments to be used in dispersion-dominated problems. The decoupling of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit extension, the MOC3D model is upgraded to Version 2. A description of the numerical method of the implicit dispersion calculation, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. Version 2 of MOC3D was evaluated for the same set of problems used for verification of Version 1. These test results indicate that the implicit calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the explicit calculation for transport problems that are characterized by a grid Peclet number less than about 1.0.
A time-spectral approach to numerical weather prediction
NASA Astrophysics Data System (ADS)
Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai
2018-05-01
Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.
Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.
2010-01-01
The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.
Adaptive implicit-explicit and parallel element-by-element iteration schemes
NASA Technical Reports Server (NTRS)
Tezduyar, T. E.; Liou, J.; Nguyen, T.; Poole, S.
1989-01-01
Adaptive implicit-explicit (AIE) and grouped element-by-element (GEBE) iteration schemes are presented for the finite element solution of large-scale problems in computational mechanics and physics. The AIE approach is based on the dynamic arrangement of the elements into differently treated groups. The GEBE procedure, which is a way of rewriting the EBE formulation to make its parallel processing potential and implementation more clear, is based on the static arrangement of the elements into groups with no inter-element coupling within each group. Various numerical tests performed demonstrate the savings in the CPU time and memory.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Cheng, R.T.; Casulli, V.; Gartner, J.W.
1993-01-01
A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.
Unsteady solute-transport simulation in streamflow using a finite-difference model
Land, Larry F.
1978-01-01
This report documents a rather simple, general purpose, one-dimensional, one-parameter, mass-transport model for field use. The model assumes a well-mixed conservative solute that may be coming from an unsteady source and is moving in unsteady streamflow. The quantity of solute being transported is in the units of concentration. Results are reported as such. An implicit finite-difference technique is used to solve the mass transport equation. It consists of creating a tridiagonal matrix and using the Thomas algorithm to solve the matrix for the unknown concentrations at the new time step. The computer program pesented is designed to compute the concentration of a water-quality constituent at any point and at any preselected time in a one-dimensional stream. The model is driven by the inflowing concentration of solute at the upstream boundary and is influenced by the solute entering the stream from tributaries and lateral ground-water inflow and from a source or sink. (Woodard-USGS)
A Numerical Model for Predicting Shoreline Changes.
1980-07-01
minimal shorelines for finite - difference scheme of time lAt (B) . . . 27 11 Transport function Q(ao) = cos ao sin za o for selected values of z . 28 12...generate the preceding examples was based on the use of implicit finite differences . Such schemes, whether implicit or ex- plicit (or both), are...10(A) shows an initially straight shoreline. In any finite - difference scheme, after one time increment At, the shoreline is bounded below by the solid
Two-level schemes for the advection equation
NASA Astrophysics Data System (ADS)
Vabishchevich, Petr N.
2018-06-01
The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.
ERIC Educational Resources Information Center
Mohanty, R. K.; Arora, Urvashi
2002-01-01
Three level-implicit finite difference methods of order four are discussed for the numerical solution of the mildly quasi-linear second-order hyperbolic equation A(x, t, u)u[subscript xx] + 2B(x, t, u)u[subscript xt] + C(x, t, u)u[subscript tt] = f(x, t, u, u[subscript x], u[subscript t]), 0 less than x less than 1, t greater than 0 subject to…
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Penalty methods for the numerical solution of American multi-asset option problems
NASA Astrophysics Data System (ADS)
Nielsen, Bjørn Fredrik; Skavhaug, Ola; Tveito, Aslak
2008-12-01
We derive and analyze a penalty method for solving American multi-asset option problems. A small, non-linear penalty term is added to the Black-Scholes equation. This approach gives a fixed solution domain, removing the free and moving boundary imposed by the early exercise feature of the contract. Explicit, implicit and semi-implicit finite difference schemes are derived, and in the case of independent assets, we prove that the approximate option prices satisfy some basic properties of the American option problem. Several numerical experiments are carried out in order to investigate the performance of the schemes. We give examples indicating that our results are sharp. Finally, the experiments indicate that in the case of correlated underlying assets, the same properties are valid as in the independent case.
On the performance of explicit and implicit algorithms for transient thermal analysis
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.
1980-09-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit and implicit algorithms are discussed. A promising set of implicit algorithms, known as the GEAR package is described. Four test problems, used for evaluating and comparing various algorithms, have been selected and finite element models of the configurations are discribed. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system and a model of the space shuttle orbiter wing. Calculations were carried out using the SPAR finite element program, the MITAS lumped parameter program and a special purpose finite element program incorporating the GEAR algorithms. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff. Careful attention to modeling detail such as avoiding thin or short high-conducting elements can sometimes reduce the stiffness to the extent that explicit methods become advantageous.
NASA Astrophysics Data System (ADS)
Trask, Nathaniel; Maxey, Martin; Hu, Xiaozhe
2018-02-01
A stable numerical solution of the steady Stokes problem requires compatibility between the choice of velocity and pressure approximation that has traditionally proven problematic for meshless methods. In this work, we present a discretization that couples a staggered scheme for pressure approximation with a divergence-free velocity reconstruction to obtain an adaptive, high-order, finite difference-like discretization that can be efficiently solved with conventional algebraic multigrid techniques. We use analytic benchmarks to demonstrate equal-order convergence for both velocity and pressure when solving problems with curvilinear geometries. In order to study problems in dense suspensions, we couple the solution for the flow to the equations of motion for freely suspended particles in an implicit monolithic scheme. The combination of high-order accuracy with fully-implicit schemes allows the accurate resolution of stiff lubrication forces directly from the solution of the Stokes problem without the need to introduce sub-grid lubrication models.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1991-01-01
A method for calculating the incompressible viscous flow about two-dimensional bodies, utilizing the velocity-vorticity form of the Navier-Stokes equations using a staggered-grid formulation is presented. The solution is obtained by employing an alternative-direction implicit method for the solution of the block tridiagonal matrix resulting from the finite-difference representation of the governing equations. The boundary vorticity and the conservation of mass are calculated implicitly as a part of the solution. The mass conservation is calculated to machine zero for the duration of the computation. Calculations for the flow about a circular cylinder, a 2-pct thick flat plate at 90-deg incidence, an elliptic cylinder at 45-deg incidence, and a NACA 0012, with and without a deflected flap, at - 90-deg incidence are performed and compared with the results of other numerical investigations.
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident.
Explicit and implicit calculations of turbulent cavity flows with and without yaw angle
NASA Astrophysics Data System (ADS)
Yen, Guan-Wei
1989-08-01
Computations were performed to simulate turbulent supersonic flows past three-dimensional deep cavities with and without yaw. Simulation of these self-sustained oscillatory flows were generated through time accurate solutions of the Reynolds averaged complete Navier-Stokes equations using two different schemes: (1) MacCormack, finite-difference; and (2) implicit, upwind, finite-volume schemes. The second scheme, which is approximately 30 percent faster, is found to produce better time accurate results. The Reynolds stresses were modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses were performed for the instantaneous pressure values on the cavity floor. The time averaged computational results show good agreement with the experimental data along the cavity floor and walls. When the yaw angle is nonzero, there is no longer a single length scale (length-to-depth ratio) for the flow, as is the case for zero yaw angle flow. The dominant directions and inclinations of the vortices are dramatically different for this nonsymmetric flow. The vortex shedding from the cavity into the mainstream flow is captured computationally. This phenomenon, which is due to the oscillation of the shear layer, is confirmed by the solutions of both schemes.
Explicit and implicit calculations of turbulent cavity flows with and without yaw angle. M.S. Thesis
NASA Technical Reports Server (NTRS)
Yen, Guan-Wei
1989-01-01
Computations were performed to simulate turbulent supersonic flows past three-dimensional deep cavities with and without yaw. Simulation of these self-sustained oscillatory flows were generated through time accurate solutions of the Reynolds averaged complete Navier-Stokes equations using two different schemes: (1) MacCormack, finite-difference; and (2) implicit, upwind, finite-volume schemes. The second scheme, which is approximately 30 percent faster, is found to produce better time accurate results. The Reynolds stresses were modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses were performed for the instantaneous pressure values on the cavity floor. The time averaged computational results show good agreement with the experimental data along the cavity floor and walls. When the yaw angle is nonzero, there is no longer a single length scale (length-to-depth ratio) for the flow, as is the case for zero yaw angle flow. The dominant directions and inclinations of the vortices are dramatically different for this nonsymmetric flow. The vortex shedding from the cavity into the mainstream flow is captured computationally. This phenomenon, which is due to the oscillation of the shear layer, is confirmed by the solutions of both schemes.
Application of the θ-method to a telegraphic model of fluid flow in a dual-porosity medium
NASA Astrophysics Data System (ADS)
González-Calderón, Alfredo; Vivas-Cruz, Luis X.; Herrera-Hernández, Erik César
2018-01-01
This work focuses mainly on the study of numerical solutions, which are obtained using the θ-method, of a generalized Warren and Root model that includes a second-order wave-like equation in its formulation. The solutions approximately describe the single-phase hydraulic head in fractures by considering the finite velocity of propagation by means of a Cattaneo-like equation. The corresponding discretized model is obtained by utilizing a non-uniform grid and a non-uniform time step. A simple relationship is proposed to give the time-step distribution. Convergence is analyzed by comparing results from explicit, fully implicit, and Crank-Nicolson schemes with exact solutions: a telegraphic model of fluid flow in a single-porosity reservoir with relaxation dynamics, the Warren and Root model, and our studied model, which is solved with the inverse Laplace transform. We find that the flux and the hydraulic head have spurious oscillations that most often appear in small-time solutions but are attenuated as the solution time progresses. Furthermore, we show that the finite difference method is unable to reproduce the exact flux at time zero. Obtaining results for oilfield production times, which are in the order of months in real units, is only feasible using parallel implicit schemes. In addition, we propose simple parallel algorithms for the memory flux and for the explicit scheme.
Implicit schemes and parallel computing in unstructured grid CFD
NASA Technical Reports Server (NTRS)
Venkatakrishnam, V.
1995-01-01
The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.
A new solution method for wheel/rail rolling contact.
Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei
2016-01-01
To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.
Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.
2010-01-01
The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.
An exploratory study of a finite difference method for calculating unsteady transonic potential flow
NASA Technical Reports Server (NTRS)
Bennett, R. M.; Bland, S. R.
1979-01-01
A method for calculating transonic flow over steady and oscillating airfoils was developed by Isogai. The full potential equation is solved with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. The method is described in general terms and results for the case of an airfoil with an oscillating flap are presented for Mach numbers 0.500 and 0.875. Although satisfactory results are obtained for some reduced frequencies, it is found that the numerical technique generates spurious oscillations in the indicial response functions and in the variation of the aerodynamic coefficients with reduced frequency. These oscillations are examined with a dynamic data reduction method to evaluate their effects and trends with reduced frequency and Mach number. Further development of the numerical method is needed to eliminate these oscillations.
A diagonal implicit scheme for computing flows with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Eberhardt, Scott; Imlay, Scott
1990-01-01
A new algorithm for solving steady, finite-rate chemistry, flow problems is presented. The new scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The source Jacobian matrix is replaced by a diagonal matrix which is tailored to account for the fastest reactions in the chemical system. A point-implicit procedure is discussed and then the algorithm is included into the LU-SGS scheme. Solutions are presented for hypervelocity reentry and Hydrogen-Oxygen combustion. For the LU-SGS scheme a CFL number in excess of 10,000 has been achieved.
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
Development and application of the GIM code for the Cyber 203 computer
NASA Technical Reports Server (NTRS)
Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.
1982-01-01
The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.
NASA Astrophysics Data System (ADS)
Van Londersele, Arne; De Zutter, Daniël; Vande Ginste, Dries
2017-08-01
This work focuses on efficient full-wave solutions of multiscale electromagnetic problems in the time domain. Three local implicitization techniques are proposed and carefully analyzed in order to relax the traditional time step limit of the Finite-Difference Time-Domain (FDTD) method on a nonuniform, staggered, tensor product grid: Newmark, Crank-Nicolson (CN) and Alternating-Direction-Implicit (ADI) implicitization. All of them are applied in preferable directions, alike Hybrid Implicit-Explicit (HIE) methods, as to limit the rank of the sparse linear systems. Both exponential and linear stability are rigorously investigated for arbitrary grid spacings and arbitrary inhomogeneous, possibly lossy, isotropic media. Numerical examples confirm the conservation of energy inside a cavity for a million iterations if the time step is chosen below the proposed, relaxed limit. Apart from the theoretical contributions, new accomplishments such as the development of the leapfrog Alternating-Direction-Hybrid-Implicit-Explicit (ADHIE) FDTD method and a less stringent Courant-like time step limit for the conventional, fully explicit FDTD method on a nonuniform grid, have immediate practical applications.
Direct Coupling Method for Time-Accurate Solution of Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Soh, Woo Y.
1992-01-01
A noniterative finite difference numerical method is presented for the solution of the incompressible Navier-Stokes equations with second order accuracy in time and space. Explicit treatment of convection and diffusion terms and implicit treatment of the pressure gradient give a single pressure Poisson equation when the discretized momentum and continuity equations are combined. A pressure boundary condition is not needed on solid boundaries in the staggered mesh system. The solution of the pressure Poisson equation is obtained directly by Gaussian elimination. This method is tested on flow problems in a driven cavity and a curved duct.
Studies of implicit and explicit solution techniques in transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1982-01-01
Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.
Studies of implicit and explicit solution techniques in transient thermal analysis of structures
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1982-08-01
Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.
Application of the Hughes-LIU algorithm to the 2-dimensional heat equation
NASA Technical Reports Server (NTRS)
Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.
1982-01-01
An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.
Numerical approach to optimal portfolio in a power utility regime-switching model
NASA Astrophysics Data System (ADS)
Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G.
2017-12-01
We consider a system of weakly coupled degenerate semi-linear parabolic equations of optimal portfolio in a regime-switching with power utility function, derived by A.R. Valdez and T. Vargiolu [14]. First, we discuss some basic properties of the solution of this system. Then, we develop and analyze implicit-explicit, flux limited finite difference schemes for the differential problem. Numerical experiments are discussed.
Convergence speeding up in the calculation of the viscous flow about an airfoil
NASA Technical Reports Server (NTRS)
Radespiel, R.; Rossow, C.
1988-01-01
A finite volume method to solve the three dimensional Navier-Stokes equations was developed. It is based on a cell-vertex scheme with central differences and explicit Runge-Kutta time steps. A good convergence for a stationary solution was obtained by the use of local time steps, implicit smoothing of the residues, a multigrid algorithm, and a carefully controlled artificial dissipative term. The method is illustrated by results for transonic profiles and airfoils. The method allows a routine solution of the Navier-Stokes equations.
Preconditioned upwind methods to solve 3-D incompressible Navier-Stokes equations for viscous flows
NASA Technical Reports Server (NTRS)
Hsu, C.-H.; Chen, Y.-M.; Liu, C. H.
1990-01-01
A computational method for calculating low-speed viscous flowfields is developed. The method uses the implicit upwind-relaxation finite-difference algorithm with a nonsingular eigensystem to solve the preconditioned, three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. The technique of local time stepping is incorporated to accelerate the rate of convergence to a steady-state solution. An extensive study of optimizing the preconditioned system is carried out for two viscous flow problems. Computed results are compared with analytical solutions and experimental data.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance
NASA Astrophysics Data System (ADS)
Witte, J. H.; Reisinger, C.
2010-09-01
We present a simple and easy to implement method for the numerical solution of a rather general class of Hamilton-Jacobi-Bellman (HJB) equations. In many cases, the considered problems have only a viscosity solution, to which, fortunately, many intuitive (e.g. finite difference based) discretisations can be shown to converge. However, especially when using fully implicit time stepping schemes with their desireable stability properties, one is still faced with the considerable task of solving the resulting nonlinear discrete system. In this paper, we introduce a penalty method which approximates the nonlinear discrete system to an order of O(1/ρ), where ρ>0 is the penalty parameter, and we show that an iterative scheme can be used to solve the penalised discrete problem in finitely many steps. We include a number of examples from mathematical finance for which the described approach yields a rigorous numerical scheme and present numerical results.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
NASA Technical Reports Server (NTRS)
Moitra, A.
1982-01-01
An implicit finite-difference algorithm is developed for the numerical solution of the incompressible three dimensional Navier-Stokes equations in the non-conservative primitive-variable formulation. The flow field about an airfoil spanning a wind-tunnel is computed. The coordinate system is generated by an extension of the two dimensional body-fitted coordinate generation techniques of Thompson, as well as that of Sorenson, into three dimensions. Two dimensional grids are stacked along a spanwise coordinate defined by a simple analytical function. A Poisson pressure equation for advancing the pressure in time is arrived at by performing a divergence operation on the momentum equations. The pressure at each time-step is calculated on the assumption that continuity be unconditionally satisfied. An eddy viscosity coefficient, computed according to the algebraic turbulence formulation of Baldwin and Lomax, simulates the effects of turbulence.
An analysis for high Reynolds number inviscid/viscid interactions in cascades
NASA Technical Reports Server (NTRS)
Barnett, Mark; Verdon, Joseph M.; Ayer, Timothy C.
1993-01-01
An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena such as viscous-layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction in turbomachinery blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis is described. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid region is assumed to be potential, and that in the inner or viscous-layer region is governed by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares, finite-difference approximation, the viscous-layer solution using an inverse, finite-difference, space-marching method which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer separation and other strong-interaction phenomena. Results are presented for three cascades, with a range of inlet flow conditions considered for one of them, including conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions and experimental data are also given.
NASA Technical Reports Server (NTRS)
Levine, J. N.
1971-01-01
A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.
Benchmark solution of the dynamic response of a spherical shell at finite strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versino, Daniele; Brock, Jerry S.
2016-09-28
Our paper describes the development of high fidelity solutions for the study of homogeneous (elastic and inelastic) spherical shells subject to dynamic loading and undergoing finite deformations. The goal of the activity is to provide high accuracy results that can be used as benchmark solutions for the verification of computational physics codes. Furthermore, the equilibrium equations for the geometrically non-linear problem are solved through mode expansion of the displacement field and the boundary conditions are enforced in a strong form. Time integration is performed through high-order implicit Runge–Kutta schemes. Finally, we evaluate accuracy and convergence of the proposed method bymore » means of numerical examples with finite deformations and material non-linearities and inelasticity.« less
Finite element computation of compressible flows with the SUPG formulation
NASA Technical Reports Server (NTRS)
Le Beau, G. J.; Tezduyar, T. E.
1991-01-01
Finite element computation of compressible Euler equations is presented in the context of the streamline-upwind/Petrov-Galerkin (SUPG) formulation. The SUPG formulation, which is based on adding stabilizing terms to the Galerkin formulation, is further supplemented with a shock capturing operator which addresses the difficulty in maintaining a satisfactory solution near discontinuities in the solution field. The shock capturing operator, which has been derived from work done in entropy variables for a similar operator, is shown to lead to an appropriate level of additional stabilization near shocks, without resulting in excessive numerical diffusion. An implicit treatment of the impermeable wall boundary condition is also presented. This treatment of the no-penetration condition offers increased stability for large Courant numbers, and accelerated convergence of the computations for both implicit and explicit applications. Several examples are presented to demonstrate the ability of this method to solve the equations governing compressible fluid flow.
Improving sub-grid scale accuracy of boundary features in regional finite-difference models
Panday, Sorab; Langevin, Christian D.
2012-01-01
As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.
Modeling the absorption spectrum of the permanganate ion in vacuum and in aqueous solution
NASA Astrophysics Data System (ADS)
Olsen, Jógvan Magnus Haugaard; Hedegård, Erik Donovan
The absorption spectrum of the MnO$_{4}$$^{-}$ ion has been a test-bed for quantum-chemical methods over the last decades. Its correct description requires highly-correlated multiconfigurational methods, which are incompatible with the inclusion of finite-temperature and solvent effects due to their high computational demands. Therefore, implicit solvent models are usually employed. Here we show that implicit solvent models are not sufficiently accurate to model the solvent shift of MnO$_{4}$$^{-}$, and we analyze the origins of their failure. We obtain the correct solvent shift for MnO$_{4}$$^{-}$ in aqueous solution by employing the polarizable embedding (PE) model combined with a range-separated complete active space short-range density functional theory method (CAS-srDFT). Finite-temperature effects are taken into account by averaging over structures obtained from ab initio molecular dynamics simulations. The explicit treatment of finite-temperature and solvent effects facilitates the interpretation of the bands in the low-energy region of the MnO$_{4}$$^{-}$ absorption spectrum, whose assignment has been elusive.
A gradient enhanced plasticity-damage microplane model for concrete
NASA Astrophysics Data System (ADS)
Zreid, Imadeddin; Kaliske, Michael
2018-03-01
Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.
NASA Technical Reports Server (NTRS)
Cacio, Emanuela; Cohn, Stephen E.; Spigler, Renato
2011-01-01
A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration.
Development and Verification of the Charring, Ablating Thermal Protection Implicit System Simulator
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Calvert, Nathan; Kirk, Benjamin S.
2011-01-01
The development and verification of the Charring Ablating Thermal Protection Implicit System Solver (CATPISS) is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method (FEM) with first and second order fully implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton s method, while the linear system is solved via the Generalized Minimum Residual method (GMRES). Verification results from exact solutions and Method of Manufactured Solutions (MMS) are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.
An Unstructured Finite Volume Approach for Structural Dynamics in Response to Fluid Motions.
Xia, Guohua; Lin, Ching-Long
2008-04-01
A new cell-vortex unstructured finite volume method for structural dynamics is assessed for simulations of structural dynamics in response to fluid motions. A robust implicit dual-time stepping method is employed to obtain time accurate solutions. The resulting system of algebraic equations is matrix-free and allows solid elements to include structure thickness, inertia, and structural stresses for accurate predictions of structural responses and stress distributions. The method is coupled with a fluid dynamics solver for fluid-structure interaction, providing a viable alternative to the finite element method for structural dynamics calculations. A mesh sensitivity test indicates that the finite volume method is at least of second-order accuracy. The method is validated by the problem of vortex-induced vibration of an elastic plate with different initial conditions and material properties. The results are in good agreement with existing numerical data and analytical solutions. The method is then applied to simulate a channel flow with an elastic wall. The effects of wall inertia and structural stresses on the fluid flow are investigated.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Application of viscous-inviscid interaction methods to transonic turbulent flows
NASA Technical Reports Server (NTRS)
Lee, D.; Pletcher, R. H.
1986-01-01
Two different viscous-inviscid interaction schemes were developed for the analysis of steady, turbulent, transonic, separated flows over axisymmetric bodies. The viscous and inviscid solutions are coupled through the displacement concept using a transpiration velocity approach. In the semi-inverse interaction scheme, the viscous and inviscid equations are solved in an explicitly separate manner and the displacement thickness distribution is iteratively updated by a simple coupling algorithm. In the simultaneous interaction method, local solutions of viscous and inviscid equations are treated simultaneously, and the displacement thickness is treated as an unknown and is obtained as a part of the solution through a global iteration procedure. The inviscid flow region is described by a direct finite-difference solution of a velocity potential equation in conservative form. The potential equation is solved on a numerically generated mesh by an approximate factorization (AF2) scheme in the semi-inverse interaction method and by a successive line overrelaxation (SLOR) scheme in the simultaneous interaction method. The boundary-layer equations are used for the viscous flow region. The continuity and momentum equations are solved inversely in a coupled manner using a fully implicit finite-difference scheme.
A cubic spline approximation for problems in fluid mechanics
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Graves, R. A., Jr.
1975-01-01
A cubic spline approximation is presented which is suited for many fluid-mechanics problems. This procedure provides a high degree of accuracy, even with a nonuniform mesh, and leads to an accurate treatment of derivative boundary conditions. The truncation errors and stability limitations of several implicit and explicit integration schemes are presented. For two-dimensional flows, a spline-alternating-direction-implicit method is evaluated. The spline procedure is assessed, and results are presented for the one-dimensional nonlinear Burgers' equation, as well as the two-dimensional diffusion equation and the vorticity-stream function system describing the viscous flow in a driven cavity. Comparisons are made with analytic solutions for the first two problems and with finite-difference calculations for the cavity flow.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Finite element concepts in computational aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.
A high order accurate finite element algorithm for high Reynolds number flow prediction
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.
Navier-Stokes computations for circulation control airfoils
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.; Jespersen, Dennis C.; Barth, Timothy J.
1987-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Navier-Stokes computations for circulation controlled airfoils
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Jesperen, D. C.; Barth, T. J.
1986-01-01
Navier-Stokes computations of subsonic to transonic flow past airfoils with augmented lift due to rearward jet blowing over a curved trailing edge are presented. The approach uses a spiral grid topology. Solutions are obtained using a Navier-Stokes code which employs an implicit finite difference method, an algebraic turbulence model, and developments which improve stability, convergence, and accuracy. Results are compared against experiments for no jet blowing and moderate jet pressures and demonstrate the capability to compute these complicated flows.
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
An analysis of a charring ablator with thermal nonequilibrium, chemical kinetics, and mass transfer
NASA Technical Reports Server (NTRS)
Clark, R. K.
1973-01-01
The differential equations governing the transient response of a one-dimensional ablative thermal protection system are presented for thermal nonequilibrium between the pyrolysis gases and the char layer and with finite rate chemical reactions occurring. The system consists of three layers (the char layer, the uncharred layer, and an optical insulation layer) with concentrated heat sinks at the back surface and between the second and third layers. The equations are solved numerically by using a modified implicit finite difference scheme to obtain solutions for the thickness of the charred and uncharred layers, surface recession and pyrolysis rates, solid temperatures, porosity profiles, and profiles of pyrolysis-gas temperature, pressure, composition, and flow rate. Good agreement is obtained between numerical results and exact solutions for a number of simplified cases. The complete numerical analysis is used to obtain solutions for an ablative system subjected to a constant heating environment. Effects of thermal, chemical, and mass transfer processes are shown.
NASA Astrophysics Data System (ADS)
Frei, S.; Gilfedder, B. S.
2015-08-01
A quantitative understanding of groundwater-surface water interactions is vital for sustainable management of water quantity and quality. The noble gas radon-222 (Rn) is becoming increasingly used as a sensitive tracer to quantify groundwater discharge to wetlands, lakes, and rivers: a development driven by technical and methodological advances in Rn measurement. However, quantitative interpretation of these data is not trivial, and the methods used to date are based on the simplest solutions to the mass balance equation (e.g., first-order finite difference and inversion). Here we present a new implicit numerical model (FINIFLUX) based on finite elements for quantifying groundwater discharge to streams and rivers using Rn surveys at the reach scale (1-50 km). The model is coupled to a state-of-the-art parameter optimization code Parallel-PEST to iteratively solve the mass balance equation for groundwater discharge and hyporheic exchange. The major benefit of this model is that it is programed to be very simple to use, reduces nonuniqueness, and provides numerically stable estimates of groundwater fluxes and hyporheic residence times from field data. FINIFLUX was tested against an analytical solution and then implemented on two German rivers of differing magnitude, the Salzach (˜112 m3 s-1) and the Rote Main (˜4 m3 s-1). We show that using previous inversion techniques numerical instability can lead to physically impossible negative values, whereas the new model provides stable positive values for all scenarios. We hope that by making FINIFLUX freely available to the community that Rn might find wider application in quantifying groundwater discharge to streams and rivers and thus assist in a combined management of surface and groundwater systems.
Development of cost-effective surfactant flooding technology. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, G.A.; Sepehrnoori, K.
