Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji
2016-01-01
This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins. Guest Editors: J.C. Gumbart and Sergei Noskov. PMID:26766517
Dutagaci, Bercem; Wittayanarakul, Kitiyaporn; Mori, Takaharu; Feig, Michael
2017-06-13
A scoring protocol based on implicit membrane-based scoring functions and a new protocol for optimizing the positioning of proteins inside the membrane was evaluated for its capacity to discriminate native-like states from misfolded decoys. A decoy set previously established by the Baker lab (Proteins: Struct., Funct., Genet. 2006, 62, 1010-1025) was used along with a second set that was generated to cover higher resolution models. The Implicit Membrane Model 1 (IMM1), IMM1 model with CHARMM 36 parameters (IMM1-p36), generalized Born with simple switching (GBSW), and heterogeneous dielectric generalized Born versions 2 (HDGBv2) and 3 (HDGBv3) were tested along with the new HDGB van der Waals (HDGBvdW) model that adds implicit van der Waals contributions to the solvation free energy. For comparison, scores were also calculated with the distance-scaled finite ideal-gas reference (DFIRE) scoring function. Z-scores for native state discrimination, energy vs root-mean-square deviation (RMSD) correlations, and the ability to select the most native-like structures as top-scoring decoys were evaluated to assess the performance of the scoring functions. Ranking of the decoys in the Baker set that were relatively far from the native state was challenging and dominated largely by packing interactions that were captured best by DFIRE with less benefit of the implicit membrane-based models. Accounting for the membrane environment was much more important in the second decoy set where especially the HDGB-based scoring functions performed very well in ranking decoys and providing significant correlations between scores and RMSD, which shows promise for improving membrane protein structure prediction and refinement applications. The new membrane structure scoring protocol was implemented in the MEMScore web server ( http://feiglab.org/memscore ).
Mori, Takaharu; Miyashita, Naoyuki; Im, Wonpil; Feig, Michael; Sugita, Yuji
2016-07-01
This paper reviews various enhanced conformational sampling methods and explicit/implicit solvent/membrane models, as well as their recent applications to the exploration of the structure and dynamics of membranes and membrane proteins. Molecular dynamics simulations have become an essential tool to investigate biological problems, and their success relies on proper molecular models together with efficient conformational sampling methods. The implicit representation of solvent/membrane environments is reasonable approximation to the explicit all-atom models, considering the balance between computational cost and simulation accuracy. Implicit models can be easily combined with replica-exchange molecular dynamics methods to explore a wider conformational space of a protein. Other molecular models and enhanced conformational sampling methods are also briefly discussed. As application examples, we introduce recent simulation studies of glycophorin A, phospholamban, amyloid precursor protein, and mixed lipid bilayers and discuss the accuracy and efficiency of each simulation model and method. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Design and application of implicit solvent models in biomolecular simulations.
Kleinjung, Jens; Fraternali, Franca
2014-04-01
We review implicit solvent models and their parametrisation by introducing the concepts and recent devlopments of the most popular models with a focus on parametrisation via force matching. An overview of recent applications of the solvation energy term in protein dynamics, modelling, design and prediction is given to illustrate the usability and versatility of implicit solvation in reproducing the physical behaviour of biomolecular systems. Limitations of implicit modes are discussed through the example of more challenging systems like nucleic acids and membranes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Structure refinement of membrane proteins via molecular dynamics simulations.
Dutagaci, Bercem; Heo, Lim; Feig, Michael
2018-07-01
A refinement protocol based on physics-based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge-based or implicit membrane-based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane-based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models. © 2018 Wiley Periodicals, Inc.
A Membrane Model from Implicit Elasticity Theory
Freed, A. D.; Liao, J.; Einstein, D. R.
2014-01-01
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal-energy function. The theory utilizes Biot’s (1939) definitions for stress and strain that, in 1-dimension, are the stress/strain measures adopted by Fung (1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from a porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly non-linear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model. PMID:24282079
GroPBS: Fast Solver for Implicit Electrostatics of Biomolecules
Bertelshofer, Franziska; Sun, Liping; Greiner, Günther; Böckmann, Rainer A.
2015-01-01
Knowledge about the electrostatic potential on the surface of biomolecules or biomembranes under physiological conditions is an important step in the attempt to characterize the physico-chemical properties of these molecules and, in particular, also their interactions with each other. Additionally, knowledge about solution electrostatics may also guide the design of molecules with specified properties. However, explicit water models come at a high computational cost, rendering them unsuitable for large design studies or for docking purposes. Implicit models with the water phase treated as a continuum require the numerical solution of the Poisson–Boltzmann equation (PBE). Here, we present a new flexible program for the numerical solution of the PBE, allowing for different geometries, and the explicit and implicit inclusion of membranes. It involves a discretization of space and the computation of the molecular surface. The PBE is solved using finite differences, the resulting set of equations is solved using a Gauss–Seidel method. It is shown for the example of the sucrose transporter ScrY that the implicit inclusion of a surrounding membrane has a strong effect also on the electrostatics within the pore region and, thus, needs to be carefully considered, e.g., in design studies on membrane proteins. PMID:26636074
A Membrane Model from Implicit Elasticity Theory. Application to Visceral Pleura
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Liao, Jun; Einstein, Daniel R.
2013-11-27
A Fungean solid is derived for membranous materials as a body defined by isotropic response functions whose mathematical structure is that of a Hookean solid where the elastic constants are replaced by functions of state derived from an implicit, thermodynamic, internal energy function. The theory utilizes Biot’s (Lond Edinb Dublin Philos Mag J Sci 27:468–489, 1939) definitions for stress and strain that, in one-dimension, are the stress/strain measures adopted by Fung (Am J Physiol 28:1532–1544, 1967) when he postulated what is now known as Fung’s law. Our Fungean membrane model is parameterized against a biaxial data set acquired from amore » porcine pleural membrane subjected to three, sequential, proportional, planar extensions. These data support an isotropic/deviatoric split in the stress and strain-rate hypothesized by our theory. These data also demonstrate that the material response is highly nonlinear but, otherwise, mechanically isotropic. These data are described reasonably well by our otherwise simple, four-parameter, material model.« less
Staritzbichler, René; Anselmi, Claudio; Forrest, Lucy R.; Faraldo-Gómez, José D.
2014-01-01
As new atomic structures of membrane proteins are resolved, they reveal increasingly complex transmembrane topologies, and highly irregular surfaces with crevices and pores. In many cases, specific interactions formed with the lipid membrane are functionally crucial, as is the overall lipid composition. Compounded with increasing protein size, these characteristics pose a challenge for the construction of simulation models of membrane proteins in lipid environments; clearly, that these models are sufficiently realistic bears upon the reliability of simulation-based studies of these systems. Here, we introduce GRIFFIN, which uses a versatile framework to automate and improve a widely-used membrane-embedding protocol. Initially, GRIFFIN carves out lipid and water molecules from a volume equivalent to that of the protein, so as to conserve the system density. In the subsequent optimization phase GRIFFIN adds an implicit grid-based protein force-field to a molecular dynamics simulation of the pre-carved membrane. In this force-field, atoms inside the implicit protein volume experience an outward force that will expel them from that volume, whereas those outside are subject to electrostatic and van-der-Waals interactions with the implicit protein. At each step of the simulation, these forces are updated by GRIFFIN and combined with the intermolecular forces of the explicit lipid-water system. This procedure enables the construction of realistic and reproducible starting configurations of the protein-membrane interface within a reasonable timeframe and with minimal intervention. GRIFFIN is a standalone tool designed to work alongside any existing molecular dynamics package, such as NAMD or GROMACS. PMID:24707227
Botello-Smith, Wesley M.; Luo, Ray
2016-01-01
Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966
Im, Wonpil; Brooks, Charles L.
2005-01-01
The mechanism of interfacial folding and membrane insertion of designed peptides is explored by using an implicit membrane generalized Born model and replica-exchange molecular dynamics. Folding/insertion simulations initiated from fully extended peptide conformations in the aqueous phase, at least 28 Å away from the membrane interface, demonstrate a general mechanism for structure formation and insertion (when it occurs). The predominately hydrophobic peptides from the synthetic WALP and TMX series first become localized at the membrane-solvent interface where they form significant helical secondary structure via a helix–turn–helix motif that inserts the central hydrophobic residues into the membrane interior, and then fluctuations occur that provide a persistent helical structure throughout the peptide and it inserts with its N-terminal end moving across the membrane. More specifically, we observed that: (i) the WALP peptides (WALP16, WALP19, and WALP23) spontaneously insert in the membrane as just noted; (ii) TMX-1 also inserts spontaneously after a similar mechanism and forms a transmembrane helix with a population of ≈50% at 300 K; and (iii) TMX-3 does not insert, but exists in a fluctuating membrane interface-bound form. These findings are in excellent agreement with available experimental data and demonstrate the potential for new implicit solvent/membrane models together with advanced simulation protocols to guide experimental programs in exploring the nature and mechanism of membrane-associated folding and insertion of biologically important peptides. PMID:15860587
NASA Astrophysics Data System (ADS)
Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben
2011-10-01
Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.
Computation of the unsteady facilitated transport of oxygen in hemoglobin
NASA Technical Reports Server (NTRS)
Davis, Sanford
1990-01-01
The transport of a reacting permeant diffusing through a thin membrane is extended to more realistic dissociation models. A new nonlinear analysis of the reaction-diffusion equations, using implicit finite-difference methods and direct block solvers, is used to study the limits of linearized and equilibrium theories. Computed curves of molecular oxygen permeating through hemoglobin solution are used to illustrate higher-order reaction models, the effect of concentration boundary layers at the membrane interfaces, and the transient buildup of oxygen flux.
Lazaridis, Themis; Leveritt, John M; PeBenito, Leo
2014-09-01
The energetic cost of burying charged groups in the hydrophobic core of lipid bilayers has been controversial, with simulations giving higher estimates than certain experiments. Implicit membrane approaches are usually deemed too simplistic for this problem. Here we challenge this view. The free energy of transfer of amino acid side chains from water to the membrane center predicted by IMM1 is reasonably close to all-atom free energy calculations. The shape of the free energy profile, however, for the charged side chains needs to be modified to reflect the all-atom simulation findings (IMM1-LF). Membrane thinning is treated by combining simulations at different membrane widths with an estimate of membrane deformation free energy from elasticity theory. This approach is first tested on the voltage sensor and the isolated S4 helix of potassium channels. The voltage sensor is stably inserted in a transmembrane orientation for both the original and the modified model. The transmembrane orientation of the isolated S4 helix is unstable in the original model, but a stable local minimum in IMM1-LF, slightly higher in energy than the interfacial orientation. Peptide translocation is addressed by mapping the effective energy of the peptide as a function of vertical position and tilt angle, which allows identification of minimum energy pathways and transition states. The barriers computed for the S4 helix and other experimentally studied peptides are low enough for an observable rate. Thus, computational results and experimental studies on the membrane burial of peptide charged groups appear to be consistent. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.
Sikder, Md. Kabir Uddin; Stone, Kyle A.; Kumar, P. B. Sunil; Laradji, Mohamed
2014-01-01
We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells. PMID:25106608
Olson, Mark A; Lee, Michael S; Yeh, In-Chul
2017-06-15
This work presents replica-exchange molecular dynamics simulations of inserting a 16-residue Ebola virus fusion peptide into a membrane bilayer. A computational approach is applied for modeling the peptide at the explicit all-atom level and the membrane-aqueous bilayer by a generalized Born continuum model with a smoothed switching function (GBSW). We provide an assessment of the model calculations in terms of three metrics: (1) the ability to reproduce the NMR structure of the peptide determined in the presence of SDS micelles and comparable structural data on other fusion peptides; (2) determination of the effects of the mutation Trp-8 to Ala and sequence discrimination of the homologous Marburg virus; and (3) calculation of potentials of mean force for estimating the partitioning free energy and their comparison to predictions from the Wimley-White interfacial hydrophobicity scale. We found the GBSW implicit membrane model to produce results of limited accuracy in conformational properties of the peptide when compared to the NMR structure, yet the model resolution is sufficient to determine the effect of sequence differentiation on peptide-membrane integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Normalized Implicit Radial Models for Scattered Point Cloud Data without Normal Vectors
2009-03-23
points by shrinking a discrete membrane, Computer Graphics Forum, Vol. 24-4, 2005, pp. 791-808 [8] Floater , M. S., Reimers, M.: Meshless...Parameterization and Surface Reconstruction, Computer Aided Geometric Design 18, 2001, pp 77-92 [9] Floater , M. S.: Parameterization of Triangulations and...Unorganized Points, In: Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak and M. S. Floater (eds.), Springer , 2002, pp. 287-316 [10
Predictive energy landscapes for folding membrane protein assemblies
NASA Astrophysics Data System (ADS)
Truong, Ha H.; Kim, Bobby L.; Schafer, Nicholas P.; Wolynes, Peter G.
2015-12-01
We study the energy landscapes for membrane protein oligomerization using the Associative memory, Water mediated, Structure and Energy Model with an implicit membrane potential (AWSEM-membrane), a coarse-grained molecular dynamics model previously optimized under the assumption that the energy landscapes for folding α-helical membrane protein monomers are funneled once their native topology within the membrane is established. In this study we show that the AWSEM-membrane force field is able to sample near native binding interfaces of several oligomeric systems. By predicting candidate structures using simulated annealing, we further show that degeneracies in predicting structures of membrane protein monomers are generally resolved in the folding of the higher order assemblies as is the case in the assemblies of both nicotinic acetylcholine receptor and V-type Na+-ATPase dimers. The physics of the phenomenon resembles domain swapping, which is consistent with the landscape following the principle of minimal frustration. We revisit also the classic Khorana study of the reconstitution of bacteriorhodopsin from its fragments, which is the close analogue of the early Anfinsen experiment on globular proteins. Here, we show the retinal cofactor likely plays a major role in selecting the final functional assembly.
Kanchi, Subbarao; Gosika, Mounika; Ayappa, K G; Maiti, Prabal K
2018-06-13
The understanding of dendrimer interactions with cell membranes has great importance in drug/gene delivery based therapeutics. Although molecular simulations have been used to understand the nature of dendrimer interactions with lipid membranes, its dependency on available force field parameters is poorly understood. In this study, we have carried out fully atomistic molecular dynamics (MD) simulations of a protonated G3 poly(amido amine) (PAMAM) dendrimer-dimyristoylphosphatidylcholine (DMPC) lipid bilayer complex using three different force fields (FFs) namely, CHARMM, GAFF, and GROMOS in the presence of explicit water to understand the structure of the lipid-dendrimer complex and nature of their interaction. CHARMM and GAFF dendrimers initially in contact with the lipid head groups were found to move away from the lipid bilayer during the course of simulation; however, the dendrimer remained strongly bound to the lipid head groups with the GROMOS FF. Potential of the mean force (PMF) computations of the dendrimer along the bilayer normal showed a repulsive barrier (∼20 kcal/mol) between dendrimer and lipid bilayer in the case of CHARMM and GAFF force fields. In contrast, an attractive interaction (∼40 kcal/mol) is obtained with the GROMOS force field, consistent with experimental observations of membrane binding observed with lower generation G3 PAMAM dendrimers. This difference with the GROMOS dendrimer is attributed to the strong dendrimer-lipid interaction and lowered surface hydration of the dendrimer. Assessing the role of solvent, we find that the CHARMM and GAFF dendrimers strongly bind to the lipid bilayer with an implicit solvent (Generalized Born) model, whereas binding is not observed with explicit water (TIP3P). The opposing nature of dendrimer-membrane interactions in the presence of explicit and implicit solvents demonstrates that hydration effects play an important role in modulating the dendrimer-lipid interaction warranting a case for refinement of the existing dendrimer/lipid force fields.
A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins
Xu, Jingjie; Lu, Benzhuo
2018-01-01
Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644
A Finite Element Solution of Lateral Periodic Poisson-Boltzmann Model for Membrane Channel Proteins.
Ji, Nan; Liu, Tiantian; Xu, Jingjie; Shen, Longzhu Q; Lu, Benzhuo
2018-02-28
Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson-Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z -axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations.
Modeling Nanoparticle Wrapping or Translocation in Bilayer Membranes
Curtis, Emily M.; Bahrami, Amir H.; Weikl, Thomas R.; Hall, Carol K.
2015-01-01
The spontaneous wrapping of nanoparticles by membranes is of increasing interest as nanoparticles become more prevalent in consumer products and hence more likely to enter the human body. We introduce a simulations-based tool that can be used to visualize the molecular level interaction between nanoparticles and bilayer membranes. By combining LIME, an intermediate resolution, implicit solvent model for phospholipids, with discontinuous molecular dynamics (DMD), we are able to simulate the wrapping or embedding of nanoparticles by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer membranes. Simulations of hydrophilic nanoparticles with diameters from 10Å to 250Å show that hydrophilic nanoparticles with diameters greater than 20Å become wrapped while the nanoparticle with a diameter of 10Å does not . Instead this smaller particle became embedded in the bilayer surface where it could interact with the hydrophilic head groups of the lipid molecules. We also investigate the interaction between a DPPC bilayer and hydrophobic nanoparticles with diameters 10Å to 40Å. These nanoparticles do not undergo the wrapping process; instead they directly penetrate the membrane and embed themselves within the inner hydrophobic core of the bilayers. PMID:26260123
A semi-implicit finite element method for viscous lipid membranes
NASA Astrophysics Data System (ADS)
Rodrigues, Diego S.; Ausas, Roberto F.; Mut, Fernando; Buscaglia, Gustavo C.
2015-10-01
A finite element formulation to approximate the behavior of lipid membranes is proposed. The mathematical model incorporates tangential viscous stresses and bending elastic forces, together with the inextensibility constraint and the enclosed volume constraint. The membrane is discretized by a surface mesh made up of planar triangles, over which a mixed formulation (velocity-curvature) is built based on the viscous bilinear form (Boussinesq-Scriven operator) and the Laplace-Beltrami identity relating position and curvature. A semi-implicit approach is then used to discretize in time, with piecewise linear interpolants for all variables. Two stabilization terms are needed: The first one stabilizes the inextensibility constraint by a pressure-gradient-projection scheme (Codina and Blasco (1997) [33]), the second couples curvature and velocity to improve temporal stability, as proposed by Bänsch (2001) [36]. The volume constraint is handled by a Lagrange multiplier (which turns out to be the internal pressure), and an analogous strategy is used to filter out rigid-body motions. The nodal positions are updated in a Lagrangian manner according to the velocity solution at each time step. An automatic remeshing strategy maintains suitable refinement and mesh quality throughout the simulation. Numerical experiments show the convergent and robust behavior of the proposed method. Stability limits are obtained from numerous relaxation tests, and convergence with mesh refinement is confirmed both in the relaxation transient and in the final equilibrium shape. Virtual tweezing experiments are also reported, computing the dependence of the deformed membrane shape with the tweezing velocity (a purely dynamical effect). For sufficiently high velocities, a tether develops which shows good agreement, both in its final radius and in its transient behavior, with available analytical solutions. Finally, simulation results of a membrane subject to the simultaneous action of six tweezers illustrate the robustness of the method.
Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.
Li, He; Lykotrafitis, George
2014-08-05
The membrane of the red blood cell (RBC) consists of spectrin tetramers connected at actin junctional complexes, forming a two-dimensional (2D) sixfold triangular network anchored to the lipid bilayer. Better understanding of the erythrocyte mechanics in hereditary blood disorders such as spherocytosis, elliptocytosis, and especially, sickle cell disease requires the development of a detailed membrane model. In this study, we introduce a mesoscale implicit-solvent coarse-grained molecular dynamics (CGMD) model of the erythrocyte membrane that explicitly describes the phospholipid bilayer and the cytoskeleton, by extending a previously developed two-component RBC membrane model. We show that the proposed model represents RBC membrane with the appropriate bending stiffness and shear modulus. The timescale and self-consistency of the model are established by comparing our results with experimentally measured viscosity and thermal fluctuations of the RBC membrane. Furthermore, we measure the pressure exerted by the cytoskeleton on the lipid bilayer. We find that defects at the anchoring points of the cytoskeleton to the lipid bilayer (as in spherocytes) cause a reduction in the pressure compared with an intact membrane, whereas defects in the dimer-dimer association of a spectrin filament (as in elliptocytes) cause an even larger decrease in the pressure. We conjecture that this finding may explain why the experimentally measured diffusion coefficients of band-3 proteins are higher in elliptocytes than in spherocytes, and higher than in normal RBCs. Finally, we study the effects that possible attractive forces between the spectrin filaments and the lipid bilayer have on the pressure applied on the lipid bilayer by the filaments. We discover that the attractive forces cause an increase in the pressure as they diminish the effect of membrane protein defects. As this finding contradicts with experimental results, we conclude that the attractive forces are moderate and do not impose a complete attachment of the filaments to the lipid bilayer. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Erythrocyte Membrane Model with Explicit Description of the Lipid Bilayer and the Spectrin Network
Li, He; Lykotrafitis, George
2014-01-01
The membrane of the red blood cell (RBC) consists of spectrin tetramers connected at actin junctional complexes, forming a two-dimensional (2D) sixfold triangular network anchored to the lipid bilayer. Better understanding of the erythrocyte mechanics in hereditary blood disorders such as spherocytosis, elliptocytosis, and especially, sickle cell disease requires the development of a detailed membrane model. In this study, we introduce a mesoscale implicit-solvent coarse-grained molecular dynamics (CGMD) model of the erythrocyte membrane that explicitly describes the phospholipid bilayer and the cytoskeleton, by extending a previously developed two-component RBC membrane model. We show that the proposed model represents RBC membrane with the appropriate bending stiffness and shear modulus. The timescale and self-consistency of the model are established by comparing our results with experimentally measured viscosity and thermal fluctuations of the RBC membrane. Furthermore, we measure the pressure exerted by the cytoskeleton on the lipid bilayer. We find that defects at the anchoring points of the cytoskeleton to the lipid bilayer (as in spherocytes) cause a reduction in the pressure compared with an intact membrane, whereas defects in the dimer-dimer association of a spectrin filament (as in elliptocytes) cause an even larger decrease in the pressure. We conjecture that this finding may explain why the experimentally measured diffusion coefficients of band-3 proteins are higher in elliptocytes than in spherocytes, and higher than in normal RBCs. Finally, we study the effects that possible attractive forces between the spectrin filaments and the lipid bilayer have on the pressure applied on the lipid bilayer by the filaments. We discover that the attractive forces cause an increase in the pressure as they diminish the effect of membrane protein defects. As this finding contradicts with experimental results, we conclude that the attractive forces are moderate and do not impose a complete attachment of the filaments to the lipid bilayer. PMID:25099803
Constant pH Molecular Dynamics of Proteins in Explicit Solvent with Proton Tautomerism
Goh, Garrett B.; Hulbert, Benjamin S.; Zhou, Huiqing; Brooks, Charles L.
2015-01-01
pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMDMSλD). In the CPHMDMSλD framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMDMSλD simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMDMSλD framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules – proteins and nucleic acids is now possible. PMID:24375620
NASA Astrophysics Data System (ADS)
Xu, Yuanwei; Rodger, P. Mark
2017-03-01
We study the effect of helical structure on the aggregation of proteins using a simplified lattice protein model with an implicit membrane environment. A recently proposed Monte Carlo approach, which exploits the proven statistical optimality of the MBAR estimator in order to improve simulation efficiency, was used. The results show that with both two and four proteins present, the tendency to aggregate is strongly expedited by the presence of amphipathic helix (APH), whereas a transmembrane helix (TMH) slightly disfavours aggregation. When four protein molecules are present, partially aggregated states (dimers and trimers) were more common when the APH was present, compared with the cases where no helices or only the TMH is present.
