Science.gov

Sample records for implicit integration scheme

  1. A diagonally inverted LU implicit multigrid scheme

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.; Caughey, David A.; Chima, Rodrick V.

    1988-01-01

    A new Diagonally Inverted LU Implicit scheme is developed within the framework of the multigrid method for the 3-D unsteady Euler equations. The matrix systems that are to be inverted in the LU scheme are treated by local diagonalizing transformations that decouple them into systems of scalar equations. Unlike the Diagonalized ADI method, the time accuracy of the LU scheme is not reduced since the diagonalization procedure does not destroy time conservation. Even more importantly, this diagonalization significantly reduces the computational effort required to solve the LU approximation and therefore transforms it into a more efficient method of numerically solving the 3-D Euler equations.

  2. Implicit schemes and parallel computing in unstructured grid CFD

    NASA Technical Reports Server (NTRS)

    Venkatakrishnam, V.

    1995-01-01

    The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.

  3. Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Harten, A.

    1985-01-01

    The Harten (1983, 1984) total variation-diminishing (TVD) schemes, constituting a one-parameter explicit and implicit, second-order-accurate family, have the property of not generating spurious oscillations when applied to one-dimensional, nonlinear scalar hyperbolic conservation laws and constant coefficient hyperbolic systems. These methods are presently extended to the multidimensional hyperbolic conservation laws in curvilinear coordinates. Means by which to linearize the implicit operator and solution strategies, in order to improve the computation efficiency of the implicit algorithm, are discussed. Numerical experiments with steady state airfoil calculations indicate that the proposed linearized implicit TVD schemes are accurate and robust.

  4. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  5. Implicit Space-Time Conservation Element and Solution Element Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Wang, Xiao-Yen

    1999-01-01

    Artificial numerical dissipation is in important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate implicit numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The new schemes presented are two highly accurate implicit solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to convection-dominated equations with very small viscosity. The stability and consistency of the schemes are analysed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  6. The Implicit and Explicit alpha-mu Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda

    1997-01-01

    Artificial numerical dissipation is an important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The method of space-time conservation element and solution element, currently under development, is a nontraditional numerical method for solving conservation laws. The method is developed on the basis of local and global flux conservation in a space-time domain, in which space and time are treated in a unified manner. Explicit solvers for model and fluid dynamic conservation laws have previously been investigated. In this paper, we introduce a new concept in the design of implicit schemes, and use it to construct two highly accurate solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to purely inviscid (convective) equations. The stability and consistency of the schemes are analyzed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme. We also construct an explicit solver

  7. A higher-order implicit IDO scheme and its CFD application to local mesh refinement method

    NASA Astrophysics Data System (ADS)

    Imai, Yohsuke; Aoki, Takayuki

    2006-08-01

    The Interpolated Differential Operator (IDO) scheme has been developed for the numerical solution of the fluid motion equations, and allows to produce highly accurate results by introducing the spatial derivative of the physical value as an additional dependent variable. For incompressible flows, semi-implicit time integration is strongly affected by the Courant and diffusion number limitation. A high-order fully-implicit IDO scheme is presented, and the two-stage implicit Runge-Kutta time integration keeps over third-order accuracy. The application of the method to the direct numerical simulation of turbulence demonstrates that the proposed scheme retains a resolution comparable to that of spectral methods even for relatively large Courant numbers. The scheme is further applied to the Local Mesh Refinement (LMR) method, where the size of the time step is often restricted by the dimension of the smallest meshes. In the computation of the Karman vortex street problem, the implicit IDO scheme with LMR is shown to allow a conspicuous saving of computational resources.

  8. Calculation of Supersonic Combustion Using Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Kwak, Dochan (Technical Monitor)

    2003-01-01

    One of the technology goals of NASA for advanced space transportation is to develop highly efficient propulsion systems to reduce the cost of payload for space missions. Developments of rockets for the second generation Reusable Launch Vehicle (RLV) in the past several years have been focused on low-cost versions of conventional engines. However, recent changes in the Integrated Space Transportation Program to build a crew transportation vehicle to extend the life of the Space Shuttle fleet might suggest that air-breathing rockets could reemerge as a possible propulsion system for the third generation RLV to replace the Space Shuttle after 2015. The weight of the oxygen tank exceeds thirty percent of the total weight of the Space Shuttle at launch while the payload is only one percent of the total weight. The air-breathing rocket propulsion systems, which consume oxygen in the air, offer clear advantages by making vehicles lighter and more efficient. Experience in the National Aerospace Plane Program in the late 1980s indicates that scramjet engines can achieve high specific impulse for low hypersonic vehicle speeds. Whether taking a form of Rocket Based Combined Cycle (RBCC) or Turbine Based Combined Cycle (TBCC), the scramjet is an essential mode of operation for air-breathing rockets. It is well known that fuel-air mixing and rapid combustion are of crucial importance for the success of scramjet engines since the spreading rate of the supersonic mixing layer decreases as the Mach number increases. A factored form of the Gauss-Seidel relaxation method has been widely used in hypersonic flow research since its first application to non-equilibrium flows. However, difficulties in stability and convergence have been encountered when there is strong interaction between fluid motion and chemical reaction, such as multiple fuel injection problems. The present paper reports the results from investigation of the effect of modifications to the original algorithm on the

  9. Implicit-explicit Godunov schemes for unsteady gas dynamics

    SciTech Connect

    Collins, J.P.

    1992-12-31

    Hybrid implicit-explicit schemes are developed for Eulerian hydrodynamics in one and two space dimensions. The hybridization is a continuous switch and operates on each characteristic field separately. The explicit scheme is a version of the second order Godunov scheme; the implicit method is only first order accurate in time but leads to second order accurate steady states. This methodology is developed for linear advection, nonlinear scalar problems, hyperbolic constant co-efficient systems, and for gas dynamics. Truncation error and stability analyses are done for the linear cases. This implicit-explicit strategy is intended for problems with spatially or temporally localized stiffness in wave speeds. By stiffness we mean that the high speed modes contain very little energy, yet they determine the explicit time step through the CFL condition. For hydrodynamics, the main examples are nearly incompressible flow, flows with embedded boundary layers, and magnetohydrodynamics; the latter two examples are not treated here. Several numerical results are presented to demonstrate this method. These include, stable numerical shocks at very high CFL numbers, one-dimensional flow in a duct, and low Mach number shear layers.

  10. Stability analysis of implicit multi-fluid schemes

    SciTech Connect

    Kunz, R.F.; Cope, W.K.; Venkateswaran, S.

    1997-06-01

    A new implicit method has been developed for solving the viscous full multi-fluid equations, which incorporate transport and generation of mass and momentum for each component present in a system. This work presents stability analysis and application of the important full multi-fluid system in a fully implicit algorithm. The stability analyses presented demonstrate the performance of several iterative schemes applied to the solution of the linearized systems which arise in the formulation. These include block Jacobi and symmetric block Gauss-Siedel schemes with various preconditioners applied. A hierarchy of increasing physical complexity is pursued, starting with one-dimensional, two-fluid systems with minimum inter-field dynamic coupling and no mass transfer. These analyses are extended to systems employing physically important inter-field forces (drag, turbulence dispersion, virtual mass). The effects of mass transfer, multiple fields (i.e., n{phi} > 2) and multiple dimensions are also considered. A two-fluid Navier-Stokes code has been developed based on this new scheme. Results are presented which verify the validity of the stability analyses presented for the coupled scheme. Multi-phase flows which require full multi-fluid modeling arise in a wide class of engineering problems, where non-equilibrium dynamics and thermodynamics of the interfaces between constituents play important roles in the evolution of the ensemble averaged mean flow. Examples include cyclone separators, two-phase flow in jets and curved ducts and boiling flow in heat exchangers.

  11. Implicit Block ACK Scheme for IEEE 802.11 WLANs

    PubMed Central

    Sthapit, Pranesh; Pyun, Jae-Young

    2016-01-01

    The throughput of IEEE 802.11 standard is significantly bounded by the associated Medium Access Control (MAC) overhead. Because of the overhead, an upper limit exists for throughput, which is bounded, including situations where data rates are extremely high. Therefore, an overhead reduction is necessary to achieve higher throughput. The IEEE 802.11e amendment introduced the block ACK mechanism, to reduce the number of control messages in MAC. Although the block ACK scheme greatly reduces overhead, further improvements are possible. In this letter, we propose an implicit block ACK method that further reduces the overhead associated with IEEE 802.11e’s block ACK scheme. The mathematical analysis results are presented for both the original protocol and the proposed scheme. A performance improvement of greater than 10% was achieved with the proposed implementation.

  12. An implicit, conservative, zonal-boundary scheme for Euler equation calculations

    NASA Technical Reports Server (NTRS)

    Rai, M. M.

    1985-01-01

    A zonal, or patched, grid approach is one in which the flow region of interest is divided into subregions which are then discretized independently, using existing grid generators. The equations of motion are integrated in each subregion in conjunction with zonal boundary schemes which allow proper information transfer across interfaces that separate subregions. The zonal approach greatly simplifies the treatment of complex geometries and also the addition of grid points to selected regions of the flow. A conservative, zonal boundary condition that could be used with explicit schemes was extended so that it can be used with existing second order accurate implicit integration schemes such as the Beam-Warming and Osher schemes. In the test case considered, the implicit schemes increased the rate of convergence considerably (by a factor of about 30 over that of the explicit scheme). Results demonstrating the time accuracy of the zonal scheme and the feasibility of performing calculations on zones that move relative to each other are also presented.

  13. Efficient Fully Implicit Time Integration Methods for Modeling Cardiac Dynamics

    PubMed Central

    Rose, Donald J.; Henriquez, Craig S.

    2013-01-01

    Implicit methods are well known to have greater stability than explicit methods for stiff systems, but they often are not used in practice due to perceived computational complexity. This paper applies the Backward Euler method and a second-order one-step two-stage composite backward differentiation formula (C-BDF2) for the monodomain equations arising from mathematically modeling the electrical activity of the heart. The C-BDF2 scheme is an L-stable implicit time integration method and easily implementable. It uses the simplest Forward Euler and Backward Euler methods as fundamental building blocks. The nonlinear system resulting from application of the Backward Euler method for the monodomain equations is solved for the first time by a nonlinear elimination method, which eliminates local and non-symmetric components by using a Jacobian-free Newton solver, called Newton-Krylov solver. Unlike other fully implicit methods proposed for the monodomain equations in the literature, the Jacobian of the global system after the nonlinear elimination has much smaller size, is symmetric and possibly positive definite, which can be solved efficiently by standard optimal solvers. Numerical results are presented demonstrating that the C-BDF2 scheme can yield accurate results with less CPU times than explicit methods for both a single patch and spatially extended domains. PMID:19126449

  14. Implicit integration methods for dislocation dynamics

    DOE PAGESBeta

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.

    2015-01-20

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less

  15. Implicit integration methods for dislocation dynamics

    SciTech Connect

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.

    2015-01-20

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.

  16. On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. II - Five-point schemes

    NASA Technical Reports Server (NTRS)

    Harten, A.; Tal-Ezer, H.

    1981-01-01

    This paper presents a family of two-level five-point implicit schemes for the solution of one-dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are nondissipative and unconditionally stable. Special attention is given to the system of linear equations associated with these 4-4 implicit schemes. The regularity of this system is analyzed and efficiency of solution-algorithms is examined. A two-datum representation of these 4-4 implicit schemes brings about a compactification of the stencil to three mesh points at each time-level. This compact two-datum representation is particularly useful in deriving boundary treatments. Numerical results are presented to illustrate some properties of the proposed scheme.

  17. Implicit total variation diminishing (TVD) schemes for steady-state calculations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1983-01-01

    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme. Previously announced in STAR as N83-23085

  18. Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1983-01-01

    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme.

  19. Generalized formulation of a class of explicit and implicit TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    A one parameter family of second order explicit and implicit total variation diminishing (TVD) schemes is reformulated so that a simpler and wider group of limiters is included. The resulting scheme can be viewed as a symmetrical algorithm with a variety of numerical dissipation terms that are designed for weak solutions of hyperbolic problems. This is a generalization of Roe and Davis's recent works to a wider class of symmetric schemes other than Lax-Wendroff. The main properties of the present class of schemes are that they can be implicit, and when steady state calculations are sought, the numerical solution is independent of the time step.

  20. Iteration Scheme for Implicit Calculations of Kinetic and Equilibrium Chemical Reactions in Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Ramshaw, J. D.; Chang, C. H.

    1995-02-01

    An iteration scheme for the implicit treatment of equilibrium chemical reactions in partial equilibrium flow has previously been described (J. D. Ramshaw and A. A. Amsden, J. Comput. Phys.59, 484 (1985); 71 , 224 (1987)). Here we generalize this scheme to kinetic reactions as well as equilibrium reactions. This extends the applicability of the scheme to problems with kinetic reactions that are fast in some regions of the flow field but slow in others. The resulting scheme thereby provides a single unified framework for the implicit treatment of an arbitrary number of coupled equilibrium and kinetic reactions in chemically reacting fluid flow.

  1. Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1990-01-01

    An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.

  2. Implicit methods in particle simulation

    SciTech Connect

    Cohen, B.I.

    1982-03-16

    This paper surveys recent advances in the application of implicit integration schemes to particle simulation of plasmas. The use of implicit integration schemes is motivated by the goal of efficiently studying low-frequency plasma phenomena using a large timestep, while retaining accuracy and kinetics. Implicit schemes achieve numerical stability and provide selective damping of unwanted high-frequency waves. This paper reviews the implicit moment and direct implicit methods. Lastly, the merging of implicit methods with orbit averaging can result in additional computational savings.

  3. On the construction and application of implicit factored schemes for conservation laws. [in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Warming, R. F.; Beam, R. M.

    1978-01-01

    Efficient, noniterative, implicit finite difference algorithms are systematically developed for nonlinear conservation laws including purely hyperbolic systems and mixed hyperbolic parabolic systems. Utilization of a rational fraction or Pade time differencing formulas, yields a direct and natural derivation of an implicit scheme in a delta form. Attention is given to advantages of the delta formation and to various properties of one- and two-dimensional algorithms.

  4. Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations. [in gas dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    The novel implicit and unconditionally stable, high resolution Total Variation Diminishing (TVD) scheme whose application to steady state calculations is presently examined is a member of a one-parameter family of implicit, second-order accurate systems developed by Harten (1983) for the computation of weak solutions for one-dimensional hyperbolic conservation laws. The scheme will not generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments for a quasi-one-dimensional nozzle problem show that the experimentally determined stability limit correlates exactly with the theoretical stability limit for the nonlinear scalar hyberbolic conservation laws.

  5. Integrating Implicit Induction Proofs into Certified Proof Environments

    NASA Astrophysics Data System (ADS)

    Stratulat, Sorin

    We give evidence of the direct integration and automated checking of implicit induction-based proofs inside certified reasoning environments, as that provided by the Coq proof assistant. This is the first step of a long term project focused on 1) mechanically certifying implicit induction proofs generated by automated provers like Spike, and 2) narrowing the gap between automated and interactive proof techniques inside proof assistants such that multiple induction steps can be executed completely automatically and mutual induction can be treated more conveniently. Contrary to the current approaches of reconstructing implicit induction proofs into scripts based on explicit induction tactics that integrate the usual proof assistants, our checking methodology is simpler and fits better for automation. The underlying implicit induction principles are separated and validated independently from the proof scripts that consist in a bunch of one-to-one translations of implicit induction proof steps. The translated steps can be checked independently, too, so the validation process fits well for parallelisation and for the management of large proof scripts. Moreover, our approach is more general; any kind of implicit induction proof can be considered because the limitations imposed by the proof reconstruction techniques no longer exist. An implementation that integrates automatic translators for generating fully checkable Coq scripts from Spike proofs is reported.

  6. TTLEM - an implicit-explicit (IMEX) scheme for modelling landscape evolution in MATLAB

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Schwanghart, Wolfgang

    2016-04-01

    Landscape evolution models (LEM) are essential to unravel interdependent earth surface processes. They are proven very useful to bridge several temporal and spatial timescales and have been successfully used to integrate existing empirical datasets. There is a growing consensus that landscapes evolve at least as much in the horizontal as in the vertical direction urging for an efficient implementation of dynamic drainage networks. Here we present a spatially explicit LEM, which is based on the object-oriented function library TopoToolbox 2 (Schwanghart and Scherler, 2014). Similar to other LEMs, rivers are considered to be the main drivers for simulated landscape evolution as they transmit pulses of tectonic perturbations and set the base level of surrounding hillslopes. Highly performant graph algorithms facilitate efficient updates of the flow directions to account for planform changes in the river network and the calculation of flow-related terrain attributes. We implement the model using an implicit-explicit (IMEX) scheme, i.e. different integrators are used for different terms in the diffusion-incision equation. While linear diffusion is solved using an implicit scheme, we calculate incision explicitly. Contrary to previously published LEMS, however, river incision is solved using a total volume method which is total variation diminishing in order to prevent numerical diffusion when solving the stream power law (Campforts and Govers, 2015). We show that the use of this updated numerical scheme alters both landscape topography and catchment wide erosion rates at a geological time scale. Finally, the availability of a graphical user interface facilitates user interaction, making the tool very useful both for research and didactical purposes. References Campforts, B., Govers, G., 2015. Keeping the edge: A numerical method that avoids knickpoint smearing when solving the stream power law. J. Geophys. Res. Earth Surf. 120, 1189-1205. doi:10.1002/2014JF003376

  7. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  8. Implicit integration in a case of integrative visual agnosia.

    PubMed

    Aviezer, Hillel; Landau, Ayelet N; Robertson, Lynn C; Peterson, Mary A; Soroker, Nachum; Sacher, Yaron; Bonneh, Yoram; Bentin, Shlomo

    2007-05-15

    We present a case (SE) with integrative visual agnosia following ischemic stroke affecting the right dorsal and the left ventral pathways of the visual system. Despite his inability to identify global hierarchical letters [Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383], and his dense object agnosia, SE showed normal global-to-local interference when responding to local letters in Navon hierarchical stimuli and significant picture-word identity priming in a semantic decision task for words. Since priming was absent if these features were scrambled, it stands to reason that these effects were not due to priming by distinctive features. The contrast between priming effects induced by coherent and scrambled stimuli is consistent with implicit but not explicit integration of features into a unified whole. We went on to show that possible/impossible object decisions were facilitated by words in a word-picture priming task, suggesting that prompts could activate perceptually integrated images in a backward fashion. We conclude that the absence of SE's ability to identify visual objects except through tedious serial construction reflects a deficit in accessing an integrated visual representation through bottom-up visual processing alone. However, top-down generated images can help activate these visual representations through semantic links.

  9. Implicit integration in a case of integrative visual agnosia

    PubMed Central

    Aviezer, Hillel; Landau, Ayelet N.; Robertson, Lynn C.; Peterson, Mary A.; Soroker, Nachum; Sacher, Yaron; Bonneh, Yoram; Bentin, Shlomo

    2007-01-01

    We present a case (SE) with integrative visual agnosia following ischemic stroke affecting the right dorsal and the left ventral pathways of the visual system. Despite his inability to identify global hierarchical letters (Navon, 1977), and his dense object agnosia, SE showed normal global-to-local interference when responding to local letters in Navon hierarchical stimuli and significant picture-word identity priming in a semantic decision task for words. Since priming was absent if these features were scrambled, it stands to reason that these effects were not due to priming by distinctive features. The contrast between priming effects induced by coherent and scrambled stimuli is consistent with implicit but not explicit integration of features into a unified whole. We went on to show that possible/impossible object decisions were facilitated by words in a word-picture priming task, suggesting that prompts could activate perceptually integrated images in a backward fashion. We conclude that the absence of SE's ability to identify visual objects except through tedious serial construction reflects a deficit in accessing an integrated visual representation through bottom-up visual processing alone. However, top-down generated images can help activate these visual representations through semantic links. PMID:17339044

  10. Application of the implicit MacCormack scheme to the parabolized Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Lawrence, J. L.; Tannehill, J. C.; Chaussee, D. S.

    1984-01-01

    MacCormack's implicit finite-difference scheme was used to solve the two-dimensional parabolized Navier-Stokes (PNS) equations. This method for solving the PNS equations does not require the inversion of block tridiagonal systems of algebraic equations and permits the original explicit MacCormack scheme to be employed in those regions where implicit treatment is not needed. The advantages and disadvantages of the present adaptation are discussed in relation to those of the conventional Beam-Warming scheme for a flat plate boundary layer test case. Comparisons are made for accuracy, stability, computer time, computer storage, and ease of implementation. The present method was also applied to a second test case of hypersonic laminar flow over a 15% compression corner. The computed results compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.

  11. A diagonal implicit scheme for computing flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Imlay, Scott

    1990-01-01

    A new algorithm for solving steady, finite-rate chemistry, flow problems is presented. The new scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The source Jacobian matrix is replaced by a diagonal matrix which is tailored to account for the fastest reactions in the chemical system. A point-implicit procedure is discussed and then the algorithm is included into the LU-SGS scheme. Solutions are presented for hypervelocity reentry and Hydrogen-Oxygen combustion. For the LU-SGS scheme a CFL number in excess of 10,000 has been achieved.

  12. Stable boundary approximations for a class of implicit schemes for the one-dimensional inviscid equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Beam, R. M.; Warming, R. F.

    1981-01-01

    The applicability to practical calculations of recent theoretical developments in the stability analysis of difference approximations for initial-boundary-value problems of the hyperbolic type. For the numerical experiments, select the one-dimensional inviscid gas-dynamic equations in conservation-law form is selected. A class of implicit schemes based on linear multistep methods for ordinary differential equations is chosen and the use of space or space-time extrapolations as implicit or explicit boundary schemes is emphasized. Some numerical examples with various inflow-outflow conditions highlight the commonly discussed issues: explicit versus implicit boundary schemes, unconditionally stable schemes, and underspecification or overspecification of boundary conditions.

  13. Linearized form of implicit TVD schemes for the multidimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1986-01-01

    Linearized alternating direction implicit (ADI) forms of a class of total variation diminishing (TVD) schemes for the Euler and Navier-Stokes equations have been developed. These schemes are based on the second-order-accurate TVD schemes for hyperbolic conservation laws developed by Harten (1983, 1984). They have the property of not generating spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1-2 grid points. These schemes are relatively simple to understand and easy to implement into a new or existing computer code. One can modify a standard three-point central-difference code by simply changing the conventional numerical dissipation term into the one designed for the TVD scheme. For steady-state applications, the only difference in computation is that the current schemes require a more elaborate dissipation term for the explicit operator; no extra computation is required for the implicit operator. Numerical experiments with the proposed algorithms on a variety of steady-state airfoil problems illustrate the versatility of the schemes.

  14. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  15. Implicit - symplectic partitioned (IMSP) Runge-Kutta schemes for predator-prey dynamics

    NASA Astrophysics Data System (ADS)

    Diele, F.; Marangi, C.; Ragni, S.

    2012-09-01

    In the study of the effects of habitat fragmentation on biodiversity the role of spatial processes reveals of great interest since both the variation of size of the domains as well as their heterogeneity largely affects the dynamics of species. In order to begin a preliminary study about the effects of habitat fragmentation on wolf - wild boar pair populating the Italian "Alta Murgia" Natura 2000 site, object of interest for FP7 project BIOSOS, (BIOdiversity multi-SOurce Monitoring System: from Space TO Species), spatially explicit models described by reaction-diffusion partial differential equations are considered. Numerical methods based on partitioned Runge-Kutta schemes which use an implicit scheme for the stiff diffusive term and a partitioned symplectic scheme for the reaction function are here proposed. We are motivated by the classical results about Lotka-Volterra model described by ordinary differential equations to which the spatially explicit model reduces for diffusion coefficients tending to zero: for their accurate solution symplectic schemes have to be used for an optimal long run preservation of the dynamics invariant. Moreover, for models based on logistic growth and Holling type II functional predator response we verify the better performance of our schemes when compared with classical implicit-explicit (IMEX) schemes on chaotic dynamics given in literature.

  16. A diagonally inverted LU implicit multigrid scheme for the 3-D Navier-Stokes equations and a two equation model of turbulence

    NASA Technical Reports Server (NTRS)

    Yokota, Jeffrey W.

    1988-01-01

    An LU implicit multigrid algorithm is developed to calculate 3-D compressible viscous flows. This scheme solves the full 3-D Reynolds-Averaged Navier-Stokes equation with a two-equation kappa-epsilon model of turbulence. The flow equations are integrated by an efficient, diagonally inverted, LU implicit multigrid scheme while the kappa-epsilon equations are solved, uncoupled from the flow equations, by a block LU implicit algorithm. The flow equations are solved within the framework of the multigrid method using a four-grid level W-cycle, while the kappa-epsilon equations are iterated only on the finest grid. This treatment of the Reynolds-Averaged Navier-Stokes equations proves to be an efficient method for calculating 3-D compressible viscous flows.

  17. A semi-implicit gas-kinetic scheme for smooth flows

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Guo, Zhaoli

    2016-08-01

    In this paper, a semi-implicit gas-kinetic scheme (SIGKS) is derived for smooth flows based on the Bhatnagar-Gross-Krook (BGK) equation. As a finite-volume scheme, the evolution of the average flow variables in a control volume is under the Eulerian framework, whereas the construction of the numerical flux across the cell interface comes from the Lagrangian perspective. The adoption of the Lagrangian aspect makes the collision and the transport mechanisms intrinsically coupled together in the flux evaluation. As a result, the time step size is independent of the particle collision time and solely determined by the Courant-Friedrichs-Lewy (CFL) condition. An analysis of the reconstructed distribution function at the cell interface shows that the SIGKS can be viewed as a modified Lax-Wendroff type scheme with an additional term. Furthermore, the addition term coming from the implicitness in the reconstruction is expected to be able to enhance the numerical stability of the scheme. A number of numerical tests of smooth flows with low and moderate Mach numbers are performed to benchmark the SIGKS. The results show that the method has second-order spatial accuracy, and can give accurate numerical solutions in comparison with benchmark results. It is also demonstrated that the numerical stability of the proposed scheme is better than the original GKS for smooth flows.

  18. Implicit scheme for Maxwell equations solution in case of flat 3D domains

    NASA Astrophysics Data System (ADS)

    Boronina, Marina; Vshivkov, Vitaly

    2016-02-01

    We present a new finite-difference scheme for Maxwell's equations solution for three-dimensional domains with different scales in different directions. The stability condition of the standard leap-frog scheme requires decreasing of the time-step with decreasing of the minimal spatial step, which depends on the minimal domain size. We overcome the conditional stability by modifying the standard scheme adding implicitness in the direction of the smallest size. The new scheme satisfies the Gauss law for the electric and magnetic fields in the final- differences. The approximation order, the maintenance of the wave amplitude and propagation speed, the invariance of the wave propagation on angle with the coordinate axes are analyzed.

  19. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  20. A matrix free implicit scheme for solution of resistive magneto-hydrodynamics equations on unstructured grids

    NASA Astrophysics Data System (ADS)

    Sitaraman, H.; Raja, L. L.

    2013-10-01

    The resistive magneto-hydrodynamics (MHD) governing equations represent eight conservation equations for the evolution of density, momentum, energy and induced magnetic fields in an electrically conducting fluid, typically a plasma. A matrix free implicit method is developed to solve the conservation equations within the framework of an unstructured grid finite volume formulation. The analytic form of the convective flux Jacobian is derived on a general unstructured mesh and used in a Lower-Upper Symmetric Gauss Seidel (LU-SGS) technique developed as part of the implicit scheme. A grid coloring technique is also developed to create data parallelism in the algorithm. The computational efficiency of the matrix free method is compared with two common approaches: a global matrix solve technique that uses the GMRES (Generalized minimum residual) algorithm and an explicit method. The matrix-free method is observed to be overall computationally faster than the global matrix solve method and demonstrates excellent parallel scaling on multiple cores. The computational effort and memory requirements for the matrix free approach is comparable to the explicit approach which in turn is much lower than the global solve implicit approach. Both the matrix free and global solve implicit techniques exhibit superior steady state convergence compared to the explicit method.

  1. Analysis and application of high order implicit Runge-Kutta schemes for unsteady conjugate heat transfer: A strongly-coupled approach

    NASA Astrophysics Data System (ADS)

    Kazemi-Kamyab, V.; van Zuijlen, A. H.; Bijl, H.

    2014-09-01

    Thermal interaction of fluids and solids, or conjugate heat transfer (CHT), is encountered in many engineering applications. Since time-accurate computations of unsteady CHT can be computationally demanding, we consider the use of high order implicit time integration schemes which have the potential to be more efficient relative to the commonly used second order implicit schemes. We present a strongly-coupled solution algorithm where the high order L-stable explicit first-stage singly diagonally implicit Runge-Kutta (ESDIRK) schemes are used to advance the solution in time within each separate fluid and solid subdomains. Furthermore, the stability and rate of convergence of performing (Gauss-Seidel) subiterations at each stage of the ESDIRK schemes are analyzed. The results from solving a numerical example (an unsteady conjugate natural convection in an enclosure) show good agreement with the performed analytical stability analysis. In addition, the (computational) work-(temporal) precision character of several schemes in solving a strongly coupled CHT problem is compared over a range of accuracy requirements. From the efficiency investigation, it is observed that performing subiterations with the strongly-coupled ESDIRK algorithm is more efficient than lowering time-step size using a high order loosely-coupled IMEX algorithm. In addition, by using the ESDIRK schemes, gain in computational efficiency relative to Crank-Nicolson is observed for time-accurate solutions (a factor of 1.4 using the fourth order ESDIRK). The computational gain is higher for smaller tolerances.

  2. Implicit approximate-factorization schemes for the low-frequency transonic equation

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. F.; Steger, J. L.

    1975-01-01

    Two- and three-level implicit finite-difference algorithms for the low-frequency transonic small disturbance-equation are constructed using approximate factorization techniques. The schemes are unconditionally stable for the model linear problem. For nonlinear mixed flows, the schemes maintain stability by the use of conservatively switched difference operators for which stability is maintained only if shock propagation is restricted to be less than one spatial grid point per time step. The shock-capturing properties of the schemes were studied for various shock motions that might be encountered in problems of engineering interest. Computed results for a model airfoil problem that produces a flow field similar to that about a helicopter rotor in forward flight show the development of a shock wave and its subsequent propagation upstream off the front of the airfoil.

  3. An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Wang, Pengde; Huang, Chengming

    2016-05-01

    This paper proposes and analyzes an efficient difference scheme for the nonlinear complex Ginzburg-Landau equation involving fractional Laplacian. The scheme is based on the implicit midpoint rule for the temporal discretization and a weighted and shifted Grünwald difference operator for the spatial fractional Laplacian. By virtue of a careful analysis of the difference operator, some useful inequalities with respect to suitable fractional Sobolev norms are established. Then the numerical solution is shown to be bounded, and convergent in the lh2 norm with the optimal order O (τ2 +h2) with time step τ and mesh size h. The a priori bound as well as the convergence order holds unconditionally, in the sense that no restriction on the time step τ in terms of the mesh size h needs to be assumed. Numerical tests are performed to validate the theoretical results and effectiveness of the scheme.

  4. Partially implicit finite difference scheme for calculating dynamic pressure in a terrain-following coordinate non-hydrostatic ocean model

    NASA Astrophysics Data System (ADS)

    Liu, Zhe; Lin, Lei; Xie, Lian; Gao, Huiwang

    2016-10-01

    To improve the efficiency of the terrain-following σ-coordinate non-hydrostatic ocean model, a partially implicit finite difference (PIFD) scheme is proposed. By using explicit terms instead of implicit terms to discretize the parts of the vertical dynamic pressure gradient derived from the σ-coordinate transformation, the coefficient matrix of the discrete Poisson equation that the dynamic pressure satisfies can be simplified from 15 diagonals to 7 diagonals. The PIFD scheme is shown to run stably when it is applied to simulate five benchmark cases, namely, a standing wave in a basin, a surface solitary wave, a lock-exchange problem, a periodic wave over a bar and a tidally induced internal wave. Compared with the conventional fully implicit finite difference (FIFD) scheme, the PIFD scheme produces simulation results of equivalent accuracy at only 40-60% of the computational cost. The PIFD scheme demonstrates strong applicability and can be easily implemented in σ-coordinate ocean models.

  5. A truncated implicit high-order finite-difference scheme combined with boundary conditions

    NASA Astrophysics Data System (ADS)

    Chang, Suo-Liang; Liu, Yang

    2013-03-01

    In this paper, first we calculate finite-difference coefficients of implicit finitedifference methods (IFDM) for the first- and second-order derivatives on normal grids and firstorder derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.

  6. An Initial Investigation of the Effects of Turbulence Models on the Convergence of the RK/Implicit Scheme

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Rossow, C.-C.

    2008-01-01

    A three-stage Runge-Kutta (RK) scheme with multigrid and an implicit preconditioner has been shown to be an effective solver for the fluid dynamic equations. This scheme has been applied to both the compressible and essentially incompressible Reynolds-averaged Navier-Stokes (RANS) equations using the algebraic turbulence model of Baldwin and Lomax (BL). In this paper we focus on the convergence of the RK/implicit scheme when the effects of turbulence are represented by either the Spalart-Allmaras model or the Wilcox k-! model, which are frequently used models in practical fluid dynamic applications. Convergence behavior of the scheme with these turbulence models and the BL model are directly compared. For this initial investigation we solve the flow equations and the partial differential equations of the turbulence models indirectly coupled. With this approach we examine the convergence behavior of each system. Both point and line symmetric Gauss-Seidel are considered for approximating the inverse of the implicit operator of the flow solver. To solve the turbulence equations we use a diagonally dominant alternating direction implicit (DDADI) scheme. Computational results are presented for three airfoil flow cases and comparisons are made with experimental data. We demonstrate that the two-dimensional RANS equations and transport-type equations for turbulence modeling can be efficiently solved with an indirectly coupled algorithm that uses the RK/implicit scheme for the flow equations.

  7. Positivity preserving pointwise implicit schemes with application to turbulent compressible flat plate flow

    NASA Astrophysics Data System (ADS)

    Lanerolle, Lyon W. J.

    2001-04-01

    A family of positivity preserving pointwise implicit schemes applicable to source term dominated problems is constructed, where the minimum order of spatial accuracy is one and the maximum is three. It is designed for achieving steady state numerical solutions and is constructed through the analysis of appropriate model problems, where the convective fluxes for the higher-order members are prescribed by the Chakravarthy-Osher family of total variation diminishing (TVD) schemes. Multidimensionality is facilitated by operator splitting. Numerical experimentation confirms the stability, convergence, accuracy, positivity, and computational efficiency associated with the proposed schemes. These schemes are ideally suited to solving the low-Reynolds number turbulent k- equations for which the positivity of k and and the presence of stiff source terms are critical issues. Hence, using a finite volume formulation of these schemes, the low-Reynolds number Chien k- turbulence model is implemented for a flat plate geometry and a series of turbulent flow (steady state) computations are carried out to demonstrate the positivity, robustness, and reliability of the algorithm. The free-stream and initial k and values are specified in a very simple manner. Algorithm convergence acceleration is achieved using Multigrid techniques. The k- model flow predictions are shown to be in agreement with empirical profiles. Copyright

  8. Implicit predictor-corrector central finite difference scheme for the equations of magnetohydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.

    2015-11-01

    Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.

  9. Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas

    2015-04-01

    Implicit/explicit (IMEX) Runge-Kutta (RK) schemes are effective for time-marching ODE systems with both stiff and nonstiff terms on the RHS; such schemes implement an (often A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear, and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-marching high-dimensional ODE discretizations of PDE systems on modern (cache-based) computational hardware, in which memory management is often the most significant computational bottleneck. In this paper, we develop and characterize eight new low-storage implicit/explicit RK schemes which have higher accuracy and better stability properties than the only low-storage implicit/explicit RK scheme available previously, the venerable second-order Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) algorithm that has dominated the DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or four registers of length N) and comparable floating-point operations per timestep.

  10. Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme

    NASA Astrophysics Data System (ADS)

    Mandziuk, Margaret; Schlick, Tamar

    1995-05-01

    The numerical behavior of the symplectic, implicit midpoint method with a wide range of integration timesteps is examined through an application to a diatomic molecule governed by a Morse potential. Our oscillator with a 12.6 fs period exhibits notable, integrator induced, timestep- ( Δt) dependent resonances and we predict approximate values of Δt where they will occur. The particular case of a third-order resonance ( Δt ≈ 7 fs here) leads to instability, and higher-order resonances ( n = 4, 5) to large energetic fluctuations and/or corrupted phase diagrams. Significantly, for Δt > 10 fs the energy errors remain bound.

  11. Comparison of Implicit Schemes for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1995-01-01

    For a computational flow simulation tool to be useful in a design environment, it must be very robust and efficient. To develop such a tool for incompressible flow applications, a number of different implicit schemes are compared for several two-dimensional flow problems in the current study. The schemes include Point-Jacobi relaxation, Gauss-Seidel line relaxation, incomplete lower-upper decomposition, and the generalized minimum residual method preconditioned with each of the three other schemes. The efficiency of the schemes is measured in terms of the computing time required to obtain a steady-state solution for the laminar flow over a backward-facing step, the flow over a NACA 4412 airfoil, and the flow over a three-element airfoil using overset grids. The flow solver used in the study is the INS2D code that solves the incompressible Navier-Stokes equations using the method of artificial compressibility and upwind differencing of the convective terms. The results show that the generalized minimum residual method preconditioned with the incomplete lower-upper factorization outperforms all other methods by at least a factor of 2.

  12. Implicit Affective Cues and Attentional Tuning: An Integrative Review

    PubMed Central

    Friedman, Ronald S.; Förster, Jens

    2010-01-01

    A large and growing number of studies support the notion that arousing positive emotional states expand, and that arousing negative states constrict, the scope of attention on both the perceptual and conceptual levels. However, these studies have predominantly involved the manipulation or measurement of conscious emotional experiences (e.g., subjective feelings of happiness or anxiety). This raises the question: Do cues that are merely associated with benign versus threatening situations, but that do not elicit conscious feelings of positive or negative emotional arousal, independently expand or contract attentional scope? Integrating theoretical advances in affective neuroscience, positive psychology, and social cognition, it is proposed that rudimentary intero- and exteroceptive stimuli may indeed become associated with the onset of arousing positive or negative emotional states and/or with appraisals that the environment is benign or threatening and thereby come to moderate the scope of attention in the absence of conscious emotional experience. Specifically, implicit “benign situation” cues are posited to broaden, and implicit “threatening situation” cues to narrow, the range of both perceptual as well as conceptual attentional selection. An extensive array of research findings involving a diverse set of such implicit affective cues (e.g., enactment of approach and avoidance behaviors, incidental exposure to colors signaling safety versus danger) is marshaled in support of this proposition. Potential alternative explanations for and moderators of these attentional tuning effects, as well as their higher-level neuropsychological underpinnings, are also discussed along with prospective extensions to a range of other situational cues and domains of social cognitive processing. PMID:20804240

  13. An efficient approximate factorization implicit scheme for the equations of gasdynamics

    NASA Technical Reports Server (NTRS)

    Barth, T. J.; Steger, J. L.

    1984-01-01

    An efficient implicit finite-difference algorithm for the gas dynamic equations utilizing matrix reduction techniques is presented. A significant reduction in arithmetic operations is achieved while maintaining the same favorable stability characteristics and generality found in the Beam and Warming approximate factorization algorithm. Steady-state solutions to the conservative Euler equations in generalized coordinates are obtained for transonic flows about a NACA 0012 airfoil. The theoretical extension of the matrix reduction technique to the full Navier-Stokes equations in Cartesian coordinates is presented in detail. Linear stability, using a Fourier stability analysis, is demonstrated and discussed for the one-dimensional Euler equations. It is shown that the method offers advantages over the conventional Beam and Warming scheme and can retrofit existing Beam and Warming codes with minimal effort.

  14. Convergence acceleration of implicit schemes in the presence of high aspect ratio grid cells

    NASA Technical Reports Server (NTRS)

    Buelow, B. E. O.; Venkateswaran, S.; Merkle, C. L.

    1993-01-01

    of the scheme. On the other hand, for implicit schemes, which are typically unconditionally stable, there appears to be room for improvement through careful tailoring of the time step definition based on results of linear stability analyses. In the present paper, we focus on the central-differenced alternating direction implicit (ADI) scheme. The understanding garnered from this analyses can then be applied to other implicit schemes. In order to systematically study the effects of aspect ratio and the methods of mitigating the associated problems, we use a two pronged approach. We use stability analyses as a tool for predicting numerical convergence behavior and numerical experiments on simple model problems to verify predicted trends. Based on these analyses, we determine that efficient convergence may be obtained at all aspect ratios by getting a combination of things right. Primary among these are the proper definition of the time step size, proper selection of viscous preconditioner and the precise treatment of boundary conditions. These algorithmic improvements are then applied to a variety of test cases to demonstrate uniform convergence at all aspect ratios.

  15. The Implicit Social Scientist and the Implicit Rhetorician: An Integrative Framework for the Introductory Interpersonal Course.

    ERIC Educational Resources Information Center

    Rowan, Katherine E.

    1984-01-01

    Describes a course that uses the "people are implicit social scientists and rhetoricians" metaphor to weave together topics now standard for interpersonal texts: perception, language, self-concept, nonverbal communication, conflict, etc. (PD)

  16. Construction of explicit and implicit symmetric TVD schemes and their applications. [Total Variation Diminishing for fluid dynamics computation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1987-01-01

    A one-parameter family of explicit and implicit total variation diminishing (TVD) schemes is developed which permits incorporation of an expanded group of slope and flux limiters. The numerical technique is intended for use in calculations which include a time-differencing scheme and an optional Lax-Wendroff scheme. Methods of extending the TVD models to nonlinear scalar equations and systems of hyperbolic conservation equations are described. Sample results are presented from calculations of shocked flows around NACA 0012 and NACA 0018 airfoils.

  17. An implicit numerical scheme for the simulation of internal viscous flows on unstructured grids

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Pletcher, Richard H.

    1994-01-01

    The Navier-Stokes equations are solved numerically for two-dimensional steady viscous laminar flows. The grids are generated based on the method of Delaunay triangulation. A finite-volume approach is used to discretize the conservation law form of the compressible flow equations written in terms of primitive variables. A preconditioning matrix is added to the equations so that low Mach number flows can be solved economically. The equations are time marched using either an implicit Gauss-Seidel iterative procedure or a solver based on a conjugate gradient like method. A four color scheme is employed to vectorize the block Gauss-Seidel relaxation procedure. This increases the memory requirements minimally and decreases the computer time spent solving the resulting system of equations substantially. A factor of 7.6 speed up in the matrix solver is typical for the viscous equations. Numerical results are obtained for inviscid flow over a bump in a channel at subsonic and transonic conditions for validation with structured solvers. Viscous results are computed for developing flow in a channel, a symmetric sudden expansion, periodic tandem cylinders in a cross-flow, and a four-port valve. Comparisons are made with available results obtained by other investigators.

  18. Application of a lower-upper implicit scheme and an interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Soh, Woo-Yung; Yoon, Seokkwan

    1989-01-01

    A finite-volume lower-upper (LU) implicit scheme is used to simulate an inviscid flow in a tubine cascade. This approximate factorization scheme requires only the inversion of sparse lower and upper triangular matrices, which can be done efficiently without extensive storage. As an implicit scheme it allows a large time step to reach the steady state. An interactive grid generation program (TURBO), which is being developed, is used to generate grids. This program uses the control point form of algebraic grid generation which uses a sparse collection of control points from which the shape and position of coordinate curves can be adjusted. A distinct advantage of TURBO compared with other grid generation programs is that it allows the easy change of local mesh structure without affecting the grid outside the domain of independence. Sample grids are generated by TURBO for a compressor rotor blade and a turbine cascade. The turbine cascade flow is simulated by using the LU implicit scheme on the grid generated by TURBO.

  19. Associative and Propositional Processes in Evaluation: An Integrative Review of Implicit and Explicit Attitude Change

    ERIC Educational Resources Information Center

    Gawronski, Bertram; Bodenhausen, Galen V.

    2006-01-01

    A central theme in recent research on attitudes is the distinction between deliberate, "explicit" attitudes and automatic, "implicit" attitudes. The present article provides an integrative review of the available evidence on implicit and explicit attitude change that is guided by a distinction between associative and propositional processes.…

  20. A point implicit time integration technique for slow transient flow problems

    SciTech Connect

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation of explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.

  1. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration shceme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. The paper presents a description of the Euler solvers along with results and comparisons which assess the capability.

  2. Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes

    NASA Astrophysics Data System (ADS)

    Contarino, Christian; Toro, Eleuterio F.; Montecinos, Gino I.; Borsche, Raul; Kall, Jochen

    2016-06-01

    In this paper we design a new implicit solver for the Junction-Generalized Riemann Problem (J-GRP), which is based on a recently proposed implicit method for solving the Generalized Riemann Problem (GRP) for systems of hyperbolic balance laws. We use the new J-GRP solver to construct an ADER scheme that is globally explicit, locally implicit and with no theoretical accuracy barrier, in both space and time. The resulting ADER scheme is able to deal with stiff source terms and can be applied to non-linear systems of hyperbolic balance laws in domains consisting on networks of one-dimensional sub-domains. In this paper we specifically apply the numerical techniques to networks of blood vessels. We report on a test problem with exact solution for a simplified network of three vessels meeting at a single junction, which is then used to carry out a systematic convergence rate study of the proposed high-order numerical methods. Schemes up to fifth order of accuracy in space and time are implemented and tested. We then show the ability of the ADER scheme to deal with stiff sources through a numerical simulation in a network of vessels. An application to a physical test problem consisting of a network of 37 compliant silicon tubes (arteries) and 21 junctions, reveals that it is imperative to use high-order methods at junctions, in order to preserve the desired high order of accuracy in the full computational domain. For example, it is demonstrated that a second-order method throughout, gives comparable results to a method that is fourth order in the interior of the domain and first order at junctions.

  3. Associative and propositional processes in evaluation: an integrative review of implicit and explicit attitude change.

    PubMed

    Gawronski, Bertram; Bodenhausen, Galen V

    2006-09-01

    A central theme in recent research on attitudes is the distinction between deliberate, "explicit" attitudes and automatic, "implicit" attitudes. The present article provides an integrative review of the available evidence on implicit and explicit attitude change that is guided by a distinction between associative and propositional processes. Whereas associative processes are characterized by mere activation independent of subjective truth or falsity, propositional reasoning is concerned with the validation of evaluations and beliefs. The proposed associative-propositional evaluation (APE) model makes specific assumptions about the mutual interplay of the 2 processes, implying several mechanisms that lead to symmetric or asymmetric changes in implicit and explicit attitudes. The model integrates a broad range of empirical evidence and implies several new predictions for implicit and explicit attitude change.

  4. Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows

    SciTech Connect

    Popov, Pavel P. Pope, Stephen B.

    2014-01-15

    This work addresses the issue of particle mass consistency in Large Eddy Simulation/Probability Density Function (LES/PDF) methods for turbulent reactive flows. Numerical schemes for the implicit and explicit enforcement of particle mass consistency (PMC) are introduced, and their performance is examined in a representative LES/PDF application, namely the Sandia–Sydney Bluff-Body flame HM1. A new combination of interpolation schemes for velocity and scalar fields is found to better satisfy PMC than multilinear and fourth-order Lagrangian interpolation. A second-order accurate time-stepping scheme for stochastic differential equations (SDE) is found to improve PMC relative to Euler time stepping, which is the first time that a second-order scheme is found to be beneficial, when compared to a first-order scheme, in an LES/PDF application. An explicit corrective velocity scheme for PMC enforcement is introduced, and its parameters optimized to enforce a specified PMC criterion with minimal corrective velocity magnitudes.

  5. On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. I - Nonstiff strongly dynamic problems

    NASA Technical Reports Server (NTRS)

    Harten, A.; Tal-Ezer, H.

    1981-01-01

    An implicit finite difference method of fourth order accuracy in space and time is introduced for the numerical solution of one-dimensional systems of hyperbolic conservation laws. The basic form of the method is a two-level scheme which is unconditionally stable and nondissipative. The scheme uses only three mesh points at level t and three mesh points at level t + delta t. The dissipative version of the basic method given is conditionally stable under the CFL (Courant-Friedrichs-Lewy) condition. This version is particularly useful for the numerical solution of problems with strong but nonstiff dynamic features, where the CFL restriction is reasonable on accuracy grounds. Numerical results are provided to illustrate properties of the proposed method.

  6. Free-form geometric modeling by integrating parametric and implicit PDEs.

    PubMed

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  7. Convergence of a class of semi-implicit time-stepping schemes for nonsmooth rigid multibody dynamics.

    SciTech Connect

    Gavrea, B. I.; Anitescu, M.; Potra, F. A.; Mathematics and Computer Science; Univ. of Pennsylvania; Univ. of Maryland

    2008-01-01

    In this work we present a framework for the convergence analysis in a measure differential inclusion sense of a class of time-stepping schemes for multibody dynamics with contacts, joints, and friction. This class of methods solves one linear complementarity problem per step and contains the semi-implicit Euler method, as well as trapezoidal-like methods for which second-order convergence was recently proved under certain conditions. By using the concept of a reduced friction cone, the analysis includes, for the first time, a convergence result for the case that includes joints. An unexpected intermediary result is that we are able to define a discrete velocity function of bounded variation, although the natural discrete velocity function produced by our algorithm may have unbounded variation.

  8. An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system

    SciTech Connect

    Christov, C.I.; Maugin, G.A.