1996-11-01
Task 1 of this research was the development of a high-resolution, fully implicit, finite-difference, multiphase, multicomponent, compositional simulator for chemical flooding. The major physical phenomena modeled in this simulator are dispersion, heterogeneous permeability and porosity, adsorption, interfacial tension, relative permeability and capillary desaturation, compositional phase viscosity, compositional phase density and gravity effects, capillary pressure, and aqueous-oleic-microemulsion phase behavior. Polymer and its non-Newtonian rheology properties include shear-thinning viscosity, permeability reduction, inaccessible pore volume, and adsorption. Options of constant or variable space grids and time steps, constant-pressure or constant-rate well conditions, horizontal and vertical wells, and multiple slug injections are also availablemore » in the simulator. The solution scheme used in this simulator is fully implicit. The pressure equation and the mass-conservation equations are solved simultaneously for the aqueous-phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used that greatly reduce numerical dispersion effects. Task 2 was the optimization of surfactant flooding. The code UTCHEM was used to simulate surfactant polymer flooding.« less
Characteristics of the Shuttle Orbiter Leeside Flow During A Reentry Condition
NASA Technical Reports Server (NTRS)
Kleb, William L.; Weilmuenster, K. James
1992-01-01
A study of the leeside flow characteristics of the Shuttle Orbiter is presented for a reentry flight condition. The flow is computed using a point-implicit, finite-volume scheme known as the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA). LAURA is a second-order accurate, laminar Navier-Stokes solver, incorporating finite-rate chemistry with a radiative equilibrium wall temperature distribution and finite-rate wall catalysis. The resulting computational solution is analyzed in terms of salient flow features and the surface quantities are compared with flight data.
A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.
A fast efficient implicit scheme for the gasdynamic equations using a matrix reduction technique
NASA Technical Reports Server (NTRS)
Barth, T. J.; Steger, J. L.
1985-01-01
An efficient implicit finite-difference algorithm for the gasdynamic equations utilizing matrix reduction techniques is presented. A significant reduction in arithmetic operations is achieved without loss of the stability characteristics generality found in the Beam and Warming approximate factorization algorithm. Steady-state solutions to the conservative Euler equations in generalized coordinates are obtained for transonic flows and used to show that the method offers computational advantages over the conventional Beam and Warming scheme. Existing Beam and Warming codes can be retrofit with minimal effort. The theoretical extension of the matrix reduction technique to the full Navier-Stokes equations in Cartesian coordinates is presented in detail. Linear stability, using a Fourier stability analysis, is demonstrated and discussed for the one-dimensional Euler equations.
A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation
Smith, Peter E.
2006-01-01
A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.
The NCOREL computer program for 3D nonlinear supersonic potential flow computations
NASA Technical Reports Server (NTRS)
Siclari, M. J.
1983-01-01
An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation
NASA Astrophysics Data System (ADS)
Litaker, Eric T.
1994-12-01
The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.
NASA Astrophysics Data System (ADS)
Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.
2005-02-01
In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2016-01-01
In this paper, a new Navier–Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier–Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented. PMID:27087702
Li, Zhilin; Xiao, Li; Cai, Qin; Zhao, Hongkai; Luo, Ray
2015-08-15
In this paper, a new Navier-Stokes solver based on a finite difference approximation is proposed to solve incompressible flows on irregular domains with open, traction, and free boundary conditions, which can be applied to simulations of fluid structure interaction, implicit solvent model for biomolecular applications and other free boundary or interface problems. For some problems of this type, the projection method and the augmented immersed interface method (IIM) do not work well or does not work at all. The proposed new Navier-Stokes solver is based on the local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be used in our algorithm which gives us the potential for developing fast overall solvers in the future. The time discretization is based on a second order multi-step method. Numerical tests with exact solutions are presented to validate the accuracy of the method. Application to fluid structure interaction between an incompressible fluid and a compressible gas bubble is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
UTCHEM IMPLICIT is a three-dimensional chemical flooding simulator. The solution scheme is fully implicit. The pressure equation and the mass conservation equations are solved simultaneously for the aqueous phase pressure and the total concentrations of each component. A third-order-in-space, second-order-in-time finite-difference method and a new total-variation-diminishing (TVD) third-order flux limiter are used to reduce numerical dispersion effects. Saturations and phase concentrations are solved in a flash routine. The major physical phenomena modeled in the simulator are: dispersion, adsorption, aqueous-oleic-microemulsion phase behavior, interfacial tension, relative permeability, capillary trapping, compositional phase viscosity, capillary pressure, phase density, polymer properties: shear thinning viscosity, inaccessiblemore » pore volume, permeability reduction, and adsorption. The following options are available in the simulator: constant or variable time-step sizes, uniform or nonuniform grid, pressure or rate constrained wells, horizontal and vertical wells.« less
Heberton, C.I.; Russell, T.F.; Konikow, Leonard F.; Hornberger, G.Z.
2000-01-01
This report documents the U.S. Geological Survey Eulerian-Lagrangian Localized Adjoint Method (ELLAM) algorithm that solves an integral form of the solute-transport equation, incorporating an implicit-in-time difference approximation for the dispersive and sink terms. Like the algorithm in the original version of the U.S. Geological Survey MOC3D transport model, ELLAM uses a method of characteristics approach to solve the transport equation on the basis of the velocity field. The ELLAM algorithm, however, is based on an integral formulation of conservation of mass and uses appropriate numerical techniques to obtain global conservation of mass. The implicit procedure eliminates several stability criteria required for an explicit formulation. Consequently, ELLAM allows large transport time increments to be used. ELLAM can produce qualitatively good results using a small number of transport time steps. A description of the ELLAM numerical method, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. The ELLAM algorithm was evaluated for the same set of problems used to test and evaluate Version 1 and Version 2 of MOC3D. These test results indicate that ELLAM offers a viable alternative to the explicit and implicit solvers in MOC3D. Its use is desirable when mass balance is imperative or a fast, qualitative model result is needed. Although accurate solutions can be generated using ELLAM, its efficiency relative to the two previously documented solution algorithms is problem dependent.
A modified Dodge algorithm for the parabolized Navier-Stokes equation and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitive agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions.
Computation and analysis for a constrained entropy optimization problem in finance
NASA Astrophysics Data System (ADS)
He, Changhong; Coleman, Thomas F.; Li, Yuying
2008-12-01
In [T. Coleman, C. He, Y. Li, Calibrating volatility function bounds for an uncertain volatility model, Journal of Computational Finance (2006) (submitted for publication)], an entropy minimization formulation has been proposed to calibrate an uncertain volatility option pricing model (UVM) from market bid and ask prices. To avoid potential infeasibility due to numerical error, a quadratic penalty function approach is applied. In this paper, we show that the solution to the quadratic penalty problem can be obtained by minimizing an objective function which can be evaluated via solving a Hamilton-Jacobian-Bellman (HJB) equation. We prove that the implicit finite difference solution of this HJB equation converges to its viscosity solution. In addition, we provide computational examples illustrating accuracy of calibration.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed for predicting the turbulent and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1989-01-01
A new computer code was developed for predicting the turbulent, and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, 3-D Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
Algorithm development for Maxwell's equations for computational electromagnetism
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.
1990-01-01
A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.
The SPAR thermal analyzer: Present and future
NASA Astrophysics Data System (ADS)
Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.
The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.
The SPAR thermal analyzer: Present and future
NASA Technical Reports Server (NTRS)
Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.
1982-01-01
The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.
Additional development of the XTRAN3S computer program
NASA Technical Reports Server (NTRS)
Borland, C. J.
1989-01-01
Additional developments and enhancements to the XTRAN3S computer program, a code for calculation of steady and unsteady aerodynamics, and associated aeroelastic solutions, for 3-D wings in the transonic flow regime are described. Algorithm improvements for the XTRAN3S program were provided including an implicit finite difference scheme to enhance the allowable time step and vectorization for improved computational efficiency. The code was modified to treat configurations with a fuselage, multiple stores/nacelles/pylons, and winglets. Computer program changes (updates) for error corrections and updates for version control are provided.
NASA Astrophysics Data System (ADS)
Xie, Dexuan
2014-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model in the calculation of electrostatic potential energy for biomolecules in ionic solvent, but its numerical solution remains a challenge due to its strong singularity and nonlinearity caused by its singular distribution source terms and exponential nonlinear terms. To effectively deal with such a challenge, in this paper, new solution decomposition and minimization schemes are proposed, together with a new PBE analysis on solution existence and uniqueness. Moreover, a PBE finite element program package is developed in Python based on the FEniCS program library and GAMer, a molecular surface and volumetric mesh generation program package. Numerical tests on proteins and a nonlinear Born ball model with an analytical solution validate the new solution decomposition and minimization schemes, and demonstrate the effectiveness and efficiency of the new PBE finite element program package.
A solution to the Navier-Stokes equations based upon the Newton Kantorovich method
NASA Technical Reports Server (NTRS)
Davis, J. E.; Gabrielsen, R. E.; Mehta, U. B.
1977-01-01
An implicit finite difference scheme based on the Newton-Kantorovich technique was developed for the numerical solution of the nonsteady, incompressible, two-dimensional Navier-Stokes equations in conservation-law form. The algorithm was second-order-time accurate, noniterative with regard to the nonlinear terms in the vorticity transport equation except at the earliest few time steps, and spatially factored. Numerical results were obtained with the technique for a circular cylinder at Reynolds number 15. Results indicate that the technique is in excellent agreement with other numerical techniques for all geometries and Reynolds numbers investigated, and indicates a potential for significant reduction in computation time over current iterative techniques.
NASA Technical Reports Server (NTRS)
Fujii, K.
1983-01-01
A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.
Inverse boundary-layer theory and comparison with experiment
NASA Technical Reports Server (NTRS)
Carter, J. E.
1978-01-01
Inverse boundary layer computational procedures, which permit nonsingular solutions at separation and reattachment, are presented. In the first technique, which is for incompressible flow, the displacement thickness is prescribed; in the second technique, for compressible flow, a perturbation mass flow is the prescribed condition. The pressure is deduced implicitly along with the solution in each of these techniques. Laminar and turbulent computations, which are typical of separated flow, are presented and comparisons are made with experimental data. In both inverse procedures, finite difference techniques are used along with Newton iteration. The resulting procedure is no more complicated than conventional boundary layer computations. These separated boundary layer techniques appear to be well suited for complete viscous-inviscid interaction computations.
Numerical solution of transport equation for applications in environmental hydraulics and hydrology
NASA Astrophysics Data System (ADS)
Rashidul Islam, M.; Hanif Chaudhry, M.
1997-04-01
The advective term in the one-dimensional transport equation, when numerically discretized, produces artificial diffusion. To minimize such artificial diffusion, which vanishes only for Courant number equal to unity, transport owing to advection has been modeled separately. The numerical solution of the advection equation for a Gaussian initial distribution is well established; however, large oscillations are observed when applied to an initial distribution with sleep gradients, such as trapezoidal distribution of a constituent or propagation of mass from a continuous input. In this study, the application of seven finite-difference schemes and one polynomial interpolation scheme is investigated to solve the transport equation for both Gaussian and non-Gaussian (trapezoidal) initial distributions. The results obtained from the numerical schemes are compared with the exact solutions. A constant advective velocity is assumed throughout the transport process. For a Gaussian distribution initial condition, all eight schemes give excellent results, except the Lax scheme which is diffusive. In application to the trapezoidal initial distribution, explicit finite-difference schemes prove to be superior to implicit finite-difference schemes because the latter produce large numerical oscillations near the steep gradients. The Warming-Kutler-Lomax (WKL) explicit scheme is found to be better among this group. The Hermite polynomial interpolation scheme yields the best result for a trapezoidal distribution among all eight schemes investigated. The second-order accurate schemes are sufficiently accurate for most practical problems, but the solution of unusual problems (concentration with steep gradient) requires the application of higher-order (e.g. third- and fourth-order) accurate schemes.
NASA Technical Reports Server (NTRS)
Homicz, G. F.; Moselle, J. R.
1985-01-01
A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
The Use of Non-Standard Devices in Finite Element Analysis
NASA Technical Reports Server (NTRS)
Schur, Willi W.; Broduer, Steve (Technical Monitor)
2001-01-01
A general mathematical description of the response behavior of thin-skin pneumatic envelopes and many other membrane and cable structures produces under-constrained systems that pose severe difficulties to analysis. These systems are mobile, and the general mathematical description exposes the mobility. Yet the response behavior of special under-constrained structures under special loadings can be accurately predicted using a constrained mathematical description. The static response behavior of systems that are infinitesimally mobile, such as a non-slack membrane subtended from a rigid or elastic boundary frame, can be easily analyzed using such general mathematical description as afforded by the non-linear, finite element method using an implicit solution scheme if the incremental uploading is guided through a suitable path. Similarly, if such structures are assembled with structural lack of fit that provides suitable self-stress, then dynamic response behavior can be predicted by the non-linear, finite element method and an implicit solution scheme. An explicit solution scheme is available for evolution problems. Such scheme can be used via the method of dynamic relaxation to obtain the solution to a static problem. In some sense, pneumatic envelopes and many other compliant structures can be said to have destiny under a specified loading system. What that means to the analyst is that what happens on the evolution path of the solution is irrelevant as long as equilibrium is achieved at destiny under full load and that the equilibrium is stable in the vicinity of that load. The purpose of this paper is to alert practitioners to the fact that non-standard procedures in finite element analysis are useful and can be legitimate although they burden their users with the requirement to use special caution. Some interesting findings that are useful to the US Scientific Balloon Program and that could not be obtained without non-standard techniques are presented.
Unsteady streamflow simulation using a linear implicit finite-difference model
Land, Larry F.
1978-01-01
A computer program for simulating one-dimensional subcritical, gradually varied, unsteady flow in a stream has been developed and documented. Given upstream and downstream boundary conditions and channel geometry data, roughness coefficients, stage, and discharge can be calculated anywhere within the reach as a function of time. The program uses a linear implicit finite-difference technique that discritizes the partial differential equations. Then it arranges the coefficients of the continuity and momentum equations into a pentadiagonal matrix for solution. Because it is a reasonable compromise between computational accuracy, speed and ease of use,the technique is one of the most commonly used. The upstream boundary condition is a depth hydrograph. However, options also allow the boundary condition to be discharge or water-surface elevation. The downstream boundary condition is a depth which may be constant, self-setting, or unsteady. The reach may be divided into uneven increments and the cross sections may be nonprismatic and may vary from one to the other. Tributary and lateral inflow may enter the reach. The digital model will simulate such common problems as (1) flood waves, (2) releases from dams, and (3) channels where storage is a consideration. It may also supply the needed flow information for mass-transport simulation. (Woodard-USGS)
An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang
2018-01-01
The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.
A modified Dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Dwoyer, D. M.
1983-01-01
A revised version of Dodge's split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition. Qualitative agreement with analytical predictions and experimental results was obtained for some flows with well-known solutions. Previously announced in STAR as N82-16363
2011-09-01
optimized building blocks such as a parallelized tri-diagonal linear solver (used in the “implicit finite differences ” and split-step Pade PE models...and Ding Lee. “A finite - difference treatment of interface conditions for the parabolic wave equation: The horizontal interface.” The Journal of the...Acoustical Society of America, 71(4):855, 1982. 3. Ding Lee and Suzanne T. McDaniel. “A finite - difference treatment of interface conditions for
Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations
NASA Technical Reports Server (NTRS)
Khosla, P. K.; Rubin, S. G.
1979-01-01
For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.
NASA Astrophysics Data System (ADS)
Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.
1988-11-01
Many physical problems require the solution of coupled partial differential equations on three-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect induces which is vectorizable on some of the newer scientific computers.
NASA Astrophysics Data System (ADS)
Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.
1988-11-01
Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.
P1 Nonconforming Finite Element Method for the Solution of Radiation Transport Problems
NASA Technical Reports Server (NTRS)
Kang, Kab S.
2002-01-01
The simulation of radiation transport in the optically thick flux-limited diffusion regime has been identified as one of the most time-consuming tasks within large simulation codes. Due to multimaterial complex geometry, the radiation transport system must often be solved on unstructured grids. In this paper, we investigate the behavior and the benefits of the unstructured P(sub 1) nonconforming finite element method, which has proven to be flexible and effective on related transport problems, in solving unsteady implicit nonlinear radiation diffusion problems using Newton and Picard linearization methods. Key words. nonconforrning finite elements, radiation transport, inexact Newton linearization, multigrid preconditioning
magnum.fe: A micromagnetic finite-element simulation code based on FEniCS
NASA Astrophysics Data System (ADS)
Abert, Claas; Exl, Lukas; Bruckner, Florian; Drews, André; Suess, Dieter
2013-11-01
We have developed a finite-element micromagnetic simulation code based on the FEniCS package called magnum.fe. Here we describe the numerical methods that are applied as well as their implementation with FEniCS. We apply a transformation method for the solution of the demagnetization-field problem. A semi-implicit weak formulation is used for the integration of the Landau-Lifshitz-Gilbert equation. Numerical experiments show the validity of simulation results. magnum.fe is open source and well documented. The broad feature range of the FEniCS package makes magnum.fe a good choice for the implementation of novel micromagnetic finite-element algorithms.
Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie
2014-01-01
It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.
NASA Astrophysics Data System (ADS)
Britt, S.; Tsynkov, S.; Turkel, E.
2018-02-01
We solve the wave equation with variable wave speed on nonconforming domains with fourth order accuracy in both space and time. This is accomplished using an implicit finite difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) equation at each time step with fourth order spatial accuracy by the method of difference potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured grids to efficiently solve problems on nonconforming domains while maintaining the design convergence rate of the underlying FD scheme. Asymptotically, the computational complexity of high-order MDP scales the same as that for FD.
NASA Technical Reports Server (NTRS)
Imlay, S. T.
1986-01-01
An implicit finite volume method is investigated for the solution of the compressible Navier-Stokes equations for flows within thrust reversing and thrust vectoring nozzles. Thrust reversing nozzles typically have sharp corners, and the rapid expansion and large turning angles near these corners are shown to cause unacceptable time step restrictions when conventional approximate factorization methods are used. In this investigation these limitations are overcome by using second-order upwind differencing and line Gauss-Siedel relaxation. This method is implemented with a zonal mesh so that flows through complex nozzle geometries may be efficiently calculated. Results are presented for five nozzle configurations including two with time varying geometries. Three cases are compared with available experimental data and the results are generally acceptable.
Some problems of the calculation of three-dimensional boundary layer flows on general configurations
NASA Technical Reports Server (NTRS)
Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.
1973-01-01
An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.
An interacting boundary layer model for cascades
NASA Technical Reports Server (NTRS)
Davis, R. T.; Rothmayer, A. P.
1983-01-01
A laminar, incompressible interacting boundary layer model is developed for two-dimensional cascades. In the limit of large cascade spacing these equations reduce to the interacting boundary layer equations for a single body immersed in an infinite stream. A fully implicit numerical method is used to solve the governing equations, and is found to be at least as efficient as the same technique applied to the single body problem. Solutions are then presented for a cascade of finite flat plates and a cascade of finite sine-waves, with cusped leading and trailing edges.
Computational simulation of laser heat processing of materials
NASA Astrophysics Data System (ADS)
Shankar, Vijaya; Gnanamuthu, Daniel
1987-04-01
A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.
NASA Technical Reports Server (NTRS)
Miller, T. L.
1984-01-01
Calculations were performed with computer models using three types of finite difference methods of thermosolutal convection: horizontal heating of a container filled with a stably stratified solution, finger convection in a container, and finger convection in a horizontally infinite channel. The importance of including thermosolutal convection in models of crystal growth is emphasized, and the difficulties in doing so are demonstrated. It is pointed out that these difficulties, due primarily to the fine structure of the convection, may be partly overcome by the use of fine grids and implicit time stepping methods.
Longitudinal curvature and displacement speed effects on incompressible laminar boundary layers.
NASA Technical Reports Server (NTRS)
Werle, M. J.; Wornom, S. F.
1972-01-01
The title problem is considered for the case of flow past a circular cylinder placed normal to a uniform mainstream with Reynolds numbers from 40 to 200. Implicit finite difference numerical solutions are obtained for a set of boundary-layer equations that account for the second order effects associated with surface curvature and displacement speed. It was found that both of these contributors have a significant influence on the internal structure of the viscous region and that an accurate estimate of the surface pressure distribution is essential for estimating the surface shear stress.
Computation of the shock-wave boundary layer interaction with flow separation
NASA Technical Reports Server (NTRS)
Ardonceau, P.; Alziary, T.; Aymer, D.
1980-01-01
The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.
Some calculations of transonic potential flow for the NACA 64A006 airfoil with oscillating flap
NASA Technical Reports Server (NTRS)
Bennett, R. M.; Bland, S. R.
1978-01-01
A method for calculating the transonic flow over steady and oscillating airfoils was developed by Isogai. It solves the full potential equation with a semi-implicit, time-marching, finite difference technique. Steady flow solutions are obtained from time asymptotic solutions for a steady airfoil. Corresponding oscillatory solutions are obtained by initiating an oscillation and marching in time for several cycles until a converged periodic solution is achieved. In this paper the method is described in general terms, and results are compared with experimental data for both steady flow and for oscillations at several values of reduced frequency. Good agreement for static pressures is shown for subcritical speeds, with increasing deviation as Mach number is increased into the supercritical speed range. Fair agreement with experiment was obtained at high reduced frequencies with larger deviations at low reduced frequencies.
NASA Technical Reports Server (NTRS)
Warming, R. F.; Beam, R. M.
1978-01-01
Efficient, noniterative, implicit finite difference algorithms are systematically developed for nonlinear conservation laws including purely hyperbolic systems and mixed hyperbolic parabolic systems. Utilization of a rational fraction or Pade time differencing formulas, yields a direct and natural derivation of an implicit scheme in a delta form. Attention is given to advantages of the delta formation and to various properties of one- and two-dimensional algorithms.
An improved semi-implicit method for structural dynamics analysis
NASA Technical Reports Server (NTRS)
Park, K. C.
1982-01-01
A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.
Coupling between fluid dynamics and energy addition in arcjet and microwave thrusters
NASA Technical Reports Server (NTRS)
Micci, M. M.
1986-01-01
A new approach to numerically solving the problem of the constricted electric arcjet is presented. An Euler Implicit finite difference scheme is used to solve the full compressible Navier Stokes equations in two dimensions. The boundary and initial conditions represent the constrictor section of the arcjet, and hydrogen is used as a propellant. The arc is modeled as a Gaussian distribution across the centerline of the constrictor. Temperature, pressure and velocity profiles for steady state converged solutions show both axial and radial changes in distributions resulting from their interaction with the arc energy source for specific input conditions. The temperature rise is largest at the centerline where there is a the greatest concentration arc energy. The solution does not converge for all initial inputs and the limitations in the range of obtainable solutions are discussed.
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
NASA Technical Reports Server (NTRS)
Bates, J. R.; Moorthi, S.; Higgins, R. W.
1993-01-01
An adiabatic global multilevel primitive equation model using a two time-level, semi-Lagrangian semi-implicit finite-difference integration scheme is presented. A Lorenz grid is used for vertical discretization and a C grid for the horizontal discretization. The momentum equation is discretized in vector form, thus avoiding problems near the poles. The 3D model equations are reduced by a linear transformation to a set of 2D elliptic equations, whose solution is found by means of an efficient direct solver. The model (with minimal physics) is integrated for 10 days starting from an initialized state derived from real data. A resolution of 16 levels in the vertical is used, with various horizontal resolutions. The model is found to be stable and efficient, and to give realistic output fields. Integrations with time steps of 10 min, 30 min, and 1 h are compared, and the differences are found to be acceptable.
NASA Astrophysics Data System (ADS)
Kim, Woojin; Lee, Injae; Choi, Haecheon
2018-04-01
We present a weak-coupling approach for fluid-structure interaction with low density ratio (ρ) of solid to fluid. For accurate and stable solutions, we introduce predictors, an explicit two-step method and the implicit Euler method, to obtain provisional velocity and position of fluid-structure interface at each time step, respectively. The incompressible Navier-Stokes equations, together with these provisional velocity and position at the fluid-structure interface, are solved in an Eulerian coordinate using an immersed-boundary finite-volume method on a staggered mesh. The dynamic equation of an elastic solid-body motion, together with the hydrodynamic force at the provisional position of the interface, is solved in a Lagrangian coordinate using a finite element method. Each governing equation for fluid and structure is implicitly solved using second-order time integrators. The overall second-order temporal accuracy is preserved even with the use of lower-order predictors. A linear stability analysis is also conducted for an ideal case to find the optimal explicit two-step method that provides stable solutions down to the lowest density ratio. With the present weak coupling, three different fluid-structure interaction problems were simulated: flows around an elastically mounted rigid circular cylinder, an elastic beam attached to the base of a stationary circular cylinder, and a flexible plate, respectively. The lowest density ratios providing stable solutions are searched for the first two problems and they are much lower than 1 (ρmin = 0.21 and 0.31, respectively). The simulation results agree well with those from strong coupling suggested here and also from previous numerical and experimental studies, indicating the efficiency and accuracy of the present weak coupling.
Numerical Simulation of a Solar Domestic Hot Water System
NASA Astrophysics Data System (ADS)
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
Numerical Solution of Incompressible Navier-Stokes Equations Using a Fractional-Step Approach
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan
1999-01-01
A fractional step method for the solution of steady and unsteady incompressible Navier-Stokes equations is outlined. The method is based on a finite volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (3rd and 5th) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds Numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when 5th-order upwind differencing and a modified production term in the Baldwin-Barth one-equation turbulence model are used with adequate grid resolution.
NASA Astrophysics Data System (ADS)
Yang, Lei; Yan, Hongyong; Liu, Hong
2017-03-01
Implicit staggered-grid finite-difference (ISFD) scheme is competitive for its great accuracy and stability, whereas its coefficients are conventionally determined by the Taylor-series expansion (TE) method, leading to a loss in numerical precision. In this paper, we modify the TE method using the minimax approximation (MA), and propose a new optimal ISFD scheme based on the modified TE (MTE) with MA method. The new ISFD scheme takes the advantage of the TE method that guarantees great accuracy at small wavenumbers, and keeps the property of the MA method that keeps the numerical errors within a limited bound at the same time. Thus, it leads to great accuracy for numerical solution of the wave equations. We derive the optimal ISFD coefficients by applying the new method to the construction of the objective function, and using a Remez algorithm to minimize its maximum. Numerical analysis is made in comparison with the conventional TE-based ISFD scheme, indicating that the MTE-based ISFD scheme with appropriate parameters can widen the wavenumber range with high accuracy, and achieve greater precision than the conventional ISFD scheme. The numerical modeling results also demonstrate that the MTE-based ISFD scheme performs well in elastic wave simulation, and is more efficient than the conventional ISFD scheme for elastic modeling.
NASA Astrophysics Data System (ADS)
Liu, Chun-Ho; Leung, Dennis Y. C.
2006-02-01
This study employed a direct numerical simulation (DNS) technique to contrast the plume behaviours and mixing of passive scalar emitted from line sources (aligned with the spanwise direction) in neutrally and unstably stratified open-channel flows. The DNS model was developed using the Galerkin finite element method (FEM) employing trilinear brick elements with equal-order interpolating polynomials that solved the momentum and continuity equations, together with conservation of energy and mass equations in incompressible flow. The second-order accurate fractional-step method was used to handle the implicit velocity-pressure coupling in incompressible flow. It also segregated the solution to the advection and diffusion terms, which were then integrated in time, respectively, by the explicit third-order accurate Runge-Kutta method and the implicit second-order accurate Crank-Nicolson method. The buoyancy term under unstable stratification was integrated in time explicitly by the first-order accurate Euler method. The DNS FEM model calculated the scalar-plume development and the mean plume path. In particular, it calculated the plume meandering in the wall-normal direction under unstable stratification that agreed well with the laboratory and field measurements, as well as previous modelling results available in literature.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1995-01-01
The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.
In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less
Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.
2016-10-21
In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1991-07-01
HEATING is a FORTRAN program designed to solve steady-state and/or transient heat conduction problems in one-, two-, or three- dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heating generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which maymore » be surface-to-boundary or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General graybody radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING is variably dimensioned and utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution (for one-dimensional or two-dimensional problems), and conjugate gradient. Transient problems may be solved using one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method (which for some circumstances allows a time step greater than the CEP stability criterion). The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
Numerical simulation of weakly ionized hypersonic flow over reentry capsules
NASA Astrophysics Data System (ADS)
Scalabrin, Leonardo C.