Sgrignani, Jacopo; Magistrato, Alessandra
2012-06-25
Human aromatase (HA), an enzyme located on the membrane of the endoplasmatic reticulum, is of crucial biological importance in the biosynthesis of estrogens. High levels of estrogens are related with important pathologies, conferring to HA a key role as a pharmacological target. In this study we provide, for the first time, an atomistic model of HA embedded on a membrane model to understand the influence of the membrane lipophilic environment on the structural and dynamical properties of HA and on the access/egress pathways of the substrate (androstenedione, ASD) and of the oxygen molecule (involved in the enzymatic process) into/from the HA active site. To this end we used several computational techniques such as force field-based molecular dynamics (MD) simulations, Random Expulsion MD, Steered MD, and Implicit Ligand Sampling. Our results show that the membrane anchoring does not markedly affect the structural properties and the flexibility of the protein, but they clearly point out that the membrane has a marked effect on the access/egress routes of the reactants, stabilizing the formation of different channels for both ASD and O(2) with respect to those observed in pure water solution. Due to the importance of HA in medicine and since access/egress channels may influence its substrate selectivity, a detailed understanding of the role of the membrane in shaping these channels may be of valuable help in drug design.
Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism.
Goh, Garrett B; Hulbert, Benjamin S; Zhou, Huiqing; Brooks, Charles L
2014-07-01
pH is a ubiquitous regulator of biological activity, including protein-folding, protein-protein interactions, and enzymatic activity. Existing constant pH molecular dynamics (CPHMD) models that were developed to address questions related to the pH-dependent properties of proteins are largely based on implicit solvent models. However, implicit solvent models are known to underestimate the desolvation energy of buried charged residues, increasing the error associated with predictions that involve internal ionizable residue that are important in processes like hydrogen transport and electron transfer. Furthermore, discrete water and ions cannot be modeled in implicit solvent, which are important in systems like membrane proteins and ion channels. We report on an explicit solvent constant pH molecular dynamics framework based on multi-site λ-dynamics (CPHMD(MSλD)). In the CPHMD(MSλD) framework, we performed seamless alchemical transitions between protonation and tautomeric states using multi-site λ-dynamics, and designed novel biasing potentials to ensure that the physical end-states are predominantly sampled. We show that explicit solvent CPHMD(MSλD) simulations model realistic pH-dependent properties of proteins such as the Hen-Egg White Lysozyme (HEWL), binding domain of 2-oxoglutarate dehydrogenase (BBL) and N-terminal domain of ribosomal protein L9 (NTL9), and the pKa predictions are in excellent agreement with experimental values, with a RMSE ranging from 0.72 to 0.84 pKa units. With the recent development of the explicit solvent CPHMD(MSλD) framework for nucleic acids, accurate modeling of pH-dependent properties of both major class of biomolecules-proteins and nucleic acids is now possible. © 2013 Wiley Periodicals, Inc.
Haptics-based dynamic implicit solid modeling.
Hua, Jing; Qin, Hong
2004-01-01
This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.
Crystal structures and atomic model of NADPH oxidase.
Magnani, Francesca; Nenci, Simone; Millana Fananas, Elisa; Ceccon, Marta; Romero, Elvira; Fraaije, Marco W; Mattevi, Andrea
2017-06-27
NADPH oxidases (NOXs) are the only enzymes exclusively dedicated to reactive oxygen species (ROS) generation. Dysregulation of these polytopic membrane proteins impacts the redox signaling cascades that control cell proliferation and death. We describe the atomic crystal structures of the catalytic flavin adenine dinucleotide (FAD)- and heme-binding domains of Cylindrospermum stagnale NOX5. The two domains form the core subunit that is common to all seven members of the NOX family. The domain structures were then docked in silico to provide a generic model for the NOX family. A linear arrangement of cofactors (NADPH, FAD, and two membrane-embedded heme moieties) injects electrons from the intracellular side across the membrane to a specific oxygen-binding cavity on the extracytoplasmic side. The overall spatial organization of critical interactions is revealed between the intracellular loops on the transmembrane domain and the NADPH-oxidizing dehydrogenase domain. In particular, the C terminus functions as a toggle switch, which affects access of the NADPH substrate to the enzyme. The essence of this mechanistic model is that the regulatory cues conformationally gate NADPH-binding, implicitly providing a handle for activating/deactivating the very first step in the redox chain. Such insight provides a framework to the discovery of much needed drugs that selectively target the distinct members of the NOX family and interfere with ROS signaling.
CHARMM: The Biomolecular Simulation Program
Brooks, B.R.; Brooks, C.L.; MacKerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M.
2009-01-01
CHARMM (Chemistry at HARvard Molecular Mechanics) is a highly versatile and widely used molecular simulation program. It has been developed over the last three decades with a primary focus on molecules of biological interest, including proteins, peptides, lipids, nucleic acids, carbohydrates and small molecule ligands, as they occur in solution, crystals, and membrane environments. For the study of such systems, the program provides a large suite of computational tools that include numerous conformational and path sampling methods, free energy estimators, molecular minimization, dynamics, and analysis techniques, and model-building capabilities. In addition, the CHARMM program is applicable to problems involving a much broader class of many-particle systems. Calculations with CHARMM can be performed using a number of different energy functions and models, from mixed quantum mechanical-molecular mechanical force fields, to all-atom classical potential energy functions with explicit solvent and various boundary conditions, to implicit solvent and membrane models. The program has been ported to numerous platforms in both serial and parallel architectures. This paper provides an overview of the program as it exists today with an emphasis on developments since the publication of the original CHARMM paper in 1983. PMID:19444816
NASA Astrophysics Data System (ADS)
Zhang, Guojie; Müller, Marcus
2017-08-01
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale kBT.
Zhang, Guojie; Müller, Marcus
2017-08-14
Membrane fission is a fundamental process in cells, involved inter alia in endocytosis, intracellular trafficking, and virus infection. Its underlying molecular mechanism, however, is only incompletely understood. Recently, experiments and computer simulation studies have revealed that dynamin-mediated membrane fission is a two-step process that proceeds via a metastable hemi-fission intermediate (or wormlike micelle) formed by dynamin's constriction. Importantly, this hemi-fission intermediate is remarkably metastable, i.e., its subsequent rupture that completes the fission process does not occur spontaneously but requires additional, external effects, e.g., dynamin's (unknown) conformational changes or membrane tension. Using simulations of a coarse-grained, implicit-solvent model of lipid membranes, we investigate the molecular mechanism of rupturing the hemi-fission intermediate, such as its pathway, the concomitant transition states, and barriers, as well as the role of membrane tension. The membrane tension is controlled by the chemical potential of the lipids, and the free-energy landscape as a function of two reaction coordinates is obtained by grand canonical Wang-Landau sampling. Our results show that, in the course of rupturing, the hemi-fission intermediate undergoes a "thinning → local pinching → rupture/fission" pathway, with a bottle-neck-shaped cylindrical micelle as a transition state. Although an increase of membrane tension facilitates the fission process by reducing the corresponding free-energy barrier, for biologically relevant tensions, the free-energy barriers still significantly exceed the thermal energy scale k B T.
Background-Error Correlation Model Based on the Implicit Solution of a Diffusion Equation
2010-01-01
1 Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation Matthew J. Carrier* and Hans Ngodock...4. TITLE AND SUBTITLE Background- Error Correlation Model Based on the Implicit Solution of a Diffusion Equation 5a. CONTRACT NUMBER 5b. GRANT...2001), which sought to model error correlations based on the explicit solution of a generalized diffusion equation. The implicit solution is
Santos-Sacchi, Joseph; Song, Lei
2014-04-11
The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.
NASA Astrophysics Data System (ADS)
Lv, X.; Zhao, Y.; Huang, X. Y.; Xia, G. H.; Su, X. H.
2007-07-01
A new three-dimensional (3D) matrix-free implicit unstructured multigrid finite volume (FV) solver for structural dynamics is presented in this paper. The solver is first validated using classical 2D and 3D cantilever problems. It is shown that very accurate predictions of the fundamental natural frequencies of the problems can be obtained by the solver with fast convergence rates. This method has been integrated into our existing FV compressible solver [X. Lv, Y. Zhao, et al., An efficient parallel/unstructured-multigrid preconditioned implicit method for simulating 3d unsteady compressible flows with moving objects, Journal of Computational Physics 215(2) (2006) 661-690] based on the immersed membrane method (IMM) [X. Lv, Y. Zhao, et al., as mentioned above]. Results for the interaction between the fluid and an immersed fixed-free cantilever are also presented to demonstrate the potential of this integrated fluid-structure interaction approach.
NASA Astrophysics Data System (ADS)
Phelan, Julie E.
This research investigated the role of implicit science beliefs in the gender gap in science aspirations and achievement, with the goal of testing identification with a female role model as a potential intervention strategy for increasing women's representation in science careers. At Time 1, women's implicit science stereotyping (i.e., associating men more than women with science) was linked to more negative (implicit and explicit) attitudes towards science and less identification with science. For men, stereotypes were either non-significantly or positively related to science attitudes and identification. Time 2 examined the influence of implicit and explicit science cognitions on students' science aspirations and achievement, and found that implicit stereotyping, attitudes, and identification were all unique predictors of science aspirations, but not achievement. Of more importance, Time 2 examined the influence of science role models, and found that identification with a role model of either gender reduced women's implicit science stereotyping and increased their positive attitudes toward science. Implications for decreasing the gender gap in advanced science achievement are discussed.
Aguayo, Daniel; González-Nilo, Fernando D; Chipot, Christophe
2012-05-08
Simulation of three models of cardiolipin (CL) containing membranes using a new set of parameters for tetramyristoyl and tetraoleoyl CLs has been developed in the framework of the united-atom CHARMM27-UA and the all-atom CHARMM36 force fields with the aim of performing molecular dynamics (MD) simulations of cardiolipin-containing mixed-lipid membranes. The new parameters use a hybrid representation of all-atom head groups in conjunction with implicit-hydrogen united-atom (UA) to describe the oleoyl and myristoyl chains of the CLs, in lieu of the fully atomistic description, thereby allowing longer simulations to be undertaken. The physicochemical properties of the bilayers were determined and compared with previously reported data. Furthermore, using tetramyristoyl CL mixed with POPG and POPE lipids, a mitochondrial membrane was simulated. The results presented here show the different behavior of the bilayers as a result of the lipid composition, where the length of the acyl chain and the conformation of the headgroup can be associated with the mitochondrial membrane properties. The new hybrid CL parameters prove to be well suited for the simulation of the molecular structure of CL-containing bilayers and can be extended to other lipid bilayers composed of CLs with different acyl chains or alternate head groups.
Elmoazzen, Heidi Y.; Elliott, Janet A.W.; McGann, Locksley E.
2009-01-01
The fundamental physical mechanisms of water and solute transport across cell membranes have long been studied in the field of cell membrane biophysics. Cryobiology is a discipline that requires an understanding of osmotic transport across cell membranes under nondilute solution conditions, yet many of the currently-used transport formalisms make limiting dilute solution assumptions. While dilute solution assumptions are often appropriate under physiological conditions, they are rarely appropriate in cryobiology. The first objective of this article is to review commonly-used transport equations, and the explicit and implicit assumptions made when using the two-parameter and the Kedem-Katchalsky formalisms. The second objective of this article is to describe a set of transport equations that do not make the previous dilute solution or near-equilibrium assumptions. Specifically, a new nondilute solute transport equation is presented. Such nondilute equations are applicable to many fields including cryobiology where dilute solution conditions are not often met. An illustrative example is provided. Utilizing suitable transport equations that fit for two permeability coefficients, fits were as good as with the previous three-parameter model (which includes the reflection coefficient, σ). There is less unexpected concentration dependence with the nondilute transport equations, suggesting that some of the unexpected concentration dependence of permeability is due to the use of inappropriate transport equations. PMID:19348741
Fujii, Tsutomu; Uebuchi, Hisashi; Yamada, Kotono; Saito, Masahiro; Ito, Eriko; Tonegawa, Akiko; Uebuchi, Marie
2015-06-01
The purposes of the present study were (a) to use both a relational-anxiety Go/No-Go Association Task (GNAT) and an avoidance-of-intimacy GNAT in order to assess an implicit Internal Working Model (IWM) of attachment; (b) to verify the effects of both measured implicit relational anxiety and implicit avoidance of intimacy on information processing. The implicit IWM measured by GNAT differed from the explicit IWM measured by questionnaires in terms of the effects on information processing. In particular, in subliminal priming tasks involving with others, implicit avoidance of intimacy predicted accelerated response times with negative stimulus words about attachment. Moreover, after subliminally priming stimulus words about self, implicit relational anxiety predicted delayed response times with negative stimulus words about attachment.
An Algebraic Implicitization and Specialization of Minimum KL-Divergence Models
NASA Astrophysics Data System (ADS)
Dukkipati, Ambedkar; Manathara, Joel George
In this paper we study representation of KL-divergence minimization, in the cases where integer sufficient statistics exists, using tools from polynomial algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. In particular, we also study the case of Kullback-Csisźar iteration scheme. We present implicit descriptions of these models and show that implicitization preserves specialization of prior distribution. This result leads us to a Gröbner bases method to compute an implicit representation of minimum KL-divergence models.
Ramirez, Samuel A.; Elston, Timothy C.
2018-01-01
Polarity establishment, the spontaneous generation of asymmetric molecular distributions, is a crucial component of many cellular functions. Saccharomyces cerevisiae (yeast) undergoes directed growth during budding and mating, and is an ideal model organism for studying polarization. In yeast and many other cell types, the Rho GTPase Cdc42 is the key molecular player in polarity establishment. During yeast polarization, multiple patches of Cdc42 initially form, then resolve into a single front. Because polarization relies on strong positive feedback, it is likely that the amplification of molecular-level fluctuations underlies the generation of multiple nascent patches. In the absence of spatial cues, these fluctuations may be key to driving polarization. Here we used particle-based simulations to investigate the role of stochastic effects in a Turing-type model of yeast polarity establishment. In the model, reactions take place either between two molecules on the membrane, or between a cytosolic and a membrane-bound molecule. Thus, we developed a computational platform that explicitly simulates molecules at and near the cell membrane, and implicitly handles molecules away from the membrane. To evaluate stochastic effects, we compared particle simulations to deterministic reaction-diffusion equation simulations. Defining macroscopic rate constants that are consistent with the microscopic parameters for this system is challenging, because diffusion occurs in two dimensions and particles exchange between the membrane and cytoplasm. We address this problem by empirically estimating macroscopic rate constants from appropriately designed particle-based simulations. Ultimately, we find that stochastic fluctuations speed polarity establishment and permit polarization in parameter regions predicted to be Turing stable. These effects can operate at Cdc42 abundances expected of yeast cells, and promote polarization on timescales consistent with experimental results. To our knowledge, our work represents the first particle-based simulations of a model for yeast polarization that is based on a Turing mechanism. PMID:29529021
Ireland, Jane L; Adams, Christine
2015-01-01
The current study explores associations between implicit and explicit aggression in young adult male prisoners, seeking to apply the Reflection-Impulsive Model and indicate parity with elements of the General Aggression Model and social cognition. Implicit cognitive aggressive processing is not an area that has been examined among prisoners. Two hundred and sixty two prisoners completed an implicit cognitive aggression measure (Puzzle Test) and explicit aggression measures, covering current behaviour (DIPC-R) and aggression disposition (AQ). It was predicted that dispositional aggression would be predicted by implicit cognitive aggression, and that implicit cognitive aggression would predict current engagement in aggressive behaviour. It was also predicted that more impulsive implicit cognitive processing would associate with aggressive behaviour whereas cognitively effortful implicit cognitive processing would not. Implicit aggressive cognitive processing was associated with increased dispositional aggression but not current reports of aggressive behaviour. Impulsive implicit cognitive processing of an aggressive nature predicted increased dispositional aggression whereas more cognitively effortful implicit cognitive aggression did not. The article concludes by outlining the importance of accounting for implicit cognitive processing among prisoners and the need to separate such processing into facets (i.e. impulsive vs. cognitively effortful). Implications for future research and practice in this novel area of study are indicated. Copyright © 2015 Elsevier Ltd. All rights reserved.
I can do that: the impact of implicit theories on leadership role model effectiveness.
Hoyt, Crystal L; Burnette, Jeni L; Innella, Audrey N
2012-02-01
This research investigates the role of implicit theories in influencing the effectiveness of successful role models in the leadership domain. Across two studies, the authors test the prediction that incremental theorists ("leaders are made") compared to entity theorists ("leaders are born") will respond more positively to being presented with a role model before undertaking a leadership task. In Study 1, measuring people's naturally occurring implicit theories of leadership, the authors showed that after being primed with a role model, incremental theorists reported greater leadership confidence and less anxious-depressed affect than entity theorists following the leadership task. In Study 2, the authors demonstrated the causal role of implicit theories by manipulating participants' theory of leadership ability. They replicated the findings from Study 1 and demonstrated that identification with the role model mediated the relationship between implicit theories and both confidence and affect. In addition, incremental theorists outperformed entity theorists on the leadership task.
Keatley, David; Clarke, David D; Hagger, Martin S
2013-09-01
Research into the effects of individuals'autonomous motivation on behaviour has traditionally adopted explicit measures and self-reported outcome assessment. Recently, there has been increased interest in the effects of implicit motivational processes underlying behaviour from a self-determination theory (SDT) perspective. The aim of the present research was to provide support for the predictive validity of an implicit measure of autonomous motivation on behavioural persistence on two objectively measurable tasks. SDT and a dual-systems model were adopted as frameworks to explain the unique effects offered by explicit and implicit autonomous motivational constructs on behavioural persistence. In both studies, implicit autonomous motivation significantly predicted unique variance in time spent on each task. Several explicit measures of autonomous motivation also significantly predicted persistence. Results provide support for the proposed model and the inclusion of implicit measures in research on motivated behaviour. In addition, implicit measures of autonomous motivation appear to be better suited to explaining variance in behaviours that are more spontaneous or unplanned. Future implications for research examining implicit motivation from dual-systems models and SDT approaches are outlined. © 2012 The British Psychological Society.
Learning non-local dependencies.
Kuhn, Gustav; Dienes, Zoltán
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., and Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory and Cognition, 31(6) 1417-1432] showed that people could implicitly learn a musical rule that was solely based on non-local dependencies. These results seriously challenge models of implicit learning that assume knowledge merely takes the form of linking adjacent elements (chunking). We compare two models that use a buffer to allow learning of long distance dependencies, the Simple Recurrent Network (SRN) and the memory buffer model. We argue that these models - as models of the mind - should not be evaluated simply by fitting them to human data but by determining the characteristic behaviour of each model. Simulations showed for the first time that the SRN could rapidly learn non-local dependencies. However, the characteristic performance of the memory buffer model rather than SRN more closely matched how people came to like different musical structures. We conclude that the SRN is more powerful than previous demonstrations have shown, but it's flexible learned buffer does not explain people's implicit learning (at least, the affective learning of musical structures) as well as fixed memory buffer models do.
Surveying implicit solvent models for estimating small molecule absolute hydration free energies
Knight, Jennifer L.
2011-01-01
Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452
Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids
Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.
2011-01-01
The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of cells. PMID:21559494
Evaluation of DNA Force Fields in Implicit Solvation
Gaillard, Thomas; Case, David A.
2011-01-01
DNA structural deformations and dynamics are crucial to its interactions in the cell. Theoretical simulations are essential tools to explore the structure, dynamics, and thermodynamics of biomolecules in a systematic way. Molecular mechanics force fields for DNA have benefited from constant improvements during the last decades. Several studies have evaluated and compared available force fields when the solvent is modeled by explicit molecules. On the other hand, few systematic studies have assessed the quality of duplex DNA models when implicit solvation is employed. The interest of an implicit modeling of the solvent consists in the important gain in the simulation performance and conformational sampling speed. In this study, respective influences of the force field and the implicit solvation model choice on DNA simulation quality are evaluated. To this end, extensive implicit solvent duplex DNA simulations are performed, attempting to reach both conformational and sequence diversity convergence. Structural parameters are extracted from simulations and statistically compared to available experimental and explicit solvation simulation data. Our results quantitatively expose the respective strengths and weaknesses of the different DNA force fields and implicit solvation models studied. This work can lead to the suggestion of improvements to current DNA theoretical models. PMID:22043178
Modeling stimulus variation in three common implicit attitude tasks.
Wolsiefer, Katie; Westfall, Jacob; Judd, Charles M
2017-08-01
We explored the consequences of ignoring the sampling variation due to stimuli in the domain of implicit attitudes. A large literature in psycholinguistics has examined the statistical treatment of random stimulus materials, but the recommendations from this literature have not been applied to the social psychological literature on implicit attitudes. This is partly because of inherent complications in applying crossed random-effect models to some of the most common implicit attitude tasks, and partly because no work to date has demonstrated that random stimulus variation is in fact consequential in implicit attitude measurement. We addressed this problem by laying out statistically appropriate and practically feasible crossed random-effect models for three of the most commonly used implicit attitude measures-the Implicit Association Test, affect misattribution procedure, and evaluative priming task-and then applying these models to large datasets (average N = 3,206) that assess participants' implicit attitudes toward race, politics, and self-esteem. We showed that the test statistics from the traditional analyses are substantially (about 60 %) inflated relative to the more-appropriate analyses that incorporate stimulus variation. Because all three tasks used the same stimulus words and faces, we could also meaningfully compare the relative contributions of stimulus variation across the tasks. In an appendix, we give syntax in R, SAS, and SPSS for fitting the recommended crossed random-effects models to data from all three tasks, as well as instructions on how to structure the data file.
Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units
USDA-ARS?s Scientific Manuscript database
This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...
Testing the Use of Implicit Solvent in the Molecular Dynamics Modelling of DNA Flexibility
NASA Astrophysics Data System (ADS)
Mitchell, J.; Harris, S.
DNA flexibility controls packaging, looping and in some cases sequence specific protein binding. Molecular dynamics simulations carried out with a computationally efficient implicit solvent model are potentially a powerful tool for studying larger DNA molecules than can be currently simulated when water and counterions are represented explicitly. In this work we compare DNA flexibility at the base pair step level modelled using an implicit solvent model to that previously determined from explicit solvent simulations and database analysis. Although much of the sequence dependent behaviour is preserved in implicit solvent, the DNA is considerably more flexible when the approximate model is used. In addition we test the ability of the implicit solvent to model stress induced DNA disruptions by simulating a series of DNA minicircle topoisomers which vary in size and superhelical density. When compared with previously run explicit solvent simulations, we find that while the levels of DNA denaturation are similar using both computational methodologies, the specific structural form of the disruptions is different.
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Rossow, C.-C.
2008-01-01
A three-stage Runge-Kutta (RK) scheme with multigrid and an implicit preconditioner has been shown to be an effective solver for the fluid dynamic equations. This scheme has been applied to both the compressible and essentially incompressible Reynolds-averaged Navier-Stokes (RANS) equations using the algebraic turbulence model of Baldwin and Lomax (BL). In this paper we focus on the convergence of the RK/implicit scheme when the effects of turbulence are represented by either the Spalart-Allmaras model or the Wilcox k-! model, which are frequently used models in practical fluid dynamic applications. Convergence behavior of the scheme with these turbulence models and the BL model are directly compared. For this initial investigation we solve the flow equations and the partial differential equations of the turbulence models indirectly coupled. With this approach we examine the convergence behavior of each system. Both point and line symmetric Gauss-Seidel are considered for approximating the inverse of the implicit operator of the flow solver. To solve the turbulence equations we use a diagonally dominant alternating direction implicit (DDADI) scheme. Computational results are presented for three airfoil flow cases and comparisons are made with experimental data. We demonstrate that the two-dimensional RANS equations and transport-type equations for turbulence modeling can be efficiently solved with an indirectly coupled algorithm that uses the RK/implicit scheme for the flow equations.