    1995-01-01

    We consider the nonlinear system of equations built up from a generalized Boussinesq equation coupled with a wave equation which is a model for the one-dimensional dynamics of phases in martensitic alloys. The strongly implicit scheme employing Newton`s quasilinearisation allows us to track the long time evolution of the localized solutions of the system. Two distinct classes of solutions are encountered for the pure Boussinesq equation. The first class consists of oscillatory pulses whose envelopes are localized waves. The second class consists of smoother solutions whose shapes are either heteroclinic (kinks) or homoclinic (bumps). The homoclinics decrease in amplitude with time while their support increases. An appropriate self-similar scaling is found analytically and confirmed by the direct numerical simulations to high accuracy. The rich phenomenology resulting from the coupling with the wave equation is also investigated. 11 refs., 12 figs., 2 tabs.

  9. Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.

    1990-01-01

    A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.

  10. Operator Splitting Implicit Integration Factor Methods for Stiff Reaction-Diffusion-Advection Systems

    PubMed Central

    Zhao, Su; Ovadia, Jeremy; Liu, Xinfeng; Zhang, Yong-Tao; Nie, Qing

    2011-01-01

    For reaction-diffusion-advection equations, the stiffness from the reaction and diffusion terms often requires very restricted time step size, while the nonlinear advection term may lead to a sharp gradient in localized spatial regions. It is challenging to design numerical methods that can efficiently handle both difficulties. For reaction-diffusion systems with both stiff reaction and diffusion terms, implicit integration factor (IIF) method and its higher dimensional analog compact IIF (cIIF) serve as an efficient class of time-stepping methods, and their second order version is linearly unconditionally stable. For nonlinear hyperbolic equations, weighted essentially non-oscillatory (WENO) methods are a class of schemes with a uniformly high-order of accuracy in smooth regions of the solution, which can also resolve the sharp gradient in an accurate and essentially non-oscillatory fashion. In this paper, we couple IIF/cIIF with WENO methods using the operator splitting approach to solve reaction-diffusion-advection equations. In particular, we apply the IIF/cIIF method to the stiff reaction and diffusion terms and the WENO method to the advection term in two different splitting sequences. Calculation of local truncation error and direct numerical simulations for both splitting approaches show the second order accuracy of the splitting method, and linear stability analysis and direct comparison with other approaches reveals excellent efficiency and stability properties. Applications of the splitting approach to two biological systems demonstrate that the overall method is accurate and efficient, and the splitting sequence consisting of two reaction-diffusion steps is more desirable than the one consisting of two advection steps, because CWC exhibits better accuracy and stability. PMID:21666863

  11. A splitting integration scheme for the SPH simulation of concentrated particle suspensions

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Ellero, Marco

    2014-01-01

    Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.

  12. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The efficiency gains obtained using higher-order implicit Runge-Kutta schemes as compared with the second-order accurate backward difference schemes for the unsteady Navier-Stokes equations are investigated. Three different algorithms for solving the nonlinear system of equations arising at each timestep are presented. The first algorithm (NMG) is a pseudo-time-stepping scheme which employs a non-linear full approximation storage (FAS) agglomeration multigrid method to accelerate convergence. The other two algorithms are based on Inexact Newton's methods. The linear system arising at each Newton step is solved using iterative/Krylov techniques and left preconditioning is used to accelerate convergence of the linear solvers. One of the methods (LMG) uses Richardson's iterative scheme for solving the linear system at each Newton step while the other (PGMRES) uses the Generalized Minimal Residual method. Results demonstrating the relative superiority of these Newton's methods based schemes are presented. Efficiency gains as high as 10 are obtained by combining the higher-order time integration schemes with the more efficient nonlinear solvers.

  13. Study of shock-induced combustion using an implicit TVD scheme

    NASA Technical Reports Server (NTRS)

    Yungster, Shayne

    1992-01-01

    The supersonic combustion flowfields associated with various hypersonic propulsion systems, such as the ram accelerator, the oblique detonation wave engine, and the scramjet, are being investigated using a new computational fluid dynamics (CFD) code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. It employs an iterative method and a second order differencing scheme to improve computational efficiency. The code is currently being applied to study shock wave/boundary layer interactions in premixed combustible gases, and to investigate the ram accelerator concept. Results obtained for a ram accelerator configuration indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outward and downstream. The combustion process creates a high pressure region over the back of the projectile resulting in a net positive thrust forward.

  14. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  15. Higher Order Time Integration Schemes for the Unsteady Navier-Stokes Equations on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Jothiprasad, Giridhar; Mavriplis, Dimitri J.; Caughey, David A.

    2002-01-01

    The rapid increase in available computational power over the last decade has enabled higher resolution flow simulations and more widespread use of unstructured grid methods for complex geometries. While much of this effort has been focused on steady-state calculations in the aerodynamics community, the need to accurately predict off-design conditions, which may involve substantial amounts of flow separation, points to the need to efficiently simulate unsteady flow fields. Accurate unsteady flow simulations can easily require several orders of magnitude more computational effort than a corresponding steady-state simulation. For this reason, techniques for improving the efficiency of unsteady flow simulations are required in order to make such calculations feasible in the foreseeable future. The purpose of this work is to investigate possible reductions in computer time due to the choice of an efficient time-integration scheme from a series of schemes differing in the order of time-accuracy, and by the use of more efficient techniques to solve the nonlinear equations which arise while using implicit time-integration schemes. This investigation is carried out in the context of a two-dimensional unstructured mesh laminar Navier-Stokes solver.

  16. Analysis of implicit second-order upwind-biased stencils

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Warren, Gary P.

    1993-01-01

    Truncation error and stability properties of several implicit upwind schemes for the two-dimensional Euler equations are examined. The schemes use linear data reconstruction methods to achieve second-order flux integrations where the implicit Jacobian operators are first order. The stability properties of the schemes are examined by a Von Neumann analysis of the linearized, constant-coefficient Euler equations. The choice of the data reconstruction method used to evaluate the flux integral has a dramatic effect on the convergence properties of the implicit solution method. In particular, the typical one-dimensional data reconstruction methods used with structured grids exhibit poor convergence properties compared to the unstructured grid method considered. Of the schemes examined, the one with the superior convergence properties is well-suited for both unstructured and structured grids, which has important implications for the design of implicit methods.

  17. Investigation of numerical viscosities and dissipation rates of second-order TVD-MUSCL schemes for implicit large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Bidadi, Shreyas; Rani, Sarma L.

    2015-01-01

    Monotonically integrated large-eddy simulation (MILES) approach utilizes the dissipation inherent to shock-capturing schemes to emulate the role played by explicit subgrid-scale eddy diffusivity at the high-wavenumber end of the turbulent energy spectrum. In the current study, a novel formulation is presented for quantifying the numerical viscosity inherent to Roe-based second-order TVD-MUSCL schemes for the Euler equations. Using this formulation, the effects of numerical viscosity and dissipation rate on implicit large-eddy simulations of turbulent flows are investigated. At first, the three-dimensional (3-D) finite-volume extension of the original Roe's flux, including Roe's Jacobian matrix, is presented. The fluxes are then extended to second-order using van Leer's MUSCL extrapolation technique. Starting from the 3-D Roe-MUSCL flux, an expression is derived for the numerical viscosity as a function of flux limiter and characteristic speed for each conserved variable, distance between adjacent cell centers, and a scaling parameter. Motivated by Thornber et al. [16] study, the high numerical viscosity inherent to TVD-MUSCL schemes is mitigated using a z-factor that depends on local Mach number. The TVD limiters, along with the z-factor, were initially applied to the 1-D shock-tube and 2-D inviscid supersonic wedge flows. Spatial profiles of numerical viscosities are plotted, which provide insights into the role of these limiters in controlling the dissipative nature of Roe's flux while maintaining monotonicity and stability in regions of high gradients. Subsequently, a detailed investigation was performed of decaying homogeneous isotropic turbulence with varying degrees of compressibility. Spectra of numerical viscosity and dissipation rate are presented, which clearly demonstrate the effectiveness of the z-factor both in narrowing the wavenumber range in which dissipation occurs, and in shifting the location of dissipation peak closer to the cut-off wavenumber

  18. Semi-implicit Integration Factor Methods on Sparse Grids for High-Dimensional Systems

    PubMed Central

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-01-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method. PMID:25897178

  19. Time Integration Schemes for the Unsteady Navier-stokes Equations

    NASA Technical Reports Server (NTRS)

    Bijl, Hester; Carpenter, Mark H.; Vatsa, Veer N.

    2001-01-01

    The efficiency and accuracy of several time integration schemes are investigated for the unsteady Navier-Stokes equations. This study focuses on the efficiency of higher-order Runge-Kutta schemes in comparison with the popular Backward Differencing Formulations. For this comparison an unsteady two-dimensional laminar flow problem is chosen, i.e., flow around a circular cylinder at Re = 1200. It is concluded that for realistic error tolerances (smaller than 10(exp -1)) fourth-and fifth-order Runge-Kutta schemes are the most efficient. For reasons of robustness and computer storage, the fourth-order Runge-Kutta method is recommended. The efficiency of the fourth-order Runge-Kutta scheme exceeds that of second-order Backward Difference Formula by a factor of 2.5 at engineering error tolerance levels (10(exp -1) to 10(exp -2)). Efficiency gains are more dramatic at smaller tolerances.

  20. Enabling an integrated rate-temporal learning scheme on memristor.

    PubMed

    He, Wei; Huang, Kejie; Ning, Ning; Ramanathan, Kiruthika; Li, Guoqi; Jiang, Yu; Sze, Jiayin; Shi, Luping; Zhao, Rong; Pei, Jing

    2014-04-23

    Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems.

  1. Enabling an Integrated Rate-temporal Learning Scheme on Memristor

    PubMed Central

    He, Wei; Huang, Kejie; Ning, Ning; Ramanathan, Kiruthika; Li, Guoqi; Jiang, Yu; Sze, JiaYin; Shi, Luping; Zhao, Rong; Pei, Jing

    2014-01-01

    Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems. PMID:24755608

  2. Rigorous comparative study of energy-integrated distillation schemes

    SciTech Connect

    Annakou, O.; Mizsey, P.

    1996-06-01

    This paper presents results of a rigorous study and comparison of conventional and energy-integrated distillation schemes for the separation of ternary mixtures. The major part of this work is devoted to the design and simulation of the fully thermally coupled distillation column (Petlyuk or Kaibel column) with particular emphasis on the question of the fractional recovery of the middle component in the prefractionator and as a consequence the internal recycle streams. A comparative economic parametric study is carried out for three different distillation schemes: conventional sequences, heat-integrated columns, and the fully thermally coupled distillation column. The heat-integrated columns show the best economic features over the other two schemes except the few cases when the concentration of the middle component in the feed is high and the A/B split is more difficult than the B/C split. In such rare cases the fully thermally coupled distillation column proves to be the cheapest solution. In the cases of sharp separations the heat-integrated scheme is always the most economical solution.

  3. Image integrity authentication scheme based on fixed point theory.

    PubMed

    Li, Xu; Sun, Xingming; Liu, Quansheng

    2015-02-01

    Based on the fixed point theory, this paper proposes a new scheme for image integrity authentication, which is very different from digital signature and fragile watermarking. By the new scheme, the sender transforms an original image into a fixed point image (very close to the original one) of a well-chosen transform and sends the fixed point image (instead of the original one) to the receiver; using the same transform, the receiver checks the integrity of the received image by testing whether it is a fixed point image and locates the tampered areas if the image has been modified during the transmission. A realization of the new scheme is based on Gaussian convolution and deconvolution (GCD) transform, for which an existence theorem of fixed points is proved. The semifragility is analyzed via commutativity of transforms, and three commutativity theorems are found for the GCD transform. Three iterative algorithms are presented for finding a fixed point image with a few numbers of iterations, and for the whole procedure of image integrity authentication; a fragile authentication system and a semifragile one are separately built. Experiments show that both the systems have good performance in transparence, fragility, security, and tampering localization. In particular, the semifragile system can perfectly resist the rotation by a multiple of 90° flipping and brightness attacks.

  4. A lightweight data integrity scheme for sensor networks.

    PubMed

    Kamel, Ibrahim; Juma, Hussam

    2011-01-01

    Limited energy is the most critical constraint that limits the capabilities of wireless sensor networks (WSNs). Most sensors operate on batteries with limited power. Battery recharging or replacement may be impossible. Security mechanisms that are based on public key cryptographic algorithms such as RSA and digital signatures are prohibitively expensive in terms of energy consumption and storage requirements, and thus unsuitable for WSN applications. This paper proposes a new fragile watermarking technique to detect unauthorized alterations in WSN data streams. We propose the FWC-D scheme, which uses group delimiters to keep the sender and receivers synchronized and help them to avoid ambiguity in the event of data insertion or deletion. The watermark, which is computed using a hash function, is stored in the previous group in a linked-list fashion to ensure data freshness and mitigate replay attacks, FWC-D generates a serial number SN that is attached to each group to help the receiver determines how many group insertions or deletions occurred. Detailed security analysis that compares the proposed FWC-D scheme with SGW, one of the latest integrity schemes for WSNs, shows that FWC-D is more robust than SGW. Simulation results further show that the proposed scheme is much faster than SGW.

  5. An Efficient, Semi-implicit Pressure-based Scheme Employing a High-resolution Finitie Element Method for Simulating Transient and Steady, Inviscid and Viscous, Compressible Flows on Unstructured Grids

    SciTech Connect

    Richard C. Martineau; Ray A. Berry

    2003-04-01

    A new semi-implicit pressure-based Computational Fluid Dynamics (CFD) scheme for simulating a wide range of transient and steady, inviscid and viscous compressible flow on unstructured finite elements is presented here. This new CFD scheme, termed the PCICEFEM (Pressure-Corrected ICE-Finite Element Method) scheme, is composed of three computational phases, an explicit predictor, an elliptic pressure Poisson solution, and a semiimplicit pressure-correction of the flow variables. The PCICE-FEM scheme is capable of second-order temporal accuracy by incorporating a combination of a time-weighted form of the two-step Taylor-Galerkin Finite Element Method scheme as an explicit predictor for the balance of momentum equations and the finite element form of a time-weighted trapezoid rule method for the semi-implicit form of the governing hydrodynamic equations. Second-order spatial accuracy is accomplished by linear unstructured finite element discretization. The PCICE-FEM scheme employs Flux-Corrected Transport as a high-resolution filter for shock capturing. The scheme is capable of simulating flows from the nearly incompressible to the high supersonic flow regimes. The PCICE-FEM scheme represents an advancement in mass-momentum coupled, pressurebased schemes. The governing hydrodynamic equations for this scheme are the conservative form of the balance of momentum equations (Navier-Stokes), mass conservation equation, and total energy equation. An operator splitting process is performed along explicit and implicit operators of the semi-implicit governing equations to render the PCICE-FEM scheme in the class of predictor-corrector schemes. The complete set of semi-implicit governing equations in the PCICE-FEM scheme are cast in this form, an explicit predictor phase and a semi-implicit pressure-correction phase with the elliptic pressure Poisson solution coupling the predictor-corrector phases. The result of this predictor-corrector formulation is that the pressure Poisson

  6. Efficient implicit integration for finite-strain viscoplasticity with a nested multiplicative split

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.

    2016-07-01

    An efficient and reliable stress computation algorithm is presented, which is based on implicit integration of the local evolution equations of multiplicative finite-strain plasticity/viscoplasticity. The algorithm is illustrated by an example involving a combined nonlinear isotropic/kinematic hardening; numerous backstress tensors are employed for a better description of the material behavior. The considered material model exhibits the so-called weak invariance under arbitrary isochoric changes of the reference configuration, and the presented algorithm retains this useful property. Even more: the weak invariance serves as a guide in constructing this algorithm. The constraint of inelastic incompressibility is exactly preserved as well. The proposed method is first-order accurate. Concerning the accuracy of the stress computation, the new algorithm is comparable to the Euler Backward method with a subsequent correction of incompressibility (EBMSC) and the classical exponential method (EM). Regarding the computational efficiency, the new algorithm is superior to the EBMSC and EM. Some accuracy tests are presented using parameters of the aluminum alloy 5754-O and the 42CrMo4 steel. FEM solutions of two boundary value problems using MSC.MARC are presented to show the correctness of the numerical implementation.

  7. How to Improve Adolescent Stress Responses: Insights From Integrating Implicit Theories of Personality and Biopsychosocial Models.

    PubMed

    Yeager, David S; Lee, Hae Yeon; Jamieson, Jeremy P

    2016-08-01

    This research integrated implicit theories of personality and the biopsychosocial model of challenge and threat, hypothesizing that adolescents would be more likely to conclude that they can meet the demands of an evaluative social situation when they were taught that people have the potential to change their socially relevant traits. In Study 1 (N = 60), high school students were assigned to an incremental-theory-of-personality or a control condition and then given a social-stress task. Relative to control participants, incremental-theory participants exhibited improved stress appraisals, more adaptive neuroendocrine and cardiovascular responses, and better performance outcomes. In Study 2 (N = 205), we used a daily-diary intervention to test high school students' stress reactivity outside the laboratory. Threat appraisals (Days 5-9 after intervention) and neuroendocrine responses (Days 8 and 9 after intervention only) were unrelated to the intensity of daily stressors when adolescents received the incremental-theory intervention. Students who received the intervention also had better grades over freshman year than those who did not. These findings offer new avenues for improving theories of adolescent stress and coping.

  8. How to Improve Adolescent Stress Responses: Insights From Integrating Implicit Theories of Personality and Biopsychosocial Models.

    PubMed

    Yeager, David S; Lee, Hae Yeon; Jamieson, Jeremy P

    2016-08-01

    This research integrated implicit theories of personality and the biopsychosocial model of challenge and threat, hypothesizing that adolescents would be more likely to conclude that they can meet the demands of an evaluative social situation when they were taught that people have the potential to change their socially relevant traits. In Study 1 (N = 60), high school students were assigned to an incremental-theory-of-personality or a control condition and then given a social-stress task. Relative to control participants, incremental-theory participants exhibited improved stress appraisals, more adaptive neuroendocrine and cardiovascular responses, and better performance outcomes. In Study 2 (N = 205), we used a daily-diary intervention to test high school students' stress reactivity outside the laboratory. Threat appraisals (Days 5-9 after intervention) and neuroendocrine responses (Days 8 and 9 after intervention only) were unrelated to the intensity of daily stressors when adolescents received the incremental-theory intervention. Students who received the intervention also had better grades over freshman year than those who did not. These findings offer new avenues for improving theories of adolescent stress and coping. PMID:27324267

  9. A Scheme for the Integrated Assessment of Mitigation Options

    NASA Astrophysics Data System (ADS)

    Held, H.; Edenhofer, O.

    2003-04-01

    After some consensus has been achieved that the global mean temperature will have increased by 1.4 to 5.8^oC at the end of this century in case of continued ``business as usual'' greenhouse gas emissions, society has to decide if or which mitigation measures should be taken. A new integrated assessment project on this very issue will be started at PIK in spring 2003. The assessment will cover economic aspects as well as potential side effects of various measures. In the economic module, the effects of investment decisions on technological innovation will be explicitly taken into account. Special emphasize will be put on the issue of uncertainty. Hereby we distinguish the uncertainty related to the Integrated Assessment modules, including the economic module, from the fact that no over-complex system can be fully captured by a model. Therefore, a scheme for the assessment of the ``residual'', the non-modelled part of the system, needs to be worked out. The scheme must be truly interdisciplinary, i.e. must be applicable to at least the natural science and the economic aspects. A scheme based on meta-principles like minimum persistence, ubiquity, or irreversibility of potential measures appears to be a promising candidate. An implementation of ubiquity as at present successfully operated in environmental chemistry may serve as a guideline [1]. Here, the best-known mechanism within a complex impact chain of potentially harmful chemicals, their transport, is captured by a reaction-diffusion mechanism [2]. begin{thebibliography}{0} bibitem{s} M. Scheringer, Persistence and spatial range as endpoints of an exposure-based assessment of organic chemicals. Environ. Sci. Technol. 30: 1652-1659 (1996). bibitem{h} H. Held, Robustness of spatial ranges of environmental chemicals with respect to model dimension, accepted for publication in Stoch. Environ. Res. Risk Assessment.

  10. An implicit scheme for solving the anisotropic diffusion of heat and cosmic rays in the RAMSES code

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Commerçon, Benoît

    2016-01-01

    Astrophysical plasmas are subject to a tight connection between magnetic fields and the diffusion of particles, which leads to an anisotropic transport of energy. Under the fluid assumption, this effect can be reduced to an advection-diffusion equation, thereby augmenting the equations of magnetohydrodynamics. We introduce a new method for solving the anisotropic diffusion equation using an implicit finite-volume method with adaptive mesh refinement and adaptive time-stepping in the ramses code. We apply this numerical solver to the diffusion of cosmic ray energy and diffusion of heat carried by electrons, which couple to the ion temperature. We test this new implementation against several numerical experiments and apply it to a simple supernova explosion with a uniform magnetic field.

  11. Implicit plasma simulation

    SciTech Connect

    Langdon, A.B.

    1985-03-03

    Implicit time integration methods have been used extensively in numerical modelling of slowly varying phenomena in systems that also support rapid variation. Examples include diffusion, hydrodynamics and reaction kinetics. This article discussed implementation of implicit time integration in plasma codes of the ''particle-in-cell'' family, and the benefits to be gained.

  12. Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem

    NASA Astrophysics Data System (ADS)

    Wodo, Olga; Ganapathysubramanian, Baskar

    2011-07-01

    We present an efficient numerical framework for analyzing spinodal decomposition described by the Cahn-Hilliard equation. We focus on the analysis of various implicit time schemes for two and three dimensional problems. We demonstrate that significant computational gains can be obtained by applying embedded, higher order Runge-Kutta methods in a time adaptive setting. This allows accessing time-scales that vary by five orders of magnitude. In addition, we also formulate a set of test problems that isolate each of the sub-processes involved in spinodal decomposition: interface creation and bulky phase coarsening. We analyze the error fluctuations using these test problems on the split form of the Cahn-Hilliard equation solved using the finite element method with basis functions of different orders. Any scheme that ensures at least four elements per interface satisfactorily captures both sub-processes. Our findings show that linear basis functions have superior error-to-cost properties. This strategy - coupled with a domain decomposition based parallel implementation - let us notably augment the efficiency of a numerical Cahn-Hillard solver, and open new venues for its practical applications, especially when three dimensional problems are considered. We use this framework to address the isoperimetric problem of identifying local solutions in the periodic cube in three dimensions. The framework is able to generate all five hypothesized candidates for the local solution of periodic isoperimetric problem in 3D - sphere, cylinder, lamella, doubly periodic surface with genus two (Lawson surface) and triply periodic minimal surface (P Schwarz surface).

  13. Evaluation of premeability-porosity relationships linked to mineral dissolution-precipitation using global implicit approach with a reduction scheme and operator splitting approach

    NASA Astrophysics Data System (ADS)

    Zolfaghari, R.; Shao, H.; Kolditz, O.

    2013-12-01

    Numerical simulation of reactive transport processes is essential in long term behavior assessment of hazardous materials. To simulate reactive transport processes global implicit approach (GIA) and operator splitting approach are commonly used. GIA has been getting more attentions due to advances in computational power and the lack of numerical accuracy and efficacy of operator splitting methods for simulating long term processes over the past few years. We have investigated the Efficiency and accuracy of these methods in handling slow reacting-processes in long term scenarios. GIA with reduction scheme proposed by Kräutel et al. (2010) and sequential non-iterative approach (SNIA) approach have been implemented into OpenGeoSys (OGS6) to solve reactive transport problems. The new reduction scheme in GIA uses a reformulation to reduce the number of coupled nonlinear partial differential equations by decoupling of equations and elimination of unknowns. The new reformulation divides components and species of the chemical system into decoupled linear reaction invariant components and coupled nonlinear reaction variant ones. A local chemical solver is used to handle the chemical problem in GIA and SNIA approaches. Equilibrium/ kinetic mineral reaction is treated as a complementarity problem in the local problem. In this context, a series of benchmarks have been adopted to assess the performance of GIA with reduction scheme and SNIA. The benchmarks objective is to simulate mineral dissolution-precipitation induced porosity changes and the resulting effects on the solute migration. The Carman-Kozeny relationship is used to describe changes in permeability as a function of porosity. The results produced by three codes of OGS6, OGS-PHREEQC and MIN3P have been compared and evaluated based on the benchmarks for the numerical accuracy and efficacy.

  14. An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation

    SciTech Connect

    Riley, M.E.; Ritchie, A.B.

    1997-12-31

    One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as an example of the power of the method.

  15. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 1: Theoretical developments and applications

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Li, Wei

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present first part of the

  16. Marginalization: A Revisitation With Integration of Scholarship on Globalization, Intersectionality, Privilege, Microaggressions, and Implicit Biases.

    PubMed

    Hall, Joanne M; Carlson, Kelly

    2016-01-01

    In 1994, the concept of marginalization was explored in an article in Advances in Nursing Science. This is a revisitation of the concept incorporating new scholarship. This update is founded on feminism, postcolonialism, critical race theory, and discourse deconstruction, all viewpoints that have been explicated in nursing. The purpose of this analysis is to look at new scholarship and concepts useful to applying marginalization in nursing knowledge development from the standpoint of Bourdieu's macro, meso, and micro levels. New scholarship includes globalization, intersectionality, privilege, microaggressions, and implicit bias. Implications for decreasing health disparities through this new scholarship are discussed. PMID:27490876

  17. Marginalization: A Revisitation With Integration of Scholarship on Globalization, Intersectionality, Privilege, Microaggressions, and Implicit Biases.

    PubMed

    Hall, Joanne M; Carlson, Kelly

    2016-01-01

    In 1994, the concept of marginalization was explored in an article in Advances in Nursing Science. This is a revisitation of the concept incorporating new scholarship. This update is founded on feminism, postcolonialism, critical race theory, and discourse deconstruction, all viewpoints that have been explicated in nursing. The purpose of this analysis is to look at new scholarship and concepts useful to applying marginalization in nursing knowledge development from the standpoint of Bourdieu's macro, meso, and micro levels. New scholarship includes globalization, intersectionality, privilege, microaggressions, and implicit bias. Implications for decreasing health disparities through this new scholarship are discussed.

  18. Robust integration schemes for generalized viscoplasticity with internal-state variables. Part 2: Algorithmic developments and implementation

    NASA Technical Reports Server (NTRS)

    Li, Wei; Saleeb, Atef F.

    1995-01-01

    This two-part report is concerned with the development of a general framework for the implicit time-stepping integrators for the flow and evolution equations in generalized viscoplastic models. The primary goal is to present a complete theoretical formulation, and to address in detail the algorithmic and numerical analysis aspects involved in its finite element implementation, as well as to critically assess the numerical performance of the developed schemes in a comprehensive set of test cases. On the theoretical side, the general framework is developed on the basis of the unconditionally-stable, backward-Euler difference scheme as a starting point. Its mathematical structure is of sufficient generality to allow a unified treatment of different classes of viscoplastic models with internal variables. In particular, two specific models of this type, which are representative of the present start-of-art in metal viscoplasticity, are considered in applications reported here; i.e., fully associative (GVIPS) and non-associative (NAV) models. The matrix forms developed for both these models are directly applicable for both initially isotropic and anisotropic materials, in general (three-dimensional) situations as well as subspace applications (i.e., plane stress/strain, axisymmetric, generalized plane stress in shells). On the computational side, issues related to efficiency and robustness are emphasized in developing the (local) interative algorithm. In particular, closed-form expressions for residual vectors and (consistent) material tangent stiffness arrays are given explicitly for both GVIPS and NAV models, with their maximum sizes 'optimized' to depend only on the number of independent stress components (but independent of the number of viscoplastic internal state parameters). Significant robustness of the local iterative solution is provided by complementing the basic Newton-Raphson scheme with a line-search strategy for convergence. In the present second part of

  19. A more secure anonymous user authentication scheme for the integrated EPR information system.

    PubMed

    Wen, Fengtong

    2014-05-01

    Secure and efficient user mutual authentication is an essential task for integrated electronic patient record (EPR) information system. Recently, several authentication schemes have been proposed to meet this requirement. In a recent paper, Lee et al. proposed an efficient and secure password-based authentication scheme used smart cards for the integrated EPR information system. This scheme is believed to have many abilities to resist a range of network attacks. Especially, they claimed that their scheme could resist lost smart card attack. However, we reanalyze the security of Lee et al.'s scheme, and show that it fails to protect off-line password guessing attack if the secret information stored in the smart card is compromised. This also renders that their scheme is insecure against user impersonation attacks. Then, we propose a new user authentication scheme for integrated EPR information systems based on the quadratic residues. The new scheme not only resists a range of network attacks but also provides user anonymity. We show that our proposed scheme can provide stronger security. PMID:24760224

  20. A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry

    NASA Astrophysics Data System (ADS)

    Savard, B.; Xuan, Y.; Bobbitt, B.; Blanquart, G.

    2015-08-01

    A semi-implicit preconditioned iterative method is proposed for the time-integration of the stiff chemistry in simulations of unsteady reacting flows, such as turbulent flames, using detailed chemical kinetic mechanisms. Emphasis is placed on the simultaneous treatment of convection, diffusion, and chemistry, without using operator splitting techniques. The preconditioner corresponds to an approximation of the diagonal of the chemical Jacobian. Upon convergence of the sub-iterations, the fully-implicit, second-order time-accurate, Crank-Nicolson formulation is recovered. Performance of the proposed method is tested theoretically and numerically on one-dimensional laminar and three-dimensional high Karlovitz turbulent premixed n-heptane/air flames. The species lifetimes contained in the diagonal preconditioner are found to capture all critical small chemical timescales, such that the largest stable time step size for the simulation of the turbulent flame with the proposed method is limited by the convective CFL, rather than chemistry. The theoretical and numerical stability limits are in good agreement and are independent of the number of sub-iterations. The results indicate that the overall procedure is second-order accurate in time, free of lagging errors, and the cost per iteration is similar to that of an explicit time integration. The theoretical analysis is extended to a wide range of flames (premixed and non-premixed), unburnt conditions, fuels, and chemical mechanisms. In all cases, the proposed method is found (theoretically) to be stable and to provide good convergence rate for the sub-iterations up to a time step size larger than 1 μs. This makes the proposed method ideal for the simulation of turbulent flames.

  1. Implicit time-integration method for simultaneous solution of a coupled non-linear system

    NASA Astrophysics Data System (ADS)

    Watson, Justin Kyle

    Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems

  2. Really TVD advection schemes for the depth-integrated transport equation

    NASA Astrophysics Data System (ADS)

    Mercier, Ch.; Delhez, E. J. M.

    This paper explores the use of TVD advection schemes to solve the depth-integrated transport equation for tracers in finite volume marine models. Numerical experiments show that the blind application of the usual TVD schemes and associated flux limiters can lead to non-TVD solutions when applied in complex geometries. Spatial and/or temporal variations of the local bathymetry can indeed break the TVD property of the usual schemes. Really TVD schemes can be recovered by taking into account the local depth and its variations in the formulation of the flux limiters. Using this approach, a generalized superbee limiter is introduced and validated.

  3. Vehicle Scheduling Schemes for Commercial and Emergency Logistics Integration

    PubMed Central

    Li, Xiaohui; Tan, Qingmei

    2013-01-01

    In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models. PMID:24391724

  4. Vehicle scheduling schemes for commercial and emergency logistics integration.

    PubMed

    Li, Xiaohui; Tan, Qingmei

    2013-01-01

    In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models. PMID:24391724

  5. Vehicle scheduling schemes for commercial and emergency logistics integration.

    PubMed

    Li, Xiaohui; Tan, Qingmei

    2013-01-01

    In modern logistics operations, large-scale logistics companies, besides active participation in profit-seeking commercial business, also play an essential role during an emergency relief process by dispatching urgently-required materials to disaster-affected areas. Therefore, an issue has been widely addressed by logistics practitioners and caught researchers' more attention as to how the logistics companies achieve maximum commercial profit on condition that emergency tasks are effectively and performed satisfactorily. In this paper, two vehicle scheduling models are proposed to solve the problem. One is a prediction-related scheme, which predicts the amounts of disaster-relief materials and commercial business and then accepts the business that will generate maximum profits; the other is a priority-directed scheme, which, firstly groups commercial and emergency business according to priority grades and then schedules both types of business jointly and simultaneously by arriving at the maximum priority in total. Moreover, computer-based simulations are carried out to evaluate the performance of these two models by comparing them with two traditional disaster-relief tactics in China. The results testify the feasibility and effectiveness of the proposed models.

  6. Multiscale integration schemes for jump-diffusion systems

    SciTech Connect

    Givon, D.; Kevrekidis, I.G.

    2008-12-09

    We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration method and the slow components of the original system.

  7. Schemes for Integrating Text and Image in the Science Textbook: Effects on Comprehension and Situational Interest

    ERIC Educational Resources Information Center

    Peterson, Matthew O.

    2016-01-01

    Science education researchers have turned their attention to the use of images in textbooks, both because pages are heavily illustrated and because visual literacy is an important aptitude for science students. Text-image integration in the textbook is described here as composition schemes in increasing degrees of integration: prose primary (PP),…

  8. A New Scheme of Integrability for (bi)Hamiltonian PDE

    NASA Astrophysics Data System (ADS)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2016-10-01

    We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.

  9. A New Scheme of Integrability for (bi)Hamiltonian PDE

    NASA Astrophysics Data System (ADS)

    De Sole, Alberto; Kac, Victor G.; Valeri, Daniele

    2016-06-01

    We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.

  10. Implicit CAPTCHAs

    NASA Astrophysics Data System (ADS)

    Baird, Henry S.; Bentley, Jon L.

    2005-01-01

    We propose a design methodology for "implicit" CAPTCHAs to relieve drawbacks of present technology. CAPTCHAs are tests administered automatically over networks that can distinguish between people and machines and thus protect web services from abuse by programs masquerading as human users. All existing CAPTCHAs' challenges require a significant conscious effort by the person answering them -- e.g. reading and typing a nonsense word -- whereas implicit CAPTCHAs may require as little as a single click. Many CAPTCHAs distract and interrupt users, since the challenge is perceived as an irrelevant intrusion; implicit CAPTCHAs can be woven into the expected sequence of browsing using cues tailored to the site. Most existing CAPTCHAs are vulnerable to "farming-out" attacks in which challenges are passed to a networked community of human readers; by contrast, implicit CAPTCHAs are not "fungible" (in the sense of easily answerable in isolation) since they are meaningful only in the specific context of the website that is protected. Many existing CAPTCHAs irritate or threaten users since they are obviously tests of skill: implicit CAPTCHAs appear to be elementary and inevitable acts of browsing. It can often be difficult to detect when CAPTCHAs are under attack: implicit CAPTCHAs can be designed so that certain failure modes are correlated with failed bot attacks. We illustrate these design principles with examples.

  11. Implicit CAPTCHAs

    NASA Astrophysics Data System (ADS)

    Baird, Henry S.; Bentley, Jon L.

    2004-12-01

    We propose a design methodology for "implicit" CAPTCHAs to relieve drawbacks of present technology. CAPTCHAs are tests administered automatically over networks that can distinguish between people and machines and thus protect web services from abuse by programs masquerading as human users. All existing CAPTCHAs' challenges require a significant conscious effort by the person answering them -- e.g. reading and typing a nonsense word -- whereas implicit CAPTCHAs may require as little as a single click. Many CAPTCHAs distract and interrupt users, since the challenge is perceived as an irrelevant intrusion; implicit CAPTCHAs can be woven into the expected sequence of browsing using cues tailored to the site. Most existing CAPTCHAs are vulnerable to "farming-out" attacks in which challenges are passed to a networked community of human readers; by contrast, implicit CAPTCHAs are not "fungible" (in the sense of easily answerable in isolation) since they are meaningful only in the specific context of the website that is protected. Many existing CAPTCHAs irritate or threaten users since they are obviously tests of skill: implicit CAPTCHAs appear to be elementary and inevitable acts of browsing. It can often be difficult to detect when CAPTCHAs are under attack: implicit CAPTCHAs can be designed so that certain failure modes are correlated with failed bot attacks. We illustrate these design principles with examples.

  12. A Novel Multilayered RFID Tagged Cargo Integrity Assurance Scheme.

    PubMed

    Yang, Ming Hour; Luo, Jia Ning; Lu, Shao Yong

    2015-01-01

    To minimize cargo theft during transport, mobile radio frequency identification (RFID) grouping proof methods are generally employed to ensure the integrity of entire cargo loads. However, conventional grouping proofs cannot simultaneously generate grouping proofs for a specific group of RFID tags. The most serious problem of these methods is that nonexistent tags are included in the grouping proofs because of the considerable amount of time it takes to scan a high number of tags. Thus, applying grouping proof methods in the current logistics industry is difficult. To solve this problem, this paper proposes a method for generating multilayered offline grouping proofs. The proposed method provides tag anonymity; moreover, resolving disputes between recipients and transporters over the integrity of cargo deliveries can be expedited by generating grouping proofs and automatically authenticating the consistency between the receipt proof and pick proof. The proposed method can also protect against replay attacks, multi-session attacks, and concurrency attacks. Finally, experimental results verify that, compared with other methods for generating grouping proofs, the proposed method can efficiently generate offline grouping proofs involving several parties in a supply chain using mobile RFID. PMID:26512673

  13. A Novel Multilayered RFID Tagged Cargo Integrity Assurance Scheme

    PubMed Central

    Yang, Ming Hour; Luo, Jia Ning; Lu, Shao Yong

    2015-01-01

    To minimize cargo theft during transport, mobile radio frequency identification (RFID) grouping proof methods are generally employed to ensure the integrity of entire cargo loads. However, conventional grouping proofs cannot simultaneously generate grouping proofs for a specific group of RFID tags. The most serious problem of these methods is that nonexistent tags are included in the grouping proofs because of the considerable amount of time it takes to scan a high number of tags. Thus, applying grouping proof methods in the current logistics industry is difficult. To solve this problem, this paper proposes a method for generating multilayered offline grouping proofs. The proposed method provides tag anonymity; moreover, resolving disputes between recipients and transporters over the integrity of cargo deliveries can be expedited by generating grouping proofs and automatically authenticating the consistency between the receipt proof and pick proof. The proposed method can also protect against replay attacks, multi-session attacks, and concurrency attacks. Finally, experimental results verify that, compared with other methods for generating grouping proofs, the proposed method can efficiently generate offline grouping proofs involving several parties in a supply chain using mobile RFID. PMID:26512673

  14. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    SciTech Connect

    Squire, J.; Tang, W. M.; Qin, H.

    2012-08-15

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  15. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    NASA Astrophysics Data System (ADS)

    Squire, J.; Qin, H.; Tang, W. M.

    2012-08-01

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  16. Geometric Integration Of The Vlasov-Maxwell System With A Variational Particle-in-cell Scheme

    SciTech Connect

    J. Squire, H. Qin and W.M. Tang

    2012-03-27

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  17. New parallelizable schemes for integrating the Dissipative Particle Dynamics with Energy conservation.

    PubMed

    Homman, Ahmed-Amine; Maillet, Jean-Bernard; Roussel, Julien; Stoltz, Gabriel

    2016-01-14

    This work presents new parallelizable numerical schemes for the integration of dissipative particle dynamics with energy conservation. So far, no numerical scheme introduced in the literature is able to correctly preserve the energy over long times and give rise to small errors on average properties for moderately small time steps, while being straightforwardly parallelizable. We present in this article two new methods, both straightforwardly parallelizable, allowing to correctly preserve the total energy of the system. We illustrate the accuracy and performance of these new schemes both on equilibrium and nonequilibrium parallel simulations. PMID:26772559

  18. New parallelizable schemes for integrating the Dissipative Particle Dynamics with Energy conservation

    NASA Astrophysics Data System (ADS)

    Homman, Ahmed-Amine; Maillet, Jean-Bernard; Roussel, Julien; Stoltz, Gabriel

    2016-01-01

    This work presents new parallelizable numerical schemes for the integration of dissipative particle dynamics with energy conservation. So far, no numerical scheme introduced in the literature is able to correctly preserve the energy over long times and give rise to small errors on average properties for moderately small time steps, while being straightforwardly parallelizable. We present in this article two new methods, both straightforwardly parallelizable, allowing to correctly preserve the total energy of the system. We illustrate the accuracy and performance of these new schemes both on equilibrium and nonequilibrium parallel simulations.

  19. ACCURATE ORBITAL INTEGRATION OF THE GENERAL THREE-BODY PROBLEM BASED ON THE D'ALEMBERT-TYPE SCHEME

    SciTech Connect

    Minesaki, Yukitaka

    2013-03-15

    We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.

  20. Accurate Orbital Integration of the General Three-body Problem Based on the d'Alembert-type Scheme

    NASA Astrophysics Data System (ADS)

    Minesaki, Yukitaka

    2013-03-01

    We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.

  1. Aftermath: the implicit processes of integrating traumatic experience in the poetry of Siegfried Sassoon.

    PubMed

    Saks, Paul S

    2007-01-01

    The creation of narratives often allows individuals to bear witness to traumatic events. This study looked at connections between the processing of traumatic, affect laden experience and levels of symbolization and symmetry within the context of poetic expression. The sample for this pilot study is composed of selected works by Siegfried Sassoon (1886-1967), a British soldier-poet of the Great War. The language of the poems reflected the deepening trauma of the war experience by showing a progression toward paranoid (concrete)/symmetrical experiences. As the years passed and the poet was able to process the memory of the events, the poetry reflected a more balanced shift toward integration of depressive (symbolic)/asymmetrical experience. In terms of affect, the most significant changes were seen after Sassoon left the front and witnessed the flagrant dichotomy between civilian and military life. The results suggest a way in which traumatic events are processed. The routine horror and brutality of the Western Front initially lay outside of the realm of language and symbols and were thus highly concrete and unprocessed experiences. Time, place, and identity collapsed in on itself, leading to the increase of symmetrical experience, while the extreme "us versus them experience" of the trenches can be seen in the balance of asymmetrical experience. The study has implications for the treatment of war trauma, suggesting that writing provides a vehicle through which events can be processed and an internal sense of balance can be approached. PMID:18335612

  2. Comparison of Implicit Schemes to Solve Equations of Radiation Hydrodynamics with a Flux-limited Diffusion Approximation: Newton--Raphson, Operator Splitting, and Linearization

    NASA Astrophysics Data System (ADS)

    Tetsu, Hiroyuki; Nakamoto, Taishi

    2016-03-01

    Radiation is an important process of energy transport, a force, and a basis for synthetic observations, so radiation hydrodynamics (RHD) calculations have occupied an important place in astrophysics. However, although the progress in computational technology is remarkable, their high numerical cost is still a persistent problem. In this work, we compare the following schemes used to solve the nonlinear simultaneous equations of an RHD algorithm with the flux-limited diffusion approximation: the Newton-Raphson (NR) method, operator splitting, and linearization (LIN), from the perspective of the computational cost involved. For operator splitting, in addition to the traditional simple operator splitting (SOS) scheme, we examined the scheme developed by Douglas & Rachford (DROS). We solve three test problems (the thermal relaxation mode, the relaxation and the propagation of linear waves, and radiating shock) using these schemes and then compare their dependence on the time step size. As a result, we find the conditions of the time step size necessary for adopting each scheme. The LIN scheme is superior to other schemes if the ratio of radiation pressure to gas pressure is sufficiently low. On the other hand, DROS can be the most efficient scheme if the ratio is high. Although the NR scheme can be adopted independently of the regime, especially in a problem that involves optically thin regions, the convergence tends to be worse. In all cases, SOS is not practical.

  3. A comparison of two multi-variable integrator windup protection schemes

    NASA Technical Reports Server (NTRS)

    Mattern, Duane

    1993-01-01

    Two methods are examined for limit and integrator wind-up protection for multi-input, multi-output linear controllers subject to actuator constraints. The methods begin with an existing linear controller that satisfies the specifications for the nominal, small perturbation, linear model of the plant. The controllers are formulated to include an additional contribution to the state derivative calculations. The first method to be examined is the multi-variable version of the single-input, single-output, high gain, Conventional Anti-Windup (CAW) scheme. Except for the actuator limits, the CAW scheme is linear. The second scheme to be examined, denoted the Modified Anti-Windup (MAW) scheme, uses a scalar to modify the magnitude of the controller output vector while maintaining the vector direction. The calculation of the scalar modifier is a nonlinear function of the controller outputs and the actuator limits. In both cases the constrained actuator is tracked. These two integrator windup protection methods are demonstrated on a turbofan engine control system with five measurements, four control variables, and four actuators. The closed-loop responses of the two schemes are compared and contrasted during limit operation. The issue of maintaining the direction of the controller output vector using the Modified Anti-Windup scheme is discussed and the advantages and disadvantages of both of the IWP methods are presented.

  4. A secure and efficient password-based user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng

    2013-06-01

    The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.

  5. A secure and efficient password-based user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng

    2013-06-01

    The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks. PMID:23553734

  6. Recursive multiport schemes for implementing quantum algorithms with photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Tabia, Gelo Noel M.

    2016-01-01

    We present recursive multiport schemes for implementing quantum Fourier transforms and the inversion step in Grover's algorithm on an integrated linear optics device. In particular, each scheme shows how to execute a quantum operation on 2 d modes using a pair of circuits for the same operation on d modes. The circuits operate on path-encoded qudits and realize d -dimensional unitary transformations on these states using linear optical networks with O (d2) optical elements. To evaluate the schemes against realistic errors, we ran simulations of proof-of-principle experiments using a simple fabrication model of silicon-based photonic integrated devices that employ directional couplers and thermo-optic modulators for beam splitters and phase shifters, respectively. We find that high-fidelity performance is achievable with our multiport circuits for 2-qubit and 3-qubit quantum Fourier transforms, and for quantum search on four-item and eight-item databases.

  7. Building a better leapfrog. [an algorithm for ensuring time symmetry in any integration scheme

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Makino, Jun; Mcmillan, Steve

    1995-01-01

    In stellar dynamical computer simulations, as well as other types of simulations using particles, time step size is often held constant in order to guarantee a high degree of energy conservation. In many applications, allowing the time step size to change in time can offer a great saving in computational cost, but variable-size time steps usually imply a substantial degradation in energy conservation. We present a meta-algorithm' for choosing time steps in such a way as to guarantee time symmetry in any integration scheme, thus allowing vastly improved energy conservation for orbital calculations with variable time steps. We apply the algorithm to the familiar leapfrog scheme, and generalize to higher order integration schemes, showing how the stability properties of the fixed-step leapfrog scheme can be extended to higher order, variable-step integrators such as the Hermite method. We illustrate the remarkable properties of these time-symmetric integrators for the case of a highly eccentric elliptical Kepler orbit and discuss applications to more complex problems.

  8. Quantitative evaluation of numerical integration schemes for Lagrangian particle dispersion models

    NASA Astrophysics Data System (ADS)

    Ramli, Huda Mohd.; Esler, J. Gavin

    2016-07-01

    A rigorous methodology for the evaluation of integration schemes for Lagrangian particle dispersion models (LPDMs) is presented. A series of one-dimensional test problems are introduced, for which the Fokker-Planck equation is solved numerically using a finite-difference discretisation in physical space and a Hermite function expansion in velocity space. Numerical convergence errors in the Fokker-Planck equation solutions are shown to be much less than the statistical error associated with a practical-sized ensemble (N = 106) of LPDM solutions; hence, the former can be used to validate the latter. The test problems are then used to evaluate commonly used LPDM integration schemes. The results allow for optimal time-step selection for each scheme, given a required level of accuracy. The following recommendations are made for use in operational models. First, if computational constraints require the use of moderate to long time steps, it is more accurate to solve the random displacement model approximation to the LPDM rather than use existing schemes designed for long time steps. Second, useful gains in numerical accuracy can be obtained, at moderate additional computational cost, by using the relatively simple "small-noise" scheme of Honeycutt.

  9. Application of Intel Many Integrated Core (MIC) accelerators to the Pleim-Xiu land surface scheme

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2015-10-01

    The land-surface model (LSM) is one physics process in the weather research and forecast (WRF) model. The LSM includes atmospheric information from the surface layer scheme, radiative forcing from the radiation scheme, and precipitation forcing from the microphysics and convective schemes, together with internal information on the land's state variables and land-surface properties. The LSM is to provide heat and moisture fluxes over land points and sea-ice points. The Pleim-Xiu (PX) scheme is one LSM. The PX LSM features three pathways for moisture fluxes: evapotranspiration, soil evaporation, and evaporation from wet canopies. To accelerate the computation process of this scheme, we employ Intel Xeon Phi Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization of this scheme running on Xeon Phi coprocessor 7120P improves the performance by 2.3x and 11.7x as compared to the original code respectively running on one CPU socket (eight cores) and on one CPU core with Intel Xeon E5-2670.

  10. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Qin, Hong; Tang, William

    2012-10-01

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law. This work was supported by USDOE Contract DE-AC02-09CH11466.[4pt] [1] M. Desbrun, A. N. Hirani, M. Leok, and J. E. Marsden, (2005), arXiv:math/0508341

  11. A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation

    USGS Publications Warehouse

    Smith, Peter E.

    2006-01-01

    A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.

  12. A new computational scheme for the Dirac-Hartree-Fock method employing an efficient integral algorithm

    NASA Astrophysics Data System (ADS)

    Yanai, Takeshi; Nakajima, Takahito; Ishikawa, Yasuyuki; Hirao, Kimihiko

    2001-04-01

    A highly efficient computational scheme for four-component relativistic ab initio molecular orbital (MO) calculations over generally contracted spherical harmonic Gaussian-type spinors (GTSs) is presented. Benchmark calculations for the ground states of the group IB hydrides, MH, and dimers, M2 (M=Cu, Ag, and Au), by the Dirac-Hartree-Fock (DHF) method were performed with a new four-component relativistic ab initio MO program package oriented toward contracted GTSs. The relativistic electron repulsion integrals (ERIs), the major bottleneck in routine DHF calculations, are calculated efficiently employing the fast ERI routine SPHERICA, exploiting the general contraction scheme, and the accompanying coordinate expansion method developed by Ishida. Illustrative calculations clearly show the efficiency of our computational scheme.