The mathematical and numerical formulation employed in the development of a new multi-dimensional Computational Fluid Dynamics (CFD) code for the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium over reentry configurations is presented. The flow is modeled using the Navier-Stokes equations modified to include finite-rate chemistry and relaxation rates to compute the energy transfer between different energy modes. The set of equations is solved numerically by discretizing the flowfield using unstructured grids made of any mixture of quadrilaterals and triangles in two-dimensions or hexahedra, tetrahedra, prisms and pyramids in three-dimensions. The partial differential equations are integrated on such grids using the finite volume approach. The fluxes across grid faces are calculated using a modified form of the Steger-Warming Flux Vector Splitting scheme that has low numerical dissipation inside boundary layers. The higher order extension of inviscid fluxes in structured grids is generalized in this work to be used in unstructured grids. Steady state solutions are obtained by integrating the solution over time implicitly. The resulting sparse linear system is solved by using a point implicit or by a line implicit method in which a tridiagonal matrix is assembled by using lines of cells that are formed starting at the wall. An algorithm that assembles these lines using completely general unstructured grids is developed. The code is parallelized to allow simulation of computationally demanding problems. The numerical code is successfully employed in the simulation of several hypersonic entry flows over space capsules as part of its validation process. Important quantities for the aerothermodynamics design of capsules such as aerodynamic coefficients and heat transfer rates are compared to available experimental and flight test data and other numerical results yielding very good agreement. A sensitivity analysis of predicted radiative heating of a space capsule to several thermo-chemical non-equilibrium models is also performed.
Computation of viscous blast wave flowfields
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1991-01-01
A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.
Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation
NASA Astrophysics Data System (ADS)
Costa, Carlos A. N.; Campos, Itamara S.; Costa, Jessé C.; Neto, Francisco A.; Schleicher, Jörg; Novais, Amélia
2013-08-01
Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality.
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
NASA Astrophysics Data System (ADS)
Khokhlova, Vera A.; Ponomaryov, Anatoly E.; Averkiou, Michalakis A.; Crum, Lawrence A.
2002-11-01
A numerical solution of the KZK-type parabolic nonlinear evolution equation is presented for finite-amplitude sound beams radiated by rectangular sources. The initial acoustic waveform is a short tone burst, similar to those used in diagnostic ultrasound. The generation of higher harmonic components and their spatial structure are investigated for media similar to tissue with various frequency dependent absorption properties. Nonlinear propagation in a thermoviscous fluid with a quadratic frequency law of absorption is compared to that in tissue with a nearly linear frequency law of absorption. The algorithm is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am. 97, 906-917 (1995)] to model circular sources. The algorithm is generalized for two-dimensional sources without axial symmetry. The diffraction integral is adapted in the time-domain for two dimensions with the implicit backward finite difference (IBFD) scheme in the nearfield and with the alternate direction implicit (ADI) method at longer distances. Arbitrary frequency dependence of absorption is included in this model and solved in the frequency-domain using the FFT technique. The results of simulation may be used to better understand the nonlinear beam structure for tissue harmonic imaging in modern medical diagnostic scanners. [Work supported by CRDF and RFBR.
Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Halem, Milton (Technical Monitor)
2000-01-01
We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.
Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids
NASA Astrophysics Data System (ADS)
Otero, Evelyn; Eliasson, Peter
2015-03-01
An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.
Tetrahedral Finite-Volume Solutions to the Navier-Stokes Equations on Complex Configurations
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Pirzadeh, Shahyar Z.
1998-01-01
A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.
A fully vectorized numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Patel, N.
1983-01-01
A vectorizable algorithm is presented for the implicit finite difference solution of the incompressible Navier-Stokes equations in general curvilinear coordinates. The unsteady Reynolds averaged Navier-Stokes equations solved are in two dimension and non-conservative primitive variable form. A two-layer algebraic eddy viscosity turbulence model is used to incorporate the effects of turbulence. Two momentum equations and a Poisson pressure equation, which is obtained by taking the divergence of the momentum equations and satisfying the continuity equation, are solved simultaneously at each time step. An elliptic grid generation approach is used to generate a boundary conforming coordinate system about an airfoil. The governing equations are expressed in terms of the curvilinear coordinates and are solved on a uniform rectangular computational domain. A checkerboard SOR, which can effectively utilize the computer architectural concept of vector processing, is used for iterative solution of the governing equations.
Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Turkel, Eli; Schaffer, Steve
1987-01-01
Three explicit multigrid methods, Ni's method, Jameson's finite-volume method, and a finite-difference method based on Brandt's work, are described and compared for two model problems. All three methods use an explicit multistage Runge-Kutta scheme on the fine grid, and this scheme is also described. Convergence histories for inviscid flow over a bump in a channel for the fine-grid scheme alone show that convergence rate is proportional to Courant number and that implicit residual smoothing can significantly accelerate the scheme. Ni's method was slightly slower than the implicitly-smoothed scheme alone. Brandt's and Jameson's methods are shown to be equivalent in form but differ in their node versus cell-centered implementations. They are about 8.5 times faster than Ni's method in terms of CPU time. Results for an oblique shock/boundary layer interaction problem verify the accuracy of the finite-difference code. All methods slowed considerably on the stretched viscous grid but Brandt's method was still 2.1 times faster than Ni's method.
Numerical solutions of 2-D multi-stage rotor/stator unsteady flow interactions
NASA Astrophysics Data System (ADS)
Yang, R.-J.; Lin, S.-J.
1991-01-01
The Rai method of single-stage rotor/stator flow interaction is extended to handle multistage configurations. In this study, a two-dimensional Navier-Stokes multi-zone approach was used to investigate unsteady flow interactions within two multistage axial turbines. The governing equations are solved by an iterative, factored, implicit finite-difference, upwind algorithm. Numerical accuracy is checked by investigating the effect of time step size, the effect of subiteration in the Newton-Raphson technique, and the effect of full viscous versus thin-layer approximation. Computer results compared well with experimental data. Unsteady flow interactions, wake cutting, and the associated evolution of vortical entities are discussed.
Supersonic quasi-axisymmetric vortex breakdown
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, Hamdy A.; Liu, C. H.
1991-01-01
An extensive computational study of supersonic quasi-axisymmetric vortex breakdown in a configured circular duct is presented. The unsteady, compressible, full Navier-Stokes (NS) equations are used. The NS equations are solved for the quasi-axisymmetric flows using an implicit, upwind, flux difference splitting, finite volume scheme. The quasi-axisymmetric solutions are time accurate and are obtained by forcing the components of the flowfield vector to be equal on two axial planes, which are in close proximity of each other. The effect of Reynolds number, for laminar flows, on the evolution and persistence of vortex breakdown, is studied. Finally, the effect of swirl ration at the duct inlet is investigated.
Aerodynamic Design on Unstructured Grids for Turbulent Flows
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Bonhaus, Daryl L.
1997-01-01
An aerodynamic design algorithm for turbulent flows using unstructured grids is described. The current approach uses adjoint (costate) variables for obtaining derivatives of the cost function. The solution of the adjoint equations is obtained using an implicit formulation in which the turbulence model is fully coupled with the flow equations when solving for the costate variables. The accuracy of the derivatives is demonstrated by comparison with finite-difference gradients and a few example computations are shown. In addition, a user interface is described which significantly reduces the time required for setting up the design problems. Recommendations on directions of further research into the Navier Stokes design process are made.
Khan, Junaid Ahmad; Mustafa, M.; Hayat, T.; Sheikholeslami, M.; Alsaedi, A.
2015-01-01
This work deals with the three-dimensional flow of nanofluid over a bi-directional exponentially stretching sheet. The effects of Brownian motion and thermophoretic diffusion of nanoparticles are considered in the mathematical model. The temperature and nanoparticle volume fraction at the sheet are also distributed exponentially. Local similarity solutions are obtained by an implicit finite difference scheme known as Keller-box method. The results are compared with the existing studies in some limiting cases and found in good agreement. The results reveal the existence of interesting Sparrow-Gregg-type hills for temperature distribution corresponding to some range of parametric values. PMID:25785857
FY07 NRL DoD High Performance Computing Modernization Program Annual Reports
2008-09-05
performed. Implicit and explicit solutions methods are used as appropriate. The primary finite element codes used are ABAQUS and ANSYS. User subroutines ...geometric complexities, loading path dependence, rate dependence, and interaction between loading types (electrical, thermal and mechanical). Work is not...are used for specialized material constitutive response. Coupled material responses, such as electrical- thermal for capacitor materials or electrical
Predictive Flow Control to Minimize Convective Time Delays
2013-08-19
simulation. The CFO solver used is Cobalt, an unstructured finite-volume code developed for the solution of the compress- ible Navier-Stokes...cell-centered fin ite volume approach applicable to arbitrary cell topologies (e.g, hexahedra, prisms, tetrahedra). The spatial operator uses a Riemann ... solver , least squares gradient calculations using QR factorizati on to provide second order accuracy in space. A point implicit method using
NASA Technical Reports Server (NTRS)
Gloss, R. J.
1971-01-01
A finite difference turbulent boundary layer computer program which allows for mass transfer wall cooling and equilibrium chemistry effects is presented. The program is capable of calculating laminar or turbulent boundary layer solutions for an arbitrary ideal gas or an equilibrium hydrogen oxygen system. Either two dimensional or axisymmetric geometric configurations may be considered. The equations are solved, in nondimension-alized physical coordinates, using the implicit Crank-Nicolson technique. The finite difference forms of the conservation of mass, momentum, total enthalpy and elements equations are linearized and uncoupled, thereby generating easily solvable tridiagonal sets of algebraic equations. A detailed description of the computer program, as well as a program user's manual is provided. Detailed descriptions of all boundary layer subroutines are included, as well as a section defining all program symbols of principal importance. Instructions are then given for preparing card input to the program and for interpreting the printed output. Finally, two sample cases are included to illustrate the use of the program.
Application of an unstructured grid flow solver to planes, trains and automobiles
NASA Technical Reports Server (NTRS)
Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram
1993-01-01
Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.
Development Of A Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Kwak, Dochan
1993-01-01
Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.
A Numerical Model for Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1995-01-01
A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.
NASA Technical Reports Server (NTRS)
Chao, D. F. K.
1983-01-01
Transient, numerical simulations of the de-icing of composite aircraft components by electrothermal heating were performed for a two dimensional rectangular geometry. The implicit Crank-Nicolson formulation was used to insure stability of the finite-difference heat conduction equations and the phase change in the ice layer was simulated using the Enthalpy method. The Gauss-Seidel point iterative method was used to solve the system of difference equations. Numerical solutions illustrating de-icer performance for various composite aircraft structures and environmental conditions are presented. Comparisons are made with previous studies. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
NASA Astrophysics Data System (ADS)
Chew, J. V. L.; Sulaiman, J.
2017-09-01
Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.
Sierra/Solid Mechanics 4.48 User's Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutionsmore » of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.« less
Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,
1984-01-12
Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density
NASA Technical Reports Server (NTRS)
Roberts, G. O.; Fowlis, W. W.; Miller, T. L.
1984-01-01
Numerical methods are used to design a spherical baroclinic flow model experiment of the large scale atmosphere flow for Spacelab. The dielectric simulation of radial gravity is only dominant in a low gravity environment. Computer codes are developed to study the processes at work in crystal growing systems which are also candidates for space flight. Crystalline materials rarely achieve their potential properties because of imperfections and component concentration variations. Thermosolutal convection in the liquid melt can be the cause of these imperfections. Such convection is suppressed in a low gravity environment. Two and three dimensional finite difference codes are being used for this work. Nonuniform meshes and implicit iterative methods are used. The iterative method for steady solutions is based on time stepping but has the options of different time steps for velocity and temperature and of a time step varying smoothly with position according to specified powers of the mesh spacings. This allows for more rapid convergence. The code being developed for the crystal growth studies allows for growth of the crystal as the solid-liquid interface. The moving interface is followed using finite differences; shape variations are permitted. For convenience in applying finite differences in the solid and liquid, a time dependent coordinate transformation is used to make this interface a coordinate surface.
Estimating Aquifer Properties Using Sinusoidal Pumping Tests
NASA Astrophysics Data System (ADS)
Rasmussen, T. C.; Haborak, K. G.; Young, M. H.
2001-12-01
We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1993-02-01
HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, K.W.
1993-02-01
HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- andmore » position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.« less
Multidisciplinary aeroelastic analysis of a generic hypersonic vehicle
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Petersen, K. L.
1993-01-01
This paper presents details of a flutter and stability analysis of aerospace structures such as hypersonic vehicles. Both structural and aerodynamic domains are discretized by the common finite element technique. A vibration analysis is first performed by the STARS code employing a block Lanczos solution scheme. This is followed by the generation of a linear aerodynamic grid for subsequent linear flutter analysis within subsonic and supersonic regimes of the flight envelope; the doublet lattice and constant pressure techniques are employed to generate the unsteady aerodynamic forces. Flutter analysis is then performed for several representative flight points. The nonlinear flutter solution is effected by first implementing a CFD solution of the entire vehicle. Thus, a 3-D unstructured grid for the entire flow domain is generated by a moving front technique. A finite element Euler solution is then implemented employing a quasi-implicit as well as an explicit solution scheme. A novel multidisciplinary analysis is next effected that employs modal and aerodynamic data to yield aerodynamic damping characteristics. Such analyses are performed for a number of flight points to yield a large set of pertinent data that define flight flutter characteristics of the vehicle. This paper outlines the finite-element-based integrated analysis procedures in detail, which is followed by the results of numerical analyses of flight flutter simulation.
A finite-volume ELLAM for three-dimensional solute-transport modeling
Russell, T.F.; Heberton, C.I.; Konikow, Leonard F.; Hornberger, G.Z.
2003-01-01
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1994-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.
NASA Astrophysics Data System (ADS)
Luo, Li; Wang, Xiao-Ping; Cai, Xiao-Chuan
2017-11-01
We study numerically the dynamics of a three-dimensional droplet spreading on a rough solid surface using a phase-field model consisting of the coupled Cahn-Hilliard and Navier-Stokes equations with a generalized Navier boundary condition (GNBC). An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. The semi-implicit time discretization scheme results in a decoupled system for the phase function, the velocity, and the pressure. In addition, a mass compensation algorithm is introduced to preserve the mass of the droplet. To efficiently solve the decoupled systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that can not be achieved by two-dimensional simulations. On a surface with circular posts, we study how wettability of the rough surface depends on the geometry of the posts. The contact line motion for a droplet spreading over some periodic rough surfaces are also efficiently computed. Moreover, we study the spreading process of an impacting droplet on a microstructured surface, a qualitative agreement is achieved between the numerical and experimental results. The parallel performance suggests that the proposed solution algorithm is scalable with over 4,000 processors cores with tens of millions of unknowns.
NASA Astrophysics Data System (ADS)
Saha Ray, S.
2017-09-01
In the present paper the Riesz fractional coupled Schrödinger-Boussinesq (S-B) equations have been solved by the time-splitting Fourier spectral (TSFS) method. This proposed technique is utilized for discretizing the Schrödinger like equation and further, a pseudospectral discretization has been employed for the Boussinesq-like equation. Apart from that an implicit finite difference approach has also been proposed to compare the results with the solutions obtained from the time-splitting technique. Furthermore, the time-splitting method is proved to be unconditionally stable. The error norms along with the graphical solutions have also been presented here. Supported by NBHM, Mumbai, under Department of Atomic Energy, Government of India vide Grant No. 2/48(7)/2015/NBHM (R.P.)/R&D II/11403
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1991-01-01
Efficient iterative solution methods are being developed for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. Thus, the extra work required by iterative schemes can also be designed to perform efficiently on current and future generation scalable, missively parallel machines. An obvious candidate for iteratively solving the system of coupled nonlinear algebraic equations arising in CFD applications is the Newton method. Newton's method was implemented in existing finite difference and finite volume methods. Depending on the complexity of the problem, the number of Newton iterations needed per step to solve the discretized system of equations can, however, vary dramatically from a few to several hundred. Another popular approach based on the classical conjugate gradient method, known as the GMRES (Generalized Minimum Residual) algorithm is investigated. The GMRES algorithm was used in the past by a number of researchers for solving steady viscous and inviscid flow problems with considerable success. Here, the suitability of this algorithm is investigated for solving the system of nonlinear equations that arise in unsteady Navier-Stokes solvers at each time step. Unlike the Newton method which attempts to drive the error in the solution at each and every node down to zero, the GMRES algorithm only seeks to minimize the L2 norm of the error. In the GMRES algorithm the changes in the flow properties from one time step to the next are assumed to be the sum of a set of orthogonal vectors. By choosing the number of vectors to a reasonably small value N (between 5 and 20) the work required for advancing the solution from one time step to the next may be kept to (N+1) times that of a noniterative scheme. Many of the operations required by the GMRES algorithm such as matrix-vector multiplies, matrix additions and subtractions can all be vectorized and parallelized efficiently.
Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo
2014-11-01
Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sambath, P.; Pullepu, Bapuji; Kannan, R. M.
2018-04-01
The impact of thermal radiation on unsteady laminar free convective MHD flow of a incompressible viscous fluid passes through a vertically inclined plate under the persuade of heat source and sink is presented here.Plate surface is considered to have variable wall temperature. The fluid regarded as gray absorbing / emitting, but non dispersing medium. The periphery layer dimensionless equations that administer the flow are evaluated by a finite difference implicit method called Crank Nicolson method. Numerical solutions are carried out for velocity, temperature, local shear stress, heat transfer rate for various values of the parameters (Pr, λ, Δ M, Rd ) are presented.
Numerical solution of Euler's equation by perturbed functionals
NASA Technical Reports Server (NTRS)
Dey, S. K.
1985-01-01
A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.
Incompressible viscous flow computations for the pump components and the artificial heart
NASA Technical Reports Server (NTRS)
Kiris, Cetin
1992-01-01
A finite difference, three dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. Here, equations are solved in steadily rotating reference frames by using the steady state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two.
Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly
2016-01-01
This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.
Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; ...
2016-02-10
Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method,more » and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.« less
Multigrid Methods for Aerodynamic Problems in Complex Geometries
NASA Technical Reports Server (NTRS)
Caughey, David A.
1995-01-01
Work has been directed at the development of efficient multigrid methods for the solution of aerodynamic problems involving complex geometries, including the development of computational methods for the solution of both inviscid and viscous transonic flow problems. The emphasis is on problems of complex, three-dimensional geometry. The methods developed are based upon finite-volume approximations to both the Euler and the Reynolds-Averaged Navier-Stokes equations. The methods are developed for use on multi-block grids using diagonalized implicit multigrid methods to achieve computational efficiency. The work is focused upon aerodynamic problems involving complex geometries, including advanced engine inlets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiang; Yang, Chao; State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190
2015-03-15
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracymore » (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.« less
A review of hybrid implicit explicit finite difference time domain method
NASA Astrophysics Data System (ADS)
Chen, Juan
2018-06-01
The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk; Seaid, Mohammed; Trevelyan, Jon
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach canmore » be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.« less
NASA Astrophysics Data System (ADS)
Moeller, Mirko; Berciu, Mona
2015-03-01
When studying the properties of complex, magnetic materials it is often necessary to work with effective Hamiltonians. In many cases the effective Hamiltonian is obtained by mapping the full, multiband Hamiltonian onto a simpler, single band model. A prominent example is the use of Zhang-Rice singlets to map the multiband Emery model for cuprates onto the single band t - J -model. Such mappings are usually done at zero temperature (T) and it is implicitly assumed that they are justified at finite T, as well. We present results on 3 different models of a single charge carrier (electron or hole) injected into a ferromagnetic Ising chain. Model I is a two band, two sublattice model, Model II is a two band, single sublattice model, and Model III is a single band model, the so called t -Jz -model. Due to the absence of spin-flip terms, a numerically exact solution of all 3 Models is possible, even at finite T. At zero T a mapping between all 3 models results in the same low energy physics. However, this is no longer true at finite T. Here the low energy behavior of Model III is significantly different from that of Models I and II. The reasons for this discrepancy and its implications for more realistic models (higher dimension, inclusion of spin-flip terms) are discussed. This work was supported by NSERC, QMI and the UBC 4YF (M.M.).
A fully implicit finite element method for bidomain models of cardiac electromechanics
Dal, Hüsnü; Göktepe, Serdar; Kaliske, Michael; Kuhl, Ellen
2012-01-01
We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes. PMID:23175588
A finite-volume module for all-scale Earth-system modelling at ECMWF
NASA Astrophysics Data System (ADS)
Kühnlein, Christian; Malardel, Sylvie; Smolarkiewicz, Piotr
2017-04-01
We highlight recent advancements in the development of the finite-volume module (FVM) (Smolarkiewicz et al., 2016) for the IFS at ECMWF. FVM represents an alternative dynamical core that complements the operational spectral dynamical core of the IFS with new capabilities. Most notably, these include a compact-stencil finite-volume discretisation, flexible meshes, conservative non-oscillatory transport and all-scale governing equations. As a default, FVM solves the compressible Euler equations in a geospherical framework (Szmelter and Smolarkiewicz, 2010). The formulation incorporates a generalised terrain-following vertical coordinate. A hybrid computational mesh, fully unstructured in the horizontal and structured in the vertical, enables efficient global atmospheric modelling. Moreover, a centred two-time-level semi-implicit integration scheme is employed with 3D implicit treatment of acoustic, buoyant, and rotational modes. The associated 3D elliptic Helmholtz problem is solved using a preconditioned Generalised Conjugate Residual approach. The solution procedure employs the non-oscillatory finite-volume MPDATA advection scheme that is bespoke for the compressible dynamics on the hybrid mesh (Kühnlein and Smolarkiewicz, 2017). The recent progress of FVM is illustrated with results of benchmark simulations of intermediate complexity, and comparison to the operational spectral dynamical core of the IFS. C. Kühnlein, P.K. Smolarkiewicz: An unstructured-mesh finite-volume MPDATA for compressible atmospheric dynamics, J. Comput. Phys. (2017), in press. P.K. Smolarkiewicz, W. Deconinck, M. Hamrud, C. Kühnlein, G. Mozdzynski, J. Szmelter, N.P. Wedi: A finite-volume module for simulating global all-scale atmospheric flows, J. Comput. Phys. 314 (2016) 287-304. J. Szmelter, P.K. Smolarkiewicz: An edge-based unstructured mesh discretisation in geospherical framework, J. Comput. Phys. 229 (2010) 4980-4995.
Overview of the relevant CFD work at Thiokol Corporation
NASA Technical Reports Server (NTRS)
Chwalowski, Pawel; Loh, Hai-Tien
1992-01-01
An in-house developed proprietary advanced computational fluid dynamics code called SHARP (Trademark) is a primary tool for many flow simulations and design analyses. The SHARP code is a time dependent, two dimensional (2-D) axisymmetric numerical solution technique for the compressible Navier-Stokes equations. The solution technique in SHARP uses a vectorizable implicit, second order accurate in time and space, finite volume scheme based on an upwind flux-difference splitting of a Roe-type approximated Riemann solver, Van Leer's flux vector splitting, and a fourth order artificial dissipation scheme with a preconditioning to accelerate the flow solution. Turbulence is simulated by an algebraic model, and ultimately the kappa-epsilon model. Some other capabilities of the code are 2-D two-phase Lagrangian particle tracking and cell blockages. Extensive development and testing has been conducted on the 3-D version of the code with flow, combustion, and turbulence interactions. The emphasis here is on the specific applications of SHARP in Solid Rocket Motor design. Information is given in viewgraph form.
NASA Technical Reports Server (NTRS)
Moss, J. N.
1971-01-01
Numerical solutions are presented for the viscous shocklayer equations where the chemistry is treated as being either frozen, equilibrium, or nonequilibrium. Also the effects of the diffusion model, surface catalyticity, and mass injection on surface transport and flow parameters are considered. The equilibrium calculations for air species using multicomponent: diffusion provide solutions previously unavailable. The viscous shock-layer equations are solved by using an implicit finite-difference scheme. The flow is treated as a mixture of inert and thermally perfect species. Also the flow is assumed to be in vibrational equilibrium. All calculations are for a 45 deg hyperboloid. The flight conditions are those for various altitudes and velocities in the earth's atmosphere. Data are presented showing the effects of the chemical models; diffusion models; surface catalyticity; and mass injection of air, water, and ablation products on heat transfer; skin friction; shock stand-off distance; wall pressure distribution; and tangential velocity, temperature, and species profiles.
A numerical method for computing unsteady 2-D boundary layer flows
NASA Technical Reports Server (NTRS)
Krainer, Andreas
1988-01-01
A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.
Three Dimensional Solution of Pneumatic Active Control of Forebody Vortex Asymmetry
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; SharafEl-Din, Hazem H.; Liu, C. H.
1995-01-01
Pneumatic active control of asymmetric vortical flows around a slender pointed forebody is investigated using the three dimensional solution for the compressible thin-layer Navier-Stokes equation. The computational applications cover the normal and tangential injection control of asymmetric flows around a 5 degree semi-apex angle cone at a 40 degree angle of attack, 1.4 freestream Mach number and 6 x 10(exp 6) freestream Reynolds number (based on the cone length). The effective tangential angle range of 67.5 approaches minus 67.5 degrees is used for both normal and tangential ports of injection. The effective axial length of injection is varied from 0.03 to 0.05. The computational solver uses the implicit, upwind, flux difference splitting finite volume scheme, and the grid consists of 161 x 55 x 65 points in the wrap around, normal and axial directions, respectively. The results show that tangential injection is more effective than normal injection.
Large eddy simulation of incompressible turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Reynolds, W. C.; Ferziger, J. H.
1978-01-01
The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Weatherill, W. H.; Yip, E. L.
1984-01-01
A finite difference method to solve the unsteady transonic flow about harmonically oscillating wings was investigated. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The differential equation for the unsteady velocity potential is linear with spatially varying coefficients and with the time variable eliminated by assuming harmonic motion. An alternating direction implicit procedure was investigated, and a pilot program was developed for both two and three dimensional wings. This program provides a relatively efficient relaxation solution without previously encountered solution instability problems. Pressure distributions for two rectangular wings are calculated. Conjugate gradient techniques were developed for the asymmetric, indefinite problem. The conjugate gradient procedure is evaluated for applications to the unsteady transonic problem. Different equations for the alternating direction procedure are derived using a coordinate transformation for swept and tapered wing planforms. Pressure distributions for swept, untaped wings of vanishing thickness are correlated with linear results for sweep angles up to 45 degrees.
Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine
NASA Technical Reports Server (NTRS)
Anderson, O. L.
1984-01-01
Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.
High-speed reacting flow simulation using USA-series codes
NASA Astrophysics Data System (ADS)
Chakravarthy, S. R.; Palaniswamy, S.
In this paper, the finite-rate chemistry (FRC) formulation for the USA-series of codes and three sets of validations are presented. USA-series computational fluid dynamics (CFD) codes are based on Unified Solution Algorithms including explicity and implicit formulations, factorization and relaxation approaches, time marching and space marching methodolgies, etc., in order to be able to solve a very wide class of CDF problems using a single framework. Euler or Navier-Stokes equations are solved using a finite-volume treatment with upwind Total Variation Diminishing discretization for the inviscid terms. Perfect and real gas options are available including equilibrium and nonequilibrium chemistry. This capability has been widely used to study various problems including Space Shuttle exhaust plumes, National Aerospace Plane (NASP) designs, etc. (1) Numerical solutions are presented showing the full range of possible solutions to steady detonation wave problems. (2) Comparison between the solution obtained by the USA code and Generalized Kinetics Analysis Program (GKAP) is shown for supersonic combustion in a duct. (3) Simulation of combustion in a supersonic shear layer is shown to have reasonable agreement with experimental observations.
NASA Technical Reports Server (NTRS)
Walker, K. P.; Freed, A. D.
1991-01-01
New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1995-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.
NASA Technical Reports Server (NTRS)
Harris, J. E.
1975-01-01
An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.