ERIC Educational Resources Information Center
Petty, Richard E.; Brinol, Pablo
2006-01-01
Comments on the article by B. Gawronski and G. V. Bodenhausen (see record 2006-10465-003). A metacognitive model (MCM) is presented to describe how automatic (implicit) and deliberative (explicit) measures of attitudes respond to change attempts. The model assumes that contemporary implicit measures tap quick evaluative associations, whereas…
Free-form geometric modeling by integrating parametric and implicit PDEs.
Du, Haixia; Qin, Hong
2007-01-01
Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.
Can a continuum solvent model reproduce the free energy landscape of a -hairpin folding in water?
NASA Astrophysics Data System (ADS)
Zhou, Ruhong; Berne, Bruce J.
2002-10-01
The folding free energy landscape of the C-terminal -hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the -hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native -strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this -hairpin. Furthermore, the -hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.
Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?
Zhou, Ruhong; Berne, Bruce J.
2002-01-01
The folding free energy landscape of the C-terminal β-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the β-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native β-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this β-hairpin. Furthermore, the β-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and ≈80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields. PMID:12242327
Zhou, Ruhong; Berne, Bruce J
2002-10-01
The folding free energy landscape of the C-terminal beta-hairpin of protein G is explored using the surface-generalized Born (SGB) implicit solvent model, and the results are compared with the landscape from an earlier study with explicit solvent model. The OPLSAA force field is used for the beta-hairpin in both implicit and explicit solvent simulations, and the conformational space sampling is carried out with a highly parallel replica-exchange method. Surprisingly, we find from exhaustive conformation space sampling that the free energy landscape from the implicit solvent model is quite different from that of the explicit solvent model. In the implicit solvent model some nonnative states are heavily overweighted, and more importantly, the lowest free energy state is no longer the native beta-strand structure. An overly strong salt-bridge effect between charged residues (E42, D46, D47, E56, and K50) is found to be responsible for this behavior in the implicit solvent model. Despite this, we find that the OPLSAA/SGB energies of all the nonnative structures are higher than that of the native structure; thus the OPLSAA/SGB energy is still a good scoring function for structure prediction for this beta-hairpin. Furthermore, the beta-hairpin population at 282 K is found to be less than 40% from the implicit solvent model, which is much smaller than the 72% from the explicit solvent model and approximately equal 80% from experiment. On the other hand, both implicit and explicit solvent simulations with the OPLSAA force field exhibit no meaningful helical content during the folding process, which is in contrast to some very recent studies using other force fields.
ERIC Educational Resources Information Center
Phelan, Julie E.
2010-01-01
This research investigated the role of implicit science beliefs in the gender gap in science aspirations and achievement, with the goal of testing identification with a female role model as a potential intervention strategy for increasing women's representation in science careers. At Time 1, women's implicit science stereotyping (i.e., associating…
Davies, Emma L; Paltoglou, Aspasia E; Foxcroft, David R
2017-05-01
Dual process models, such as the Prototype Willingness Model (PWM), propose to account for both intentional and reactive drinking behaviour. Current methods of measuring constructs in the PWM rely on self-report, thus require a level of conscious deliberation. Implicit measures of attitudes may overcome this limitation and contribute to our understanding of how prototypes and willingness influence alcohol consumption in young people. This study aimed to explore whether implicit alcohol attitudes were related to PWM constructs and whether they would add to the prediction of risky drinking. The study involved a cross-sectional design. The sample included 501 participants from the United Kingdom (M age 18.92; range 11-51; 63% female); 230 school pupils and 271 university students. Participants completed explicit measures of alcohol prototype perceptions, willingness, drunkenness, harms, and intentions. They also completed an implicit measure of alcohol attitudes, using the Implicit Association Test. Implicit alcohol attitudes were only weakly related to the explicit measures. When looking at the whole sample, implicit alcohol attitudes did not add to the prediction of willingness over and above prototype perceptions. However, for university students implicit attitudes added to the prediction of behaviour, over and above intentions and willingness. For school pupils, willingness was a stronger predictor of behaviour than intentions or implicit attitudes. Adding implicit measures to the PWM may contribute to our understanding of the development of alcohol behaviours in young people. Further research could explore how implicit attitudes develop alongside the shift from reactive to planned behaviour. Statement of contribution What is already known on this subject? Young people's drinking tends to occur in social situations and is driven in part by social reactions within these contexts. The Prototype Willingness Model (PWM) attempts to explain such reactive behaviour as the result of social comparison to risk prototypes, which influence willingness to drink, and subsequent behaviour. Evidence also suggests that risky drinking in young people may be influenced by implicit attitudes towards alcohol, which develop with repeated exposure to alcohol over time. One criticism of the PWM is that prototypes and willingness are usually measured using explicit measures which may not adequately capture young people's spontaneous evaluations of prototypes, or their propensity to act without forethought in a social context. What does this study add? This study is novel in exploring the addition of implicit alcohol attitudes to the social reaction pathway in the model in order to understand more about these reactive constructs. Implicit alcohol attitudes added to the prediction of behaviour, over and above intentions and willingness for university students. For school pupils, willingness was a stronger predictor of behaviour than intentions or implicit attitudes. Findings suggest that adding implicit alcohol attitudes into the PWM might be able to explain the shift from reactive to intentional drinking behaviours with age and experience. © 2016 The British Psychological Society.
Stull, Laura G; McConnell, Haley; McGrew, John; Salyers, Michelle P
2017-01-01
While explicit negative stereotypes of mental illness are well established as barriers to recovery, implicit attitudes also may negatively impact outcomes. The current study is unique in its focus on both explicit and implicit stigma as predictors of recovery attitudes of mental health practitioners. Assertive Community Treatment practitioners (n = 154) from 55 teams completed online measures of stigma, recovery attitudes, and an Implicit Association Test (IAT). Three of four explicit stigma variables (perceptions of blameworthiness, helplessness, and dangerousness) and all three implicit stigma variables were associated with lower recovery attitudes. In a multivariate, hierarchical model, however, implicit stigma did not explain additional variance in recovery attitudes. In the overall model, perceptions of dangerousness and implicitly associating mental illness with "bad" were significant individual predictors of lower recovery attitudes. The current study demonstrates a need for interventions to lower explicit stigma, particularly perceptions of dangerousness, to increase mental health providers' expectations for recovery. The extent to which implicit and explicit stigma differentially predict outcomes, including recovery attitudes, needs further research.
Integral equation methods for vesicle electrohydrodynamics in three dimensions
NASA Astrophysics Data System (ADS)
Veerapaneni, Shravan
2016-12-01
In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.
The Role of Implicit Negative Feedback in SLA: Models and Recasts in Japanese and Spanish.
ERIC Educational Resources Information Center
Long, Michael; Inagaki, Shunji; Ortega, Lourdes
1998-01-01
Two experiments were conducted to assess relative utility of models and recasts in second-language (L2) Japanese and Spanish. Using pretest, posttest, control group design, each study provided evidence of adults' ability to learn from implicit negative feedback; in one case, support for notion that reactive implicit negative feedback can be more…
ERIC Educational Resources Information Center
Williams, Alexis Ymon
2012-01-01
The current study explored Dweck's (1999; Dweck & Leggett, 1988) model of implicit theories in the context of teaching in order to establish its usefulness for describing teachers' beliefs about students' ability and social behavior. Further it sought to explain the connections between teachers' implicit beliefs and their…
Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models
NASA Astrophysics Data System (ADS)
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.
2018-04-01
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.
CHARMM-GUI 10 Years for Biomolecular Modeling and Simulation
Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S.; Beaven, Andrew H.; Lee, Kyu Il; Rui, Huan; Roux, Benoît; MacKerell, Alexander D.; Klauda, Jeffrey B.; Qi, Yifei
2017-01-01
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the molecular details of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. PMID:27862047
CHARMM-GUI 10 years for biomolecular modeling and simulation.
Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S; Beaven, Andrew H; Lee, Kyu Il; Rui, Huan; Park, Soohyung; Lee, Hui Sun; Roux, Benoît; MacKerell, Alexander D; Klauda, Jeffrey B; Qi, Yifei; Im, Wonpil
2017-06-05
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
KECSA-Movable Type Implicit Solvation Model (KMTISM)
2015-01-01
Computation of the solvation free energy for chemical and biological processes has long been of significant interest. The key challenges to effective solvation modeling center on the choice of potential function and configurational sampling. Herein, an energy sampling approach termed the “Movable Type” (MT) method, and a statistical energy function for solvation modeling, “Knowledge-based and Empirical Combined Scoring Algorithm” (KECSA) are developed and utilized to create an implicit solvation model: KECSA-Movable Type Implicit Solvation Model (KMTISM) suitable for the study of chemical and biological systems. KMTISM is an implicit solvation model, but the MT method performs energy sampling at the atom pairwise level. For a specific molecular system, the MT method collects energies from prebuilt databases for the requisite atom pairs at all relevant distance ranges, which by its very construction encodes all possible molecular configurations simultaneously. Unlike traditional statistical energy functions, KECSA converts structural statistical information into categorized atom pairwise interaction energies as a function of the radial distance instead of a mean force energy function. Within the implicit solvent model approximation, aqueous solvation free energies are then obtained from the NVT ensemble partition function generated by the MT method. Validation is performed against several subsets selected from the Minnesota Solvation Database v2012. Results are compared with several solvation free energy calculation methods, including a one-to-one comparison against two commonly used classical implicit solvation models: MM-GBSA and MM-PBSA. Comparison against a quantum mechanics based polarizable continuum model is also discussed (Cramer and Truhlar’s Solvation Model 12). PMID:25691832
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
ERIC Educational Resources Information Center
Sturge-Apple, Melissa L.; Rogge, Ronald D.; Skibo, Michael A.; Peltz, Jack S.; Suor, Jennifer H.
2015-01-01
Extending dual process frameworks of cognition to a novel domain, the present study examined how mothers' explicit and implicit attitudes about her child may operate in models of parenting. To assess implicit attitudes, two separate studies were conducted using the same child-focused Go/No-go Association Task (GNAT-Child). In Study 1, model…
Keatley, David; Clarke, David D; Hagger, Martin S
2012-01-01
The literature on health-related behaviours and motivation is replete with research involving explicit processes and their relations with intentions and behaviour. Recently, interest has been focused on the impact of implicit processes and measures on health-related behaviours. Dual-systems models have been proposed to provide a framework for understanding the effects of explicit or deliberative and implicit or impulsive processes on health behaviours. Informed by a dual-systems approach and self-determination theory, the aim of this study was to test the effects of implicit and explicit motivation on three health-related behaviours in a sample of undergraduate students (N = 162). Implicit motives were hypothesised to predict behaviour independent of intentions while explicit motives would be mediated by intentions. Regression analyses indicated that implicit motivation predicted physical activity behaviour only. Across all behaviours, intention mediated the effects of explicit motivational variables from self-determination theory. This study provides limited support for dual-systems models and the role of implicit motivation in the prediction of health-related behaviour. Suggestions for future research into the role of implicit processes in motivation are outlined.
The explicit and implicit dance in psychoanalytic change.
Fosshage, James L
2004-02-01
How the implicit/non-declarative and explicit/declarative cognitive domains interact is centrally important in the consideration of effecting change within the psychoanalytic arena. Stern et al. (1998) declare that long-lasting change occurs in the domain of implicit relational knowledge. In the view of this author, the implicit and explicit domains are intricately intertwined in an interactive dance within a psychoanalytic process. The author views that a spirit of inquiry (Lichtenberg, Lachmann & Fosshage 2002) serves as the foundation of the psychoanalytic process. Analyst and patient strive to explore, understand and communicate and, thereby, create a 'spirit' of interaction that contributes, through gradual incremental learning, to new implicit relational knowledge. This spirit, as part of the implicit relational interaction, is a cornerstone of the analytic relationship. The 'inquiry' more directly brings explicit/declarative processing to the foreground in the joint attempt to explore and understand. The spirit of inquiry in the psychoanalytic arena highlights both the autobiographical scenarios of the explicit memory system and the mental models of the implicit memory system as each contributes to a sense of self, other, and self with other. This process facilitates the extrication and suspension of the old models, so that new models based on current relational experience can be gradually integrated into both memory systems for lasting change.
Weck, Florian; Höfling, Volkmar
2015-01-01
Two adaptations of the Implicit Association Task were used to assess implicit anxiety (IAT-Anxiety) and implicit health attitudes (IAT-Hypochondriasis) in patients with hypochondriasis (n = 58) and anxiety patients (n = 71). Explicit anxieties and health attitudes were assessed using questionnaires. The analysis of several multitrait-multimethod models indicated that the low correlation between explicit and implicit measures of health attitudes is due to the substantial methodological differences between the IAT and the self-report questionnaire. Patients with hypochondriasis displayed significantly more dysfunctional explicit and implicit health attitudes than anxiety patients, but no differences were found regarding explicit and implicit anxieties. The study demonstrates the specificity of explicit and implicit dysfunctional health attitudes among patients with hypochondriasis.
NASA Astrophysics Data System (ADS)
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.
Tian, Ye; Schwieters, Charles D; Opella, Stanley J; Marassi, Francesca M
2017-01-01
Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision, and conformation, and that structure refinement can be obtained by short relaxation with EEFx to obtain improvements in these key metrics. These developments broaden the range of biomolecular structures that can be calculated with high fidelity from NMR restraints.
NASA Astrophysics Data System (ADS)
Agudelo-Toro, Andres; Neef, Andreas
2013-04-01
Objective. We present a computational method that implements a reduced set of Maxwell's equations to allow simulation of cells under realistic conditions: sub-micron cell morphology, a conductive non-homogeneous space and various ion channel properties and distributions. Approach. While a reduced set of Maxwell's equations can be used to couple membrane currents to extra- and intracellular potentials, this approach is rarely taken, most likely because adequate computational tools are missing. By using these equations, and introducing an implicit solver, numerical stability is attained even with large time steps. The time steps are limited only by the time development of the membrane potentials. Main results. This method allows simulation times of tens of minutes instead of weeks, even for complex problems. The extracellular fields are accurately represented, including secondary fields, which originate at inhomogeneities of the extracellular space and can reach several millivolts. We present a set of instructive examples that show how this method can be used to obtain reference solutions for problems, which might not be accurately captured by the traditional approaches. This includes the simulation of realistic magnitudes of extracellular action potential signals in restricted extracellular space. Significance. The electric activity of neurons creates extracellular potentials. Recent findings show that these endogenous fields act back onto the neurons, contributing to the synchronization of population activity. The influence of endogenous fields is also relevant for understanding therapeutic approaches such as transcranial direct current, transcranial magnetic and deep brain stimulation. The mutual interaction between fields and membrane currents is not captured by today's concepts of cellular electrophysiology, including the commonly used activation function, as those concepts are based on isolated membranes in an infinite, isopotential extracellular space. The presented tool makes simulations with detailed morphology and implicit interactions of currents and fields available to the electrophysiology community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janečka, Adam, E-mail: janecka@karlin.mff.cuni.cz; Průša, Vít, E-mail: prusv@karlin.mff.cuni.cz
2015-04-28
We discuss the benefits of using the so-called implicit type constitutive relations introduced by K. R. Rajagopal, J. Fluid Mech. 550, 243-249 (2006) and K. R. Rajagopal, Appl. Math. 48, 279-319 (2003) in the description of the behaviour of non-Newtonian fluids. In particular, we focus on the benefits of using the implicit type constitutive relations in the mathematical modelling of fluids in which the shear stress/shear rate dependence is given by an S-shaped curve, and in modelling of fluids that exhibit nonzero normal stress differences. We also discuss a thermodynamical framework that allows one to cope with the implicit typemore » constitutive relations.« less
Green, James A; Hohmann, Cynthia; Lister, Kelsi; Albertyn, Riani; Bradshaw, Renee; Johnson, Christine
2016-06-01
This study examined associations between anticipated future health behaviour and participants' attitudes. Three Implicit Association Tests were developed to assess safety, efficacy and overall attitude. They were used to examine preference associations between conventional versus complementary and alternative medicine among 186 participants. A structural equation model suggested only a single implicit association, rather than three separate domains. However, this single implicit association predicted additional variance in anticipated future use of complementary and alternative medicine beyond explicit. Implicit measures should give further insight into motivation for complementary and alternative medicine use. © The Author(s) 2014.
Klinger, Christen M.; Ramirez-Macias, Inmaculada; Herman, Emily K.; Turkewitz, Aaron P.; Field, Mark C.; Dacks, Joel B.
2016-01-01
With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage. PMID:27444378
Age effects on explicit and implicit memory
Ward, Emma V.; Berry, Christopher J.; Shanks, David R.
2013-01-01
It is well-documented that explicit memory (e.g., recognition) declines with age. In contrast, many argue that implicit memory (e.g., priming) is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favors the single-system view. Implications for the memory systems debate are discussed. PMID:24065942
Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning.
McDougle, Samuel D; Bond, Krista M; Taylor, Jordan A
2015-07-01
A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. Copyright © 2015 the authors 0270-6474/15/359568-12$15.00/0.
Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning
Bond, Krista M.; Taylor, Jordan A.
2015-01-01
A popular model of human sensorimotor learning suggests that a fast process and a slow process work in parallel to produce the canonical learning curve (Smith et al., 2006). Recent evidence supports the subdivision of sensorimotor learning into explicit and implicit processes that simultaneously subserve task performance (Taylor et al., 2014). We set out to test whether these two accounts of learning processes are homologous. Using a recently developed method to assay explicit and implicit learning directly in a sensorimotor task, along with a computational modeling analysis, we show that the fast process closely resembles explicit learning and the slow process approximates implicit learning. In addition, we provide evidence for a subdivision of the slow/implicit process into distinct manifestations of motor memory. We conclude that the two-state model of motor learning is a close approximation of sensorimotor learning, but it is unable to describe adequately the various implicit learning operations that forge the learning curve. Our results suggest that a wider net be cast in the search for the putative psychological mechanisms and neural substrates underlying the multiplicity of processes involved in motor learning. PMID:26134640
van Ryn, Michelle; Hardeman, Rachel; Phelan, Sean M; Burgess, Diana J; Dovidio, John F; Herrin, Jeph; Burke, Sara E; Nelson, David B; Perry, Sylvia; Yeazel, Mark; Przedworski, Julia M
2015-12-01
Physician implicit (unconscious, automatic) bias has been shown to contribute to racial disparities in medical care. The impact of medical education on implicit racial bias is unknown. To examine the association between change in student implicit racial bias towards African Americans and student reports on their experiences with 1) formal curricula related to disparities in health and health care, cultural competence, and/or minority health; 2) informal curricula including racial climate and role model behavior; and 3) the amount and favorability of interracial contact during school. Prospective observational study involving Web-based questionnaires administered during first (2010) and last (2014) semesters of medical school. A total of 3547 students from a stratified random sample of 49 U.S. medical schools. Change in implicit racial attitudes as assessed by the Black-White Implicit Association Test administered during the first semester and again during the last semester of medical school. In multivariable modeling, having completed the Black-White Implicit Association Test during medical school remained a statistically significant predictor of decreased implicit racial bias (-5.34, p ≤ 0.001: mixed effects regression with random intercept across schools). Students' self-assessed skills regarding providing care to African American patients had a borderline association with decreased implicit racial bias (-2.18, p = 0.056). Having heard negative comments from attending physicians or residents about African American patients (3.17, p = 0.026) and having had unfavorable vs. very favorable contact with African American physicians (18.79, p = 0.003) were statistically significant predictors of increased implicit racial bias. Medical school experiences in all three domains were independently associated with change in student implicit racial attitudes. These findings are notable given that even small differences in implicit racial attitudes have been shown to affect behavior and that implicit attitudes are developed over a long period of repeated exposure and are difficult to change.
Components of Implicit Stigma against Mental Illness among Chinese Students
Wang, Xiaogang; Huang, Xiting; Jackson, Todd; Chen, Ruijun
2012-01-01
Although some research has examined negative automatic aspects of attitudes toward mental illness via relatively indirect measures among Western samples, it is unclear whether negative attitudes can be automatically activated in individuals from non-Western countries. This study attempted to validate results from Western samples with Chinese college students. We first examined the three-component model of implicit stigma (negative cognition, negative affect, and discriminatory tendencies) toward mental illness with the Single Category Implicit Association Test (SC-IAT). We also explored the relationship between explicit and implicit stigma among 56 Chinese university college students. In the three separate SC-IATs and the combined SC-IAT, automatic associations between mental illness and negative descriptors were stronger relative to those with positive descriptors and the implicit effect of cognitive and affective SC-IATs were significant. Explicit and implicit measures of stigma toward mental illness were unrelated. In our sample, women's overall attitudes toward mental illness were more negative than men's were, but no gender differences were found for explicit measures. These findings suggested that implicit stigma toward mental illness exists in Chinese students, and provide some support for the three-component model of implicit stigma toward mental illness. Future studies that focus on automatic components of stigmatization and stigma-reduction in China are warranted. PMID:23029366
Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model
NASA Astrophysics Data System (ADS)
Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.
2017-10-01
We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.
Li, Bo; Zhao, Yanxiang
2013-01-01
Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.
Studies of implicit and explicit solution techniques in transient thermal analysis of structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1982-01-01
Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.
Studies of implicit and explicit solution techniques in transient thermal analysis of structures
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1982-08-01
Studies aimed at an increase in the efficiency of calculating transient temperature fields in complex aerospace vehicle structures are reported. The advantages and disadvantages of explicit and implicit algorithms are discussed and a promising set of implicit algorithms with variable time steps, known as GEARIB, is described. Test problems, used for evaluating and comparing various algorithms, are discussed and finite element models of the configurations are described. These problems include a coarse model of the Space Shuttle wing, an insulated frame tst article, a metallic panel for a thermal protection system, and detailed models of sections of the Space Shuttle wing. Results generally indicate a preference for implicit over explicit algorithms for transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures). The effects on algorithm performance of different models of an insulated cylinder are demonstrated. The stiffness of the problem is highly sensitive to modeling details and careful modeling can reduce the stiffness of the equations to the extent that explicit methods may become the best choice. Preliminary applications of a mixed implicit-explicit algorithm and operator splitting techniques for speeding up the solution of the algebraic equations are also described.
Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice.
Cunningham, William A; Nezlek, John B; Banaji, Mahzarin R
2004-10-01
Two studies investigated relationships among individual differences in implicit and explicit prejudice, right-wing ideology, and rigidity in thinking. The first study examined these relationships focusing on White Americans' prejudice toward Black Americans. The second study provided the first test of implicit ethnocentrism and its relationship to explicit ethnocentrism by studying the relationship between attitudes toward five social groups. Factor analyses found support for both implicit and explicit ethnocentrism. In both studies, mean explicit attitudes toward out groups were positive, whereas implicit attitudes were negative, suggesting that implicit and explicit prejudices are distinct; however, in both studies, implicit and explicit attitudes were related (r = .37, .47). Latent variable modeling indicates a simple structure within this ethnocentric system, with variables organized in order of specificity. These results lead to the conclusion that (a) implicit ethnocentrism exists and (b) it is related to and distinct from explicit ethnocentrism.
Self-Regulation and Implicit Attitudes Toward Physical Activity Influence Exercise Behavior.