  13. Implicit Occluders

    SciTech Connect

    Pesco, S; Lindstrom, P; Pascucci, V; Silva, C T

    2004-02-03

    In this paper we propose a novel visibility-culling technique for optimizing the computation and rendering of opaque isosurfaces. Given a continuous scalar field f (x) over a domain D and an isovalue w, our technique exploits the continuity of f to determine conservative visibility bounds implicitly, i.e., without the need for actually computing the isosurface f{sup -1}(w). We generate Implicit Occluders based on the change in sign of f *(x) = f (x)-w, from positive to negative (or vice versa) in the neighborhood of the isosurface. Consider, for example, the sign of f * along a ray r cast from the current viewpoint. The first change in sign of f * within D must contain an intersection of r with the isosurface. Any additional intersection of the isosurface with r is not visible. Implicit Occluders constitute a general concept that can be exploited algorithmically in different ways depending on the framework adopted for visibility computations. In this paper, we propose a simple from-point approach that exploits well-known hardware occlusion queries.

  14. A secure and robust password-based remote user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Das, Ashok Kumar

    2015-03-01

    An integrated EPR (Electronic Patient Record) information system of all the patients provides the medical institutions and the academia with most of the patients' information in details for them to make corrective decisions and clinical decisions in order to maintain and analyze patients' health. In such system, the illegal access must be restricted and the information from theft during transmission over the insecure Internet must be prevented. Lee et al. proposed an efficient password-based remote user authentication scheme using smart card for the integrated EPR information system. Their scheme is very efficient due to usage of one-way hash function and bitwise exclusive-or (XOR) operations. However, in this paper, we show that though their scheme is very efficient, their scheme has three security weaknesses such as (1) it has design flaws in password change phase, (2) it fails to protect privileged insider attack and (3) it lacks the formal security verification. We also find that another recently proposed Wen's scheme has the same security drawbacks as in Lee at al.'s scheme. In order to remedy these security weaknesses found in Lee et al.'s scheme and Wen's scheme, we propose a secure and efficient password-based remote user authentication scheme using smart cards for the integrated EPR information system. We show that our scheme is also efficient as compared to Lee et al.'s scheme and Wen's scheme as our scheme only uses one-way hash function and bitwise exclusive-or (XOR) operations. Through the security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks.

  15. A secure and robust password-based remote user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Das, Ashok Kumar

    2015-03-01

    An integrated EPR (Electronic Patient Record) information system of all the patients provides the medical institutions and the academia with most of the patients' information in details for them to make corrective decisions and clinical decisions in order to maintain and analyze patients' health. In such system, the illegal access must be restricted and the information from theft during transmission over the insecure Internet must be prevented. Lee et al. proposed an efficient password-based remote user authentication scheme using smart card for the integrated EPR information system. Their scheme is very efficient due to usage of one-way hash function and bitwise exclusive-or (XOR) operations. However, in this paper, we show that though their scheme is very efficient, their scheme has three security weaknesses such as (1) it has design flaws in password change phase, (2) it fails to protect privileged insider attack and (3) it lacks the formal security verification. We also find that another recently proposed Wen's scheme has the same security drawbacks as in Lee at al.'s scheme. In order to remedy these security weaknesses found in Lee et al.'s scheme and Wen's scheme, we propose a secure and efficient password-based remote user authentication scheme using smart cards for the integrated EPR information system. We show that our scheme is also efficient as compared to Lee et al.'s scheme and Wen's scheme as our scheme only uses one-way hash function and bitwise exclusive-or (XOR) operations. Through the security analysis, we show that our scheme is secure against possible known attacks. Furthermore, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool and show that our scheme is secure against passive and active attacks. PMID:25666924

  16. A prototype of mammography CADx scheme integrated to imaging quality evaluation techniques

    NASA Astrophysics Data System (ADS)

    Schiabel, Homero; Matheus, Bruno R. N.; Angelo, Michele F.; Patrocínio, Ana Claudia; Ventura, Liliane

    2011-03-01

    As all women over the age of 40 are recommended to perform mammographic exams every two years, the demands on radiologists to evaluate mammographic images in short periods of time has increased considerably. As a tool to improve quality and accelerate analysis CADe/Dx (computer-aided detection/diagnosis) schemes have been investigated, but very few complete CADe/Dx schemes have been developed and most are restricted to detection and not diagnosis. The existent ones usually are associated to specific mammographic equipment (usually DR), which makes them very expensive. So this paper describes a prototype of a complete mammography CADx scheme developed by our research group integrated to an imaging quality evaluation process. The basic structure consists of pre-processing modules based on image acquisition and digitization procedures (FFDM, CR or film + scanner), a segmentation tool to detect clustered microcalcifications and suspect masses and a classification scheme, which evaluates as the presence of microcalcifications clusters as well as possible malignant masses based on their contour. The aim is to provide enough information not only on the detected structures but also a pre-report with a BI-RADS classification. At this time the system is still lacking an interface integrating all the modules. Despite this, it is functional as a prototype for clinical practice testing, with results comparable to others reported in literature.

  17. Computational Analysis of Muscular Dystrophy Sub-types Using A Novel Integrative Scheme

    PubMed Central

    Wang, Chen; Ha, Sook; Wang, Yue; Hoffman, Eric

    2012-01-01

    To construct biologically interpretable gene sets for muscular dystrophy (MD) sub-type classification, we propose a novel computational scheme to integrate protein-protein interaction (PPI) network, functional gene set information, and mRNA profiling data. The workflow of the proposed scheme includes the following three major steps: firstly, we apply an affinity propagation clustering (APC) approach to identify gene sub-networks associated with each MD sub-type, in which a new distance metric is proposed for APC to combine PPI network information and gene-gene co-expression relationship; secondly, we further incorporate functional gene set knowledge, which complements the physical PPI information, into our scheme for biomarker identification; finally, based on the constructed sub-networks and gene set features, we apply multi-class support vector machines (MSVMs) for MD sub-type classification, with which to highlight the biomarkers contributing to sub-type prediction. The experimental results show that our scheme can help identify sub-networks and gene sets that are more relevant to MD than those constructed by other conventional approaches. Moreover, our integrative strategy improves the prediction accuracy substantially, especially for those ’hard-to-classify’ sub-types. PMID:22773895

  18. High-order sampling schemes for path integrals and Gaussian chain simulations of polymers

    SciTech Connect

    Müser, Martin H.; Müller, Marcus

    2015-05-07

    In this work, we demonstrate that path-integral schemes, derived in the context of many-body quantum systems, benefit the simulation of Gaussian chains representing polymers. Specifically, we show how to decrease discretization corrections with little extra computation from the usual O(1/P{sup 2}) to O(1/P{sup 4}), where P is the number of beads representing the chains. As a consequence, high-order integrators necessitate much smaller P than those commonly used. Particular emphasis is placed on the questions of how to maintain this rate of convergence for open polymers and for polymers confined by a hard wall as well as how to ensure efficient sampling. The advantages of the high-order sampling schemes are illustrated by studying the surface tension of a polymer melt and the interface tension in a binary homopolymers blend.

  19. A Hash Based Remote User Authentication and Authenticated Key Agreement Scheme for the Integrated EPR Information System.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi; Wang, Chun-Cheng

    2015-11-01

    To protect patient privacy and ensure authorized access to remote medical services, many remote user authentication schemes for the integrated electronic patient record (EPR) information system have been proposed in the literature. In a recent paper, Das proposed a hash based remote user authentication scheme using passwords and smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various passive and active attacks. However, in this paper, we found that Das's authentication scheme is still vulnerable to modification and user duplication attacks. Thereafter we propose a secure and efficient authentication scheme for the integrated EPR information system based on lightweight hash function and bitwise exclusive-or (XOR) operations. The security proof and performance analysis show our new scheme is well-suited to adoption in remote medical healthcare services.

  20. Development of highly accurate approximate scheme for computing the charge transfer integral.

    PubMed

    Pershin, Anton; Szalay, Péter G

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the "exact" scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the "exact" calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature. PMID:26298117

  1. Development of highly accurate approximate scheme for computing the charge transfer integral

    SciTech Connect

    Pershin, Anton; Szalay, Péter G.

    2015-08-21

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, it was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.

  2. Increasing the multiscale/multiphysics capability of CAM-SE using implicit time integration and GPU accelerators

    NASA Astrophysics Data System (ADS)

    Archibald, R.; Evans, K. J.; Worley, P.; Norman, M. R.; Lott, A.; Salinger, A.; Woodward, C. S.

    2014-12-01

    The recent focus on regional refinement in the Community Atmosphere Model (CAM5) has created a strong need to develop time-stepping methods capable of accelerating throughput on high performance computing for climate dynamics across multiple spatial and temporal scales. This research is focused on developing implicit methods that can be executed at scale on GPU based machines. Efforts to port the scalable spectral element dynamical core to incorporate these developments is presented, including both 2D and 3D benchmark test case results. The current implicit solver and preconditioner implementations utilize a Fortran interface package within the Trilinos project, third party software that allows fully tested, optimized, and robust code with a suite of parameter options to be included a priori. Merging this coding strategy with GPU libraries will be discussed along with beneficial optimization gains and data structure requirements to evaluate Trilinos binded residual calculations on GPU processors.

  3. Validation Study of the Integral-Differential Scheme for Multi-Block Grids

    NASA Astrophysics Data System (ADS)

    Mrema, Honest Frank

    This MS Thesis seeks to validate the accuracy of the Integral-Differential Scheme (IDS). In the attempts to accomplish this task, research efforts were focused on the scheme's ability to capture the physics of known flow fields, as well as the scheme's ability to predict the features of flow field quantities that may be derived from experimental measurements. The IDS was developed with the goal of being computationally efficient, from a programming perspective, as well as being numerically accurate, stable, and robust, from a mathematical perspective. The IDS is designed to solve the full Navier-Stokes equations in their integral forms. Unlike traditional control volume schemes, the IDS is built upon two sets of cells: spatial and temporal cells. For 2-D flows, the IDS considers an elementary control volume as a collection of four spatial cells and a single temporal cell. Similar to other explicit CFD schemes, the IDS relies on the use of the Taylor series expansion and other traditional CFD criteria. It is of interest to note that there are previous IDS validation studies which were conducted at North Carolina A&T State University. These past studies mainly focused on the qualitative aspects of the flow field physics. Furthermore, in all cases, they focused on flow field problems that can be represented by single-block grids. In this analysis, the validation studies are focused on multi-block grids in which the physics of the flow field is made complicated due to the presence of shock waves and flow separation zones. Of interest to this MS Thesis are two supersonic flow field problems that are supported by experimental data; namely, the supersonic flow over a rearward-facing step problem and the supersonic flow over a cavity problem. The validation studies conducted herein demonstrated that the IDS was able to predict the experimental data in both cases.

  4. A multi-dimensional nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell (PIC) algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacón, Luis; CoCoMans Team

    2014-10-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.

  5. An Implicit Characteristic Based Method for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.

  6. Comparison of Aircraft Models and Integration Schemes for Interval Management in the TRACON

    NASA Technical Reports Server (NTRS)

    Neogi, Natasha; Hagen, George E.; Herencia-Zapana, Heber

    2012-01-01

    Reusable models of common elements for communication, computation, decision and control in air traffic management are necessary in order to enable simulation, analysis and assurance of emergent properties, such as safety and stability, for a given operational concept. Uncertainties due to faults, such as dropped messages, along with non-linearities and sensor noise are an integral part of these models, and impact emergent system behavior. Flight control algorithms designed using a linearized version of the flight mechanics will exhibit error due to model uncertainty, and may not be stable outside a neighborhood of the given point of linearization. Moreover, the communication mechanism by which the sensed state of an aircraft is fed back to a flight control system (such as an ADS-B message) impacts the overall system behavior; both due to sensor noise as well as dropped messages (vacant samples). Additionally simulation of the flight controller system can exhibit further numerical instability, due to selection of the integration scheme and approximations made in the flight dynamics. We examine the theoretical and numerical stability of a speed controller under the Euler and Runge-Kutta schemes of integration, for the Maintain phase for a Mid-Term (2035-2045) Interval Management (IM) Operational Concept for descent and landing operations. We model uncertainties in communication due to missed ADS-B messages by vacant samples in the integration schemes, and compare the emergent behavior of the system, in terms of stability, via the boundedness of the final system state. Any bound on the errors incurred by these uncertainties will play an essential part in a composable assurance argument required for real-time, flight-deck guidance and control systems,. Thus, we believe that the creation of reusable models, which possess property guarantees, such as safety and stability, is an innovative and essential requirement to assessing the emergent properties of novel airspace

  7. Impacts of biasing schemes in the one-loop integrated perturbation theory

    NASA Astrophysics Data System (ADS)

    Matsubara, Takahiko; Desjacques, Vincent

    2016-06-01

    The impact of biasing schemes on the clustering of tracers of the large-scale structure is analytically studied in the weakly nonlinear regime. For this purpose, we use the one-loop approximation of the integrated perturbation theory together with the renormalized bias functions of various, physically motivated Lagrangian bias schemes. These include the halo, peaks, and excursion set peaks model, for which we derive useful formulas for the evaluation of their renormalized bias functions. The shapes of the power spectra and correlation functions are affected by the different bias models at the level of a few percent on weakly nonlinear scales. These effects are studied quantitatively both in real and redshift space. The amplitude of the scale-dependent bias in the presence of primordial non-Gaussianity also depends on the details of the bias models. If left unaccounted for, these theoretical uncertainties could affect the robustness of the cosmological constraints extracted from galaxy clustering data.

  8. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  9. Integration of current identity-based district-varied health insurance schemes in China: implications and challenges.

    PubMed

    Wang, Hai-Qiang; Liu, Zhi-Heng; Zhang, Yong-Zhao; Luo, Zhuo-Jing

    2012-03-01

    With China's great efforts to improve public health insurance, clear progress has been achieved toward the ambitious full health insurance coverage strategy for all. The current health insurance schemes in China fall into three categories: urban employee basic health insurance scheme, urban resident scheme, and new rural cooperative medical system. Despite their phasic success, these substantially identity-based, district-varied health insurance schemes have separate operation mechanisms, various administrative institutions, and consequently poor connections. On the other hand, the establishment and implementation of various health insurance schemes provide the preconditioning of more sophisticated social health insurance schemes, the increase in the income of urban and rural people, and the great importance attached by the government. Moreover, the reform of the "Hukou" (household register) system provides economical, official, and institutional bases. Therefore, the establishment of an urban-rural integrated, citizen-based, and nationwide-universal health insurance scheme by the government is critically important to attain equality and national connection. Accordingly, the differences between urban and rural areas should be minimized. In addition, the current schemes, administrative institutions, and networks should be integrated and interconnected. Moreover, more expenditure on health insurance might be essential for the integration despite the settings of global financial crisis. Regardless of the possible challenges in implementation, the proposed new scheme is promising and may be applied in the near future for the benefit of the Chinese people and global health.

  10. Development of an integrated computerized scheme for metaphase chromosome image analysis: a robustness experiment

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J.; Wood, Marc C.; Yuan, Chaowei; Chen, Wei; Liu, Hong

    2008-02-01

    Our integrated computer-aided detection (CAD) scheme includes three basic modules. The first module detects whether a microscopic digital image depicts a metaphase chromosome cell. If a cell is detected, the scheme will justify whether it is analyzable with a decision tree. Once an analyzable cell is detected, the second module is applied to segment individual chromosomes and to compute two important features. Specifically, the scheme utilizes a modified thinning algorithm to identify the medial axis of a chromosome. By tracking perpendicular lines along the medial axis, the scheme computes four feature profiles, identifies centromeres, and assigns polarities of chromosomes based on a set of pre-optimized rules. The third module is followed to classify chromosomes into 24 types. In this module, each chromosome is initially represented by a vector of 31 features. A two-layer classifier with 8 artificial neural networks (ANN) is optimized by a genetic algorithm. A testing chromosome is first classified into one of the seven groups by the ANN in the first layer. Another ANN is then automatically selected from the seven ANNs in the second layer (one for each group) to further classify this chromosome into one of 24 types. To test the performance and robustness of this CAD scheme, we randomly selected and assembled an independent testing dataset. The dataset contains 100 microscopic digital images including 50 analyzable and 50 un-analyzable metphase cells identified by the experts. The centromere location, the corresponding polarity, and karyotype for each individual chromosome were recorded in the "truth" file. The performance of the CAD scheme applied to this image dataset is analyzed and compared with the results in the true file. The assessment accuracies are 93% for the first module, 90.8% for centromere identification and 93.2% for polarity assignment in the second module, over 96% for six chromosome groups and 81.8% for one group in the third module

  11. Comparing numerical integration schemes for time-continuous car-following models

    NASA Astrophysics Data System (ADS)

    Treiber, Martin; Kanagaraj, Venkatesan

    2015-02-01

    When simulating trajectories by integrating time-continuous car-following models, standard integration schemes such as the fourth-order Runge-Kutta method (RK4) are rarely used while the simple Euler method is popular among researchers. We compare four explicit methods both analytically and numerically: Euler's method, ballistic update, Heun's method (trapezoidal rule), and the standard RK4. As performance metrics, we plot the global discretization error as a function of the numerical complexity. We tested the methods on several time-continuous car-following models in several multi-vehicle simulation scenarios with and without discontinuities such as stops or a discontinuous behavior of an external leader. We find that the theoretical advantage of RK4 (consistency order 4) only plays a role if both the acceleration function of the model and the trajectory of the leader are sufficiently often differentiable. Otherwise, we obtain lower (and often fractional) consistency orders. Although, to our knowledge, Heun's method has never been used for integrating car-following models, it turns out to be the best scheme for many practical situations. The ballistic update always prevails over Euler's method although both are of first order.

  12. Integration of Full Particle Orbit in Toroidal Plasmas Using Boris Scheme

    NASA Astrophysics Data System (ADS)

    Wei, Xishuo; Xiao, Yong

    2014-10-01

    When studying particle dynamics in high frequency electromagnetic waves, such as low hybrid wave heating, it is important to integrate full particle orbit accurately to very long time in tokamaks. Here we derived a formulation under magnetic coordinate based on the Boris Scheme, which can be used effectively to push particles in long time scale. After several hundred gyro-periods, the banana orbit can be observed and the toroidal precession frequency can be measured. The toroidal precession frequency is found to match that from the guiding center simulation. This new method shows superior numeric properties than the traditional Runge-Kutta method in terms of conserving particle energy and magnetic moment.

  13. Integrating cavity based gas cells: a multibeam compensation scheme for pathlength variation.

    PubMed

    Bergin, S; Hodgkinson, J; Francis, D; Tatam, R P

    2016-06-13

    We present a four beam ratiometric setup for an integrating sphere based gas cell, which can correct for changes in pathlength due to sphere wall contamination. This allows for the gas absorption coefficient to be determined continuously without needing to recalibrate the setup. We demonstrate the technique experimentally, measuring methane gas at 1651nm. For example, contamination covering 1.2% of the sphere wall resulted in an uncompensated error in gas absorption coefficient of ≈41%. With the ratiometric scheme, this error was reduced to ≈2%. Potential limitations of the technique, due to subsequent deviations from mathematical assumptions are discussed, including severe sphere window contamination. PMID:27410380

  14. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    SciTech Connect

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Manikant,; Soman, Rohith

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.

  15. Integrating Western medicine and Traditional Chinese medicine in GP surgeries and the community: a review of the two pilot schemes.

    PubMed

    Au, S; Hiew, S

    2002-12-01

    The popularity of complementary medicine has been relentless over the past decade. Among the most popular are Traditional Chinese Medicine (TCM) which has a long and unbroken history. This article reports on two integrated health care pilot schemes where TCM and Western medicine are merged, to varying degrees, for the benefits of patients. One of the schemes focuses on general medicine whilst the other focuses on mental health. The authors conclude that the integrated schemes have many advantages and, on the whole, are beneficial for patients. The issues involved and learning points are discussed.

  16. Improved Performances in Subsonic Flows of an SPH Scheme with Gradients Estimated Using an Integral Approach

    NASA Astrophysics Data System (ADS)

    Valdarnini, R.

    2016-11-01

    In this paper, we present results from a series of hydrodynamical tests aimed at validating the performance of a smoothed particle hydrodynamics (SPH) formulation in which gradients are derived from an integral approach. We specifically investigate the code behavior with subsonic flows, where it is well known that zeroth-order inconsistencies present in standard SPH make it particularly problematic to correctly model the fluid dynamics. In particular, we consider the Gresho–Chan vortex problem, the growth of Kelvin–Helmholtz instabilities, the statistics of driven subsonic turbulence and the cold Keplerian disk problem. We compare simulation results for the different tests with those obtained, for the same initial conditions, using standard SPH. We also compare the results with the corresponding ones obtained previously with other numerical methods, such as codes based on a moving-mesh scheme or Godunov-type Lagrangian meshless methods. We quantify code performances by introducing error norms and spectral properties of the particle distribution, in a way similar to what was done in other works. We find that the new SPH formulation exhibits strongly reduced gradient errors and outperforms standard SPH in all of the tests considered. In fact, in terms of accuracy, we find good agreement between the simulation results of the new scheme and those produced using other recently proposed numerical schemes. These findings suggest that the proposed method can be successfully applied for many astrophysical problems in which the presence of subsonic flows previously limited the use of SPH, with the new scheme now being competitive in these regimes with other numerical methods.

  17. New parametric scheme of the resonance integrals at the INDO/1 approximation

    NASA Astrophysics Data System (ADS)

    da Motta Neto, Joaquim Delphino

    1997-11-01

    This thesis consists of two parts. In the first part, we examined the self-consistent equations of the Roothaan- Hall method from the point of view of the Pople- Beveridge-Dobosh (INDO) and Dewar (AM1) approximations. Then we suggest a new parametrization for the resonance integrals within the semiempirical INDO/1 Hamiltonian. This new parametrization scheme uses a modification of the Wolfsberg-Helmholz equation and is based on the Linderberg-Seamans-Zerner-Parr treatment of the resonance integrals. In the second part, chapters III through VII, we propose a new set of atomic parameters and analyze the results for a number of different systems, showing that the new method improves on the performance of previous methods both in geometries and spectroscopy.

  18. Integration of rural and urban healthcare insurance schemes in China: an empirical research

    PubMed Central

    2014-01-01

    Background Despite the broad coverage of the healthcare insurance system in China, the imbalances in fairness, accessibility and affordability of healthcare services have hindered the universal healthcare progress. To provide better financial protection for the Chinese population, China’s new medical reform was proposed to link up urban employee basic medical insurance scheme (UEBMI), urban resident basic medical insurance scheme (URBMI), new rural cooperative medical system (NRCMS) and urban and rural medical assistance programs. In this paper, we focused on people’s expected healthcare insurance model and their willingness towards healthcare insurance integration, and we made a couple of relative policy suggestions. Methods A questionnaire survey was conducted in four cities in China. A total of 1178 effective questionnaires were retrieved. Statistical analysis was conducted with SPSS and Excel. Chi-square test and logistic regression model were applied. Results and discussion The payment intention and reimbursement expectation of the three groups varied with NRCMS participants the lowest and UEBMI participants the highest. In economic developed areas, rural residents had equal or even stronger payment ability than urban residents, and the overall payment intention showed a scattered trend; while in less developed areas, urban residents had a stronger payment ability than rural residents and a more concentrated payment intention was observed. The majority of participants favored the integration, with NRCMS enrollees up to 80.5%. In the logistic regression model, we found that participants from less developed areas were more likely to oppose the integration, which we conceived was mainly due to their dissatisfaction with their local healthcare insurance schemes. Also the participants with better education background tended to oppose the integration, which might be due to their fear of benefit impairment and their concern about the challenges ahead. Conclusion

  19. Designing Adaptive Low-Dissipative High Order Schemes for Long-Time Integrations. Chapter 1

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sjoegreen, B.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    A general framework for the design of adaptive low-dissipative high order schemes is presented. It encompasses a rather complete treatment of the numerical approach based on four integrated design criteria: (1) For stability considerations, condition the governing equations before the application of the appropriate numerical scheme whenever it is possible; (2) For consistency, compatible schemes that possess stability properties, including physical and numerical boundary condition treatments, similar to those of the discrete analogue of the continuum are preferred; (3) For the minimization of numerical dissipation contamination, efficient and adaptive numerical dissipation control to further improve nonlinear stability and accuracy should be used; and (4) For practical considerations, the numerical approach should be efficient and applicable to general geometries, and an efficient and reliable dynamic grid adaptation should be used if necessary. These design criteria are, in general, very useful to a wide spectrum of flow simulations. However, the demand on the overall numerical approach for nonlinear stability and accuracy is much more stringent for long-time integration of complex multiscale viscous shock/shear/turbulence/acoustics interactions and numerical combustion. Robust classical numerical methods for less complex flow physics are not suitable or practical for such applications. The present approach is designed expressly to address such flow problems, especially unsteady flows. The minimization of employing very fine grids to overcome the production of spurious numerical solutions and/or instability due to under-resolved grids is also sought. The incremental studies to illustrate the performance of the approach are summarized. Extensive testing and full implementation of the approach is forthcoming. The results shown so far are very encouraging.

  20. Challenges and mitigation strategies for resist trim etch in resist-mandrel based SAQP integration scheme

    NASA Astrophysics Data System (ADS)

    Mohanty, Nihar; Franke, Elliott; Liu, Eric; Raley, Angelique; Smith, Jeffrey; Farrell, Richard; Wang, Mingmei; Ito, Kiyohito; Das, Sanjana; Ko, Akiteru; Kumar, Kaushik; Ranjan, Alok; O'Meara, David; Nawa, Kenjiro; Scheer, Steven; DeVillers, Anton; Biolsi, Peter

    2015-03-01

    Patterning the desired narrow pitch at 10nm technology node and beyond, necessitates employment of either extreme ultra violet (EUV) lithography or multi-patterning solutions based on 193nm-immersion lithography. With enormous challenges being faced in getting EUV lithography ready for production, multi-patterning solutions that leverage the already installed base of 193nm-immersion-lithography are poised to become the industry norm for 10 and 7nm technology nodes. For patterning sub-40nm pitch line/space features, self-aligned quadruple patterning (SAQP) with resist pattern as the first mandrel shows significant cost as well as design benefit, as compared to EUV lithography or other multi-patterning techniques. One of the most critical steps in this patterning scheme is the resist mandrel definition step which involves trimming / reformation of resist profile via plasma etch for achieving appropriate pitch after the final pattern. Being the first mandrel, the requirements for the Line Edge Roughness (LER) / Line Width Roughness (LWR); critical dimension uniformity (CDU); and profile in 3-dimensions for the resist trim / reformation etch is extremely aggressive. In this paper we highlight the unique challenges associated in developing resist trim / reformation plasma etch process for SAQP integration scheme and summarize our efforts in optimizing the trim etch chemistries, process steps and plasma etch parameters for meeting the mandrel definition targets. Finally, we have shown successful patterning of 30nm pitch patterns via the resist-mandrel SAQP scheme and its implementation for Si-fin formation at 7nm node.

  1. An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System

    SciTech Connect

    Su, Gui-Jia; Tang, Lixin; Ayers, Curtis William; Wiles, Randy H

    2013-01-01

    The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous work that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.

  2. Numerical simulation of Stokes flow around particles via a hybrid Finite Difference-Boundary Integral scheme

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Amitabh

    2013-11-01

    An efficient algorithm for simulating Stokes flow around particles is presented here, in which a second order Finite Difference method (FDM) is coupled to a Boundary Integral method (BIM). This method utilizes the strong points of FDM (i.e. localized stencil) and BIM (i.e. accurate representation of particle surface). Specifically, in each iteration, the flow field away from the particles is solved on a Cartesian FDM grid, while the traction on the particle surface (given the the velocity of the particle) is solved using BIM. The two schemes are coupled by matching the solution in an intermediate region between the particle and surrounding fluid. We validate this method by solving for flow around an array of cylinders, and find good agreement with Hasimoto's (J. Fluid Mech. 1959) analytical results.

  3. Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes

    NASA Astrophysics Data System (ADS)

    Pérez, Alejandro; Tuckerman, Mark E.

    2011-08-01

    Higher order factorization schemes are developed for path integral molecular dynamics in order to improve the convergence of estimators for physical observables as a function of the Trotter number. The methods are based on the Takahashi-Imada and Susuki decompositions of the Boltzmann operator. The methods introduced improve the averages of the estimators by using the classical forces needed to carry out the dynamics to construct a posteriori weighting factors for standard path integral molecular dynamics. The new approaches are straightforward to implement in existing path integral codes and carry no significant overhead. The Suzuki higher order factorization was also used to improve the end-to-end distance estimator in open path integral molecular dynamics. The new schemes are tested in various model systems, including an ab initio path integral molecular dynamics calculation on the hydrogen molecule and a quantum water model. The proposed algorithms have potential utility for reducing the cost of path integral molecular dynamics calculations of bulk systems.

  4. A variational implementation of the implicit particle filter for the shallow water equations

    NASA Astrophysics Data System (ADS)

    Souopgui, I.; Morzfeld, M.; Hussaini, M.; Chorin, A. J.

    2013-12-01

    The estimation of initial conditions for shallow water equations is a well known test problem for operational data assimilation techniques. The state-of-the-art approach to this problem is the variational method (4D-Var), i.e. the computation of the mode of the posterior probability density function (pdf) via the adjoint technique. We add a sampling step to the variational method, thus turning a computation of the conditional mode (a biased estimator) into a computation of the conditional mean (the minimum least square error estimator). Our implementation relies on implicit sampling, which is a Monte Carlo (MC) sampling scheme. The idea in implicit sampling is to first search for the high-probability region of the posterior pdf and then to find samples in this region. Because the samples are concentrated in the high-probability region, fewer samples are required than with competing MC schemes and, thus, implicit sampling can be more efficient than other MC schemes. The search for the high-probability region can be done via a numerical minimization that is very similar to the minimization in 4D-Var. Here, we use existing 4D-Var code to implement the implicit sampling scheme. Once the minimization problem is solved, we obtain samples by solving algebraic equations with a random right-hand-side. These equations can be solved efficiently, so that the additional cost of our approach, compared to 4D-Var, is small. We present numerical experiments to demonstrate the applicability and efficiency of our approach. These numerical experiments mimic physical experiments done with the CORIOLIS turntable in Grenoble (France), which are used to study the drift of a vortex. In particular we consider shallow water equations on a square domain (2.5m x 2.5m) with open boundary conditions and discretize the equations with finite differences on a staggered grid of size 256 x 256 and a fourth order Runge-Kutta time integrator. Our goal is to estimate the initial state (velocities and

  5. Low-k/copper integration scheme suitable for ULSI manufacturing from 90nm to 45nm nodes

    NASA Astrophysics Data System (ADS)

    Nogami, T.; Lane, S.; Fukasawa, M.; Ida, K.; Angyal, M.; Chanda, K.; Chen, F.; Christiansen, C.; Cohen, S.; Cullinan, M.; Dziobkowski, C.; Fitzsimmons, J.; Flaitz, P.; Grill, A.; Gill, J.; Inoue, K.; Klymko, N.; Kumar, K.; Labelle, C.; Lane, M.; Li, B.; Liniger, E.; Madon, A.; Malone, K.; Martin, J.; McGahay, V.; McLaughlin, P.; Melville, I.; Minami, M.; Molis, S.; Nguyen, S.; Penny, C.; Restaino, D.; Sakamoto, A.; Sankar, M.; Sherwood, M.; Simonyi, E.; Shimooka, Y.; Tai, L.; Widodo, J.; Wildman, H.; Ono, M.; McHerron, D.; Nye, H.; Davis, C.; Sankaran, S.; Edelstein, D.; Ivers, T.

    2005-11-01

    This paper discusses low-k/copper integration schemes which has been in production in the 90 nm node, have been developed in the 65 nm node, and should be taken in the 45 nm node. While our baseline 65 nm BEOL process has been developed by extension and simple shrinkage of our PECVD SiCOH integration which has been in production in the 90 nm node with our SiCOH film having k=3.0, the 65 nm SiCOH integration has two other options to go to extend to lower capacitance. One is to add porosity to become ultra low-k (ULK). The other is to stay with low-k SiCOH, which is modified to have a "lower-k". The effective k- value attained with the lower-k (k=2.8) SiCOH processed in the "Direct CMP" scheme is very close to that with an ULK (k=2.5) SiCOH film built with the "Hard Mask Retention" scheme. This paper first describes consideration of these two damascene schemes, whose comparison leads to the conclusion that the lower-k SiCOH integration can have more advantages in terms of process simplicity and extendibility of our 90 nm scheme under certain assumptions. Then describing the k=2.8 SiCOH film development and its successful integration, damascene schemes for 45nm nodes are discussed based on our learning from development of the lower-k 65nm scheme. Capability of modern dry etchers to define the finer patterns, non-uniformity of CMP, and susceptibility to plasma and mechanical strength and adhesion of ULK are discussed as factors to hamper the applicability of ULK.

  6. Development and evaluation of a building energy model integrated in the TEB scheme

    NASA Astrophysics Data System (ADS)

    Bueno, B.; Pigeon, G.; Norford, L. K.; Zibouche, K.; Marchadier, C.

    2012-03-01

    The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Balance (TEB) scheme must be improved. This paper presents a new building energy model (BEM) that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km) with a resolution of a neighbourhood (~100 m). The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. BEM allows for previously unavailable sophistication in the modelling of air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.

  7. Development and evaluation of a building energy model integrated in the TEB scheme

    NASA Astrophysics Data System (ADS)

    Bueno, B.; Pigeon, G.; Norford, L. K.; Zibouche, K.

    2011-11-01

    The use of air-conditioning systems is expected to increase as a consequence of global-scale and urban-scale climate warming. In order to represent future scenarios of urban climate and building energy consumption, the Town Energy Budget (TEB) scheme must be improved. This paper presents a new building energy model (BEM) that has been integrated in the TEB scheme. BEM-TEB makes it possible to represent the energy effects of buildings and building systems on the urban climate and to estimate the building energy consumption at city scale (~10 km) with a resolution of a neighbourhood (~100 m). The physical and geometric definition of buildings in BEM has been intentionally kept as simple as possible, while maintaining the required features of a comprehensive building energy model. The model considers a single thermal zone, where the thermal inertia of building materials associated with multiple levels is represented by a generic thermal mass. The model accounts for heat gains due to transmitted solar radiation, heat conduction through the enclosure, infiltration, ventilation, and internal heat gains. As a difference with respect to other building parameterizations used in urban climate, BEM includes specific models for real air-conditioning systems. It accounts for the dependence of the system capacity and efficiency on indoor and outdoor air temperatures and solves the dehumidification of the air passing through the system. Furthermore, BEM includes specific models for passive systems, such as window shadowing devices and natural ventilation. BEM has satisfactorily passed different evaluation processes, including testing its modelling assumptions, verifying that the chosen equations are solved correctly, and validating the model with field data.

  8. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    PubMed

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function.

  9. A whole-path importance-sampling scheme for Feynman path integral calculations of absolute partition functions and free energies.

    PubMed

    Mielke, Steven L; Truhlar, Donald G

    2016-01-21

    Using Feynman path integrals, a molecular partition function can be written as a double integral with the inner integral involving all closed paths centered at a given molecular configuration, and the outer integral involving all possible molecular configurations. In previous work employing Monte Carlo methods to evaluate such partition functions, we presented schemes for importance sampling and stratification in the molecular configurations that constitute the path centroids, but we relied on free-particle paths for sampling the path integrals. At low temperatures, the path sampling is expensive because the paths can travel far from the centroid configuration. We now present a scheme for importance sampling of whole Feynman paths based on harmonic information from an instantaneous normal mode calculation at the centroid configuration, which we refer to as harmonically guided whole-path importance sampling (WPIS). We obtain paths conforming to our chosen importance function by rejection sampling from a distribution of free-particle paths. Sample calculations on CH4 demonstrate that at a temperature of 200 K, about 99.9% of the free-particle paths can be rejected without integration, and at 300 K, about 98% can be rejected. We also show that it is typically possible to reduce the overhead associated with the WPIS scheme by sampling the paths using a significantly lower-order path discretization than that which is needed to converge the partition function. PMID:26801023

  10. Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

    NASA Astrophysics Data System (ADS)

    Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard

    2016-04-01

    Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii

  11. Security Analysis and Improvement of ‘a More Secure Anonymous User Authentication Scheme for the Integrated EPR Information System’

    PubMed Central

    Islam, SK Hafizul; Khan, Muhammad Khurram; Li, Xiong

    2015-01-01

    Over the past few years, secure and privacy-preserving user authentication scheme has become an integral part of the applications of the healthcare systems. Recently, Wen has designed an improved user authentication system over the Lee et al.’s scheme for integrated electronic patient record (EPR) information system, which has been analyzed in this study. We have found that Wen’s scheme still has the following inefficiencies: (1) the correctness of identity and password are not verified during the login and password change phases; (2) it is vulnerable to impersonation attack and privileged-insider attack; (3) it is designed without the revocation of lost/stolen smart card; (4) the explicit key confirmation and the no key control properties are absent, and (5) user cannot update his/her password without the help of server and secure channel. Then we aimed to propose an enhanced two-factor user authentication system based on the intractable assumption of the quadratic residue problem (QRP) in the multiplicative group. Our scheme bears more securities and functionalities than other schemes found in the literature. PMID:26263401

  12. Security Analysis and Improvement of 'a More Secure Anonymous User Authentication Scheme for the Integrated EPR Information System'.

    PubMed

    Islam, S K Hafizul; Khan, Muhammad Khurram; Li, Xiong

    2015-01-01

    Over the past few years, secure and privacy-preserving user authentication scheme has become an integral part of the applications of the healthcare systems. Recently, Wen has designed an improved user authentication system over the Lee et al.'s scheme for integrated electronic patient record (EPR) information system, which has been analyzed in this study. We have found that Wen's scheme still has the following inefficiencies: (1) the correctness of identity and password are not verified during the login and password change phases; (2) it is vulnerable to impersonation attack and privileged-insider attack; (3) it is designed without the revocation of lost/stolen smart card; (4) the explicit key confirmation and the no key control properties are absent, and (5) user cannot update his/her password without the help of server and secure channel. Then we aimed to propose an enhanced two-factor user authentication system based on the intractable assumption of the quadratic residue problem (QRP) in the multiplicative group. Our scheme bears more securities and functionalities than other schemes found in the literature. PMID:26263401

  13. Implicit Incompressible SPH.

    PubMed

    Ihmsen, Markus; Cornelis, Jens; Solenthaler, Barbara; Horvath, Christopher; Teschner, Matthias

    2013-07-25

    We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01% can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.

  14. Implicit incompressible SPH.

    PubMed

    Ihmsen, Markus; Cornelis, Jens; Solenthaler, Barbara; Horvath, Christopher; Teschner, Matthias

    2014-03-01

    We propose a novel formulation of the projection method for Smoothed Particle Hydrodynamics (SPH). We combine a symmetric SPH pressure force and an SPH discretization of the continuity equation to obtain a discretized form of the pressure Poisson equation (PPE). In contrast to previous projection schemes, our system does consider the actual computation of the pressure force. This incorporation improves the convergence rate of the solver. Furthermore, we propose to compute the density deviation based on velocities instead of positions as this formulation improves the robustness of the time-integration scheme. We show that our novel formulation outperforms previous projection schemes and state-of-the-art SPH methods. Large time steps and small density deviations of down to 0.01 percent can be handled in typical scenarios. The practical relevance of the approach is illustrated by scenarios with up to 40 million SPH particles.

  15. Community-based health insurance programmes and the national health insurance scheme of Nigeria: challenges to uptake and integration

    PubMed Central

    2014-01-01

    Background Nigeria has included a regulated community-based health insurance (CBHI) model within its National Health Insurance Scheme (NHIS). Uptake to date has been disappointing, however. The aim of this study is to review the present status of CBHI in SSA in general to highlight the issues that affect its successful integration within the NHIS of Nigeria and more widely in developing countries. Methods A literature survey using PubMed and EconLit was carried out to identify and review studies that report factors affecting implementation of CBHI in SSA with a focus on Nigeria. Results CBHI schemes with a variety of designs have been introduced across SSA but with generally disappointing results so far. Two exceptions are Ghana and Rwanda, both of which have introduced schemes with effective government control and support coupled with intensive implementation programmes. Poor support for CBHI is repeatedly linked elsewhere with failure to engage and account for the ‘real world’ needs of beneficiaries, lack of clear legislative and regulatory frameworks, inadequate financial support, and unrealistic enrolment requirements. Nigeria’s CBHI-type schemes for the informal sectors of its NHIS have been set up under an appropriate legislative framework, but work is needed to eliminate regressive financing, to involve scheme members in the setting up and management of programmes, to inform and educate more effectively, to eliminate lack of confidence in the schemes, and to address inequity in provision. Targeted subsidies should also be considered. Conclusions Disappointing uptake of CBHI-type NHIS elements in Nigeria can be addressed through closer integration of informal and formal programmes under the NHIS umbrella, with increasing involvement of beneficiaries in scheme design and management, improved communication and education, and targeted financial assistance. PMID:24559409

  16. Implicit and Multigrid Method for Ideal Multigrid Convergence: Direct Numerical Simulation of Separated Flow Around NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Chao-Qun; Shan, H.; Jiang, L.

    1999-01-01

    Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.

  17. Altered Implicit Category Learning in Anorexia Nervosa

    PubMed Central

    Shott, Megan E.; Filoteo, J. Vincent; Jappe, Leah M.; Pryor, Tamara; Maddox, W. Todd; Rollin, Michael D.H.; Hagman, Jennifer O.; Frank, Guido K.W.

    2012-01-01

    Objective Recent research has identified specific cognitive deficits in patients with anorexia nervosa (AN), including impairment in executive functioning and attention. Another such cognitive process, implicit category learning has been less studied in AN. This study examined whether implicit category learning is impaired in AN. Method Twenty-one women diagnosed with AN and 19 control women (CW) were administered an implicit category learning task in which they were asked to categorize simple perceptual stimuli (Gabor patches) into one of two categories. Category membership was based on a linear integration (i.e., an implicit task) of two stimulus dimensions (orientation and spatial frequency of the stimulus). Results AN individuals were less accurate on implicit category learning relative to age-matched CW. Model-based analyses indicated that, even when AN individuals used the appropriate (i.e., implicit) strategy they were still impaired relative to CW who also used the same strategy. In addition, task performance in AN patients was worse the higher they were in self-reported novelty seeking and the lower they were in sensitivity to punishment. Conclusions These results indicate that AN patients have implicit category learning deficits, and given this type of learning is thought to be mediated by striatal dopamine pathways, AN patients may have deficits in these neural systems. The finding of significant correlations with novelty seeking and sensitivity to punishment suggests that feedback sensitivity is related to implicit learning in AN. PMID:22201300

  18. Unconditionally stable time marching scheme for Reynolds stress models

    NASA Astrophysics Data System (ADS)

    Mor-Yossef, Y.

    2014-11-01

    Progress toward a stable and efficient numerical treatment for the compressible Favre-Reynolds-averaged Navier-Stokes equations with a Reynolds-stress model (RSM) is presented. The mean-flow and the Reynolds stress model equations are discretized using finite differences on a curvilinear coordinates mesh. The convective flux is approximated by a third-order upwind biased MUSCL scheme. The diffusive flux is approximated using second-order central differencing, based on a full-viscous stencil. The novel time-marching approach relies on decoupled, implicit time integration, that is, the five mean-flow equations are solved separately from the seven Reynolds-stress closure equations. The key idea is the use of the unconditionally positive-convergent implicit scheme (UPC), originally developed for two-equation turbulence models. The extension of the UPC scheme for RSM guarantees the positivity of the normal Reynolds-stress components and the turbulence (specific) dissipation rate for any time step. Thanks to the UPC matrix-free structure and the decoupled approach, the resulting computational scheme is very efficient. Special care is dedicated to maintain the implicit operator compact, involving only nearest neighbor grid points, while fully supporting the larger discretized residual stencil. Results obtained from two- and three-dimensional numerical simulations demonstrate the significant progress achieved in this work toward optimally convergent solution of Reynolds stress models. Furthermore, the scheme is shown to be unconditionally stable and positive.

  19. Multiscale Modeling of Upper Mantle Plasticity: Integrating Experimental and Theoretical data into Mean-field Schemes

    NASA Astrophysics Data System (ADS)

    Raterron, P.; Castelnau, O.; Detrez, F.; Bollinger, C.; Cordier, P.; Fraysse, G.; Merkel, S.

    2013-12-01

    Quantifying peridotite plastic properties has been a major quest for experimental mineralogy, with direct implications for upper-mantle seismology and geodynamics. It raises, however, serious difficulties such as understanding the complex mechanisms involved within grains and at grain boundaries in multiphase aggregates deforming at high temperature (T), quantifying the effects of extreme pressures (P) on these mechanisms, and addressing stress and strain scaling issues between laboratory experiments and natural deformations. In order to address some of these issues, we developed a multiscale approach which integrates experimental deformation and diffusion data, together with first-principle calculations and theoretical considerations on mineral lattice friction (Peierls stress), within a viscoplastic self-consistent (VPSC) model for peridotite aggregates. We will present an application of a recently improved second-order (SO) VPSC scheme (e.g., Ponte Castañeda, 2002, J. Mech. Phys. Solids, 50, 737) to an olivine rich + pyroxenes aggregate deformed at geological strain rate along an oceanic geotherm. Beside mineral dislocation slip systems, the SO-model extension accounts for an isotropic relaxation mechanism representing ';diffusion-related' creep in olivine. Slip-system critical resolved shear stresses (CRSS) are evaluated - as functions of P, T, oxygen fugacity and strain rate - from previously reported (e.g., Raterron et al., 2012, PEPI, 200-201, 105) and new experimental data (see Fraysse et al., this session), or from theoretical Peierls stress computations (e.g., Metsue et al, 2010, PCM, 37, 711). The isotropic-mechanism dependence on T and P matches that of Si self-diffusion in olivine, while its relative activity with respect to that of dislocations is constrained by reported data. The model accounts for olivine and pyroxenes known lattice preferred orientations (LPO), as well as for observed sensitivities of aggregate strength to the volume fraction of

  20. Canopy reflectance, photosynthesis, and transpiration. III - A reanalysis using improved leaf models and a new canopy integration scheme

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Berry, J. A.; Collatz, G. J.; Field, C. B.; Hall, F. G.

    1992-01-01

    The theoretical analyses of Sellers (1985, 1987), which linked canopy spectral reflectance properties to (unstressed) photosynthetic rates and conductances, are critically reviewed and significant shortcomings are identified. These are addressed in this article principally through the incorporation of a more sophisticated and realistic treatment of leaf physiological processes within a new canopy integration scheme. The results indicate that area-averaged spectral vegetation indices, as obtained from coarse resolution satellite sensors, may give good estimates of the area-integrals of photosynthesis and conductance even for spatially heterogenous (though physiologically uniform) vegetation covers.

  1. Awareness of implicit attitudes.

    PubMed

    Hahn, Adam; Judd, Charles M; Hirsh, Holen K; Blair, Irene V

    2014-06-01

    Research on implicit attitudes has raised questions about how well people know their own attitudes. Most research on this question has focused on the correspondence between measures of implicit attitudes and measures of explicit attitudes, with low correspondence interpreted as showing that people have little awareness of their implicit attitudes. We took a different approach and directly asked participants to predict their results on upcoming Implicit Association Test (IAT) measures of implicit attitudes toward 5 social groups. We found that participants were surprisingly accurate in their predictions. Across 4 studies, predictions were accurate regardless of whether implicit attitudes were described as true attitudes or culturally learned associations (Studies 1 and 2), regardless of whether predictions were made as specific response patterns (Study 1) or as conceptual responses (Studies 2-4), and regardless of how much experience or explanation participants received before making their predictions (Study 4). Study 3 further suggested that participants' predictions reflected unique insight into their own implicit responses, beyond intuitions about how people in general might respond. Prediction accuracy occurred despite generally low correspondence between implicit and explicit measures of attitudes, as found in prior research. Altogether, the research findings cast doubt on the belief that attitudes or evaluations measured by the IAT necessarily reflect unconscious attitudes.

  2. Implicit attitude measures: consistency, stability, and convergent validity.

    PubMed

    Cunningham, W A; Preacher, K J; Banaji, M R

    2001-03-01

    In recent years, several techniques have been developed to measure implicit social cognition. Despite their increased use, little attention has been devoted to their reliability and validity. This article undertakes a direct assessment of the interitem consistency, stability, and convergent validity of some implicit attitude measures. Attitudes toward blacks and whites were measured on four separate occasions, each 2 weeks apart, using three relatively implicit measures (response-window evaluative priming, the Implicit Association Test, and the response-window Implicit Association Test) and one explicit measure (Modern Racism Scale). After correcting for interitem inconsistency with latent variable analyses, we found that (a) stability indices improved and (b) implicit measures were substantially correlated with each other, forming a single latent factor. The psychometric properties of response-latency implicit measures have greater integrity than recently suggested.

  3. Assimilation of stream discharge for flood forecasting: Updating a semidistributed model with an integrated data assimilation scheme

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Ryu, Dongryeol; Western, Andrew W.; Wang, Q. J.

    2015-05-01

    Real-time discharge observations can be assimilated into flood models to improve forecast accuracy; however, the presence of time lags in the routing process and a lack of methods to quantitatively represent different sources of uncertainties challenge the implementation of data assimilation techniques for operational flood forecasting. To address these issues, an integrated error parameter estimation and lag-aware data assimilation (IEELA) scheme was recently developed for a lumped model. The scheme combines an ensemble-based maximum a posteriori (MAP) error estimation approach with a lag-aware ensemble Kalman smoother (EnKS). In this study, the IEELA scheme is extended to a semidistributed model to provide for more general application in flood forecasting by including spatial and temporal correlations in model uncertainties between subcatchments. The result reveals that using a semidistributed model leads to more accurate forecasts than a lumped model in an open-loop scenario. The IEELA scheme improves the forecast accuracy significantly in both lumped and semidistributed models, and the superiority of the semidistributed model remains in the data assimilation scenario. However, the improvements resulting from IEELA are confined to the outlet of the catchment where the discharge observations are assimilated. Forecasts at "ungauged" internal locations are not improved, and in some instances, even become less accurate.