NASA Astrophysics Data System (ADS)
Tay, Wei Choon; Tan, Eng Leong
2014-07-01
In this paper, we have proposed a pentadiagonal alternating-direction-implicit (Penta-ADI) finite-difference time-domain (FDTD) method for the two-dimensional Schrödinger equation. Through the separation of complex wave function into real and imaginary parts, a pentadiagonal system of equations for the ADI method is obtained, which results in our Penta-ADI method. The Penta-ADI method is further simplified into pentadiagonal fundamental ADI (Penta-FADI) method, which has matrix-operator-free right-hand-sides (RHS), leading to the simplest and most concise update equations. As the Penta-FADI method involves five stencils in the left-hand-sides (LHS) of the pentadiagonal update equations, special treatments that are required for the implementation of the Dirichlet's boundary conditions will be discussed. Using the Penta-FADI method, a significantly higher efficiency gain can be achieved over the conventional Tri-ADI method, which involves a tridiagonal system of equations.
A Navier-Stokes Solution of Hull-Ring Wing-Thruster Interaction
NASA Technical Reports Server (NTRS)
Yang, C.-I.; Hartwich, P.; Sundaram, P.
1991-01-01
Navier-Stokes simulations of high Reynolds number flow around an axisymmetric body supported in a water tunnel were made. The numerical method is based on a finite-differencing high resolution second-order accurate implicit upwind scheme. Four different configurations were investigated, these are: (1) barebody; (2) body with an operating propeller; (3) body with a ring wing; and (4) body with a ring wing and an operating propeller. Pressure and velocity components near the stern region were obtained computationally and are shown to compare favorably with the experimental data. The method correctly predicts the existence and extent of stern flow separation for the barebody and the absence of flow separation for the three other configurations with ring wing and/or propeller.
Computational Fluid Dynamics: Algorithms and Supercomputers
1988-03-01
1985. 1.2. Pulliam, T., and Steger, J. , Implicit Finite Difference Simulations of Three Dimensional Compressible Flow, AIAA Journal , Vol. 18, No. 2...approaches infinity, assuming N is bounded. The question as to actual performance when M is finite and N varies, is a different matter. (Note: the CYBER...PARTICLE-IN-CELL 9i% 3.b7 j.48 WEATHER FORECAST 98% 3.77 3.55 SEISMIC MIGRATION 98% 3.85 3.45 MONTE CARLO 99% 3.85 3.75 LATTICE GAUGE 100% 4.00 3.77
Modeling of transient heat pipe operation
NASA Technical Reports Server (NTRS)
Colwell, G. T.; Hartley, J. G.
1986-01-01
Mathematical models and associated solution procedures which can be used to design heat pipe cooled structures for use on hypersonic vehicles are being developed. The models should also have the capability to predict off-design performance for a variety of operating conditions. It is expected that the resulting models can be used to predict startup behavior of liquid metal heat pipes to be used in reentry vehicles, hypersonic aircraft, and space nuclear reactors. Work to date related to numerical solutions of governing differential equations for the outer shell and the combination capillary structure and working fluid is summarized. Finite element numerical equations using both implicit, explicit, and combination methods were examined.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
Method of Lines Transpose an Implicit Vlasov Maxwell Solver for Plasmas
2015-04-17
boundary crossings should be rare. Numerical results for the Bennett pinch are given in Figure 9. In order to resolve large gradients near the center of the...contributing to the large error at the center of the beam due to large gradients there) and with the finite beam cut-off radius and the outflow boundary...usable time step size can be limited by the numerical accuracy of the method when there are large gradients (high-frequency content) in the solution. We
Characteristic-based algorithms for flows in thermo-chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Walters, Robert W.; Cinnella, Pasquale; Slack, David C.; Halt, David
1990-01-01
A generalized finite-rate chemistry algorithm with Steger-Warming, Van Leer, and Roe characteristic-based flux splittings is presented in three-dimensional generalized coordinates for the Navier-Stokes equations. Attention is placed on convergence to steady-state solutions with fully coupled chemistry. Time integration schemes including explicit m-stage Runge-Kutta, implicit approximate-factorization, relaxation and LU decomposition are investigated and compared in terms of residual reduction per unit of CPU time. Practical issues such as code vectorization and memory usage on modern supercomputers are discussed.
A comparison of two central difference schemes for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Maksymiuk, C. M.; Swanson, R. C.; Pulliam, T. H.
1990-01-01
Five viscous transonic airfoil cases were computed by two significantly different computational fluid dynamics codes: An explicit finite-volume algorithm with multigrid, and an implicit finite-difference approximate-factorization method with Eigenvector diagonalization. Both methods are described in detail, and their performance on the test cases is compared. The codes utilized the same grids, turbulence model, and computer to provide the truest test of the algorithms. The two approaches produce very similar results, which, for attached flows, also agree well with experimental results; however, the explicit code is considerably faster.
A simple level set method for solving Stefan problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Merriman, B.; Osher, S.
1997-07-15
Discussed in this paper is an implicit finite difference scheme for solving a heat equation and a simple level set method for capturing the interface between solid and liquid phases which are used to solve Stefan problems.
Implementation of Implicit Adaptive Mesh Refinement in an Unstructured Finite-Volume Flow Solver
NASA Technical Reports Server (NTRS)
Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.
2013-01-01
This paper explores the implementation of adaptive mesh refinement in an unstructured, finite-volume solver. Unsteady and steady problems are considered. The effect on the recovery of high-order numerics is explored and the results are favorable. Important to this work is the ability to provide a path for efficient, implicit time advancement. A method using a simple refinement sensor based on undivided differences is discussed and applied to a practical problem: a shock-shock interaction on a hypersonic, inviscid double-wedge. Cases are compared to uniform grids without the use of adapted meshes in order to assess error and computational expense. Discussion of difficulties, advances, and future work prepare this method for additional research. The potential for this method in more complicated flows is described.
NASA Astrophysics Data System (ADS)
Islam, Muhammad Rabiul; Sakib-Ul-Alam, Md.; Nazat, Kazi Kaarima; Hassan, M. Munir
2017-12-01
FEA results greatly depend on analysis parameters. MSC NASTRAN nonlinear implicit analysis code has been used in large deformation finite element analysis of pitted marine SM490A steel rectangular plate. The effect of two types actual pit shape on parameters of integrity of structure has been analyzed. For 3-D modeling, a proposed method for simulation of pitted surface by probabilistic corrosion model has been used. The result has been verified with the empirical formula proposed by finite element analysis of steel surface generated with different pitted data where analyses have been carried out by the code of LS-DYNA 971. In the both solver, an elasto-plastic material has been used where an arbitrary stress versus strain curve can be defined. In the later one, the material model is based on the J2 flow theory with isotropic hardening where a radial return algorithm is used. The comparison shows good agreement between the two results which ensures successful simulation with comparatively less energy and time.
Unified gas-kinetic scheme with multigrid convergence for rarefied flow study
NASA Astrophysics Data System (ADS)
Zhu, Yajun; Zhong, Chengwen; Xu, Kun
2017-09-01
The unified gas kinetic scheme (UGKS) is based on direct modeling of gas dynamics on the mesh size and time step scales. With the modeling of particle transport and collision in a time-dependent flux function in a finite volume framework, the UGKS can connect the flow physics smoothly from the kinetic particle transport to the hydrodynamic wave propagation. In comparison with the direct simulation Monte Carlo (DSMC) method, the current equation-based UGKS can implement implicit techniques in the updates of macroscopic conservative variables and microscopic distribution functions. The implicit UGKS significantly increases the convergence speed for steady flow computations, especially in the highly rarefied and near continuum regimes. In order to further improve the computational efficiency, for the first time, a geometric multigrid technique is introduced into the implicit UGKS, where the prediction step for the equilibrium state and the evolution step for the distribution function are both treated with multigrid acceleration. More specifically, a full approximate nonlinear system is employed in the prediction step for fast evaluation of the equilibrium state, and a correction linear equation is solved in the evolution step for the update of the gas distribution function. As a result, convergent speed has been greatly improved in all flow regimes from rarefied to the continuum ones. The multigrid implicit UGKS (MIUGKS) is used in the non-equilibrium flow study, which includes microflow, such as lid-driven cavity flow and the flow passing through a finite-length flat plate, and high speed one, such as supersonic flow over a square cylinder. The MIUGKS shows 5-9 times efficiency increase over the previous implicit scheme. For the low speed microflow, the efficiency of MIUGKS is several orders of magnitude higher than the DSMC. Even for the hypersonic flow at Mach number 5 and Knudsen number 0.1, the MIUGKS is still more than 100 times faster than the DSMC method for obtaining a convergent steady state solution.
James, Andrew I.; Jawitz, James W.; Munoz-Carpena, Rafael
2009-01-01
A model to simulate transport of materials in surface water and ground water has been developed to numerically approximate solutions to the advection-dispersion equation. This model, known as the Transport and Reaction Simulation Engine (TaRSE), uses an algorithm that incorporates a time-splitting technique where the advective part of the equation is solved separately from the dispersive part. An explicit finite-volume Godunov method is used to approximate the advective part, while a mixed-finite element technique is used to approximate the dispersive part. The dispersive part uses an implicit discretization, which allows it to run stably with a larger time step than the explicit advective step. The potential exists to develop algorithms that run several advective steps, and then one dispersive step that encompasses the time interval of the advective steps. Because the dispersive step is computationally most expensive, schemes can be implemented that are more computationally efficient than non-time-split algorithms. This technique enables scientists to solve problems with high grid Peclet numbers, such as transport problems with sharp solute fronts, without spurious oscillations in the numerical approximation to the solution and with virtually no artificial diffusion.
NASA Astrophysics Data System (ADS)
Knight, John; Raats, Peter
2016-04-01
The EGU Division on Nonlinear Processes in Geophysics awards the Lewis Fry Richardson Medal. Richardson's significance is highlighted in http://www.egu.eu/awards-medals/portrait-lewis-fry-richardson/, but his contributions to soil physics and to numerical solutions of heat and diffusion equations are not mentioned. We would like to draw attention to those little known contributions. Lewis Fry Richardson (1881-1953) made important contributions to many fields including numerical weather prediction, finite difference solutions of partial differential equations, turbulent flow and diffusion, fractals, quantitative psychology and studies of conflict. He invented numerical weather prediction during World War I, although his methods were not successfully applied until 1950, after the invention of fast digital computers. In 1922 he published the book `Numerical weather prediction', of which few copies were sold and even fewer were read until the 1950s. To model heat and mass transfer in the atmosphere, he did much original work on turbulent flow and defined what is now known as the Richardson number. His technique for improving the convergence of a finite difference calculation is known as Richardson extrapolation, and was used by John Philip in his 1957 semi-analytical solution of the Richards equation for water movement in unsaturated soil. Richardson's first papers in 1908 concerned the numerical solution of the free surface problem of unconfined flow of water in saturated soil, arising in the design of drain spacing in peat. Later, for the lower boundary of his atmospheric model he needed to understand the movement of heat, liquid water and water vapor in what is now called the vadose zone and the soil plant atmosphere system, and to model coupled transfer of heat and flow of water in unsaturated soil. Finding little previous work, he formulated partial differential equations for transient, vertical flow of liquid water and for transfer of heat and water vapor. He paid considerable attention to the balances of water and energy at the soil-atmosphere and plant-atmosphere interfaces, making use of the concept of transfer resistance introduced by Brown and Escombe (1900) for leaf-atmosphere interfaces. He incorporated finite difference versions of all equations into his numerical weather forecasting model. From 1916, Richardson drove an ambulance in France in World War I, did weather computations in his spare time, and wrote a draft of his book. Later researchers such as L.A. Richards, D.A. de Vries and J.R. Philip from the 1930s to the 1950s were unaware that Richardson had anticipated many of their ideas on soil liquid water, heat, water vapor, and the soil-plant-atmosphere system. The Richards (1931) equation could rightly be called the Richardson (1922) equation! Richardson (1910) developed what we now call the Crank Nicolson implicit method for the heat or diffusion equation. To save effort, he used an explicit three level method after the first time step. Crank and Nicolson (1947) pointed out the instability in the explicit method, and used his implicit method for all time steps. Hanks and Bowers (1962) adapted the Crank Nicolson method to solve the Richards equation. So we could say that Hanks and Bowers used the Richardson finite difference method to solve the Richardson equation for soil water flow!
Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K
2011-11-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.
Radiation Diffusion:. AN Overview of Physical and Numerical Concepts
NASA Astrophysics Data System (ADS)
Graziani, Frank
2005-12-01
An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed
An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring
NASA Technical Reports Server (NTRS)
Buratynski, E. K.; Caughey, D. A.
1984-01-01
An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.
Ablation, Thermal Response, and Chemistry Program for Analysis of Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Milos, Frank S.; Chen, Yih-Kanq
2010-01-01
In previous work, the authors documented the Multicomponent Ablation Thermochemistry (MAT) and Fully Implicit Ablation and Thermal response (FIAT) programs. In this work, key features from MAT and FIAT were combined to create the new Fully Implicit Ablation, Thermal response, and Chemistry (FIATC) program. FIATC is fully compatible with FIAT (version 2.5) but has expanded capabilities to compute the multispecies surface chemistry and ablation rate as part of the surface energy balance. This new methodology eliminates B' tables, provides blown species fractions as a function of time, and enables calculations that would otherwise be impractical (e.g. 4+ dimensional tables) such as pyrolysis and ablation with kinetic rates or unequal diffusion coefficients. Equations and solution procedures are presented, then representative calculations of equilibrium and finite-rate ablation in flight and ground-test environments are discussed.
IRMHD: an implicit radiative and magnetohydrodynamical solver for self-gravitating systems
NASA Astrophysics Data System (ADS)
Hujeirat, A.
1998-07-01
The 2D implicit hydrodynamical solver developed by Hujeirat & Rannacher is now modified to include the effects of radiation, magnetic fields and self-gravity in different geometries. The underlying numerical concept is based on the operator splitting approach, and the resulting 2D matrices are inverted using different efficient preconditionings such as ADI (alternating direction implicit), the approximate factorization method and Line-Gauss-Seidel or similar iteration procedures. Second-order finite volume with third-order upwinding and second-order time discretization is used. To speed up convergence and enhance efficiency we have incorporated an adaptive time-step control and monotonic multilevel grid distributions as well as vectorizing the code. Test calculations had shown that it requires only 38 per cent more computational effort than its explicit counterpart, whereas its range of application to astrophysical problems is much larger. For example, strongly time-dependent, quasi-stationary and steady-state solutions for the set of Euler and Navier-Stokes equations can now be sought on a non-linearly distributed and strongly stretched mesh. As most of the numerical techniques used to build up this algorithm have been described by Hujeirat & Rannacher in an earlier paper, we focus in this paper on the inclusion of self-gravity, radiation and magnetic fields. Strategies for satisfying the condition ∇.B=0 in the implicit evolution of MHD flows are given. A new discretization strategy for the vector potential which allows alternating use of the direct method is prescribed. We investigate the efficiencies of several 2D solvers for a Poisson-like equation and compare their convergence rates. We provide a splitting approach for the radiative flux within the FLD (flux-limited diffusion) approximation to enhance consistency and accuracy between regions of different optical depths. The results of some test problems are presented to demonstrate the accuracy and robustness of the code.
Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Garcia, S. M.; Chung, T. J.
1997-01-01
Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.
Practical aspects of prestack depth migration with finite differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.C.; Oldfield, R.A.; Womble, D.E.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less
Background-Error Correlation Model Based on the Implicit Solution of a Diffusion Equation
2010-01-01
1 Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation Matthew J. Carrier* and Hans Ngodock...4. TITLE AND SUBTITLE Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation 5a. CONTRACT NUMBER 5b. GRANT...2001), which sought to model error correlations based on the explicit solution of a generalized diffusion equation. The implicit solution is
Modeling the curing process of thick-section autoclave cured composites
NASA Technical Reports Server (NTRS)
Loos, A. C.; Dara, P. H.
1985-01-01
Temperature gradients are significant during cure of large area, thick-section composites. Such temperature gradients result in nonuniformly cured parts with high void contents, poor ply compaction, and variations in the fiber/resin distribution. A model was developed to determine the temperature distribution in thick-section autoclave cured composites. Using the model, long with temperature measurements obtained from the thick-section composites, the effects of various processing parameters on the thermal response of the composites were examined. A one-dimensional heat transfer model was constructed for the composite-tool assembly. The governing differential equations and associated boundary conditions describing one-dimensional unsteady heat-conduction in the composite, tool plate, and pressure plate are given. Solution of the thermal model was obtained using an implicit finite difference technique.
NASA Astrophysics Data System (ADS)
Rawi, N. A.; Ilias, M. R.; Lim, Y. J.; Isa, Z. M.; Shafie, S.
2017-09-01
The influence of nanoparticles on the unsteady mixed convection flow of Casson fluid past an inclined stretching sheet is investigated in this paper. The effect of gravity modulation on the flow is also considered. Carboxymethyl cellulose solution (CMC) is chosen as the base fluid and copper as nanoparticles. The basic governing nonlinear partial differential equations are transformed using appropriate similarity transformation and solved numerically using an implicit finite difference scheme by means of the Keller-box method. The effect of nanoparticles volume fraction together with the effect of inclination angle and Casson parameter on the enhancement of heat transfer of Casson nanofluid is discussed in details. The velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are presented and analyzed.
Implicit method for the computation of unsteady flows on unstructured grids
NASA Technical Reports Server (NTRS)
Venkatakrishnan, V.; Mavriplis, D. J.
1995-01-01
An implicit method for the computation of unsteady flows on unstructured grids is presented. Following a finite difference approximation for the time derivative, the resulting nonlinear system of equations is solved at each time step by using an agglomeration multigrid procedure. The method allows for arbitrarily large time steps and is efficient in terms of computational effort and storage. Inviscid and viscous unsteady flows are computed to validate the procedure. The issue of the mass matrix which arises with vertex-centered finite volume schemes is addressed. The present formulation allows the mass matrix to be inverted indirectly. A mesh point movement and reconnection procedure is described that allows the grids to evolve with the motion of bodies. As an example of flow over bodies in relative motion, flow over a multi-element airfoil system undergoing deployment is computed.
Numerical study of supersonic combustion using a finite rate chemistry model
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.; Kumar, A.; Drummond, J. P.
1986-01-01
The governing equations of two-dimensional chemically reacting flows are presented together with a global two-step chemistry model for H2-air combustion. The explicit unsplit MacCormack finite difference algorithm is used to advance the discrete system of the governing equations in time until convergence is attained. The source terms in the species equations are evaluated implicitly to alleviate stiffness associated with fast reactions. With implicit source terms, the species equations give rise to a block-diagonal system which can be solved very efficiently on vector-processing computers. A supersonic reacting flow in an inlet-combustor configuration is calculated for the case where H2 is injected into the flow from the side walls and the strut. Results of the calculation are compared against the results obtained by using a complete reaction model.
NASA Astrophysics Data System (ADS)
Yang, Haijian; Sun, Shuyu; Yang, Chao
2017-03-01
Most existing methods for solving two-phase flow problems in porous media do not take the physically feasible saturation fractions between 0 and 1 into account, which often destroys the numerical accuracy and physical interpretability of the simulation. To calculate the solution without the loss of this basic requirement, we introduce a variational inequality formulation of the saturation equilibrium with a box inequality constraint, and use a conservative finite element method for the spatial discretization and a backward differentiation formula with adaptive time stepping for the temporal integration. The resulting variational inequality system at each time step is solved by using a semismooth Newton algorithm. To accelerate the Newton convergence and improve the robustness, we employ a family of adaptive nonlinear elimination methods as a nonlinear preconditioner. Some numerical results are presented to demonstrate the robustness and efficiency of the proposed algorithm. A comparison is also included to show the superiority of the proposed fully implicit approach over the classical IMplicit Pressure-Explicit Saturation (IMPES) method in terms of the time step size and the total execution time measured on a parallel computer.
NASA Technical Reports Server (NTRS)
Mostrel, M. M.
1988-01-01
New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wang, Fajie
Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.
Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F
2010-07-01
Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.
Flow model for open-channel reach or network
Schaffranek, R.W.
1987-01-01
Formulation of a one-dimensional model for simulating unsteady flow in a single open-channel reach or in a network of interconnected channels is presented. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. It is based on a four-point (box), implicit, finite-difference approximation of the governing nonlinear flow equations with user-definable weighting coefficients to permit varying the solution scheme from box-centered to fully forward. Unique transformation equations are formulated that permit correlation of the unknowns at the extremities of the channels, thereby reducing coefficient matrix and execution time requirements. Discharges and water-surface elevations computed at intermediate locations within a channel are determined following solution of the transformation equations. The matrix of transformation and boundary-condition equations is solved by Gauss elimination using maximum pivot strategy. Two diverse applications of the model are presented to illustrate its broad utility. (USGS)
NASA Astrophysics Data System (ADS)
D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice
2018-05-01
In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.
Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles
NASA Astrophysics Data System (ADS)
Tzirtzilakis, E. E.
2015-06-01
In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.
Numerical simulation of steady and unsteady asymmetric vortical flow
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.
1992-01-01
The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.
An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1987-01-01
An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.
A globally well-posed finite element algorithm for aerodynamics applications
NASA Technical Reports Server (NTRS)
Iannelli, G. S.; Baker, A. J.
1991-01-01
A finite element CFD algorithm is developed for Euler and Navier-Stokes aerodynamic applications. For the linear basis, the resultant approximation is at least second-order-accurate in time and space for synergistic use of three procedures: (1) a Taylor weak statement, which provides for derivation of companion conservation law systems with embedded dispersion-error control mechanisms; (2) a stiffly stable second-order-accurate implicit Rosenbrock-Runge-Kutta temporal algorithm; and (3) a matrix tensor product factorization that permits efficient numerical linear algebra handling of the terminal large-matrix statement. Thorough analyses are presented regarding well-posed boundary conditions for inviscid and viscous flow specifications. Numerical solutions are generated and compared for critical evaluation of quasi-one- and two-dimensional Euler and Navier-Stokes benchmark test problems.
NASA Astrophysics Data System (ADS)
Huyakorn, P. S.; Panday, S.; Wu, Y. S.
1994-06-01
A three-dimensional, three-phase numerical model is presented for stimulating the movement on non-aqueous-phase liquids (NAPL's) through porous and fractured media. The model is designed for practical application to a wide variety of contamination and remediation scenarios involving light or dense NAPL's in heterogeneous subsurface systems. The model formulation is first derived for three-phase flow of water, NAPL and air (or vapor) in porous media. The formulation is then extended to handle fractured systems using the dual-porosity and discrete-fracture modeling approaches The model accommodates a wide variety of boundary conditions, including withdrawal and injection well conditions which are treated rigorously using fully implicit schemes. The three-phase of formulation collapses to its simpler forms when air-phase dynamics are neglected, capillary effects are neglected, or two-phase-air-liquid, liquid-liquid systems with one or two active phases are considered. A Galerkin procedure with upstream weighting of fluid mobilities, storage matrix lumping, and fully implicit treatment of nonlinear coefficients and well conditions is used. A variety of nodal connectivity schemes leading to finite-difference, finite-element and hybrid spatial approximations in three dimensions are incorporated in the formulation. Selection of primary variables and evaluation of the terms of the Jacobian matrix for the Newton-Raphson linearized equations is discussed. The various nodal lattice options, and their significance to the computational time and memory requirements with regards to the block-Orthomin solution scheme are noted. Aggressive time-stepping schemes and under-relaxation formulas implemented in the code further alleviate the computational burden.
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
NASA Technical Reports Server (NTRS)
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-01-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
Parallelized modelling and solution scheme for hierarchically scaled simulations
NASA Technical Reports Server (NTRS)
Padovan, Joe
1995-01-01
This two-part paper presents the results of a benchmarked analytical-numerical investigation into the operational characteristics of a unified parallel processing strategy for implicit fluid mechanics formulations. This hierarchical poly tree (HPT) strategy is based on multilevel substructural decomposition. The Tree morphology is chosen to minimize memory, communications and computational effort. The methodology is general enough to apply to existing finite difference (FD), finite element (FEM), finite volume (FV) or spectral element (SE) based computer programs without an extensive rewrite of code. In addition to finding large reductions in memory, communications, and computational effort associated with a parallel computing environment, substantial reductions are generated in the sequential mode of application. Such improvements grow with increasing problem size. Along with a theoretical development of general 2-D and 3-D HPT, several techniques for expanding the problem size that the current generation of computers are capable of solving, are presented and discussed. Among these techniques are several interpolative reduction methods. It was found that by combining several of these techniques that a relatively small interpolative reduction resulted in substantial performance gains. Several other unique features/benefits are discussed in this paper. Along with Part 1's theoretical development, Part 2 presents a numerical approach to the HPT along with four prototype CFD applications. These demonstrate the potential of the HPT strategy.
A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures
Colli Franzone, Piero; Pavarino, Luca F.; Scacchi, Simone
2018-01-01
We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing) architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1) the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2) the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3) the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks. PMID:29674971
1986-08-01
AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I
An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.E.; Ritchie, A.B.
1997-12-31
One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less
NASA Astrophysics Data System (ADS)
Horstmann, Jan Tobias; Le Garrec, Thomas; Mincu, Daniel-Ciprian; Lévêque, Emmanuel
2017-11-01
Despite the efficiency and low dissipation of the stream-collide scheme of the discrete-velocity Boltzmann equation, which is nowadays implemented in many lattice Boltzmann solvers, a major drawback exists over alternative discretization schemes, i.e. finite-volume or finite-difference, that is the limitation to Cartesian uniform grids. In this paper, an algorithm is presented that combines the positive features of each scheme in a hybrid lattice Boltzmann method. In particular, the node-based streaming of the distribution functions is coupled with a second-order finite-volume discretization of the advection term of the Boltzmann equation under the Bhatnagar-Gross-Krook approximation. The algorithm is established on a multi-domain configuration, with the individual schemes being solved on separate sub-domains and connected by an overlapping interface of at least 2 grid cells. A critical parameter in the coupling is the CFL number equal to unity, which is imposed by the stream-collide algorithm. Nevertheless, a semi-implicit treatment of the collision term in the finite-volume formulation allows us to obtain a stable solution for this condition. The algorithm is validated in the scope of three different test cases on a 2D periodic mesh. It is shown that the accuracy of the combined discretization schemes agrees with the order of each separate scheme involved. The overall numerical error of the hybrid algorithm in the macroscopic quantities is contained between the error of the two individual algorithms. Finally, we demonstrate how such a coupling can be used to adapt to anisotropic flows with some gradual mesh refinement in the FV domain.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacón, Luis; CoCoMans Team
2014-10-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yidong; Andrs, David; Martineau, Richard Charles
This document presents the theoretical background for a hybrid finite-element / finite-volume fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation Environment (MOOSE) computational framework developed at the Idaho National Laboratory (INL). An overview of the numerical methods used in BIGHORN are discussed and followed by a presentation of the formulation details. The document begins with the governing equations for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-order finite volume method used for solving the compressible fluid flow problems is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for timemore » integration is also presented. The multi-fluid formulation is being developed. Although multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can accommodate both multi-species and multi-phase formulations. This document also presents a suite of verification & validation benchmark test problems for BIGHORN. The intent for this suite of problems is to provide baseline comparison data that demonstrates the performance of the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows. Wherever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using BIGHORN.« less
On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.
Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2011-11-01
Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
Flux vector splitting of the inviscid equations with application to finite difference methods
NASA Technical Reports Server (NTRS)
Steger, J. L.; Warming, R. F.
1979-01-01
The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.
Real-time adaptive finite element solution of time-dependent Kohn-Sham equation
NASA Astrophysics Data System (ADS)
Bao, Gang; Hu, Guanghui; Liu, Di
2015-01-01
In our previous paper (Bao et al., 2012 [1]), a general framework of using adaptive finite element methods to solve the Kohn-Sham equation has been presented. This work is concerned with solving the time-dependent Kohn-Sham equations. The numerical methods are studied in the time domain, which can be employed to explain both the linear and the nonlinear effects. A Crank-Nicolson scheme and linear finite element space are employed for the temporal and spatial discretizations, respectively. To resolve the trouble regions in the time-dependent simulations, a heuristic error indicator is introduced for the mesh adaptive methods. An algebraic multigrid solver is developed to efficiently solve the complex-valued system derived from the semi-implicit scheme. A mask function is employed to remove or reduce the boundary reflection of the wavefunction. The effectiveness of our method is verified by numerical simulations for both linear and nonlinear phenomena, in which the effectiveness of the mesh adaptive methods is clearly demonstrated.