Padin, Avelina C; Emery, Charles F; Vasey, Michael; Kiecolt-Glaser, Janice K
2017-08-01
Dual-process models of health behavior posit that implicit and explicit attitudes independently drive healthy behaviors. Prior evidence indicates that implicit attitudes may be related to weekly physical activity (PA) levels, but the extent to which self-regulation attenuates this link remains unknown. This study examined the associations between implicit attitudes and self-reported PA during leisure time among 150 highly active young adults and evaluated the extent to which effortful control (one aspect of self-regulation) moderated this relationship. Results indicated that implicit attitudes toward exercise were unrelated to average workout length among individuals with higher effortful control. However, those with lower effortful control and more negative implicit attitudes reported shorter average exercise sessions compared with those with more positive attitudes. Implicit and explicit attitudes were unrelated to total weekly PA. A combination of poorer self-regulation and negative implicit attitudes may leave individuals vulnerable to mental and physical health consequences of low PA.
NASA Astrophysics Data System (ADS)
Chen, Wen; Wang, Fajie
Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.
An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model
Kipp, K.L.; Konikow, Leonard F.; Hornberger, G.Z.
1998-01-01
This report documents an extension to the U.S. Geological Survey MOC3D transport model that incorporates an implicit-in-time difference approximation for the dispersive transport equation, including source/sink terms. The original MOC3D transport model (Version 1) uses the method of characteristics to solve the transport equation on the basis of the velocity field. The original MOC3D solution algorithm incorporates particle tracking to represent advective processes and an explicit finite-difference formulation to calculate dispersive fluxes. The new implicit procedure eliminates several stability criteria required for the previous explicit formulation. This allows much larger transport time increments to be used in dispersion-dominated problems. The decoupling of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit extension, the MOC3D model is upgraded to Version 2. A description of the numerical method of the implicit dispersion calculation, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. Version 2 of MOC3D was evaluated for the same set of problems used for verification of Version 1. These test results indicate that the implicit calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the explicit calculation for transport problems that are characterized by a grid Peclet number less than about 1.0.
van Tuijl, Lonneke A; de Jong, Peter J; Sportel, B Esther; de Hullu, Eva; Nauta, Maaike H
2014-03-01
A negative self-view is a prominent factor in most cognitive vulnerability models of depression and anxiety. Recently, there has been increased attention to differentiate between the implicit (automatic) and the explicit (reflective) processing of self-related evaluations. This longitudinal study aimed to test the association between implicit and explicit self-esteem and symptoms of adolescent depression and social anxiety disorder. Two complementary models were tested: the vulnerability model and the scarring effect model. Participants were 1641 first and second year pupils of secondary schools in the Netherlands. The Rosenberg Self-Esteem Scale, self-esteem Implicit Association Test and Revised Child Anxiety and Depression Scale were completed to measure explicit self-esteem, implicit self-esteem and symptoms of social anxiety disorder (SAD) and major depressive disorder (MDD), respectively, at baseline and two-year follow-up. Explicit self-esteem at baseline was associated with symptoms of MDD and SAD at follow-up. Symptomatology at baseline was not associated with explicit self-esteem at follow-up. Implicit self-esteem was not associated with symptoms of MDD or SAD in either direction. We relied on self-report measures of MDD and SAD symptomatology. Also, findings are based on a non-clinical sample. Our findings support the vulnerability model, and not the scarring effect model. The implications of these findings suggest support of an explicit self-esteem intervention to prevent increases in MDD and SAD symptomatology in non-clinical adolescents. Copyright © 2013 Elsevier Ltd. All rights reserved.
Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; ...
2018-04-17
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less
Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, David J.; Guerra, Jorge E.; Hamon, François P.
The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less
Fast Proton Titration Scheme for Multiscale Modeling of Protein Solutions.
Teixeira, Andre Azevedo Reis; Lund, Mikael; da Silva, Fernando Luís Barroso
2010-10-12
Proton exchange between titratable amino acid residues and the surrounding solution gives rise to exciting electric processes in proteins. We present a proton titration scheme for studying acid-base equilibria in Metropolis Monte Carlo simulations where salt is treated at the Debye-Hückel level. The method, rooted in the Kirkwood model of impenetrable spheres, is applied on the three milk proteins α-lactalbumin, β-lactoglobulin, and lactoferrin, for which we investigate the net-charge, molecular dipole moment, and charge capacitance. Over a wide range of pH and salt conditions, excellent agreement is found with more elaborate simulations where salt is explicitly included. The implicit salt scheme is orders of magnitude faster than the explicit analog and allows for transparent interpretation of physical mechanisms. It is shown how the method can be expanded to multiscale modeling of aqueous salt solutions of many biomolecules with nonstatic charge distributions. Important examples are protein-protein aggregation, protein-polyelectrolyte complexation, and protein-membrane association.
Investigating the role of implicit prototypes in the prototype willingness model.
Howell, Jennifer L; Ratliff, Kate A
2017-06-01
One useful theory to predict health behavior is the prototype-willingness model (PWM), which posits that people are more willing to engage in behavior to the extent that they have a positive view of the prototypical person who performs that behavior. The goal of the present research is to test whether adding an implicit measure of prototype favorability might improve explanatory power in the PWM. Two studies examined whether implicit prototype favorability uniquely predicted White women's intentions to engage in healthy sun behavior over the next 3-6 months, and their willingness to engage in risky sun behavior, should the opportunity arise. The results suggested that implicit prototype favorability, particularly implicit prototypes of those who engage in risky UV-related behaviors, uniquely predicted intentions to engage in healthy sun behavior and willingness to engage in risky sun behavior in the PWM.
Moderators of the Relationship between Implicit and Explicit Evaluation
Nosek, Brian A.
2005-01-01
Automatic and controlled modes of evaluation sometimes provide conflicting reports of the quality of social objects. This paper presents evidence for four moderators of the relationship between automatic (implicit) and controlled (explicit) evaluations. Implicit and explicit preferences were measured for a variety of object pairs using a large sample. The average correlation was r = .36, and 52 of the 57 object pairs showed a significant positive correlation. Results of multilevel modeling analyses suggested that: (a) implicit and explicit preferences are related, (b) the relationship varies as a function of the objects assessed, and (c) at least four variables moderate the relationship – self-presentation, evaluative strength, dimensionality, and distinctiveness. The variables moderated implicit-explicit correspondence across individuals and accounted for much of the observed variation across content domains. The resulting model of the relationship between automatic and controlled evaluative processes is grounded in personal experience with the targets of evaluation. PMID:16316292
An implicit adaptation algorithm for a linear model reference control system
NASA Technical Reports Server (NTRS)
Mabius, L.; Kaufman, H.
1975-01-01
This paper presents a stable implicit adaptation algorithm for model reference control. The constraints for stability are found using Lyapunov's second method and do not depend on perfect model following between the system and the reference model. Methods are proposed for satisfying these constraints without estimating the parameters on which the constraints depend.
2010-10-01
bode well for the future. The paper we submitted to the Journal of Neuroscience detailing the TVAG rabies tracer system was accepted with revisions...of brain electrical activity. Stas Kounitsky successfully completed the port of the new vector-additive implicit (VAI) method for the anisotropic ...Alternating Difference 14 Implicit (ADI) for isotropic head models, and the Vector Additive Implicit (VAI) for anisotropic head models. The ADI method
ERIC Educational Resources Information Center
Cheng, Zi-Juan; Hau, Kit-Tai; Wen, Jian-Bing; Kong, Chit-Kwong
Using structural equation modeling (SEM), researchers examined whether there was a general dominating factor that governed students' implicit theories of intelligence, morality, personality, creativity, and social intelligence. The possible age-related changes of students' implicit theories were also studied. In all, 1,650 elementary and junior…
ERIC Educational Resources Information Center
Glock, Sabine; Beverborg, Arnoud Oude Groote; Müller, Barbara C. N.
2016-01-01
Obese children experience disadvantages in school and discrimination from their teachers. Teachers' implicit and explicit attitudes have been identified as contributing to these disadvantages. Drawing on dual process models, we investigated the nature of pre-service teachers' implicit and explicit attitudes, their motivation to respond without…
Deng, Nanjie; Zhang, Bin W.; Levy, Ronald M.
2015-01-01
The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions and protein-ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ~3 kcal/mol at only ~8 % of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the explicit/implicit thermodynamic cycle. PMID:26236174
Deng, Nanjie; Zhang, Bin W; Levy, Ronald M
2015-06-09
The ability to accurately model solvent effects on free energy surfaces is important for understanding many biophysical processes including protein folding and misfolding, allosteric transitions, and protein–ligand binding. Although all-atom simulations in explicit solvent can provide an accurate model for biomolecules in solution, explicit solvent simulations are hampered by the slow equilibration on rugged landscapes containing multiple basins separated by barriers. In many cases, implicit solvent models can be used to significantly speed up the conformational sampling; however, implicit solvent simulations do not fully capture the effects of a molecular solvent, and this can lead to loss of accuracy in the estimated free energies. Here we introduce a new approach to compute free energy changes in which the molecular details of explicit solvent simulations are retained while also taking advantage of the speed of the implicit solvent simulations. In this approach, the slow equilibration in explicit solvent, due to the long waiting times before barrier crossing, is avoided by using a thermodynamic cycle which connects the free energy basins in implicit solvent and explicit solvent using a localized decoupling scheme. We test this method by computing conformational free energy differences and solvation free energies of the model system alanine dipeptide in water. The free energy changes between basins in explicit solvent calculated using fully explicit solvent paths agree with the corresponding free energy differences obtained using the implicit/explicit thermodynamic cycle to within 0.3 kcal/mol out of ∼3 kcal/mol at only ∼8% of the computational cost. We note that WHAM methods can be used to further improve the efficiency and accuracy of the implicit/explicit thermodynamic cycle.
The mixed impact of medical school on medical students' implicit and explicit weight bias.
Phelan, Sean M; Puhl, Rebecca M; Burke, Sara E; Hardeman, Rachel; Dovidio, John F; Nelson, David B; Przedworski, Julia; Burgess, Diana J; Perry, Sylvia; Yeazel, Mark W; van Ryn, Michelle
2015-10-01
Health care trainees demonstrate implicit (automatic, unconscious) and explicit (conscious) bias against people from stigmatised and marginalised social groups, which can negatively influence communication and decision making. Medical schools are well positioned to intervene and reduce bias in new physicians. This study was designed to assess medical school factors that influence change in implicit and explicit bias against individuals from one stigmatised group: people with obesity. This was a prospective cohort study of medical students enrolled at 49 US medical schools randomly selected from all US medical schools within the strata of public and private schools and region. Participants were 1795 medical students surveyed at the beginning of their first year and end of their fourth year. Web-based surveys included measures of weight bias, and medical school experiences and climate. Bias change was compared with changes in bias in the general public over the same period. Linear mixed models were used to assess the impact of curriculum, contact with people with obesity, and faculty role modelling on weight bias change. Increased implicit and explicit biases were associated with less positive contact with patients with obesity and more exposure to faculty role modelling of discriminatory behaviour or negative comments about patients with obesity. Increased implicit bias was associated with training in how to deal with difficult patients. On average, implicit weight bias decreased and explicit bias increased during medical school, over a period of time in which implicit weight bias in the general public increased and explicit bias remained stable. Medical schools may reduce students' weight biases by increasing positive contact between students and patients with obesity, eliminating unprofessional role modelling by faculty members and residents, and altering curricula focused on treating difficult patients. © 2015 John Wiley & Sons Ltd.
Perceived and Implicit Ranking of Academic Journals: An Optimization Choice Model
ERIC Educational Resources Information Center
Xie, Frank Tian; Cai, Jane Z.; Pan, Yue
2012-01-01
A new system of ranking academic journals is proposed in this study and optimization choice model used to analyze data collected from 346 faculty members in a business discipline. The ranking model uses the aggregation of perceived, implicit sequencing of academic journals by academicians, therefore eliminating several key shortcomings of previous…
Effect of the Implicit Combinatorial Model on Combinatorial Reasoning in Secondary School Pupils.
ERIC Educational Resources Information Center
Batanero, Carmen; And Others
1997-01-01
Elementary combinatorial problems may be classified into three different combinatorial models: (1) selection; (2) partition; and (3) distribution. The main goal of this research was to determine the effect of the implicit combinatorial model on pupils' combinatorial reasoning before and after instruction. Gives an analysis of variance of the…
Implicit Motives and Men’s Perceived Constraint in Fatherhood
Ruppen, Jessica; Waldvogel, Patricia; Ehlert, Ulrike
2016-01-01
Research shows that implicit motives influence social relationships. However, little is known about their role in fatherhood and, particularly, how men experience their paternal role. Therefore, this study examined the association of implicit motives and fathers’ perceived constraint due to fatherhood. Furthermore, we explored their relation to fathers’ life satisfaction. Participants were fathers with biological children (N = 276). They were asked to write picture stories, which were then coded for implicit affiliation and power motives. Perceived constraint and life satisfaction were assessed on a visual analog scale. A higher implicit need for affiliation was significantly associated with lower perceived constraint, whereas the implicit need for power had the opposite effect. Perceived constraint had a negative influence on life satisfaction. Structural equation modeling revealed significant indirect effects of implicit affiliation and power motives on life satisfaction mediated by perceived constraint. Our findings indicate that men with a higher implicit need for affiliation experience less constraint due to fatherhood, resulting in higher life satisfaction. The implicit need for power, however, results in more perceived constraint and is related to decreased life satisfaction. PMID:27933023
Conceptual and Developmental Analysis of Mental Models: An Example with Complex Change Problems.
ERIC Educational Resources Information Center
Poirier, Louise
Defining better implicit models of children's actions in a series of situations is of paramount importance to understanding how knowledge is constructed. The objective of this study was to analyze the implicit mental models used by children in complex change problems to understand the stability of the models and their evolution with the child's…
An implicit numerical model for multicomponent compressible two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Zidane, Ali; Firoozabadi, Abbas
2015-11-01
We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.
2017-06-01
This research expands the modeling and simulation (M and S) body of knowledge through the development of an Implicit Model Development Process (IMDP...When augmented to traditional Model Development Processes (MDP), the IMDP enables the development of models that can address a broader array of...where a broader, more holistic approach of defining a models referent is achieved. Next, the IMDP codifies the process for implementing the improved model
Kinematic Structural Modelling in Bayesian Networks
NASA Astrophysics Data System (ADS)
Schaaf, Alexander; de la Varga, Miguel; Florian Wellmann, J.
2017-04-01
We commonly capture our knowledge about the spatial distribution of distinct geological lithologies in the form of 3-D geological models. Several methods exist to create these models, each with its own strengths and limitations. We present here an approach to combine the functionalities of two modeling approaches - implicit interpolation and kinematic modelling methods - into one framework, while explicitly considering parameter uncertainties and thus model uncertainty. In recent work, we proposed an approach to implement implicit modelling algorithms into Bayesian networks. This was done to address the issues of input data uncertainty and integration of geological information from varying sources in the form of geological likelihood functions. However, one general shortcoming of implicit methods is that they usually do not take any physical constraints into consideration, which can result in unrealistic model outcomes and artifacts. On the other hand, kinematic structural modelling intends to reconstruct the history of a geological system based on physically driven kinematic events. This type of modelling incorporates simplified, physical laws into the model, at the cost of a substantial increment of usable uncertain parameters. In the work presented here, we show an integration of these two different modelling methodologies, taking advantage of the strengths of both of them. First, we treat the two types of models separately, capturing the information contained in the kinematic models and their specific parameters in the form of likelihood functions, in order to use them in the implicit modelling scheme. We then go further and combine the two modelling approaches into one single Bayesian network. This enables the direct flow of information between the parameters of the kinematic modelling step and the implicit modelling step and links the exclusive input data and likelihoods of the two different modelling algorithms into one probabilistic inference framework. In addition, we use the capabilities of Noddy to analyze the topology of structural models to demonstrate how topological information, such as the connectivity of two layers across an unconformity, can be used as a likelihood function. In an application to a synthetic case study, we show that our approach leads to a successful combination of the two different modelling concepts. Specifically, we show that we derive ensemble realizations of implicit models that now incorporate the knowledge of the kinematic aspects, representing an important step forward in the integration of knowledge and a corresponding estimation of uncertainties in structural geological models.
NASA Technical Reports Server (NTRS)
Li, Yong; Moorthi, S.; Bates, J. Ray; Suarez, Max J.
1994-01-01
High order horizontal diffusion of the form K Delta(exp 2m) is widely used in spectral models as a means of preventing energy accumulation at the shortest resolved scales. In the spectral context, an implicit formation of such diffusion is trivial to implement. The present note describes an efficient method of implementing implicit high order diffusion in global finite difference models. The method expresses the high order diffusion equation as a sequence of equations involving Delta(exp 2). The solution is obtained by combining fast Fourier transforms in longitude with a finite difference solver for the second order ordinary differential equation in latitude. The implicit diffusion routine is suitable for use in any finite difference global model that uses a regular latitude/longitude grid. The absence of a restriction on the timestep makes it particularly suitable for use in semi-Lagrangian models. The scale selectivity of the high order diffusion gives it an advantage over the uncentering method that has been used to control computational noise in two-time-level semi-Lagrangian models.
ERIC Educational Resources Information Center
Martin, Andrew J.
2015-01-01
Background: There has been increasing interest in growth approaches to students' academic development, including value-added models, modelling of academic trajectories, growth motivation orientations, growth mindsets, and growth goals. Aims: This study sought to investigate the relationships between implicit theories about intelligence…
NASA Technical Reports Server (NTRS)
Cheng, Zheming; Eiseman, Peter R.
1995-01-01
With examples, we illustrate how implicitly specified surfaces can be used for grid generation with GridPro/az3000. The particular examples address two questions: (1) How do you model intersecting tubes with fillets? and (2) How do you generate grids inside the intersected tubes? The implication is much more general. With the results in a forthcoming paper which develops an easy-to-follow procedure for implicit surface modeling, we provide a powerful means for rapid prototyping in grid generation.
Self-Love or Other-Love? Explicit Other-Preference but Implicit Self-Preference
Gebauer, Jochen E.; Göritz, Anja S.; Hofmann, Wilhelm; Sedikides, Constantine
2012-01-01
Do humans prefer the self even over their favorite other person? This question has pervaded philosophy and social-behavioral sciences. Psychology’s distinction between explicit and implicit preferences calls for a two-tiered solution. Our evolutionarily-based Dissociative Self-Preference Model offers two hypotheses. Other-preferences prevail at an explicit level, because they convey caring for others, which strengthens interpersonal bonds–a major evolutionary advantage. Self-preferences, however, prevail at an implicit level, because they facilitate self-serving automatic behavior, which favors the self in life-or-die situations–also a major evolutionary advantage. We examined the data of 1,519 participants, who completed an explicit measure and one of five implicit measures of preferences for self versus favorite other. The results were consistent with the Dissociative Self-Preference Model. Explicitly, participants preferred their favorite other over the self. Implicitly, however, they preferred the self over their favorite other (be it their child, romantic partner, or best friend). Results are discussed in relation to evolutionary theorizing on self-deception. PMID:22848605
ERIC Educational Resources Information Center
Steffens, Melanie C.; Jelenec, Petra; Noack, Peter
2010-01-01
Many models assume that habitual human behavior is guided by spontaneous, automatic, or implicit processes rather than by deliberate, rule-based, or explicit processes. Thus, math-ability self-concepts and math performance could be related to implicit math-gender stereotypes in addition to explicit stereotypes. Two studies assessed at what age…
Gonsalkorale, Karen; Sherman, Jeffrey W; Allen, Thomas J; Klauer, Karl Christoph; Amodio, David M
2011-11-01
Individuals who are primarily internally motivated to respond without prejudice show less bias on implicit measures than individuals who are externally motivated or unmotivated to respond without prejudice. However, it is not clear why these individuals exhibit less implicit bias than others. We used the Quad model to examine motivation-based individual differences in three processes that have been proposed to account for this effect: activation of associations, overcoming associations, and response monitoring. Participants completed an implicit measure of stereotyping (Study 1) or racial attitudes (Study 2). Modeling of the data revealed that individuals who were internally (but not externally) motivated to respond without prejudice showed enhanced detection and reduced activation of biased associations, suggesting that these processes may be key to achieving unbiased responding.
Towards an explicit account of implicit learning.
Forkstam, Christian; Petersson, Karl Magnus
2005-08-01
The human brain supports acquisition mechanisms that can extract structural regularities implicitly from experience without the induction of an explicit model. Reber defined the process by which an individual comes to respond appropriately to the statistical structure of the input ensemble as implicit learning. He argued that the capacity to generalize to new input is based on the acquisition of abstract representations that reflect underlying structural regularities in the acquisition input. We focus this review of the implicit learning literature on studies published during 2004 and 2005. We will not review studies of repetition priming ('implicit memory'). Instead we focus on two commonly used experimental paradigms: the serial reaction time task and artificial grammar learning. Previous comprehensive reviews can be found in Seger's 1994 article and the Handbook of Implicit Learning. Emerging themes include the interaction between implicit and explicit processes, the role of the medial temporal lobe, developmental aspects of implicit learning, age-dependence, the role of sleep and consolidation. The attempts to characterize the interaction between implicit and explicit learning are promising although not well understood. The same can be said about the role of sleep and consolidation. Despite the fact that lesion studies have relatively consistently suggested that the medial temporal lobe memory system is not necessary for implicit learning, a number of functional magnetic resonance studies have reported medial temporal lobe activation in implicit learning. This issue merits further research. Finally, the clinical relevance of implicit learning remains to be determined.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres
2007-10-01
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.
Semantic concept-enriched dependence model for medical information retrieval.
Choi, Sungbin; Choi, Jinwook; Yoo, Sooyoung; Kim, Heechun; Lee, Youngho
2014-02-01
In medical information retrieval research, semantic resources have been mostly used by expanding the original query terms or estimating the concept importance weight. However, implicit term-dependency information contained in semantic concept terms has been overlooked or at least underused in most previous studies. In this study, we incorporate a semantic concept-based term-dependence feature into a formal retrieval model to improve its ranking performance. Standardized medical concept terms used by medical professionals were assumed to have implicit dependency within the same concept. We hypothesized that, by elaborately revising the ranking algorithms to favor documents that preserve those implicit dependencies, the ranking performance could be improved. The implicit dependence features are harvested from the original query using MetaMap. These semantic concept-based dependence features were incorporated into a semantic concept-enriched dependence model (SCDM). We designed four different variants of the model, with each variant having distinct characteristics in the feature formulation method. We performed leave-one-out cross validations on both a clinical document corpus (TREC Medical records track) and a medical literature corpus (OHSUMED), which are representative test collections in medical information retrieval research. Our semantic concept-enriched dependence model consistently outperformed other state-of-the-art retrieval methods. Analysis shows that the performance gain has occurred independently of the concept's explicit importance in the query. By capturing implicit knowledge with regard to the query term relationships and incorporating them into a ranking model, we could build a more robust and effective retrieval model, independent of the concept importance. Copyright © 2013 Elsevier Inc. All rights reserved.
Finite-difference model for 3-D flow in bays and estuaries
Smith, Peter E.; Larock, Bruce E.; ,
1993-01-01
This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.
Free energy landscape of protein folding in water: explicit vs. implicit solvent.