  4. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    PubMed

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder.

  5. Bidirectional fiber-wireless and fiber-IVLLC integrated system based on polarization-orthogonal modulation scheme.

    PubMed

    Lu, Hai-Han; Li, Chung-Yi; Chen, Hwan-Wei; Ho, Chun-Ming; Cheng, Ming-Te; Huang, Sheng-Jhe; Yang, Zih-Yi; Lin, Xin-Yao

    2016-07-25

    A bidirectional fiber-wireless and fiber-invisible laser light communication (IVLLC) integrated system that employs polarization-orthogonal modulation scheme for hybrid cable television (CATV)/microwave (MW)/millimeter-wave (MMW)/baseband (BB) signal transmission is proposed and demonstrated. To our knowledge, it is the first one that adopts a polarization-orthogonal modulation scheme in a bidirectional fiber-wireless and fiber-IVLLC integrated system with hybrid CATV/MW/MMW/BB signal. For downlink transmission, carrier-to-noise ratio (CNR), composite second-order (CSO), composite triple-beat (CTB), and bit error rate (BER) perform well over 40-km single-mode fiber (SMF) and 10-m RF/50-m optical wireless transport scenarios. For uplink transmission, good BER performance is obtained over 40-km SMF and 50-m optical wireless transport scenario. Such a bidirectional fiber-wireless and fiber-IVLLC integrated system for hybrid CATV/MW/MMW/BB signal transmission will be an attractive alternative for providing broadband integrated services, including CATV, Internet, and telecommunication services. It is shown to be a prominent one to present the advancements for the convergence of fiber backbone and RF/optical wireless feeder. PMID:27464174

  6. Fiber-optic integration and efficient detection schemes for optomechanical resonators

    NASA Astrophysics Data System (ADS)

    Cohen, Justin D.

    With the advent of the laser in the year 1960, the field of optics experienced a renaissance from what was considered to be a dull, solved subject to an active area of development, with applications and discoveries which are yet to be exhausted 55 years later. Light is now nearly ubiquitous not only in cutting-edge research in physics, chemistry, and biology, but also in modern technology and infrastructure. One quality of light, that of the imparted radiation pressure force upon reflection from an object, has attracted intense interest from researchers seeking to precisely monitor and control the motional degrees of freedom of an object using light. These optomechanical interactions have inspired myriad proposals, ranging from quantum memories and transducers in quantum information networks to precision metrology of classical forces. Alongside advances in micro- and nano-fabrication, the burgeoning field of optomechanics has yielded a class of highly engineered systems designed to produce strong interactions between light and motion. Optomechanical crystals are one such system in which the patterning of periodic holes in thin dielectric films traps both light and sound waves to a micro-scale volume. These devices feature strong radiation pressure coupling between high-quality optical cavity modes and internal nanomechanical resonances. Whether for applications in the quantum or classical domain, the utility of optomechanical crystals hinges on the degree to which light radiating from the device, having interacted with mechanical motion, can be collected and detected in an experimental apparatus consisting of conventional optical components such as lenses and optical fibers. While several efficient methods of optical coupling exist to meet this task, most are unsuitable for the cryogenic or vacuum integration required for many applications. The first portion of this dissertation will detail the development of robust and efficient methods of optically coupling

  7. Awareness of Implicit Attitudes

    PubMed Central

    Hahn, Adam; Judd, Charles M.; Hirsh, Holen K.; Blair, Irene V.

    2013-01-01

    Research on implicit attitudes has raised questions about how well people know their own attitudes. Most research on this question has focused on the correspondence between measures of implicit attitudes and measures of explicit attitudes, with low correspondence interpreted as showing that people have little awareness of their implicit attitudes. We took a different approach and directly asked participants to predict their results on upcoming IAT measures of implicit attitudes toward five different social groups. We found that participants were surprisingly accurate in their predictions. Across four studies, predictions were accurate regardless of whether implicit attitudes were described as true attitudes or culturally learned associations (Studies 1 and 2), regardless of whether predictions were made as specific response patterns (Study 1) or as conceptual responses (Studies 2–4), and regardless of how much experience or explanation participants received before making their predictions (Study 4). Study 3 further suggested that participants’ predictions reflected unique insight into their own implicit responses, beyond intuitions about how people in general might respond. Prediction accuracy occurred despite generally low correspondence between implicit and explicit measures of attitudes, as found in prior research. All together, the research findings cast doubt on the belief that attitudes or evaluations measured by the IAT necessarily reflect unconscious attitudes. PMID:24294868

  8. Recent Progress In Lithium Niobate Integrated Optics Technology Under A Collaborative Joint Opto-Electronics Research Scheme (JOERS) Programme

    NASA Astrophysics Data System (ADS)

    Grant, M. F.; Donaldson, A.; Gibson, D. R.; Wale, M.

    1988-01-01

    In January 1984, a United Kingdom Joint Opto-Electronics Research Scheme (JOERS) on LiNbO3 technology for integrated optics commenced. This 65 man-year programme, which ended in April 1987, was undertaken jointly by four industrial companies and four universities, representing almost all of the LiNbO3 integrated optics expertise in the U.K. at that time. The aim of the programme was twofold: to develop high quality LiNbO3 wafers for integrated optics applications through close collaboration between the material manufacturers and the material users and to establish a strong technology base in device design and fabrication. This paper outlines some of the main achievements of the programme. Topics covered include work on LiNbO3 material optimisation, waveguide fabrication technology (Ti-indiffused, proton-exchanged, and ion-implanted waveguides), and waveguide interconnection technology (low loss curves, modal profile variation), and fibre-guide coupling.

  9. High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.

    2014-01-01

    This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.

  10. A parallel algorithm for implicit depletant simulations

    NASA Astrophysics Data System (ADS)

    Glaser, Jens; Karas, Andrew S.; Glotzer, Sharon C.

    2015-11-01

    We present an algorithm to simulate the many-body depletion interaction between anisotropic colloids in an implicit way, integrating out the degrees of freedom of the depletants, which we treat as an ideal gas. Because the depletant particles are statistically independent and the depletion interaction is short-ranged, depletants are randomly inserted in parallel into the excluded volume surrounding a single translated and/or rotated colloid. A configurational bias scheme is used to enhance the acceptance rate. The method is validated and benchmarked both on multi-core processors and graphics processing units for the case of hard spheres, hemispheres, and discoids. With depletants, we report novel cluster phases in which hemispheres first assemble into spheres, which then form ordered hcp/fcc lattices. The method is significantly faster than any method without cluster moves and that tracks depletants explicitly, for systems of colloid packing fraction ϕc < 0.50, and additionally enables simulation of the fluid-solid transition.

  11. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    PubMed

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  12. Parallel Implicit Kinetic Simulation with PARSEK

    NASA Astrophysics Data System (ADS)

    Stefano, Markidis; Giovanni, Lapenta

    2004-11-01

    Kinetic plasma simulation is the ultimate tool for plasma analysis. One of the prime tools for kinetic simulation is the particle in cell (PIC) method. The explicit or semi-implicit (i.e. implicit only on the fields) PIC method requires exceedingly small time steps and grid spacing, limited by the necessity to resolve the electron plasma frequency, the Debye length and the speed of light (for fully explicit schemes). A different approach is to consider fully implicit PIC methods where both particles and fields are discretized implicitly. This approach allows radically larger time steps and grid spacing, reducing the cost of a simulation by orders of magnitude while keeping the full kinetic treatment. In our previous work, simulations impossible for the explicit PIC method even on massively parallel computers have been made possible on a single processor machine using the implicit PIC code CELESTE3D [1]. We propose here another quantum leap: PARSEK, a parallel cousin of CELESTE3D, based on the same approach but sporting a radically redesigned software architecture (object oriented C++, where CELESTE3D was structured and written in FORTRAN77/90) and fully parallelized using MPI for both particle and grid communication. [1] G. Lapenta, J.U. Brackbill, W.S. Daughton, Phys. Plasmas, 10, 1577 (2003).

  13. Symbolic implicit Monte Carlo

    SciTech Connect

    Brooks, E.D. III )

    1989-08-01

    We introduce a new implicit Monte Carlo technique for solving time dependent radiation transport problems involving spontaneous emission. In the usual implicit Monte Carlo procedure an effective scattering term in dictated by the requirement of self-consistency between the transport and implicitly differenced atomic populations equations. The effective scattering term, a source of inefficiency for optically thick problems, becomes an impasse for problems with gain where its sign is negative. In our new technique the effective scattering term does not occur and the excecution time for the Monte Carlo portion of the algorithm is independent of opacity. We compare the performance and accuracy of the new symbolic implicit Monte Carlo technique to the usual effective scattering technique for the time dependent description of a two-level system in slab geometry. We also examine the possibility of effectively exploiting multiprocessors on the algorithm, obtaining supercomputer performance using shared memory multiprocessors based on cheap commodity microprocessor technology. {copyright} 1989 Academic Press, Inc.

  14. A transient FETI methodology for large-scale parallel implicit computations in structural mechanics, part 2

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Crivelli, Luis

    1993-01-01

    Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallellize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet and perhaps will never be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient than explicit codes when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.

  15. A transient FETI methodology for large-scale parallel implicit computations in structural mechanics

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Crivelli, Luis; Roux, Francois-Xavier

    1992-01-01

    Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallelize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet -- and perhaps will never -- be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.

  16. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  17. Development and Assessment of an Integrated Computer-Aided Detection Scheme for Digital Microscopic Images of Metaphase Chromosomes

    PubMed Central

    Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J.; Liu, Hong

    2012-01-01

    The authors developed an integrated computer-aided detection (CAD) scheme for detecting and classifying metaphase chromosomes as well as assessing its performance and robustness. This scheme includes an automatic metaphase-finding module and a karyotyping module and it was applied to a testing database with 200 digital microscopic images. The automatic metaphase-finding module detects analyzable metaphase cells using a feature-based artificial neural network (ANN). The ANN-generated outputs are analyzed by a receiver operating characteristics (ROC) method and an area under the ROC curve is 0.966. Then, the automatic karyotyping module classifies individual chromosomes of this cell into 24 types. In this module, a two-layer decision tree-based classifier with eight ANNs established in its connection nodes was optimized by a genetic algorithm. Chromosomes are first classified into seven groups by the ANN in the first layer. The chromosomes in these groups are then separately classified by seven ANNs into 24 types in the second layer. The classification accuracy is 94.5% in the first layer. Six ANNs achieved the accuracy above 95% and only one had lessened performance (80.6%) in the second layer. The overall classification accuracy is 91.5% as compared to 86.7% in the previous study using two independent datasets randomly acquired from our genetic laboratory. The results demonstrate that our automated scheme achieves high and robust performance in identification and classification of metaphase chromosomes. PMID:23087585

  18. Development and Assessment of an Integrated Computer-Aided Detection Scheme for Digital Microscopic Images of Metaphase Chromosomes.

    PubMed

    Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J; Liu, Hong

    2008-10-01

    The authors developed an integrated computer-aided detection (CAD) scheme for detecting and classifying metaphase chromosomes as well as assessing its performance and robustness. This scheme includes an automatic metaphase-finding module and a karyotyping module and it was applied to a testing database with 200 digital microscopic images. The automatic metaphase-finding module detects analyzable metaphase cells using a feature-based artificial neural network (ANN). The ANN-generated outputs are analyzed by a receiver operating characteristics (ROC) method and an area under the ROC curve is 0.966. Then, the automatic karyotyping module classifies individual chromosomes of this cell into 24 types. In this module, a two-layer decision tree-based classifier with eight ANNs established in its connection nodes was optimized by a genetic algorithm. Chromosomes are first classified into seven groups by the ANN in the first layer. The chromosomes in these groups are then separately classified by seven ANNs into 24 types in the second layer. The classification accuracy is 94.5% in the first layer. Six ANNs achieved the accuracy above 95% and only one had lessened performance (80.6%) in the second layer. The overall classification accuracy is 91.5% as compared to 86.7% in the previous study using two independent datasets randomly acquired from our genetic laboratory. The results demonstrate that our automated scheme achieves high and robust performance in identification and classification of metaphase chromosomes.

  19. On symmetric and upwind TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1986-01-01

    The performance of the upwind and symmetric total variation diminishing (TVD) schemes in viscous and inviscid airfoil steady-state calculations is considered, and the extension of the implicit second-order-accurate TVD scheme for hyperbolic systems of conservative laws in curvilinear coordinates is discussed. For two-dimensional steady-state applications, schemes are implemented in a conservative noniterative alternating direction implicit form, and results illustrate that the algorithm produces a fairly good solution for an RAE2822 airfoil calculation. The study demonstrates that the symmetric TVD scheme is as accurate as the upwind TVD scheme, while requiring less computational effort than it.

  20. Integrating hydrograph modeling with real-time flow monitoring to generate hydrograph-specific sampling schemes

    NASA Astrophysics Data System (ADS)

    Gall, Heather E.; Jafvert, Chad T.; Jenkinson, Byron

    2010-11-01

    Automated sample collection for water quality research and evaluation generally is performed by simple time-paced or flow-weighted sampling protocols. However, samples collected on strict time-paced or flow-weighted schemes may not adequately capture all elements of storm event hydrographs (i.e., rise, peak, and recession). This can result in inadequate information for calculating chemical mass flux over storm events. In this research, an algorithm was developed to guide automated sampling of hydrographs based on storm-specific information. A key element of the new "hydrograph-specific sampling scheme" is the use of a hydrograph recession model for predicting the hydrograph recession curve, during which flow-paced intervals are calculated for scheduling the remaining samples. The algorithm was tested at a tile drained Midwest agricultural site where real-time flow data were processed by a programmable datalogger that in turn activated an automated sampler at the appropriate sampling times to collect a total of twenty samples during each storm event independent of the number of sequential hydrographs generated. The utility of the algorithm was successfully tested with hydrograph data collected at both a tile drain and agricultural ditch, suggesting the potential for general applicability of the method. This sampling methodology is flexible in that the logic can be adapted for use with any hydrograph recession model; however, in this case a power law equation proved to be the most practical model.

  1. Novel monolithic integration scheme for high-speed electroabsorption modulators and semiconductor optical amplifiers using cascaded structure.

    PubMed

    Lin, Fang-Zheng; Wu, Tsu-Hsiu; Chiu, Yi-Jen

    2009-06-01

    A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than -12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than -5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where -3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch

  2. Implicit solvers for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, Dimitri J.

    1991-01-01

    Implicit methods were developed and tested for unstructured mesh computations. The approximate system which arises from the Newton linearization of the nonlinear evolution operator is solved by using the preconditioned GMRES (Generalized Minimum Residual) technique. Three different preconditioners were studied, namely, the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over relaxation (SSOR). The preconditioners were optimized to have good vectorization properties. SSOR and ILU were also studied as iterative schemes. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also studied. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.

  3. A double-sided, single-chip integration scheme using through-silicon-via for neural sensing applications.

    PubMed

    Chang, Chih-Wei; Chou, Lei-Chun; Huang, Po-Tsang; Wu, Shang-Lin; Lee, Shih-Wei; Chuang, Ching-Te; Chen, Kuan-Neng; Hwang, Wei; Chen, Kuo-Hua; Chiu, Chi-Tsung; Tong, Ho-Ming; Chiou, Jin-Chern

    2015-02-01

    We present a new double-sided, single-chip monolithic integration scheme to integrate the CMOS circuits and MEMS structures by using through-silicon-via (TSV). Neural sensing applications were chosen as the implementation example. The proposed heterogeneous device integrates standard 0.18 μm CMOS technology, TSV and neural probe array into a compact single chip device. The neural probe array on the back-side of the chip is connected to the CMOS circuits on the front-side of the chip by using low-parasitic TSVs through the chip. Successful fabrication results and detailed characterization demonstrate the feasibility and performance of the neural probe array, TSV and readout circuitry. The fabricated device is 5 × 5 mm(2) in area, with 16 channels of 150 μm-in-length neural probe array on the back-side, 200 μm-deep TSV through the chip and CMOS circuits on the front-side. Each channel consists of a 5 × 6 probe array, 3 × 14 TSV array and a differential-difference amplifier (DDA) based analog front-end circuitry with 1.8 V supply, 21.88 μW power consumption, 108 dB CMRR and 2.56 μVrms input referred noise. In-vivo long term implantation demonstrated the feasibility of presented integration scheme after 7 and 58 days of implantation. We expect the conceptual realization can be extended for higher density recording array by using the proposed method. PMID:25653056

  4. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2011-08-01

    This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampére (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier "energy-conserving" explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical

  5. Parallel implicit unstructured grid Euler solvers

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.

    1994-01-01

    A mesh-vertex finite volume scheme for solving the Euler equations on triangular unstructured meshes is implemented on an MIMD (multiple instruction/multiple data stream) parallel computer. An explicit four-stage Runge-Kutta scheme is used to solve two-dimensional flow problems. A family of implicit schemes is also developed to solve these problems, where the linear system that arises at each time step is solved by a preconditioned GMRES algorithm. Two partitioning strategies are employed, one that partitions triangles and the other that partitions vertices. The choice of the preconditioner in a distributed memory setting is discussed. All the methods are compared both in terms of elapsed times and convergence rates. It is shown that the implicit schemes offer adequate parallelism at the expense of minimal sequential overhead. The use of a global coarse grid to further minimize this overhead is also investigated. The schemes are implemented on a distributed memory parallel computer, the iPSC/860.

  6. Parallel implicit unstructured grid Euler solvers

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.

    1994-01-01

    A mesh-vertex finite volume scheme for solving the Euler equations on triangular unstructured meshes is implemented on a multiple-instruction/multiple-data stream parallel computer. An explicit four-stage Runge-Kutta scheme is used to solve two-dimensional flow problems. A family of implicit schemes is also developed to solve these problems, where the linear system that arises at each time step is solved by a preconditioned GMRES algorithm. Two partitioning strategies are employed: one that partitions triangles and the other that partitions vertices. The choice of the preconditioner in a distributed memory setting is discussed. All of the methods are compared both in terms of elapsed times and convergence rates. It is shown that the implicit schemes offer adequate parallelism at the expense of minimal sequential overhead. The use of a global coarse grid to further minimize this overhead is also investigated. The schemes are implemented on a distributed memory parallel computer, the Intel iPSC/860.

  7. Parallel implicit unstructured grid Euler solvers

    SciTech Connect

    Venkatakrishnan, V.

    1994-10-01

    A mesh-vertex finite volume scheme for solving the Euler equations on triangular unstructured meshes is implemented on a multiple-instruction/multiple-data stream parallel computer. An explicit four-stage Runge-Kutta scheme is used to solve two-dimensional flow problems. A family of implicit schemes is also developed to solve these problems, where the linear system that arises at each time step is solved by a preconditioned GMRES algorithm. Two partitioning strategies are employed: one that partitions triangles and the other that partitions vertices. The choice of the preconditioner in a distributed memory setting is discussed. All of the methods are compared both in terms of elapsed times and convergence rates. It is shown that the implicit schemes offer adequate parallelism at the expense of minimal sequential overhead. The use of a global coarse grid to further minimize this overhead is also investigated. The schemes are implemented on a distributed memory parallel computer, the Intel iPSC/860. 23 refs.

  8. Minimally implicit Runge-Kutta methods for Resistive Relativistic MHD

    NASA Astrophysics Data System (ADS)

    Aloy, Miguel-Á.; Cordero-Carrión, Isabel

    2016-05-01

    The Relativistic Resistive Magnetohydrodynamic (RRMHD) equations are a hyperbolic system of partial differential equations used to describe the dynamics of relativistic magnetized fluids with a finite conductivity. Close to the ideal magnetohydrodynamic regime, the source term proportional to the conductivity becomes potentially stiff and cannot be handled with standard explicit time integration methods. We propose a new class of methods to deal with the stiffness fo the system, which we name Minimally Implicit Runge-Kutta methods. These methods avoid the development of numerical instabilities without increasing the computational costs in comparison with explicit methods, need no iterative extra loop in order to recover the primitive (physical) variables, the analytical inversion of the implicit operator is trivial and the several stages can actually be viewed as stages of explicit Runge-Kutta methods with an effective time-step. We test these methods with two different one-dimensional test beds in varied conductivity regimes, and show that our second-order schemes satisfy the theoretical expectations.

  9. An alternative scheme to find glass state solutions using integral equation theory for the pair structure

    NASA Astrophysics Data System (ADS)

    Bomont, Jean-Marc; Pastore, Giorgio

    2015-09-01

    We propose and discuss a straightforward search protocol for the glass-like solutions of the integral equations of the two-replica approach to the random first-order transition theory of the liquid-glass transition. The new numerical strategy supplements those recently introduced by Jean-Pierre Hansen and ourselves. A few results for inverse power (1/r12) fluid are discussed and critically compared with results from other approaches.

  10. Implicit Spacecraft Gyro Calibration

    NASA Technical Reports Server (NTRS)

    Harman, Richard; Bar-Itzhack, Itzhack Y.

    2003-01-01

    This paper presents an implicit algorithm for spacecraft onboard instrument calibration, particularly to onboard gyro calibration. This work is an extension of previous work that was done where an explicit gyro calibration algorithm was applied to the AQUA spacecraft gyros. The algorithm presented in this paper was tested using simulated data and real data that were downloaded from the Microwave Anisotropy Probe (MAP) spacecraft. The calibration tests gave very good results. A comparison between the use of the implicit calibration algorithm used here with the explicit algorithm used for AQUA spacecraft indicates that both provide an excellent estimation of the gyro calibration parameters with similar accuracies.

  11. From Classical to Quantum and Back: A Hamiltonian Scheme for Adaptive Multiresolution Classical/Path-Integral Simulations.

    PubMed

    Kreis, Karsten; Tuckerman, Mark E; Donadio, Davide; Kremer, Kurt; Potestio, Raffaello

    2016-07-12

    Quantum delocalization of atomic nuclei affects the physical properties of many hydrogen-rich liquids and biological systems even at room temperature. In computer simulations, quantum nuclei can be modeled via the path-integral formulation of quantum statistical mechanics, which implies a substantial increase in computational overhead. By restricting the quantum description to a small spatial region, this cost can be significantly reduced. Herein, we derive a bottom-up, rigorous, Hamiltonian-based scheme that allows molecules to change from quantum to classical and vice versa on the fly as they diffuse through the system, both reducing overhead and making quantum grand-canonical simulations possible. The method is validated via simulations of low-temperature parahydrogen. Our adaptive resolution approach paves the way to efficient quantum simulations of biomolecules, membranes, and interfaces. PMID:27214610

  12. Determination of the steady-state behavior of immobilized. beta. -galactosidase utilizing an integral reactor scheme

    SciTech Connect

    Scott, T.C.; Hill, C.G. Jr.; Amundson, C.H.

    1985-01-01

    Analysis of the steady-state behavior of immobilized ..beta..-galactosidase by integral reactor techniques has yielded a model which allows one to predict reactor performance under normal operating conditions. Values of the mechanistic rate constants for enzymatic hydrolysis of lactose were determined as a function of temperature by fitting the reactor model to experimental lactose conversion profiles. Use of this model along with the activity decay characteristics of the immobilized enzyme which have been presented in a previous publication could prove to be a useful tool in determining appropriate operating strategies for industrial applications of the immobilized enzyme catalyst. 18 refs., 5 figs., 6 tabs.

  13. Food-energy integrated development schemes in Brazil: FINEP's agro-energy communities program

    SciTech Connect

    La Rovere, E.L.; Baiardi, A.

    1983-12-01

    In Brazil social problems strongly affect the setting of development priorities. Effects of poverty and the need for imported petroleum products are discussed with reference to food and energy relationships. The object of the program is to design and test in real life conditions integrated food, energy and industrial raw materials production systems through the application of an appropriate technology specifically conceived in each case according to the participants of the ecosystem involved. The sophistication level for proposed solutions and the degree of participation of the local community are important considerations. Two projects have been started to date and two more are under consideration. 7 references.

  14. Implicit solvent methods for free energy estimation

    PubMed Central

    Decherchi, Sergio; Masetti, Matteo; Vyalov, Ivan; Rocchia, Walter

    2014-01-01

    Solvation is a fundamental contribution in many biological processes and especially in molecular binding. Its estimation can be performed by means of several computational approaches. The aim of this review is to give an overview of existing theories and methods to estimate solvent effects giving a specific focus on the category of implicit solvent models and their use in Molecular Dynamics. In many of these models, the solvent is considered as a continuum homogenous medium, while the solute can be represented at the atomic detail and at different levels of theory. Despite their degree of approximation, implicit methods are still widely employed due to their trade-off between accuracy and efficiency. Their derivation is rooted in the statistical mechanics and integral equations disciplines, some of the related details being provided here. Finally, methods that combine implicit solvent models and molecular dynamics simulation, are briefly described. PMID:25193298

  15. Emotion and Implicit Timing

    PubMed Central

    Droit-Volet, Sylvie

    2016-01-01

    This study examined the effects of emotion on implicit timing. In the implicit timing task used, the participants did not receive any temporal instructions. Instead they were simply asked and trained to press a key as quickly as possible after a stimulus (response stimulus) that was separated from a preceding stimulus by a given temporal interval (reference interval duration). However, in the testing phase, the interval duration was the reference interval duration or a shorter or longer interval duration. In addition, the participants attended two sessions: a first baseline session in which no stimulus was presented during the inter-stimulus intervals, and a second emotional session in which emotional facial expressions (angry, neutral and sad facial expressions) were presented during these intervals. Results showed faster RTs for interval durations close to the reference duration in both the baseline and the emotional conditions and yielded a U-shaped curve. This suggests that implicit processing of time persists in emotional contexts. In addition, the RT was faster for the facial expressions of anger than for those of neutrality and sadness. However, the U-shaped RT curve did not peak clearly at a shorter interval duration for the angry than for the other facial expressions. This lack of time distortion in an implicit timing task in response to arousing emotional stimuli questions the idea of an automatic speeding-up of the interval clock system involved in the representation of time. PMID:27380409

  16. Sexual Murderers' Implicit Theories

    ERIC Educational Resources Information Center

    Beech, Anthony; Fisher, Dawn; Ward, Tony

    2005-01-01

    Interviews with 28 sexual murderers were subjected to grounded theory analysis. Five implicit theories (ITs) were identified: dangerous world, male sex drive is uncontrollable, entitlement, women as sexual objects, and women as unknowable. These ITs were found to be identical to those identified in the literature as being present in rapists. The…

  17. An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments

    NASA Technical Reports Server (NTRS)

    Kyriakopoulos, K. J.; Saridis, G. N.

    1993-01-01

    A formulation that makes possible the integration of collision prediction and avoidance stages for mobile robots moving in general terrains containing moving obstacles is presented. A dynamic model of the mobile robot and the dynamic constraints are derived. Collision avoidance is guaranteed if the distance between the robot and a moving obstacle is nonzero. A nominal trajectory is assumed to be known from off-line planning. The main idea is to change the velocity along the nominal trajectory so that collisions are avoided. A feedback control is developed and local asymptotic stability is proved if the velocity of the moving obstacle is bounded. Furthermore, a solution to the problem of inverse dynamics for the mobile robot is given. Simulation results verify the value of the proposed strategy.

  18. Implicit Learning as an Ability

    ERIC Educational Resources Information Center

    Kaufman, Scott Barry; DeYoung, Caroline G.; Gray, Jeremy R.; Jimenez, Luis; Brown, Jamie; Mackintosh, Nicholas

    2010-01-01

    The ability to automatically and implicitly detect complex and noisy regularities in the environment is a fundamental aspect of human cognition. Despite considerable interest in implicit processes, few researchers have conceptualized implicit learning as an ability with meaningful individual differences. Instead, various researchers (e.g., Reber,…

  19. Extrapolated implicit-explicit time stepping.

    SciTech Connect

    Constantinescu, E. M.; Sandu, A.; Mathematics and Computer Science; Virginia Polytechnic Inst. and State Univ.

    2010-01-01

    This paper constructs extrapolated implicit-explicit time stepping methods that allow one to efficiently solve problems with both stiff and nonstiff components. The proposed methods are based on Euler steps and can provide very high order discretizations of ODEs, index-1 DAEs, and PDEs in the method-of-lines framework. Implicit-explicit schemes based on extrapolation are simple to construct, easy to implement, and straightforward to parallelize. This work establishes the existence of perturbed asymptotic expansions of global errors, explains the convergence orders of these methods, and studies their linear stability properties. Numerical results with stiff ODE, DAE, and PDE test problems confirm the theoretical findings and illustrate the potential of these methods to solve multiphysics multiscale problems.

  20. An Improved Lattice Kinetic Scheme for Incompressible Viscous Fluid Flows

    NASA Astrophysics Data System (ADS)

    Suzuki, Kosuke; Inamuro, Takaji

    2014-01-01

    The lattice Boltzmann method (LBM) is an explicit numerical scheme for the incompressible Navier-Stokes equations (INSE) without integrating the Poisson equation for the pressure. In spite of its merit, the LBM has some drawbacks in accuracy. First, we review drawbacks for three numerical methods based on the LBM. The three methods are the LBM with the Bhatnagar-Gross-Krook model (LBGK), the lattice kinetic scheme (LKS) and the link-wise artificial compressibility method (LWACM). Second, in order to remedy the drawbacks, we propose an improved LKS. The present method incorporates (i) the scheme used in the LWACM for determining the kinematic viscosity, (ii) an iterative calculation of the pressure and (iii) a semi-implicit algorithm, while preserving the simplicity of the algorithm of the original LKS. Finally, in simulations of test problems, we find that the improved LKS eliminates the drawbacks and gives more accurate and stable results than LBGK, LKS and LWACM.

  1. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Cui, Xia; Yuan, Guang-wei; Shen, Zhi-jun

    2016-05-01

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-order accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion.

  2. Detector density and small field dosimetry: Integral versus point dose measurement schemes

    SciTech Connect

    Underwood, T. S. A. Hill, M. A.; Fenwick, J. D.

    2013-08-01

    Purpose: TheAlfonso et al. [Med. Phys.35, 5179–5186 (2008)] formalism for small field dosimetry proposes a set of correction factors (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}}) which account for differences between the detector response in nonstandard (clinical) and machine-specific-reference fields. In this study, the Monte Carlo method was used to investigate the viability of such small field correction factors for four different detectors irradiated under a variety of conditions. Because k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values for single detector position measurements are influenced by several factors, a new theoretical formalism for integrated-detector-position [dose area product (DAP)] measurements is also presented and was tested using Monte Carlo simulations. Methods: A BEAMnrc linac model was built and validated for a Varian Clinac iX accelerator. Using the egs++ geometry package, detailed virtual models were built for four different detectors: a PTW 60012 unshielded diode, a PTW 60003 Diamond detector, a PTW 31006 PinPoint (ionization chamber), and a PTW 31018 MicroLion (liquid-filled ionization chamber). The egs-chamber code was used to investigate the variation ofk{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} with detector type, detector construction, field size, off-axis position, and the azimuthal angle between the detector and beam axis. Simulations were also used to consider the DAP obtained by each detector: virtual detectors and water voxels were scanned through high resolution grids of positions extending far beyond the boundaries of the fields under consideration. Results: For each detector, the correction factor (k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s

  3. Chinese implicit leadership theory.

    PubMed

    Ling, W; Chia, R C; Fang, L

    2000-12-01

    In a 1st attempt to identify an implicit theory of leadership among Chinese people, the authors developed the Chinese Implicit Leadership Scale (CILS) in Study 1. In Study 2, they administered the CILS to 622 Chinese participants from 5 occupation groups, to explore differences in perceptions of leadership. Factor analysis yielded 4 factors of leadership: Personal Morality, Goal Efficiency, Interpersonal Competence, and Versatility. Social groups differing in age, gender, education level, and occupation rated these factors. Results showed no significant gender differences, and the underlying cause for social group differences was education level. All groups gave the highest ratings to Interpersonal Competence, reflecting the enormous importance of this factor, which is consistent with Chinese collectivist values.

  4. The time course of explicit and implicit categorization.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A

    2015-10-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization. PMID:26025556

  5. The time course of explicit and implicit categorization.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A

    2015-10-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization.

  6. The Time Course of Explicit and Implicit Categorization

    PubMed Central

    Zakrzewski, Alexandria C.; Herberger, Eric; Boomer, Joseph; Roeder, Jessica; Ashby, F. Gregory; Church, Barbara A.

    2015-01-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization. PMID:26025556

  7. Applications of high-resolution spatial discretization scheme and Jacobian-free Newton–Krylov method in two-phase flow problems

    SciTech Connect

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2015-09-01

    The majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many nuclear thermal–hydraulics applications, it is desirable to use higher-order numerical schemes to reduce numerical errors. High-resolution spatial discretization schemes provide high order spatial accuracy in smooth regions and capture sharp spatial discontinuity without nonphysical spatial oscillations. In this work, we adapted an existing high-resolution spatial discretization scheme on staggered grids in two-phase flow applications. Fully implicit time integration schemes were also implemented to reduce numerical errors from operator-splitting types of time integration schemes. The resulting nonlinear system has been successfully solved using the Jacobian-free Newton–Krylov (JFNK) method. The high-resolution spatial discretization and high-order fully implicit time integration numerical schemes were tested and numerically verified for several two-phase test problems, including a two-phase advection problem, a two-phase advection with phase appearance/disappearance problem, and the water faucet problem. Numerical results clearly demonstrated the advantages of using such high-resolution spatial and high-order temporal numerical schemes to significantly reduce numerical diffusion and therefore improve accuracy. Our study also demonstrated that the JFNK method is stable and robust in solving two-phase flow problems, even when phase appearance/disappearance exists.

  8. Hybrid wide-band, low-phase-noise scheme for Raman lasers in atom interferometry by integrating an acousto-optic modulator and a feedback loop.

    PubMed

    Wang, Kai; Yao, Zhanwei; Li, Runbing; Lu, Sibin; Chen, Xi; Wang, Jin; Zhan, Mingsheng

    2016-02-10

    We report a hybrid scheme for phase-coherent Raman lasers with low phase noise in a wide frequency range. In this scheme, a pair of Raman lasers with a frequency difference of 3.04 GHz is generated by the ±1-order diffracted lights of an acousto-optic modulator (1.52 GHz), where a feedback loop is simultaneously applied for suppressing the phase noise. The beat width of the Raman lasers is narrower than 3 Hz. In the low-frequency range, the phase noise of the Raman lasers is suppressed by 35 dB with the feedback. The phase noise is less than -109  dBc/Hz in the high-frequency range. The sensitivity of an atom gyroscope employing the hybrid Raman lasers can be implicitly improved 10 times. Due to the better high-frequency response, the sensitivity is not limited by the durations of Raman pulses. This work is important for improving the performance of atom-interferometer-based measurements. PMID:26906364

  9. Implicit learning as an ability.

    PubMed

    Kaufman, Scott Barry; Deyoung, Colin G; Gray, Jeremy R; Jiménez, Luis; Brown, Jamie; Mackintosh, Nicholas

    2010-09-01

    The ability to automatically and implicitly detect complex and noisy regularities in the environment is a fundamental aspect of human cognition. Despite considerable interest in implicit processes, few researchers have conceptualized implicit learning as an ability with meaningful individual differences. Instead, various researchers (e.g., Reber, 1993; Stanovich, 2009) have suggested that individual differences in implicit learning are minimal relative to individual differences in explicit learning. In the current study of English 16-17year old students, we investigated the association of individual differences in implicit learning with a variety of cognitive and personality variables. Consistent with prior research and theorizing, implicit learning, as measured by a probabilistic sequence learning task, was more weakly related to psychometric intelligence than was explicit associative learning, and was unrelated to working memory. Structural equation modeling revealed that implicit learning was independently related to two components of psychometric intelligence: verbal analogical reasoning and processing speed. Implicit learning was also independently related to academic performance on two foreign language exams (French, German). Further, implicit learning was significantly associated with aspects of self-reported personality, including intuition, Openness to Experience, and impulsivity. We discuss the implications of implicit learning as an ability for dual-process theories of cognition, intelligence, personality, skill learning, complex cognition, and language acquisition.

  10. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  11. A theory of implicit and explicit knowledge.

    PubMed

    Dienes, Z; Perner, J

    1999-10-01

    The implicit-explicit distinction is applied to knowledge representations. Knowledge is taken to be an attitude towards a proposition which is true. The proposition itself predicates a property to some entity. A number of ways in which knowledge can be implicit or explicit emerge. If a higher aspect is known explicitly then each lower one must also be known explicitly. This partial hierarchy reduces the number of ways in which knowledge can be explicit. In the most important type of implicit knowledge, representations merely reflect the property of objects or events without predicating them of any particular entity. The clearest cases of explicit knowledge of a fact are representations of one's own attitude of knowing that fact. These distinctions are discussed in their relationship to similar distinctions such as procedural-declarative, conscious-unconscious, verbalizable-nonverbalizable, direct-indirect tests, and automatic-voluntary control. This is followed by an outline of how these distinctions can be used to integrate and relate the often divergent uses of the implicit-explicit distinction in different research areas. We illustrate this for visual perception, memory, cognitive development, and artificial grammar learning.

  12. Evaluation of Injection Efficiency of Carbon Dioxide Using an Integrated Injection Well and Geologic Formation Numerical Simulation Scheme

    NASA Astrophysics Data System (ADS)

    Kihm, J.; Park, S.; Kim, J.; SNU CO2 GEO-SEQ TEAM

    2011-12-01

    A series of integrated injection well and geologic formation numerical simulations was performed to evaluate the injection efficiency of carbon dioxide using a multiphase thermo-hydrological numerical model. The numerical simulation results show that groundwater flow, carbon dioxide flow, and heat transport in both injection well and sandstone formation can be simultaneously analyzed, and thus the injection efficiency (i.e., injection rate and injectivity) of carbon dioxide can be quantitatively evaluated using the integrated injection well and geologic formation numerical simulation scheme. The injection rate and injectivity of carbon dioxide increase rapidly during the early period of time (about 10 days) and then increase slightly up to about 2.07 kg/s (equivalent to 0.065 Mton/year) and about 2.84 × 10-7 kg/s/Pa, respectively, until 10 years for the base case. The sensitivity test results show that the injection pressure and temperature of carbon dioxide at the wellhead have significant impacts on its injection rate and injectivity. The vertical profile of the fluid pressure in the injection well becomes almost a hydrostatical equilibrium state within 1 month for all the cases. The vertical profile of the fluid temperature in the injection well becomes a monotonously increasing profile with the depth due to isenthalpic or adiabatic compression within 6 months for all the cases. The injection rate of carbon dioxide increases linearly with the fluid pressure difference between the well bottom and the sandstone formation far from the injection well. In contrast, the injectivity of carbon dioxide varies unsystematically with the fluid pressure difference. On the other hand, the reciprocal of the kinematic viscosity of carbon dioxide at the well bottom has an excellent linear relationship with the injectivity of carbon dioxide. It indicates that the above-mentioned variation of the injectivity of carbon dioxide can be corrected using this linear relationship. The

  13. Parallel Implicit Algorithms for CFD

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1998-01-01

    The main goal of this project was efficient distributed parallel and workstation cluster implementations of Newton-Krylov-Schwarz (NKS) solvers for implicit Computational Fluid Dynamics (CFD.) "Newton" refers to a quadratically convergent nonlinear iteration using gradient information based on the true residual, "Krylov" to an inner linear iteration that accesses the Jacobian matrix only through highly parallelizable sparse matrix-vector products, and "Schwarz" to a domain decomposition form of preconditioning the inner Krylov iterations with primarily neighbor-only exchange of data between the processors. Prior experience has established that Newton-Krylov methods are competitive solvers in the CFD context and that Krylov-Schwarz methods port well to distributed memory computers. The combination of the techniques into Newton-Krylov-Schwarz was implemented on 2D and 3D unstructured Euler codes on the parallel testbeds that used to be at LaRC and on several other parallel computers operated by other agencies or made available by the vendors. Early implementations were made directly in Massively Parallel Integration (MPI) with parallel solvers we adapted from legacy NASA codes and enhanced for full NKS functionality. Later implementations were made in the framework of the PETSC library from Argonne National Laboratory, which now includes pseudo-transient continuation Newton-Krylov-Schwarz solver capability (as a result of demands we made upon PETSC during our early porting experiences). A secondary project pursued with funding from this contract was parallel implicit solvers in acoustics, specifically in the Helmholtz formulation. A 2D acoustic inverse problem has been solved in parallel within the PETSC framework.

  14. Information transfer via implicit encoding with delay time modulation in a time-delay system

    NASA Astrophysics Data System (ADS)

    Kye, Won-Ho

    2012-08-01

    A new encoding scheme for information transfer with modulated delay time in a time-delay system is proposed. In the scheme, the message is implicitly encoded into the modulated delay time. The information transfer rate as a function of encoding redundancy in various noise scales is presented and it is analyzed that the implicit encoding scheme (IES) has stronger resistance against channel noise than the explicit encoding scheme (EES). In addition, its advantages in terms of secure communication and feasible applications are discussed.

  15. Explicit and Implicit Emotion Regulation: A Dual-Process Framework

    PubMed Central

    Gyurak, Anett; Gross, James J.; Etkin, Amit

    2012-01-01

    It is widely acknowledged that emotions can be regulated in an astonishing variety of ways. Most research to date has focused on explicit (effortful) forms of emotion regulation. However, there is growing research interest in implicit (automatic) forms of emotion regulation. To organize emerging findings, we present a dual-process framework that integrates explicit and implicit forms of emotion regulation, and argue that both forms of regulation are necessary for well-being. In the first section of this review, we provide a broad overview of the construct of emotion regulation, with an emphasis on explicit and implicit processes. In the second section, we focus on explicit emotion regulation, considering both neural mechanisms that are associated with these processes and their experiential and physiological consequences. In the third section, we turn to several forms of implicit emotion regulation, and integrate the burgeoning literature in this area. We conclude by outlining open questions and areas for future research. PMID:21432682

  16. Implicit Cognition and Addiction: A Tool for Explaining Paradoxical Behavior

    PubMed Central

    Stacy, Alan W.; Wiers, Reinout W.

    2012-01-01

    Research on implicit cognition and addiction has expanded greatly during the past decade. This research area provides new ways to understand why people engage in behaviors that they know are harmful or counterproductive in the long run. Implicit cognition takes a different view from traditional cognitive approaches to addiction by assuming that behavior is often not a result of a reflective decision that takes into account the pros and cons known by the individual. Instead of a cognitive algebra integrating many cognitions relevant to choice, implicit cognition assumes that the influential cognitions are the ones that are spontaneously activated during critical decision points. This selective review highlights many of the consistent findings supporting predictive effects of implicit cognition on substance use and abuse in adolescents and adults; reveals a recent integration with dual-process models; outlines the rapid evolution of different measurement tools; and introduces new routes for intervention. PMID:20192786

  17. Implicit measure for yoga research: Yoga implicit association test

    PubMed Central

    Ilavarasu, Judu V; Rajesh, Sasidharan K; Hankey, Alex

    2014-01-01

    Context: The implicit association test (IAT), a new tool for yoga research is presented. Implicit measures could be used in those situations where (1) The construct is difficult to self-report, (2) there is a threat of social desirability. Clinically, we can assess cognitive dissonance by evaluating incongruence between implicit and explicit measures. Explicit preferences are self-reported. Implicit preferences are what we inherently believe, often without our conscious awareness. Aims: The primary objective of this study is to provide a bird's eye view of the field, implicit cognition, with emphasis on the IAT and the secondary objective is to illustrate through an example of our study to develop an implicit tool to assess implicit preference toward yoga. Settings and Design: A total of 5 independent samples of total 69 students undergoing short and long-term yoga courses in a Yoga University were assessed for their implicit and explicit preferences towards yoga. Materials and Methods: The yoga-IAT (Y-IAT), explicit self-rating scale was administered through computers using the Inquisit program by Millisecond Software. Experimental and scoring materials are provided. Results: A moderate preference toward yoga was detected, with a lower implicit-explicit congruence, reflecting possible confound of social desirability in the self-report of preference toward yoga. Conclusions: Implicit measures may be used in the yoga field to assess constructs, which are difficult to self-report or may have social desirability threat. Y-IAT may be used to evaluate implicit preference toward yoga. PMID:25035621

  18. Solving ODE Initial Value Problems With Implicit Taylor Series Methods

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2000-01-01

    In this paper we introduce a new class of numerical methods for integrating ODE initial value problems. Specifically, we propose an extension of the Taylor series method which significantly improves its accuracy and stability while also increasing its range of applicability. To advance the solution from t (sub n) to t (sub n+1), we expand a series about the intermediate point t (sub n+mu):=t (sub n) + mu h, where h is the stepsize and mu is an arbitrary parameter called an expansion coefficient. We show that, in general, a Taylor series of degree k has exactly k expansion coefficients which raise its order of accuracy. The accuracy is raised by one order if k is odd, and by two orders if k is even. In addition, if k is three or greater, local extrapolation can be used to raise the accuracy two additional orders. We also examine stability for the problem y'= lambda y, Re (lambda) less than 0, and identify several A-stable schemes. Numerical results are presented for both fixed and variable stepsizes. It is shown that implicit Taylor series methods provide an effective integration tool for most problems, including stiff systems and ODE's with a singular point.

  19. An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys

    SciTech Connect

    Becker, R; Stolken, J; Jannetti, C; Bassani, J

    2003-10-16

    Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numerical simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.

  20. Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes.

    PubMed

    Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2015-10-01

    With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant. PMID:26013744

  1. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Shinn, Judy L.

    1987-01-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogeneous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the source terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.

  2. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Shinn, J. L.

    1986-01-01

    Some numerical aspects of finite-difference algorithms for nonlinear multidimensional hyperbolic conservation laws with stiff nonhomogenous (source) terms are discussed. If the stiffness is entirely dominated by the source term, a semi-implicit shock-capturing method is proposed provided that the Jacobian of the soruce terms possesses certain properties. The proposed semi-implicit method can be viewed as a variant of the Bussing and Murman point-implicit scheme with a more appropriate numerical dissipation for the computation of strong shock waves. However, if the stiffness is not solely dominated by the source terms, a fully implicit method would be a better choice. The situation is complicated by problems that are higher than one dimension, and the presence of stiff source terms further complicates the solution procedures for alternating direction implicit (ADI) methods. Several alternatives are discussed. The primary motivation for constructing these schemes was to address thermally and chemically nonequilibrium flows in the hypersonic regime. Due to the unique structure of the eigenvalues and eigenvectors for fluid flows of this type, the computation can be simplified, thus providing a more efficient solution procedure than one might have anticipated.

  3. On symmetric and upwind TVD schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1985-01-01

    A class of explicit and implicit total variation diminishing (TVD) schemes for the compressible Euler and Navier-Stokes equations was developed. They do not generate spurious oscillations across shocks and contact discontinuities. In general, shocks can be captured within 1 to 2 grid points. For the inviscid case, these schemes are divided into upwind TVD schemes and symmetric (nonupwind) TVD schemes. The upwind TVD scheme is based on the second-order TVD scheme. The symmetric TVD scheme is a generalization of Roe's and Davis' TVD Lax-Wendroff scheme. The performance of these schemes on some viscous and inviscid airfoil steady-state calculations is investigated. The symmetric and upwind TVD schemes are compared.

  4. Curvilinear bicubic spline fit interpolation scheme

    NASA Technical Reports Server (NTRS)

    Chi, C.

    1973-01-01

    Modification of the rectangular bicubic spline fit interpolation scheme so as to make it suitable for use with a polar grid pattern. In the proposed modified scheme the interpolation function is expressed in terms of the radial length and the arc length, and the shape of the patch, which is a wedge or a truncated wedge, is taken into account implicitly. Examples are presented in which the proposed interpolation scheme was used to reproduce the equations of a hemisphere.

  5. Implicit negotiation beliefs and performance: experimental and longitudinal evidence.

    PubMed

    Kray, Laura J; Haselhuhn, Michael P

    2007-07-01

    The authors argue that implicit negotiation beliefs, which speak to the expected malleability of negotiating ability, affect performance in dyadic negotiations. They expected negotiators who believe negotiating attributes are malleable (incremental theorists) to outperform negotiators who believe negotiating attributes are fixed (entity theorists). In Study 1, they gathered evidence of convergent and discriminant validity for the implicit negotiation belief construct. In Study 2, they examined the impact of implicit beliefs on the achievement goals that negotiators pursue. In Study 3, they explored the causal role of implicit beliefs on negotiation performance by manipulating negotiators' implicit beliefs within dyads. They also identified perceived ability as a moderator of the link between implicit negotiation beliefs and performance. In Study 4, they measured negotiators' beliefs in a classroom setting and examined how these beliefs affected negotiation performance and overall performance in the course 15 weeks later. Across all performance measures, incremental theorists outperformed entity theorists. Consistent with the authors' hypotheses, incremental theorists captured more of the bargaining surplus and were more integrative than their entity theorist counterparts, suggesting implicit theories are important determinants of how negotiators perform. Implications and future directions are discussed.

  6. Implicit Theories of Peer Relationships

    ERIC Educational Resources Information Center

    Rudolph, Karen D.

    2010-01-01

    This research investigated the role of children's implicit theories of peer relationships in their psychological, emotional, and behavioral adjustment. Participants included 206 children (110 girls; 96 boys; M age = 10.13 years, SD = 1.16) who reported on their implicit theories of peer relationships, social goal orientation, need for approval,…

  7. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  8. Implicit Multibody Penalty-BasedDistributed Contact.