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.
2007-01-01
The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.
Verification of continuum drift kinetic equation solvers in NIMROD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Held, E. D.; Ji, J.-Y.; Kruger, S. E.
Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speedmore » coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.« less
Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1986-01-01
The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.
Recent applications of the transonic wing analysis computer code, TWING
NASA Technical Reports Server (NTRS)
Subramanian, N. R.; Holst, T. L.; Thomas, S. D.
1982-01-01
An evaluation of the transonic-wing-analysis computer code TWING is given. TWING utilizes a fully implicit approximate factorization iteration scheme to solve the full potential equation in conservative form. A numerical elliptic-solver grid-generation scheme is used to generate the required finite-difference mesh. Several wing configurations were analyzed, and the limits of applicability of this code was evaluated. Comparisons of computed results were made with available experimental data. Results indicate that the code is robust, accurate (when significant viscous effects are not present), and efficient. TWING generally produces solutions an order of magnitude faster than other conservative full potential codes using successive-line overrelaxation. The present method is applicable to a wide range of isolated wing configurations including high-aspect-ratio transport wings and low-aspect-ratio, high-sweep, fighter configurations.
Biconvection flow of Carreau fluid over an upper paraboloid surface: A computational study
NASA Astrophysics Data System (ADS)
Khan, Mair; Hussain, Arif; Malik, M. Y.; Salahuddin, T.
Present article explored the physical characteristics of biconvection effects on the MHD flow of Carreau nanofluid over upper horizontal surface of paraboloid revolution along with chemical reaction. The concept of the Carreau nanofluid was introduced the new parameterization achieve the momentum governing equation. Using similarity transformed, the governing partial differential equations are converted into the ordinary differential equations. The obtained governing equations are solved computationally by using implicit finite difference method known as the Keller box technique. The numerical solutions are obtained for the velocity, temperature, concentration, friction factor, local heat and mass transfer coefficients by varying controlling parameters i.e. Biconvection parameter, fluid parameter, Weissenberg number, Hartmann number, Prandtl number, Brownian motion parameter, thermophoresis parameter, Lewis number and chemical reaction parameter. The obtained results are discussed via graphs and tables.
Prediction and control of slender-wing rock
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Salman, Ahmed A.
1992-01-01
The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Paul T.; Shadid, John N.; Sala, Marzio
In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system ismore » obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.« less
NASA Astrophysics Data System (ADS)
Harmon, Michael; Gamba, Irene M.; Ren, Kui
2016-12-01
This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
NASA Technical Reports Server (NTRS)
Padovan, J.; Adams, M.; Lam, P.; Fertis, D.; Zeid, I.
1982-01-01
Second-year efforts within a three-year study to develop and extend finite element (FE) methodology to efficiently handle the transient/steady state response of rotor-bearing-stator structure associated with gas turbine engines are outlined. The two main areas aim at (1) implanting the squeeze film damper element into a general purpose FE code for testing and evaluation; and (2) determining the numerical characteristics of the FE-generated rotor-bearing-stator simulation scheme. The governing FE field equations are set out and the solution methodology is presented. The choice of ADINA as the general-purpose FE code is explained, and the numerical operational characteristics of the direct integration approach of FE-generated rotor-bearing-stator simulations is determined, including benchmarking, comparison of explicit vs. implicit methodologies of direct integration, and demonstration problems.
A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model
McDonald, Michael G.; Harbaugh, Arlen W.; Guo, Weixing; Lu, Guoping
1988-01-01
This report presents a finite-difference model and its associated modular computer program. The model simulates flow in three dimensions. The report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts are incorporated in the modular structure of the computer program. The modular structure consists of a Main Program and a series of highly independent subroutines called 'modules.' The modules are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system which is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving linear equations which describe the flow system, such as the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The division of the program into modules permits the user to examine specific hydrologic features of the model independently. This also facilita development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program are also designed to permit maximum flexibility. Ground-water flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined, or a combination of confined and unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and streams, can also be simulated. The finite-difference equations can be solved using either the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The program is written in FORTRAN 77 and will run without modification on most computers that have a FORTRAN 77 compiler. For each program ,module, this report includes a narrative description, a flow chart, a list of variables, and a module listing.
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1994-01-01
In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.
Numerical simulation of double‐diffusive finger convection
Hughes, Joseph D.; Sanford, Ward E.; Vacher, H. Leonard
2005-01-01
A hybrid finite element, integrated finite difference numerical model is developed for the simulation of double‐diffusive and multicomponent flow in two and three dimensions. The model is based on a multidimensional, density‐dependent, saturated‐unsaturated transport model (SUTRA), which uses one governing equation for fluid flow and another for solute transport. The solute‐transport equation is applied sequentially to each simulated species. Density coupling of the flow and solute‐transport equations is accounted for and handled using a sequential implicit Picard iterative scheme. High‐resolution data from a double‐diffusive Hele‐Shaw experiment, initially in a density‐stable configuration, is used to verify the numerical model. The temporal and spatial evolution of simulated double‐diffusive convection is in good agreement with experimental results. Numerical results are very sensitive to discretization and correspond closest to experimental results when element sizes adequately define the spatial resolution of observed fingering. Numerical results also indicate that differences in the molecular diffusivity of sodium chloride and the dye used to visualize experimental sodium chloride concentrations are significant and cause inaccurate mapping of sodium chloride concentrations by the dye, especially at late times. As a result of reduced diffusion, simulated dye fingers are better defined than simulated sodium chloride fingers and exhibit more vertical mass transfer.
An implicit numerical model for multicomponent compressible two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Zidane, Ali; Firoozabadi, Abbas
2015-11-01
We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.
Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests
NASA Astrophysics Data System (ADS)
Toth, G.; Keppens, R.; Botchev, M. A.
1998-04-01
We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing methods to solve systems of conservation laws with optional source terms. The main advantage of implicit solution strategies over explicit time integration is that the restrictive constraint on the allowed time step can be (partially) eliminated, thus the computational cost is reduced. The test problems cover one and two dimensional, steady state and time accurate computations, and the solutions contain discontinuities. For each test, we confront explicit with implicit solution strategies.
A three-dimensional method-of-characteristics solute-transport model (MOC3D)
Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.
1996-01-01
This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.
NASA Technical Reports Server (NTRS)
Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.
1982-01-01
An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.
Efficient Coupling of Fluid-Plasma and Monte-Carlo-Neutrals Models for Edge Plasma Transport
NASA Astrophysics Data System (ADS)
Dimits, A. M.; Cohen, B. I.; Friedman, A.; Joseph, I.; Lodestro, L. L.; Rensink, M. E.; Rognlien, T. D.; Sjogreen, B.; Stotler, D. P.; Umansky, M. V.
2017-10-01
UEDGE has been valuable for modeling transport in the tokamak edge and scrape-off layer due in part to its efficient fully implicit solution of coupled fluid neutrals and plasma models. We are developing an implicit coupling of the kinetic Monte-Carlo (MC) code DEGAS-2, as the neutrals model component, to the UEDGE plasma component, based on an extension of the Jacobian-free Newton-Krylov (JFNK) method to MC residuals. The coupling components build on the methods and coding already present in UEDGE. For the linear Krylov iterations, a procedure has been developed to ``extract'' a good preconditioner from that of UEDGE. This preconditioner may also be used to greatly accelerate the convergence rate of a relaxed fixed-point iteration, which may provide a useful ``intermediate'' algorithm. The JFNK method also requires calculation of Jacobian-vector products, for which any finite-difference procedure is inaccurate when a MC component is present. A semi-analytical procedure that retains the standard MC accuracy and fully kinetic neutrals physics is therefore being developed. Prepared for US DOE by LLNL under Contract DE-AC52-07NA27344 and LDRD project 15-ERD-059, by PPPL under Contract DE-AC02-09CH11466, and supported in part by the U.S. DOE, OFES.
Mathematical modeling of polymer flooding using the unstructured Voronoi grid
NASA Astrophysics Data System (ADS)
Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.
2017-12-01
Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.
NASA Technical Reports Server (NTRS)
Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.
2000-01-01
A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.
Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes
NASA Astrophysics Data System (ADS)
Zhu, Yajun; Zhong, Chengwen; Xu, Kun
2016-06-01
This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.
NASA Technical Reports Server (NTRS)
Palmer, Grant; Venkatapathy, Ethiraj
1993-01-01
Three solution algorithms, explicit underrelaxation, point implicit, and lower upper symmetric Gauss-Seidel (LUSGS), are used to compute nonequilibrium flow around the Apollo 4 return capsule at 62 km altitude. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness. The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15, 23, and 30, the LUSGS method produces an eight order of magnitude drop in the L2 norm of the energy residual in 1/3 to 1/2 the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 23 and above. At Mach 40 the performance of the LUSGS algorithm deteriorates to the point it is out-performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.
Development of a three dimensional numerical water quality model for continental shelf applications
NASA Technical Reports Server (NTRS)
Spaulding, M.; Hunter, D.
1975-01-01
A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.
NASA Technical Reports Server (NTRS)
Robertson, J. S.; Siegman, W. L.; Jacobson, M. J.
1989-01-01
There is substantial interest in the analytical and numerical modeling of low-frequency, long-range atmospheric acoustic propagation. Ray-based models, because of frequency limitations, do not always give an adequate prediction of quantities such as sound pressure or intensity levels. However, the parabolic approximation method, widely used in ocean acoustics, and often more accurate than ray models for lower frequencies of interest, can be applied to acoustic propagation in the atmosphere. Modifications of an existing implicit finite-difference implementation for computing solutions to the parabolic approximation are discussed. A locally-reacting boundary is used together with a one-parameter impedance model. Intensity calculations are performed for a number of flow resistivity values in both quiescent and windy atmospheres. Variations in the value of this parameter are shown to have substantial effects on the spatial variation of the acoustic signal.
NASA Technical Reports Server (NTRS)
Siegel, Robert
1996-01-01
Surface convection and refractive index are examined during transient radiative heating or cooling of a grey semitransparent layer with internal absorption, emission and conduction. Each side of the layer is exposed to hot or cold radiative surroundings, while each boundary is heated or cooled by convection. Emission within the layer and internal reflections depend on the layer refractive index. The reflected energy and heat conduction distribute energy across the layer and partially equalize the transient temperature distributions. Solutions are given to demonstrate the effect of radiative heating for layers with various optical thicknesses, the behavior of the layer heated by radiation on one side and convectively cooled on the other, and a layer heated by convection while being cooled by radiation. The numerical method is an implicit finite difference procedure with non-uniform space and time increments. The basic method developed in earlier work is expanded to include external convection and incident radiation.
Numerical modeling of time-dependent bio-convective stagnation flow of a nanofluid in slip regime
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Sood, Shilpa; Shehzad, Sabir Ali; Sheikholeslami, Mohsen
A numerical investigation of unsteady stagnation point flow of bioconvective nanofluid due to an exponential deforming surface is made in this research. The effects of Brownian diffusion, thermophoresis, slip velocity and thermal jump are incorporated in the nanofluid model. By utilizing similarity transformations, the highly nonlinear partial differential equations governing present nano-bioconvective boundary layer phenomenon are reduced into ordinary differential system. The resultant expressions are solved for numerical solution by employing a well-known implicit finite difference approach termed as Keller-box method (KBM). The influence of involved parameters (unsteadiness, bioconvection Schmidt number, velocity slip, thermal jump, thermophoresis, Schmidt number, Brownian motion, bioconvection Peclet number) on the distributions of velocity, temperature, nanoparticle and motile microorganisms concentrations, the coefficient of local skin-friction, rate of heat transport, Sherwood number and local density motile microorganisms are exhibited through graphs and tables.
Thermal-Acoustic Analysis of a Metallic Integrated Thermal Protection System Structure
NASA Technical Reports Server (NTRS)
Behnke, Marlana N.; Sharma, Anurag; Przekop, Adam; Rizzi, Stephen A.
2010-01-01
A study is undertaken to investigate the response of a representative integrated thermal protection system structure under combined thermal, aerodynamic pressure, and acoustic loadings. A two-step procedure is offered and consists of a heat transfer analysis followed by a nonlinear dynamic analysis under a combined loading environment. Both analyses are carried out in physical degrees-of-freedom using implicit and explicit solution techniques available in the Abaqus commercial finite-element code. The initial study is conducted on a reduced-size structure to keep the computational effort contained while validating the procedure and exploring the effects of individual loadings. An analysis of a full size integrated thermal protection system structure, which is of ultimate interest, is subsequently presented. The procedure is demonstrated to be a viable approach for analysis of spacecraft and hypersonic vehicle structures under a typical mission cycle with combined loadings characterized by largely different time-scales.
Incompressible viscous flow computations for the pump components and the artificial heart
NASA Technical Reports Server (NTRS)
Kiris, Cetin
1992-01-01
A finite-difference, three-dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. In this work, the equations are solved in steadily rotating reference frames by using the steady-state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two. Included in the appendix is a paper on incompressible viscous flow through artificial heart devices with moving boundaries. Time-accurate calculations, such as impeller and diffusor interaction, will be reported in future work.
Computer model of two-dimensional solute transport and dispersion in ground water
Konikow, Leonard F.; Bredehoeft, J.D.
1978-01-01
This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the calculations. The data input formats for the model require three data cards and from seven to nine data sets to describe the aquifer properties, boundaries, and stresses. The accuracy of the model was evaluated for two idealized problems for which analytical solutions could be obtained. In the case of one-dimensional flow the agreement was nearly exact, but in the case of plane radial flow a small amount of numerical dispersion occurred. An analysis of several test problems indicates that the error in the mass balance will be generally less than 10 percent. The test problems demonstrated that the accuracy and precision of the numerical solution is sensitive to the initial number of particles placed in each cell and to the size of the time increment, as determined by the stability criteria. Mass balance errors are commonly the greatest during the first several time increments, but tend to decrease and stabilize with time.
A semi-implicit finite element method for viscous lipid membranes
NASA Astrophysics Data System (ADS)
Rodrigues, Diego S.; Ausas, Roberto F.; Mut, Fernando; Buscaglia, Gustavo C.
2015-10-01
A finite element formulation to approximate the behavior of lipid membranes is proposed. The mathematical model incorporates tangential viscous stresses and bending elastic forces, together with the inextensibility constraint and the enclosed volume constraint. The membrane is discretized by a surface mesh made up of planar triangles, over which a mixed formulation (velocity-curvature) is built based on the viscous bilinear form (Boussinesq-Scriven operator) and the Laplace-Beltrami identity relating position and curvature. A semi-implicit approach is then used to discretize in time, with piecewise linear interpolants for all variables. Two stabilization terms are needed: The first one stabilizes the inextensibility constraint by a pressure-gradient-projection scheme (Codina and Blasco (1997) [33]), the second couples curvature and velocity to improve temporal stability, as proposed by Bänsch (2001) [36]. The volume constraint is handled by a Lagrange multiplier (which turns out to be the internal pressure), and an analogous strategy is used to filter out rigid-body motions. The nodal positions are updated in a Lagrangian manner according to the velocity solution at each time step. An automatic remeshing strategy maintains suitable refinement and mesh quality throughout the simulation. Numerical experiments show the convergent and robust behavior of the proposed method. Stability limits are obtained from numerous relaxation tests, and convergence with mesh refinement is confirmed both in the relaxation transient and in the final equilibrium shape. Virtual tweezing experiments are also reported, computing the dependence of the deformed membrane shape with the tweezing velocity (a purely dynamical effect). For sufficiently high velocities, a tether develops which shows good agreement, both in its final radius and in its transient behavior, with available analytical solutions. Finally, simulation results of a membrane subject to the simultaneous action of six tweezers illustrate the robustness of the method.
Decomposing intuitive components in a conceptual problem solving task.
Reber, Rolf; Ruch-Monachon, Marie-Antoinette; Perrig, Walter J
2007-06-01
Research into intuitive problem solving has shown that objective closeness of participants' hypotheses were closer to the accurate solution than their subjective ratings of closeness. After separating conceptually intuitive problem solving from the solutions of rational incremental tasks and of sudden insight tasks, we replicated this finding by using more precise measures in a conceptual problem-solving task. In a second study, we distinguished performance level, processing style, implicit knowledge and subjective feeling of closeness to the solution within the problem-solving task and examined the relationships of these different components with measures of intelligence and personality. Verbal intelligence correlated with performance level in problem solving, but not with processing style and implicit knowledge. Faith in intuition, openness to experience, and conscientiousness correlated with processing style, but not with implicit knowledge. These findings suggest that one needs to decompose processing style and intuitive components in problem solving to make predictions on effects of intelligence and personality measures.
NASA Astrophysics Data System (ADS)
Germain, Norbert; Besson, Jacques; Feyel, Frédéric
2007-07-01
Simulating damage and failure of laminate composites structures often fails when using the standard finite element procedure. The difficulties arise from an uncontrolled mesh dependence caused by damage localization and an increase in computational costs. One of the solutions to the first problem, widely used to predict the failure of metallic materials, consists of using non-local damage constitutive equations. The second difficulty can then be solved using specific finite element formulations, such as shell element, which decrease the number of degrees of freedom. The main contribution of this paper consists of extending these techniques to layered materials such as polymer matrix composites. An extension of the non-local implicit gradient formulation, accounting for anisotropy and stratification, and an original layered shell element, based on a new partition of the unity, are proposed. Finally the efficiency of the resulting numerical scheme is studied by comparing simulation with experimental results.
A Least-Squares Finite Element Method for Electromagnetic Scattering Problems
NASA Technical Reports Server (NTRS)
Wu, Jie; Jiang, Bo-nan
1996-01-01
The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
Two-dimensional HID light source radiative transfer using discrete ordinates method
NASA Astrophysics Data System (ADS)
Ghrib, Basma; Bouaoun, Mohamed; Elloumi, Hatem
2016-08-01
This paper shows the implementation of the Discrete Ordinates Method for handling radiation problems in High Intensity Discharge (HID) lamps. Therefore, we start with presenting this rigorous method for treatment of radiation transfer in a two-dimensional, axisymmetric HID lamp. Furthermore, the finite volume method is used for the spatial discretization of the Radiative Transfer Equation. The atom and electron densities were calculated using temperature profiles established by a 2D semi-implicit finite-element scheme for the solution of conservation equations relative to energy, momentum, and mass. Spectral intensities as a function of position and direction are first calculated, and then axial and radial radiative fluxes are evaluated as well as the net emission coefficient. The results are given for a HID mercury lamp on a line-by-line basis. A particular attention is paid on the 253.7 nm resonance and 546.1 nm green lines.
An implicit semianalytic numerical method for the solution of nonequilibrium chemistry problems
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.; Gnoffo, P. A.; Boughner, R. E.
1974-01-01
The first order differential equation form systems of equations. They are solved by a simple and relatively accurate implicit semianalytic technique which is derived from a quadrature solution of the governing equation. This method is mathematically simpler than most implicit methods and has the exponential nature of the problem embedded in the solution.
NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
NASA Technical Reports Server (NTRS)
Lee, J.
1994-01-01
A generalized flow solver using an implicit Lower-upper (LU) diagonal decomposition based numerical technique has been coupled with three low-Reynolds number kappa-epsilon models for analysis of problems with engineering applications. The feasibility of using the LU technique to obtain efficient solutions to supersonic problems using the kappa-epsilon model has been demonstrated. The flow solver is then used to explore limitations and convergence characteristics of several popular two equation turbulence models. Several changes to the LU solver have been made to improve the efficiency of turbulent flow predictions. In general, the low-Reynolds number kappa-epsilon models are easier to implement than the models with wall-functions, but require much finer near-wall grid to accurately resolve the physics. The three kappa-epsilon models use different approaches to characterize the near wall regions of the flow. Therefore, the limitations imposed by the near wall characteristics have been carefully resolved. The convergence characteristics of a particular model using a given numerical technique are also an important, but most often overlooked, aspect of turbulence model predictions. It is found that some convergence characteristics could be sacrificed for more accurate near-wall prediction. However, even this gain in accuracy is not sufficient to model the effects of an external pressure gradient imposed by a shock-wave/ boundary-layer interaction. Additional work on turbulence models, especially for compressibility, is required since the solutions obtained with base line turbulence are in only reasonable agreement with the experimental data for the viscous interaction problems.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
NASA Technical Reports Server (NTRS)
Dewitt, K. J.; Baliga, G.
1982-01-01
A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions.
Theoretical and experimental study on multimode optical fiber grating
NASA Astrophysics Data System (ADS)
Yunming, Wang; Jingcao, Dai; Mingde, Zhang; Xiaohan, Sun
2005-06-01
The characteristics of multimode optical fiber Bragg grating (MMFBG) are studied theoretically and experimentally. For the first time the analysis of MMFBG based on a novel quasi-three-dimensional (Q-3D) finite-difference time-domain beam propagation method (Q-FDTD-BPM) is described through separating the angle component of vector field solution from the cylindrical coordinate so that several discrete two-dimensional (2D) equations are obtained, which simplify the 3D equations. And then these equations are developed using an alternating-direction implicit method and generalized Douglas scheme, which achieves higher accuracy than the regular FD scheme. All of the 2D solutions for the field intensities are also added with different power coefficients for different angle mode order numbers to obtain 3D field distributions in MMFBG. The presented method has been demonstrated as suitable simulation tool for analyzing MMFBG. In addition, based on the hydrogen-loaded and phase mask techniques, a series of Bragg grating have been written into the silicon multimode optical fiber loaded hydrogen for a month, and the spectrums for that have been measured, which obtain good results approximate to the results in the experiment. Group delay/differentiate group delay spectrums are obtained using Agilent 81910A Photonic All-Parameter Analyzer.
NASA Technical Reports Server (NTRS)
Howe, John T.
1959-01-01
Three numerical solutions of the partial differential equations describing the compressible laminar boundary layer are obtained by the finite difference method described in reports by I. Flugge-Lotz, D.C. Baxter, and this author. The solutions apply to steady-state supersonic flow without pressure gradient, over a cold wall and over an adiabatic wall, both having transpiration cooling upstream, and over an adiabatic wall with upstream cooling but without upstream transpiration. It is shown that for a given upstream wall temperature, upstream transpiration cooling affords much better protection to the adiabatic solid wall than does upstream cooling without transpiration. The results of the numerical solutions are compared with those of approximate solutions. The thermal results of the finite difference solution lie between the results of Rubesin and Inouye, and those of Libby and Pallone. When the skin-friction results of one finite difference solution are used in the thermal analysis of Rubesin and Inouye, improved agreement between the thermal results of the two methods of solution is obtained.
Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten
2016-08-09
The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.
NASA Technical Reports Server (NTRS)
Meade, Andrew James, Jr.
1989-01-01
A numerical study of the laminar and compressible boundary layer, about a circular cone in a supersonic free stream, is presented. It is thought that if accurate and efficient numerical schemes can be produced to solve the boundary layer equations, they can be joined to numerical codes that solve the inviscid outer flow. The combination of these numerical codes is competitive with the accurate, but computationally expensive, Navier-Stokes schemes. The primary goal is to develop a finite element method for the calculation of 3-D compressible laminar boundary layer about a yawed cone. The proposed method can, in principle, be extended to apply to the 3-D boundary layer of pointed bodies of arbitrary cross section. The 3-D boundary layer equations governing supersonic free stream flow about a cone are examined. The 3-D partial differential equations are reduced to 2-D integral equations by applying the Howarth, Mangler, Crocco transformations, a linear relation between viscosity, and a Blasius-type of similarity variable. This is equivalent to a Dorodnitsyn-type formulation. The reduced equations are independent of density and curvature effects, and resemble the weak form of the 2-D incompressible boundary layer equations in Cartesian coordinates. In addition the coordinate normal to the wall has been stretched, which reduces the gradients across the layer and provides high resolution near the surface. Utilizing the parabolic nature of the boundary layer equations, a finite element method is applied to the Dorodnitsyn formulation. The formulation is presented in a Petrov-Galerkin finite element form and discretized across the layer using linear interpolation functions. The finite element discretization yields a system of ordinary differential equations in the circumferential direction. The circumferential derivatives are solved by an implicit and noniterative finite difference marching scheme. Solutions are presented for a 15 deg half angle cone at angles of attack of 5 and 10 deg. The numerical solutions assume a laminar boundary layer with free stream Mach number of 7. Results include circumferential distribution of skin friction and surface heat transfer, and cross flow velocity distributions across the layer.
Numerical solution of the stochastic parabolic equation with the dependent operator coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashyralyev, Allaberen; Department of Mathematics, ITTU, Ashgabat; Okur, Ulker
2015-09-18
In the present paper, a single step implicit difference scheme for the numerical solution of the stochastic parabolic equation with the dependent operator coefficient is presented. Theorem on convergence estimates for the solution of this difference scheme is established. In applications, this abstract result permits us to obtain the convergence estimates for the solution of difference schemes for the numerical solution of initial boundary value problems for parabolic equations. The theoretical statements for the solution of this difference scheme are supported by the results of numerical experiments.
Finite element formulation of viscoelastic sandwich beams using fractional derivative operators
NASA Astrophysics Data System (ADS)
Galucio, A. C.; Deü, J.-F.; Ohayon, R.
This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.
Development of an energy storage tank model
NASA Astrophysics Data System (ADS)
Buckley, Robert Christopher
A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.
NASA Astrophysics Data System (ADS)
Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.
2018-05-01
The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.
Computational plasticity algorithm for particle dynamics simulations
NASA Astrophysics Data System (ADS)
Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.
2018-01-01
The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.
NASA Astrophysics Data System (ADS)
Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.
2007-07-01
A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.
Implicit approximate-factorization schemes for the low-frequency transonic equation
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Steger, J. L.
1975-01-01
Two- and three-level implicit finite-difference algorithms for the low-frequency transonic small disturbance-equation are constructed using approximate factorization techniques. The schemes are unconditionally stable for the model linear problem. For nonlinear mixed flows, the schemes maintain stability by the use of conservatively switched difference operators for which stability is maintained only if shock propagation is restricted to be less than one spatial grid point per time step. The shock-capturing properties of the schemes were studied for various shock motions that might be encountered in problems of engineering interest. Computed results for a model airfoil problem that produces a flow field similar to that about a helicopter rotor in forward flight show the development of a shock wave and its subsequent propagation upstream off the front of the airfoil.
Baker, Nathan A.; McCammon, J. Andrew
2008-01-01
The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217
NASA Astrophysics Data System (ADS)
Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew
2007-10-01
The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.
ERIC Educational Resources Information Center
Udden, Julia; Ingvar, Martin; Hagoort, Peter; Petersson, Karl M.
2012-01-01
A recent hypothesis in empirical brain research on language is that the fundamental difference between animal and human communication systems is captured by the distinction between finite-state and more complex phrase-structure grammars, such as context-free and context-sensitive grammars. However, the relevance of this distinction for the study…
Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Chacon, L.; Cappello, S.
2008-11-01
Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.
Asymptotic analysis of numerical wave propagation in finite difference equations
NASA Technical Reports Server (NTRS)
Giles, M.; Thompkins, W. T., Jr.
1983-01-01
An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.
Wong, J.; Göktepe, S.; Kuhl, E.
2014-01-01
Summary Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, while the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of four days on a standard desktop computer. PMID:23798328
NASA Astrophysics Data System (ADS)
Song, Wanjun; Zhang, Hou
2017-11-01
Through introducing the alternating direction implicit (ADI) technique and the memory-optimized algorithm to the shift operator (SO) finite difference time domain (FDTD) method, the memory-optimized SO-ADI FDTD for nonmagnetized collisional plasma is proposed and the corresponding formulae of the proposed method for programming are deduced. In order to further the computational efficiency, the iteration method rather than Gauss elimination method is employed to solve the equation set in the derivation of the formulae. Complicated transformations and convolutions are avoided in the proposed method compared with the Z transforms (ZT) ADI FDTD method and the piecewise linear JE recursive convolution (PLJERC) ADI FDTD method. The numerical dispersion of the SO-ADI FDTD method with different plasma frequencies and electron collision frequencies is analyzed and the appropriate ratio of grid size to the minimum wavelength is given. The accuracy of the proposed method is validated by the reflection coefficient test on a nonmagnetized collisional plasma sheet. The testing results show that the proposed method is advantageous for improving computational efficiency and saving computer memory. The reflection coefficient of a perfect electric conductor (PEC) sheet covered by multilayer plasma and the RCS of the objects coated by plasma are calculated by the proposed method and the simulation results are analyzed.