Zhou, Ruhong
2003-11-01
The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy landscape with various GB models, and the results are compared to the explicit solvent simulations and experiments. All free energy landscapes are obtained from extensive conformation space sampling with a highly parallel replica exchange method. Because solvation model parameters are strongly coupled with force fields, five different force field/solvation model combinations are examined and compared in this study, namely the explicit solvent model: OPLSAA/SPC model, and the implicit solvent models: OPLSAA/SGB (Surface GB), AMBER94/GBSA (GB with Solvent Accessible Surface Area), AMBER96/GBSA, and AMBER99/GBSA. Surprisingly, we find that the free energy landscapes from implicit solvent models are quite different from that of the explicit solvent model. Except for AMBER96/GBSA, all other implicit solvent models find the lowest free energy state not the native state. All implicit solvent models show erroneous salt-bridge effects between charged residues, particularly in OPLSAA/SGB model, where the overly strong salt-bridge effect results in an overweighting of a non-native structure with one hydrophobic residue F52 expelled from the hydrophobic core in order to make better salt bridges. On the other hand, both AMBER94/GBSA and AMBER99/GBSA models turn the beta-hairpin in to an alpha-helix, and the alpha-helical content is much higher than the previously reported alpha-helices in an explicit solvent simulation with AMBER94 (AMBER94/TIP3P). Only AMBER96/GBSA shows a reasonable free energy landscape with the lowest free energy structure the native one despite an erroneous salt-bridge between D47 and K50. Detailed results on free energy contour maps, lowest free energy structures, distribution of native contacts, alpha-helical content during the folding process, NOE comparison with NMR, and temperature dependences are reported and discussed for all five models. Copyright 2003 Wiley-Liss, Inc.
On the context dependency of implicit self-esteem in social anxiety disorder.
Hiller, Thomas S; Steffens, Melanie C; Ritter, Viktoria; Stangier, Ulrich
2017-12-01
Cognitive models assume that negative self-evaluations are automatically activated in individuals with Social Anxiety Disorder (SAD) during social situations, increasing their individual level of anxiety. This study examined automatic self-evaluations (i.e., implicit self-esteem) and state anxiety in a group of individuals with SAD (n = 45) and a non-clinical comparison group (NC; n = 46). Participants were randomly assigned to either a speech condition with social threat induction (giving an impromptu speech) or to a no-speech condition without social threat induction. We measured implicit self-esteem with an Implicit Association Test (IAT). Implicit self-esteem differed significantly between SAD and NC groups under the speech condition but not under the no-speech condition. The SAD group showed lower implicit self-esteem than the NC group under the speech-condition. State anxiety was significantly higher under the speech condition than under the no-speech condition in the SAD group but not in the NC group. Mediation analyses supported the idea that for the SAD group, the effect of experimental condition on state anxiety was mediated by implicit self-esteem. The causal relation between implicit self-esteem and state anxiety could not be determined. The findings corroborate hypotheses derived from cognitive models of SAD: Automatic self-evaluations were negatively biased in individuals with SAD facing social threat and showed an inverse relationship to levels of state anxiety. However, automatic self-evaluations in individuals with SAD can be unbiased (similar to NC) in situations without social threat. Copyright © 2017 Elsevier Ltd. All rights reserved.
Explicit and implicit learning: The case of computer programming
NASA Astrophysics Data System (ADS)
Mancy, Rebecca
The central question of this thesis concerns the role of explicit and implicit learning in the acquisition of a complex skill, namely computer programming. This issue is explored with reference to information processing models of memory drawn from cognitive science. These models indicate that conscious information processing occurs in working memory where information is stored and manipulated online, but that this mode of processing shows serious limitations in terms of capacity or resources. Some information processing models also indicate information processing in the absence of conscious awareness through automation and implicit learning. It was hypothesised that students would demonstrate implicit and explicit knowledge and that both would contribute to their performance in programming. This hypothesis was investigated via two empirical studies. The first concentrated on temporary storage and online processing in working memory and the second on implicit and explicit knowledge. Storage and processing were tested using two tools: temporary storage capacity was measured using a digit span test; processing was investigated with a disembedding test. The results were used to calculate correlation coefficients with performance on programming examinations. Individual differences in temporary storage had only a small role in predicting programming performance and this factor was not a major determinant of success. Individual differences in disembedding were more strongly related to programming achievement. The second study used interviews to investigate the use of implicit and explicit knowledge. Data were analysed according to a grounded theory paradigm. The results indicated that students possessed implicit and explicit knowledge, but that the balance between the two varied between students and that the most successful students did not necessarily possess greater explicit knowledge. The ways in which students described their knowledge led to the development of a framework which extends beyond the implicit-explicit dichotomy to four descriptive categories of knowledge along this dimension. Overall, the results demonstrated that explicit and implicit knowledge both contribute to the acquisition ofprogramming skills. Suggestions are made for further research, and the results are discussed in the context of their implications for education.
High-Order/Low-Order methods for ocean modeling
Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; ...
2015-06-01
In this study, we examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We show how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.
Efficiency and flexibility using implicit methods within atmosphere dycores
NASA Astrophysics Data System (ADS)
Evans, K. J.; Archibald, R.; Norman, M. R.; Gardner, D. J.; Woodward, C. S.; Worley, P.; Taylor, M.
2016-12-01
A suite of explicit and implicit methods are evaluated for a range of configurations of the shallow water dynamical core within the spectral-element Community Atmosphere Model (CAM-SE) to explore their relative computational performance. The configurations are designed to explore the attributes of each method under different but relevant model usage scenarios including varied spectral order within an element, static regional refinement, and scaling to large problem sizes. The limitations and benefits of using explicit versus implicit, with different discretizations and parameters, are discussed in light of trade-offs such as MPI communication, memory, and inherent efficiency bottlenecks. For the regionally refined shallow water configurations, the implicit BDF2 method is about the same efficiency as an explicit Runge-Kutta method, without including a preconditioner. Performance of the implicit methods with the residual function executed on a GPU is also presented; there is speed up for the residual relative to a CPU, but overwhelming transfer costs motivate moving more of the solver to the device. Given the performance behavior of implicit methods within the shallow water dynamical core, the recommendation for future work using implicit solvers is conditional based on scale separation and the stiffness of the problem. The strong growth of linear iterations with increasing resolution or time step size is the main bottleneck to computational efficiency. Within the hydrostatic dynamical core, of CAM-SE, we present results utilizing approximate block factorization preconditioners implemented using the Trilinos library of solvers. They reduce the cost of linear system solves and improve parallel scalability. We provide a summary of the remaining efficiency considerations within the preconditioner and utilization of the GPU, as well as a discussion about the benefits of a time stepping method that provides converged and stable solutions for a much wider range of time step sizes. As more complex model components, for example new physics and aerosols, are connected in the model, having flexibility in the time stepping will enable more options for combining and resolving multiple scales of behavior.
Marissen, Marlies A E; Brouwer, Marlies E; Hiemstra, Annemarie M F; Deen, Mathijs L; Franken, Ingmar H A
2016-08-30
The mask model of narcissism states that the narcissistic traits of patients with NPD are the result of a compensatory reaction to underlying ego fragility. This model assumes that high explicit self-esteem masks low implicit self-esteem. However, research on narcissism has predominantly focused on non-clinical participants and data derived from patients diagnosed with Narcissistic Personality Disorder (NPD) remain scarce. Therefore, the goal of the present study was to test the mask model hypothesis of narcissism among patients with NPD. Male patients with NPD were compared to patients with other PD's and healthy participants on implicit and explicit self-esteem. NPD patients did not differ in levels of explicit and implicit self-esteem compared to both the psychiatric and the healthy control group. Overall, the current study found no evidence in support of the mask model of narcissism among a clinical group. This implicates that it might not be relevant for clinicians to focus treatment of NPD on an underlying negative self-esteem. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Implicit theories of a desire for fame.
Maltby, John; Day, Liz; Giles, David; Gillett, Raphael; Quick, Marianne; Langcaster-James, Honey; Linley, P Alex
2008-05-01
The aim of the present studies was to generate implicit theories of a desire for fame among the general population. In Study 1, we were able to develop a nine-factor analytic model of conceptions of the desire to be famous that initially comprised nine separate factors; ambition, meaning derived through comparison with others, psychologically vulnerable, attention seeking, conceitedness, social access, altruistic, positive affect, and glamour. Analysis that sought to examine replicability among these factors suggested that three factors (altruistic, positive affect, and glamour) neither display factor congruence nor display adequate internal reliability. A second study examined the validity of these factors in predicting profiles of individuals who may desire fame. The findings from this study suggested that two of the nine factors (positive affect and altruism) could not be considered strong factors within the model. Overall, the findings suggest that implicit theories of a desire for fame comprise six factors. The discussion focuses on how an implicit model of a desire for fame might progress into formal theories of a desire for fame.
On the implicit density based OpenFOAM solver for turbulent compressible flows
NASA Astrophysics Data System (ADS)
Fürst, Jiří
The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.
NASA Astrophysics Data System (ADS)
Stolpe, Karin; Björklund, Lars
2012-01-01
This study aims to investigate two expert ecology teachers' ability to attend to essential details in a complex environment during a field excursion, as well as how they teach this ability to their students. In applying a cognitive dual-memory system model for learning, we also suggest a rationale for their behaviour. The model implies two separate memory systems: the implicit, non-conscious, non-declarative system and the explicit, conscious, declarative system. This model provided the starting point for the research design. However, it was revised from the empirical findings supported by new theoretical insights. The teachers were video and audio recorded during their excursion and interviewed in a stimulated recall setting afterwards. The data were qualitatively analysed using the dual-memory system model. The results show that the teachers used holistic pattern recognition in their own identification of natural objects. However, teachers' main strategy to teach this ability is to give the students explicit rules or specific characteristics. According to the dual-memory system model the holistic pattern recognition is processed in the implicit memory system as a non-conscious match with earlier experienced situations. We suggest that this implicit pattern matching serves as an explanation for teachers' ecological and teaching observational skills. Another function of the implicit memory system is its ability to control automatic behaviour and non-conscious decision-making. The teachers offer the students firsthand sensory experiences which provide a prerequisite for the formation of implicit memories that provides a foundation for expertise.
Phelan, Sean M; Dovidio, John F; Puhl, Rebecca M; Burgess, Diana J; Nelson, David B; Yeazel, Mark W; Hardeman, Rachel; Perry, Sylvia; van Ryn, Michelle
2014-04-01
To examine the magnitude of explicit and implicit weight biases compared to biases against other groups; and identify student factors predicting bias in a large national sample of medical students. A web-based survey was completed by 4,732 1st year medical students from 49 medical schools as part of a longitudinal study of medical education. The survey included a validated measure of implicit weight bias, the implicit association test, and 2 measures of explicit bias: a feeling thermometer and the anti-fat attitudes test. A majority of students exhibited implicit (74%) and explicit (67%) weight bias. Implicit weight bias scores were comparable to reported bias against racial minorities. Explicit attitudes were more negative toward obese people than toward racial minorities, gays, lesbians, and poor people. In multivariate regression models, implicit and explicit weight bias was predicted by lower BMI, male sex, and non-Black race. Either implicit or explicit bias was also predicted by age, SES, country of birth, and specialty choice. Implicit and explicit weight bias is common among 1st year medical students, and varies across student factors. Future research should assess implications of biases and test interventions to reduce their impact. Copyright © 2013 The Obesity Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu
2014-01-21
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less
An NMR database for simulations of membrane dynamics.
Leftin, Avigdor; Brown, Michael F
2011-03-01
Computational methods are powerful in capturing the results of experimental studies in terms of force fields that both explain and predict biological structures. Validation of molecular simulations requires comparison with experimental data to test and confirm computational predictions. Here we report a comprehensive database of NMR results for membrane phospholipids with interpretations intended to be accessible by non-NMR specialists. Experimental ¹³C-¹H and ²H NMR segmental order parameters (S(CH) or S(CD)) and spin-lattice (Zeeman) relaxation times (T(1Z)) are summarized in convenient tabular form for various saturated, unsaturated, and biological membrane phospholipids. Segmental order parameters give direct information about bilayer structural properties, including the area per lipid and volumetric hydrocarbon thickness. In addition, relaxation rates provide complementary information about molecular dynamics. Particular attention is paid to the magnetic field dependence (frequency dispersion) of the NMR relaxation rates in terms of various simplified power laws. Model-free reduction of the T(1Z) studies in terms of a power-law formalism shows that the relaxation rates for saturated phosphatidylcholines follow a single frequency-dispersive trend within the MHz regime. We show how analytical models can guide the continued development of atomistic and coarse-grained force fields. Our interpretation suggests that lipid diffusion and collective order fluctuations are implicitly governed by the viscoelastic nature of the liquid-crystalline ensemble. Collective bilayer excitations are emergent over mesoscopic length scales that fall between the molecular and bilayer dimensions, and are important for lipid organization and lipid-protein interactions. Future conceptual advances and theoretical reductions will foster understanding of biomembrane structural dynamics through a synergy of NMR measurements and molecular simulations. Copyright © 2010 Elsevier B.V. All rights reserved.
Implicit Learning of Recursive Context-Free Grammars
Rohrmeier, Martin; Fu, Qiufang; Dienes, Zoltan
2012-01-01
Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning. PMID:23094021
Implicit and Explicit Associations with Erotic Stimuli in Women with and Without Sexual Problems.
van Lankveld, Jacques J D M; Bandell, Myrthe; Bastin-Hurek, Eva; van Beurden, Myra; Araz, Suzan
2018-02-20
Conceptual models of sexual functioning have suggested a major role for implicit cognitive processing in sexual functioning. The present study aimed to investigate implicit and explicit cognition in sexual functioning in women. Gynecological patients with (N = 38) and without self-reported sexual problems (N = 41) were compared. Participants performed two Single-Target Implicit Association Tests (ST-IAT), measuring the implicit association of visual erotic stimuli with attributes representing, respectively, valence and motivation. Participants also rated the erotic pictures that were shown in the ST-IATs on the dimensions of valence, attractiveness, and sexual excitement, to assess their explicit associations with these erotic stimuli. Participants completed the Female Sexual Functioning Index and the Female Sexual Distress Scale for continuous measures of sexual functioning, and the Hospital Anxiety and Depression Scale to assess depressive symptoms. Compared to nonsymptomatic women, women with sexual problems were found to show more negative implicit associations of erotic stimuli with wanting (implicit sexual motivation). Across both groups, stronger implicit associations of erotic stimuli with wanting predicted higher level of sexual functioning. More positive explicit ratings of erotic stimuli predicted lower level of sexual distress across both groups.
Testing the cognitive catalyst model of rumination with explicit and implicit cognitive content.
Sova, Christopher C; Roberts, John E
2018-06-01
The cognitive catalyst model posits that rumination and negative cognitive content, such as negative schema, interact to predict depressive affect. Past research has found support for this model using explicit measures of negative cognitive content such as self-report measures of trait self-esteem and dysfunctional attitudes. The present study tested whether these findings would extend to implicit measures of negative cognitive content such as implicit self-esteem, and whether effects would depend on initial mood state and history of depression. Sixty-one undergraduate students selected on the basis of depression history (27 previously depressed; 34 never depressed) completed explicit and implicit measures of negative cognitive content prior to random assignment to a rumination induction followed by a distraction induction or vice versa. Dysphoric affect was measured both before and after these inductions. Analyses revealed that explicit measures, but not implicit measures, interacted with rumination to predict change in dysphoric affect, and these interactions were further moderated by baseline levels of dysphoria. Limitations include the small nonclinical sample and use of a self-report measure of depression history. These findings suggest that rumination amplifies the association between explicit negative cognitive content and depressive affect primarily among people who are already experiencing sad mood. Copyright © 2018 Elsevier Ltd. All rights reserved.
Implicit moral evaluations: A multinomial modeling approach.
Cameron, C Daryl; Payne, B Keith; Sinnott-Armstrong, Walter; Scheffer, Julian A; Inzlicht, Michael
2017-01-01
Implicit moral evaluations-i.e., immediate, unintentional assessments of the wrongness of actions or persons-play a central role in supporting moral behavior in everyday life. Yet little research has employed methods that rigorously measure individual differences in implicit moral evaluations. In five experiments, we develop a new sequential priming measure-the Moral Categorization Task-and a multinomial model that decomposes judgment on this task into multiple component processes. These include implicit moral evaluations of moral transgression primes (Unintentional Judgment), accurate moral judgments about target actions (Intentional Judgment), and a directional tendency to judge actions as morally wrong (Response Bias). Speeded response deadlines reduced Intentional Judgment but not Unintentional Judgment (Experiment 1). Unintentional Judgment was stronger toward moral transgression primes than non-moral negative primes (Experiments 2-4). Intentional Judgment was associated with increased error-related negativity, a neurophysiological indicator of behavioral control (Experiment 4). Finally, people who voted for an anti-gay marriage amendment had stronger Unintentional Judgment toward gay marriage primes (Experiment 5). Across Experiments 1-4, implicit moral evaluations converged with moral personality: Unintentional Judgment about wrong primes, but not negative primes, was negatively associated with psychopathic tendencies and positively associated with moral identity and guilt proneness. Theoretical and practical applications of formal modeling for moral psychology are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Renaud-Dubé, Andréanne; Guay, Frédéric; Talbot, Denis; Taylor, Geneviève; Koestner, Richard
2015-01-01
This study attempts to test a model in which the relation between implicit theories of intelligence and students' school persistence intentions are mediated by intrinsic, identified, introjected, and external regulations. Six hundred and fifty students from a high school were surveyed. Contrary to expectations, results from ESEM analyses indicated…
Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes
NASA Astrophysics Data System (ADS)
Zhu, Yajun; Zhong, Chengwen; Xu, Kun
2016-06-01
This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.
Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2018-01-01
Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both implicit solvent models and in entropy calculations are making the goal of free energy estimation from end-point simulations more feasible than ever before. We review briefly the basic theory and discuss the advancements in light of practical applications.
Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE
Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.
2014-10-19
Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less
Training Implicit Social Anxiety Associations: An Experimental Intervention
Clerkin, Elise M.; Teachman, Bethany A.
2010-01-01
The current study investigates an experimental anxiety reduction intervention among a highly socially anxious sample (N=108; n=36 per Condition; 80 women). Using a conditioning paradigm, our goal was to modify implicit social anxiety associations to directly test the premise from cognitive models that biased cognitive processing may be causally related to anxious responding. Participants were trained to preferentially process non-threatening information through repeated pairings of self-relevant stimuli and faces indicating positive social feedback. As expected, participants in this positive training condition (relative to our two control conditions) displayed less negative implicit associations following training, and were more likely to complete an impromptu speech (though they did not report less anxiety during the speech). These findings offer partial support for cognitive models and indicate that implicit associations are not only correlated with social anxiety, they may be causally related to anxiety reduction as well. PMID:20102788
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacón, Luis; CoCoMans Team
2014-10-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.
Training implicit social anxiety associations: an experimental intervention.
Clerkin, Elise M; Teachman, Bethany A
2010-04-01
The current study investigates an experimental anxiety reduction intervention among a highly socially anxious sample (N=108; n=36 per Condition; 80 women). Using a conditioning paradigm, our goal was to modify implicit social anxiety associations to directly test the premise from cognitive models that biased cognitive processing may be causally related to anxious responding. Participants were trained to preferentially process non-threatening information through repeated pairings of self-relevant stimuli and faces indicating positive social feedback. As expected, participants in this positive training condition (relative to our two control conditions) displayed less negative implicit associations following training, and were more likely to complete an impromptu speech (though they did not report less anxiety during the speech). These findings offer partial support for cognitive models and indicate that implicit associations are not only correlated with social anxiety, they may be causally related to anxiety reduction as well. (c) 2010 Elsevier Ltd. All rights reserved.
A gradient enhanced plasticity-damage microplane model for concrete
NASA Astrophysics Data System (ADS)
Zreid, Imadeddin; Kaliske, Michael
2018-03-01
Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
Fourier-Legendre spectral methods for incompressible channel flow
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1984-01-01
An iterative collocation technique is described for modeling implicit viscosity in three-dimensional incompressible wall bounded shear flow. The viscosity can vary temporally and in the vertical direction. Channel flow is modeled with a Fourier-Legendre approximation and the mean streamwise advection is treated implicitly. Explicit terms are handled with an Adams-Bashforth method to increase the allowable time-step for calculation of the implicit terms. The algorithm is applied to low amplitude unstable waves in a plane Poiseuille flow at an Re of 7500. Comparisons are made between results using the Legendre method and with Chebyshev polynomials. Comparable accuracy is obtained for the perturbation kinetic energy predicted using both discretizations.
A comparison of physician implicit racial bias towards adults versus children
Johnson, Tiffani J.; Winger, Daniel G.; Hickey, Robert W.; Switzer, Galen E.; Miller, Elizabeth; Nguyen, Margaret B.; Saladino, Richard A.; Hausmann, Leslie R. M.
2016-01-01
Background and Objectives The general population and most physicians have implicit racial bias against black adults. Pediatricians also have implicit bias against black adults, albeit less than other specialties. There is no published research on the implicit racial attitudes of pediatricians or other physicians towards children. Our objectives were to compare implicit racial bias towards adults versus children among resident physicians working in a pediatric emergency department (ED), and to assess whether bias varied by specialty (pediatrics, emergency medicine, or other), gender, race, age, and year of training. Methods We measured implicit racial bias of residents before a pediatric ED shift using the Adult and Child Race Implicit Association Tests (IATs). Generalized linear models compared Adult and Child IAT scores and determined the association of participant demographics with Adult and Child IAT scores. Results Among 91 residents, we found moderate pro-white/anti-black bias on both the Adult (M=0.49, SD=0.34) and Child Race IAT (M=0.55, SD=0.37). There was no significant difference between Adult and Child Race IAT scores (difference=0.06, p=0.15). Implicit bias was not associated with resident demographic characteristics, including specialty. Conclusions This is the first study demonstrating that resident physicians have implicit racial bias against black children, similar to levels of bias against black adults. Bias in our study did not vary by resident demographic characteristics, including specialty, suggesting that pediatric residents are as susceptible as other physicians to implicit bias. Future studies are needed to explore how physicians’ implicit attitudes towards parents and children may impact inequities in pediatric healthcare. PMID:27620844
Numerical study on 3D composite morphing actuators
NASA Astrophysics Data System (ADS)
Oishi, Kazuma; Saito, Makoto; Anandan, Nishita; Kadooka, Kevin; Taya, Minoru
2015-04-01
There are a number of actuators using the deformation of electroactive polymer (EAP), where fewer papers seem to have focused on the performance of 3D morphing actuators based on the analytical approach, due mainly to their complexity. The present paper introduces a numerical analysis approach on the large scale deformation and motion of a 3D half dome shaped actuator composed of thin soft membrane (passive material) and EAP strip actuators (EAP active coupon with electrodes on both surfaces), where the locations of the active EAP strips is a key parameter. Simulia/Abaqus Static and Implicit analysis code, whose main feature is the high precision contact analysis capability among structures, are used focusing on the whole process of the membrane to touch and wrap around the object. The unidirectional properties of the EAP coupon actuator are used as input data set for the material properties for the simulation and the verification of our numerical model, where the verification is made as compared to the existing 2D solution. The numerical results can demonstrate the whole deformation process of the membrane to wrap around not only smooth shaped objects like a sphere or an egg, but also irregularly shaped objects. A parametric study reveals the proper placement of the EAP coupon actuators, with the modification of the dome shape to induce the relevant large scale deformation. The numerical simulation for the 3D soft actuators shown in this paper could be applied to a wider range of soft 3D morphing actuators.
Analysis of Implicit Uncertain Systems. Part 1: Theoretical Framework
1994-12-07
Analysis of Implicit Uncertain Systems Part I: Theoretical Framework Fernando Paganini * John Doyle 1 December 7, 1994 Abst rac t This paper...Analysis of Implicit Uncertain Systems Part I: Theoretical Framework 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...model and a number of constraints relevant to the analysis problem under consideration. In Part I of this paper we propose a theoretical framework which
Ramirez, Jason J.; Dennhardt, Ashley A.; Baldwin, Scott A.; Murphy, James G.; Lindgren, Kristen P.