    PubMed

    Xu, Hongyi; Zhao, Yili; Barbic, Jernej

    2014-09-01

    The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time. PMID:26357376

  9. An Implicit LU/AF FDTD Method

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    There has been some recent work to develop two and three-dimensional alternating direction implicit (ADI) FDTD schemes. These ADI schemes are based upon the original ADI concept developed by Peaceman and Rachford and Douglas and Gunn, which is a popular solution method in Computational Fluid Dynamics (CFD). These ADI schemes work well and they require solution of a tridiagonal system of equations. A new approach proposed in this paper applies a LU/AF approximate factorization technique from CFD to Maxwell s equations in flux conservative form for one space dimension. The result is a scheme that will retain its unconditional stability in three space dimensions, but does not require the solution of tridiagonal systems. The theory for this new algorithm is outlined in a one-dimensional context for clarity. An extension to two and threedimensional cases is discussed. Results of Fourier analysis are discussed for both stability and dispersion/damping properties of the algorithm. Results are presented for a one-dimensional model problem, and the explicit FDTD algorithm is chosen as a convenient reference for comparison.

  10. Brillouin-zone integration schemes: an efficiency study for the phonon frequency moments of the harmonic, solid, one-component plasma

    SciTech Connect

    Albers, R.C.; Gubernatis, J.E.

    1981-01-01

    The efficiency of four different Brillouin-zone integration schemes including the uniform mesh, special point method, special directions method, and Holas method are compared for calculating moments of the harmonic phonon frequencies of the solid one-component plasma. Very accurate values for the moments are also presented. The Holas method for which weights and integration points can easily be generated has roughly the same efficiency as the special directions method, which is much superior to the uniform mesh and special point methods for this problem.

  11. Efficient compression scheme by use of the region division of elemental images on MALT in three-dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Kang, Ho-Hyun; Lee, Jung-Woo; Shin, Dong-Hak; Kim, Eun-Soo

    2010-02-01

    This paper addresses the efficient compression scheme of elemental image array (EIA) generated from the moving array lenslet technique (MALT) based on MPEG-4. The EIAs are picked-up by MALT controlling the spatial ray sampling of ray and which produces few EIAs that the positions of the lenslet arrays are rapidly vibrated in the lateral directions within the retention time of the afterimage of human eye. To enhance the similarity in each EIA picked-up by MALT, several EIAs obtained from MALT are regenerated by the collection of an elemental image occupied at the same position in each EIA. The newly generated each EIA has high similarity among adjacent elemental images. To illustrate the feasibility of the proposed scheme, some experiments are carried out to show the increased compression efficiency and we obtained the improved compression ratio of 12% compared to the unhandled compression scheme.

  12. Implicit Self-Evaluations Predict Changes in Implicit Partner Evaluations

    PubMed Central

    McNulty, James K.; Baker, Levi R.; Olson, Michael A.

    2014-01-01

    Do people who feel good about themselves have better relations with others? Although the notion that they do is central to both classic and modern theories, there is little strong evidence to support it. We argue that one reason for the lack of evidence is that prior research has relied exclusively on explicit measures of self- and relationship evaluations. The current longitudinal study of newlywed couples used explicit measures of self-, relationship, and partner evaluations as well as implicit measures of self- and partner evaluations to examine the link between self-evaluations and changes in relationship evaluations over the first three years of marriage. Whereas explicit self-evaluations were unrelated to changes in all interpersonal measures, implicit self-evaluations positively predicted changes in implicit partner evaluations. This finding joins others in highlighting the importance of automatic processes and implicit measures to the study of close interpersonal relationships. PMID:24958686

  13. Implicit self-evaluations predict changes in implicit partner evaluations.

    PubMed

    McNulty, James K; Baker, Levi R; Olson, Michael A

    2014-08-01

    Do people who feel good about themselves have better relations with others? Although the notion that they do is central to both classic and modern theories, there is little strong evidence to support it. We argue that one reason for the lack of evidence is that prior research has relied exclusively on explicit measures of self- and relationship evaluation. The current longitudinal study of newlywed couples used implicit measures of self- and partner evaluation, as well as explicit measures of self-, relationship, and partner evaluation, to examine the link between self-evaluations and changes in relationship evaluations over the first 3 years of marriage. Whereas explicit self-evaluations were unrelated to changes in all interpersonal measures, implicit self-evaluations positively predicted changes in implicit partner evaluations. This finding adds to previous research by highlighting the importance of automatic processes and implicit measures in the study of close interpersonal relationships.

  14. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  15. Temporal and spatial inconsistencies of time-split finite-difference schemes

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L.; Thames, F. C.

    1981-01-01

    The properties of an implicit time-split algorithm, which utilizes locally one dimensional spatial steps, are examined using the two-dimensional heat conduction equation as the test problem. Both temporal and spatial inconsistencies inherent in the scheme are identified. A consistent, implicit splitting approach is developed. The relationship between this method and other time-split implicit schemes is explained, and stability problems encountered with the method in three dimensions are discussed.

  16. The Performance Analysis of AN Akf Based Tightly-Coupled Ins/gps Integrated Positioning and Orientation Scheme with Odometer and Non-Holonomic Constraints

    NASA Astrophysics Data System (ADS)

    Peng, K.-Y.; Lin, C.-A.; Chiang, K.-W.

    2012-08-01

    INS/GPS integration scheme can overcome the shortcoming of GPS or INS alone to provide superior performance, thus this study implements a tightly-coupled INS/GPS integration scheme using AKF as the core estimator by tuning the measurement noise matrix R adaptively. The AKF is based on the maximum likelihood criterion for choosing the most appropriate weight and thus the Kalman gain factors. The conventional EKF implementation suffers uncertain results while the update measurement noise matrix R and/or the process noise matrix Q does not meet the case. The primary advantage of AKF is that the filter has less relationship with the priori statistical information because R and/or Q vary with time. The innovation sequence is used to derive the measurement weights through the covariance matrices, innovation-based adaptive estimation (IAE) in this study. The covariance matrices R are adapted in the study when measurements update with time. A window based approach is implemented to update the quality of GPS pseudo-range measurements by adaptively replace the measurement weights through the latest estimated covariance matrices R. The use of odometer is particularly recommended when a low cost and precise vehicle localization system has to be implemented and there is the risk of GPS coverage failure, which is prone to happen when the vehicle enters a tunnel or cross deep valleys. Odometers are applied in land-vehicle navigation to provide augmented host velocity observations for standalone INS system in this study. There are two non-holonomic constraints (NHC) available for land vehicles. Land vehicles will not jump off the ground or slid on the ground under normal condition. Using these constraints, the velocity of the vehicle in the plane perpendicular to the forward direction is almost zero. EKF and AKF based tightly-coupled scheme with NHC is implemented in the study. To validate the performance of AKF based tightly-coupled INS/GPS integration scheme with odometer and

  17. MILAGRO IMPLICIT MONTE CARLO: NEW CAPABILITIES AND RESULTS

    SciTech Connect

    T. URBATSCH; T. EVANS

    2000-12-01

    Milagro is a stand-alone, radiation-only, code that performs nonlinear radiative transfer calculations using the Fleck and Cummings method of Implicit Monte Carlo (IMC). Milagro is an object-oriented, C++ code that utilizes classes in our group's (CCS-4) radiation transport library. Milagro and its underlying classes have been significantly upgraded since 1998, when results from Milagro were first presented. Most notably, the object-oriented design has been revised to allow for optimal stand-alone parallel efficiency and rapid integration of new classes. For example, the better design, coupled with stringent component testing, allowed for immediate integration of the full domain decomposition parallel scheme. (It is a simple philosophy: spend time on the design, and debug early and once.) Milagro's classes are templated on mesh type. Currently, it runs on an orthogonal, structured, not-necessarily-uniform, Cartesian mesh of up to three dimensions, an RZ-Wedge mesh, and soon a tetrahedral mesh. Milagro considers one-frequency, or ''grey,'' radiation with isotropic scattering, user-defined analytic opacities and equation-of-state, and various source types: surface, material, and radiation. Tallies produced by Milagro include energy and momentum deposition. In parallel, Milagro can run on a mesh that is fully replicated on all processors or on a mesh that is fully decomposed in the spatial domain. Milagro is reproducible, regardless of number of processors or parallel topology, and it now exactly conserves energy both globally and locally. Milagro has the capability for EnSight graphics and restarting. Finally, Milagro has been well verified with its use of Design-by-Contract{trademark}, component tests, and regression tests, and with its agreement to results of analytic test problems. By successfully running analytic and benchmark problems, Milagro serves to integrally verify all of its underlying classes, thus paving the way for other service packages based on these

  18. Implicit ladder summation in the Hartree-Fock-Bogoliubov approach

    SciTech Connect

    Pricoupenko, Ludovic

    2011-11-15

    The fully variational Hartree-Fock-Bogoliubov approach for bosons is studied in the limit of zero-range forces in two and three dimensions. The equation of state obtained in two dimensions is expressed in a parametric form. It is shown that the {Lambda} potential permits to perform an implicit summation of the ladder diagrams without leaving the variational scheme, restoring thus the consistency of this approximation.

  19. An Integration Factor Method for Stochastic and Stiff Reaction-Diffusion Systems

    PubMed Central

    Ta, Catherine; Wang, Dongyong; Nie, Qing

    2015-01-01

    Stochastic effects are often present in the biochemical systems involving reactions and diffusions. When the reactions are stiff, existing numerical methods for stochastic reaction diffusion equations require either very small time steps for any explicit schemes or solving large nonlinear systems at each time step for the implicit schemes. Here we present a class of semi-implicit integration factor methods that treat the diffusion term exactly and reaction implicitly for a system of stochastic reaction-diffusion equations. Our linear stability analysis shows the advantage of such methods for both small and large amplitudes of noise. Direct use of the method to solving several linear and nonlinear stochastic reaction-diffusion equations demonstrates good accuracy, efficiency, and stability properties. This new class of methods, which are easy to implement, will have broader applications in solving stochastic reaction-diffusion equations arising from models in biology and physical sciences. PMID:25983341

  20. An integration factor method for stochastic and stiff reaction–diffusion systems

    SciTech Connect

    Ta, Catherine; Wang, Dongyong; Nie, Qing

    2015-08-15

    Stochastic effects are often present in the biochemical systems involving reactions and diffusions. When the reactions are stiff, existing numerical methods for stochastic reaction diffusion equations require either very small time steps for any explicit schemes or solving large nonlinear systems at each time step for the implicit schemes. Here we present a class of semi-implicit integration factor methods that treat the diffusion term exactly and reaction implicitly for a system of stochastic reaction–diffusion equations. Our linear stability analysis shows the advantage of such methods for both small and large amplitudes of noise. Direct use of the method to solving several linear and nonlinear stochastic reaction–diffusion equations demonstrates good accuracy, efficiency, and stability properties. This new class of methods, which are easy to implement, will have broader applications in solving stochastic reaction–diffusion equations arising from models in biology and physical sciences.

  1. An integration factor method for stochastic and stiff reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Ta, Catherine; Wang, Dongyong; Nie, Qing

    2015-08-01

    Stochastic effects are often present in the biochemical systems involving reactions and diffusions. When the reactions are stiff, existing numerical methods for stochastic reaction diffusion equations require either very small time steps for any explicit schemes or solving large nonlinear systems at each time step for the implicit schemes. Here we present a class of semi-implicit integration factor methods that treat the diffusion term exactly and reaction implicitly for a system of stochastic reaction-diffusion equations. Our linear stability analysis shows the advantage of such methods for both small and large amplitudes of noise. Direct use of the method to solving several linear and nonlinear stochastic reaction-diffusion equations demonstrates good accuracy, efficiency, and stability properties. This new class of methods, which are easy to implement, will have broader applications in solving stochastic reaction-diffusion equations arising from models in biology and physical sciences.

  2. An improved high-order scheme for DNS of low Mach number turbulent reacting flows based on stiff chemistry solver

    NASA Astrophysics Data System (ADS)

    Yu, Rixin; Yu, Jiangfei; Bai, Xue-Song

    2012-06-01

    We present an improved numerical scheme for numerical simulations of low Mach number turbulent reacting flows with detailed chemistry and transport. The method is based on a semi-implicit operator-splitting scheme with a stiff solver for integration of the chemical kinetic rates, developed by Knio et al. [O.M. Knio, H.N. Najm, P.S. Wyckoff, A semi-implicit numerical scheme for reacting flow II. Stiff, operator-split formulation, Journal of Computational Physics 154 (2) (1999) 428-467]. Using the material derivative form of continuity equation, we enhance the scheme to allow for large density ratio in the flow field. The scheme is developed for direct numerical simulation of turbulent reacting flow by employing high-order discretization for the spatial terms. The accuracy of the scheme in space and time is verified by examining the grid/time-step dependency on one-dimensional benchmark cases: a freely propagating premixed flame in an open environment and in an enclosure related to spark-ignition engines. The scheme is then examined in simulations of a two-dimensional laminar flame/vortex-pair interaction. Furthermore, we apply the scheme to direct numerical simulation of a homogeneous charge compression ignition (HCCI) process in an enclosure studied previously in the literature. Satisfactory agreement is found in terms of the overall ignition behavior, local reaction zone structures and statistical quantities. Finally, the scheme is used to study the development of intrinsic flame instabilities in a lean H2/air premixed flame, where it is shown that the spatial and temporary accuracies of numerical schemes can have great impact on the prediction of the sensitive nonlinear evolution process of flame instability.

  3. Integrated separation scheme for measuring a suite of fission and activation products from a fresh mixed fission and activation product sample

    SciTech Connect

    Morley, Shannon M.; Seiner, Brienne N.; Finn, Erin C.; Greenwood, Lawrence R.; Smith, Steven C.; Gregory, Stephanie J.; Haney, Morgan M.; Lucas, Dawn D.; Arrigo, Leah M.; Beacham, Tere A.; Swearingen, Kevin J.; Friese, Judah I.; Douglas, Matthew; Metz, Lori A.

    2015-05-01

    Mixed fission and activation materials resulting from various nuclear processes and events contain a wide range of isotopes for analysis spanning almost the entire periodic table. In some applications such as environmental monitoring, nuclear waste management, and national security a very limited amount of material is available for analysis and characterization so an integrated analysis scheme is needed to measure multiple radionuclides from one sample. This work describes the production of a complex synthetic sample containing fission products, activation products, and irradiated soil and determines the percent recovery of select isotopes through the integrated chemical separation scheme. Results were determined using gamma energy analysis of separated fractions and demonstrate high yields of Ag (76 ± 6%), Au (94 ± 7%), Cd (59 ± 2%), Co (93 ± 5%), Cs (88 ± 3%), Fe (62 ± 1%), Mn (70 ± 7%), Np (65 ± 5%), Sr (73 ± 2%) and Zn (72 ± 3%). Lower yields (< 25%) were measured for Ga, Ir, Sc, and W. Based on the results of this experiment, a complex synthetic sample can be prepared with low atom/fission ratios and isotopes of interest accurately and precisely measured following an integrated chemical separation method.

  4. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    SciTech Connect

    Hayami, Masao; Seino, Junji; Nakai, Hiromi

    2015-05-28

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  5. Rhythms of Dialogue and Referential Activity: Implicit Process across Procedural and Verbal Realms

    ERIC Educational Resources Information Center

    Ritter, Michael S.

    2009-01-01

    This work examines the relationship between implicit procedural and implicit verbal processes as they occur in natural adult conversation. Theoretical insights and empirical findings are rooted in a move towards integration of Bucci's "Referential Activity" (RA) and "Multiple Code" perspectives and Beebe and Jaffe's "Dyadic Systems" and "Rhythms…

  6. Adaptive IMEX schemes for high-order unstructured methods

    NASA Astrophysics Data System (ADS)

    Vermeire, Brian C.; Nadarajah, Siva

    2015-01-01

    We present an adaptive implicit-explicit (IMEX) method for use with high-order unstructured schemes. The proposed method makes use of the Gerschgorin theorem to conservatively estimate the influence of each individual degree of freedom on the spectral radius of the discretization. This information is used to split the system into implicit and explicit regions, adapting to unsteady features in the flow. We dynamically repartition the domain to balance the number of implicit and explicit elements per core. As a consequence, we are able to achieve an even load balance for each implicit/explicit stage of the IMEX scheme. We investigate linear advection-diffusion, isentropic vortex advection, unsteady laminar flow over an SD7003 airfoil, and turbulent flow over a circular cylinder. Results show that the proposed method consistently yields a stable discretization, and maintains the theoretical order of accuracy of the high-order spatial schemes.

  7. Nodal integral method for transient heat conduction in a cylinder

    SciTech Connect

    Esser, P.D. )

    1993-01-01

    The accuracy and efficiency of nodal solution methods are well established for neutron diffusion in a variety of geometries, as well as for heat transfer and fluid flow in rectangular coordinates. This paper describes the development of a nodal integral method to solve the transient heat conduction equation in cylindrical geometry. Results for a test problem with an analytical solution indicate that the nodal solution provides higher accuracy than a conventional implicit finite difference scheme, while maintaining similar stability characteristics.

  8. A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jameson, Antony

    1986-01-01

    A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.

  9. Analysis of implicit local linearization techniques for upwind and TVD algorithms

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1987-01-01

    An attempt is made to investigate local time linearization techniques for implicit flux-difference splitting and flux-vector splitting schemes in the simplest settings (i.e., first-order spatial schemes and one-dimensional Euler flows). It is noted that first-order spatial schemes provide the simplest examples of schemes which are collective extensions of scalar TVD schemes. Simple analytical results concerning the local linearizations are highlighted and subsequently verified using a numerical fixed-point analysis on selected problems. It is noted that while primary emphasis is on asymptotic behavior, many of the results have implications for time-accurate calculations as well.

  10. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing. PMID:26117153

  11. Posture modulates implicit hand maps.

    PubMed

    Longo, Matthew R

    2015-11-01

    Several forms of somatosensation require that afferent signals be informed by stored representations of body size and shape. Recent results have revealed that position sense relies on a highly distorted body representation. Changes of internal hand posture produce plastic alterations of processing in somatosensory cortex. This study therefore investigated how such postural changes affect implicit body representations underlying position sense. Participants localised the knuckles and tips of each finger in external space in two postures: the fingers splayed (Apart posture) or pressed together (Together posture). Comparison of the relative locations of the judgments of each landmark were used to construct implicit maps of represented hand structure. Spreading the fingers apart produced increases in the implicit representation of hand size, with no apparent effect on hand shape. Thus, changes of internal hand posture produce rapid modulation of how the hand itself is represented, paralleling the known effects on somatosensory cortical processing.

  12. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  13. Acceleration on stretched meshes with line-implicit LU-SGS in parallel implementation

    NASA Astrophysics Data System (ADS)

    Otero, Evelyn; Eliasson, Peter

    2015-02-01

    The implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver is combined with the line-implicit technique to improve convergence on the very anisotropic grids necessary for resolving the boundary layers. The computational fluid dynamics code used is Edge, a Navier-Stokes flow solver for unstructured grids based on a dual grid and edge-based formulation. Multigrid acceleration is applied with the intention to accelerate the convergence to steady state. LU-SGS works in parallel and gives better linear scaling with respect to the number of processors, than the explicit scheme. The ordering techniques investigated have shown that node numbering does influence the convergence and that the orderings from Delaunay and advancing front generation were among the best tested. 2D Reynolds-averaged Navier-Stokes computations have clearly shown the strong efficiency of our novel approach line-implicit LU-SGS which is four times faster than implicit LU-SGS and line-implicit Runge-Kutta. Implicit LU-SGS for Euler and line-implicit LU-SGS for Reynolds-averaged Navier-Stokes are at least twice faster than explicit and line-implicit Runge-Kutta, respectively, for 2D and 3D cases. For 3D Reynolds-averaged Navier-Stokes, multigrid did not accelerate the convergence and therefore may not be needed.

  14. Angular biasing in implicit Monte-Carlo

    SciTech Connect

    Zimmerman, G.B.

    1994-10-20

    Calculations of indirect drive Inertial Confinement Fusion target experiments require an integrated approach in which laser irradiation and radiation transport in the hohlraum are solved simultaneously with the symmetry, implosion and burn of the fuel capsule. The Implicit Monte Carlo method has proved to be a valuable tool for the two dimensional radiation transport within the hohlraum, but the impact of statistical noise on the symmetric implosion of the small fuel capsule is difficult to overcome. We present an angular biasing technique in which an increased number of low weight photons are directed at the imploding capsule. For typical parameters this reduces the required computer time for an integrated calculation by a factor of 10. An additional factor of 5 can also be achieved by directing even smaller weight photons at the polar regions of the capsule where small mass zones are most sensitive to statistical noise.

  15. Explicit Integration of Extremely Stiff Reaction Networks: Partial Equilibrium Methods

    SciTech Connect

    Guidry, Mike W; Billings, J. J.; Hix, William Raphael

    2013-01-01

    In two preceding papers [1,2] we have shown that, when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the new partial equilibrium methods, give an integration scheme that plausibly can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that algebraically stabilized explicit methods may offer alternatives to implicit integration of even extremely stiff systems, and that these methods may permit integration of much larger networks than have been feasible previously in a variety of fields.

  16. Reduced Variance for Material Sources in Implicit Monte Carlo

    SciTech Connect

    Urbatsch, Todd J.

    2012-06-25

    Implicit Monte Carlo (IMC), a time-implicit method due to Fleck and Cummings, is used for simulating supernovae and inertial confinement fusion (ICF) systems where x-rays tightly and nonlinearly interact with hot material. The IMC algorithm represents absorption and emission within a timestep as an effective scatter. Similarly, the IMC time-implicitness splits off a portion of a material source directly into the radiation field. We have found that some of our variance reduction and particle management schemes will allow large variances in the presence of small, but important, material sources, as in the case of ICF hot electron preheat sources. We propose a modification of our implementation of the IMC method in the Jayenne IMC Project. Instead of battling the sampling issues associated with a small source, we bypass the IMC implicitness altogether and simply deterministically update the material state with the material source if the temperature of the spatial cell is below a user-specified cutoff. We describe the modified method and present results on a test problem that show the elimination of variance for small sources.

  17. Discrete Dirac Structures and Implicit Discrete Lagrangian and Hamiltonian Systems

    NASA Astrophysics Data System (ADS)

    Leok, Melvin; Ohsawa, Tomoki

    2010-07-01

    We present discrete analogues of Dirac structures and the Tulczyjew's triple by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete analogues of implicit Lagrangian and Hamiltonian systems. In particular, this yields implicit nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. In addition to providing a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of Dirac mechanics, it provides a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.

  18. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.

    2016-07-01

    A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of

  19. Ego depletion impairs implicit learning.

    PubMed

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  20. Convergence Acceleration for Multistage Time-Stepping Schemes

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli L.; Rossow, C-C; Vasta, V. N.

    2006-01-01

    The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 could be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. Numerical dissipation operators (based on the Roe scheme, a matrix formulation, and the CUSP scheme) as well as the number of RK stages are considered in evaluating the RK/implicit scheme. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. In two dimensions, turbulent flows over an airfoil at subsonic and transonic conditions are computed. The effects of mesh cell aspect ratio on convergence are investigated for Reynolds numbers between 5.7 x 10(exp 6) and 100.0 x 10(exp 6). Results are also obtained for a transonic wing flow. For both 2-D and 3-D problems, the computational time of a well-tuned standard RK scheme is reduced at least a factor of four.

  1. Convergence Acceleration of Runge-Kutta Schemes for Solving the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, Roy C., Jr.; Turkel, Eli; Rossow, C.-C.

    2007-01-01

    The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 can be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. This RK/implicit scheme is used as a smoother for multigrid. Fourier analysis is applied to determine damping properties. Numerical dissipation operators based on the Roe scheme, a matrix dissipation, and the CUSP scheme are considered in evaluating the RK/implicit scheme. In addition, the effect of the number of RK stages is examined. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. Turbulent flows over an airfoil and wing at subsonic and transonic conditions are computed. The effects of the cell aspect ratio on convergence are investigated for Reynolds numbers between 5:7 x 10(exp 6) and 100 x 10(exp 6). It is demonstrated that the implicit preconditioner can reduce the computational time of a well-tuned standard RK scheme by a factor between four and ten.

  2. An integrated error parameter estimation and lag-aware data assimilation scheme for real-time flood forecasting

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Ryu, Dongryeol; Western, Andrew W.; Wang, Q. J.; Robertson, David E.; Crow, Wade T.

    2014-11-01

    For operational flood forecasting, discharge observations may be assimilated into a hydrologic model to improve forecasts. However, the performance of conventional filtering schemes can be degraded by ignoring the time lag between soil moisture and discharge responses. This has led to ongoing development of more appropriate ways to implement sequential data assimilation. In this paper, an ensemble Kalman smoother (EnKS) with fixed time window is implemented for the GR4H hydrologic model (modèle du Génie Rural à 4 paramètres Horaire) to update current and antecedent model states. Model and observation error parameters are estimated through the maximum a posteriori method constrained by prior information drawn from flow gauging data. When evaluated in a hypothetical forecasting mode using observed rainfall, the EnKS is found to be more stable and produce more accurate discharge forecasts than a standard ensemble Kalman filter (EnKF) by reducing the mean of the ensemble root mean squared error (MRMSE) by 13-17%. The latter tends to over-correct current model states and leads to spurious peaks and oscillations in discharge forecasts. When evaluated in a real-time forecasting mode using rainfall forecasts from a numerical weather prediction model, the benefit of the EnKS is reduced as uncertainty in rainfall forecasts becomes dominant, especially at large forecast lead time.

  3. Computing with high-resolution upwind schemes for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, S. R.; Osher, S.

    1985-01-01

    Computational aspects of modern high-resolution upwind finite-difference schemes for hyperbolic systems of conservation laws are examined. An operational unification is demonstrated for constructing a wide class of flux-difference-split and flux-split schemes based on the design principles underlying total variation diminishing (TVD) schemes. Consideration is also given to TVD scheme design by preprocessing, the extension of preprocessing and postprocessing approaches to general control volumes, the removal of expansion shocks and 'glitches', relaxation methods for implicit TVD schemes, and a new family of high-accuracy TVD schemes.

  4. The Application of an Implicit Enumeration Algorithm to the School Desegregation Problem

    ERIC Educational Resources Information Center

    Liggett, Robin Segerblom

    1973-01-01

    Presents an implicit enumeration algorithm for redrawing school attendance boundaries in order to meet integration requirements. The basis of the approach is the division of the city into smaller areas or zones corresponding to neighborhoods. (Author)

  5. Implicit Learning of Nonlocal Musical Rules: Implicitly Learning More Than Chunks

    ERIC Educational Resources Information Center

    Kuhn, Gustav; Dienes, Zoltan

    2005-01-01

    Dominant theories of implicit learning assume that implicit learning merely involves the learning of chunks of adjacent elements in a sequence. In the experiments presented here, participants implicitly learned a nonlocal rule, thus suggesting that implicit learning can go beyond the learning of chunks. Participants were exposed to a set of…

  6. On state representations of nonlinear implicit systems

    NASA Astrophysics Data System (ADS)

    Pereira da Silva, Paulo Sergio; Batista, Simone

    2010-03-01

    This work considers a semi-implicit system Δ, that is, a pair (S, y), where S is an explicit system described by a state representation ? , where x(t) ∈ ℝ n and u(t) ∈ ℝ m , which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) ∈ ℝ l . An input candidate is a set of functions v = (v 1, …, v s ), which may depend on time t, on x, and on u and its derivatives up to a finite order. The problem of finding a (local) proper state representation ż = g(t, z, v) with input v for the implicit system Δ is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Δ. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Lévine, Martin, and Rouchon (1999) ('A Lie-Bäcklund Approach to Equivalence and Flatness of Nonlinear Systems', IEEE Transactions on Automatic Control, 44(5), (922-937)).

  7. Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications

    PubMed Central

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    A facile and versatile scheme is demonstrated to fabricate nanoscale resistive switching memory devices that exhibit reliable bipolar switching behavior. A solution process is used to synthesize the copper oxide layer into 250-nm via-holes that had been patterned in Si wafers. Direct bottom-up filling of copper oxide can facilitate fabrication of nanoscale memory devices without using vacuum deposition and etching processes. In addition, all materials and processes are CMOS compatible, and especially, the devices can be fabricated at room temperature. Nanoscale memory devices synthesized on wafers having 250-nm via-holes showed reproducible resistive switching programmable memory characteristics with reasonable endurance and data retention properties. This integration strategy provides a solution to overcome the scaling limit of current memory device fabrication methods. PMID:27364856

  8. Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications

    NASA Astrophysics Data System (ADS)

    Han, Un-Bin; Lee, Jang-Sik

    2016-07-01

    A facile and versatile scheme is demonstrated to fabricate nanoscale resistive switching memory devices that exhibit reliable bipolar switching behavior. A solution process is used to synthesize the copper oxide layer into 250-nm via-holes that had been patterned in Si wafers. Direct bottom-up filling of copper oxide can facilitate fabrication of nanoscale memory devices without using vacuum deposition and etching processes. In addition, all materials and processes are CMOS compatible, and especially, the devices can be fabricated at room temperature. Nanoscale memory devices synthesized on wafers having 250-nm via-holes showed reproducible resistive switching programmable memory characteristics with reasonable endurance and data retention properties. This integration strategy provides a solution to overcome the scaling limit of current memory device fabrication methods.

  9. Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Batten, P.; Leschziner, M. A.; Goldberg, U. C.

    1997-10-01

    Several new implicit schemes for the solution of the compressible Navier-Stokes equations are presented. These methods are derived from a hierarchy of average-state approximate solutions to the Riemann problem, ranging from the Lax-Friedrichs flux to the exact Riemann-solver flux. In contrast to linearised approximations, these methods will (with certain provisos on the signal velocities) enforce the entropy condition and preserve positivity without the need for additional corrections. The hierarchy also encompasses and explains the origin of many other upwind and centred methods, including the space-time scheme (due to Chang) and the more recent FORCE scheme (due to Toro). Based on an analysis of the above hierarchy, attention is focussed on the development of a new implicit scheme using a positivity-preserving version of Toro et al.'s HLLC scheme, which is the simplest average-state solver capable of exactly preserving isolated shock, contact, and shear waves. Solutions obtained with this method are essentially indistinguishable from those produced with an exact Riemann solver, whilst convergence to the steady state is the most rapid of all the implicit average-stage schemes considered and directly comparable to that of the unmodified Roe scheme. A new two-step implicit method is applied to various test cases, including turbulent flow with shock/boundary-layer interaction. The new time-stepping scheme is composed of two backward Euler steps, but has twice the convergence rate of the backward Euler scheme and alleviates the convergence problems that are often experienced when employing compressive limiter functions.

  10. Valuing investments in sustainable land management using an integrated modelling framework to support a watershed conservation scheme in the Upper Tana River, Kenya

    NASA Astrophysics Data System (ADS)

    Hunink, Johannes E.; Bryant, Benjamin P.; Vogl, Adrian; Droogers, Peter

    2015-04-01

    We analyse the multiple impacts of investments in sustainable land use practices on ecosystem services in the Upper Tana basin (Kenya) to support a watershed conservation scheme (a "water fund"). We apply an integrated modelling framework, building on previous field-based and modelling studies in the basin, and link biophysical outputs to economic benefits for the main actors in the basin. The first step in the modelling workflow is the use of a high-resolution spatial prioritization tool (Resource Investment Optimization System -- RIOS) to allocate the type and location of conservation investments in the different subbasins, subject to budget constraints and stakeholder concerns. We then run the Soil and Water Assessment Tool (SWAT) using the RIOS-identified investment scenarios to produce spatially explicit scenarios that simulate changes in water yield and suspended sediment. Finally, in close collaboration with downstream water users (urban water supply and hydropower) we link those biophysical outputs to monetary metrics, including: reduced water treatment costs, increased hydropower production, and crop yield benefits for upstream farmers in the conservation area. We explore how different budgets and different spatial targeting scenarios influence the return of the investments and the effectiveness of the water fund scheme. This study is novel in that it presents an integrated analysis targeting interventions in a decision context that takes into account local environmental and socio-economic conditions, and then relies on detailed, process-based, biophysical models to demonstrate the economic return on those investments. We conclude that the approach allows for an analysis on different spatial and temporal scales, providing conclusive evidence to stakeholders and decision makers on the contribution and benefits of the land-based investments in this basin. This is serving as foundational work to support the implementation of the Upper Tana-Nairobi Water Fund

  11. A pragmatic randomised controlled trial of the Welsh National Exercise Referral Scheme: protocol for trial and integrated economic and process evaluation

    PubMed Central

    2010-01-01

    trial recruitment, a comprehensive process evaluation examining intervention delivery and an integrated economic evaluation. This will allow a unique insight into the feasibility, effectiveness and cost effectiveness of a national exercise referral scheme for participants with CHD risk factors or mild to moderate anxiety, depression, or stress and provides a potential model for future policy evaluations. Trial registration Current Controlled Trials ISRCTN47680448 PMID:20565846

  12. Visualizing nonmanifold and singular implicit surfaces with point clouds.

    PubMed

    Balsys, Ron J; Harbinson, Dirk J; Suffern, Kevin G

    2012-02-01

    We use octree spatial subdivision to generate point clouds on complex nonmanifold implicit surfaces in order to visualize them. The new spatial subdivision scheme only uses point sampling and an interval exclusion test. The algorithm includes a test for pruning the resulting plotting nodes so that only points in the closest nodes to the surface are used in rendering. This algorithm results in improved image quality compared to the naive use of intervals or affine arithmetic when rendering implicit surfaces, particularly in regions of high curvature. We discuss and compare CPU and GPU versions of the algorithm. We can now render nonmanifold features such as rays, ray-like tubes, cusps, ridges, thin sections that are at arbitrary angles to the octree node edges, and singular points located within plot nodes, all without artifacts. Our previous algorithm could not render these without severe aliasing. The algorithm can render the self-intersection curves of implicit surfaces by exploiting the fact that surfaces are singular where they self-intersect. It can also render the intersection curves of two implicit surfaces. We present new image space and object space algorithms for rendering these intersection curves as contours on one of the surfaces. These algorithms are better at rendering high curvature contours than our previous algorithms. To demonstrate the robustness of the node pruning algorithm we render a number of complex implicit surfaces such as high order polynomial surfaces and Gaussian curvature surfaces. We also compare the algorithm with ray casting interms of speed and image quality. For the surfaces presented here, the point clouds can be computed in seconds to minutes on atypical Intel based PC. Once this is done, the surfaces can be rendered at much higher frame rates to allow some degree of interactive visualization.

  13. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  14. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-05-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P, slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  15. Implicit finite volume and discontinuous Galerkin methods for multicomponent flow in unstructured 3D fractured porous media

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Amooie, Mohammad Amin; Soltanian, Mohamad Reza

    2016-10-01

    We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of magnitude as compared to IMPEC, which has a time-step constraint proportional to the pore volume of discrete fracture grid cells. However, when lowest-order Euler time-discretizations are used, numerical errors increase linearly with the larger implicit time-steps, resulting in high numerical dispersion. Second-order Crank-Nicolson implicit MHFE-DG and MHFE-FV are therefore presented as well. Convergence analyses show twice the convergence rate for the DG methods as compared to FV, resulting in two to three orders of magnitude higher computational efficiency. Numerical experiments demonstrate the efficiency and robustness in modeling compressible multicomponent flow on irregular and fractured 2D and 3D grids, even in the presence of fingering instabilities.

  16. On-chip integrated differential optical microring refractive index sensing platform based on a laminar flow scheme.

    PubMed

    Kim, Dongwan; Popescu, Paula; Harfouche, Mark; Sendowski, Jacob; Dimotsantou, Maria-Eleni; Flagan, Richard C; Yariv, Amnon

    2015-09-01

    We propose an on-chip integrated differential optical microring refractive index sensing platform which leverages laminar flow conditions. Close spacing between a sensing and a reference resonator, and sharing the same microfluidic channel allows the two resonators to experience similar environmental disturbances, such as temperature fluctuations and fluidic-induced transients, achieving reliable and sensitive sensing performance. We obtain a noise floor of 80.0 MHz (0.3 pm) and a bulk refractive index sensitivity of 17.0 THz per refractive index unit (RIU) (64.2 nm/RIU), achieving a limit of detection of 1.4×10(-5) RIU in a 30 min and an 8°C window.

  17. Revealing children's implicit spelling representations.

    PubMed

    Critten, Sarah; Pine, Karen J; Messer, David J

    2013-06-01

    Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned by increasingly explicit levels of spelling representation. However, their proposal that implicit representations may underlie early 'visually based' spelling remains unresolved. Children (N = 101, aged 4-6 years) were given a recognition task (Critten et al., 2007) and a novel production task, both involving verbal justifications of why spellings are correct/incorrect, strategy use and word pattern similarity. Results for both tasks supported an implicit level of spelling characterized by the ability to correctly recognize/produce words but the inability to explain operational strategies or generalize knowledge. Explicit levels and multiple representations were also in evidence across the two tasks. Implications for cognitive mechanisms underlying spelling development are discussed. PMID:23659891

  18. Revealing children's implicit spelling representations.

    PubMed

    Critten, Sarah; Pine, Karen J; Messer, David J

    2013-06-01

    Conceptualizing the underlying representations and cognitive mechanisms of children's spelling development is a key challenge for literacy researchers. Using the Representational Redescription model (Karmiloff-Smith), Critten, Pine and Steffler (2007) demonstrated that the acquisition of phonological and morphological knowledge may be underpinned by increasingly explicit levels of spelling representation. However, their proposal that implicit representations may underlie early 'visually based' spelling remains unresolved. Children (N = 101, aged 4-6 years) were given a recognition task (Critten et al., 2007) and a novel production task, both involving verbal justifications of why spellings are correct/incorrect, strategy use and word pattern similarity. Results for both tasks supported an implicit level of spelling characterized by the ability to correctly recognize/produce words but the inability to explain operational strategies or generalize knowledge. Explicit levels and multiple representations were also in evidence across the two tasks. Implications for cognitive mechanisms underlying spelling development are discussed.

  19. Ego depletion impairs implicit learning.

    PubMed

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  20. A new uniformly valid asymptotic integration algorithm for elasto-plastic-creep and unified viscoplastic theories including continuum damage

    NASA Technical Reports Server (NTRS)

    Chulya, A.; Walker, K. P.

    1989-01-01

    A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.

  1. Semi-implicit anisotropic cosmic ray transport on an unstructured moving mesh

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger; Pfrommer, Christoph; Simpson, Christine M.; Kannan, Rahul; Springel, Volker

    2016-11-01

    In the interstellar medium of galaxies and the intracluster gas of galaxy clusters, the charged particles making up cosmic rays are moving almost exclusively along (but not across) magnetic field lines. The resulting anisotropic transport of cosmic rays in the form of diffusion or streaming not only affects the gas dynamics but also rearranges the magnetic fields themselves. The coupled dynamics of magnetic fields and cosmic rays can thus impact the formation and evolution of galaxies and the thermal evolution of galaxy clusters in critical ways. Numerically studying these effects requires solvers for anisotropic diffusion that are accurate, efficient, and robust, requirements that have proved difficult to be satisfied in practice. Here, we present an anisotropic diffusion solver on an unstructured moving mesh that is conservative, does not violate the entropy condition, allows for semi-implicit time integration with individual timesteps, and only requires solving a single linear system of equations per timestep. We apply our new scheme to a large number of test problems and show that it works as well or better than previous implementations. Finally, we demonstrate for a numerically demanding simulation of the formation of an isolated disc galaxy that our local time-stepping scheme reproduces the results obtained with global time-stepping at a fraction of the computational cost.

  2. [Psychological theory and implicit sociology.].

    PubMed

    Sévigny, R

    1983-01-01

    This text is based on the hypothesis that every theory on the psychology of personality must inevitably, in one manner or another, have a sociological referent, that is to say, it must refer to a body of knowledge which deals with a diversity of social contexts and their relations to individuals. According to this working hypothesis, such a sociology is implicit. This text then discusses a group of theoretical approaches in an effort to verify this hypothesis. This approach allows the extrication of diverse forms or diverse expressions of this implicit sociology within this context several currents are rapidly explored : psychoanalysis, behaviorism, gestalt, classical theory of needs. The author also comments on the approach, inspired by oriental techniques or philosophies, which employs the notion of myth to deepen self awareness. Finally, from the same perspective, he comments at greater length on the work of Carl Rogers, highlighting the diverse form of implicit sociology. In addition to Carl Rogers, this text refers to Freud, Jung, Adler, Reich, Perls, Goodman, Skinner as well as to Ginette Paris and various analysts of Taoism. In conclusion, the author indicates the significance of his analysis from double viewpoint of psychological theory and practice.

  3. [Psychological theory and implicit sociology.].

    PubMed

    Sévigny, R

    1983-01-01

    This text is based on the hypothesis that every theory on the psychology of personality must inevitably, in one manner or another, have a sociological referent, that is to say, it must refer to a body of knowledge which deals with a diversity of social contexts and their relations to individuals. According to this working hypothesis, such a sociology is implicit. This text then discusses a group of theoretical approaches in an effort to verify this hypothesis. This approach allows the extrication of diverse forms or diverse expressions of this implicit sociology within this context several currents are rapidly explored : psychoanalysis, behaviorism, gestalt, classical theory of needs. The author also comments on the approach, inspired by oriental techniques or philosophies, which employs the notion of myth to deepen self awareness. Finally, from the same perspective, he comments at greater length on the work of Carl Rogers, highlighting the diverse form of implicit sociology. In addition to Carl Rogers, this text refers to Freud, Jung, Adler, Reich, Perls, Goodman, Skinner as well as to Ginette Paris and various analysts of Taoism. In conclusion, the author indicates the significance of his analysis from double viewpoint of psychological theory and practice. PMID:17093766

  4. The Performance of a Tight Ins/gnss/photogrammetric Integration Scheme for Land Based MMS Applications in Gnss Denied Environments

    NASA Astrophysics Data System (ADS)

    Chu, Chien-Hsun; Chiang, Kai-Wei

    2016-06-01

    The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a

  5. Integrated Processing of High Resolution Topographic Data for Soil Erosion Assessment Considering Data Acquisition Schemes and Surface Properties

    NASA Astrophysics Data System (ADS)

    Eltner, A.; Schneider, D.; Maas, H.-G.

    2016-06-01

    Soil erosion is a decisive earth surface process strongly influencing the fertility of arable land. Several options exist to detect soil erosion at the scale of large field plots (here 600 m²), which comprise different advantages and disadvantages depending on the applied method. In this study, the benefits of unmanned aerial vehicle (UAV) photogrammetry and terrestrial laser scanning (TLS) are exploited to quantify soil surface changes. Beforehand data combination, TLS data is co-registered to the DEMs generated with UAV photogrammetry. TLS data is used to detect global as well as local errors in the DEMs calculated from UAV images. Additionally, TLS data is considered for vegetation filtering. Complimentary, DEMs from UAV photogrammetry are utilised to detect systematic TLS errors and to further filter TLS point clouds in regard to unfavourable scan geometry (i.e. incidence angle and footprint) on gentle hillslopes. In addition, surface roughness is integrated as an important parameter to evaluate TLS point reliability because of the increasing footprints and thus area of signal reflection with increasing distance to the scanning device. The developed fusion tool allows for the estimation of reliable data points from each data source, considering the data acquisition geometry and surface properties, to finally merge both data sets into a single soil surface model. Data fusion is performed for three different field campaigns at a Mediterranean field plot. Successive DEM evaluation reveals continuous decrease of soil surface roughness, reappearance of former wheel tracks and local soil particle relocation patterns.

  6. An alternating-direction implicit algorithm for unsteady potential flow

    NASA Technical Reports Server (NTRS)

    Chipman, R.; Jameson, A.

    1981-01-01

    An implicit finite-difference scheme is presented for the efficient computation of unsteady potential flow about airfoils. The formulation uses density and the velocity potential as dependent variables and is cast in conservation form to assure the theoretically correct determination of shockwave location and speed. To enable boundary conditions to be imposed directly on the airfoil surface, a time-varying sheared-rectilinear coordinate transformation is employed. Calculated time-history solutions on a pulsating airfoil are compared with the results of other unsteady transonic codes, including a previous method of the authors. The present method is demonstrated to be unconditionally stable and to give accurate solutions with sharply resolved shocks.

  7. Energy preservation and entropy in Lagrangian space- and time-staggered hydrodynamic schemes

    NASA Astrophysics Data System (ADS)

    Llor, Antoine; Claisse, Alexandra; Fochesato, Christophe

    2016-03-01

    Usual space- and time-staggered (STS) "leap-frog" Lagrangian hydrodynamic schemes-such as von Neumann-Richtmyer's (1950), Wilkins' (1964), and their variants-are widely used for their simplicity and robustness despite their known lack of exact energy conservation. Since the seminal work of Trulio and Trigger (1950) and despite the later corrections of Burton (1991), it is generally accepted that these schemes cannot be modified to exactly conserve energy while retaining all of the following properties: STS stencil with velocities half-time centered with respect to positions, explicit second-order algorithm (locally implicit for internal energy), and definite positive kinetic energy. It is shown here that it is actually possible to modify the usual STS hydrodynamic schemes in order to be exactly energy-preserving, regardless of the evenness of their time centering assumptions and retaining their simple algorithmic structure. Burton's conservative scheme (1991) is found as a special case of time centering which cancels the term here designated as "incompatible displacements residue." In contrast, von Neumann-Richtmyer's original centering can be preserved provided this residue is properly corrected. These two schemes are the only special cases able to capture isentropic flow with a third order entropy error, instead of second order in general. The momentum equation is presently obtained by application of a variational principle to an action integral discretized in both space and time. The internal energy equation follows from the discrete conservation of total energy. Entropy production by artificial dissipation is obtained to second order by a prediction-correction step on the momentum equation. The overall structure of the equations (explicit for momentum, locally implicit for internal energy) remains identical to that of usual STS "leap-frog" schemes, though complementary terms are required to correct the effects of time-step changes and artificial viscosity

  8. On a class of TVD schemes for gas dynamic calculations. [Total Variation Diminishing

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    The purpose of this paper is to review a class of explicit and implicit second-order accurate Total Variation Diminishing (TVD) schemes and to show by numerical experiments, the performance of these schemes to the Euler equations of gas dynamics. The method of constructing these second-order accurate TVD schemes is sometimes known as the modified flux approach.

  9. Implicit medial representation for vessel segmentation

    NASA Astrophysics Data System (ADS)

    Pizaine, Guillaume; Angelini, Elsa; Bloch, Isabelle; Makram-Ebeid, Sherif

    2011-03-01

    In the context of mathematical modeling of complex vessel tree structures with deformable models, we present a novel level set formulation to evolve both the vessel surface and its centerline. The implicit function is computed as the convolution of a geometric primitive, representing the centerline, with localized kernels of continuously-varying scales allowing accurate estimation of the vessel width. The centerline itself is derived as the characteristic function of an underlying signed medialness function, to enforce a tubular shape for the segmented object, and evolves under shape and medialness constraints. Given a set of initial medial loci and radii, this representation first allows for simultaneous recovery of the vessels centerlines and radii, thus enabling surface reconstruction. Secondly, due to the topological adaptivity of the level set segmentation setting, it can handle tree-like structures and bifurcations without additional junction detection schemes nor user inputs. We discuss the shape parameters involved, their tuning and their influence on the control of the segmented shapes, and we present some segmentation results on synthetic images, 2D angiographies, 3D rotational angiographies and 3D-CT scans.

  10. EdgeMaps: visualizing explicit and implicit relations

    NASA Astrophysics Data System (ADS)

    Dörk, Marian; Carpendale, Sheelagh; Williamson, Carey

    2011-01-01

    In this work, we introduce EdgeMaps as a new method for integrating the visualization of explicit and implicit data relations. Explicit relations are specific connections between entities already present in a given dataset, while implicit relations are derived from multidimensional data based on shared properties and similarity measures. Many datasets include both types of relations, which are often difficult to represent together in information visualizations. Node-link diagrams typically focus on explicit data connections, while not incorporating implicit similarities between entities. Multi-dimensional scaling considers similarities between items, however, explicit links between nodes are not displayed. In contrast, EdgeMaps visualize both implicit and explicit relations by combining and complementing spatialization and graph drawing techniques. As a case study for this approach we chose a dataset of philosophers, their interests, influences, and birthdates. By introducing the limitation of activating only one node at a time, interesting visual patterns emerge that resemble the aesthetics of fireworks and waves. We argue that the interactive exploration of these patterns may allow the viewer to grasp the structure of a graph better than complex node-link visualizations.

  11. Implicit cognitive distortions and sexual offending.

    PubMed

    Mihailides, Stephen; Devilly, Grant J; Ward, Tony

    2004-10-01

    This work develops and tests the semantic-motivation hypothesis of sexual offenders' implicit cognitions. This hypothesis posits that sexual offenders' cognitive distortions emerge at the interface between implicit motivation and cognition. The semantic-motivation hypothesis is used to guide the development of 3 implicit association tests (IATs). These IATs were used to test for the existence of 3 expected child sexual offender implicit cognitive distortions in child sexual offenders ("children as sexual beings," "uncontrollability of sexuality," and "sexual entitlement-bias"). Results showed that child sexual offenders had larger IAT effects than did mainstream offenders and male and female nonoffenders for the "children as sexual beings" and the "uncontrollability of sexuality" implicit theories. Child sexual offenders also had a larger IAT effect than male and female nonoffenders for the "sexual entitlement-bias" implicit theory. Implications for the semantic-motivation hypothesis are discussed.

  12. Implicit Media Knowledge Experiments & Results

    NASA Astrophysics Data System (ADS)

    Ly, Muy-Chu; Germaneau, Alexis

    2011-08-01

    Implicit Media Knowledge aims to provide relevant information related to visual media without effort. It is based on the analysis of media usage from several users (e.g. a community). Algorithms based on clustering methods that extract relevant information (e.g. tags, taxonomy trees) related to a media from its usage are detailed. To validate our new approach, we propose to apply our concept and algorithms on a specific media use such as the analysis of how multiple users organize their media files. Significant results of two experiments will be highlighted. Perspectives of our work will be finally presented.