A transient FETI methodology for large-scale parallel implicit computations in structural mechanics
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Crivelli, Luis; Roux, Francois-Xavier
1992-01-01
Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallelize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet -- and perhaps will never -- be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.
Comparison of Nonequilibrium Solution Algorithms Applied to Chemically Stiff Hypersonic Flows
NASA Technical Reports Server (NTRS)
Palmer, Grant; Venkatapathy, Ethiraj
1995-01-01
Three solution algorithms, explicit under-relaxation, point implicit, and lower-upper symmetric Gauss-Seidel, are used to compute nonequilibrium flow around the Apollo 4 return capsule at the 62-km altitude point in its descent trajectory. By varying the Mach number, the efficiency and robustness of the solution algorithms were tested for different levels of chemical stiffness.The performance of the solution algorithms degraded as the Mach number and stiffness of the flow increased. At Mach 15 and 30, the lower-upper symmetric Gauss-Seidel method produces an eight order of magnitude drop in the energy residual in one-third to one-half the Cray C-90 computer time as compared to the point implicit and explicit under-relaxation methods. The explicit under-relaxation algorithm experienced convergence difficulties at Mach 30 and above. At Mach 40 the performance of the lower-upper symmetric Gauss-Seidel algorithm deteriorates to the point that it is out performed by the point implicit method. The effects of the viscous terms are investigated. Grid dependency questions are explored.
Efficiency Study of Implicit and Explicit Time Integration Operators for Finite Element Applications
1977-07-01
cffiAciency, wherein Beta =0 provides anl exp~licit algorithm, wvhile Beta &0 provides anl implicit algorithm. Both algorithmns arc used in the same...Hlueneme CA: CO, Code C44A Port j IHuenemne, CA NAVSEC Cod,. 6034 (Library), Washington DC NAVSI*CGRUAC’I’ PWO, ’rorri Sta, OkinawaI NAVSIIIPRBFTAC Library
Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core
NASA Astrophysics Data System (ADS)
Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey
2017-05-01
SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
NASA Technical Reports Server (NTRS)
Bland, S. R.
1982-01-01
Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.
NASA Technical Reports Server (NTRS)
Harrison, Peter N.; Johnson, Eric R.; Starnes, James H., Jr.
1994-01-01
A mixed method of approximation based on Reissner's variational principle is developed for the linear analysis of interlaminar stresses in laminated composites, with special interest in laminates that contain terminated internal plies (dropped-ply laminates). Two models are derived, one for problems of generalized plane deformation and the other for the axisymmetric response of shells of revolution. A layerwise approach is taken in which the stress field is assumed with an explicit dependence on the thickness coordinate in each layer. The dependence of the stress field on the thickness coordinate is determined such that the three-dimensional equilibrium equations are satisfied by the approximation. The solution domain is reduced to one dimension by integration through the thickness. Continuity of tractions and displacements between layers is imposed. The governing two-point boundary value problem is composed of a system of both differential and algebraic equations (DAE's) and their associated boundary conditions. Careful evaluation of the system of DAE's was required to arrive at a form that allowed application of a one-step finite difference approximation. A two-stage Gauss implicit Runge-Kutta finite difference scheme was used for the solution because of its relatively high degree of accuracy. Patch tests of the two models revealed problems with solution accuracy for the axisymmetric model of a cylindrical shell loaded by internal pressure. Parametric studies of dropped-ply laminate characteristics and their influence on the interlaminar stresses were performed using the generalized plane deformation model. Eccentricity of the middle surface of the laminate through the ply drop-off was found to have a minimal effect on the interlaminar stresses under longitudinal compression, transverse tension, and in-plane shear. A second study found the stiffness change across the ply termination to have a much greater influence on the interlaminar stresses.
Runkel, Robert L.; Chapra, Steven C.
1993-01-01
Several investigators have proposed solute transport models that incorporate the effects of transient storage. Transient storage occurs in small streams when portions of the transported solute become isolated in zones of water that are immobile relative to water in the main channel (e.g., pools, gravel beds). Transient storage is modeled by adding a storage term to the advection-dispersion equation describing conservation of mass for the main channel. In addition, a separate mass balance equation is written for the storage zone. Although numerous applications of the transient storage equations may be found in the literature, little attention has been paid to the numerical aspects of the approach. Of particular interest is the coupled nature of the equations describing mass conservation for the main channel and the storage zone. In the work described herein, an implicit finite difference technique is developed that allows for a decoupling of the governing differential equations. This decoupling method may be applied to other sets of coupled equations such as those describing sediment-water interactions for toxic contaminants. For the case at hand, decoupling leads to a 50% reduction in simulation run time. Computational costs may be further reduced through efficient application of the Thomas algorithm. These techniques may be easily incorporated into existing codes and new applications in which simulation run time is of concern.
A space-time lower-upper symmetric Gauss-Seidel scheme for the time-spectral method
NASA Astrophysics Data System (ADS)
Zhan, Lei; Xiong, Juntao; Liu, Feng
2016-05-01
The time-spectral method (TSM) offers the advantage of increased order of accuracy compared to methods using finite-difference in time for periodic unsteady flow problems. Explicit Runge-Kutta pseudo-time marching and implicit schemes have been developed to solve iteratively the space-time coupled nonlinear equations resulting from TSM. Convergence of the explicit schemes is slow because of the stringent time-step limit. Many implicit methods have been developed for TSM. Their computational efficiency is, however, still limited in practice because of delayed implicit temporal coupling, multiple iterative loops, costly matrix operations, or lack of strong diagonal dominance of the implicit operator matrix. To overcome these shortcomings, an efficient space-time lower-upper symmetric Gauss-Seidel (ST-LU-SGS) implicit scheme with multigrid acceleration is presented. In this scheme, the implicit temporal coupling term is split as one additional dimension of space in the LU-SGS sweeps. To improve numerical stability for periodic flows with high frequency, a modification to the ST-LU-SGS scheme is proposed. Numerical results show that fast convergence is achieved using large or even infinite Courant-Friedrichs-Lewy (CFL) numbers for unsteady flow problems with moderately high frequency and with the use of moderately high numbers of time intervals. The ST-LU-SGS implicit scheme is also found to work well in calculating periodic flow problems where the frequency is not known a priori and needed to be determined by using a combined Fourier analysis and gradient-based search algorithm.
The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan
1995-01-01
The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.
Numerical simulation of KdV equation by finite difference method
NASA Astrophysics Data System (ADS)
Yokus, A.; Bulut, H.
2018-05-01
In this study, the numerical solutions to the KdV equation with dual power nonlinearity by using the finite difference method are obtained. Discretize equation is presented in the form of finite difference operators. The numerical solutions are secured via the analytical solution to the KdV equation with dual power nonlinearity which is present in the literature. Through the Fourier-Von Neumann technique and linear stable, we have seen that the FDM is stable. Accuracy of the method is analyzed via the L2 and L_{∞} norm errors. The numerical, exact approximations and absolute error are presented in tables. We compare the numerical solutions with the exact solutions and this comparison is supported with the graphic plots. Under the choice of suitable values of parameters, the 2D and 3D surfaces for the used analytical solution are plotted.
A Parallel Finite Set Statistical Simulator for Multi-Target Detection and Tracking
NASA Astrophysics Data System (ADS)
Hussein, I.; MacMillan, R.
2014-09-01
Finite Set Statistics (FISST) is a powerful Bayesian inference tool for the joint detection, classification and tracking of multi-target environments. FISST is capable of handling phenomena such as clutter, misdetections, and target birth and decay. Implicit within the approach are solutions to the data association and target label-tracking problems. Finally, FISST provides generalized information measures that can be used for sensor allocation across different types of tasks such as: searching for new targets, and classification and tracking of known targets. These FISST capabilities have been demonstrated on several small-scale illustrative examples. However, for implementation in a large-scale system as in the Space Situational Awareness problem, these capabilities require a lot of computational power. In this paper, we implement FISST in a parallel environment for the joint detection and tracking of multi-target systems. In this implementation, false alarms and misdetections will be modeled. Target birth and decay will not be modeled in the present paper. We will demonstrate the success of the method for as many targets as we possibly can in a desktop parallel environment. Performance measures will include: number of targets in the simulation, certainty of detected target tracks, computational time as a function of clutter returns and number of targets, among other factors.
Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.
1980-07-01
Reynolds equation. Two finite - difference algorithms were used to solve the equation. Numerical results - the predicted load and pitch angle - from the two...that should be used. The majority of the numerical solution are still based on the finite difference approximation of the governing equation. But in... finite difference method. Reddi and Chu [26) also noted that it is very difficult to compare the two techniques on the same level since the solution
1980-01-01
Transport of Heat ..... .......... 8 3. THE SOLUTION PROCEDURE ..... .. ................. 8 3.1 The Finite-Difference Grid Network ... .......... 8 3.2...The Finite-Difference Grid Network. Figure 4: The Iterative Solution Procedure used at each Streamwise Station. Figure 5: Velocity Profiles in the...the finite-difference grid in the y-direction. I is the mixing length. L is the distance in the x-direction from the injection slot entrance to the
NASA Technical Reports Server (NTRS)
Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.
1990-01-01
A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.
Finite Volume Method for Pricing European Call Option with Regime-switching Volatility
NASA Astrophysics Data System (ADS)
Lista Tauryawati, Mey; Imron, Chairul; Putri, Endah RM
2018-03-01
In this paper, we present a finite volume method for pricing European call option using Black-Scholes equation with regime-switching volatility. In the first step, we formulate the Black-Scholes equations with regime-switching volatility. we use a finite volume method based on fitted finite volume with spatial discretization and an implicit time stepping technique for the case. We show that the regime-switching scheme can revert to the non-switching Black Scholes equation, both in theoretical evidence and numerical simulations.
Noniterative implicit method for tracking particles in mixed Lagrangian-Eulerian formulations
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Dasgupta, A.
1993-01-01
The existing implicit methods for the current initial value problems (IVPs) concerning particle-laden flows are complicated and iterative in nature. This paper presents a noniterative implicit method which can be used with pressure-based as well as with density-based algorithms. The method is illustrated by analyzing a dilute dispersion of noninteracting solid particles in an isothermal flow in a passage bounded by one straight wall and one wavy wall, in which all particles are spherical and have a finite velociy relative to the continuum phase at the inflow boundary.
NASA Astrophysics Data System (ADS)
Lau, Chun Sing
This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in closed form. Numerical examples demonstrate that the pricing and hedging errors are in general less than 1% relative to the benchmark prices obtained by numerical integration or Monte Carlo simulation. By exploiting an explicit relationship between the option price and the underlying probability distribution, we further derive an approximate distribution function for the general basket-spread variable. It can be used to approximate the transition probability distribution of any linear combination of correlated GBMs. Finally, an implicit perturbation is applied to reduce the pricing errors by factors of up to 100. When compared against the existing methods, the basket-spread option formula coupled with the implicit perturbation turns out to be one of the most robust and accurate approximation methods.
A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins
Xu, Jingjie; Lu, Benzhuo
2018-01-01
Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644
A Finite Element Solution of Lateral Periodic Poisson-Boltzmann Model for Membrane Channel Proteins.
Ji, Nan; Liu, Tiantian; Xu, Jingjie; Shen, Longzhu Q; Lu, Benzhuo
2018-02-28
Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson-Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z -axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations.
Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmad Izani Md.
2015-01-01
Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066
NASA Astrophysics Data System (ADS)
Dumencu, A.; Horbaniuc, B.; Dumitraşcu, G.
2016-08-01
The analytical approach of unsteady conduction heat transfer under actual conditions represent a very difficult (if not insurmountable) problem due to the issues related to finding analytical solutions for the conduction heat transfer equation. Various techniques have been developed in order to overcome these difficulties, among which the alternate directions method and the decomposition method. Both of them are particularly suited for two-dimension heat propagation. The paper deals with both techniques in order to verify whether the results provided are in good accordance. The studied case consists of a long hollow cylinder, and considers that the time-dependent temperature field varies both in the radial and the axial directions. The implicit technique is used in both methods and involves the simultaneous solving of a set of equations for all of the nodes for each time step successively for each of the two directions. Gauss elimination is used to obtain the solution of the set, representing the nodal temperatures. After using the two techniques the results show a very good agreement, and since the decomposition is easier to use in terms of computer code and running time, this technique seems to be more recommendable.
Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Chacon, Luis
2015-09-01
We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.
Second-order numerical solution of time-dependent, first-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Shah, Patricia L.; Hardin, Jay
1995-01-01
A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.
A comparative study of computational solutions to flow over a backward-facing step
NASA Technical Reports Server (NTRS)
Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.
1993-01-01
A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.
NASA Technical Reports Server (NTRS)
Masiulaniec, K. C.; Keith, T. G., Jr.; Dewitt, K. J.
1984-01-01
A numerical procedure is presented for analyzing a wide variety of heat conduction problems in multilayered bodies having complex geometry. The method is based on a finite difference solution of the heat conduction equation using a body fitted coordinate system transformation. Solution techniques are described for steady and transient problems with and without internal energy generation. Results are found to compare favorably with several well known solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Although using standard Taylor series coefficients for finite-difference operators is optimal in the sense that in the limit of infinitesimal space and time discretization, the solution approaches the correct analytic solution to the acousto-dynamic system of differential equations, other finite-difference operators may provide optimal computational run time given certain error bounds or source bandwidth constraints. This report describes the results of investigation of alternative optimal finite-difference coefficients based on several optimization/accuracy scenarios and provides recommendations for minimizing run time while retaining error within given error bounds.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.
1991-01-01
A numerical code is developed for computing three-dimensional, turbulent, compressible flow within coolant passages of turbine blades. The code is based on a formulation of the compressible Navier-Stokes equations in a rotating frame of reference in which the velocity dependent variable is specified with respect to the rotating frame instead of the inertial frame. The algorithm employed to obtain solutions to the governing equation is a finite-volume LU algorithm that allows convection, source, as well as diffusion terms to be treated implicitly. In this study, all convection terms are upwind differenced by using flux-vector splitting, and all diffusion terms are centrally differenced. This paper describes the formulation and algorithm employed in the code. Some computed solutions for the flow within a coolant passage of a radial turbine are also presented.
NASA Technical Reports Server (NTRS)
Janus, J. Mark; Whitfield, David L.
1990-01-01
Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.
Li, Bo; Zhao, Yanxiang
2013-01-01
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
The time course of explicit and implicit categorization.
Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A
2015-10-01
Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization.
NASA Technical Reports Server (NTRS)
Skliar, M.; Ramirez, W. F.
1997-01-01
For an implicitly defined discrete system, a new algorithm for Kalman filtering is developed and an efficient numerical implementation scheme is proposed. Unlike the traditional explicit approach, the implicit filter can be readily applied to ill-conditioned systems and allows for generalization to descriptor systems. The implementation of the implicit filter depends on the solution of the congruence matrix equation (A1)(Px)(AT1) = Py. We develop a general iterative method for the solution of this equation, and prove necessary and sufficient conditions for convergence. It is shown that when the system matrices of an implicit system are sparse, the implicit Kalman filter requires significantly less computer time and storage to implement as compared to the traditional explicit Kalman filter. Simulation results are presented to illustrate and substantiate the theoretical developments.
Direct Numerical Simulation of Fingering Instabilities in Coating Flows
NASA Astrophysics Data System (ADS)
Eres, Murat H.; Schwartz, Leonard W.
1998-11-01
We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.
Fulford, Janice M.
2003-01-01
A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkasasbeh, Hamzeh Taha, E-mail: zukikuj@yahoo.com; Sarif, Norhafizah Md, E-mail: zukikuj@yahoo.com; Salleh, Mohd Zuki, E-mail: zukikuj@yahoo.com
2015-02-03
In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow andmore » heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.« less
1982-04-01
R.M. and Warming, R.F.: An Implicit Finite - Difference Algorithm for Hyperbolic Systems in Conservation Law Form. Journal of Computational Physics...Quincy Street C-40) Arlington, VA 22217 D 82 05-.10 I0, S4CURITY CLASSIFICATION OF THIS ’E(Wha, Doae Entotwed) Slength scale. Six different flow cases...forces upstream have produced a non-zero velocity gradient normal to the plane of curvature. Fluid with above (/below) average nioiiiei.tuili migrates
A finite difference solution for the propagation of sound in near sonic flows
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Lester, H. C.
1983-01-01
An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.
Graphite Ablation and Thermal Response Simulation Under Arc-Jet Flow Conditions
NASA Technical Reports Server (NTRS)
Chen, Y.-K.; Milos, F. S.; Reda, D. C.; Stewart, D. A.; Venkatapathy, Ethiraj (Technical Monitor)
2002-01-01
The Two-dimensional Implicit Thermal Response and Ablation program, TITAN, was developed and integrated with a Navier-Stokes solver, GIANTS, for multidimensional ablation and shape change simulation of thermal protection systems in hypersonic flow environments. The governing equations in both codes are demoralized using the same finite-volume approximation with a general body-fitted coordinate system. Time-dependent solutions are achieved by an implicit time marching technique using Gauess-Siedel line relaxation with alternating sweeps. As the first part of a code validation study, this paper compares TITAN-GIANTS predictions with thermal response and recession data obtained from arc-jet tests recently conducted in the Interaction Heating Facility (IHF) at NASA Ames Research Center. The test models are graphite sphere-cones. Graphite was selected as a test material to minimize the uncertainties from material properties. Recession and thermal response data were obtained from two separate arc-jet test series. The first series was at a heat flux where graphite ablation is mainly due to sublimation, and the second series was at a relatively low heat flux where recession is the result of diffusion-controlled oxidation. Ablation and thermal response solutions for both sets of conditions, as calculated by TITAN-GIANTS, are presented and discussed in detail. Predicted shape change and temperature histories generally agree well with the data obtained from the arc-jet tests.
Finite difference and Runge-Kutta methods for solving vibration problems
NASA Astrophysics Data System (ADS)
Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi
2017-11-01
The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.
NASA Technical Reports Server (NTRS)
Koppenhoefer, Kyle C.; Gullerud, Arne S.; Ruggieri, Claudio; Dodds, Robert H., Jr.; Healy, Brian E.
1998-01-01
This report describes theoretical background material and commands necessary to use the WARP3D finite element code. WARP3D is under continuing development as a research code for the solution of very large-scale, 3-D solid models subjected to static and dynamic loads. Specific features in the code oriented toward the investigation of ductile fracture in metals include a robust finite strain formulation, a general J-integral computation facility (with inertia, face loading), an element extinction facility to model crack growth, nonlinear material models including viscoplastic effects, and the Gurson-Tver-gaard dilatant plasticity model for void growth. The nonlinear, dynamic equilibrium equations are solved using an incremental-iterative, implicit formulation with full Newton iterations to eliminate residual nodal forces. The history integration of the nonlinear equations of motion is accomplished with Newmarks Beta method. A central feature of WARP3D involves the use of a linear-preconditioned conjugate gradient (LPCG) solver implemented in an element-by-element format to replace a conventional direct linear equation solver. This software architecture dramatically reduces both the memory requirements and CPU time for very large, nonlinear solid models since formation of the assembled (dynamic) stiffness matrix is avoided. Analyses thus exhibit the numerical stability for large time (load) steps provided by the implicit formulation coupled with the low memory requirements characteristic of an explicit code. In addition to the much lower memory requirements of the LPCG solver, the CPU time required for solution of the linear equations during each Newton iteration is generally one-half or less of the CPU time required for a traditional direct solver. All other computational aspects of the code (element stiffnesses, element strains, stress updating, element internal forces) are implemented in the element-by- element, blocked architecture. This greatly improves vectorization of the code on uni-processor hardware and enables straightforward parallel-vector processing of element blocks on multi-processor hardware.
The Time Course of Explicit and Implicit Categorization
Zakrzewski, Alexandria C.; Herberger, Eric; Boomer, Joseph; Roeder, Jessica; Ashby, F. Gregory; Church, Barbara A.
2015-01-01
Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization. PMID:26025556
Modeling of the 2011 Tohoku-oki Tsunami and its Impacts on Hawaii
NASA Astrophysics Data System (ADS)
Cheung, K.; Yamazaki, Y.; Roeber, V.; Lay, T.
2011-12-01
The 2011 Tohoku-oki great earthquake (Mw 9.0) generated a destructive tsunami along the entire Pacific coast of northeastern Japan. The tsunami, which registered 6.7 m amplitude at a coastal GPS gauge and 1.75 m at an open-ocean DART buoy, triggered warnings across the Pacific. The waves reached Hawaii 7 hours after the earthquake and caused localized damage and persistent coastal oscillations along the island chain. Several tide gauges and a DART buoy west of Hawaii Island recorded clear signals of the tsunami. The Tsunami Observer Program of Hawaii State Civil Defense immediately conducted field surveys to gather runup and inundation data on Kauai, Oahu, Maui, and Hawaii Island. The extensive global seismic networks and geodetic instruments allows evaluation and validation of finite fault solutions for the tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami using the long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs) and a finite fault solution based on inversion of teleseismic P waves. The depth-integrated model describes dispersive waves through the non-hydrostatic pressure and vertical velocity, which also account for tsunami generation from time histories of seafloor deformation. The semi-implicit, staggered finite difference model captures flow discontinuities associated with bores or hydraulic jumps through the momentum-conserved advection scheme. Four levels of two-way nested grids in spherical coordinates allow description of tsunami evolution processes of different time and spatial scales for investigation of the impacts around the Hawaiian Islands. The model results are validated with DART data across the Pacific as well as tide gauge and runup measurements in Hawaii. Spectral analysis of the computed surface elevation reveals a series of resonance modes over the insular shelf and slope complex along the archipelago. Resonance oscillations provide an explanation for the localized impacts and the persistent wave activities in the aftermath. The model results provide insights into effects of fringing reefs, which are present along 70% of Hawaii's coastlines, on tsunami transformation and runup processes. This case study improves our understanding of tsunamis in tropical island environment and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.
NASA Technical Reports Server (NTRS)
Padovan, J.; Adams, M.; Fertis, J.; Zeid, I.; Lam, P.
1982-01-01
Finite element codes are used in modelling rotor-bearing-stator structure common to the turbine industry. Engine dynamic simulation is used by developing strategies which enable the use of available finite element codes. benchmarking the elements developed are benchmarked by incorporation into a general purpose code (ADINA); the numerical characteristics of finite element type rotor-bearing-stator simulations are evaluated through the use of various types of explicit/implicit numerical integration operators. Improving the overall numerical efficiency of the procedure is improved.
A full potential flow analysis with realistic wake influence for helicopter rotor airload prediction
NASA Technical Reports Server (NTRS)
Egolf, T. Alan; Sparks, S. Patrick
1987-01-01
A 3-D, quasi-steady, full potential flow solver was adapted to include realistic wake influence for the aerodynamic analysis of helicopter rotors. The method is based on a finite difference solution of the full potential equation, using an inner and outer domain procedure for the blade flowfield to accommodate wake effects. The nonlinear flow is computed in the inner domain region using a finite difference solution method. The wake is modeled by a vortex lattice using prescribed geometry techniques to allow for the inclusion of realistic rotor wakes. The key feature of the analysis is that vortices contained within the finite difference mesh (inner domain) were treated with a vortex embedding technique while the influence of the remaining portion of the wake (in the outer domain) is impressed as a boundary condition on the outer surface of the finite difference mesh. The solution procedure couples the wake influence with the inner domain solution in a consistent and efficient solution process. The method has been applied to both hover and forward flight conditions. Correlation with subsonic and transonic hover airload data is shown which demonstrates the merits of the approach.
Improved boundary layer heat transfer calculations near a stagnation point
NASA Technical Reports Server (NTRS)
Ahn, Kyung Hwan
1990-01-01
A thermal design of a solar receiver has been developed for the solutions of problems involving phase-change thermal energy storage and natural convection loss. Two dimensional axisymmetrical solidification and melting of materials contained between two concentric cylinders of finite length has been studied for thermal energy storage analysis. For calculation of free convection loss inside receiver cavity, two dimensional axisymmetrical, laminar, transient free convection including radiation effects has been studied using integral/finite difference method. Finite difference equations are derived for the above analysis subject to constant or variable material properties, initial conditions, and boundary conditions. The validity of the analyses has been substantiated by comparing results of the present general method with available analytic solutions or numerical results reported in the literature. Both explicit and implicit schemes are tested in phase change analysis with different number of nodes ranging from 4 to 18. The above numerical methods have been applied to the existing solar receiver analyzing computer code as additional subroutines. The results were computed for one of the proposed Brayton cycle solar receiver models running under the actual environmental conditions. Effect of thermal energy storage on the thermal behavior of the receiver has been estimated. Due to the thermal energy storage, about 65% reduction on working gas outlet temperature fluctuation has been obtained; however, maximum temperature of thermal energy storage containment has been increased about 18%. Also, effect of natural convection inside a receiver cavity on the receiver heat transfer has been analyzed. The finding indicated that thermal stratification occurs during the sun time resulting in higher receiver temperatures at the outlet section of the gas tube, and lower temperatures at the inlet section of the gas tube when compared with the results with no natural convection. Due to heat supply from the air during the shade time, minimum temperature has been increased, while maximum temperature has been reduced due to convection loss to air. Consequently, cyclic temperature fluctuation has been reduced 29% for working gas and 16% for thermal energy storage containment. On the other hand, despite the presence of the natural convection the time-averaged temperatures for receiver components were found to be similar for two cases with/without natural convection (maximum difference was 1.8%).
Adaptive and iterative methods for simulations of nanopores with the PNP-Stokes equations
NASA Astrophysics Data System (ADS)
Mitscha-Baude, Gregor; Buttinger-Kreuzhuber, Andreas; Tulzer, Gerhard; Heitzinger, Clemens
2017-06-01
We present a 3D finite element solver for the nonlinear Poisson-Nernst-Planck (PNP) equations for electrodiffusion, coupled to the Stokes system of fluid dynamics. The model serves as a building block for the simulation of macromolecule dynamics inside nanopore sensors. The source code is released online at http://github.com/mitschabaude/nanopores. We add to existing numerical approaches by deploying goal-oriented adaptive mesh refinement. To reduce the computation overhead of mesh adaptivity, our error estimator uses the much cheaper Poisson-Boltzmann equation as a simplified model, which is justified on heuristic grounds but shown to work well in practice. To address the nonlinearity in the full PNP-Stokes system, three different linearization schemes are proposed and investigated, with two segregated iterative approaches both outperforming a naive application of Newton's method. Numerical experiments are reported on a real-world nanopore sensor geometry. We also investigate two different models for the interaction of target molecules with the nanopore sensor through the PNP-Stokes equations. In one model, the molecule is of finite size and is explicitly built into the geometry; while in the other, the molecule is located at a single point and only modeled implicitly - after solution of the system - which is computationally favorable. We compare the resulting force profiles of the electric and velocity fields acting on the molecule, and conclude that the point-size model fails to capture important physical effects such as the dependence of charge selectivity of the sensor on the molecule radius.
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Straube, Arthur V.; Grima, Ramon
2010-11-01
Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.
Willis, Catherine; Rubin, Jacob
1987-01-01
A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.
FEBio: finite elements for biomechanics.