2016-01-01
Behavioral economic demand curve indices of alcohol consumption reflect decisions to consume alcohol at varying costs. Although these indices predict alcohol-related problems beyond established predictors, little is known about the determinants of elevated demand. Two cognitive constructs that may underlie alcohol demand are alcohol-approach inclinations and drinking identity. The aim of this study was to evaluate implicit and explicit measures of these constructs as predictors of alcohol demand curve indices. College student drinkers (N = 223, 59% female) completed implicit and explicit measures of drinking identity and alcohol-approach inclinations at three timepoints separated by three-month intervals, and completed the Alcohol Purchase Task to assess demand at Time 3. Given no change in our alcohol-approach inclinations and drinking identity measures over time, random intercept-only models were used to predict two demand indices: Amplitude, which represents maximum hypothetical alcohol consumption and expenditures, and Persistence, which represents sensitivity to increasing prices. When modeled separately, implicit and explicit measures of drinking identity and alcohol-approach inclinations positively predicted demand indices. When implicit and explicit measures were included in the same model, both measures of drinking identity predicted Amplitude, but only explicit drinking identity predicted Persistence. In contrast, explicit measures of alcohol-approach inclinations, but not implicit measures, predicted both demand indices. Therefore, there was more support for explicit, versus implicit, measures as unique predictors of alcohol demand. Overall, drinking identity and alcohol-approach inclinations both exhibit positive associations with alcohol demand and represent potentially modifiable cognitive constructs that may underlie elevated demand in college student drinkers. PMID:27379444
NASA Astrophysics Data System (ADS)
Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.
2017-05-01
We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.
ASIS v1.0: an adaptive solver for the simulation of atmospheric chemistry
NASA Astrophysics Data System (ADS)
Cariolle, Daniel; Moinat, Philippe; Teyssèdre, Hubert; Giraud, Luc; Josse, Béatrice; Lefèvre, Franck
2017-04-01
This article reports on the development and tests of the adaptive semi-implicit scheme (ASIS) solver for the simulation of atmospheric chemistry. To solve the ordinary differential equation systems associated with the time evolution of the species concentrations, ASIS adopts a one-step linearized implicit scheme with specific treatments of the Jacobian of the chemical fluxes. It conserves mass and has a time-stepping module to control the accuracy of the numerical solution. In idealized box-model simulations, ASIS gives results similar to the higher-order implicit schemes derived from the Rosenbrock's and Gear's methods and requires less computation and run time at the moderate precision required for atmospheric applications. When implemented in the MOCAGE chemical transport model and the Laboratoire de Météorologie Dynamique Mars general circulation model, the ASIS solver performs well and reveals weaknesses and limitations of the original semi-implicit solvers used by these two models. ASIS can be easily adapted to various chemical schemes and further developments are foreseen to increase its computational efficiency, and to include the computation of the concentrations of the species in aqueous-phase in addition to gas-phase chemistry.
Implicit-Explicit Time Integration Methods for Non-hydrostatic Atmospheric Models
NASA Astrophysics Data System (ADS)
Gardner, D. J.; Guerra, J. E.; Hamon, F. P.; Reynolds, D. R.; Ullrich, P. A.; Woodward, C. S.
2016-12-01
The Accelerated Climate Modeling for Energy (ACME) project is developing a non-hydrostatic atmospheric dynamical core for high-resolution coupled climate simulations on Department of Energy leadership class supercomputers. An important factor in computational efficiency is avoiding the overly restrictive time step size limitations of fully explicit time integration methods due to the stiffest modes present in the model (acoustic waves). In this work we compare the accuracy and performance of different Implicit-Explicit (IMEX) splittings of the non-hydrostatic equations and various Additive Runge-Kutta (ARK) time integration methods. Results utilizing the Tempest non-hydrostatic atmospheric model and the ARKode package show that the choice of IMEX splitting and ARK scheme has a significant impact on the maximum stable time step size as well as solution quality. Horizontally Explicit Vertically Implicit (HEVI) approaches paired with certain ARK methods lead to greatly improved runtimes. With effective preconditioning IMEX splittings that incorporate some implicit horizontal dynamics can be competitive with HEVI results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-699187
On the performance of explicit and implicit algorithms for transient thermal analysis
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.
1980-09-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit and implicit algorithms are discussed. A promising set of implicit algorithms, known as the GEAR package is described. Four test problems, used for evaluating and comparing various algorithms, have been selected and finite element models of the configurations are discribed. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system and a model of the space shuttle orbiter wing. Calculations were carried out using the SPAR finite element program, the MITAS lumped parameter program and a special purpose finite element program incorporating the GEAR algorithms. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff. Careful attention to modeling detail such as avoiding thin or short high-conducting elements can sometimes reduce the stiffness to the extent that explicit methods become advantageous.
Haeffel, Gerald J; Abramson, Lyn Y; Brazy, Paige C; Shah, James Y; Teachman, Bethany A; Nosek, Brian A
2007-06-01
Two studies were conducted to test a dual-process theory of cognitive vulnerability to depression. According to this theory, implicit and explicit cognitive processes have differential effects on depressive reactions to stressful life events. Implicit processes are hypothesized to be critical in determining an individual's immediate affective reaction to stress whereas explicit cognitions are thought to be more involved in long-term depressive reactions. Consistent with hypotheses, the results of study 1 (cross-sectional; N=237) showed that implicit, but not explicit, cognitions predicted immediate affective reactions to a lab stressor. Study 2 (longitudinal; N=251) also supported the dual-process model of cognitive vulnerability to depression. Results showed that both the implicit and explicit measures interacted with life stress to predict prospective changes in depressive symptoms, respectively. However, when both implicit and explicit predictors were entered into a regression equation simultaneously, only the explicit measure interacted with stress to remain a unique predictor of depressive symptoms over the five-week prospective interval.
Predictive Validity of Explicit and Implicit Threat Overestimation in Contamination Fear
Green, Jennifer S.; Teachman, Bethany A.
2012-01-01
We examined the predictive validity of explicit and implicit measures of threat overestimation in relation to contamination-fear outcomes using structural equation modeling. Undergraduate students high in contamination fear (N = 56) completed explicit measures of contamination threat likelihood and severity, as well as looming vulnerability cognitions, in addition to an implicit measure of danger associations with potential contaminants. Participants also completed measures of contamination-fear symptoms, as well as subjective distress and avoidance during a behavioral avoidance task, and state looming vulnerability cognitions during an exposure task. The latent explicit (but not implicit) threat overestimation variable was a significant and unique predictor of contamination fear symptoms and self-reported affective and cognitive facets of contamination fear. On the contrary, the implicit (but not explicit) latent measure predicted behavioral avoidance (at the level of a trend). Results are discussed in terms of differential predictive validity of implicit versus explicit markers of threat processing and multiple fear response systems. PMID:24073390
Biogenetic models of psychopathology, implicit guilt, and mental illness stigma.
Rüsch, Nicolas; Todd, Andrew R; Bodenhausen, Galen V; Corrigan, Patrick W
2010-10-30
Whereas some research suggests that acknowledgment of the role of biogenetic factors in mental illness could reduce mental illness stigma by diminishing perceived responsibility, other research has cautioned that emphasizing biogenetic aspects of mental illness could produce the impression that mental illness is a stable, intrinsic aspect of a person ("genetic essentialism"), increasing the desire for social distance. We assessed genetic and neurobiological causal attributions about mental illness among 85 people with serious mental illness and 50 members of the public. The perceived responsibility of persons with mental illness for their condition, as well as fear and social distance, was assessed by self-report. Automatic associations between Mental Illness and Guilt and between Self and Guilt were measured by the Brief Implicit Association Test. Among the general public, endorsement of biogenetic models was associated with not only less perceived responsibility, but also greater social distance. Among people with mental illness, endorsement of genetic models had only negative correlates: greater explicit fear and stronger implicit self-guilt associations. Genetic models may have unexpected negative consequences for implicit self-concept and explicit attitudes of people with serious mental illness. An exclusive focus on genetic models may therefore be problematic for clinical practice and anti-stigma initiatives. Copyright © 2009 Elsevier Ltd. All rights reserved.
Balmer, Dorene F; Darden, Alix; Chandran, Latha; D'Alessandro, Donna; Gusic, Maryellen E
2018-02-20
Despite academic medicine's endorsement of professional development and mentoring, little is known about what junior faculty learn about mentoring in the implicit curriculum of professional development programs, and how their mentor identity evolves in this context. The authors explored what faculty-participants in the Educational Scholars Program implicitly learned about mentoring and how the implicit curriculum affected mentor identity transformation. Semi-structured interviews with 19 of 36 former faculty-participants were conducted in 2016. Consistent with constructivist grounded theory, data collection and analysis overlapped. The authors created initial codes informed by Ibarra's model for identity transformation, iteratively revised codes based on patterns in incoming data, and created visual representations of relationships amongst codes in order to gain a holistic and shared understanding of the data. In the implicit curriculum, faculty-participants learned the importance of having multiple mentors, the value of peer mentors, and the incremental process of becoming a mentor. The authors used Ibarra's model to understand how the implicit curriculum worked to transform mentor identity: faculty-participants reported observing mentors, experimenting with different ways to mentor and to be a mentor, and evaluating themselves as mentors. The Educational Scholars Program's implicit curriculum facilitated faculty-participants taking on a mentor identity via opportunities it afforded to watch mentors, experiment with mentoring, and evaluate self as mentor, key ingredients for professional identity construction. Leaders of professional development programs can develop faculty as mentors by capitalizing on what faculty-participants learn in the implicit curriculum and deliberately structuring post-graduation mentoring opportunities.
Flexible explicit but rigid implicit learning in a visuomotor adaptation task
Bond, Krista M.
2015-01-01
There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks. PMID:25855690
Cameron, Amy; Reed, Kathleen Palm; Ninnemann, Andrew
2013-12-01
Avoidance of negative affect is one motivational factor that explains smoking cessation relapse during cessation attempts. This negative reinforcement model of smoking cessation and relapse has demonstrated the importance of one's ability to tolerate nicotine withdrawal symptoms, particularly negative affect states, in remaining abstinent from smoking. Distress tolerance and implicit associations are two individual constructs that may influence the strength of this relationship. In this pilot study the authors examined implicit associations related to avoidance and negative affect using a modified Implicit Association Test (IAT), a measure designed to examine implicit associations related to negative affect and avoidance, and the relationship of these associations to distress tolerance and smoking relapse. In total, 40 participants were recruited through community flyers as part of a larger smoking cessation study. Participants completed a brief smoking history, behavioral distress tolerance assessments, and the modified IAT. Smoking status was assessed via phone 3days and 6days post-quit date. Results from a Cox proportional hazard model revealed that implicit associations between avoidance and negative affect were significantly negatively correlated with time to relapse after a smoking cessation attempt, whereas the behavioral distress tolerance assessments did not predict time to relapse. This study provides novel information about the cognitive associations that may underlie avoidant behavior in smokers, and may be important for understanding smoking relapse when negative affect states are particularly difficult to tolerate. Authors discuss the importance of implicit associations in understanding smoking relapse and how they can be targeted in treatment. © 2013.
Higher-order hybrid implicit/explicit FDTD time-stepping
NASA Astrophysics Data System (ADS)
Tierens, W.
2016-12-01
Both partially implicit FDTD methods, and symplectic FDTD methods of high temporal accuracy (3rd or 4th order), are well documented in the literature. In this paper we combine them: we construct a conservative FDTD method which is fourth order accurate in time and is partially implicit. We show that the stability condition for this method depends exclusively on the explicit part, which makes it suitable for use in e.g. modelling wave propagation in plasmas.
2009-01-01
implicit solvents on peptide structure and dynamics , we performed extensive molecular dynamics simulations on the penta-peptide Cys-Ala-Gly-Gln-Trp. Two...end-to-end distances and dihedral angles obtained from molecular dynamics simulations with implicit solvent models were in a good agreement with those...to maintain the temperature of the systems. Introduction Molecular dynamics (MD) simulation techniques are widely used to study structure and
Implicit and Explicit Associations with Erotic Stimuli in Sexually Functional and Dysfunctional Men.
van Lankveld, Jacques; Odekerken, Ingrid; Kok-Verhoeven, Lydia; van Hooren, Susan; de Vries, Peter; van den Hout, Anja; Verboon, Peter
2015-08-01
Although conceptual models of sexual functioning have suggested a major role for implicit cognitive processing in sexual functioning, this has thus far, only been investigated in women. The aim of this study was to investigate the role of implicit cognition in sexual functioning in men. Men with (N = 29) and without sexual dysfunction (N = 31) were compared. Participants performed two single-target implicit association tests (ST-IAT), measuring the implicit association of visual erotic stimuli with attributes representing, respectively, valence ('liking') and motivation ('wanting'). Participants also rated the erotic pictures that were shown in the ST-IAT on the dimensions of valence, attractiveness, and sexual excitement to assess their explicit associations with these erotic stimuli. Participants completed the International Index of Erectile Functioning for a continuous measure of sexual functioning. Unexpectedly, compared with sexually functional men, sexually dysfunctional men were found to show stronger implicit associations of erotic stimuli with positive valence than with negative valence. Level of sexual functioning, however, was not predicted by explicit nor implicit associations. Level of sexual distress was predicted by explicit valence ratings, with positive ratings predicting higher levels of sexual distress. Men with and without sexual dysfunction differed significantly with regard to implicit liking. Research recommendations and implications are discussed. © 2015 International Society for Sexual Medicine.
Staels, Eva; Van den Broeck, Wim
2017-05-01
Recently, a general implicit sequence learning deficit was proposed as an underlying cause of dyslexia. This new hypothesis was investigated in the present study by including a number of methodological improvements, for example, the inclusion of appropriate control conditions. The second goal of the study was to explore the role of attentional functioning in implicit and explicit learning tasks. In a 2 × 2 within-subjects design 4 tasks were administered in 30 dyslexic and 38 control children: an implicit and explicit serial reaction time (RT) task and an implicit and explicit contextual cueing task. Attentional functioning was also administered. The entire learning curves of all tasks were analyzed using latent growth curve modeling in order to compare performances between groups and to examine the role of attentional functioning on the learning curves. The amount of implicit learning was similar for both groups. However, the dyslexic group showed slower RTs throughout the entire task. This group difference reduced and became nonsignificant after controlling for attentional functioning. Both implicit learning tasks, but none of the explicit learning tasks, were significantly affected by attentional functioning. Dyslexic children do not suffer from a specific implicit sequence learning deficit. The slower RTs of the dyslexic children throughout the entire implicit sequence learning process are caused by their comorbid attention problems and overall slowness. A key finding of the present study is that, in contrast to what was assumed for a long time, implicit learning relies on attentional resources, perhaps even more than explicit learning does. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Comparison of Physician Implicit Racial Bias Toward Adults Versus Children.
Johnson, Tiffani J; Winger, Daniel G; Hickey, Robert W; Switzer, Galen E; Miller, Elizabeth; Nguyen, Margaret B; Saladino, Richard A; Hausmann, Leslie R M
2017-03-01
The general population and most physicians have implicit racial bias against black adults. Pediatricians also have implicit bias against black adults, albeit less than other specialties. There is no published research on the implicit racial attitudes of pediatricians or other physicians toward children. Our objectives were to compare implicit racial bias toward adults versus children among resident physicians working in a pediatric emergency department, and to assess whether bias varied by specialty (pediatrics, emergency medicine, or other), gender, race, age, and year of training. We measured implicit racial bias of residents before a pediatric emergency department shift using the Adult and Child Race Implicit Association Tests (IATs). Generalized linear models compared Adult and Child IAT scores and determined the association of participant demographics with Adult and Child IAT scores. Among 91 residents, we found moderate pro-white/anti-black bias on both the Adult (mean = 0.49, standard deviation = 0.34) and Child Race IAT (mean = 0.55, standard deviation = 0.37). There was no significant difference between Adult and Child Race IAT scores (difference = 0.06, P = .15). Implicit bias was not associated with resident demographic characteristics, including specialty. This is the first study demonstrating that resident physicians have implicit racial bias against black children, similar to levels of bias against black adults. Bias in our study did not vary by resident demographic characteristics, including specialty, suggesting that pediatric residents are as susceptible as other physicians to implicit bias. Future studies are needed to explore how physicians' implicit attitudes toward parents and children may impact inequities in pediatric health care. Copyright © 2016 Academic Pediatric Association. All rights reserved.
de Jong, P J; Sportel, B E; de Hullu, E; Nauta, M H
2012-03-01
Social anxiety and depression often co-occur. As low self-esteem has been identified as a risk factor for both types of symptoms, it may help to explain their co-morbidity. Current dual process models of psychopathology differentiate between explicit and implicit self-esteem. Explicit self-esteem would reflect deliberate self-evaluative processes whereas implicit self-esteem would reflect simple associations in memory. Previous research suggests that low explicit self-esteem is involved in both social anxiety and depression whereas low implicit self-esteem is only involved in social anxiety. We tested whether the association between symptoms of social phobia and depression can indeed be explained by low explicit self-esteem, whereas low implicit self-esteem is only involved in social anxiety. Adolescents during the first stage of secondary education (n=1806) completed the Revised Child Anxiety and Depression Scale (RCADS) to measure symptoms of social anxiety and depression, the Rosenberg Self-Esteem Scale (RSES) to index explicit self-esteem and the Implicit Association Test (IAT) to measure implicit self-esteem. There was a strong association between symptoms of depression and social anxiety that could be largely explained by participants' explicit self-esteem. Only for girls did implicit self-esteem and the interaction between implicit and explicit self-esteem show small cumulative predictive validity for social anxiety, indicating that the association between low implicit self-esteem and social anxiety was most evident for girls with relatively low explicit self-esteem. Implicit self-esteem showed no significant predictive validity for depressive symptoms. The findings support the view that both shared and differential self-evaluative processes are involved in depression and social anxiety.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Wagoner, Jason A.; Baker, Nathan A.
2006-01-01
Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675
The development and preliminary psychometric evaluation of an attachment Implicit Association Task.
Venta, Amanda; Jardin, Charles; Kalpakci, Allison; Sharp, Carla
2016-01-01
The importance of measuring attachment insecurity is underscored by a vast literature tying attachment insecurity to numerous psychological disorders. Self-report measures assess explicit attachment beliefs and experiences, while interview measures, like the Adult Attachment Interview, assess implicit internal working models about the self as worthy of care and others as reliable sources of care. The present study is a preliminary psychometric evaluation of a potentially cost-effective method of assessing implicit internal working models of attachment through the development of an Implicit Association Test (IAT). A racially diverse sample of 104 college females was administered Internet-based versions of three IATs (assessing views of the self, mother, and father) as well as self-report measures of attachment and interpersonal problems. Analyses were conducted to evaluate the (a) internal consistency of each task, (b) correlations among the tasks, (c) concurrent validity, and (d) convergent validity. Adequate internal consistency was noted and correlations among the three IATs were significant. No significant associations were observed between the explicit self-report measures of attachment and the IATs. Two primary areas for future research are discussed. First, future research should utilize an implicit attachment measure alongside an IAT. Second, future research should reevaluate the IAT stimuli used.
A diffusion modelling approach to understanding contextual cueing effects in children with ADHD
Weigard, Alexander; Huang-Pollock, Cynthia
2014-01-01
Background Strong theoretical models suggest implicit learning deficits may exist among children with Attention Deficit Hyperactivity Disorder (ADHD). Method We examine implicit contextual cueing (CC) effects among children with ADHD (n=72) and non-ADHD Controls (n=36). Results Using Ratcliff’s drift diffusion model, we found that among Controls, the CC effect is due to improvements in attentional guidance and to reductions in response threshold. Children with ADHD did not show a CC effect; although they were able to use implicitly acquired information to deploy attentional focus, they had more difficulty adjusting their response thresholds. Conclusions Improvements in attentional guidance and reductions in response threshold together underlie the CC effect. Results are consistent with neurocognitive models of ADHD that posit sub-cortical dysfunction but intact spatial attention, and encourage the use of alternative data analytic methods when dealing with reaction time data. PMID:24798140
Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
NASA Astrophysics Data System (ADS)
Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.
2014-02-01
Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.
NASA Astrophysics Data System (ADS)
Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime
2017-11-01
Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.
State-of-charge estimation in lithium-ion batteries: A particle filter approach
NASA Astrophysics Data System (ADS)
Tulsyan, Aditya; Tsai, Yiting; Gopaluni, R. Bhushan; Braatz, Richard D.
2016-11-01
The dynamics of lithium-ion batteries are complex and are often approximated by models consisting of partial differential equations (PDEs) relating the internal ionic concentrations and potentials. The Pseudo two-dimensional model (P2D) is one model that performs sufficiently accurately under various operating conditions and battery chemistries. Despite its widespread use for prediction, this model is too complex for standard estimation and control applications. This article presents an original algorithm for state-of-charge estimation using the P2D model. Partial differential equations are discretized using implicit stable algorithms and reformulated into a nonlinear state-space model. This discrete, high-dimensional model (consisting of tens to hundreds of states) contains implicit, nonlinear algebraic equations. The uncertainty in the model is characterized by additive Gaussian noise. By exploiting the special structure of the pseudo two-dimensional model, a novel particle filter algorithm that sweeps in time and spatial coordinates independently is developed. This algorithm circumvents the degeneracy problems associated with high-dimensional state estimation and avoids the repetitive solution of implicit equations by defining a 'tether' particle. The approach is illustrated through extensive simulations.
On the morphology of the scattering medium as seen by MST/ST radars
NASA Technical Reports Server (NTRS)
Gage, K. S.
1983-01-01
Much is learned about the morphology of the small scale structures of the atmosphere from analysis of echoes observed by MST radars. The use of physical models enables a synthesis of diverse observations. Each model contains an implicit assumption about the nature of the irregularity structure of the medium. A comparison is made between the irregularity structure implicit in several models and what is known about the structure of the medium.
Spatial modeling of cell signaling networks.
Cowan, Ann E; Moraru, Ion I; Schaff, James C; Slepchenko, Boris M; Loew, Leslie M
2012-01-01
The shape of a cell, the sizes of subcellular compartments, and the spatial distribution of molecules within the cytoplasm can all control how molecules interact to produce a cellular behavior. This chapter describes how these spatial features can be included in mechanistic mathematical models of cell signaling. The Virtual Cell computational modeling and simulation software is used to illustrate the considerations required to build a spatial model. An explanation of how to appropriately choose between physical formulations that implicitly or explicitly account for cell geometry and between deterministic versus stochastic formulations for molecular dynamics is provided, along with a discussion of their respective strengths and weaknesses. As a first step toward constructing a spatial model, the geometry needs to be specified and associated with the molecules, reactions, and membrane flux processes of the network. Initial conditions, diffusion coefficients, velocities, and boundary conditions complete the specifications required to define the mathematics of the model. The numerical methods used to solve reaction-diffusion problems both deterministically and stochastically are then described and some guidance is provided in how to set up and run simulations. A study of cAMP signaling in neurons ends the chapter, providing an example of the insights that can be gained in interpreting experimental results through the application of spatial modeling. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Hongxing; Meyer, Astrid; Jansson, Per-Erik; Svensson, Magnus; Rütting, Tobias; Klemedtsson, Leif
2018-02-01
The symbiosis between plants and Ectomycorrhizal fungi (ECM) is shown to considerably influence the carbon (C) and nitrogen (N) fluxes between the soil, rhizosphere, and plants in boreal forest ecosystems. However, ECM are either neglected or presented as an implicit, undynamic term in most ecosystem models, which can potentially reduce the predictive power of models.