  13. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov–Darwin particle-in-cell algorithm

    DOE PAGESBeta

    Chen, G.; Chacón, L.

    2015-08-11

    For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge,more » canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.« less

  14. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.

    2015-12-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. Here, we explore a fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space-time-centered, employing particle sub-cycling and orbit-averaging. The algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D-3V.

  15. A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov–Darwin particle-in-cell algorithm

    SciTech Connect

    Chen, G.; Chacón, L.

    2015-08-11

    For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge, canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.

  16. An implicit Smooth Particle Hydrodynamic code

    SciTech Connect

    Charles E. Knapp

    2000-04-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  17. The "exaptation" of linguistic implicit strategies.

    PubMed

    Lombardi Vallauri, Edoardo

    2016-01-01

    Implicit strategies are known to increase persuasion performances. Implicits of content (vagueness, implicatures) and implicits of responsibility (presuppositions, topics) will be compared semiotically to non-linguistic implicits such as images and sounds. The results of psycholinguistic and neurolinguistic experiments will be used to propose that presuppositions and topics arose in language as means to spare addressees processing effort on already known contents, but they were subsequently "exapted" to spare effort on unknown marginal contents, and eventually to reduce the probability for doubtful contents to be processed thoroughly and rejected. This will be shown by many examples from commercial advertising and political propaganda. PMID:27478723

  18. On the application and extension of Harten's high resolution scheme

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1982-01-01

    Extensions of a second order high resolution explicit method for the numerical computation of weak solutions of one dimensonal hyperbolic conservation laws are discussed. The main objectives were (1) to examine the shock resoluton of Harten's method for a two dimensional shock reflection problem, (2) to study the use of a high resolution scheme as a post-processor to an approximate steady state solution, and (3) to construct an implicit in the delta-form using Harten's scheme for the explicit operator and a simplified iteration matrix for the implicit operator.

  19. Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0

    NASA Astrophysics Data System (ADS)

    Wu, Yuanqiao; Verseghy, Diana L.; Melton, Joe R.

    2016-08-01

    Peatlands, which contain large carbon stocks that must be accounted for in the global carbon budget, are poorly represented in many earth system models. We integrated peatlands into the coupled Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), which together simulate the fluxes of water, energy, and CO2 at the land surface-atmosphere boundary in the family of Canadian Earth system models (CanESMs). New components and algorithms were added to represent the unique features of peatlands, such as their characteristic ground floor vegetation (mosses), the slow decomposition of carbon in the water-logged soils and the interaction between the water, energy, and carbon cycles. This paper presents the modifications introduced into the CLASS-CTEM modelling framework together with site-level evaluations of the model performance for simulated water, energy and carbon fluxes at eight different peatland sites. The simulated daily gross primary production (GPP) and ecosystem respiration are well correlated with observations, with values of the Pearson correlation coefficient higher than 0.8 and 0.75 respectively. The simulated mean annual net ecosystem production at the eight test sites is 87 g C m-2 yr-1, which is 22 g C m-2 yr-1 higher than the observed annual mean. The general peatland model compares well with other site-level and regional-level models for peatlands, and is able to represent bogs and fens under a range of climatic and geographical conditions.

  20. A high-order time formulation of the RBC schemes for unsteady compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Lerat, A.

    2015-12-01

    Residual-Based Compact (RBC) schemes can approximate the compressible Euler equations with a high space-accuracy on a very compact stencil. For instance on a 2-D Cartesian mesh, the 5th- and 7th-order accuracy can be reached on a 5 × 5-point stencil. The time integration of the RBC schemes uses a fully implicit method of 2nd-order accuracy (Gear method) usually solved by a dual-time approach. This method is efficient for computing compressible flows in slow unsteady regimes, but for quick unsteady flows, it may be costly and not accurate enough. A new time-formulation is proposed in the present paper. Unusually, in a RBC scheme the time derivative occurs, through linear discrete operators due to compactness, not only in the main residual but also in the other two residuals (in 2-D) involved in the numerical dissipation. To extract the time derivative, a space-factorization method which preserves the high accuracy in space is developed for reducing the algebra to the direct solution of simple linear systems on the mesh lines. Then a time-integration of high accuracy is selected for the RBC schemes by comparing the efficiency of four classes of explicit methods. The new time-formulation is validated for the diagonal advection of a Gaussian shape, the rotation of a hump, the advection of a vortex for a long time and the interaction of a vortex with a shock.

  1. Measuring implicit attitudes: A positive framing bias flaw in the Implicit Relational Assessment Procedure (IRAP).

    PubMed

    O'Shea, Brian; Watson, Derrick G; Brown, Gordon D A

    2016-02-01

    How can implicit attitudes best be measured? The Implicit Relational Assessment Procedure (IRAP), unlike the Implicit Association Test (IAT), claims to measure absolute, not just relative, implicit attitudes. In the IRAP, participants make congruent (Fat Person-Active: false; Fat Person-Unhealthy: true) or incongruent (Fat Person-Active: true; Fat Person-Unhealthy: false) responses in different blocks of trials. IRAP experiments have reported positive or neutral implicit attitudes (e.g., neutral attitudes toward fat people) in cases in which negative attitudes are normally found on explicit or other implicit measures. It was hypothesized that these results might reflect a positive framing bias (PFB) that occurs when participants complete the IRAP. Implicit attitudes toward categories with varying prior associations (nonwords, social systems, flowers and insects, thin and fat people) were measured. Three conditions (standard, positive framing, and negative framing) were used to measure whether framing influenced estimates of implicit attitudes. It was found that IRAP scores were influenced by how the task was framed to the participants, that the framing effect was modulated by the strength of prior stimulus associations, and that a default PFB led to an overestimation of positive implicit attitudes when measured by the IRAP. Overall, the findings question the validity of the IRAP as a tool for the measurement of absolute implicit attitudes. A new tool (Simple Implicit Procedure:SIP) for measuring absolute, not just relative, implicit attitudes is proposed. (PsycINFO Database Record

  2. Using Implicit Measures to Highlight Science Teachers' Implicit Theories of Intelligence

    ERIC Educational Resources Information Center

    Mascret, Nicolas; Roussel, Peggy; Cury, François

    2015-01-01

    Using an innovative method, a Single-Target Implicit Association Test (ST-IAT) was created to explore the implicit theories of intelligence among science and liberal arts teachers and their relationships with their gender. The results showed that for science teachers--especially for male teachers--there was a negative implicit association between…

  3. Application of TVD schemes for the Euler equations of gas dynamics. [method of Total Variation Diminishing for shock wave computation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    Highly accurate and yet stable shock-capturing finite difference schemes have been designed for the computation of the Euler equations of gas dynamics. Four different principles for the construction of high resolution total variation diminishing (TVD) schemes are available, including hybrid schemes, a second-order extension of Godunov's scheme by van Leer (1979), the modified flux approach of Harten (1983, 1984), and the numerical fluctuation approach of Roe (1985). The present paper has the objective to review the class of second-order TVD schemes via the modified flux approach. Attention is given to first-order TVD schemes, a second-order accurate explicit TVD scheme, the global order of accuracy of the second-order TVD scheme, extensions to systems and two-dimensional conservation laws, numerical experiments with a second-order explicit TVD scheme, implicit TVD schemes, and second-order implicit TVD schemes.

  4. Computational protein design is a challenge for implicit solvation models.

    PubMed

    Jaramillo, Alfonso; Wodak, Shoshana J

    2005-01-01

    Increasingly complex schemes for representing solvent effects in an implicit fashion are being used in computational analyses of biological macromolecules. These schemes speed up the calculations by orders of magnitude and are assumed to compromise little on essential features of the solvation phenomenon. In this work we examine this assumption. Five implicit solvation models, a surface area-based empirical model, two models that approximate the generalized Born treatment and a finite difference Poisson-Boltzmann method are challenged in situations differing from those where these models were calibrated. These situations are encountered in automatic protein design procedures, whose job is to select sequences, which stabilize a given protein 3D structure, from a large number of alternatives. To this end we evaluate the energetic cost of burying amino acids in thousands of environments with different solvent exposures belonging, respectively, to decoys built with random sequences and to native protein crystal structures. In addition we perform actual sequence design calculations. Except for the crudest surface area-based procedure, all the tested models tend to favor the burial of polar amino acids in the protein interior over nonpolar ones, a behavior that leads to poor performance in protein design calculations. We show, on the other hand, that three of the examined models are nonetheless capable of discriminating between the native fold and many nonnative alternatives, a test commonly used to validate force fields. It is concluded that protein design is a particularly challenging test for implicit solvation models because it requires accurate estimates of the solvation contribution of individual residues. This contrasts with native recognition, which depends less on solvation and more on other nonbonded contributions.

  5. Geometric multigrid for an implicit-time immersed boundary method

    SciTech Connect

    Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.

    2014-10-12

    The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methods require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.

  6. Geometric multigrid for an implicit-time immersed boundary method

    DOE PAGESBeta

    Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.

    2014-10-12

    The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less

  7. Implicit solution of three-dimensional internal turbulent flows

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Liou, M.-S.; Povinelli, Louis A.; Martelli, F.

    1991-01-01

    The scalar form of the approximate factorization method was used to develop a new code for the solution of three dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form were iterated in time until a steady solution was reached. Evidence was given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at the domain boundaries was proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects were accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. The flow in a developing S-duct was then solved in the laminar regime in a Reynolds number (Re) of 790 and in the turbulent regime at Re equals 40,000 by using the Baldwin-Lomax model. The Stanitz elbow was then solved by using an invicid version of the same code at M sub inlet equals 0.4. Grid dependence and convergence rate were investigated, showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re equals 2.5 times 10(exp 6) was solved with the Baldwin-Lomax and the q-omega models. Both approaches show satisfactory agreement with experiments, although the q-omega model was slightly more accurate.

  8. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

  9. Pixel-Level Digital-to-Analog Conversion Scheme with Compensation of Thin-Film-Transistor Variations for Compact Integrated Data Drivers of Active Matrix Organic Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wook; Park, Sang-Gyu; Choi, Byong-Deok

    2011-03-01

    The previous pixel-level digital-to-analog-conversion (DAC) scheme that implements a part of a DAC in a pixel circuit turned out to be very efficient for reducing the peripheral area of an integrated data driver fabricated with low-temperature polycrystalline silicon thin-film transistors (LTPS TFTs). However, how the pixel-level DAC can be compatible with the existing pixel circuits including compensation schemes of TFT variations and IR drops on supply rails, which is of primary importance for active matrix organic light emitting diodes (AMOLEDs) is an issue in this scheme, because LTPS TFTs suffer from random variations in their characteristics. In this paper, we show that the pixel-level DAC scheme can be successfully used with the previous compensation schemes by giving two examples of voltage- and current-programming pixels. The previous pixel-level DAC schemes require additional two TFTs and one capacitor, but for these newly proposed pixel circuits, the overhead is no more than two TFTs by utilizing the already existing capacitor. In addition, through a detailed analysis, it has been shown that the pixel-level DAC can be expanded to a 4-bit resolution, or be applied together with 1:2 demultiplexing driving for 6- to 8-in. diagonal XGA AMOLED display panels.

  10. NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.

    2013-04-01

    We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time

  11. Implicit for local effects and explicit for nonlocal effects is unconditionallly stable.

    SciTech Connect

    Anitescu, M.; Layton, W. J.; Pahlevani, F.; Mathematics and Computer Science; Univ. of Pittsburgh

    2004-01-01

    A combination of implicit and explicit timestepping is analyzed for a system of ordinary differential equations (ODEs) motivated by ones arising from spatial discretizations of evolutionary partial differential equations (PDEs). Loosely speaking, the method we consider is implicit in local and stabilizing terms in the underlying PDE and explicit in nonlocal and unstabilizing terms. Unconditional stability and convergence of the numerical scheme are proved by the energy method and by algebraic techniques. This stability result is surprising because usually when different methods are combined, the stability properties of the least stable method plays a determining role in the combination.

  12. Understanding Implicit Bias: What Educators Should Know

    ERIC Educational Resources Information Center

    Staats, Cheryl

    2016-01-01

    The desire to ensure the best for children is precisely why educators should become aware of the concept of implicit bias: the attitudes or stereotypes that affect our understanding, actions, and decisions in an unconscious manner. Operating outside of our conscious awareness, implicit biases are pervasive, and they can challenge even the most…

  13. Implicit and Explicit Instruction of Spelling Rules

    ERIC Educational Resources Information Center

    Kemper, M. J.; Verhoeven, L.; Bosman, A. M. T.

    2012-01-01

    The study aimed to compare the differential effectiveness of explicit and implicit instruction of two Dutch spelling rules. Students with and without spelling disabilities were instructed a spelling rule either implicitly or explicitly in two experiments. Effects were tested in a pretest-intervention-posttest control group design. Experiment 1…

  14. Implicit and Explicit Exercise and Sedentary Identity

    ERIC Educational Resources Information Center

    Berry, Tanya R.; Strachan, Shaelyn M.

    2012-01-01

    We examined the relationship between implicit and explicit "exerciser" and "sedentary" self-identity when activated by stereotypes. Undergraduate participants (N = 141) wrote essays about university students who either liked to exercise or engage in sedentary activities. This was followed by an implicit identity task and an explicit measure of…

  15. Evidence for Implicit Learning in Syntactic Comprehension

    ERIC Educational Resources Information Center

    Fine, Alex B.; Jaeger, T. Florian

    2013-01-01

    This study provides evidence for implicit learning in syntactic comprehension. By reanalyzing data from a syntactic priming experiment (Thothathiri & Snedeker, 2008), we find that the error signal associated with a syntactic prime influences comprehenders' subsequent syntactic expectations. This follows directly from error-based implicit learning…

  16. Psychometric Intelligence Dissociates Implicit and Explicit Learning

    ERIC Educational Resources Information Center

    Gebauer, Guido F.; Mackintosh, Nicholas J.

    2007-01-01

    The hypothesis that performance on implicit learning tasks is unrelated to psychometric intelligence was examined in a sample of 605 German pupils. Performance in artificial grammar learning, process control, and serial learning did not correlate with various measures of intelligence when participants were given standard implicit instructions.…

  17. Implicit solvers for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, Dimitri J.

    1991-01-01

    Implicit methods for unstructured mesh computations are developed and tested. The approximate system which arises from the Newton-linearization of the nonlinear evolution operator is solved by using the preconditioned generalized minimum residual technique. These different preconditioners are investigated: the incomplete LU factorization (ILU), block diagonal factorization, and the symmetric successive over-relaxation (SSOR). The preconditioners have been optimized to have good vectorization properties. The various methods are compared over a wide range of problems. Ordering of the unknowns, which affects the convergence of these sparse matrix iterative methods, is also investigated. Results are presented for inviscid and turbulent viscous calculations on single and multielement airfoil configurations using globally and adaptively generated meshes.

  18. Implicit measures: A normative analysis and review.

    PubMed

    De Houwer, Jan; Teige-Mocigemba, Sarah; Spruyt, Adriaan; Moors, Agnes

    2009-05-01

    Implicit measures can be defined as outcomes of measurement procedures that are caused in an automatic manner by psychological attributes. To establish that a measurement outcome is an implicit measure, one should examine (a) whether the outcome is causally produced by the psychological attribute it was designed to measure, (b) the nature of the processes by which the attribute causes the outcome, and (c) whether these processes operate automatically. This normative analysis provides a heuristic framework for organizing past and future research on implicit measures. The authors illustrate the heuristic function of their framework by using it to review past research on the 2 implicit measures that are currently most popular: effects in implicit association tests and affective priming tasks. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  19. Implicit self-esteem in bulimia nervosa.

    PubMed

    Cockerham, Elaine; Stopa, Lusia; Bell, Lorraine; Gregg, Aiden

    2009-06-01

    Implicit and explicit self-esteem were compared in a group of female participants with bulimia nervosa or binge eating disorder (n=20) and a healthy control group (n=20). Lower explicit and a less positive implicit self-esteem bias in the clinical group was predicted. Participants completed a self-esteem implicit association test and two explicit self-esteem measures. The eating disordered group had lower explicit self-esteem, but a more positive implicit self-esteem bias than controls. The results are discussed in relation to the idea that discrepancies between implicit and explicit self-esteem reflect fragile self-esteem and are related to high levels of perfectionism, which is associated with eating disorders.

  20. Implicit social cognition: from measures to mechanisms.

    PubMed

    Nosek, Brian A; Hawkins, Carlee Beth; Frazier, Rebecca S

    2011-04-01

    Most human cognition occurs outside conscious awareness or conscious control. Some of these implicit processes influence social perception, judgment and action. The past 15 years of research in implicit social cognition can be characterized as the Age of Measurement because of a proliferation of measurement methods and research evidence demonstrating their practical value for predicting human behavior. Implicit measures assess constructs that are distinct, but related, to self-report assessments, and predict variation in behavior that is not accounted for by those explicit measures. The present state of knowledge provides a foundation for the next age of implicit social cognition: clarification of the mechanisms underlying implicit measurement and how the measured constructs influence behavior.

  1. Transient 3d contact problems—NTS method: mixed methods and conserving integration

    NASA Astrophysics Data System (ADS)

    Hesch, Christian; Betsch, Peter

    2011-10-01

    The present work deals with a new formulation for transient large deformation contact problems. It is well known, that one-step implicit time integration schemes for highly non-linear systems fail to conserve the total energy of the system. To deal with this drawback, a mixed method is newly proposed in conjunction with the concept of a discrete gradient. In particular, we reformulate the well known and widely-used node-to-segment methods and establish an energy-momentum scheme. The advocated approach ensures robustness and enhanced numerical stability, demonstrated in several three-dimensional applications of the proposed algorithm.

  2. Digital flight control design using implicit model following.

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1973-01-01

    A design procedure for determining the control gains of a discrete-time ('digital') control system is presented. The method is separable into four distinct steps: (1) the definition of closed-loop response criteria, (2) the choice of a discrete-time model which provides the desired response, (3) the determination of control gains which implicitly force the actual system to follow the desired response, and (4) the reduction of the measurement state by the introduction of an 'observer' (a form of integral-differential compensation). It is shown that a single desired response does not completely define the 'ideal' system. The response criterion generally leaves some parameters of the model unspecified, allowing two courses for improving the model: (1) definition of additional response criteria, or (2) redefinition of the discrete-time model for improved implicit model-following with the actual closed-loop system.

  3. Reducing Prejudice With Labels: Shared Group Memberships Attenuate Implicit Bias and Expand Implicit Group Boundaries.

    PubMed

    Scroggins, W Anthony; Mackie, Diane M; Allen, Thomas J; Sherman, Jeffrey W

    2016-02-01

    In three experiments, we used a novel Implicit Association Test procedure to investigate the impact of group memberships on implicit bias and implicit group boundaries. Results from Experiment 1 indicated that categorizing targets using a shared category reduced implicit bias by increasing the extent to which positivity was associated with Blacks. Results from Experiment 2 revealed that shared group membership, but not mere positivity of a group membership, was necessary to reduce implicit bias. Quadruple process model analyses indicated that changes in implicit bias caused by shared group membership are due to changes in the way that targets are evaluated, not to changes in the regulation of evaluative bias. Results from Experiment 3 showed that categorizing Black targets into shared group memberships expanded implicit group boundaries. PMID:26667477

  4. Reducing Prejudice With Labels: Shared Group Memberships Attenuate Implicit Bias and Expand Implicit Group Boundaries.

    PubMed

    Scroggins, W Anthony; Mackie, Diane M; Allen, Thomas J; Sherman, Jeffrey W

    2016-02-01

    In three experiments, we used a novel Implicit Association Test procedure to investigate the impact of group memberships on implicit bias and implicit group boundaries. Results from Experiment 1 indicated that categorizing targets using a shared category reduced implicit bias by increasing the extent to which positivity was associated with Blacks. Results from Experiment 2 revealed that shared group membership, but not mere positivity of a group membership, was necessary to reduce implicit bias. Quadruple process model analyses indicated that changes in implicit bias caused by shared group membership are due to changes in the way that targets are evaluated, not to changes in the regulation of evaluative bias. Results from Experiment 3 showed that categorizing Black targets into shared group memberships expanded implicit group boundaries.

  5. POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model

    NASA Astrophysics Data System (ADS)

    Ştefănescu, R.; Navon, I. M.

    2013-03-01

    In the present paper we consider a 2-D shallow-water equations (SWE) model on a β-plane solved using an alternating direction fully implicit (ADI) finite-difference scheme on a rectangular domain. The scheme was shown to be unconditionally stable for the linearized equations. The discretization yields a number of nonlinear systems of algebraic equations. We then use a proper orthogonal decomposition (POD) to reduce the dimension of the SWE model. Due to the model nonlinearities, the computational complexity of the reduced model still depends on the number of variables of the full shallow - water equations model. By employing the discrete empirical interpolation method (DEIM) we reduce the computational complexity of the reduced order model due to its depending on the nonlinear full dimension model and regain the full model reduction expected from the POD model. To emphasize the CPU gain in performance due to use of POD/DEIM, we also propose testing an explicit Euler finite difference scheme (EE) as an alternative to the ADI implicit scheme for solving the swallow water equations model. We then proceed to assess the efficiency of POD/DEIM as a function of number of spatial discretization points, time steps, and POD basis functions. As was expected, our numerical experiments showed that the CPU time performances of POD/DEIM schemes are proportional to the number of mesh points. Once the number of spatial discretization points exceeded 10000 and for 90 DEIM interpolation points, the CPU time decreased by a factor of 10 in case of POD/DEIM implicit SWE scheme and by a factor of 15 for the POD/DEIM explicit SWE scheme in comparison with the corresponding POD SWE schemes. Moreover, our numerical tests revealed that if the number of points selected by DEIM algorithm reached 50, the approximation errors due to POD/DEIM and POD reduced systems have the same orders of magnitude, thus supporting the theoretical results existing in the literature.

  6. A compatible Lagrangian hydrodynamic scheme for multicomponent flows with mixing

    SciTech Connect

    Chang, Chong; Stagg, Alan K

    2012-01-01

    We present a Lagrangian time integration scheme and compatible discretization for total energy conservation in multicomponent mixing simulations. Mixing behavior results from relative motion between species. Species velocities are determined by solving species momentum equations in a Lagrangian manner. Included in the species momentum equations are species artificial viscosity (since each species can undergo compression) and inter-species momentum exchange. Thermal energy for each species is also solved, including compression work and thermal dissipation caused by momentum exchange. The present procedure is applicable to mixing of an arbitrary number of species that may not be in pressure or temperature equilibrium. A traditional staggered stencil has been adopted to describe motion of each species. The computational mesh for the mixture is constructed in a Lagrangian manner using the mass-averaged mixture velocity. Species momentum equations are solved at the vertices of the mesh, and temporary species meshes are constructed and advanced in time using the resulting species velocities. Following the Lagrangian step, species quantities are advected (mapped) from the species meshes to the mixture mesh. Momentum exchange between species introduces work that must be included in an energy-conserving discretization scheme. This work has to be transformed to dissipation in order to effect a net change in species thermal energy. The dissipation between interacting species pairs is obtained by combining the momentum exchange work. The dissipation is then distributed to the species involved using a distribution factor based on species specific heats. The resulting compatible discretization scheme provides total energy conservation of the whole mixture. In addition, the numerical scheme includes conservative local energy exchange between species in mixture. Due to the relatively large species interaction coefficients, both the species momenta and energies are calculated

  7. Uniformly second-order-accurate essentially nonoscillatory schemes for the Euler equations

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.

    1990-12-01

    Two time-level explicit and implicit finite-difference shock-capturing schemes based on the characteristic flux difference splitting method and the modified flux approach with the essentially nonoscillatory (ENO) property of Harten and Osher have been developed for the two-dimensional Euler equations. The methods are conservative, uniformly second-order accurate in time and space, even at local extrema. General coordinate systems are used to treat complex geometries. Standard alternating direction implicit approximate factorization is used for constructing implicit schemes. Numerical results have been obtained for unsteady shock wave reflection around general two-dimensional blunt bodies and for steady transonic flows over a circular arc bump in a channel. Properties of ENO schemes as applied to two-dimensional flows with multiple embedded discontinuities are discussed. Comparisons of the performance between the present ENO schemes and the previous total variation diminishing schemes is also included.

  8. A semi-implicit finite difference model for three-dimensional tidal circulation,

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1992-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.

  9. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  10. Implicit and Explicit Spacecraft Gyro Calibration

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2004-01-01

    This paper presents a comparison between two approaches to sensor calibration. According to one approach, called explicit, an estimator compares the sensor readings to reference readings, and uses the difference between the two to estimate the calibration parameters. According to the other approach, called implicit, the sensor error is integrated to form a different entity, which is then compared with a reference quantity of this entity, and the calibration parameters are inferred from the difference. In particular this paper presents the comparison between these approaches when applied to in-flight spacecraft gyro calibration. Reference spacecraft rate is needed for gyro calibration when using the explicit approach; however, such reference rates are not readily available for in-flight calibration. Therefore the calibration parameter-estimator is expanded to include the estimation of that reference rate, which is based on attitude measurements in the form of attitude-quaternion. A comparison between the two approaches is made using simulated data. It is concluded that the performances of the two approaches are basically comparable. Sensitivity tests indicate that the explicit filter results are essentially insensitive to variations in given spacecraft dynamics model parameters.

  11. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    SciTech Connect

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities are tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”

  12. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    DOE PAGESBeta

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less

  13. Numerical framework and performance of the new multiple-phase cloud microphysics scheme in RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects

    NASA Astrophysics Data System (ADS)

    Nogherotto, Rita; Tompkins, Adrian Mark; Giuliani, Graziano; Coppola, Erika; Giorgi, Filippo

    2016-07-01

    We implement and evaluate a new parameterization scheme for stratiform cloud microphysics and precipitation within regional climate model RegCM4. This new parameterization is based on a multiple-phase one-moment cloud microphysics scheme built upon the implicit numerical framework recently developed and implemented in the ECMWF operational forecasting model. The parameterization solves five prognostic equations for water vapour, cloud liquid water, rain, cloud ice, and snow mixing ratios. Compared to the pre-existing scheme, it allows a proper treatment of mixed-phase clouds and a more physically realistic representation of cloud microphysics and precipitation. Various fields from a 10-year long integration of RegCM4 run in tropical band mode with the new scheme are compared with their counterparts using the previous cloud scheme and are evaluated against satellite observations. In addition, an assessment using the Cloud Feedback Model Intercomparison Project (CFMIP) Observational Simulator Package (COSP) for a 1-year sub-period provides additional information for evaluating the cloud optical properties against satellite data. The new microphysics parameterization yields an improved simulation of cloud fields, and in particular it removes the overestimation of upper level cloud characteristics of the previous scheme, increasing the agreement with observations and leading to an amelioration of a long-standing problem in the RegCM system. The vertical cloud profile produced by the new scheme leads to a considerably improvement of the representation of the longwave and shortwave components of the cloud radiative forcing.

  14. Implicit solvers for large-scale nonlinear problems

    SciTech Connect

    Keyes, D E; Reynolds, D; Woodward, C S

    2006-07-13

    Computational scientists are grappling with increasingly complex, multi-rate applications that couple such physical phenomena as fluid dynamics, electromagnetics, radiation transport, chemical and nuclear reactions, and wave and material propagation in inhomogeneous media. Parallel computers with large storage capacities are paving the way for high-resolution simulations of coupled problems; however, hardware improvements alone will not prove enough to enable simulations based on brute-force algorithmic approaches. To accurately capture nonlinear couplings between dynamically relevant phenomena, often while stepping over rapid adjustments to quasi-equilibria, simulation scientists are increasingly turning to implicit formulations that require a discrete nonlinear system to be solved for each time step or steady state solution. Recent advances in iterative methods have made fully implicit formulations a viable option for solution of these large-scale problems. In this paper, we overview one of the most effective iterative methods, Newton-Krylov, for nonlinear systems and point to software packages with its implementation. We illustrate the method with an example from magnetically confined plasma fusion and briefly survey other areas in which implicit methods have bestowed important advantages, such as allowing high-order temporal integration and providing a pathway to sensitivity analyses and optimization. Lastly, we overview algorithm extensions under development motivated by current SciDAC applications.

  15. Intact implicit processing of facial threat cues in schizophrenia.

    PubMed

    Shasteen, Jonathon R; Pinkham, Amy E; Kelsven, Skylar; Ludwig, Kelsey; Payne, B Keith; Penn, David L

    2016-01-01

    An emerging body of research suggests that people with schizophrenia retain the ability to implicitly perceive facial affect, despite well-documented difficulty explicitly identifying emotional expressions. It remains unclear, however, whether such functional implicit processing extends beyond emotion to other socially relevant facial cues. Here, we constructed two novel versions of the Affect Misattribution Procedure, a paradigm in which affective responses to primes are projected onto neutral targets. The first version included three face primes previously validated to elicit varying inferences of threat from healthy individuals via emotion-independent structural modification (e.g., nose and eye size). The second version included the threat-relevant emotional primes of angry, neutral, and happy faces. Data from 126 participants with schizophrenia and 84 healthy controls revealed that although performing more poorly on an assessment of explicit emotion recognition, patients showed normative implicit threat processing for both non-emotional and emotional facial cues. Collectively, these results support recent hypotheses postulating that the initial perception of salient facial information remains intact in schizophrenia, but that deficits arise at subsequent stages of contextual integration and appraisal. Such a breakdown in the stream of face processing has important implications for mechanistic models of social cognitive impairment in schizophrenia and treatment strategies aiming to improve functional outcome. PMID:26673971

  16. Implicit collaboration of sensor systems

    NASA Astrophysics Data System (ADS)

    Hintz, Kenneth J.

    2004-08-01

    The concept of goal lattices for the evaluation of potential sensor actions can be used to cause a multiplicity of heterogeneous sensor systems to collaborate. Previously goal lattices have been used to compute the value to a sensor system of taking a particular action in terms of how well that action contributes to the accomplishment of the topmost goals. This assumes that each sensor system is autonomous and only responsible to itself. If the topmost goals of each sensor system's goal lattice has adjoined to it two additional goals, namely "collaboration" and "altruism", then the value system is extended to include servicing requests from other systems. Two aircraft on a common mission can each benefit from measurements taken by the other aircraft either to confirm their own measurements, to create a pseudo-sensor, or to extend the area of coverage. The altruism goal indicates how much weight a sensor management system (SMS) will give in responding to a measurement request from any other system. The collaboration goal indicates how much weight will be given to responding to a measurement request from specific systems which are defined as being part of a collaborating group. By varying the values of the altruism and collaboration goals of each system, either locally or globally, various levels of implicit cooperation among sensor systems can be caused to emerge.

  17. Implicit high-order discontinuous Galerkin method with HWENO type limiters for steady viscous flow simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen-Hua; Yan, Chao; Yu, Jian

    2013-08-01

    Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.

  18. Imagining intergroup contact reduces implicit prejudice.

    PubMed

    Turner, Rhiannon N; Crisp, Richard J

    2010-03-01

    Recent research has demonstrated that imagining intergroup contact can be sufficient to reduce explicit prejudice directed towards out-groups. In this research, we examined the impact of contact-related mental imagery on implicit prejudice as measured by the implicit association test. We found that, relative to a control condition, young participants who imagined talking to an elderly stranger subsequently showed more positive implicit attitudes towards elderly people in general. In a second study, we demonstrated that, relative to a control condition, non-Muslim participants who imagined talking to a Muslim stranger subsequently showed more positive implicit attitudes towards Muslims in general. We discuss the implications of these findings for furthering the application of indirect contact strategies aimed at improving intergroup relations.

  19. Implicit learning and acquisition of music.

    PubMed

    Rohrmeier, Martin; Rebuschat, Patrick

    2012-10-01

    Implicit learning is a core process for the acquisition of a complex, rule-based environment from mere interaction, such as motor action, skill acquisition, or language. A body of evidence suggests that implicit knowledge governs music acquisition and perception in nonmusicians and musicians, and that both expert and nonexpert participants acquire complex melodic, harmonic, and other features from mere exposure. While current findings and computational modeling largely support the learning of chunks, some results indicate learning of more complex structures. Despite the body of evidence, more research is required to support the cross-cultural validity of implicit learning and to show that core and more complex music theoretical features are acquired implicitly. PMID:23060126

  20. Multigrid applied to implicit well problems

    SciTech Connect

    Dendy, J.E. Jr.; Tchelepi, Hamdi

    1996-10-01

    This paper discusses the application of multigrid techniques to the solution of implicit well equations, which arise in the numerical simulation of oil reservoirs. The emphasis is on techniques which can exploit parallel computation.

  1. Parallelizing alternating direction implicit solver on GPUs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present a parallel Alternating Direction Implicit (ADI) solver on GPUs. Our implementation significantly improves existing implementations in two aspects. First, we address the scalability issue of existing Parallel Cyclic Reduction (PCR) implementations by eliminating their hardware resource con...

  2. Operator splitting ADI schemes for pseudo-time coupled nonlinear solvation simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Shan

    2014-01-01

    This work introduces novel operator splitting alternating direction implicit (ADI) schemes to overcome numerical difficulties in solving pseudo-time coupled nonlinear partial differential equations (PDEs) for biomolecular solvation analysis. Based on the variational formulation, a pseudo-transient continuation model has been previously formulated to couple a nonlinear Poisson-Boltzmann (NPB) equation for the electrostatic potential with a generalized Laplace-Beltrami equation defining the biomolecular surface. However, the standard numerical integration of the time dependent NPB equation is known to be very inefficient. Moreover, it encounters instability issues for smoothly varying solute-solvent interfaces so that a filtering process has to be conducted. In the present work, we propose to solve the unsteady NPB equation in an operator splitting framework so that the nonlinear instability can be completely avoided through an analytical integration. Central finite differences are employed to discretize the nonhomogeneous diffusion term of the generalized NPB equation to form tridiagonal matrices in the Douglas and Douglas-Rachford type ADI schemes. The proposed time splitting ADI schemes are found to be unconditionally stable for solving the NPB equation in benchmark examples with analytical solutions. For the solvation analysis involving two pseudo-time coupled nonlinear PDEs, the time stability of the NPB equation can be maintained by using very large time increments, so that without sacrificing the accuracy, the present biomolecular simulation becomes over ten times faster.

  3. Compact integration factor methods for complex domains and adaptive mesh refinement.

    PubMed

    Liu, Xinfeng; Nie, Qing

    2010-08-10

    Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed.

  4. Compact integration factor methods for complex domains and adaptive mesh refinement

    PubMed Central

    Liu, Xinfeng; Nie, Qing

    2010-01-01

    Implicit integration factor (IIF) method, a class of efficient semi-implicit temporal scheme, was introduced recently for stiff reaction-diffusion equations. To reduce cost of IIF, compact implicit integration factor (cIIF) method was later developed for efficient storage and calculation of exponential matrices associated with the diffusion operators in two and three spatial dimensions for Cartesian coordinates with regular meshes. Unlike IIF, cIIF cannot be directly extended to other curvilinear coordinates, such as polar and spherical coordinate, due to the compact representation for the diffusion terms in cIIF. In this paper, we present a method to generalize cIIF for other curvilinear coordinates through examples of polar and spherical coordinates. The new cIIF method in polar and spherical coordinates has similar computational efficiency and stability properties as the cIIF in Cartesian coordinate. In addition, we present a method for integrating cIIF with adaptive mesh refinement (AMR) to take advantage of the excellent stability condition for cIIF. Because the second order cIIF is unconditionally stable, it allows large time steps for AMR, unlike a typical explicit temporal scheme whose time step is severely restricted by the smallest mesh size in the entire spatial domain. Finally, we apply those methods to simulating a cell signaling system described by a system of stiff reaction-diffusion equations in both two and three spatial dimensions using AMR, curvilinear and Cartesian coordinates. Excellent performance of the new methods is observed. PMID:20543883

  5. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  6. Classification schemes for arteriovenous malformations.

    PubMed

    Davies, Jason M; Kim, Helen; Young, William L; Lawton, Michael T

    2012-01-01

    The wide variety of arteriovenous malformation (AVM) anatomy, size, location, and clinical presentation makes patient selection for surgery a difficult process. Neurosurgeons have identified key factors that determine the risks of surgery and then devised classification schemes that integrate these factors, predict surgical results, and help select patients for surgery. These classification schemes have value because they transform complex decisions into simpler algorithms. In this review, the important grading schemes that have contributed to management of patients with brain AVMs are described, and our current approach to patient selection is outlined.

  7. Implicit solution of large-scale radiation diffusion problems

    SciTech Connect

    Brown, P N; Graziani, F; Otero, I; Woodward, C S

    2001-01-04

    In this paper, we present an efficient solution approach for fully implicit, large-scale, nonlinear radiation diffusion problems. The fully implicit approach is compared to a semi-implicit solution method. Accuracy and efficiency are shown to be better for the fully implicit method on both one- and three-dimensional problems with tabular opacities taken from the LEOS opacity library.

  8. Implicit Association Tests of Attitudes toward Persons with Disabilities

    ERIC Educational Resources Information Center

    Thomas, Adrian; Vaughn, Edwin D.; Doyle, Andrea; Bubb, Robert

    2014-01-01

    The authors assessed 3 of the currently available implicit association tests designed to measure attitudes toward persons with disabilities. The Revised Multiple Disability Implicit Association Test, the Implicit Association Test for Attitudes Toward Athletes With Disabilities, and the Disability Attitude Implicit Association Test were related to…

  9. Gifted Students' Implicit Beliefs about Intelligence and Giftedness

    ERIC Educational Resources Information Center

    Makel, Matthew C.; Snyder, Kate E.; Thomas, Chandler; Malone, Patrick S.; Putallaz, Martha

    2015-01-01

    Growing attention is being paid to individuals' implicit beliefs about the nature of intelligence. However, implicit beliefs about giftedness are currently underexamined. In the current study, we examined academically gifted adolescents' implicit beliefs about both intelligence and giftedness. Overall, participants' implicit beliefs about…

  10. Predictive models of implicit and explicit attitudes.

    PubMed

    Perugini, Marco

    2005-03-01

    Explicit attitudes have long been assumed to be central factors influencing behaviour. A recent stream of studies has shown that implicit attitudes, typically measured with the Implicit Association Test (IAT), can also predict a significant range of behaviours. This contribution is focused on testing different predictive models of implicit and explicit attitudes. In particular, three main models can be derived from the literature: (a) additive (the two types of attitudes explain different portion of variance in the criterion), (b) double dissociation (implicit attitudes predict spontaneous whereas explicit attitudes predict deliberative behaviour), and (c) multiplicative (implicit and explicit attitudes interact in influencing behaviour). This paper reports two studies testing these models. The first study (N = 48) is about smoking behaviour, whereas the second study (N = 109) is about preferences for snacks versus fruit. In the first study, the multiplicative model is supported, whereas the double dissociation model is supported in the second study. The results are discussed in light of the importance of focusing on different patterns of prediction when investigating the directive influence of implicit and explicit attitudes on behaviours. PMID:15901390

  11. Providing Explicit Information Disrupts Implicit Motor Learning After Basal Ganglia Stroke

    PubMed Central

    Boyd, Lara A.; Winstein, Carolee J.

    2004-01-01

    Despite their purported neuroanatomic and functional isolation, empirical evidence suggests that sometimes conscious explicit processes can influence implicit motor skill learning. Our goal was to determine if the provision of explicit information affected implicit motor-sequence learning after damage to the basal ganglia. Individuals with stroke affecting the basal ganglia (BG) and healthy controls (HC) practiced a continuous implicit motor-sequencing task; half were provided with explicit information (EI) and half were not (No-EI). The focus of brain damage for both BG groups was in the putamen. All of the EI participants were at least explicitly aware of the repeating sequence. Across three days of practice, explicit information had a differential effect on the groups. Explicit information disrupted acquisition performance in participants with basal ganglia stroke but not healthy controls. By retention (day 4), a dissociation was apparent—explicit information hindered implicit learning in participants with basal ganglia lesions but aided healthy controls. It appears that after basal ganglia stroke explicit information is less helpful in the development of the motor plan than is discovering a motor solution using the implicit system alone. This may be due to the increased demand placed on working memory by explicit information. Thus, basal ganglia integrity may be a crucial factor in determining the efficacy of explicit information for implicit motor-sequence learning. PMID:15286181

  12. Competition between frontal lobe functions and implicit sequence learning: evidence from the long-term effects of alcohol.

    PubMed

    Virag, Marta; Janacsek, Karolina; Horvath, Aniko; Bujdoso, Zoltan; Fabo, Daniel; Nemeth, Dezso

    2015-07-01

    Implicit sequence learning is a fundamental mechanism that underlies the acquisition of motor, cognitive and social skills. The relationship between implicit learning and executive functions is still debated due to the overlapping fronto-striatal networks. According to the framework of competitive neurocognitive networks, disrupting specific frontal lobe functions, such as executive functions, increases performance on implicit learning tasks. The aim of our study was to explore the nature of such a relationship by investigating the effect of long-term regular alcohol intake on implicit sequence learning. Since alcohol dependency impairs executive functions, we expected intact or even better implicit learning in patient group compared to the healthy controls based on the competitive relationship between these neurocognitive networks. To our knowledge, this is the first study to examine the long-term effects of alcohol dependency both on implicit learning and on executive functions requiring different but partly overlapping neurocognitive networks. Here, we show weaker executive functions but intact implicit learning in the alcohol-dependent group compared to the controls. Moreover, we found negative correlation between these functions in both groups. Our results confirm the competitive relationship between the fronto-striatal networks underlying implicit sequence learning and executive functions and suggest that the functional integrity of this relationship is unaltered in the alcohol-dependent group despite the weaker frontal lobe functions.

  13. The influence of linguistic and cognitive factors on the time course of verb-based implicit causality.

    PubMed

    Koornneef, Arnout; Dotlačil, Jakub; van den Broek, Paul; Sanders, Ted

    2016-01-01

    In three eye-tracking experiments the influence of the Dutch causal connective "want" (because) and the working memory capacity of readers on the usage of verb-based implicit causality was examined. Experiments 1 and 2 showed that although a causal connective is not required to activate implicit causality information during reading, effects of implicit causality surfaced more rapidly and were more pronounced when a connective was present in the discourse than when it was absent. In addition, Experiment 3 revealed that-in contrast to previous claims-the activation of implicit causality is not a resource-consuming mental operation. Moreover, readers with higher and lower working memory capacities behaved differently in a dual-task situation. Higher span readers were more likely to use implicit causality when they had all their working memory resources at their disposal. Lower span readers showed the opposite pattern as they were more likely to use the implicit causality cue in the case of an additional working memory load. The results emphasize that both linguistic and cognitive factors mediate the impact of implicit causality on text comprehension. The implications of these results are discussed in terms of the ongoing controversies in the literature-that is, the focusing-integration debate and the debates on the source of implicit causality.

  14. Large-eddy simulation of turbulent channel flows with conservative IDO scheme

    NASA Astrophysics Data System (ADS)

    Onodera, Naoyuki; Aoki, Takayuki; Kobayashi, Hiromichi

    2011-06-01

    The resolution of a numerical scheme in both physical and Fourier spaces is one of the most important requirements to calculate turbulent flows. A conservative form of the interpolated differential operator (IDO-CF) scheme is a multi-moment Eulerian scheme in which point values and integrated average values are separately defined in one cell. Since the IDO-CF scheme using high-order interpolation functions is constructed with compact stencils, the boundary conditions are able to be treated as easy as the 2nd-order finite difference method (FDM). It is unique that the first-order spatial derivative of the point value is derived from the interpolation function with 4th-order accuracy and the volume averaged value is based on the exact finite volume formulation, so that the IDO-CF scheme has higher spectral resolution than conventional FDMs with 4th-order accuracy. The computational cost to calculate the first-order spatial derivative with non-uniform grid spacing is one-third of the 4th-order FDM. For a large-eddy simulation (LES), we use the coherent structure model (CSM) in which the model coefficient is locally obtained from a turbulent structure extracted from a second invariant of the velocity gradient tensor, and the model coefficient correctly satisfies asymptotic behaviors to walls. The results of the IDO-CF scheme with the CSM for turbulent channel flows are compared to the FDM with the CSM and dynamic Smagorinsky model as well as the direct numerical simulation (DNS) by Moser et al. Adding the sub-grid scale stress tensor of LES to the IDO-CF scheme improves the profile of the mean velocity in comparison with an implicit eddy viscosity of the IDO-CF upwind scheme. The IDO-CF scheme with the CSM gives better turbulent intensities than conventional FDMs with the same number of grid points. The turbulent statistics calculated by IDO-CF scheme are in good agreement with the DNS at the various values of Reynolds number Reτ = 180,395, and 590. It is found that

  15. An implicit stabilized finite element method for the compressible Navier-Stokes equations using finite calculus

    NASA Astrophysics Data System (ADS)

    Kouhi, Mohammad; Oñate, Eugenio

    2015-07-01

    A new implicit stabilized formulation for the numerical solution of the compressible Navier-Stokes equations is presented. The method is based on the finite calculus (FIC) scheme using the Galerkin finite element method (FEM) on triangular grids. Via the FIC formulation, two stabilization terms, called streamline term and transverse term, are added to the original conservation equations in the space-time domain. The non-linear system of equations resulting from the spatial discretization is solved implicitly using a damped Newton method benefiting from the exact Jacobian matrix. The matrix system is solved at each iteration with a preconditioned GMRES method. The efficiency of the proposed stabilization technique is checked out in the solution of 2D inviscid and laminar viscous flow problems where appropriate solutions are obtained especially near the boundary layer and shock waves. The work presented here can be considered as a follow up of a previous work of the authors Kouhi, Oñate (Int J Numer Methods Fluids 74:872-897, 2014). In that paper, the stabilized Galerkin FEM based on the FIC formulation was derived for the Euler equations together with an explicit scheme. In the present paper, the extension of this work to the Navier-Stokes equations using an implicit scheme is presented.

  16. Implicit solution of three-dimensional internal turbulent flows

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Liou, M.-S.; Povinelli, L. A.

    1990-01-01

    The scalar form of the approximate factorization method was used to develop a new code for the solution of three-dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form are iterated in time until a steady solution is reached. Evidence is given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at domain boundaries is proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects are accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. For the first, an investigation on the model behavior in case of multiple boundaries is performed. The flow in a developing S-duct is then solved in the laminar regime at Reynolds number (Re) 790 and in the turbulent regime at Re=40,000 using the Baldwin-Lomax model . The Stanitz elbow is then solved using an inviscid version of the same code at M(sub inlet)=0.4. Grid dependence and convergence rate are investigated showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re=2.5x10(exp 6) is solved with the Baldwin-Lomax and the q-omega models. Both approaches showed satisfactory agreement with experiments, although the q-omega model is slightly more accurate.

  17. Salt-water-freshwater transient upconing - An implicit boundary-element solution

    USGS Publications Warehouse

    Kemblowski, M.

    1985-01-01

    The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.

  18. Effects of using a posteriori methods for the conservation of integral invariants. [for weather forecasting

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.

    1988-01-01

    The nature and effect of using a posteriori adjustments to nonconservative finite-difference schemes to enforce integral invariants of the corresponding analytic system are examined. The method of a posteriori integral constraint restoration is analyzed for the case of linear advection, and the harmonic response associated with the a posteriori adjustments is examined in detail. The conservative properties of the shallow water system are reviewed, and the constraint restoration algorithm applied to the shallow water equations are described. A comparison is made between forecasts obtained using implicit and a posteriori methods for the conservation of mass, energy, and potential enstrophy in the complete nonlinear shallow-water system.