Maas, Steve A; Ellis, Benjamin J; Ateshian, Gerard A; Weiss, Jeffrey A
2012-01-01
In the field of computational biomechanics, investigators have primarily used commercial software that is neither geared toward biological applications nor sufficiently flexible to follow the latest developments in the field. This lack of a tailored software environment has hampered research progress, as well as dissemination of models and results. To address these issues, we developed the FEBio software suite (http://mrl.sci.utah.edu/software/febio), a nonlinear implicit finite element (FE) framework, designed specifically for analysis in computational solid biomechanics. This paper provides an overview of the theoretical basis of FEBio and its main features. FEBio offers modeling scenarios, constitutive models, and boundary conditions, which are relevant to numerous applications in biomechanics. The open-source FEBio software is written in C++, with particular attention to scalar and parallel performance on modern computer architectures. Software verification is a large part of the development and maintenance of FEBio, and to demonstrate the general approach, the description and results of several problems from the FEBio Verification Suite are presented and compared to analytical solutions or results from other established and verified FE codes. An additional simulation is described that illustrates the application of FEBio to a research problem in biomechanics. Together with the pre- and postprocessing software PREVIEW and POSTVIEW, FEBio provides a tailored solution for research and development in computational biomechanics.
NASA Technical Reports Server (NTRS)
Downer, Janice Diane
1990-01-01
The dynamic analysis of three dimensional elastic beams which experience large rotational and large deformational motions are examined. The beam motion is modeled using an inertial reference for the translational displacements and a body-fixed reference for the rotational quantities. Finite strain rod theories are then defined in conjunction with the beam kinematic description which accounts for the effects of stretching, bending, torsion, and transverse shear deformations. A convected coordinate representation of the Cauchy stress tensor and a conjugate strain definition is introduced to model the beam deformation. To treat the beam dynamics, a two-stage modification of the central difference algorithm is presented to integrate the translational coordinates and the angular velocity vector. The angular orientation is then obtained from the application of an implicit integration algorithm to the Euler parameter/angular velocity kinematical relation. The combined developments of the objective internal force computation with the dynamic solution procedures result in the computational preservation of total energy for undamped systems. The present methodology is also extended to model the dynamics of deployment/retrieval of the flexible members. A moving spatial grid corresponding to the configuration of a deployed rigid beam is employed as a reference for the dynamic variables. A transient integration scheme which accurately accounts for the deforming spatial grid is derived from a space-time finite element discretization of a Hamiltonian variational statement. The computational results of this general deforming finite element beam formulation are compared to reported results for a planar inverse-spaghetti problem.
Finite element simulations of the Portevin Le Chatelier effect in aluminium alloy
NASA Astrophysics Data System (ADS)
Hopperstad, O. S.; Børvik, T.; Berstad, T.; Benallal, A.
2006-08-01
Finite element simulations of the Portevin-Le Chatelier effect in aluminium alloy 5083-H116 are presented and evaluated against existing experimental results. The constitutive model of McCormick (1988) for materials exhibiting negative steady-state strain-rate sensitivity is incorporated into an elastic-viscoplastic model for large plastic deformations and implemented in LS-DYNA for use with the explicit or implicit solver. Axisymmetric tensile specimens loaded at different strain rates are studied numerically, and it is shown that the model predicts the experimental behaviour with reasonable accuracy; including serrated yielding and propagating bands of localized plastic deformation along the gauge length of the specimen at intermediate strain rates.
Exactly energy conserving semi-implicit particle in cell formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be
We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conservesmore » energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These features are achieved at a reduced cost compared with either previous IMM or fully implicit implementation of PIC.« less
Bi-criteria travelling salesman subtour problem with time threshold
NASA Astrophysics Data System (ADS)
Kumar Thenepalle, Jayanth; Singamsetty, Purusotham
2018-03-01
This paper deals with the bi-criteria travelling salesman subtour problem with time threshold (BTSSP-T), which comes from the family of the travelling salesman problem (TSP) and is NP-hard in the strong sense. The problem arises in several application domains, mainly in routing and scheduling contexts. Here, the model focuses on two criteria: total travel distance and gains attained. The BTSSP-T aims to determine a subtour that starts and ends at the same city and visits a subset of cities at a minimum travel distance with maximum gains, such that the time spent on the tour does not exceed the predefined time threshold. A zero-one integer-programming problem is adopted to formulate this model with all practical constraints, and it includes a finite set of feasible solutions (one for each tour). Two algorithms, namely, the Lexi-Search Algorithm (LSA) and the Tabu Search (TS) algorithm have been developed to solve the BTSSP-T problem. The proposed LSA implicitly enumerates the feasible patterns and provides an efficient solution with backtracking, whereas the TS, which is metaheuristic, will give the better approximate solution. A numerical example is demonstrated in order to understand the search mechanism of the LSA. Numerical experiments are carried out in the MATLAB environment, on the different benchmark instances available in the TSPLIB domain as well as on randomly generated test instances. The experimental results show that the proposed LSA works better than the TS algorithm in terms of solution quality and, computationally, both LSA and TS are competitive.
NASA Technical Reports Server (NTRS)
Weatherill, W. H.; Ehlers, F. E.; Yip, E.; Sebastian, J. D.
1980-01-01
Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. The steady velocity potential is obtained first from the well-known nonlinear equation for steady transonic flow. The unsteady velocity potential is then obtained from a linear differential equation in complex form with spatially varying coefficients. Since sinusoidal motion is assumed, the unsteady equation is independent of time. An out-of-core direct solution procedure was developed and applied to two-dimensional sections. Results are presented for a section of vanishing thickness in subsonic flow and an NACA 64A006 airfoil in supersonic flow. Good correlation is obtained in the first case at values of Mach number and reduced frequency of direct interest in flutter analyses. Reasonable results are obtained in the second case. Comparisons of two-dimensional finite difference solutions with exact analytic solutions indicate that the accuracy of the difference solution is dependent on the boundary conditions used on the outer boundaries. Homogeneous boundary conditions on the mesh edges that yield complex eigenvalues give the most accurate finite difference solutions. The plane outgoing wave boundary conditions meet these requirements.
Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.
Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung
2018-01-01
A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.
A study of the response of nonlinear springs
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Knott, T. W.; Johnson, E. R.
1991-01-01
The various phases to developing a methodology for studying the response of a spring-reinforced arch subjected to a point load are discussed. The arch is simply supported at its ends with both the spring and the point load assumed to be at midspan. The spring is present to off-set the typical snap through behavior normally associated with arches, and to provide a structure that responds with constant resistance over a finite displacement. The various phases discussed consist of the following: (1) development of the closed-form solution for the shallow arch case; (2) development of a finite difference analysis to study (shallow) arches; and (3) development of a finite element analysis for studying more general shallow and nonshallow arches. The two numerical analyses rely on a continuation scheme to move the solution past limit points, and to move onto bifurcated paths, both characteristics being common to the arch problem. An eigenvalue method is used for a continuation scheme. The finite difference analysis is based on a mixed formulation (force and displacement variables) of the governing equations. The governing equations for the mixed formulation are in first order form, making the finite difference implementation convenient. However, the mixed formulation is not well-suited for the eigenvalue continuation scheme. This provided the motivation for the displacement based finite element analysis. Both the finite difference and the finite element analyses are compared with the closed form shallow arch solution. Agreement is excellent, except for the potential problems with the finite difference analysis and the continuation scheme. Agreement between the finite element analysis and another investigator's numerical analysis for deep arches is also good.
NASA Astrophysics Data System (ADS)
Cacace, Mauro; Jacquey, Antoine B.
2017-09-01
Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).
A point implicit time integration technique for slow transient flow problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.
2015-05-01
We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less
Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.
Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver
NASA Astrophysics Data System (ADS)
Lee, Hee Dong; Kwon, Oh Joon
The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.
A Review of High-Order and Optimized Finite-Difference Methods for Simulating Linear Wave Phenomena
NASA Technical Reports Server (NTRS)
Zingg, David W.
1996-01-01
This paper presents a review of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, or elastic waves. The spatial operators reviewed include compact schemes, non-compact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-marching methods discussed include Runge-Kutta methods, Adams-Bashforth methods, and the leapfrog method. In addition, the following fourth-order fully-discrete finite-difference methods are considered: a one-step implicit scheme with a three-point spatial stencil, a one-step explicit scheme with a five-point spatial stencil, and a two-step explicit scheme with a five-point spatial stencil. For each method studied, the number of grid points per wavelength required for accurate simulation of wave propagation over large distances is presented. Recommendations are made with respect to the suitability of the methods for specific problems and practical aspects of their use, such as appropriate Courant numbers and grid densities. Avenues for future research are suggested.
A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport
NASA Astrophysics Data System (ADS)
Robinson, P. B.; Peterson, J. D. L.
2005-12-01
The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48
Simulating incompressible flow on moving meshfree grids using General Finite Differences (GFD)
NASA Astrophysics Data System (ADS)
Vasyliv, Yaroslav; Alexeev, Alexander
2016-11-01
We simulate incompressible flow around an oscillating cylinder at different Reynolds numbers using General Finite Differences (GFD) on a meshfree grid. We evolve the meshfree grid by treating each grid node as a particle. To compute velocities and accelerations, we consider the particles at a particular instance as Eulerian observation points. The incompressible Navier-Stokes equations are directly discretized using GFD with boundary conditions enforced using a sharp interface treatment. Cloud sizes are set such that the local approximations use only 16 neighbors. To enforce incompressibility, we apply a semi-implicit approximate projection method. To prevent overlapping particles and formation of voids in the grid, we propose a particle regularization scheme based on a local minimization principle. We validate the GFD results for an oscillating cylinder against the lattice Boltzmann method and find good agreement. Financial support provided by National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.
Real gas flow fields about three dimensional configurations
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Lombard, C. K.; Davy, W. C.
1983-01-01
Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.
NASA Astrophysics Data System (ADS)
Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.
2007-04-01
In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov
2016-09-15
In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.
A FORTRAN program for calculating nonlinear seismic ground response
Joyner, William B.
1977-01-01
The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.
Universal single level implicit algorithm for gasdynamics
NASA Technical Reports Server (NTRS)
Lombard, C. K.; Venkatapthy, E.
1984-01-01
A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.
Multiresolution and Explicit Methods for Vector Field Analysis and Visualization
NASA Technical Reports Server (NTRS)
1996-01-01
We first report on our current progress in the area of explicit methods for tangent curve computation. The basic idea of this method is to decompose the domain into a collection of triangles (or tetrahedra) and assume linear variation of the vector field over each cell. With this assumption, the equations which define a tangent curve become a system of linear, constant coefficient ODE's which can be solved explicitly. There are five different representation of the solution depending on the eigenvalues of the Jacobian. The analysis of these five cases is somewhat similar to the phase plane analysis often associate with critical point classification within the context of topological methods, but it is not exactly the same. There are some critical differences. Moving from one cell to the next as a tangent curve is tracked, requires the computation of the exit point which is an intersection of the solution of the constant coefficient ODE and the edge of a triangle. There are two possible approaches to this root computation problem. We can express the tangent curve into parametric form and substitute into an implicit form for the edge or we can express the edge in parametric form and substitute in an implicit form of the tangent curve. Normally the solution of a system of ODE's is given in parametric form and so the first approach is the most accessible and straightforward. The second approach requires the 'implicitization' of these parametric curves. The implicitization of parametric curves can often be rather difficult, but in this case we have been successful and have been able to develop algorithms and subsequent computer programs for both approaches. We will give these details along with some comparisons in a forthcoming research paper on this topic.
Computation of airfoil buffet boundaries
NASA Technical Reports Server (NTRS)
Levy, L. L., Jr.; Bailey, H. E.
1981-01-01
The ILLIAC IV computer has been programmed with an implicit, finite-difference code for solving the thin layer compressible Navier-Stokes equation. Results presented for the case of the buffet boundaries of a conventional and a supercritical airfoil section at high Reynolds numbers are found to be in agreement with experimentally determined buffet boundaries, especially at the higher freestream Mach numbers and lower lift coefficients where the onset of unsteady flows is associated with shock wave-induced boundary layer separation.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.
1979-01-01
Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicitmore » approach inaccuracies on the total mobility of Si and III-V NWs are studied.« less
NASA Astrophysics Data System (ADS)
Li, G. Q.; Zhu, Z. H.
2015-12-01
Dynamic modeling of tethered spacecraft with the consideration of elasticity of tether is prone to the numerical instability and error accumulation over long-term numerical integration. This paper addresses the challenges by proposing a globally stable numerical approach with the nodal position finite element method (NPFEM) and the implicit, symplectic, 2-stage and 4th order Gaussian-Legendre Runge-Kutta time integration. The NPFEM eliminates the numerical error accumulation by using the position instead of displacement of tether as the state variable, while the symplectic integration enforces the energy and momentum conservation of the discretized finite element model to ensure the global stability of numerical solution. The effectiveness and robustness of the proposed approach is assessed by an elastic pendulum problem, whose dynamic response resembles that of tethered spacecraft, in comparison with the commonly used time integrators such as the classical 4th order Runge-Kutta schemes and other families of non-symplectic Runge-Kutta schemes. Numerical results show that the proposed approach is accurate and the energy of the corresponding numerical model is conservative over the long-term numerical integration. Finally, the proposed approach is applied to the dynamic modeling of deorbiting process of tethered spacecraft over a long period.
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.
exponential finite difference technique for solving partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less
Hamiltonian approaches to spatial and temporal discretization of fully compressible equations
NASA Astrophysics Data System (ADS)
Dubos, Thomas; Dubey, Sarvesh
2017-04-01
The fully compressible Euler (FCE) equations are the most accurate for representing atmospheric motion, compared to approximate systems like the hydrostatic, anelastic or pseudo-incompressible systems. The price to pay for this accuracy is the presence of additional degrees of freedom and high-frequency acoustic waves that must be treated implicitly. In this work we explore a Hamiltonian approach to the issue of stable spatial and temporal discretization of the FCE using a non-Eulerian vertical coordinate. For scalability, a horizontally-explicit, vertically-implicit (HEVI) time discretization is adopted. The Hamiltonian structure of the equations is used to obtain the spatial finite-difference discretization and also in order to identify those terms of the equations of motion that need to be treated implicitly. A novel treatment of the lower boundary condition in the presence of orography is introduced: rather than enforcing a no-normal-flow boundary condition, which couples the horizontal and vertical velocity components and interferes with the HEVI structure, the ground is treated as a flexible surface with arbitrarily large stiffness, resulting in a decoupling of the horizontal and vertical dynamics and yielding a simple implicit problem which can be solved efficiently. Standard test cases performed in a vertical slice configuration suggest that an effective horizontal acoustic Courant number close to 1 can be achieved.
NASA Astrophysics Data System (ADS)
Jiang, Jiamin; Younis, Rami M.
2017-06-01
The first-order methods commonly employed in reservoir simulation for computing the convective fluxes introduce excessive numerical diffusion leading to severe smoothing of displacement fronts. We present a fully-implicit cell-centered finite-volume (CCFV) framework that can achieve second-order spatial accuracy on smooth solutions, while at the same time maintain robustness and nonlinear convergence performance. A novel multislope MUSCL method is proposed to construct the required values at edge centroids in a straightforward and effective way by taking advantage of the triangular mesh geometry. In contrast to the monoslope methods in which a unique limited gradient is used, the multislope concept constructs specific scalar slopes for the interpolations on each edge of a given element. Through the edge centroids, the numerical diffusion caused by mesh skewness is reduced, and optimal second order accuracy can be achieved. Moreover, an improved smooth flux-limiter is introduced to ensure monotonicity on non-uniform meshes. The flux-limiter provides high accuracy without degrading nonlinear convergence performance. The CCFV framework is adapted to accommodate a lower-dimensional discrete fracture-matrix (DFM) model. Several numerical tests with discrete fractured system are carried out to demonstrate the efficiency and robustness of the numerical model.
Adaptive multiresolution modeling of groundwater flow in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Malenica, Luka; Gotovac, Hrvoje; Srzic, Veljko; Andric, Ivo
2016-04-01
Proposed methodology was originally developed by our scientific team in Split who designed multiresolution approach for analyzing flow and transport processes in highly heterogeneous porous media. The main properties of the adaptive Fup multi-resolution approach are: 1) computational capabilities of Fup basis functions with compact support capable to resolve all spatial and temporal scales, 2) multi-resolution presentation of heterogeneity as well as all other input and output variables, 3) accurate, adaptive and efficient strategy and 4) semi-analytical properties which increase our understanding of usually complex flow and transport processes in porous media. The main computational idea behind this approach is to separately find the minimum number of basis functions and resolution levels necessary to describe each flow and transport variable with the desired accuracy on a particular adaptive grid. Therefore, each variable is separately analyzed, and the adaptive and multi-scale nature of the methodology enables not only computational efficiency and accuracy, but it also describes subsurface processes closely related to their understood physical interpretation. The methodology inherently supports a mesh-free procedure, avoiding the classical numerical integration, and yields continuous velocity and flux fields, which is vitally important for flow and transport simulations. In this paper, we will show recent improvements within the proposed methodology. Since "state of the art" multiresolution approach usually uses method of lines and only spatial adaptive procedure, temporal approximation was rarely considered as a multiscale. Therefore, novel adaptive implicit Fup integration scheme is developed, resolving all time scales within each global time step. It means that algorithm uses smaller time steps only in lines where solution changes are intensive. Application of Fup basis functions enables continuous time approximation, simple interpolation calculations across different temporal lines and local time stepping control. Critical aspect of time integration accuracy is construction of spatial stencil due to accurate calculation of spatial derivatives. Since common approach applied for wavelets and splines uses a finite difference operator, we developed here collocation one including solution values and differential operator. In this way, new improved algorithm is adaptive in space and time enabling accurate solution for groundwater flow problems, especially in highly heterogeneous porous media with large lnK variances and different correlation length scales. In addition, differences between collocation and finite volume approaches are discussed. Finally, results show application of methodology to the groundwater flow problems in highly heterogeneous confined and unconfined aquifers.
NASA Astrophysics Data System (ADS)
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-12-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew
2015-12-28
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-01-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595
NASA Astrophysics Data System (ADS)
Daiguji, Hisaaki; Yamamoto, Satoru
1988-12-01
The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.
A Novel Face-on-Face Contact Method for Nonlinear Solid Mechanics
NASA Astrophysics Data System (ADS)
Wopschall, Steven Robert
The implicit solution to contact problems in nonlinear solid mechanics poses many difficulties. Traditional node-to-segment methods may suffer from locking and experience contact force chatter in the presence of sliding. More recent developments include mortar based methods, which resolve local contact interactions over face-pairs and feature a kinematic constraint in integral form that smoothes contact behavior, especially in the presence of sliding. These methods have been shown to perform well in the presence of geometric nonlinearities and are demonstratively more robust than node-to-segment methods. These methods are typically biased, however, interpolating contact tractions and gap equations on a designated non-mortar face, which leads to an asymmetry in the formulation. Another challenge is constraint enforcement. The general selection of the active set of constraints is brought with difficulty, often leading to non-physical solutions and easily resulting in missed face-pair interactions. Details on reliable constraint enforcement methods are lacking in the greater contact literature. This work presents an unbiased contact formulation utilizing a median-plane methodology. Up to linear polynomials are used for the discrete pressure representation and integral gap constraints are enforced using a novel subcycling procedure. This procedure reliably determines the active set of contact constraints leading to physical and kinematically admissible solutions void of heuristics and user action. The contact method presented herein successfully solves difficult quasi-static contact problems in the implicit computational setting. These problems feature finite deformations, material nonlinearity, and complex interface geometries, all of which are challenging characteristics for contact implementations and constraint enforcement algorithms. The subcycling procedure is a key feature of this method, handling active constraint selection for complex interfaces and mesh geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddhu, M.; Jiang, M.Y.; Whitfield, D.L.
The original intention for this work was to impart the technology that was developed in the field of computational aeronautics to the field of computational physical oceanography. This technology transfer involved grid generation techniques and solution procedures to solve the governing equations over the grids thus generated. Specifically, boundary fitting non-orthogonal grids would be generated over a sphere taking into account the topography of the ocean floor and the topography of the continents. The solution methodology to be employed involved the application of an upwind, finite volume discretization procedure that uses higher order numerical fluxes at the cell faces tomore » discretize the governing equations and an implicit Newton relaxation technique to solve the discretized equations. This report summarizes the efforts put forth during the past three years to achieve these goals and indicates the future direction of this work as it is still an ongoing effort.« less
Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delchini, Marc O., E-mail: delchinm@email.tamu.edu; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim, E-mail: jim.morel@tamu.edu
2015-09-01
The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The methodmore » of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.« less
NASA Astrophysics Data System (ADS)
Hussein, I.; Wilkins, M.; Roscoe, C.; Faber, W.; Chakravorty, S.; Schumacher, P.
2016-09-01
Finite Set Statistics (FISST) is a rigorous Bayesian multi-hypothesis management tool for the joint detection, classification and tracking of multi-sensor, multi-object systems. Implicit within the approach are solutions to the data association and target label-tracking problems. The full FISST filtering equations, however, are intractable. While FISST-based methods such as the PHD and CPHD filters are tractable, they require heavy moment approximations to the full FISST equations that result in a significant loss of information contained in the collected data. In this paper, we review Smart Sampling Markov Chain Monte Carlo (SSMCMC) that enables FISST to be tractable while avoiding moment approximations. We study the effect of tuning key SSMCMC parameters on tracking quality and computation time. The study is performed on a representative space object catalog with varying numbers of RSOs. The solution is implemented in the Scala computing language at the Maui High Performance Computing Center (MHPCC) facility.
1984-10-12
MCYwWWm M& de4 l 8.id iW d by N1wk "wt Finite Difference Reference Wavenumber Interface Split-Step Ordinary Difference Equation Wide Angle Parabolic...Problems D. Lee and S. Praiser J. Comp. & Math. with Appls., 7(2), pp. 195-202 (1981) Finite - Difference Solution to the Parabolic Wave Equation D. Lee, G...was incorporated into the ODE and finite difference models. At that time, we did not have a better implementation of the ODE solution, but we
NASA Technical Reports Server (NTRS)
Campbell, W.
1981-01-01
A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.
Finite element analysis of residual stress field induced by laser shock peening
NASA Astrophysics Data System (ADS)
Nam, Taeksun
The finite element method is applied to analyze the laser shock peening process (LSP) for thick parts (considered as a semi-infinite half space) and thin parts (finite thickness domain). The technology of LSP is used to enhance mechanical properties such as fatigue life, fretting fatigue life, resistance to stress corrosion cracking and surface hardness. These enhanced material properties are directly related to the magnitude and distribution of the plastic strain and associated residual stresses due to shockwaves induced by LSP. To reduce the process development cost and time, the prediction of residual stress field is very useful to provide a base design guideline for selecting appropriate LSP conditions for evaluation. An axisymmetric Finite Element Analysis (FEA) code, named SHOCKWAVE, is developed in order to complement shortcomings of applying commercial FEA codes at extremely high strain rates (as high as 104 -106/sec). The rate dependent plasticity theory is applied along with the small strain assumption. The solution process consists of an explicit dynamic loading analysis for shock loading stage and a static unloading analysis (implicit) to determine the equilibrium state for the residual stress and plastic strain fields. Some of the highlights explored in this investigation entail: (i) overstress power law models for the rate dependence, (ii) various hardening models, (iii) a second-order accurate implicit algorithm for the plastic consistency condition, (iv) an adaptively expanding domain scheme to trace the stress-free boundary condition in a simple way, (v) a special uniform meshing scheme to avoid the usual assembly process and repeated calculations for the stiffness matrix, (vi) mesh sensitivity study, (vii) comparisons with measured data provided and supported by the LSP Technologies, Inc. The dynamic behavior of Ti-6Al-4V at high strain rates can be investigated by using the split torsional Hopkinson bar experiment and by a longitudinal shock loading simulation in uniaxial strain to obtain material parameters representing rate dependent plasticity. In case of the double-sided laser peening for a thin part, reversal in loading plays a significant role. The stress waves repeatedly recompose the pre-accumulated plastic strains because of the interaction of the primary and reflected stress waves. In an attempt to better represent the material behavior under repeated reversals and collapses in loading, a sequence of bend-reverse bend tests is performed to identify the material parameters of TI-6Al-4V needed for a nonlinear kinematic hardening model (Chaboche model). For a thick part (a semi-infinite domain), single shot as well as multiple shots (at the same location) cases are simulated and compared with measured data for two different loading magnitudes and three different hardening models. Some of the simulation results agree well with the measured data, depending on the choice of hardening model and the treatment of rate dependent material behavior at high strain rates. Only a single shot (on both sides) case is investigated for a thin part (a finite thickness domain) in terms of residual stress distribution. The disagreement between the computed results and the measured data is more pronounced in this case, needing further investigations on both sides of the fields.
NASA Astrophysics Data System (ADS)
Chang, Chueh-Hsin; Yu, Ching-Hao; Sheu, Tony Wen-Hann
2016-10-01
In this article, we numerically revisit the long-time solution behavior of the Camassa-Holm equation ut - uxxt + 2ux + 3uux = 2uxuxx + uuxxx. The finite difference solution of this integrable equation is sought subject to the newly derived initial condition with Delta-function potential. Our underlying strategy of deriving a numerical phase accurate finite difference scheme in time domain is to reduce the numerical dispersion error through minimization of the derived discrepancy between the numerical and exact modified wavenumbers. Additionally, to achieve the goal of conserving Hamiltonians in the completely integrable equation of current interest, a symplecticity-preserving time-stepping scheme is developed. Based on the solutions computed from the temporally symplecticity-preserving and the spatially wavenumber-preserving schemes, the long-time asymptotic CH solution characters can be accurately depicted in distinct regions of the space-time domain featuring with their own quantitatively very different solution behaviors. We also aim to numerically confirm that in the two transition zones their long-time asymptotics can indeed be described in terms of the theoretically derived Painlevé transcendents. Another attempt of this study is to numerically exhibit a close connection between the presently predicted finite-difference solution and the solution of the Painlevé ordinary differential equation of type II in two different transition zones.
Spillover, nonlinearity, and flexible structures
NASA Technical Reports Server (NTRS)
Bass, Robert W.; Zes, Dean
1991-01-01
Many systems whose evolution in time is governed by Partial Differential Equations (PDEs) are linearized around a known equilibrium before Computer Aided Control Engineering (CACE) is considered. In this case, there are infinitely many independent vibrational modes, and it is intuitively evident on physical grounds that infinitely many actuators would be needed in order to control all modes. A more precise, general formulation of this grave difficulty (spillover problem) is due to A.V. Balakrishnan. A possible route to circumvention of this difficulty lies in leaving the PDE in its original nonlinear form, and adding the essentially finite dimensional control action prior to linearization. One possibly applicable technique is the Liapunov Schmidt rigorous reduction of singular infinite dimensional implicit function problems to finite dimensional implicit function problems. Omitting details of Banach space rigor, the formalities of this approach are given.
Action Being Character: A Promising Perspective on the Solution Concept of Game Theory
Deng, Kuiying; Chu, Tianguang
2011-01-01
The inconsistency of predictions from solution concepts of conventional game theory with experimental observations is an enduring question. These solution concepts are based on the canonical rationality assumption that people are exclusively self-regarding utility maximizers. In this article, we think this assumption is problematic and, instead, assume that rational economic agents act as if they were maximizing their implicit utilities, which turns out to be a natural extension of the canonical rationality assumption. Implicit utility is defined by a player's character to reflect his personal weighting between cooperative, individualistic, and competitive social value orientations. The player who actually faces an implicit game chooses his strategy based on the common belief about the character distribution for a general player and the self-estimation of his own character, and he is not concerned about which strategies other players will choose and will never feel regret about his decision. It is shown by solving five paradigmatic games, the Dictator game, the Ultimatum game, the Prisoner's Dilemma game, the Public Goods game, and the Battle of the Sexes game, that the framework of implicit game and its corresponding solution concept, implicit equilibrium, based on this alternative assumption have potential for better explaining people's actual behaviors in social decision making situations. PMID:21573055
Action being character: a promising perspective on the solution concept of game theory.
Deng, Kuiying; Chu, Tianguang
2011-05-09
The inconsistency of predictions from solution concepts of conventional game theory with experimental observations is an enduring question. These solution concepts are based on the canonical rationality assumption that people are exclusively self-regarding utility maximizers. In this article, we think this assumption is problematic and, instead, assume that rational economic agents act as if they were maximizing their implicit utilities, which turns out to be a natural extension of the canonical rationality assumption. Implicit utility is defined by a player's character to reflect his personal weighting between cooperative, individualistic, and competitive social value orientations. The player who actually faces an implicit game chooses his strategy based on the common belief about the character distribution for a general player and the self-estimation of his own character, and he is not concerned about which strategies other players will choose and will never feel regret about his decision. It is shown by solving five paradigmatic games, the Dictator game, the Ultimatum game, the Prisoner's Dilemma game, the Public Goods game, and the Battle of the Sexes game, that the framework of implicit game and its corresponding solution concept, implicit equilibrium, based on this alternative assumption have potential for better explaining people's actual behaviors in social decision making situations.
A GPU-accelerated implicit meshless method for compressible flows
NASA Astrophysics Data System (ADS)
Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng
2018-05-01
This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.
Preconditioned conjugate residual methods for the solution of spectral equations
NASA Technical Reports Server (NTRS)
Wong, Y. S.; Zang, T. A.; Hussaini, M. Y.
1986-01-01
Conjugate residual methods for the solution of spectral equations are described. An inexact finite-difference operator is introduced as a preconditioner in the iterative procedures. Application of these techniques is limited to problems for which the symmetric part of the coefficient matrix is positive definite. Although the spectral equation is a very ill-conditioned and full matrix problem, the computational effort of the present iterative methods for solving such a system is comparable to that for the sparse matrix equations obtained from the application of either finite-difference or finite-element methods to the same problems. Numerical experiments are shown for a self-adjoint elliptic partial differential equation with Dirichlet boundary conditions, and comparison with other solution procedures for spectral equations is presented.
Steady potential solver for unsteady aerodynamic analyses
NASA Technical Reports Server (NTRS)
Hoyniak, Dan
1994-01-01
Development of a steady flow solver for use with LINFLO was the objective of this report. The solver must be compatible with LINFLO, be composed of composite mesh, and have transonic capability. The approaches used were: (1) steady flow potential equations written in nonconservative form; (2) Newton's Method; (3) implicit, least-squares, interpolation method to obtain finite difference equations; and (4) matrix inversion routines from LINFLO. This report was given during the NASA LeRC Workshop on Forced Response in Turbomachinery in August of 1993.
A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map
Callegari, S.; Lake, G. R.; Tkachenko, N.; Weissmann, J. D.; Zollikofer, Ch. P. E.
2017-01-01
We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas. PMID:28085882
Comparison of Implicit Collocation Methods for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Jezequel, Fabienne; Zukor, Dorothy (Technical Monitor)
2001-01-01
We combine a high-order compact finite difference scheme to approximate spatial derivatives arid collocation techniques for the time component to numerically solve the two dimensional heat equation. We use two approaches to implement the collocation methods. The first one is based on an explicit computation of the coefficients of polynomials and the second one relies on differential quadrature. We compare them by studying their merits and analyzing their numerical performance. All our computations, based on parallel algorithms, are carried out on the CRAY SV1.
On the superconvergence of Galerkin methods for hyperbolic IBVP
NASA Technical Reports Server (NTRS)
Gottlieb, David; Gustafsson, Bertil; Olsson, Pelle; Strand, BO
1993-01-01
Finite element Galerkin methods for periodic first order hyperbolic equations exhibit superconvergence on uniform grids at the nodes, i.e., there is an error estimate 0(h(sup 2r)) instead of the expected approximation order 0(h(sup r)). It will be shown that no matter how the approximating subspace S(sup h) is chosen, the superconvergence property is lost if there are characteristics leaving the domain. The implications of this result when constructing compact implicit difference schemes is also discussed.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map.
Petersen, W P; Callegari, S; Lake, G R; Tkachenko, N; Weissmann, J D; Zollikofer, Ch P E
2017-01-01
We describe a general Godunov-type splitting for numerical simulations of the Fisher-Kolmogorov-Petrovski-Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas.
Calculation of transonic aileron buzz
NASA Technical Reports Server (NTRS)
Steger, J. L.; Bailey, H. E.
1979-01-01
An implicit finite-difference computer code that uses a two-layer algebraic eddy viscosity model and exact geometric specification of the airfoil has been used to simulate transonic aileron buzz. The calculated results, which were performed on both the Illiac IV parallel computer processor and the Control Data 7600 computer, are in essential agreement with the original expository wind-tunnel data taken in the Ames 16-Foot Wind Tunnel just after World War II. These results and a description of the pertinent numerical techniques are included.
Some aspects of algorithm performance and modeling in transient analysis of structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1981-01-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures).
Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids
NASA Technical Reports Server (NTRS)
Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)
1994-01-01
A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Berdnarcyk, Brett A.; Arnold, Steven M.; Collier, Craig S.
2009-01-01
This preliminary report demonstrates the capabilities of the recently developed software implementation that links the Generalized Method of Cells to explicit finite element analysis by extending a previous development which tied the generalized method of cells to implicit finite elements. The multiscale framework, which uses explicit finite elements at the global-scale and the generalized method of cells at the microscale is detailed. This implementation is suitable for both dynamic mechanics problems and static problems exhibiting drastic and sudden changes in material properties, which often encounter convergence issues with commercial implicit solvers. Progressive failure analysis of stiffened and un-stiffened fiber-reinforced laminates subjected to normal blast pressure loads was performed and is used to demonstrate the capabilities of this framework. The focus of this report is to document the development of the software implementation; thus, no comparison between the results of the models and experimental data is drawn. However, the validity of the results are assessed qualitatively through the observation of failure paths, stress contours, and the distribution of system energies.
A nonlinear dynamic finite element approach for simulating muscular hydrostats.
Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A
2014-01-01
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching.
Existence of entire solutions of some non-linear differential-difference equations.
Chen, Minfeng; Gao, Zongsheng; Du, Yunfei
2017-01-01
In this paper, we investigate the admissible entire solutions of finite order of the differential-difference equations [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] are two non-zero polynomials, [Formula: see text] is a polynomial and [Formula: see text]. In addition, we investigate the non-existence of entire solutions of finite order of the differential-difference equation [Formula: see text], where [Formula: see text], [Formula: see text] are two non-constant polynomials, [Formula: see text], m , n are positive integers and satisfy [Formula: see text] except for [Formula: see text], [Formula: see text].
Parallel Computing of Upwelling in a Rotating Stratified Flow
NASA Astrophysics Data System (ADS)
Cui, A.; Street, R. L.
1997-11-01
A code for the three-dimensional, unsteady, incompressible, and turbulent flow has been implemented on the IBM SP2, using message passing. The effects of rotation and variable density are included. A finite volume method is used to discretize the Navier-Stokes equations in general curvilinear coordinates on a non-staggered grid. All the spatial derivatives are approximated using second-order central differences with the exception of the convection terms, which are handled with special upwind-difference schemes. The semi-implicit, second-order accurate, time-advancement scheme employs the Adams-Bashforth method for the explicit terms and Crank-Nicolson for the implicit terms. A multigrid method, with the four-color ZEBRA as smoother, is used to solve the Poisson equation for pressure, while the momentum equations are solved with an approximate factorization technique. The code was successfully validated for a variety test cases. Simulations of a laboratory model of coastal upwelling in a rotating annulus are in progress and will be presented.
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
The mimetic finite difference method for the Landau–Lifshitz equation
Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich
2017-01-01
The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less
The mimetic finite difference method for the Landau–Lifshitz equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich
The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less
Extension of a streamwise upwind algorithm to a moving grid system
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru; Goorjian, Peter M.; Guruswamy, Guru P.
1990-01-01
A new streamwise upwind algorithm was derived to compute unsteady flow fields with the use of a moving-grid system. The temporally nonconservative LU-ADI (lower-upper-factored, alternating-direction-implicit) method was applied for time marching computations. A comparison of the temporally nonconservative method with a time-conservative implicit upwind method indicates that the solutions are insensitive to the conservative properties of the implicit solvers when practical time steps are used. Using this new method, computations were made for an oscillating wing at a transonic Mach number. The computed results confirm that the present upwind scheme captures the shock motion better than the central-difference scheme based on the beam-warming algorithm. The new upwind option of the code allows larger time-steps and thus is more efficient, even though it requires slightly more computational time per time step than the central-difference option.
Finite-difference models of ordinary differential equations - Influence of denominator functions
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.; Smith, Arthur
1990-01-01
This paper discusses the influence on the solutions of finite-difference schemes of using a variety of denominator functions in the discrete modeling of the derivative for any ordinary differential equation. The results obtained are a consequence of using a generalized definition of the first derivative. A particular example of the linear decay equation is used to illustrate in detail the various solution possibilities that can occur.
Coupled Hydro-Mechanical Modeling of Fluid Geological Storage
NASA Astrophysics Data System (ADS)
Castelletto, N.; Garipov, T.; Tchelepi, H. A.
2013-12-01
The accurate modeling of the complex coupled physical processes occurring during the injection and the post-injection period is a key factor for assessing the safety and the feasibility of anthropogenic carbon dioxide (CO2) sequestration in subsurface formations. In recent years, it has become widely accepted the importance of the coupling between fluid flow and geomechanical response in constraining the sustainable pressure buildup caused by fluid injection relative to the caprock sealing capacity, induced seismicity effects and ground surface stability [e.g., Rutqvist, 2012; Castelletto et al., 2013]. Here, we present a modeling approach based on a suitable combination of Finite Volumes (FVs) and Finite Elements (FEs) to solve the coupled system of partial differential equations governing the multiphase flow in a deformable porous medium. Specifically, a FV method is used for the flow problem while the FE method is adopted to address the poro-elasto-plasticity equations. The aim of the present work is to compare the performance and the robustness of unconditionally stable sequential-implicit schemes [Kim et al., 2011] and the fully-implicit method in solving the algebraic systems arising from the discretization of the governing equations, for both normally conditioned and severely ill-conditioned problems. The two approaches are tested against well-known analytical solutions and experimented with in a realistic application of CO2 injection in a synthetic aquifer. References: - Castelletto N., G. Gambolati, and P. Teatini (2013), Geological CO2 sequestration in multi-compartment reservoirs: Geomechanical challenges, J. Geophys. Res. Solid Earth, 118, 2417-2428, doi:10.1002/jgrb.50180. - Kim J., H. A. Tchelepi, and R. Juanes (2011), Stability, accuracy and efficiency of sequential methods for coupled flow and geomechanics, SPE J., 16(2), 249-262. - Rutqvist J. (2012), The geomechanics of CO2 storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 525-551.
Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model
NASA Astrophysics Data System (ADS)
Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.
2017-10-01
We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.
Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.
1988-01-01
An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.
NUEN-618 Class Project: Actually Implicit Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, R. M.; Brunner, T. A.
2017-12-14
This research describes a new method for the solution of the thermal radiative transfer (TRT) equations that is implicit in time which will be called Actually Implicit Monte Carlo (AIMC). This section aims to introduce the TRT equations, as well as the current workhorse method which is known as Implicit Monte Carlo (IMC). As the name of the method proposed here indicates, IMC is a misnomer in that it is only semi-implicit, which will be shown in this section as well.
An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Lessard, Victor R.
1990-01-01
The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.
Comparison of finite source and plane wave scattering from corrugated surfaces
NASA Technical Reports Server (NTRS)
Levine, D. M.
1977-01-01
The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined.
NASA Technical Reports Server (NTRS)
Butler, T. D.; Weatherill, W. H.; Sebastian, J. D.; Ehlers, F. E.
1977-01-01
The design and usage of a pilot program using a finite difference method for calculating the pressure distributions over harmonically oscillating wings in transonic flow are discussed. The procedure used is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady differential equation for small disturbances. The steady velocity potential which must be obtained from some other program, is required for input. The unsteady differential equation is linear, complex in form with spatially varying coefficients. Because sinusoidal motion is assumed, time is not a variable. The numerical solution is obtained through a finite difference formulation and a line relaxation solution method.
A vortex wake capturing method for potential flow calculations
NASA Technical Reports Server (NTRS)
Murman, E. M.; Stremel, P. M.
1982-01-01
A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.
NASA Astrophysics Data System (ADS)
Sahai, A.; Mansour, N. N.; Lopez, B.; Panesi, M.
2017-05-01
This work addresses the modeling of high pressure electric discharge in an arc-heated wind tunnel. The combined numerical solution of Poisson’s equation, radiative transfer equations, and the set of Favre-averaged thermochemical nonequilibrium Navier-Stokes equations allows for the determination of the electric, radiation, and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles with the Chapman-Enskog method. A multi-temperature formulation is used to account for thermal non-equilibrium. Finally, the turbulence closure of the flow equations is obtained by means of the Spalart-Allmaras model, which requires the solution of an additional scalar transport equation. A Streamline upwind Petrov-Galerkin stabilized finite element formulation is employed to solve the Navier-Stokes equation. The electric field equation is solved using the standard Galerkin formulation. A stable formulation for the radiative transfer equations is obtained using the least-squares finite element method. The developed simulation framework has been applied to investigate turbulent plasma flows in the 20 MW Aerodynamic Heating Facility at NASA Ames Research Center. The current model is able to predict the process of energy addition and re-distribution due to Joule heating and thermal radiation, resulting in a hot central core surrounded by colder flow. The use of an unsteady three-dimensional treatment also allows the asymmetry due to a dynamic electric arc attachment point in the cathode chamber to be captured accurately. The current work paves the way for detailed estimation of operating characteristics for arc-heated wind tunnels which are critical in testing thermal protection systems.
Further analytical study of hybrid rocket combustion
NASA Technical Reports Server (NTRS)
Hung, W. S. Y.; Chen, C. S.; Haviland, J. K.
1972-01-01
Analytical studies of the transient and steady-state combustion processes in a hybrid rocket system are discussed. The particular system chosen consists of a gaseous oxidizer flowing within a tube of solid fuel, resulting in a heterogeneous combustion. Finite rate chemical kinetics with appropriate reaction mechanisms were incorporated in the model. A temperature dependent Arrhenius type fuel surface regression rate equation was chosen for the current study. The governing mathematical equations employed for the reacting gas phase and for the solid phase are the general, two-dimensional, time-dependent conservation equations in a cylindrical coordinate system. Keeping the simplifying assumptions to a minimum, these basic equations were programmed for numerical computation, using two implicit finite-difference schemes, the Lax-Wendroff scheme for the gas phase, and, the Crank-Nicolson scheme for the solid phase.
Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor
Isvoranu, Dragos D.; Cizmas, Paul G. A.
2003-01-01
This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less
Design of a Variational Multiscale Method for Turbulent Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
A spectral-element framework is presented for the simulation of subsonic compressible high-Reynolds-number flows. The focus of the work is maximizing the efficiency of the computational schemes to enable unsteady simulations with a large number of spatial and temporal degrees of freedom. A collocation scheme is combined with optimized computational kernels to provide a residual evaluation with computational cost independent of order of accuracy up to 16th order. The optimized residual routines are used to develop a low-memory implicit scheme based on a matrix-free Newton-Krylov method. A preconditioner based on the finite-difference diagonalized ADI scheme is developed which maintains the low memory of the matrix-free implicit solver, while providing improved convergence properties. Emphasis on low memory usage throughout the solver development is leveraged to implement a coupled space-time DG solver which may offer further efficiency gains through adaptivity in both space and time.
An unstructured grid, three-dimensional model based on the shallow water equations
Casulli, V.; Walters, R.A.
2000-01-01
A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Lin, S. J.; Yang, R. J.; Chang, James L. C.; Kwak, D.
1987-01-01
The purpose of this study is to examine in detail incompressible laminar and turbulent flows inside the oxidizer side Hot Gas Manifold of the Space Shuttle Main Engine. To perform this study, an implicit finite difference code cast in general curvilinear coordinates is further developed. The code is based on the method of pseudo-compressibility and utilize ADI or implicit approximate factorization algorithm to achieve computational efficiency. A multiple-zone method is developed to overcome the complexity of the geometry. In the present study, the laminar and turbulent flows in the oxidizer side Hot Gas Manifold have been computed. The study reveals that: (1) there exists large recirculation zones inside the bowl if no vanes are present; (2) strong secondary flows are observed in the transfer tube; and (3) properly shaped and positioned guide vanes are effective in eliminating flow separation.
Singh, Gurpreet; Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong
2012-06-15
A complex-envelope (CE) alternating-direction-implicit (ADI) finite-difference time-domain (FDTD) approach to treat light-matter interaction self-consistently with electromagnetic field evolution for efficient simulations of active photonic devices is presented for the first time (to our best knowledge). The active medium (AM) is modeled using an efficient multilevel system of carrier rate equations to yield the correct carrier distributions, suitable for modeling semiconductor/solid-state media accurately. To include the AM in the CE-ADI-FDTD method, a first-order differential system involving CE fields in the AM is first set up. The system matrix that includes AM parameters is then split into two time-dependent submatrices that are then used in an efficient ADI splitting formula. The proposed CE-ADI-FDTD approach with AM takes 22% of the time as the approach of the corresponding explicit FDTD, as validated by semiconductor microdisk laser simulations.
Spilker, R L; de Almeida, E S; Donzelli, P S
1992-01-01
This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.
NASA Astrophysics Data System (ADS)
Rao, Chengping; Zhang, Youlin; Wan, Decheng
2017-12-01
Fluid-Structure Interaction (FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method (MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit (MPS) method is used to calculate the fluid domain, while the Finite Element Method (FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method.
Trescott, Peter C.; Pinder, George Francis; Larson, S.P.
1976-01-01
The model will simulate ground-water flow in an artesian aquifer, a water-table aquifer, or a combined artesian and water-table aquifer. The aquifer may be heterogeneous and anisotropic and have irregular boundaries. The source term in the flow equation may include well discharge, constant recharge, leakage from confining beds in which the effects of storage are considered, and evapotranspiration as a linear function of depth to water. The theoretical development includes presentation of the appropriate flow equations and derivation of the finite-difference approximations (written for a variable grid). The documentation emphasizes the numerical techniques that can be used for solving the simultaneous equations and describes the results of numerical experiments using these techniques. Of the three numerical techniques available in the model, the strongly implicit procedure, in general, requires less computer time and has fewer numerical difficulties than do the iterative alternating direction implicit procedure and line successive overrelaxation (which includes a two-dimensional correction procedure to accelerate convergence). The documentation includes a flow chart, program listing, an example simulation, and sections on designing an aquifer model and requirements for data input. It illustrates how model results can be presented on the line printer and pen plotters with a program that utilizes the graphical display software available from the Geological Survey Computer Center Division. In addition the model includes options for reading input data from a disk and writing intermediate results on a disk.
Ginzburg, Irina; Silva, Goncalo; Talon, Laurent
2015-02-01
This work focuses on the numerical solution of the Stokes-Brinkman equation for a voxel-type porous-media grid, resolved by one to eight spacings per permeability contrast of 1 to 10 orders in magnitude. It is first analytically demonstrated that the lattice Boltzmann method (LBM) and the linear-finite-element method (FEM) both suffer from the viscosity correction induced by the linear variation of the resistance with the velocity. This numerical artefact may lead to an apparent negative viscosity in low-permeable blocks, inducing spurious velocity oscillations. The two-relaxation-times (TRT) LBM may control this effect thanks to free-tunable two-rates combination Λ. Moreover, the Brinkman-force-based BF-TRT schemes may maintain the nondimensional Darcy group and produce viscosity-independent permeability provided that the spatial distribution of Λ is fixed independently of the kinematic viscosity. Such a property is lost not only in the BF-BGK scheme but also by "partial bounce-back" TRT gray models, as shown in this work. Further, we propose a consistent and improved IBF-TRT model which vanishes viscosity correction via simple specific adjusting of the viscous-mode relaxation rate to local permeability value. This prevents the model from velocity fluctuations and, in parallel, improves for effective permeability measurements, from porous channel to multidimensions. The framework of our exact analysis employs a symbolic approach developed for both LBM and FEM in single and stratified, unconfined, and bounded channels. It shows that even with similar bulk discretization, BF, IBF, and FEM may manifest quite different velocity profiles on the coarse grids due to their intrinsic contrasts in the setting of interface continuity and no-slip conditions. While FEM enforces them on the grid vertexes, the LBM prescribes them implicitly. We derive effective LBM continuity conditions and show that the heterogeneous viscosity correction impacts them, a property also shared by FEM for shear stress. But, in contrast with FEM, effective velocity conditions in LBM give rise to slip velocity jumps which depend on (i) neighbor permeability values, (ii) resolution, and (iii) control parameter Λ, ranging its reliable values from Poiseuille bounce-back solution in open flow to zero in Darcy's limit. We suggest an "upscaling" algorithm for Λ, from multilayers to multidimensions in random extremely dispersive samples. Finally, on the positive side for LBM besides its overall versatility, the implicit boundary layers allow for smooth accommodation of the flat discontinuous Darcy profiles, quite deficient in FEM.
Constraint treatment techniques and parallel algorithms for multibody dynamic analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chiou, Jin-Chern
1990-01-01
Computational procedures for kinematic and dynamic analysis of three-dimensional multibody dynamic (MBD) systems are developed from the differential-algebraic equations (DAE's) viewpoint. Constraint violations during the time integration process are minimized and penalty constraint stabilization techniques and partitioning schemes are developed. The governing equations of motion, a two-stage staggered explicit-implicit numerical algorithm, are treated which takes advantage of a partitioned solution procedure. A robust and parallelizable integration algorithm is developed. This algorithm uses a two-stage staggered central difference algorithm to integrate the translational coordinates and the angular velocities. The angular orientations of bodies in MBD systems are then obtained by using an implicit algorithm via the kinematic relationship between Euler parameters and angular velocities. It is shown that the combination of the present solution procedures yields a computationally more accurate solution. To speed up the computational procedures, parallel implementation of the present constraint treatment techniques, the two-stage staggered explicit-implicit numerical algorithm was efficiently carried out. The DAE's and the constraint treatment techniques were transformed into arrowhead matrices to which Schur complement form was derived. By fully exploiting the sparse matrix structural analysis techniques, a parallel preconditioned conjugate gradient numerical algorithm is used to solve the systems equations written in Schur complement form. A software testbed was designed and implemented in both sequential and parallel computers. This testbed was used to demonstrate the robustness and efficiency of the constraint treatment techniques, the accuracy of the two-stage staggered explicit-implicit numerical algorithm, and the speed up of the Schur-complement-based parallel preconditioned conjugate gradient algorithm on a parallel computer.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES
Wan, Xiaohai; Li, Zhilin
2012-01-01
Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346
SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.
Wan, Xiaohai; Li, Zhilin
2012-06-01
Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Blanchard, D. K.
1975-01-01
A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.
NASA Technical Reports Server (NTRS)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates
NASA Technical Reports Server (NTRS)
Sislian, J. P.; Glass, I. I.; Evans, J. S.
1979-01-01
A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.
A numerical solution of a singular boundary value problem arising in boundary layer theory.
Hu, Jiancheng
2016-01-01
In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solve the singular boundary value problem, in which the amount of computational effort is significantly less than the other numerical methods. The numerical solutions obtained by the finite difference method are in agreement with those obtained by previous authors.
Incremental analysis of large elastic deformation of a rotating cylinder
NASA Technical Reports Server (NTRS)
Buchanan, G. R.
1976-01-01
The effect of finite deformation upon a rotating, orthotropic cylinder was investigated using a general incremental theory. The incremental equations of motion are developed using the variational principle. The governing equations are derived using the principle of virtual work for a body with initial stress. The governing equations are reduced to those for the title problem and a numerical solution is obtained using finite difference approximations. Since the problem is defined in terms of one independent space coordinate, the finite difference grid can be modified as the incremental deformation occurs without serious numerical difficulties. The nonlinear problem is solved incrementally by totaling a series of linear solutions.
Using exact solutions to develop an implicit scheme for the baroclinic primitive equations
NASA Technical Reports Server (NTRS)
Marchesin, D.
1984-01-01
The exact solutions presently obtained by means of a novel method for nonlinear initial value problems are used in the development of numerical schemes for the computer solution of these problems. The method is applied to a new, fully implicit scheme on a vertical slice of the isentropic baroclinic equations. It was not possible to find a global scale phenomenon that could be simulated by the baroclinic primitive equations on a vertical slice.
An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1983-01-01
An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.
Pre- and postprocessing techniques for determining goodness of computational meshes
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Westermann, T.; Bass, J. M.
1993-01-01
Research in error estimation, mesh conditioning, and solution enhancement for finite element, finite difference, and finite volume methods has been incorporated into AUDITOR, a modern, user-friendly code, which operates on 2D and 3D unstructured neutral files to improve the accuracy and reliability of computational results. Residual error estimation capabilities provide local and global estimates of solution error in the energy norm. Higher order results for derived quantities may be extracted from initial solutions. Within the X-MOTIF graphical user interface, extensive visualization capabilities support critical evaluation of results in linear elasticity, steady state heat transfer, and both compressible and incompressible fluid dynamics.
Finite Group Invariance and Solution of Jaynes-Cummings Hamiltonian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haydargil, Derya; Koc, Ramazan
2004-10-04
The finite group invariance of the E x {beta} and Jaynes-Cummings models are studied. A method is presented to obtain finite group invariance of the E x {beta} system.A suitable transformation of a Jaynes-Cummings Hamiltonian leads to equivalence of E x {beta} system. Then a general method is applied to obtain the solution of Jaynes-Cummings Hamiltonian with Kerr nonlinearity. Number operator for this structure and the generators of su(2) algebra are used to find the eigenvalues of the Jaynes-Cummings Hamiltonian for different states. By using the invariance of number operator the solution of modified Jaynes-Cummings Hamiltonian is also discussed.
Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol
2010-12-01
Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.
Navier-Stokes Solutions for Spin-Up from Rest in a Cylindrical Container
1979-09-01
CONDITIONS The calculations employ a finite - difference analog of the unsteady axisyimetric Navier-Stokes equations formulated in cylindrical coordinates...derivatives are approximated by second- order accurate one-sided difference formulae involving three time levels. * The following finite - difference ...equation are identical in form to Equations (13). The finite - difference representations for the ?-equation are: "(i)[aJ~lk " /i’,J-l2k] T (14a) •g I
Chen, G.; Chacón, L.
2015-08-11
For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge,more » canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.« less
Healy, R.W.; Russell, T.F.
1993-01-01
A new mass-conservative method for solution of the one-dimensional advection-dispersion equation is derived and discussed. Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods, in terms of accuracy and efficiency, for solute transport problems that are dominated by advection. For dispersion-dominated problems, the performance of the method is similar to that of standard methods. Like previous ELLAM formulations, FVELLAM systematically conserves mass globally with all types of boundary conditions. FVELLAM differs from other ELLAM approaches in that integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking, as used by most characteristic methods, of characteristic lines intersecting inflow boundaries. FVELLAM extends previous ELLAM results by obtaining mass conservation locally on Lagrangian space-time elements. Details of the integration, tracking, and boundary algorithms are presented. Test results are given for problems in Cartesian and radial coordinates.
Finite difference methods for transient signal propagation in stratified dispersive media
NASA Technical Reports Server (NTRS)
Lam, D. H.
1975-01-01
Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1979-01-01
A time dependent numerical solution of the linearized continuity and momentum equation was developed for sound propagation in a two dimensional straight hard or soft wall duct with a sheared mean flow. The time dependent governing acoustic difference equations and boundary conditions were developed along with a numerical determination of the maximum stable time increments. A harmonic noise source radiating into a quiescent duct was analyzed. This explicit iteration method then calculated stepwise in real time to obtain the transient as well as the steady state solution of the acoustic field. Example calculations were presented for sound propagation in hard and soft wall ducts, with no flow and plug flow. Although the problem with sheared flow was formulated and programmed, sample calculations were not examined. The time dependent finite difference analysis was found to be superior to the steady state finite difference and finite element techniques because of shorter solution times and the elimination of large matrix storage requirements.
Finite Difference Schemes as Algebraic Correspondences between Layers
NASA Astrophysics Data System (ADS)
Malykh, Mikhail; Sevastianov, Leonid
2018-02-01
For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.