  19. Volume 2: Explicit, multistage upwind schemes for Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Ash, Robert L.

    1992-01-01

    The objective of this study was to develop a high-resolution-explicit-multi-block numerical algorithm, suitable for efficient computation of the three-dimensional, time-dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a finite volume approach, using monotonic upstream schemes for conservation laws (MUSCL)-type differencing to obtain state variables at cell interface. Variable interpolations were written in the k-scheme formulation. Inviscid fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector splitting techniques, which are considered state of the art. The viscous terms were discretized using a second-order, central-difference operator. Two classes of explicit time integration has been investigated for solving the compressible inviscid/viscous flow problems--two-state predictor-corrector schemes, and multistage time-stepping schemes. The coefficients of the multistage time-stepping schemes have been modified successfully to achieve better performance with upwind differencing. A technique was developed to optimize the coefficients for good high-frequency damping at relatively high CFL numbers. Local time-stepping, implicit residual smoothing, and multigrid procedure were added to the explicit time stepping scheme to accelerate convergence to steady-state. The developed algorithm was implemented successfully in a multi-block code, which provides complete topological and geometric flexibility. The only requirement is C degree continuity of the grid across the block interface. The algorithm has been validated on a diverse set of three-dimensional test cases of increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an ONERA M6 wing; and (5) unsteady flow of a compressible jet impinging on a ground plane (with and without cross flow). The emphasis of the test cases was validation of

  20. Implicit Multigrid Solutions for Compressible Flows in Complex Geometries.

    NASA Astrophysics Data System (ADS)

    Wang, Lixia

    Two implicit multigrid algorithms for the two and three dimensional compressible Euler equations have been developed in this dissertation. First, a diagonal implicit multigrid method is developed for solving a finite-volume approximation to the Euler equations in which the dependent variables are stored at the cell vertices. The spatial derivatives in the two dimensional Euler equations are approximated using a conservative cell-vertex finite volume formulation. Artificial dissipation is provided by adding an adaptive blend of second and fourth differences of the solution to maintain stability and accuracy. A Diagonal Alternating Directional Implicit method is used to advance the solution in time. Rapid convergence to a steady-state solution is achieved with local time stepping and the multigrid algorithm. Results for the transonic flow past the NACA 0012 airfoil are presented to verify the accuracy and efficiency of the scheme. Second, the development of an efficient and flexible multiblock/multigrid Euler solver and its application to realistic engineering problems are presented. A cell-centered finite volume method with a multigrid implementation of the Diagonal Alternating Direction Implicit algorithm is used to solve the Euler equations. A fully conservative inter-block boundary condition, which permits the passage of discontinuities across block boundaries with minimum distortion of the solution, is developed for cases in which the grid lines at the inter-block boundaries can be completely continuous or discontinuous. Information is exchanged between blocks by using surface arrays, which contain all the data needed to update the inter-block boundary conditions. Results demonstrate the feasibility of using the present multi -block/multigrid approach to solve flow problems involving complex geometries. Two dimensional results for several types of grids and various free stream conditions have been presented to verify the accuracy and computational efficiency of

  1. Implicit multigrid solutions for compressible flows in complex geometries

    NASA Astrophysics Data System (ADS)

    Wang, Lixia

    Two implicit multigrid algorithms for the two and three dimensional compressible Euler equations are developed. First, a diagonal implicit multigrid method is developed for solving a finite-volume approximation to the Euler equations in which the dependent variables are stored at the cell vertices. The spatial derivatives in the two dimensional Euler equations are approximated using a conservative cell-vertex finite volume formulation. Artificial dissipation is provided by adding an adaptive blend of second and fourth differences of the solution to maintain stability and accuracy. A diagonal alternating directional implicit method is used to advance the solution in time. Rapid convergence to a steady-state solution is achieved with local time stepping and the multigrid algorithm. Results for the transonic flow past the NACA 0012 airfoil are presented to verify the accuracy and efficiency of the scheme. Second, the development of an efficient and flexible multiblock/multigrid Euler solver and its application to realistic engineering problems are presented. A cell-centered finite volume method with a multigrid implementation of the diagonal alternating direction implicit algorithm is used to solve the Euler equations. A fully conservative interblock boundary condition, which permits the passage of discontinuities across block boundaries with minimum distortion of the solution, is developed for cases in which the grid lines at the interblock boundaries can be completely continuous or discontinuous. Information is exchanged between blocks by using surface arrays, which contain all the data needed to update the interblock boundary conditions. Results demonstrate the feasibility of using the present multiblock/multigrid approach to solve flow problems involving complex geometries. Two dimensional results for several types of grids and various free stream conditions have been presented to verify the accuracy and computational efficiency of the method. The application of

  2. Application of TVD schemes for the Euler equations of gas dynamics. [total variation diminishing for nonlinear hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    First-order, second-order, and implicit total variation diminishing (TVD) schemes are reviewed using the modified flux approach. Some transient and steady-state calculations are then carried out to illustrate the applicability of these schemes to the Euler equations. It is shown that the second-order explicit TVD schemes generate good shock resolution for both transient and steady-state one-dimensional and two-dimensional problems. Numerical experiments for a quasi-one-dimensional nozzle problem show that the second-order implicit TVD scheme produces a fairly rapid convergence rate and remains stable even when running with a Courant number of 10 to the 6th.

  3. Integrators for Nonholonomic Mechanical Systems

    NASA Astrophysics Data System (ADS)

    McLachlan, R.; Perlmutter, M.

    2006-08-01

    We study a discrete analog of the Lagrange-d'Alembert principle of nonhonolomic mechanics and give conditions for it to define a map and to be reversible. In specific cases it can generate linearly implicit, semi-implicit, or implicit numerical integrators for nonholonomic systems which, in several examples, exhibit superior preservation of the dynamics. We also study discrete nonholonomic systems on Lie groups and their reduction theory, and explore the properties of the exact discrete flow of a nonholonomic system.

  4. Using the Implicit Association Test to Assess Children's Implicit Attitudes toward Smoking

    PubMed Central

    Andrews, Judy A.; Hampson, Sarah E.; Greenwald, Anthony G.; Gordon, Judith; Widdop, Chris

    2009-01-01

    The development and psychometric properties of an Implicit Association Test (IAT) measuring implicit attitude toward smoking among fifth grade children were described. The IAT with “sweets” as the contrast category resulted in higher correlations with explicit attitudes than did the IAT with “healthy foods” as the contrast category. Children with family members who smoked (versus non-smoking) and children who were high in sensation seeking (versus low) had a significantly more favorable implicit attitude toward smoking. Further, implicit attitudes became less favorable after engaging in tobacco prevention activities targeting risk perceptions of addiction. Results support the reliability and validity of this version of the IAT and illustrate its usefulness in assessing young children's implicit attitude toward smoking. PMID:21566676

  5. How Explicit and Implicit Test Instructions in an Implicit Learning Task Affect Performance

    PubMed Central

    Witt, Arnaud; Puspitawati, Ira; Vinter, Annie

    2013-01-01

    Typically developing children aged 5 to 8 years were exposed to artificial grammar learning. Following an implicit exposure phase, half of the participants received neutral instructions at test while the other half received instructions making a direct, explicit reference to the training phase. We first aimed to assess whether implicit learning operated in the two test conditions. We then evaluated the differential impact of age on learning performances as a function of test instructions. The results showed that performance did not vary as a function of age in the implicit instructions condition, while age effects emerged when explicit instructions were employed at test. However, performance was affected differently by age and the instructions given at test, depending on whether the implicit learning of short or long units was assessed. These results suggest that the claim that the implicit learning process is independent of age needs to be revised. PMID:23326409

  6. Issues in measure-preserving three dimensional flow integrators: Self-adjointness, reversibility, and non-uniform time stepping

    SciTech Connect

    Finn, John M.

    2015-03-01

    Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.

  7. Diagonally Implicit Symplectic Runge-Kutta Methods with High Algebraic and Dispersion Order

    PubMed Central

    Cong, Y. H.; Jiang, C. X.

    2014-01-01

    The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same type Runge-Kutta methods. PMID:24977178

  8. Précis of implicit nationalism.

    PubMed

    Hassin, Ran R; Ferguson, Melissa J; Kardosh, Rasha; Porter, Shanette C; Carter, Travis J; Dudareva, Veronika

    2009-06-01

    While the study of nationalism has received much attention throughout the social sciences and humanities, the experimental investigation of it lags behind. In this paper we review recent advances in the examination of implicit nationalism. In the first set of experiments we survey, the Palestinian, Israeli, Italian, and Russian flags were primed (or not, in the control conditions) and their effects on political thought and behavior were tested. In the second set the American or the Israeli flag was primed (or not) and prejudice toward African-Americans or Palestinians (respectively) was examined. The results of all experiments suggest that the implicit activation of national cues has far-reaching implications on political thought and behavior as well as on attitudes toward minorities. Under the assumption that the image of national flags is associated in memory with national ideologies, these results suggest that national ideologies can be implicitly pursued in a way that significantly affects our thoughts and behaviors. PMID:19580560

  9. Teachers' implicit "theories" of children's intelligence.

    PubMed

    Murrone, J; Gynther, M D

    1991-12-01

    Information about teachers' implicit notions of children's intelligence was obtained by having 50 student-teachers and 79 teachers with 1 to 4 years of experience rate 150 descriptors on applicability to an hypothetical child described as above average, average, or below average in intellectual functioning. Each teacher-subject was classified by dogmatism score and by years of teaching experience. A factor analysis disclosed that Academic Skills and Interpersonal Competencies summarize the implicit notions. Analysis of variance showed that all levels of hypothesized intelligence only affected teachers' expectations of academic skills and that the effect of intelligence was dependent upon the teachers' dogmatism. There were no clear-cut findings associated with years of experience. Results supported previous observations that people have implicit "theories" of intelligence; however, the specific composition of their ideas varies according to the context within which the rater and the person observed are placed. PMID:1792291

  10. Testosterone abolishes implicit subordination in social anxiety.

    PubMed

    Terburg, David; Syal, Supriya; Rosenberger, Lisa A; Heany, Sarah J; Stein, Dan J; Honk, Jack van

    2016-10-01

    Neuro-evolutionary theories describe social anxiety as habitual subordinate tendencies acquired through a recursive cycle of social defeat and submissive reactions. If so, the steroid hormone testosterone might be of therapeutic value, as testosterone is a main force behind implicit dominance drive in many species including humans. We combined these two theories to investigate whether the tendency to submit to the dominance of others is an implicit mechanism in social anxiety (Study-1), and whether this can be relieved through testosterone administration (Study-2). Using interactive eye-tracking we demonstrate that socially anxious humans more rapidly avert gaze from subliminal angry eye contact (Study-1). We replicate this effect of implicit subordination in social anxiety in an independent sample, which is subsequently completely abolished after a single placebo-controlled sublingual testosterone administration (Study-2). These findings provide crucial evidence for hormonal and behavioral treatment strategies that specifically target mechanisms of dominance and subordination in social anxiety.

  11. Précis of implicit nationalism.

    PubMed

    Hassin, Ran R; Ferguson, Melissa J; Kardosh, Rasha; Porter, Shanette C; Carter, Travis J; Dudareva, Veronika

    2009-06-01

    While the study of nationalism has received much attention throughout the social sciences and humanities, the experimental investigation of it lags behind. In this paper we review recent advances in the examination of implicit nationalism. In the first set of experiments we survey, the Palestinian, Israeli, Italian, and Russian flags were primed (or not, in the control conditions) and their effects on political thought and behavior were tested. In the second set the American or the Israeli flag was primed (or not) and prejudice toward African-Americans or Palestinians (respectively) was examined. The results of all experiments suggest that the implicit activation of national cues has far-reaching implications on political thought and behavior as well as on attitudes toward minorities. Under the assumption that the image of national flags is associated in memory with national ideologies, these results suggest that national ideologies can be implicitly pursued in a way that significantly affects our thoughts and behaviors.

  12. Testosterone abolishes implicit subordination in social anxiety.

    PubMed

    Terburg, David; Syal, Supriya; Rosenberger, Lisa A; Heany, Sarah J; Stein, Dan J; Honk, Jack van

    2016-10-01

    Neuro-evolutionary theories describe social anxiety as habitual subordinate tendencies acquired through a recursive cycle of social defeat and submissive reactions. If so, the steroid hormone testosterone might be of therapeutic value, as testosterone is a main force behind implicit dominance drive in many species including humans. We combined these two theories to investigate whether the tendency to submit to the dominance of others is an implicit mechanism in social anxiety (Study-1), and whether this can be relieved through testosterone administration (Study-2). Using interactive eye-tracking we demonstrate that socially anxious humans more rapidly avert gaze from subliminal angry eye contact (Study-1). We replicate this effect of implicit subordination in social anxiety in an independent sample, which is subsequently completely abolished after a single placebo-controlled sublingual testosterone administration (Study-2). These findings provide crucial evidence for hormonal and behavioral treatment strategies that specifically target mechanisms of dominance and subordination in social anxiety. PMID:27448713

  13. Implicit Memory in Music and Language

    PubMed Central

    Ettlinger, Marc; Margulis, Elizabeth H.; Wong, Patrick C. M.

    2011-01-01

    Research on music and language in recent decades has focused on their overlapping neurophysiological, perceptual, and cognitive underpinnings, ranging from the mechanism for encoding basic auditory cues to the mechanism for detecting violations in phrase structure. These overlaps have most often been identified in musicians with musical knowledge that was acquired explicitly, through formal training. In this paper, we review independent bodies of work in music and language that suggest an important role for implicitly acquired knowledge, implicit memory, and their associated neural structures in the acquisition of linguistic or musical grammar. These findings motivate potential new work that examines music and language comparatively in the context of the implicit memory system. PMID:21927608

  14. Implicit memory for music in Alzheimer's disease.

    PubMed

    Halpern, A R; O'Connor, M G

    2000-07-01

    Short, unfamiliar melodies were presented to young and older adults and to Alzheimer's disease (AD) patients in an implicit and an explicit memory task. The explicit task was yes-no recognition, and the implicit task was pleasantness ratings, in which memory was shown by higher ratings for old versus new melodies (the mere exposure effect). Young adults showed retention of the melodies in both tasks. Older adults showed little explicit memory but did show the mere exposure effect. The AD patients showed neither. The authors considered and rejected several artifactual reasons for this null effect in the context of the many studies that have shown implicit memory among AD patients. As the previous studies have almost always used the visual modality for presentation, they speculate that auditory presentation, especially of nonverbal material, may be compromised in AD because of neural degeneration in auditory areas in the temporal lobes.

  15. State-Based Implicit Coordination and Applications

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2011-01-01

    In air traffic management, pairwise coordination is the ability to achieve separation requirements when conflicting aircraft simultaneously maneuver to solve a conflict. Resolution algorithms are implicitly coordinated if they provide coordinated resolution maneuvers to conflicting aircraft when only surveillance data, e.g., position and velocity vectors, is periodically broadcast by the aircraft. This paper proposes an abstract framework for reasoning about state-based implicit coordination. The framework consists of a formalized mathematical development that enables and simplifies the design and verification of implicitly coordinated state-based resolution algorithms. The use of the framework is illustrated with several examples of algorithms and formal proofs of their coordination properties. The work presented here supports the safety case for a distributed self-separation air traffic management concept where different aircraft may use different conflict resolution algorithms and be assured that separation will be maintained.

  16. The Intergenerational Transmission of Implicit and Explicit Attitudes Toward Smoking

    PubMed Central

    Sherman, Steven J.; Chassin, Laurie; Presson, Clark; Seo, Dong-Chul; Macy, Jonathan T.

    2009-01-01

    This study examined the intergenerational transmission of implicit and explicit attitudes toward smoking, as well as the role of these attitudes in adolescents’ smoking initiation. There was evidence of intergenerational transmission of implicit attitudes. Mothers who had more positive implicit attitudes had children with more positive implicit attitudes. In turn, these positive implicit attitudes of adolescents predicted their smoking initiation 18-months later. Moreover, these effects were obtained above and beyond the effects of explicit attitudes. These findings provide the first evidence that the intergenerational transmission of implicit cognition may play a role in the intergenerational transmission of an addictive behavior. PMID:20126293

  17. Processing implicit control: evidence from reading times

    PubMed Central

    McCourt, Michael; Green, Jeffrey J.; Lau, Ellen; Williams, Alexander

    2015-01-01

    Sentences such as “The ship was sunk to collect the insurance” exhibit an unusual form of anaphora, implicit control, where neither anaphor nor antecedent is audible. The non-finite reason clause has an understood subject, PRO, that is anaphoric; here it may be understood as naming the agent of the event of the host clause. Yet since the host is a short passive, this agent is realized by no audible dependent. The putative antecedent to PRO is therefore implicit, which it normally cannot be. What sorts of representations subserve the comprehension of this dependency? Here we present four self-paced reading time studies directed at this question. Previous work showed no processing cost for implicit vs. explicit control, and took this to support the view that PRO is linked syntactically to a silent argument in the passive. We challenge this conclusion by reporting that we also find no processing cost for remote implicit control, as in: “The ship was sunk. The reason was to collect the insurance.” Here the dependency crosses two independent sentences, and so cannot, we argue, be mediated by syntax. Our Experiments 1–4 examined the processing of both implicit (short passive) and explicit (active or long passive) control in both local and remote configurations. Experiments 3 and 4 added either “3 days ago” or “just in order” to the local conditions, to control for the distance between the passive and infinitival verbs, and for the predictability of the reason clause, respectively. We replicate the finding that implicit control does not impose an additional processing cost. But critically we show that remote control does not impose a processing cost either. Reading times at the reason clause were never slower when control was remote. In fact they were always faster. Thus, efficient processing of local implicit control cannot show that implicit control is mediated by syntax; nor, in turn, that there is a silent but grammatically active argument in

  18. Calculations of three-dimensional flows using the isenthalpic Euler equations with implicit flux-vector splitting

    NASA Technical Reports Server (NTRS)

    Cannizzaro, Frank E.; Von Lavante, E.; Melson, N. Duane

    1988-01-01

    A numerical method for solving the isenthalpic form of the Euler equations is developed. The method is based on the concept of flux vector splitting in its implicit form applied to a cell centered finite volume scheme. Approximate factorization is implemented in solving the implicit part of the governing equations. Time marching to a steady state solution requires short computational times due to the relative efficiency of the basic method. Computational times are further reduced by the implementation of multigrid. Results for several basic cases are shown.

  19. Ray tracing in discontinuous velocity model with implicit Interface

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxing; Yang, Qin; Meng, Xianhai; Li, Jigang

    2016-07-01

    Ray tracing in the velocity model containing complex discontinuities is still facing many challenges. The main difficulty arises from the detection of the spatial relationship between the rays and the interfaces that are usually described in non-linear parametric forms. We propose a novel model representation method that can facilitate the implementation of classical shooting-ray methods. In the representation scheme, each interface is expressed as the zero contour of a signed distance field. A multi-copy strategy is adopted to describe the volumetric properties within blocks. The implicit description of the interface makes it easier to detect the ray-interface intersection. The direct calculation of the intersection point is converted into the problem of judging the signs of a ray segment's endpoints. More importantly, the normal to the interface at the intersection point can be easily acquired according to the signed distance field of the interface. The multiple storage of the velocity property in the proximity of the interface can provide accurate and unambiguous velocity information of the intersection point. Thus, the departing ray path can be determined easily and robustly. In addition, the new representation method can describe velocity models containing very complex geological structures, such as faults, salt domes, intrusions, and pinches, without any simplification. The examples on synthetic and real models validate the robustness and accuracy of the ray tracing based on the proposed model representation scheme.

  20. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations

    NASA Astrophysics Data System (ADS)

    Moghadam, Mahdi Esmaily; Vignon-Clementel, Irene E.; Figliola, Richard; Marsden, Alison L.; Modeling Of Congenital Hearts Alliance (Mocha) Investigators

    2013-07-01

    Implementation of boundary conditions in cardiovascular simulations poses numerical challenges due to the complex dynamic behavior of the circulatory system. The use of elaborate closed-loop lumped parameter network (LPN) models of the heart and the circulatory system as boundary conditions for computational fluid dynamics (CFD) simulations can provide valuable global dynamic information, particularly for patient specific simulations. In this paper, the necessary formulation for coupling an arbitrary LPN to a finite element Navier-Stokes solver is presented. A circuit analogy closed-loop LPN is solved numerically, and pressure and flow information is iteratively passed between the 0D and 3D domains at interface boundaries, resulting in a time-implicit scheme. For Neumann boundaries, an implicit method, regardless of the LPN, is presented to achieve the desired stability and convergence properties. Numerical procedures for passing flow and pressure information between the 0D and 3D domains are described, and implicit, semi-implicit, and explicit quasi-Newton formulations are compared. The issue of divergence in the presence of backflow is addressed via a stabilized boundary formulation. The requirements for coupling Dirichlet boundary conditions are also discussed and this approach is compared in detail to that of the Neumann coupled boundaries. Having the option to select between Dirichlet and Neumann coupled boundary conditions increases the flexibility of current framework by allowing a wide range of components to be used at the 3D-0D interface.

  1. Implicit Theories of Change and Stability Moderate Effects of Subjective Distance on the Remembered Self.

    PubMed

    Ward, Cindy L P; Wilson, Anne E

    2015-09-01

    Temporal self-appraisal theory suggests that people can regulate current self-view by recalling former selves in ways that flatter present identity. People critique their subjectively distant (but not recent) former selves, creating the illusion of improvement over time. However, this revisionist strategy might not apply to everyone: People with fixed (entity) beliefs may not benefit from critiquing even distant selves. In three studies, we found that implicit theories of change and stability moderate the effects of subjective distance on the remembered self. In all studies, participants rated past selves portrayed as subjectively close or distant (controlling calendar time). Incremental theorists (but not entity theorists) were more critical of their subjectively distant (but not recent) past attributes. We found the same pattern when measuring existing implicit theories (Studies 1, 2) or manipulating them (Study 3). The present research is the first to integrate temporal self-appraisal theory and the implicit theories literature. PMID:26089348

  2. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE

    DOE PAGESBeta

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    2014-10-19

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less

  3. Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.

    2010-01-01

    The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.

  4. Implicit Theories of Change and Stability Moderate Effects of Subjective Distance on the Remembered Self.

    PubMed

    Ward, Cindy L P; Wilson, Anne E

    2015-09-01

    Temporal self-appraisal theory suggests that people can regulate current self-view by recalling former selves in ways that flatter present identity. People critique their subjectively distant (but not recent) former selves, creating the illusion of improvement over time. However, this revisionist strategy might not apply to everyone: People with fixed (entity) beliefs may not benefit from critiquing even distant selves. In three studies, we found that implicit theories of change and stability moderate the effects of subjective distance on the remembered self. In all studies, participants rated past selves portrayed as subjectively close or distant (controlling calendar time). Incremental theorists (but not entity theorists) were more critical of their subjectively distant (but not recent) past attributes. We found the same pattern when measuring existing implicit theories (Studies 1, 2) or manipulating them (Study 3). The present research is the first to integrate temporal self-appraisal theory and the implicit theories literature.

  5. Fully implicit, energy-conserving electromagnetic particle-in-cell simulations in multiple dimensions

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Chen, Guangye

    2015-11-01

    We discuss a new, implicit 2D-3V particle-in-cell (PIC) algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. The Vlasov-Darwin model avoids radiative noise issues, but is elliptic and renders explicit time integration unconditionally unstable. Absolutely stable, fully implicit, charge and energy conserving PIC algorithms for both electrostatic and electromagnetic regimes have been recently developed in 1D. In this study, we build on these recent successes to develop a multi-D, fully implicit PIC algorithm for the Vlasov-Darwin model. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly. The nonlinear iteration is effectively accelerated with a fluid preconditioner, allowing the efficient use of large timesteps compared to the explicit CFL. We demonstrate the potential of the approach with various numerical examples in 2D-3V.

  6. INVESTIGATING IMPLICIT KNOWLEDGE IN ONTOLOGIES WITH APPLICATION TO THE ANATOMICAL DOMAIN

    PubMed Central

    ZHANG, S.; BODENREIDER, O.

    2015-01-01

    Knowledge in biomedical ontologies can be explicitly represented (often by means of semantic relations), but may also be implicit, i.e., embedded in the concept names and inferable from various combinations of semantic relations. This paper investigates implicit knowledge in two ontologies of anatomy: the Foundational Model of Anatomy and GALEN. The methods consist of extracting the knowledge explicitly represented, acquiring the implicit knowledge through augmentation and inference techniques, and identifying the origin of each semantic relation. The number of relations (12 million in FMA and 4.6 million in GALEN), broken down by source, is presented. Major findings include: each technique provides specific relations; and many relations can be generated by more than one technique. The application of these findings to ontology auditing, validation, and maintenance is discussed, as well as the application to ontology integration. PMID:14992508

  7. Semi-implicit spectral deferred correction methods for ordinary differential equations

    SciTech Connect

    Minion, Michael L.

    2002-10-06

    A semi-implicit formulation of the method of spectral deferred corrections (SISDC) for ordinary differential equations with both stiff and non-stiff terms is presented. Several modifications and variations to the original spectral deferred corrections method by Dutt, Greengard, and Rokhlin concerning the choice of integration points and the form of the correction iteration are presented. The stability and accuracy of the resulting ODE methods are explored analytically and numerically. The SISDC methods are intended to be combined with the method of lines approach to yield a flexible framework for creating higher-order semi-implicit methods for partial differential equations. A discussion and numerical examples of the SISDC method applied to advection-diffusion type equations are included. The results suggest that higher-order SISDC methods are more efficient than semi-implicit Runge-Kutta methods for moderately stiff problems in terms of accuracy per function evaluation.

  8. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE

    SciTech Connect

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    2014-10-19

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within the Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.

  9. Vectorizable implicit algorithms for the flux-difference split, three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hartwich, P. M.; Hsu, C.-H.; Liu, C. H.

    1987-01-01

    The computational efficiency of four vectorizable implicit algorithms is assessed when applied to calculate steady-state solutions to the three-dimensional, incompressible Navier-Stokes equations in general coordinates. Two of these algorithms are characterized as hybrid schemes; that is, they combine some approximate factorization in two coordinate directions with relaxation in the remaining spatial direction. The other two algorithms utilize an approximate factorization approach which yields two-factor algorithms for three-dimensional systems. All four algorithms are implemented in identical high-resolution upwind schemes for the flux-difference split Navier-Stokes equations. These highly nonlinear schemes are obtained by extending an implicit Total Variation Diminishing (TVD) scheme recently developed for linear one-dimensional systems of hyperbolic conservation laws to the three-dimensional Navier-Stokes equations. The computation of vortical flow over a sharp-edged, thin delta wing has been chosen as a common numerical test case. The convergence of the algorithms is discussed and the accuracy of the computed flow-field results is assessed. The validity of the present results are demonstrated by a comparison with experimental data.

  10. Large scale brain functional networks support sentence comprehension: evidence from both explicit and implicit language tasks.

    PubMed

    Zhu, Zude; Fan, Yuanyuan; Feng, Gangyi; Huang, Ruiwang; Wang, Suiping

    2013-01-01

    Previous studies have indicated that sentences are comprehended via widespread brain regions in the fronto-temporo-parietal network in explicit language tasks (e.g., semantic congruency judgment tasks), and through restricted temporal or frontal regions in implicit language tasks (e.g., font size judgment tasks). This discrepancy has raised questions regarding a common network for sentence comprehension that acts regardless of task effect and whether different tasks modulate network properties. To this end, we constructed brain functional networks based on 27 subjects' fMRI data that was collected while performing explicit and implicit language tasks. We found that network properties and network hubs corresponding to the implicit language task were similar to those associated with the explicit language task. We also found common hubs in occipital, temporal and frontal regions in both tasks. Compared with the implicit language task, the explicit language task resulted in greater global efficiency and increased integrated betweenness centrality of the left inferior frontal gyrus, which is a key region related to sentence comprehension. These results suggest that brain functional networks support both explicit and implicit sentence comprehension; in addition, these two types of language tasks may modulate the properties of brain functional networks.

  11. Can Musical Transformations Be Implicitly Learned?

    ERIC Educational Resources Information Center

    Dienes, Zoltan; Longuet-Higgins, Christopher

    2004-01-01

    The dominant theory of what people can learn implicitly is that they learn chunks of adjacent elements in sequences. A type of musical grammar that goes beyond specifying allowable chunks is provided by serialist or 12-tone music. The rules constitute operations over variables and could not be appreciated as such by a system that can only chunk…

  12. Implicit emotion regulation affects outcome evaluation.

    PubMed

    Yang, Qiwei; Tang, Ping; Gu, Ruolei; Luo, Wenbo; Luo, Yue-jia

    2015-06-01

    Efficient implicit emotion regulation processes, which run without awareness, are important for human well-being. In this study, to investigate the influence of implicit emotion regulation on psychological and electrophysiological responses to gains and losses, participants were required to select between two Chinese four-character idioms to match the meaning of the third one before they performed a monetary gambling task. According to whether their meanings were related to emotion regulation, the idioms fell into two categories. Event-related potentials and self-rating emotional experiences to outcome feedback were recorded during the task. Priming emotion regulation reduced subjective emotional experience to both gains and losses and the amplitudes of the feedback-related negativity, while the P3 component was not influenced. According to these results, we suggest that the application of implicit emotion regulation effectively modulated the subjective emotional experience and the motivational salience of current outcomes without the cost of cognitive resources. This study implicates the potential significance of implicit emotion regulation in decision-making processes. PMID:25332404

  13. Adapting implicit methods to parallel processors

    SciTech Connect

    Reeves, L.; McMillin, B.; Okunbor, D.; Riggins, D.

    1994-12-31

    When numerically solving many types of partial differential equations, it is advantageous to use implicit methods because of their better stability and more flexible parameter choice, (e.g. larger time steps). However, since implicit methods usually require simultaneous knowledge of the entire computational domain, these methods axe difficult to implement directly on distributed memory parallel processors. This leads to infrequent use of implicit methods on parallel/distributed systems. The usual implementation of implicit methods is inefficient due to the nature of parallel systems where it is common to take the computational domain and distribute the grid points over the processors so as to maintain a relatively even workload per processor. This creates a problem at the locations in the domain where adjacent points are not on the same processor. In order for the values at these points to be calculated, messages have to be exchanged between the corresponding processors. Without special adaptation, this will result in idle processors during part of the computation, and as the number of idle processors increases, the lower the effective speed improvement by using a parallel processor.

  14. Identifying, Quantifying, Extracting and Enhancing Implicit Parallelism

    ERIC Educational Resources Information Center

    Agarwal, Mayank

    2009-01-01

    The shift of the microprocessor industry towards multicore architectures has placed a huge burden on the programmers by requiring explicit parallelization for performance. Implicit Parallelization is an alternative that could ease the burden on programmers by parallelizing applications "under the covers" while maintaining sequential semantics…

  15. Recollective performance advantages for implicit memory tasks.

    PubMed

    Sheldon, Signy A M; Moscovitch, Morris

    2010-10-01

    A commonly held assumption is that processes underlying explicit and implicit memory are distinct. Recent evidence, however, suggests that they may interact more than previously believed. Using the remember-know procedure the current study examines the relation between recollection, a process thought to be exclusive to explicit memory, and performance on two implicit memory tasks, lexical decision and word stem completion. We found that, for both implicit tasks, words that were recollected were associated with greater priming effects than were words given a subsequent familiarity rating or words that had been studied but were not recognised (misses). Broadly, our results suggest that non-voluntary processes underlying explicit memory also benefit priming, a measure of implicit memory. More specifically, given that this benefit was due to a particular aspect of explicit memory (recollection), these results are consistent with some strength models of memory and with Moscovitch's (2008) proposal that recollection is a two-stage process, one rapid and unconscious and the other more effortful and conscious.

  16. Crosslinguistic Differences in Implicit Language Learning

    ERIC Educational Resources Information Center

    Leung, Janny H. C.; Williams, John N.

    2014-01-01

    We report three experiments that explore the effect of prior linguistic knowledge on implicit language learning. Native speakers of English from the United Kingdom and native speakers of Cantonese from Hong Kong participated in experiments that involved different learning materials. In Experiment 1, both participant groups showed evidence of…

  17. Implicit theories and ability emotional intelligence

    PubMed Central

    Cabello, Rosario; Fernández-Berrocal, Pablo

    2015-01-01

    Previous research has shown that people differ in their implicit theories about the essential characteristics of intelligence and emotions. Some people believe these characteristics to be predetermined and immutable (entity theorists), whereas others believe that these characteristics can be changed through learning and behavior training (incremental theorists). The present study provides evidence that in healthy adults (N = 688), implicit beliefs about emotions and emotional intelligence (EI) may influence performance on the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Adults in our sample with incremental theories about emotions and EI scored higher on the MSCEIT than entity theorists, with implicit theories about EI showing a stronger relationship to scores than theories about emotions. Although our participants perceived both emotion and EI as malleable, they viewed emotions as more malleable than EI. Women and young adults in general were more likely to be incremental theorists than men and older adults. Furthermore, we found that emotion and EI theories mediated the relationship of gender and age with ability EI. Our findings suggest that people’s implicit theories about EI may influence their emotional abilities, which may have important consequences for personal and professional EI training. PMID:26052309

  18. An Implicit Test of Chinese Orthographic Satiation

    ERIC Educational Resources Information Center

    Cheng, Chao-Ming; Lan, Ying-Hsiang

    2011-01-01

    In this research, an implicit test using a lexical-decision task, in which words were discriminated from homophonic pseudo-words, was developed to detect the phenomenon of "Chinese orthographic satiation." The phenomenon is defined as a sense of uncertainty of the composition of a well-learned Chinese character through a prolonged visual…

  19. Implicit Assumptions in High Potentials Recruitment

    ERIC Educational Resources Information Center

    Posthumus, Jan; Bozer, Gil; Santora, Joseph C.

    2016-01-01

    Purpose: Professionals of human resources (HR) use different criteria in practice than they verbalize. Thus, the aim of this research was to identify the implicit criteria used for the selection of high-potential employees in recruitment and development settings in the pharmaceutical industry. Design/methodology/approach: A semi-structured…

  20. Implicit Memory, Age, and Time of Day

    PubMed Central

    May, Cynthia P.; Hasher, Lynn; Foong, Natalie

    2006-01-01

    Memory retrieval can occur by at least two routes: a deliberate one, as when one attempts to retrieve an event or fact, and an unintentional one, as when one’s behavior is triggered by the past without one’s knowledge or awareness. We assessed the efficacy of these retrieval systems as a function of circadian arousal and time of day. Evening-type younger adults and morning-type older adults were tested at either peak (morning for old; evening for young) or off-peak times on implicit and explicit stem completion (Experiment 1) or on implicit category generation (Experiment 2). Results for explicit stem-cued recall replicated better performance for each age group at its peak time. In stark contrast, implicit performance was better at off-peak than at peak times of day, raising the possibility that the processes that serve explicit and implicit retrieval are on different circadian schedules, and highlighting the need to consider individual differences in circadian arousal when assessing either memory system. PMID:15686574

  1. Effects of learning duration on implicit transfer.

    PubMed

    Tanaka, Kanji; Watanabe, Katsumi

    2015-10-01

    Implicit learning and transfer in sequence acquisition play important roles in daily life. Several previous studies have found that even when participants are not aware that a transfer sequence has been transformed from the learning sequence, they are able to perform the transfer sequence faster and more accurately; this suggests implicit transfer of visuomotor sequences. Here, we investigated whether implicit transfer could be modulated by the number of trials completed in a learning session. Participants learned a sequence through trial and error, known as the m × n task (Hikosaka et al. in J Neurophysiol 74:1652-1661, 1995). In the learning session, participants were required to successfully perform the same sequence 4, 12, 16, or 20 times. In the transfer session, participants then learned one of two other sequences: one where the button configuration Vertically Mirrored the learning sequence, or a randomly generated sequence. Our results show that even when participants did not notice the alternation rule (i.e., vertical mirroring), their total working time was less and their total number of errors was lower in the transfer session compared with those who performed a Random sequence, irrespective of the number of trials completed in the learning session. This result suggests that implicit transfer likely occurs even over a shorter learning duration.

  2. Implicit theories and ability emotional intelligence.

    PubMed

    Cabello, Rosario; Fernández-Berrocal, Pablo

    2015-01-01

    Previous research has shown that people differ in their implicit theories about the essential characteristics of intelligence and emotions. Some people believe these characteristics to be predetermined and immutable (entity theorists), whereas others believe that these characteristics can be changed through learning and behavior training (incremental theorists). The present study provides evidence that in healthy adults (N = 688), implicit beliefs about emotions and emotional intelligence (EI) may influence performance on the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Adults in our sample with incremental theories about emotions and EI scored higher on the MSCEIT than entity theorists, with implicit theories about EI showing a stronger relationship to scores than theories about emotions. Although our participants perceived both emotion and EI as malleable, they viewed emotions as more malleable than EI. Women and young adults in general were more likely to be incremental theorists than men and older adults. Furthermore, we found that emotion and EI theories mediated the relationship of gender and age with ability EI. Our findings suggest that people's implicit theories about EI may influence their emotional abilities, which may have important consequences for personal and professional EI training.

  3. Implicit Measures of Association in Psychopathology Research

    ERIC Educational Resources Information Center

    Roefs, Anne; Huijding, Jorg; Smulders, Fren T. Y.; MacLeod, Colin M.; de Jong, Peter J.; Wiers, Reinout W.; Jansen, Anita T. M.

    2011-01-01

    Validity;Measures (Individuals);Studies obtaining implicit measures of associations in "Diagnostic and Statistical Manual of Mental Disorders" (4th ed., Text Revision; American Psychiatric Association, 2000) Axis I psychopathology are organized into three categories: (a) studies comparing groups having a disorder with controls, (b) experimental…

  4. Implicit Learning of Semantic Preferences of Verbs

    ERIC Educational Resources Information Center

    Paciorek, Albertyna; Williams, John N.

    2015-01-01

    Previous studies of semantic implicit learning in language have only examined learning grammatical form-meaning connections in which learning could have been supported by prior linguistic knowledge. In this study we target the domain of verb meaning, specifically semantic preferences regarding novel verbs (e.g., the preference for a novel verb to…

  5. Implicit Training of Nonnative Speech Stimuli

    ERIC Educational Resources Information Center

    Vlahou, Eleni L.; Protopapas, Athanassios; Seitz, Aaron R.

    2012-01-01

    Learning nonnative speech contrasts in adulthood has proven difficult. Standard training methods have achieved moderate effects using explicit instructions and performance feedback. In this study, the authors question preexisting assumptions by demonstrating a superiority of implicit training procedures. They trained 3 groups of Greek adults on a…

  6. Implicit Reading in Chinese Pure Alexia

    ERIC Educational Resources Information Center

    Shan, Chunlei; Zhu, Renjing; Xu, Mingwei; Luo, Benyan; Weng, Xuchu

    2010-01-01

    A number of recent studies have shown that some patients with pure alexia display evidence of implicit access to lexical and semantic information about words that they cannot read explicitly. This phenomenon has not been investigated systematically in Chinese patients. We report here a case study of a Chinese patient who met the criteria for pure…

  7. Thinking Styles in Implicit and Explicit Learning

    ERIC Educational Resources Information Center

    Xie, Qiuzhi; Gao, Xiangping; King, Ronnel B.

    2013-01-01

    This study investigated whether individual differences in thinking styles influence explicit and implicit learning. Eighty-seven university students in China participated in this study. Results indicated that performance in the explicit learning condition was positively associated with Type I thinking styles (i.e. legislative and liberal styles)…

  8. Implicit theories and ability emotional intelligence.

    PubMed

    Cabello, Rosario; Fernández-Berrocal, Pablo

    2015-01-01

    Previous research has shown that people differ in their implicit theories about the essential characteristics of intelligence and emotions. Some people believe these characteristics to be predetermined and immutable (entity theorists), whereas others believe that these characteristics can be changed through learning and behavior training (incremental theorists). The present study provides evidence that in healthy adults (N = 688), implicit beliefs about emotions and emotional intelligence (EI) may influence performance on the ability-based Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT). Adults in our sample with incremental theories about emotions and EI scored higher on the MSCEIT than entity theorists, with implicit theories about EI showing a stronger relationship to scores than theories about emotions. Although our participants perceived both emotion and EI as malleable, they viewed emotions as more malleable than EI. Women and young adults in general were more likely to be incremental theorists than men and older adults. Furthermore, we found that emotion and EI theories mediated the relationship of gender and age with ability EI. Our findings suggest that people's implicit theories about EI may influence their emotional abilities, which may have important consequences for personal and professional EI training. PMID:26052309

  9. Implicit emotion regulation affects outcome evaluation.

    PubMed

    Yang, Qiwei; Tang, Ping; Gu, Ruolei; Luo, Wenbo; Luo, Yue-jia

    2015-06-01

    Efficient implicit emotion regulation processes, which run without awareness, are important for human well-being. In this study, to investigate the influence of implicit emotion regulation on psychological and electrophysiological responses to gains and losses, participants were required to select between two Chinese four-character idioms to match the meaning of the third one before they performed a monetary gambling task. According to whether their meanings were related to emotion regulation, the idioms fell into two categories. Event-related potentials and self-rating emotional experiences to outcome feedback were recorded during the task. Priming emotion regulation reduced subjective emotional experience to both gains and losses and the amplitudes of the feedback-related negativity, while the P3 component was not influenced. According to these results, we suggest that the application of implicit emotion regulation effectively modulated the subjective emotional experience and the motivational salience of current outcomes without the cost of cognitive resources. This study implicates the potential significance of implicit emotion regulation in decision-making processes.

  10. Implicit Social Scaling from an Institutional Perspective

    ERIC Educational Resources Information Center

    D'Epifanio, Giulio

    2009-01-01

    The methodological question concerns constructing a cardinal social index, in order to assess performances of social agents, taking into account implicit political judgments. Based on the formal structure of a Choquet's expected utility, index construction demands quantification of levels of a meaningful ordinal indicator of overall performance.…

  11. Strategic Game Moves Mediate Implicit Science Learning

    ERIC Educational Resources Information Center

    Rowe, Elizabeth; Baker, Ryan S.; Asbell-Clarke, Jodi

    2015-01-01

    Educational games have the potential to be innovative forms of learning assessment, by allowing us to not just study their knowledge but the process that takes students to that knowledge. This paper examines the mediating role of players' moves in digital games on changes in their pre-post classroom measures of implicit science learning. We…

  12. Flowfield-Dependent Mixed Explicit-Implicit (FDMEL) Algorithm for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Garcia, S. M.; Chung, T. J.

    1997-01-01

    Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.

  13. Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation

    SciTech Connect

    Shumaker, D E; Woodward, C S

    2005-05-03

    In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.

  14. Vectorized schemes for conical potential flow using the artificial density method

    NASA Technical Reports Server (NTRS)

    Bradley, P. F.; Dwoyer, D. L.; South, J. C., Jr.; Keen, J. M.

    1984-01-01

    A method is developed to determine solutions to the full-potential equation for steady supersonic conical flow using the artificial density method. Various update schemes used generally for transonic potential solutions are investigated. The schemes are compared for speed and robustness. All versions of the computer code have been vectorized and are currently running on the CYBER-203 computer. The update schemes are vectorized, where possible, either fully (explicit schemes) or partially (implicit schemes). Since each version of the code differs only by the update scheme and elements other than the update scheme are completely vectorizable, comparisons of computational effort and convergence rate among schemes are a measure of the specific scheme's performance. Results are presented for circular and elliptical cones at angle of attack for subcritical and supercritical crossflows.

  15. The single category implicit association test as a measure of implicit social cognition.

    PubMed

    Karpinski, Andrew; Steinman, Ross B

    2006-07-01

    The Single Category Implicit Association Test (SC-IAT) is a modification of the Implicit Association Test that measures the strength of evaluative associations with a single attitude object. Across 3 different attitude domains--soda brand preferences, self-esteem, and racial attitudes--the authors found evidence that the SC-IAT is internally consistent and makes unique contributions in the ability to understand implicit social cognition. In a 4th study, the authors investigated the susceptibility of the SC-IAT to faking or self-presentational concerns. Once participants with high error rates were removed, no significant self-presentation effect was observed. These results provide initial evidence for the reliability and validity of the SC-IAT as an individual difference measure of implicit social cognition. PMID:16834477

  16. Development of an implicit overall well-being measure using the Implicit Association Test.

    PubMed

    Díaz, Darío; Horcajo, Javier; Blanco, Amalio

    2009-11-01

    Usually, well-being has been measured by means of questionnaires or scales. Although most of these methods have a high level of reliability and validity, they present some limitations. In order to try to improve well-being assessment, in the present work, the authors propose a new complementary instrument: The Implicit Overall Well-Being Measure (IOWBM). The Implicit Association Test (IAT) was adapted to measure wellbeing by assessing associations of the self with well-being-related words. In the first study, the IOWBM showed good internal consistency and adequate temporal reliability. In the second study, it presented weak correlations with explicit well-being measures. The third study examined the validity of the measure, analyzing the effect of traumatic memories on implicit well-being. The results showed that people who remember a traumatic event presented low levels of implicit well-being compared with people in the control condition.

  17. Implicit associations in cybersex addiction: Adaption of an Implicit Association Test with pornographic pictures.

    PubMed

    Snagowski, Jan; Wegmann, Elisa; Pekal, Jaro; Laier, Christian; Brand, Matthias

    2015-10-01

    Recent studies show similarities between cybersex addiction and substance dependencies and argue to classify cybersex addiction as a behavioral addiction. In substance dependency, implicit associations are known to play a crucial role, and such implicit associations have not been studied in cybersex addiction, so far. In this experimental study, 128 heterosexual male participants completed an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) modified with pornographic pictures. Further, problematic sexual behavior, sensitivity towards sexual excitation, tendencies towards cybersex addiction, and subjective craving due to watching pornographic pictures were assessed. Results show positive relationships between implicit associations of pornographic pictures with positive emotions and tendencies towards cybersex addiction, problematic sexual behavior, sensitivity towards sexual excitation as well as subjective craving. Moreover, a moderated regression analysis revealed that individuals who reported high subjective craving and showed positive implicit associations of pornographic pictures with positive emotions, particularly tended towards cybersex addiction. The findings suggest a potential role of positive implicit associations with pornographic pictures in the development and maintenance of cybersex addiction. Moreover, the results of the current study are comparable to findings from substance dependency research and emphasize analogies between cybersex addiction and substance dependencies or other behavioral addictions. PMID:26026385

  18. Implicit associations in cybersex addiction: Adaption of an Implicit Association Test with pornographic pictures.

    PubMed

    Snagowski, Jan; Wegmann, Elisa; Pekal, Jaro; Laier, Christian; Brand, Matthias

    2015-10-01

    Recent studies show similarities between cybersex addiction and substance dependencies and argue to classify cybersex addiction as a behavioral addiction. In substance dependency, implicit associations are known to play a crucial role, and such implicit associations have not been studied in cybersex addiction, so far. In this experimental study, 128 heterosexual male participants completed an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) modified with pornographic pictures. Further, problematic sexual behavior, sensitivity towards sexual excitation, tendencies towards cybersex addiction, and subjective craving due to watching pornographic pictures were assessed. Results show positive relationships between implicit associations of pornographic pictures with positive emotions and tendencies towards cybersex addiction, problematic sexual behavior, sensitivity towards sexual excitation as well as subjective craving. Moreover, a moderated regression analysis revealed that individuals who reported high subjective craving and showed positive implicit associations of pornographic pictures with positive emotions, particularly tended towards cybersex addiction. The findings suggest a potential role of positive implicit associations with pornographic pictures in the development and maintenance of cybersex addiction. Moreover, the results of the current study are comparable to findings from substance dependency research and emphasize analogies between cybersex addiction and substance dependencies or other behavioral addictions.

  19. Chinese Undergraduates' Explicit and Implicit Attitudes toward Persons with Disabilities

    ERIC Educational Resources Information Center

    Chen, Shuang; Ma, Li; Zhang, Jian-Xin

    2011-01-01

    The present study is aimed at examining implicit and explicit attitudes toward persons with disabilities among Chinese college students. The "Implicit Association Test" was used to measure their implicit attitudes, whereas their explicit attitudes toward persons with disabilities were measured by using a scale of three items. Participants were 56…

  20. Implicit Referential Meaning with Reference to English Arabic Translation

    ERIC Educational Resources Information Center

    Al-Zughoul, Basem

    2014-01-01

    The purpose of this study is to investigate how English implicit referential meaning is translated into Arabic by analyzing sentences containing implicit referential meanings found in the novel "Harry Potter and the Prisoner of Azkaban". The analysis shows that the translation of English implicit referential meaning into Arabic can be…

  1. Constraints on Implicit Learning of Grammatical Form-Meaning Connections

    ERIC Educational Resources Information Center

    Leung, Janny H. C.; Williams, John N.

    2012-01-01

    Although there is good evidence for implicit learning of associations between forms, little work has investigated implicit learning of form-meaning connections, and the findings are somewhat contradictory. Two experiments were carried out using a novel reaction time methodology to investigate implicit learning of grammatical form-meaning…

  2. Implicit Statistical Learning and Language Skills in Bilingual Children

    ERIC Educational Resources Information Center

    Yim, Dongsun; Rudoy, John

    2013-01-01

    Purpose: Implicit statistical learning in 2 nonlinguistic domains (visual and auditory) was used to investigate (a) whether linguistic experience influences the underlying learning mechanism and (b) whether there are modality constraints in predicting implicit statistical learning with age and language skills. Method: Implicit statistical learning…

  3. Gender Differences in Implicit and Explicit Memory for Affective Passages

    ERIC Educational Resources Information Center

    Burton, Leslie A.; Rabin, Laura; Vardy, Susan Bernstein.; Frohlich, Jonathan; Wyatt, Gwinne; Dimitri, Diana; Constante, Shimon; Guterman, Elan

    2004-01-01

    Thirty-two participants were administered 4 verbal tasks, an Implicit Affective Task, an Implicit Neutral Task, an Explicit Affective Task, and an Explicit Neutral Task. For the Implicit Tasks, participants were timed while reading passages aloud as quickly as possible, but not so quickly that they did not understand. A target verbal passage was…

  4. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  5. Implicit Newton-Krylov methods for modeling blast furnace stoves

    SciTech Connect

    Howse, J.W.; Hansen, G.A.; Cagliostro, D.J.; Muske, K.R.

    1998-03-01

    In this paper the authors discuss the use of an implicit Newton-Krylov method to solve a set of partial differential equations representing a physical model of a blast furnace stove. The blast furnace stove is an integral part of the iron making process in the steel industry. These stoves are used to heat air which is then used in the blast furnace to chemically reduce iron ore to iron metal. The solution technique used to solve the discrete representations of the model and control PDE`s must be robust to linear systems with disparate eigenvalues, and must converge rapidly without using tuning parameters. The disparity in eigenvalues is created by the different time scales for convection in the gas, and conduction in the brick; combined with a difference between the scaling of the model and control PDE`s. A preconditioned implicit Newton-Krylov solution technique was employed. The procedure employs Newton`s method, where the update to the current solution at each stage is computed by solving a linear system. This linear system is obtained by linearizing the discrete approximation to the PDE`s, using a numerical approximation for the Jacobian of the discretized system. This linear system is then solved for the needed update using a preconditioned Krylov subspace projection method.

  6. A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method

    SciTech Connect

    McPherson, Allen L.; Knoll, Dana A.; Cieren, Emmanuel B.; Feltman, Nicolas; Leibs, Christopher A.; McCarthy, Colleen; Murthy, Karthik S.; Wang, Yijie

    2012-09-10

    Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

  7. Modeling of transient two-component flow using a four-point implicit method

    NASA Technical Reports Server (NTRS)

    Wiggert, D. C.; Martin, C. S.; Naghash, M.; Rao, P. V.

    1983-01-01

    The four-point, centered implicit scheme that is extensively used in open channel flow simulation is shown to be applicable to rapid and slow pressure transient problems in conduits with nearly single phase and two-phase flows. It is only necessary to choose the proper weighting factor value, theta, of the Courant number. For rapid pressure transients such as waterhammer, the implicit method can yield reasonable results with limited numerical dispersion and attenuation if theta is only slightly greater than the critical value of 0.5. For slower pressure gradients in single and two-phase flows, reasonable numerical solutions may be achieved for Courant number values as high as 20.

  8. Implicit/Multigrid Algorithms for Incompressible Turbulent Flows on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Rausch, Russ D.; Bonhaus, Daryl L.

    1997-01-01

    An implicit code for computing inviscid and viscous incompressible flows on unstructured grids is described. The foundation of the code is a backward Euler time discretization for which the linear system is approximately solved at each time step with either a point implicit method or a preconditioned Generalized Minimal Residual (GMRES) technique. For the GMRES calculations, several techniques are investigated for forming the matrix-vector product. Convergence acceleration is achieved through a multigrid scheme that uses non-nested coarse grids that are generated using a technique described in the present paper. Convergence characteristics are investigated and results are compared with an exact solution for the inviscid flow over a four-element airfoil. Viscous results, which are compared with experimental data, include the turbulent flow over a NACA 4412 airfoil, a three-element airfoil for which Mach number effects are investigated, and three-dimensional flow over a wing with a partial-span flap.

  9. Efficient parallel solution of parabolic equations - Implicit methods on the Cedar multicluster

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Y.

    1990-01-01

    A class of implicit methods for the parallel solution of linear parabolic differential equations based on Pade and Chebyshev rational approximations to the matrix exponential are presented. It is pointed out that this approach incorporates both natural hierarchical parallelism, improved intrinsic efficiency, and fewer timesteps. These advantages lead to an extremely fast family of methods for the solution of certain time-dependent problems. These techniques are illustrated with numerical experiments on the University of Illinois Cedar multicluster architecture. The experiments indicate that implicit methods of very high degree offer great promise for the solution of certain parabolic problems when in computational environment with parallel resources. Hierarchically organized parallel computers, such as the Cedar multicluster, are found to be especially attractive for these schemes.

  10. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  11. Scalable implicit methods for reaction-diffusion equations in two and three space dimensions

    SciTech Connect

    Veronese, S.V.; Othmer, H.G.

    1996-12-31

    This paper describes the implementation of a solver for systems of semi-linear parabolic partial differential equations in two and three space dimensions. The solver is based on a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies for the linearized equations are used to reduce the stride and improve the overall effectiveness of the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion problems in computational biology and medicine in which the desired solution is a traveling wave that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy of the method are given here; the theoretical analysis will be presented.

  12. Implementation of An Implicit Unsplit Staggered Mesh MHD Solver in FLASH

    NASA Astrophysics Data System (ADS)

    Xia, G.; Lee, D.

    2010-11-01

    FLASH is a publicly available community code designed to solve highly compressible multi-physics reactive flows. We have been adding capabilities to FLASH to make it an open science code for the academic HEDP community. A key need is to provide a computationally efficient time-stepping integration method that overcomes the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To address this problem, we are developing a fully implicit solver based on a Jacobian-Free Newton-Krylov implicit formulation. The method has been integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver. We are also integrating this solver into an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines, and into a treatment of the Biermann Battery effect that accounts for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.

  13. Implicit relativistic PIC simulations using the four-momentum vector and the electromagnetic four-potential

    NASA Astrophysics Data System (ADS)

    Gourdain, Pierre; Seyler, Charles

    2013-10-01

    New applications in high energy density plasmas and warm dense matter research demand to run long simulations to capture the different characteristic time scales. To keep the actual simulation time reasonable, implicit methods have been developed. Most of them require complex electromagnetic solvers which need to perform exceptionally well on parallel architectures. We can reduce the complexity of such implicit solvers by using the four-potential electromagnetic vector based on Lorenz' gauge instead of the usual electric and magnetic fields representation. As a result, all four potentials follow the second order wave equation. Besides the coding of a single electromagnetic solver valid for all four quantities, the main advantage of this model is the transport of any computational errors to the grid boundary, avoiding error accumulation inside the computational domain. As a particle pusher, we use the particle four-momentum vector instead of the usual momentum. This pusher is a symplectic integrator and conserves exactly the energy of the system. The integration of the implicit electromagnetic solver with the implicit symplectic pusher makes the computation of relativistic plasmas straightforward compared to methods relying directly on electromagnetic fields and conventional particle pushers. Research supported by NNSA/DOE Grant Cooperative Agreements number DE-FC52-06NA 00057, DE-NA 0001836 and NSF Grant # PHY-1102471.

  14. The neural correlates of implicit theory violation.

    PubMed

    Xu, Xiaowen; Plaks, Jason E

    2015-08-01

    The present study examined whether perceivers' implicit theories about the fixedness of intelligence would modulate neurophysiological responses to stereotype-violating and stereotype-confirming information. Brain activity was recorded using EEG as participants read a series of stereotype-confirming or stereotype-violating behaviors performed by a target character. Compared to incremental theorists (who believe that intelligence is malleable), entity theorists (who believe that intelligence is fixed) displayed more pronounced N400 responses to stereotype-violating behaviors. In contrast, incremental theorists exhibited more pronounced N400 responses than entity theorists to stereotype-confirming behaviors. These results shed light on basic processes in Person Memory by suggesting that perceivers make a distinction at the neurocognitive level between stereotype violations versus implicit theory violations. PMID:25650726

  15. Intergroup anxiety effects on implicit racial evaluation and stereotyping.

    PubMed

    Amodio, David M; Hamilton, Holly K

    2012-12-01

    How does intergroup anxiety affect the activation of implicit racial evaluations and stereotypes? Given the common basis of social anxiety and implicit evaluative processes in memory systems linked to classical conditioning and affect, we predicted that intergroup anxiety would amplify implicit negative racial evaluations. Implicit stereotyping, which is associated primarily with semantic memory systems, was not expected to increase as a function of intergroup anxiety. This pattern was observed among White participants preparing to interact with Black partners, but not those preparing to interact with White partners. These findings shed new light on how anxiety, often elicited in real-life intergroup interactions, can affect the operation of implicit racial biases, suggesting that intergroup anxiety has more direct implications for affective and evaluative forms of implicit bias than for implicit stereotyping. These findings also support a memory-systems model of the interplay between emotion and cognition in the context of social behavior.

  16. Implicit and explicit contributions to statistical learning

    PubMed Central

    Batterink, Laura J.; Reber, Paul J.; Neville, Helen J.; Paller, Ken A.

    2015-01-01

    Statistical learning allows learners to detect regularities in the environment and appears to emerge automatically as a consequence of experience. Statistical learning paradigms bear many similarities to those of artificial grammar learning and other types of implicit learning. However, whether learning effects in statistical learning tasks are driven by implicit knowledge has not been thoroughly examined. The present study addressed this gap by examining the role of implicit and explicit knowledge within the context of a typical auditory statistical learning paradigm. Learners were exposed to a continuous stream of repeating nonsense words. Learning was tested (a) directly via a forced-choice recognition test combined with a remember/know procedure and (b) indirectly through a novel reaction time (RT) test. Behavior and brain potentials revealed statistical learning effects with both tests. On the recognition test, accurate responses were associated with subjective feelings of stronger recollection, and learned nonsense words relative to nonword foils elicited an enhanced late positive potential indicative of explicit knowledge. On the RT test, both RTs and P300 amplitudes differed as a function of syllable position, reflecting facilitation attributable to statistical learning. Explicit stimulus recognition did not correlate with RT or P300 effects on the RT test. These results provide evidence that explicit knowledge is accrued during statistical learning, while bringing out the possibility that dissociable implicit representations are acquired in parallel. The commonly used recognition measure primarily reflects explicit knowledge, and thus may underestimate the total amount of knowledge produced by statistical learning. Indirect measures may be more sensitive indices of learning, capturing knowledge above and beyond what is reflected by recognition accuracy. PMID:26034344

  17. Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids

    NASA Astrophysics Data System (ADS)

    Otero, Evelyn; Eliasson, Peter

    2015-03-01

    An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.

  18. An implicit divalent counterion force field for RNA molecular dynamics

    NASA Astrophysics Data System (ADS)

    Henke, Paul S.; Mak, Chi H.

    2016-03-01

    How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg2+ screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grained models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.

  19. Application of Jacobian-free Newton–Krylov method in implicitly solving two-fluid six-equation two-phase flow problems: Implementation, validation and benchmark

    DOE PAGESBeta

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-03-09

    This work represents a first-of-its-kind successful application to employ advanced numerical methods in solving realistic two-phase flow problems with two-fluid six-equation two-phase flow model. These advanced numerical methods include high-resolution spatial discretization scheme with staggered grids (high-order) fully implicit time integration schemes, and Jacobian-free Newton–Krylov (JFNK) method as the nonlinear solver. The computer code developed in this work has been extensively validated with existing experimental flow boiling data in vertical pipes and rod bundles, which cover wide ranges of experimental conditions, such as pressure, inlet mass flux, wall heat flux and exit void fraction. Additional code-to-code benchmark with the RELAP5-3Dmore » code further verifies the correct code implementation. The combined methods employed in this work exhibit strong robustness in solving two-phase flow problems even when phase appearance (boiling) and realistic discrete flow regimes are considered. Transitional flow regimes used in existing system analysis codes, normally introduced to overcome numerical difficulty, were completely removed in this work. As a result, this in turn provides the possibility to utilize more sophisticated flow regime maps in the future to further improve simulation accuracy.« less

  20. Toward a meaningful metric of implicit prejudice.

    PubMed

    Blanton, Hart; Jaccard, James; Strauts, Erin; Mitchell, Gregory; Tetlock, Philip E

    2015-09-01

    [Correction Notice: An Erratum for this article was reported in Vol 100(5) of Journal of Applied Psychology (see record 2015-40760-001). there are errors in some of the values listed in Table 6 that do not alter any of the conclusions or substantive statements in the original article. The corrected portion of Table 6 is in the correction. The positive intercepts in this table represent the estimated IAT score when the criterion has a value of zero (suggesting attitudinal neutrality), except in the equation examining voter preference in Greenwald et al. (2009), where the intercept estimated the IAT score of Obama voters.] The modal distribution of the Implicit Association Test (IAT) is commonly interpreted as showing high levels of implicit prejudice among Americans. These interpretations have fueled calls for changes in organizational and legal practices, but such applications are problematic because the IAT is scored on an arbitrary psychological metric. The present research was designed to make the IAT metric less arbitrary by determining the scores on IAT measures that are associated with observable racial or ethnic bias. By reexamining data from published studies, we found evidence that the IAT metric is "right biased," such that individuals who are behaviorally neutral tend to have positive IAT scores. Current scoring conventions fail to take into account these dynamics and can lead to faulty inferences about the prevalence of implicit prejudice. PMID:25602125

  1. Implicit Shape Parameterization for Kansei Design Methodology

    NASA Astrophysics Data System (ADS)

    Nordgren, Andreas Kjell; Aoyama, Hideki

    Implicit shape parameterization for Kansei design is a procedure that use 3D-models, or concepts, to span a shape space for surfaces in the automotive field. A low-dimensional, yet accurate shape descriptor was found by Principal Component Analysis of an ensemble of point-clouds, which were extracted from mesh-based surfaces modeled in a CAD-program. A theoretical background of the procedure is given along with step-by-step instructions for the required data-processing. The results show that complex surfaces can be described very efficiently, and encode design features by an implicit approach that does not rely on error-prone explicit parameterizations. This provides a very intuitive way to explore shapes for a designer, because various design features can simply be introduced by adding new concepts to the ensemble. Complex shapes have been difficult to analyze with Kansei methods due to the large number of parameters involved, but implicit parameterization of design features provides a low-dimensional shape descriptor for efficient data collection, model-building and analysis of emotional content in 3D-surfaces.

  2. Implicit constitutive relations for nonlinear magnetoelastic bodies

    PubMed Central

    Bustamante, R.; Rajagopal, K. R.

    2015-01-01

    Implicit constitutive relations that characterize the response of elastic bodies have greatly enhanced the arsenal available at the disposal of the analyst working in the field of elasticity. This class of models were recently extended to describe electroelastic bodies by the present authors. In this paper, we extend the development of implicit constitutive relations to describe the behaviour of elastic bodies that respond to magnetic stimuli. The models that are developed provide a rational way to describe phenomena that have hitherto not been adequately described by the classical models that are in place. After developing implicit constitutive relations for magnetoelastic bodies undergoing large deformations, we consider the linearization of the models within the context of small displacement gradients. We then use the linearized model to describe experimentally observed phenomena which the classical linearized magnetoelastic models are incapable of doing. We also solve several boundary value problems within the context of the models that are developed: extension and shear of a slab, and radial inflation and extension of a cylinder. PMID:25792968

  3. Invisibly Sanitizable Digital Signature Scheme

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kunihiko; Hanaoka, Goichiro; Imai, Hideki

    A digital signature does not allow any alteration of the document to which it is attached. Appropriate alteration of some signed documents, however, should be allowed because there are security requirements other than the integrity of the document. In the disclosure of official information, for example, sensitive information such as personal information or national secrets is masked when an official document is sanitized so that its nonsensitive information can be disclosed when it is requested by a citizen. If this disclosure is done digitally by using the current digital signature schemes, the citizen cannot verify the disclosed information because it has been altered to prevent the leakage of sensitive information. The confidentiality of official information is thus incompatible with the integrity of that information, and this is called the digital document sanitizing problem. Conventional solutions such as content extraction signatures and digitally signed document sanitizing schemes with disclosure condition control can either let the sanitizer assign disclosure conditions or hide the number of sanitized portions. The digitally signed document sanitizing scheme we propose here is based on the aggregate signature derived from bilinear maps and can do both. Moreover, the proposed scheme can sanitize a signed document invisibly, that is, no one can distinguish whether the signed document has been sanitized or not.

  4. Environmental monitoring techniques and wave energy potential assessment: an integrated approach for planning marine energy conversion schemes in the northern Tyrrhenian sea, Italy

    NASA Astrophysics Data System (ADS)

    Scanu, Sergio; Peviani, Maximo; Carli, Filippo Maria; Paladini de Mendoza, Francesco; Piermattei, Viviana; Bonamano, Simone; Marcelli, Marco

    2015-04-01

    This work proposes a multidisciplinary approach in which wave power potential maps are used as baseline for the application of environmental monitoring techniques identified through the use of a Database for Environmental Monitoring Techniques and Equipment (DEMTE), derived in the frame of the project "Marine Renewables Infrastructure Network for Emerging Energy Technologies" (Marinet - FP7). This approach aims to standardize the monitoring of the marine environment in the event of installation, operation and decommissioning of Marine Energy Conversion Systems. The database has been obtained through the collection of techniques and instrumentation available among the partners of the consortium, in relation with all environmental marine compounds potentially affected by any impacts. Furthermore in order to plan marine energy conversion schemes, the wave potential was assessed at regional and local scales using the numerical modelling downscaling methodology. The regional scale lead to the elaboration of the Italian Wave Power Atlas, while the local scale lead to the definition of nearshore hot spots useful for the planning of devices installation along the Latium coast. The present work focus in the application of environmental monitoring techniques identified in the DEMTE, in correspondence of the hotspot derived from the wave potential maps with particular reference to the biological interaction of the devices and the management of the marine space. The obtained results are the bases for the development of standardized procedures which aims to an effective application of marine environmental monitoring techniques during the installation, operation and decommissioning of Marine Energy Conversion Systems. The present work gives a consistent contribution to overcome non-technological barriers in the concession procedures, as far as the protection of the marine environment is of concern.

  5. A Novel Scheme and Evaluations on a Long-Term and Continuous Biosensor Platform Integrated with a Dental Implant Fixture and Its Prosthetic Abutment.

    PubMed

    Li, Yu-Jung; Lu, Chih-Cheng

    2015-09-25

    A miniature intra-oral dental implant system including a built-in biosensor device is proposed in this article. The dental implant system, or platform, is replaced over maxilla and allows relatively non-invasive procedures for a novel biosensing scheme for human blood analysis. Due to placement of the implant fixture, periodontal ligaments and the pulp structure, which are regarded as the main origin of pain, are thus removed, and long-term, continuous blood analysis and management through maxillary bone marrow becomes achievable through the dental implant platform. The new pathway of biological sensing is for the first time presented to realize an accurate and painless approach without injections. The dental implant system mainly consists of an implant fixture and a prosthetic abutment, a biosensor module, a bluetooth 4.0 wireless module and a dc button cell battery. The electrochemical biosensor possesses three electrodes, including working, reference and counter ones, which are arranged to pass through the titanium implant fixture below the biosensor module. The electrodes are exposed to the blood pool inside the maxillary bone marrow and perform oxidation/reduction reactions with the coating of biosensing enzyme. To prove the proposed platform, the immobilization process of glucose oxidase (GOD) enzyme and in vitro detections of glucose levels are successfully carried out, and proven sensitivity, linearity and repeatability of the glucose biosensor system are obtained. Moreover, a preliminary canine animal model adopting the new pathway shows significant consistency with the traditional method through dermal pricks for blood sugar detection. Despite the prospective results, further challenges in engineering implementation and clinical practices are addressed and discussed. In brief, the novel biosensing pathway and intra-oral biosensor platform may increasingly reveal their promising value and feasibilities in current bio-medical analysis, diagnosis, drug

  6. A Novel Scheme and Evaluations on a Long-Term and Continuous Biosensor Platform Integrated with a Dental Implant Fixture and Its Prosthetic Abutment

    PubMed Central

    Li, Yu-Jung; Lu, Chih-Cheng

    2015-01-01

    A miniature intra-oral dental implant system including a built-in biosensor device is proposed in this article. The dental implant system, or platform, is replaced over maxilla and allows relatively non-invasive procedures for a novel biosensing scheme for human blood analysis. Due to placement of the implant fixture, periodontal ligaments and the pulp structure, which are regarded as the main origin of pain, are thus removed, and long-term, continuous blood analysis and management through maxillary bone marrow becomes achievable through the dental implant platform. The new pathway of biological sensing is for the first time presented to realize an accurate and painless approach without injections. The dental implant system mainly consists of an implant fixture and a prosthetic abutment, a biosensor module, a bluetooth 4.0 wireless module and a dc button cell battery. The electrochemical biosensor possesses three electrodes, including working, reference and counter ones, which are arranged to pass through the titanium implant fixture below the biosensor module. The electrodes are exposed to the blood pool inside the maxillary bone marrow and perform oxidation/reduction reactions with the coating of biosensing enzyme. To prove the proposed platform, the immobilization process of glucose oxidase (GOD) enzyme and in vitro detections of glucose levels are successfully carried out, and proven sensitivity, linearity and repeatability of the glucose biosensor system are obtained. Moreover, a preliminary canine animal model adopting the new pathway shows significant consistency with the traditional method through dermal pricks for blood sugar detection. Despite the prospective results, further challenges in engineering implementation and clinical practices are addressed and discussed. In brief, the novel biosensing pathway and intra-oral biosensor platform may increasingly reveal their promising value and feasibilities in current bio-medical analysis, diagnosis, drug

  7. A Novel Scheme and Evaluations on a Long-Term and Continuous Biosensor Platform Integrated with a Dental Implant Fixture and Its Prosthetic Abutment.

    PubMed

    Li, Yu-Jung; Lu, Chih-Cheng

    2015-01-01

    A miniature intra-oral dental implant system including a built-in biosensor device is proposed in this article. The dental implant system, or platform, is replaced over maxilla and allows relatively non-invasive procedures for a novel biosensing scheme for human blood analysis. Due to placement of the implant fixture, periodontal ligaments and the pulp structure, which are regarded as the main origin of pain, are thus removed, and long-term, continuous blood analysis and management through maxillary bone marrow becomes achievable through the dental implant platform. The new pathway of biological sensing is for the first time presented to realize an accurate and painless approach without injections. The dental implant system mainly consists of an implant fixture and a prosthetic abutment, a biosensor module, a bluetooth 4.0 wireless module and a dc button cell battery. The electrochemical biosensor possesses three electrodes, including working, reference and counter ones, which are arranged to pass through the titanium implant fixture below the biosensor module. The electrodes are exposed to the blood pool inside the maxillary bone marrow and perform oxidation/reduction reactions with the coating of biosensing enzyme. To prove the proposed platform, the immobilization process of glucose oxidase (GOD) enzyme and in vitro detections of glucose levels are successfully carried out, and proven sensitivity, linearity and repeatability of the glucose biosensor system are obtained. Moreover, a preliminary canine animal model adopting the new pathway shows significant consistency with the traditional method through dermal pricks for blood sugar detection. Despite the prospective results, further challenges in engineering implementation and clinical practices are addressed and discussed. In brief, the novel biosensing pathway and intra-oral biosensor platform may increasingly reveal their promising value and feasibilities in current bio-medical analysis, diagnosis, drug

  8. A pre-conditioned implicit direct forcing based immersed boundary method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Pan, Xiaomin; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    A novel immersed boundary (IB) method based on an implicit direct forcing (IDF) scheme is developed for incompressible viscous flows. The key idea for the present IDF method is to use a block LU decomposition technique in momentum equations with Taylor series expansion to construct the implicit IB forcing in a recurrence form, which imposes more accurate no-slip boundary conditions on the IB surface. To accelerate the IB forcing convergence during the iterative procedure, a pre-conditioner matrix is introduced in the recurrence formulation of the IB forcing. A Jacobi-type parameter is determined in the pre-conditioner matrix by minimizing the Frobenius norm of the matrix function representing the difference between the IB forcing solution matrix and the pre-conditioner matrix. In addition, the pre-conditioning parameter is restricted due to the numerical stability in the recurrence formulation. Consequently, the present pre-conditioned IDF (PIDF) enables accurate calculation of the IB forcing within a few iterations. We perform numerical simulations of two-dimensional flows around a circular cylinder and three-dimensional flows around a sphere for low and moderate Reynolds numbers. The result shows that PIDF yields a better imposition of no-slip boundary conditions on the IB surfaces for low Reynolds number with a fairly larger time step than IB methods with different direct forcing schemes due to the implicit treatment of the diffusion term for determining the IB forcing. Finally, we demonstrate the robustness of the present PIDF scheme by numerical simulations of flow around a circular array of cylinders, flows around a falling sphere, and two sedimenting spheres in gravity.

  9. Mirrors, masks, and motivation: implicit and explicit self-focused attention influence effort-related cardiovascular reactivity.

    PubMed

    Silvia, Paul J

    2012-07-01

    Using motivational intensity theory as a framework, three experiments examined how implicit self-focus (manipulated with masked first-name priming) and explicit self-focus (manipulated with a large mirror) influence effort-related cardiovascular activity, particularly systolic blood pressure reactivity. Theories of self-focused attention suggest that both implicit and explicit self-focus bring about self-evaluation and thus make meeting a goal more important. For a "do your best" task of unfixed difficulty, implicit and explicit self-focus both increased effort (Experiment 1) compared to a control condition. For a task that varied in difficulty, implicit and explicit self-focus promoted more effort as the task became increasingly hard (Experiments 2 and 3). Taken together, the findings suggest that implicit and explicit self-processes share a similar motivational architecture. The discussion explores the value of integrating motivational intensity theory with self-awareness theory and considers the emerging interest in implicit aspects of effort regulation. PMID:22504295

  10. Integrated sensor and actuator fault-tolerant control

    NASA Astrophysics Data System (ADS)

    Seron, María M.; De Doná, José A.; Richter, Jan H.

    2013-04-01

    We propose a fault-tolerant control scheme that deals with sensor and actuator faults through the use of a virtual actuator (VA) and a bank of virtual sensors (VSs). A novel feature of the scheme is that the VSs implicitly integrate both fault detection and isolation (FDI) and - in conjunction with the VA - controller reconfiguration tasks. The VA and the bank of VSs operate in closed-loop with an observer-based tracking controller designed for a nominal (fault free) model of the plant. A switching rule that reconfigures the VA and engages the suitable VS from the bank is based on sets defined for measurable residual signals constructed directly from the VS signals. Our method handles abrupt actuator and sensor faults of arbitrary magnitude including complete outage. The overall scheme is shown to guarantee closed-loop boundedness and setpoint tracking under all considered fault situations. Enhancements of the scheme to deal with errors in the fault detection and isolation are also proposed. Applications of the scheme to a winding machine and an interconnected tank system are presented.

  11. An Implicit Finite Difference Solution to the Viscous Radiating Shock Layer with Strong Blowing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1971-01-01

    An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.

  12. An alternating-direction-implicit algorithm for the unsteady potential equation in conservation form

    NASA Technical Reports Server (NTRS)

    Chipman, R. R.

    1980-01-01

    An implicit finite difference scheme for an efficient computation of unsteady potential flow about airfoils is presented. The formulation uses density and velocity potential as dependent variables, and is cast in conservation form to assure the theoretically correct determination of shockwave location and speed. To enable boundary conditions to be imposed directly on the airfoil surface, a time varying sheared rectilinear coordinate transformation is employed. Calculated time history solutions on a pulsating airfoil are compared with the results of another unsteady transonic code. It is concluded that the method has excellent numerical stability and gives accurate solutions with sharply resolved shocks.

  13. Matching multistage schemes to viscous flow

    NASA Astrophysics Data System (ADS)

    Kleb, William Leonard

    A method to accelerate convergence to steady state by explicit time-marching schemes for the compressible Navier-Stokes equations is presented. The combination of cell-Reynolds-number-based multistage time stepping and local preconditioning makes solving steady-state viscous flow problems competitive with the convergence rates typically associated with implicit methods, without the associated memory penalty. Initially, various methods are investigated to extend the range of multistage schemes to diffusion-dominated cases. It is determined that the Chebyshev polynomials are well suited to serve as amplification factors for these schemes; however, creating a method that can bridge the continuum from convection-dominated to diffusion-dominated regimes proves troublesome, until the Manteuffel family of polynomials is uncovered. This transformation provides a smooth transition between the two extremes; and armed with this information, sets of multistage coefficients are created for a given spatial discretization as a function of cell Reynolds number according to various design criteria. As part of this process, a precise definition for the numerical time step is hammered out, something which up to this time, has been set via algebraic arguments only. Next are numerical tests of these sets of variable multistage coefficients. To isolate the effects of the variable multistage coefficients, the test case chosen is very simple: circular advection-diffusion. The numerical results support the analytical analysis by demonstrating an order of magnitude improvement in convergence rate for single-grid relaxation and a factor of three for multigrid relaxation. Building upon the success of the scalar case, preconditioning is applied to make the Navier-Stokes system of equations behave more nearly as a single scalar equation. Then, by applying the variable multistage coefficient scheme to a typical boundary-layer flow problem, the results affirm the benefits of local preconditioning

  14. Who owns implicit attitudes? Testing a metacognitive perspective.

    PubMed

    Cooley, Erin; Payne, B Keith; Loersch, Chris; Lei, Ryan

    2015-01-01

    Metacognitive inferences about ownership for one's implicit attitudes have the power to turn implicit bias into explicit prejudice. In Study 1, participants were assigned to construe their implicit attitudes toward gay men as belonging to themselves (owned) or as unrelated to the self (disowned). Construing one's implicit responses as owned led to greater implicit-explicit attitude correspondence. In Study 2, we measured ownership for implicit attitudes as well as self-esteem. We predicted that ownership inferences would dictate explicit attitudes to the degree that people had positive views of the self. Indeed, higher ownership for implicit bias was associated with greater implicit-explicit attitude correspondence, and this effect was driven by participants high in self-esteem. Finally, in Study 3, we manipulated inferences of ownership and measured self-esteem. Metacognitions of ownership affected implicit-explicit attitude correspondence but only among those with relatively high self-esteem. We conclude that subjective inferences about implicit bias affect explicit prejudice.

  15. Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning

    PubMed Central

    Sanchez, Daniel J.; Reber, Paul J.

    2012-01-01

    Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Learning of complex tasks in which both explicit instruction and practice is used depends on both kinds of memory, and how these systems interact will be an important component of the learning process. Theories that posit an integrated, or single, memory system for both types of memory predict that explicit instruction should contribute directly to strengthening task knowledge. In contrast, if the two types of memory are independent and acquired in parallel, explicit knowledge should have no direct impact and may serve in a “scaffolding” role in complex learning. Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-training instruction on skill learning and performance was assessed. Explicit pre-training instruction led to robust explicit knowledge, but sequence learning did not benefit from the contribution of pre-training sequence memorization. The lack of an instruction benefit suggests that during skill learning, implicit and explicit memory operate independently. While healthy participants will generally accrue parallel implicit and explicit knowledge in complex tasks, these types of information appear to be separately represented in the human brain consistent with multiple memory systems theory. PMID:23280147

  16. MONTE CARLO RADIATION-HYDRODYNAMICS WITH IMPLICIT METHODS

    SciTech Connect

    Roth, Nathaniel; Kasen, Daniel

    2015-03-15

    We explore the application of Monte Carlo transport methods to solving coupled radiation-hydrodynamics (RHD) problems. We use a time-dependent, frequency-dependent, three-dimensional radiation transport code that is special relativistic and includes some detailed microphysical interactions such as resonant line scattering. We couple the transport code to two different one-dimensional (non-relativistic) hydrodynamics solvers: a spherical Lagrangian scheme and a Eulerian Godunov solver. The gas–radiation energy coupling is treated implicitly, allowing us to take hydrodynamical time-steps that are much longer than the radiative cooling time. We validate the code and assess its performance using a suite of radiation hydrodynamical test problems, including ones in the radiation energy dominated regime. We also develop techniques that reduce the noise of the Monte Carlo estimated radiation force by using the spatial divergence of the radiation pressure tensor. The results suggest that Monte Carlo techniques hold promise for simulating the multi-dimensional RHD of astrophysical systems.

  17. Implicit numerical integration for periodic solutions of autonomous nonlinear systems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1982-01-01

    A change of variables that stabilizes numerical computations for periodic solutions of autonomous systems is derived. Computation of the period is decoupled from the rest of the problem for conservative systems of any order and for any second-order system. Numerical results are included for a second-order conservative system under a suddenly applied constant load. Near the critical load for the system, a small increment in load amplitude results in a large increase in amplitude of the response.

  18. Implicit Affective Cues and Attentional Tuning: An Integrative Review

    ERIC Educational Resources Information Center

    Friedman, Ronald S.; Forster, Jens

    2010-01-01

    A large and growing number of studies support the notion that arousing positive emotional states expand, and that arousing negative states constrict, the scope of attention on both the perceptual and conceptual levels. However, these studies have predominantly involved the manipulation or measurement of conscious emotional experiences (e.g.,…

  19. Integrating a hive triangle pattern with subpixel analysis for noncontact measurement of structural dynamic response by using a novel image processing scheme.

    PubMed

    Lu, Yung-Chi; Hung, Shih-Lin; Lin, Tzu-Hsuan

    2014-01-01

    This work presents a digital image processing approach with a unique hive triangle pattern by integrating subpixel analysis for noncontact measurement of structural dynamic response data. Feasibility of proposed approach is demonstrated based on numerical simulation of a photography experiment. According to those results, the measured time-history displacement of simulated image correlates well with the numerical solution. A small three-story frame is then mounted on a small shaker table, and a linear variation differential transformation (LVDT) is set on the second floor. Experimental results indicate that the relative error between data from LVDT and analyzed data from digital image correlation is below 0.007%, 0.0205 in terms of frequency and displacement, respectively. Additionally, the appropriate image block affects the estimation accuracy of the measurement system. Importantly, the proposed approach for evaluating pattern center and size is highly promising for use in assigning the adaptive block for a digital image correlation method. PMID:24955396

  20. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.; Carpenter, Mark H.

    2001-01-01

    Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta ARK2 methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z(exp [I]) goes to infinity, and retain high stability efficiency in the absence of stiffness, z(exp [I]) goes to zero. Extrapolation-type stage-value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods while offering error control and stage-value predictors.

  1. Verbal implicit sequence learning in persons who stutter and persons with Parkinson's disease.

    PubMed

    Smits-Bandstra, Sarah; Gracco, Vincent

    2013-01-01

    The authors investigated the integrity of implicit learning systems in 14 persons with Parkinson's disease (PPD), 14 persons who stutter (PWS), and 14 control participants. In a 120-min session participants completed a verbal serial reaction time task, naming aloud 4 syllables in response to 4 visual stimuli. Unbeknownst to participants, the syllables formed a repeating 8-item sequence. PWS and PPD demonstrated slower reaction times for early but not late learning trials relative to controls reflecting delays but not deficiencies in general learning. PPD also demonstrated less accuracy in general learning relative to controls. All groups demonstrated similar limited explicit sequence knowledge. Both PWS and PPD demonstrated significantly less implicit sequence learning relative to controls, suggesting that stuttering may be associated with compromised functional integrity of the cortico-striato-thalamo-cortical loop.

  2. Shades of American Identity: Implicit Relations between Ethnic and National Identities

    PubMed Central

    Devos, Thierry; Mohamed, Hafsa

    2015-01-01

    The issue of ethnic diversity and national identity in an immigrant nation such as the USA is a recurrent topic of debate. We review and integrate research examining the extent to which the American identity is implicitly granted or denied to members of different ethnic groups. Consistently, European Americans are implicitly conceived of as being more American than African, Asian, Latino, and even Native Americans. This implicit American = White effect emerges when explicit knowledge or perceptions point in the opposite direction. The propensity to deny the American identity to members of ethnic minorities is particularly pronounced when targets (individuals or groups) are construed through the lenses of ethnic identities. Implicit ethnic–national associations fluctuate as a function of perceivers’ ethnic identity and political orientation, but also contextual or situational factors. The tendency to equate being American with being White accounts for the strength of national identification (among European Americans) and behavioral responses including hiring recommendations and voting intentions. The robust propensity to deny the American identity to ethnic minority groups reflects an exclusionary national identity. PMID:27011765

  3. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Klopfer, G. H.; Montagne, J.-L.

    1988-01-01

    A class of implicit Total Variation Diminishing (TVD) type algorithms suitable for transonic and supersonic multidimensional Euler and Navier-Stokes equations was extended to hypersonic computations. The improved conservative shock-capturing schemes are spatially second- and third-order, and are fully implicit. They can be first- or second-order accurate in time and are suitable for either steady or unsteady calculations. Enhancement of stability and convergence rate for hypersonic flows is discussed. With the proper choice of the temporal discretization and suitable implicit linearization, these schemes are fairly efficient and accurate for very complex two-dimensional hypersonic inviscid and viscous shock interactions. This study is complimented by a variety of steady and unsteady viscous and inviscid hypersonic blunt-body flow computations. Due to the inherent stiffness of viscous flow problems, numerical experiments indicated that the convergence rate is in general slower for viscous flows than for inviscid steady flows.

  4. Neural Patterns of the Implicit Association Test

    PubMed Central

    Healy, Graham F.; Boran, Lorraine; Smeaton, Alan F.

    2015-01-01

    The Implicit Association Test (IAT) is a reaction time based categorization task that measures the differential associative strength between bipolar targets and evaluative attribute concepts as an approach to indexing implicit beliefs or biases. An open question exists as to what exactly the IAT measures, and here EEG (Electroencephalography) has been used to investigate the time course of ERPs (Event-related Potential) indices and implicated brain regions in the IAT. IAT-EEG research identifies a number of early (250–450 ms) negative ERPs indexing early-(pre-response) processing stages of the IAT. ERP activity in this time range is known to index processes related to cognitive control and semantic processing. A central focus of these efforts has been to use IAT-ERPs to delineate the implicit and explicit factors contributing to measured IAT effects. Increasing evidence indicates that cognitive control (and related top-down modulation of attention/perceptual processing) may be components in the effective measurement of IAT effects, as factors such as physical setting or task instruction can change an IAT measurement. In this study we further implicate the role of proactive cognitive control and top-down modulation of attention/perceptual processing in the IAT-EEG. We find statistically significant relationships between D-score (a reaction-time based measure of the IAT-effect) and early ERP-time windows, indicating where more rapid word categorizations driving the IAT effect are present, they are at least partly explainable by neural activity not significantly correlated with the IAT measurement itself. Using LORETA, we identify a number of brain regions driving these ERP-IAT relationships notably involving left-temporal, insular, cingulate, medial frontal and parietal cortex in time regions corresponding to the N2- and P3-related activity. The identified brain regions involved with reduced reaction times on congruent blocks coincide with those of previous studies

  5. Neural Patterns of the Implicit Association Test.

    PubMed

    Healy, Graham F; Boran, Lorraine; Smeaton, Alan F

    2015-01-01

    The Implicit Association Test (IAT) is a reaction time based categorization task that measures the differential associative strength between bipolar targets and evaluative attribute concepts as an approach to indexing implicit beliefs or biases. An open question exists as to what exactly the IAT measures, and here EEG (Electroencephalography) has been used to investigate the time course of ERPs (Event-related Potential) indices and implicated brain regions in the IAT. IAT-EEG research identifies a number of early (250-450 ms) negative ERPs indexing early-(pre-response) processing stages of the IAT. ERP activity in this time range is known to index processes related to cognitive control and semantic processing. A central focus of these efforts has been to use IAT-ERPs to delineate the implicit and explicit factors contributing to measured IAT effects. Increasing evidence indicates that cognitive control (and related top-down modulation of attention/perceptual processing) may be components in the effective measurement of IAT effects, as factors such as physical setting or task instruction can change an IAT measurement. In this study we further implicate the role of proactive cognitive control and top-down modulation of attention/perceptual processing in the IAT-EEG. We find statistically significant relationships between D-score (a reaction-time based measure of the IAT-effect) and early ERP-time windows, indicating where more rapid word categorizations driving the IAT effect are present, they are at least partly explainable by neural activity not significantly correlated with the IAT measurement itself. Using LORETA, we identify a number of brain regions driving these ERP-IAT relationships notably involving left-temporal, insular, cingulate, medial frontal and parietal cortex in time regions corresponding to the N2- and P3-related activity. The identified brain regions involved with reduced reaction times on congruent blocks coincide with those of previous studies.

  6. A semi-implicit spectral method for compressible convection of rotating and density-stratified flows in Cartesian geometry

    NASA Astrophysics Data System (ADS)

    Cai, Tao

    2016-04-01

    In this paper, we have described a 'stratified' semi-implicit spectral method to study compressible convection in Cartesian geometry. The full set of compressible hydrodynamic equations are solved in conservative forms. The numerical scheme is accurate and efficient, based on fast Fourier/sin/cos spectral transforms in the horizontal directions, Chebyshev spectral transform or second-order finite difference scheme in the vertical direction, and second order semi-implicit scheme in time marching of linear terms. We have checked the validity of both the fully pseudo-spectral scheme and the mixed finite-difference pseudo-spectral scheme by studying the onset of compressible convection. The difference of the critical Rayleigh number between our numerical result and the linear stability analysis is within two percent. Besides, we have computed the Mach numbers with different Rayleigh numbers in compressible convection. It shows good agreement with the numerical results of finite difference methods and finite volume method. This model has wide application in studying laminar and turbulent flow. Illustrative examples of application on horizontal convection, gravity waves, and long-lived vortex are given in this paper.

  7. Anger enhances correspondence between implicit and explicit attitudes.

    PubMed

    Huntsinger, Jeffrey R

    2013-04-01

    The goal of the current research was to subject to empirical examination the idea that the experience of anger would narrow the separation between implicit and explicit attitudes. Specifically, the tendency of anger to promote a sense of certainty in one's point of view was predicted to enhance the subjective validity of implicit attitudes, and that this validation of implicit attitudes by anger should increase implicit-explicit attitude correspondence. Consistent with these predictions, across three experiments, anger, as compared with neutral emotion (Experiments 1-3) and sad emotion (Experiments 1-2), was found to increase implicit-explicit attitude correspondence. Appraisals of certainty, but not individual control, mediated the effect of anger on implicit-explicit correspondence (Experiment 3). More generally, these results imply that anger may play an essential, but until now overlooked, role in directing the interplay between spontaneous and deliberative aspects of the self.

  8. Explicit- and implicit bullying attitudes in relation to bullying behavior.

    PubMed

    van Goethem, Anne A J; Scholte, Ron H J; Wiers, Reinout W

    2010-08-01

    The main aim of this study was to examine whether an assessment of implicit bullying attitudes could add to the prediction of bullying behavior after controlling for explicit bullying attitudes. Primary school children (112 boys and 125 girls, M age = 11 years, 5 months) completed two newly developed measures of implicit bullying attitudes (a general Implicit Association Test on bullying and a movie-primed specific IAT on bullying), an explicit bullying attitude measure, and self reported, peer reported, and teacher rated bullying behavior. While explicit bullying attitudes predicted bullying behavior, implicit attitudes did not. However, a significant interaction between implicit and explicit bullying attitudes indicated that in children with relatively positive explicit attitudes, implicit bullying attitudes were important predictors of bullying behavior. Theoretical and practical implications are discussed.

  9. Implicit and explicit learning in individuals with agrammatic aphasia.

    PubMed

    Schuchard, Julia; Thompson, Cynthia K

    2014-06-01

    Implicit learning is a process of acquiring knowledge that occurs without conscious awareness of learning, whereas explicit learning involves the use of overt strategies. To date, research related to implicit learning following stroke has been largely restricted to the motor domain and has rarely addressed implications for language. The present study investigated implicit and explicit learning of an auditory word sequence in 10 individuals with stroke-induced agrammatic aphasia and 18 healthy age-matched participants using an adaptation of the Serial Reaction Time task. Individuals with aphasia showed significant learning under implicit, but not explicit, conditions, whereas age-matched participants learned under both conditions. These results suggest significant implicit learning ability in agrammatic aphasia. Furthermore, results of an auditory sentence span task indicated working memory deficits in individuals with agrammatic aphasia, which are discussed in relation to explicit and implicit learning processes.

  10. An energy- and charge-conserving, nonlinearly implicit, electromagnetic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis; Knoll, Dana; Daughton, William; CoCoMans (LANL) Team

    2013-10-01

    A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension. The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation of Maxwell's equations. An implicit, orbit-averaged central finite difference scheme is applied to both the Darwin field equations and the particle orbit equations to produce a discrete system that remains exactly charge-and energy-conserving. Furthermore, the canonical momentum in any ignorable direction is exactly conserved per particle by appropriate interpolations of the magnetic field. A fluid preconditioner targeting the stiffest electron waves has been developed to accelerate the linear GMRES solver of JFNK. We present 1D numerical experiments (e.g. the Weibel instability, kinetic Alfven wave ion-ion streaming instability, etc.) to demonstrate the accuracy and efficiency of the implicit Darwin PIC algorithm, and the performance of the fluid preconditioner.

  11. Energy-Conservative Newton-Krylov Implicit Solver for the Fokker-Planck Equation

    NASA Astrophysics Data System (ADS)

    Knoll, D. A.; Barnes, D. C.; Chacón, L.

    1998-11-01

    Energy conservation in 1D Fokker-Planck problems has been addressed by Epperlein,(Epperlein, J. Comp. Phys.), 112, 291-297 (1994) who proposed an implicit method that preserves energy exactly for any time step, provided the energy moment cancels exactly. Although this method can be generalized for several dimensions, standard discretization techniques in multidimensional geometries generally do not guarantee the numerical cancellation of the energy moment, hence precluding exact energy conservation. Furthermore, its numerical implementation is non-trivial, as it involves a dense, non-symmetric matrix of coefficients. It is the objective of this poster to describe the implementation of an implicit energy-conservative scheme for multidimensional Fokker-Planck problems. A new discretization procedure that ensures the numerical cancellation of the energy moment will be discussed. The dense algebraic problem that results from this formulation is solved efficiently by the multigrid preconditioned matrix-free GMRES(Saad, Schultz, SIAM J. Scientific and Stat. Comp.), 7, 856-869 (1986) iterative technique, which minimizes storage and runtime requirements, and allows implicit time steps of the order of the collisional time scale of the problem, τ. Results will show that the method preserves particles and energy exactly.

  12. Semi-implicit finite difference methods for three-dimensional shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Cheng, Ralph T.

    1992-01-01

    A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.

  13. Evaluation of health benefit using BenMAP-CE with an integrated scheme of model and monitor data during Guangzhou Asian Games.

    PubMed

    Ding, Dian; Zhu, Yun; Jang, Carey; Lin, Che-Jen; Wang, Shuxiao; Fu, Joshua; Gao, Jian; Deng, Shuang; Xie, Junping; Qiu, Xuezhen

    2016-04-01

    Guangzhou is the capital and largest city (land area: 7287 km(2)) of Guangdong province in South China. The air quality in Guangzhou typically worsens in November due to unfavorable meteorological conditions for pollutant dispersion. During the Guangzhou Asian Games in November 2010, the Guangzhou government carried out a number of emission control measures that significantly improved the air quality. In this paper, we estimated the acute health outcome changes related to the air quality improvement during the 2010 Guangzhou Asian Games using a next-generation, fully-integrated assessment system for air quality and health benefits. This advanced system generates air quality data by fusing model and monitoring data instead of using monitoring data alone, which provides more reliable results. The air quality estimates retain the spatial distribution of model results while calibrating the value with observations. The results show that the mean PM2.5 concentration in November 2010 decreased by 3.5 μg/m(3) compared to that in 2009 due to the emission control measures. From the analysis, we estimate that the air quality improvement avoided 106 premature deaths, 1869 cases of hospital admission, and 20,026 cases of outpatient visits. The overall cost benefit of the improved air quality is estimated to be 165 million CNY, with the avoided premature death contributing 90% of this figure. The research demonstrates that BenMAP-CE is capable of assessing the health and cost benefits of air pollution control for sound policy making. PMID:27090690

  14. Attentional Disregulation: A Benefit for Implicit Memory

    PubMed Central

    Rowe, Gillian; Valderrama, Steven; Hasher, Lynn; Lenartowicz, Agatha

    2006-01-01

    We investigated the effect of age and time of testing on the ability to control attention, and addressed the possibility that older adults’ susceptibility to distraction may sometimes facilitate performance on a later cognitive task. Using a modification of Rees et al. (1999), participants made same/different judgements on line-drawings superimposed with task-irrelevant letter strings. Memory for the distractors was subsequently tested using an implicit memory task. Both older and younger adults demonstrated greater memory for distractors at nonoptimal than at optimal times of day; however, older adults showed considerably better memory for the distractors than did younger adults. PMID:17201503

  15. Predicting Film Genres with Implicit Ideals

    PubMed Central

    Olney, Andrew McGregor

    2013-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories. PMID:23423823

  16. Predicting film genres with implicit ideals.

    PubMed

    Olney, Andrew McGregor

    2012-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  17. The Method of Space-time Conservation Element and Solution Element: Development of a New Implicit Solver

    NASA Technical Reports Server (NTRS)

    Chang, S. C.; Wang, X. Y.; Chow, C. Y.; Himansu, A.

    1995-01-01

    The method of space-time conservation element and solution element is a nontraditional numerical method designed from a physicist's perspective, i.e., its development is based more on physics than numerics. It uses only the simplest approximation techniques and yet is capable of generating nearly perfect solutions for a 2-D shock reflection problem used by Helen Yee and others. In addition to providing an overall view of the new method, we introduce a new concept in the design of implicit schemes, and use it to construct a highly accurate solver for a convection-diffusion equation. It is shown that, in the inviscid case, this new scheme becomes explicit and its amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, its principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  18. Increasing implicit self-esteem through classical conditioning.

    PubMed

    Baccus, Jodene R; Baldwin, Mark W; Packer, Dominic J

    2004-07-01

    Implicit self-esteem is the automatic, nonconscious aspect of self-esteem. This study demonstrated that implicit self-esteem can be increased using a computer game that repeatedly pairs self-relevant information with smiling faces. These findings, which are consistent with principles of classical conditioning, establish the associative and interpersonal nature of implicit self-esteem and demonstrate the potential benefit of applying basic learning principles in this domain. PMID:15200636

  19. Applications of implicit restarting in optimization and control Dan Sorensen

    SciTech Connect

    Sorensen, D.

    1996-12-31

    Implicit restarting is a technique for combining the implicitly shifted QR mechanism with a k-step Arnoldi or Lanczos factorization to obtain a truncated form of the implicitly shifted QR-iteration suitable for large scale eigenvalue problems. The software package ARPACK based upon this technique has been successfully used to solve large scale symmetric and nonsymmetric (generalized) eigenvalue problems arising from a variety of applications.

  20. Disentangling Rheumatoid Arthritis Patients' Implicit and Explicit Attitudes toward Methotrexate.

    PubMed

    Linn, Annemiek J; Vandeberg, Lisa; Wennekers, Annemarie M; Vervloet, Marcia; van Dijk, Liset; van den Bemt, Bart J F

    2016-01-01

    Medication non-adherence is a major public health problem that has been termed an 'invisible epidemic.' Non-adherence is not only associated with negative clinical consequences but can also result in substantial healthcare costs. Up to now, effective adherence interventions are scarce and a more comprehensive model of adherence determinants is required to target the determinants for not taking the medication as prescribed. Current approaches only included explicit attitudes such as self-reported evaluations of medication as determinants, neglecting the role of associative processes that shape implicit attitudes. Implicit processes can predict daily behavior more accurately than explicit attitudes. Our aim is to assess explicit and implicit attitudes toward medication and explore the relation with beliefs, adherence and clinical (laboratory) outcomes in chronically ill patients. Fifty two Rheumatic Arthritis (RA) patients' attitudes toward Methotrexate (MTX) were explicitly (self-reported) and implicitly (Single-Category Implicit Association Test) assessed and related to the Beliefs about Medicine Questionnaire, the Compliance Questionnaire on Rheumatology and laboratory parameters [Erythrocyte Sedimentation Rate (ESR), C-Reactive Protein (CRP)]. Results show that explicit attitudes were positive and health-related. Implicit attitudes were, however, negative and sickness-related. Half of the patients displayed explicitly positive but implicitly negative attitudes. Explicit attitudes were positively related to ESR. A positive relationship between implicit attitudes and disease duration was observed. In this study, we have obtained evidence suggesting that the measurement of implicit attitudes and associations provides different information than explicit, self-reported attitudes toward medication. Since patients' implicit attitudes deviated from explicit attitudes, we can conclude that the relationship between implicit attitudes and medication adherence is worthwhile