In order to investigate the necessity of an explicit consideration of ECM in ecosystem models, we implement the previously developed MYCOFON model into a detailed process-based, soil-plant-atmosphere model, Coup-MYCOFON, which explicitly describes the C and N fluxes between ECM and roots. This new Coup-MYCOFON model approach (ECM explicit) is compared with two simpler model approaches: one containing ECM implicitly as a dynamic uptake of organic N considering the plant roots to represent the ECM (ECM implicit), and the other a static N approach in which plant growth is limited to a fixed N level (nonlim). Parameter uncertainties are quantified using Bayesian calibration in which the model outputs are constrained to current forest growth and soil C / N ratio for four forest sites along a climate and N deposition gradient in Sweden and simulated over a 100-year period.
The nonlim
approach could not describe the soil C / N ratio due to large overestimation of soil N sequestration but simulate the forest growth reasonably well. The ECM implicit
and explicit
approaches both describe the soil C / N ratio well but slightly underestimate the forest growth. The implicit approach simulated lower litter production and soil respiration than the explicit approach. The ECM explicit Coup-MYCOFON model provides a more detailed description of internal ecosystem fluxes and feedbacks of C and N between plants, soil, and ECM. Our modeling highlights the need to incorporate ECM and organic N uptake into ecosystem models, and the nonlim approach is not recommended for future long-term soil C and N predictions. We also provide a key set of posterior fungal parameters that can be further investigated and evaluated in future ECM studies.
The hormonal correlates of implicit power motivation
Stanton, Steven J.; Schultheiss, Oliver C.
2009-01-01
Attempts to link testosterone to dominance dispositions using self-report measures of dominance have yielded inconsistent findings. Similarly, attempts to link testosterone changes to a situational outcome like winning or losing a dominance contest have yielded inconsistent findings. However, research has consistently shown that an indirect measure of an individual’s dominance disposition, implicit power motivation, is positively related to baseline testosterone levels and, in interaction with situational outcomes, predicts testosterone changes. We propose a hormonal model of implicit power motivation that describes how testosterone levels change as an interactive function of individuals’ implicit power motivation and dominance situations. We also propose that estradiol, and not testosterone, plays a key role in dominance motivation in women. PMID:20161646
An implicit boundary integral method for computing electric potential of macromolecules in solvent
NASA Astrophysics Data System (ADS)
Zhong, Yimin; Ren, Kui; Tsai, Richard
2018-04-01
A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.
A thermodynamic approach to alamethicin pore formation.
Rahaman, Asif; Lazaridis, Themis
2014-01-01
The structure and energetics of alamethicin Rf30 monomer to nonamer in cylindrical pores of 5 to 11Å radius are investigated using molecular dynamics simulations in an implicit membrane model that includes the free energy cost of acyl chain hydrophobic area exposure. Stable, low energy pores are obtained for certain combinations of radius and oligomeric number. The trimer and the tetramer formed 6Å pores that appear closed while the larger oligomers formed open pores at their optimal radius. The hexamer in an 8Å pore and the octamer in an 11Å pore give the lowest effective energy per monomer. However, all oligomers beyond the pentamer have comparable energies, consistent with the observation of multiple conductance levels. The results are consistent with the widely accepted "barrel-stave" model. The N terminal portion of the molecule exhibits smaller tilt with respect to the membrane normal than the C terminal portion, resulting in a pore shape that is a hybrid between a funnel and an hourglass. Transmembrane voltage has little effect on the structure of the oligomers but enhances or decreases their stability depending on its orientation. Antiparallel bundles are lower in energy than the commonly accepted parallel ones and could be present under certain experimental conditions. Dry aggregates (without an aqueous pore) have lower average effective energy than the corresponding aggregates in a pore, suggesting that alamethicin pores may be excited states that are stabilized in part by voltage and in part by the ion flow itself. © 2013.
Can we undo our first impressions?: The role of reinterpretation in reversing implicit evaluations
Mann, Thomas C.; Ferguson, Melissa J.
2015-01-01
Little work has examined whether implicit evaluations can be effectively “undone” after learning new revelations. Across 7 experiments, participants fully reversed their implicit evaluation of a novel target person after reinterpreting earlier information. Revision occurred across multiple implicit evaluation measures (Experiments 1a and 1b), and only when the new information prompted a reinterpretation of prior learning versus did not (Experiment 2). The updating required active consideration of the information, as it emerged only with at least moderate cognitive resources (Experiment 3). Self-reported reinterpretation predicted (Experiment 4) and mediated (Experiment 5) revised implicit evaluations beyond the separate influence of how thoughtfully participants considered the new information in general. Finally, the revised evaluations were durable three days later (Experiment 6). We discuss how these results inform existing theoretical models, and consider implications for future research. PMID:25798625
Implicit Cognition and Addiction: A Tool for Explaining Paradoxical Behavior
Stacy, Alan W.; Wiers, Reinout W.
2012-01-01
Research on implicit cognition and addiction has expanded greatly during the past decade. This research area provides new ways to understand why people engage in behaviors that they know are harmful or counterproductive in the long run. Implicit cognition takes a different view from traditional cognitive approaches to addiction by assuming that behavior is often not a result of a reflective decision that takes into account the pros and cons known by the individual. Instead of a cognitive algebra integrating many cognitions relevant to choice, implicit cognition assumes that the influential cognitions are the ones that are spontaneously activated during critical decision points. This selective review highlights many of the consistent findings supporting predictive effects of implicit cognition on substance use and abuse in adolescents and adults; reveals a recent integration with dual-process models; outlines the rapid evolution of different measurement tools; and introduces new routes for intervention. PMID:20192786
Can we undo our first impressions? The role of reinterpretation in reversing implicit evaluations.
Mann, Thomas C; Ferguson, Melissa J
2015-06-01
Little work has examined whether implicit evaluations can be effectively "undone" after learning new revelations. Across 7 experiments, participants fully reversed their implicit evaluation of a novel target person after reinterpreting earlier information. Revision occurred across multiple implicit evaluation measures (Experiments 1a and 1b), and only when the new information prompted a reinterpretation of prior learning versus did not (Experiment 2). The updating required active consideration of the information, as it emerged only with at least moderate cognitive resources (Experiment 3). Self-reported reinterpretation predicted (Experiment 4) and mediated (Experiment 5) revised implicit evaluations beyond the separate influence of how thoughtfully participants considered the new information in general. Finally, the revised evaluations were durable 3 days later (Experiment 6). We discuss how these results inform existing theoretical models, and consider implications for future research. (c) 2015 APA, all rights reserved).
Implicit Processes, Self-Regulation, and Interventions for Behavior Change.
St Quinton, Tom; Brunton, Julie A
2017-01-01
The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior.
Implicit Processes, Self-Regulation, and Interventions for Behavior Change
St Quinton, Tom; Brunton, Julie A.
2017-01-01
The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior. PMID:28337164
An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling
NASA Astrophysics Data System (ADS)
Wang, Enjiang; Liu, Yang
2018-01-01
The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.
A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures
Colli Franzone, Piero; Pavarino, Luca F.; Scacchi, Simone
2018-01-01
We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing) architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1) the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2) the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3) the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks. PMID:29674971
Guo, Zuojun; Li, Bo; Dzubiella, Joachim; Cheng, Li-Tien; McCammon, J Andrew; Che, Jianwei
2013-03-12
In this article, we systematically apply a novel implicit-solvent model, the variational implicit-solvent model (VISM) together with the Coulomb-Field Approximation (CFA), to calculate the hydration free energy of a large set of small organic molecules. Because these molecules have been studied in detail by molecular dynamics simulations and other implicit-solvent models, they provide a good benchmark for evaluating the performance of VISM-CFA. With all-atom Amber force field parameters, VISM-CFA is able to reproduce well not only the experimental and MD simulated total hydration free energy but also the polar and nonpolar contributions individually. The correlation between VISM-CFA and experiments is R 2 = 0.763 for the total hydration free energy, with a root-mean-square deviation (RMSD) of 1.83 kcal/mol, and the correlation to results from TIP3P explicit water MD simulations is R 2 = 0.839 with a RMSD = 1.36 kcal/mol. In addition, we demonstrate that VISM captures dewetting phenomena in the p53/MDM2 complex and hydrophobic characteristics in the system. This work demonstrates that the level-set VISM-CFA can be used to study the energetic behavior of realistic molecular systems with complicated geometries in solvation, protein-ligand binding, protein-protein association, and protein folding processes.
Fully implicit adaptive mesh refinement MHD algorithm
NASA Astrophysics Data System (ADS)
Philip, Bobby
2005-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.
Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.
Chen, Duan; Chen, Zhan; Wei, Guo-Wei
2012-01-01
Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.
Reder, Lynne M.; Park, Heekyeong; Kieffaber, Paul D.
2009-01-01
There is a popular hypothesis that performance on implicit and explicit memory tasks reflects 2 distinct memory systems. Explicit memory is said to store those experiences that can be consciously recollected, and implicit memory is said to store experiences and affect subsequent behavior but to be unavailable to conscious awareness. Although this division based on awareness is a useful taxonomy for memory tasks, the authors review the evidence that the unconscious character of implicit memory does not necessitate that it be treated as a separate system of human memory. They also argue that some implicit and explicit memory tasks share the same memory representations and that the important distinction is whether the task (implicit or explicit) requires the formation of a new association. The authors review and critique dissociations from the behavioral, amnesia, and neuroimaging literatures that have been advanced in support of separate explicit and implicit memory systems by highlighting contradictory evidence and by illustrating how the data can be accounted for using a simple computational memory model that assumes the same memory representation for those disparate tasks. PMID:19210052
Implicit Wiener series analysis of epileptic seizure recordings.
Barbero, Alvaro; Franz, Matthias; van Drongelen, Wim; Dorronsoro, José R; Schölkopf, Bernhard; Grosse-Wentrup, Moritz
2009-01-01
Implicit Wiener series are a powerful tool to build Volterra representations of time series with any degree of non-linearity. A natural question is then whether higher order representations yield more useful models. In this work we shall study this question for ECoG data channel relationships in epileptic seizure recordings, considering whether quadratic representations yield more accurate classifiers than linear ones. To do so we first show how to derive statistical information on the Volterra coefficient distribution and how to construct seizure classification patterns over that information. As our results illustrate, a quadratic model seems to provide no advantages over a linear one. Nevertheless, we shall also show that the interpretability of the implicit Wiener series provides insights into the inter-channel relationships of the recordings.
Implicit aversive memory under anaesthesia in animal models: a narrative review.
Samuel, N; Taub, A H; Paz, R; Raz, A
2018-07-01
Explicit memory after anaesthesia has gained considerable attention because of its negative implications, while implicit memory, which is more elusive and lacks patients' explicit recall, has received less attention and dedicated research. This is despite the likely impact of implicit memory on postoperative long-term well-being and behaviour. Given the scarcity of human data, fear conditioning in animals offers a reliable model of implicit learning, and importantly, one where we already have a good understanding of the underlying neural circuitry in awake conditions. Animal studies provide evidence that fear conditioning occurs under anaesthesia. The effects of different anaesthetics on memory are complex, with different drugs interacting at different stages of learning. Modulatory suppressive effects can be because of context, specific drugs, and dose dependency. In some cases, low doses of general anaesthetics can actually lead to a paradoxical opposite effect. The underlying mechanisms involve several neurotransmitter systems, acting mainly in the amygdala, hippocampus, and neocortex. Here, we review animal studies of aversive conditioning under anaesthesia, discuss the complex picture that arises, identify the gaps in knowledge that require further investigation, and highlight the potential translational relevance of the models. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
Khorakian, Alireza; Sharifirad, Mohammad Sadegh
2018-01-01
The impact of implicit leadership theories on performance and the mechanism linking them have received insufficient theoretical and research attention. Drawing on Bandura's social cognitive theory, the present study contributes theory through examining the assertion that higher congruence between followers' implicit leadership theory and the characteristics of supervisors enhance job performance through higher quality of leader-member exchange and self-efficacy. Moreover, in the proposed model, attachment insecurity was considered as the antecedent of the congruence and leader-member exchange in addition to the moderator of the relationship between them. Capitalizing upon Structural Equation Modeling (SEM), this study tested the model in a field study using a sample of employees in knowledge-oriented firms in Iran. The results suggest that the congruence between followers' implicit leadership theory and the characteristics of supervisors does not directly impact performance and leader-member exchange and self-efficacy are the full mediators. The results also showed that attachment insecurity is the predictor of neither the congruence nor the leader-member exchange. Additionally, attachment insecurity moderates the relationship between these two variables in a way that when attachment insecurity is high, the congruence has more positive impact on leader-member exchange.
Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Chacon, Luis
2015-09-01
We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.
Paek, Hye-Jin; Reid, Leonard N; Choi, Hojoon; Jeong, Hyun Ju
2010-10-01
Tobacco studies indicate that health-related information in cigarette advertising leads consumers to underestimate the detrimental health effects of smoking and contributes to their smoking-related perceptions, beliefs, and attitudes. This study examined the frequencies and kinds of implicit health information in cigarette advertising across five distinct smoking eras covering the years 1954-2003. Analysis of 1,135 cigarette advertisements collected through multistage probability sampling of three popular consumer magazines found that the level of implicit health information (i.e., "light" cigarette, cigarette pack color, verbal and visual health cues, cigarette portrayals, and human model-cigarette interaction) in post-Master Settlement Agreement [MSA] era ads is similar to the level in ads from early smoking eras. Specifically, "light" cigarettes were frequently promoted, and presence of light colors in cigarette packs seemed dominant after the probroadcast ban era. Impressionistic verbal health cues (e.g., soft, mild, and refreshing) appeared more frequently in post-MSA era ads than in pre-MSA era ads. Most notably, a majority of the cigarette ads portrayed models smoking, lighting, or offering a cigarette to others. The potential impact of implicit health information is discussed in the contexts of social cognition and Social Cognitive Theory. Policy implications regarding our findings are also detailed.
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Chacon, Luis
2005-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.
Liu, Hui; Chen, Fu; Sun, Huiyong; Li, Dan; Hou, Tingjun
2017-04-11
By means of estimators based on non-equilibrium work, equilibrium free energy differences or potentials of mean force (PMFs) of a system of interest can be computed from biased molecular dynamics (MD) simulations. The approach, however, is often plagued by slow conformational sampling and poor convergence, especially when the solvent effects are taken into account. Here, as a possible way to alleviate the problem, several widely used implicit-solvent models, which are derived from the analytic generalized Born (GB) equation and implemented in the AMBER suite of programs, were employed in free energy calculations based on non-equilibrium work and evaluated for their abilities to emulate explicit water. As a test case, pulling MD simulations were carried out on an alanine polypeptide with different solvent models and protocols, followed by comparisons of the reconstructed PMF profiles along the unfolding coordinate. The results show that when employing the non-equilibrium work method, sampling with an implicit-solvent model is several times faster and, more importantly, converges more rapidly than that with explicit water due to reduction of dissipation. Among the assessed GB models, the Neck variants outperform the OBC and HCT variants in terms of accuracy, whereas their computational costs are comparable. In addition, for the best-performing models, the impact of the solvent-accessible surface area (SASA) dependent nonpolar solvation term was also examined. The present study highlights the advantages of implicit-solvent models for non-equilibrium sampling.
The Role of Bias by Emergency Department Providers in Care for American Indian Children.
Puumala, Susan E; Burgess, Katherine M; Kharbanda, Anupam B; Zook, Heather G; Castille, Dorothy M; Pickner, Wyatt J; Payne, Nathaniel R
2016-06-01
American Indian children have high rates of emergency department (ED) use and face potential discrimination in health care settings. Our goal was to assess both implicit and explicit racial bias and examine their relationship with clinical care. We performed a cross-sectional survey of care providers at 5 hospitals in the Upper Midwest. Questions included American Indian stereotypes (explicit attitudes), clinical vignettes, and the Implicit Association Test. Two Implicit Association Tests were created to assess implicit bias toward the child or the parent/caregiver. Differences were assessed using linear and logistic regression models with a random effect for study site. A total of 154 care providers completed the survey. Agreement with negative American Indian stereotypes was 22%-32%. Overall, 84% of providers had an implicit preference for non-Hispanic white adults or children. Older providers (50 y and above) had lower implicit bias than those middle aged (30-49 y) (P=0.01). American Indian children were seen as increasingly challenging (P=0.04) and parents/caregivers less compliant (P=0.002) as the proportion of American Indian children seen in the ED increased. Responses to the vignettes were not related to implicit or explicit bias. The majority of ED care providers had an implicit preference for non-Hispanic white children or adults compared with those who were American Indian. Provider agreement with negative American Indian stereotypes differed by practice and respondents' characteristics. These findings require additional study to determine how these implicit and explicit biases influence health care or outcomes disparities.
Three-dimensional implicit lambda methods
NASA Technical Reports Server (NTRS)
Napolitano, M.; Dadone, A.
1983-01-01
This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.
Does Verb Bias Modulate Syntactic Priming?
ERIC Educational Resources Information Center
Bernolet, Sarah; Hartsuiker, Robert J.
2010-01-01
In a corpus analysis of spontaneous speech Jaeger and Snider (2007) found that the strength of structural priming is correlated with verb alternation bias. This finding is consistent with an implicit learning account of syntactic priming: because the implicit learning model implemented by Chang (2002), Chang, Dell, and Bock (2006), and Chang,…
The Implicit Curriculum in an Urban University Setting: Pathways to Students' Empowerment
ERIC Educational Resources Information Center
Peterson, N. Andrew; Farmer, Antoinette Y.; Zippay, Allison
2014-01-01
Professional schools are developing conceptual frameworks that can be used to assess and improve implicit curricula. Students' professional empowerment, defined to include perceived professional competence and identity, may be considered a vital outcome of these efforts. Our study evaluated measures and tested a path model that included…
Enhanced Cardiac Perception Is Associated with Increased Susceptibility to Framing Effects
ERIC Educational Resources Information Center
Sutterlin, Stefan; Schulz, Stefan M.; Stumpf, Theresa; Pauli, Paul; Vogele, Claus
2013-01-01
Previous studies suggest in line with dual process models that interoceptive skills affect controlled decisions via automatic or implicit processing. The "framing effect" is considered to capture implicit effects of task-irrelevant emotional stimuli on decision-making. We hypothesized that cardiac awareness, as a measure of interoceptive…
The Implicit Leadership Theories of College and University Presidents. ASHE Annual Meeting Paper.
ERIC Educational Resources Information Center
Birnbaum, Robert
Theories implicit in college presidents' definitions of leadership are examined, since understanding presidents' leadership models may affect how they interpret their roles and the events they encounter. The source of the theory that is analyzed is the organizational leadership literature. Research traditions in organizational leadership are…
Schüler, Julia; Sheldon, Kennon M; Prentice, Mike; Halusic, Marc
2016-02-01
The present studies examined whether implicit or explicit autonomy dispositions moderate the relationship between felt autonomy and well-being. Study 1 (N = 187 undergraduate students) presents an initial test of the moderator hypothesis by predicting flow experience from the interaction of autonomy need satisfaction and autonomy dispositions. Study 2 (N = 127 physically inactive persons) used vignettes involving an autonomy (un)supportive coach to test a moderated mediation model in which perceived coach autonomy support leads to well-being through basic need satisfaction. Again, the effects of need satisfaction on well-being were hypothesized to be moderated by an implicit autonomy disposition. Study 1 showed that individuals with a strong implicit autonomy (but not power or achievement) motive disposition derived more flow experience from felt autonomy than individuals with a weak implicit autonomy disposition. Study 2 revealed that perceived autonomy support from sports coaches, which we experimentally induced with a vignette method, leads to autonomy satisfaction, leading in turn to positive effects on well-being. This indirect effect held at high and average but not low implicit autonomy disposition. The results indicate that the degree to which people benefit from autonomy need satisfaction depends on their implicit disposition toward autonomy. © 2014 Wiley Periodicals, Inc.
Yao, Jincao; Yu, Huimin; Hu, Roland
2017-01-01
This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.
NASA Astrophysics Data System (ADS)
Watanabe, Yukihisa S.; Kim, Jae Gil; Fukunishi, Yoshifumi; Nakamura, Haruki
2004-12-01
In order to investigate whether the implicit solvent (GB/SA) model could reproduce the free energy landscapes of peptides, the potential of mean forces (PMFs) of eight tripeptides was examined and compared with the PMFs of the explicit water model. The force-biased multicanonical molecular dynamics method was used for the enhanced conformational sampling. Consequently, the GB/SA model reproduced almost all the global and local minima in the PMFs observed with the explicit water model. However, the GB/SA model overestimated frequencies of the structures that are stabilized by intra-peptide hydrogen bonds.
A diffusion modeling approach to understanding contextual cueing effects in children with ADHD.
Weigard, Alexander; Huang-Pollock, Cynthia
2014-12-01
Strong theoretical models suggest implicit learning deficits may exist among children with Attention Deficit Hyperactivity Disorder (ADHD). We examine implicit contextual cueing (CC) effects among children with ADHD (n = 72) and non-ADHD Controls (n = 36). Using Ratcliff's drift diffusion model, we found that among Controls, the CC effect is due to improvements in attentional guidance and to reductions in response threshold. Children with ADHD did not show a CC effect; although they were able to use implicitly acquired information to deploy attentional focus, they had more difficulty adjusting their response thresholds. Improvements in attentional guidance and reductions in response threshold together underlie the CC effect. Results are consistent with neurocognitive models of ADHD that posit subcortical dysfunction but intact spatial attention, and encourage the use of alternative data analytic methods when dealing with reaction time data. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
[Verification of the double dissociation model of shyness using the implicit association test].
Fujii, Tsutomu; Aikawa, Atsushi
2013-12-01
The "double dissociation model" of shyness proposed by Asendorpf, Banse, and Mtücke (2002) was demonstrated in Japan by Aikawa and Fujii (2011). However, the generalizability of the double dissociation model of shyness was uncertain. The present study examined whether the results reported in Aikawa and Fujii (2011) would be replicated. In Study 1, college students (n = 91) completed explicit self-ratings of shyness and other personality scales. In Study 2, forty-eight participants completed IAT (Implicit Association Test) for shyness, and their friends (n = 141) rated those participants on various personality scales. The results revealed that only the explicit self-concept ratings predicted other-rated low praise-seeking behavior, sociable behavior and high rejection-avoidance behavior (controlled shy behavior). Only the implicit self-concept measured by the shyness IAT predicted other-rated high interpersonal tension (spontaneous shy behavior). The results of this study are similar to the findings of the previous research, which supports generalizability of the double dissociation model of shyness.
An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, R; Stolken, J; Jannetti, C
Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numericalmore » simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.« less
Numerical Simulation of a Solar Domestic Hot Water System
NASA Astrophysics Data System (ADS)
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
Reber, Paul J
2013-08-01
Memory systems research has typically described the different types of long-term memory in the brain as either declarative versus non-declarative or implicit versus explicit. These descriptions reflect the difference between declarative, conscious, and explicit memory that is dependent on the medial temporal lobe (MTL) memory system, and all other expressions of learning and memory. The other type of memory is generally defined by an absence: either the lack of dependence on the MTL memory system (nondeclarative) or the lack of conscious awareness of the information acquired (implicit). However, definition by absence is inherently underspecified and leaves open questions of how this type of memory operates, its neural basis, and how it differs from explicit, declarative memory. Drawing on a variety of studies of implicit learning that have attempted to identify the neural correlates of implicit learning using functional neuroimaging and neuropsychology, a theory of implicit memory is presented that describes it as a form of general plasticity within processing networks that adaptively improve function via experience. Under this model, implicit memory will not appear as a single, coherent, alternative memory system but will instead be manifested as a principle of improvement from experience based on widespread mechanisms of cortical plasticity. The implications of this characterization for understanding the role of implicit learning in complex cognitive processes and the effects of interactions between types of memory will be discussed for examples within and outside the psychology laboratory. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.
Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less
The discrepancy between implicit and explicit attitudes in predicting disinhibited eating.
Goldstein, Stephanie P; Forman, Evan M; Meiran, Nachshon; Herbert, James D; Juarascio, Adrienne S; Butryn, Meghan L
2014-01-01
Disinhibited eating (i.e., the tendency to overeat, despite intentions not to do so, in the presence of palatable foods or other cues such as emotional stress) is strongly linked with obesity and appears to be associated with both implicit (automatic) and explicit (deliberative) food attitudes. Prior research suggests that a large discrepancy between implicit and explicit food attitudes may contribute to greater levels of disinhibited eating; however this theory has not been directly tested. The current study examined whether the discrepancy between implicit and explicit attitudes towards chocolate could predict both lab-based and self-reported disinhibited eating of chocolate. Results revealed that, whereas neither implicit nor explicit attitudes alone predicted disinhibited eating, absolute attitude discrepancy positively predicted chocolate consumption. Impulsivity moderated this effect, such that discrepancy was less predictive of disinhibited eating for those who exhibited lower levels of impulsivity. The results align with the meta-cognitive model to indicate that attitude discrepancy may be involved in overeating. © 2013.
Recollective performance advantages for implicit memory tasks.
Sheldon, Signy A M; Moscovitch, Morris
2010-10-01
A commonly held assumption is that processes underlying explicit and implicit memory are distinct. Recent evidence, however, suggests that they may interact more than previously believed. Using the remember-know procedure the current study examines the relation between recollection, a process thought to be exclusive to explicit memory, and performance on two implicit memory tasks, lexical decision and word stem completion. We found that, for both implicit tasks, words that were recollected were associated with greater priming effects than were words given a subsequent familiarity rating or words that had been studied but were not recognised (misses). Broadly, our results suggest that non-voluntary processes underlying explicit memory also benefit priming, a measure of implicit memory. More specifically, given that this benefit was due to a particular aspect of explicit memory (recollection), these results are consistent with some strength models of memory and with Moscovitch's (2008) proposal that recollection is a two-stage process, one rapid and unconscious and the other more effortful and conscious.
ERIC Educational Resources Information Center
Zumbach, Joerg; Schrangl, Gerhard; Mortensen, Chad; Moser, Stephanie
2016-01-01
Considering xenophobic attacks against foreigners and ethnic or religious motivated wars, there is a need for educational concepts to extinguish xenophobia. A model describing the cognitive processes involved in Xenophobic cognition was developed. Instructional multimedia material that discussed various forms of alienation was developed and…
Algorithm Development for the Multi-Fluid Plasma Model
2011-05-30
392, Sep 1995. [13] L Chacon , DC Barnes, DA Knoll, and GH Miley. An implicit energy- conservative 2D Fokker-Planck algorithm. Journal of Computational...Physics, 157(2):618–653, 2000. [14] L Chacon , DC Barnes, DA Knoll, and GH Miley. An implicit energy- conservative 2D Fokker-Planck algorithm - II
Cappelli, Christopher; Ames, Susan; Shono, Yusuke; Dust, Mark; Stacy, Alan
2017-09-01
This study used a dual-process model of cognition in order to investigate the possible influence of automatic and deliberative processes on lifetime alcohol use in a sample of drug offenders. The objective was to determine if automatic/implicit associations in memory can exert an influence over an individual's alcohol use and if decision-making ability could potentially modify the influence of these associations. 168 participants completed a battery of cognitive tests measuring implicit alcohol associations in memory (verb generation) as well as their affective decision-making ability (Iowa Gambling Task). Structural equation modeling procedures were used to test the relationship between implicit associations, decision-making, and lifetime alcohol use. Results revealed that among participants with lower levels of decision-making, implicit alcohol associations more strongly predicted higher lifetime alcohol use. These findings provide further support for the interaction between a specific decision function and its influence over automatic processes in regulating alcohol use behavior in a risky population. Understanding the interaction between automatic associations and decision processes may aid in developing more effective intervention components.
NASA Technical Reports Server (NTRS)
Coakley, T. J.; Hsieh, T.
1985-01-01
Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.
Fully implicit Particle-in-cell algorithms for multiscale plasma simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis
The outline of the paper is as follows: Particle-in-cell (PIC) methods for fully ionized collisionless plasmas, explicit vs. implicit PIC, 1D ES implicit PIC (charge and energy conservation, moment-based acceleration), and generalization to Multi-D EM PIC: Vlasov-Darwin model (review and motivation for Darwin model, conservation properties (energy, charge, and canonical momenta), and numerical benchmarks). The author demonstrates a fully implicit, fully nonlinear, multidimensional PIC formulation that features exact local charge conservation (via a novel particle mover strategy), exact global energy conservation (no particle self-heating or self-cooling), adaptive particle orbit integrator to control errors in momentum conservation, and canonical momenta (EM-PICmore » only, reduced dimensionality). The approach is free of numerical instabilities: ω peΔt >> 1, and Δx >> λ D. It requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant CPU gains (vs explicit PIC) have been demonstrated. The method has much potential for efficiency gains vs. explicit in long-time-scale applications. Moment-based acceleration is effective in minimizing N FE, leading to an optimal algorithm.« less
Lee, Kuo Hao; Chen, Jianhan
2017-06-15
Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
O’Connor, Roisin M.; Colder, Craig R.
2015-01-01
Objective: Dual-process models propose that behavior is influenced by the interactive effect of impulsive (automatic) and selfregulatory (controlled) processes. Elaborations of this model posit that the effect of impulsive processes on alcohol use is influenced by capacity and motivation to self-regulate. The interactive effect of these three processes on drinking has not previously been tested. The goal of this study was to provide a developmental extension of this model to early adolescent alcohol use and to test the three-way interaction between impulsive processes (implicit alcohol cognition), self-regulatory capacity (inhibitory and activation control), and self-regulatory motivation (negative alcohol outcome expectancies [AOE]) in a 1-year prospective prediction of adolescent alcohol use. Method: Adolescents (N = 325; 54% girls, mean age = 13.6 years at baseline) completed the Single Category Implicit Association Test and self-reports of alcohol expectancies and use. Inhibitory and activation control were based on parental report. Results: Negative AOE and inhibitory/activation control were supported as moderators of the effect of implicit alcohol cognition on 1-year prospective alcohol use. As expected, weak implicit negative alcohol cognition was associated with elevated alcohol use when both negative AOE and inhibitory control were low. Contrary to hypothesis, when activation control was high, weak implicit negative alcohol cognition was unrelated to alcohol use if negative AOE were high (p = .72) (vs. low, p < .01).Activation control may reflect the ability to plan ahead and act pro-socially. Conclusions: Our study supports current theory suggesting alcohol use is influenced by a complex interplay of impulsive and self-regulatory processes. PMID:26562596
Implicit methods for efficient musculoskeletal simulation and optimal control
van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter
2011-01-01
The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983
Cohen, Trevor; Schvaneveldt, Roger; Widdows, Dominic
2010-04-01
The discovery of implicit connections between terms that do not occur together in any scientific document underlies the model of literature-based knowledge discovery first proposed by Swanson. Corpus-derived statistical models of semantic distance such as Latent Semantic Analysis (LSA) have been evaluated previously as methods for the discovery of such implicit connections. However, LSA in particular is dependent on a computationally demanding method of dimension reduction as a means to obtain meaningful indirect inference, limiting its ability to scale to large text corpora. In this paper, we evaluate the ability of Random Indexing (RI), a scalable distributional model of word associations, to draw meaningful implicit relationships between terms in general and biomedical language. Proponents of this method have achieved comparable performance to LSA on several cognitive tasks while using a simpler and less computationally demanding method of dimension reduction than LSA employs. In this paper, we demonstrate that the original implementation of RI is ineffective at inferring meaningful indirect connections, and evaluate Reflective Random Indexing (RRI), an iterative variant of the method that is better able to perform indirect inference. RRI is shown to lead to more clearly related indirect connections and to outperform existing RI implementations in the prediction of future direct co-occurrence in the MEDLINE corpus. 2009 Elsevier Inc. All rights reserved.
Phelan, Sean M; Burke, Sara E; Hardeman, Rachel R; White, Richard O; Przedworski, Julia; Dovidio, John F; Perry, Sylvia P; Plankey, Michael; A Cunningham, Brooke; Finstad, Deborah; W Yeazel, Mark; van Ryn, Michelle
2017-11-01
Implicit and explicit bias among providers can influence the quality of healthcare. Efforts to address sexual orientation bias in new physicians are hampered by a lack of knowledge of school factors that influence bias among students. To determine whether medical school curriculum, role modeling, diversity climate, and contact with sexual minorities predict bias among graduating students against gay and lesbian people. Prospective cohort study. A sample of 4732 first-year medical students was recruited from a stratified random sample of 49 US medical schools in the fall of 2010 (81% response; 55% of eligible), of which 94.5% (4473) identified as heterosexual. Seventy-eight percent of baseline respondents (3492) completed a follow-up survey in their final semester (spring 2014). Medical school predictors included formal curriculum, role modeling, diversity climate, and contact with sexual minorities. Outcomes were year 4 implicit and explicit bias against gay men and lesbian women, adjusted for bias at year 1. In multivariate models, lower explicit bias against gay men and lesbian women was associated with more favorable contact with LGBT faculty, residents, students, and patients, and perceived skill and preparedness for providing care to LGBT patients. Greater explicit bias against lesbian women was associated with discrimination reported by sexual minority students (b = 1.43 [0.16, 2.71]; p = 0.03). Lower implicit sexual orientation bias was associated with more frequent contact with LGBT faculty, residents, students, and patients (b = -0.04 [-0.07, -0.01); p = 0.008). Greater implicit bias was associated with more faculty role modeling of discriminatory behavior (b = 0.34 [0.11, 0.57); p = 0.004). Medical schools may reduce bias against sexual minority patients by reducing negative role modeling, improving the diversity climate, and improving student preparedness to care for this population.
Nonconscious processes and health.
Sheeran, Paschal; Gollwitzer, Peter M; Bargh, John A
2013-05-01
Health behavior theories focus on the role of conscious, reflective factors (e.g., behavioral intentions, risk perceptions) in predicting and changing behavior. Dual-process models, on the other hand, propose that health actions are guided not only by a conscious, reflective, rule-based system but also by a nonconscious, impulsive, associative system. This article argues that research on health decisions, actions, and outcomes will be enriched by greater consideration of nonconscious processes. A narrative review is presented that delineates research on implicit cognition, implicit affect, and implicit motivation. In each case, we describe the key ideas, how they have been taken up in health psychology, and the possibilities for behavior change interventions, before outlining directions that might profitably be taken in future research. Correlational research on implicit cognitive and affective processes (attentional bias and implicit attitudes) has recently been supplemented by intervention studies using implementation intentions and practice-based training that show promising effects. Studies of implicit motivation (health goal priming) have also observed encouraging findings. There is considerable scope for further investigations of implicit affect control, unconscious thought, and the automatization of striving for health goals. Research on nonconscious processes holds significant potential that can and should be developed by health psychologists. Consideration of impulsive as well as reflective processes will engender new targets for intervention and should ultimately enhance the effectiveness of behavior change efforts. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Neill, Erica; Rossell, Susan Lee
2013-02-28
Semantic memory deficits in schizophrenia (SZ) are profound, yet there is no research comparing implicit and explicit semantic processing in the same participant sample. In the current study, both implicit and explicit priming are investigated using direct (LION-TIGER) and indirect (LION-STRIPES; where tiger is not displayed) stimuli comparing SZ to healthy controls. Based on a substantive review (Rossell and Stefanovic, 2007) and meta-analysis (Pomarol-Clotet et al., 2008), it was predicted that SZ would be associated with increased indirect priming implicitly. Further, it was predicted that SZ would be associated with abnormal indirect priming explicitly, replicating earlier work (Assaf et al., 2006). No specific hypotheses were made for implicit direct priming due to the heterogeneity of the literature. It was hypothesised that explicit direct priming would be intact based on the structured nature of this task. The pattern of results suggests (1) intact reaction time (RT) and error performance implicitly in the face of abnormal direct priming and (2) impaired RT and error performance explicitly. This pattern confirms general findings regarding implicit/explicit memory impairments in SZ whilst highlighting the unique pattern of performance specific to semantic priming. Finally, priming performance is discussed in relation to thought disorder and length of illness. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Lomize, Andrei L; Pogozheva, Irina D; Mosberg, Henry I
2011-04-25
A new implicit solvation model was developed for calculating free energies of transfer of molecules from water to any solvent with defined bulk properties. The transfer energy was calculated as a sum of the first solvation shell energy and the long-range electrostatic contribution. The first term was proportional to solvent accessible surface area and solvation parameters (σ(i)) for different atom types. The electrostatic term was computed as a product of group dipole moments and dipolar solvation parameter (η) for neutral molecules or using a modified Born equation for ions. The regression coefficients in linear dependencies of solvation parameters σ(i) and η on dielectric constant, solvatochromic polarizability parameter π*, and hydrogen-bonding donor and acceptor capacities of solvents were optimized using 1269 experimental transfer energies from 19 organic solvents to water. The root-mean-square errors for neutral compounds and ions were 0.82 and 1.61 kcal/mol, respectively. Quantification of energy components demonstrates the dominant roles of hydrophobic effect for nonpolar atoms and of hydrogen-bonding for polar atoms. The estimated first solvation shell energy outweighs the long-range electrostatics for most compounds including ions. The simplicity and computational efficiency of the model allows its application for modeling of macromolecules in anisotropic environments, such as biological membranes.
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
The Role of Bias by Emergency Department Providers in Care for American Indian Children
Puumala, Susan E.; Burgess, Katherine M.; Kharbanda, Anupam B.; Zook, Heather G.; Castille, Dorothy M.; Pickner, Wyatt J.; Payne, Nathaniel R.
2016-01-01
Background American Indian children have high rates of emergency department (ED) use and face potential discrimination in health care settings. Objective Our goal was to assess both implicit and explicit racial bias and examine their relationship with clinical care. Research Design We performed a cross-sectional survey of care providers at five hospitals in the Upper Midwest. Questions included American Indian stereotypes (explicit attitudes), clinical vignettes and the Implicit Association Test (IAT). Two IATs were created to assess implicit bias toward the child or the parent/caregiver. Differences were assessed using linear and logistic regression models with a random effect for study site. Results A total of 154 care providers completed the survey. Agreement with negative American Indian stereotypes was 22–32%. Overall, 84% of providers had an implicit preference for non-Hispanic white adults or children. Older providers (≥ 50 years) had lower implicit bias than those middle aged (30–49 years), (p = 0.01). American Indian children were seen as increasingly challenging (p = 0.04) and parents/caregivers less compliant (p = 0.002) as the proportion of American Indian children seen in the ED increased. Responses to the vignettes were not related to implicit or explicit bias. Conclusions The majority of ED care providers had an implicit preference for non-Hispanic white children or adults compared to those who were American Indian. Provider agreement with negative American Indian stereotypes differed by practice and respondents’ characteristics. These findings require additional study to determine how these implicit and explicit biases influence healthcare or outcomes disparities. PMID:26974675
ERIC Educational Resources Information Center
Pritchard, Stephen C.; Coltheart, Max; Marinus, Eva; Castles, Anne
2016-01-01
Phonological decoding is central to learning to read, and deficits in its acquisition have been linked to reading disorders such as dyslexia. Understanding how this skill is acquired is therefore important for characterising reading difficulties. Decoding can be taught explicitly, or implicitly learned during instruction on whole word spellings…
ERIC Educational Resources Information Center
Doron, Julie; Stephan, Yannick; Boiche, Julie; Le Scanff, Christine
2009-01-01
Background: Relatively little is known about the contribution of students' beliefs regarding the nature of academic ability (i.e. their implicit theories) on strategies used to deal with examinations. Aims: This study applied Dweck's socio-cognitive model of achievement motivation to better understand how students cope with examinations. It was…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamerlin, Shina C. L.; Haranczyk, Maciej; Warshel, Arieh
2009-05-01
Phosphate hydrolysis is ubiquitous in biology. However, despite intensive research on this class of reactions, the precise nature of the reaction mechanism remains controversial. In this work, we have examined the hydrolysis of three homologous phosphate diesters. The solvation free energy was simulated by means of either an implicit solvation model (COSMO), hybrid quantum mechanical / molecular mechanical free energy perturbation (QM/MM-FEP) or a mixed solvation model in which N water molecules were explicitly included in the ab initio description of the reacting system (where N=1-3), with the remainder of the solvent being implicitly modelled as a continuum. Here, bothmore » COSMO and QM/MM-FEP reproduce Delta Gobs within an error of about 2kcal/mol. However, we demonstrate that in order to obtain any form of reliable results from a mixed model, it is essential to carefully select the explicit water molecules from short QM/MM runs that act as a model for the true infinite system. Additionally, the mixed models tend to be increasingly inaccurate the more explicit water molecules are placed into the system. Thus, our analysis indicates that this approach provides an unreliable way for modelling phosphate hydrolysis in solution.« less
A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
NASA Astrophysics Data System (ADS)
Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.
2017-12-01
A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.
Integration of orthographic, conceptual, and episodic information on implicit and explicit tests.
Weldon, M S; Massaro, D W
1996-03-01
An experiment was conducted to determine how orthographic and conceptual information are integrated during incidental and intentional retrieval. Subjects studied word lists with either a shallow (counting vowels) or deep (rating pleasantness) processing task, then received either an implicit or explicit word fragment completion (WFC) test. At test, word fragments contained 0, 1, 2, or 4 letters, and were accompanied by 0, 1, 2, or 3 semantically related words. On both the implicit and explicit tests, performance improved with increases in the numbers of letters and words. When semantic cues were presented with the word fragments, the implicit test became more conceptually drive. Still, conceptual processing had a larger effect in intentional than in incidental retrieval. The Fuzzy Logical Model of Perception (FLMP) provided a good description of how orthographic, semantic, and episodic information were combined during retrieval.
Investigating implicit knowledge in ontologies with application to the anatomical domain.
Zhang, S; Bodenreider, O
2004-01-01
Knowledge in biomedical ontologies can be explicitly represented (often by means of semantic relations), but may also be implicit, i.e., embedded in the concept names and inferable from various combinations of semantic relations. This paper investigates implicit knowledge in two ontologies of anatomy: the Foundational Model of Anatomy and GALEN. The methods consist of extracting the knowledge explicitly represented, acquiring the implicit knowledge through augmentation and inference techniques, and identifying the origin of each semantic relation. The number of relations (12 million in FMA and 4.6 million in GALEN), broken down by source, is presented. Major findings include: each technique provides specific relations; and many relations can be generated by more than one technique. The application of these findings to ontology auditing, validation, and maintenance is discussed, as well as the application to ontology integration.
Impact of negation salience and cognitive resources on negation during attitude formation.
Boucher, Kathryn L; Rydell, Robert J
2012-10-01
Because of the increased cognitive resources required to process negations, past research has shown that explicit attitude measures are more sensitive to negations than implicit attitude measures. The current work demonstrated that the differential impact of negations on implicit and explicit attitude measures was moderated by (a) the extent to which the negation was made salient and (b) the amount of cognitive resources available during attitude formation. When negations were less visually salient, explicit but not implicit attitude measures reflected the intended valence of the negations. When negations were more visually salient, both explicit and implicit attitude measures reflected the intended valence of the negations, but only when perceivers had ample cognitive resources during encoding. Competing models of negation processing, schema-plus-tag and fusion, were examined to determine how negation salience impacts the processing of negations.
Implicit Self-Importance in an Interpersonal Pronoun Categorization Task.
Fetterman, Adam K; Robinson, Michael D; Gilbertson, Elizabeth P
2014-06-01
Object relations theories emphasize the manner in which the salience/importance of implicit representations of self and other guide interpersonal functioning. Two studies and a pilot test (total N = 304) sought to model such representations. In dyadic contexts, the self is a "you" and the other is a "me", as verified in a pilot test. Study 1 then used a simple categorization task and found evidence for implicit self-importance: The pronoun "you" was categorized more quickly and accurately when presented in a larger font size, whereas the pronoun "me" was categorized more quickly and accurately when presented in a smaller font size. Study 2 showed that this pattern possesses value in understanding individual differences in interpersonal functioning. As predicted, arrogant people scored higher in implicit self-importance in the paradigm. Findings are discussed from the perspective of dyadic interpersonal dynamics.
Stefanutti, Luca; Robusto, Egidio; Vianello, Michelangelo; Anselmi, Pasquale
2013-06-01
A formal model is proposed that decomposes the implicit association test (IAT) effect into three process components: stimuli discrimination, automatic association, and termination criterion. Both response accuracy and reaction time are considered. Four independent and parallel Poisson processes, one for each of the four label categories of the IAT, are assumed. The model parameters are the rate at which information accrues on the counter of each process and the amount of information that is needed before a response is given. The aim of this study is to present the model and an illustrative application in which the process components of a Coca-Pepsi IAT are decomposed.
Development and application of the GIM code for the Cyber 203 computer
NASA Technical Reports Server (NTRS)
Stainaker, J. F.; Robinson, M. A.; Rawlinson, E. G.; Anderson, P. G.; Mayne, A. W.; Spradley, L. W.
1982-01-01
The GIM computer code for fluid dynamics research was developed. Enhancement of the computer code, implicit algorithm development, turbulence model implementation, chemistry model development, interactive input module coding and wing/body flowfield computation are described. The GIM quasi-parabolic code development was completed, and the code used to compute a number of example cases. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and implicit finite difference scheme were also added. Development was completed on the interactive module for generating the input data for GIM. Solutions for inviscid hypersonic flow over a wing/body configuration are also presented.
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro
2017-04-01
We present an efficient implicit incompressible smoothed particle hydrodynamics (I2SPH) discretization of Navier-Stokes, Poisson-Boltzmann, and advection-diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The I2SPH's accuracy and convergence are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. The new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
1989-03-01
IAutomatic Control, AC-22, p 883-885, 1977 /Syntax check EIGA=EIG(A); EIGB=EIG(B); [M,N)=SIZE(EIGA); [PR] SIZE(EIGB); FOR 11I:M,FOR JlI:P,.... EIGAB=EIGA...AIM = implicit model A matrix I/ QI = weighting matrix, ouputs mimic model I/ RI = weighting matrix, controls mimic model // QIHAT = implicit cost II...the dimension is less than 1. // NINPUTS (the number of controls and outputs) is the flag for the dimensio // of the connections. /- // The name of
A new solution method for wheel/rail rolling contact.
Yang, Jian; Song, Hua; Fu, Lihua; Wang, Meng; Li, Wei
2016-01-01
To solve the problem of wheel/rail rolling contact of nonlinear steady-state curving, a three-dimensional transient finite element (FE) model is developed by the explicit software ANSYS/LS-DYNA. To improve the solving speed and efficiency, an explicit-explicit order solution method is put forward based on analysis of the features of implicit and explicit algorithm. The solution method was first applied to calculate the pre-loading of wheel/rail rolling contact with explicit algorithm, and then the results became the initial conditions in solving the dynamic process of wheel/rail rolling contact with explicit algorithm as well. Simultaneously, the common implicit-explicit order solution method is used to solve the FE model. Results show that the explicit-explicit order solution method has faster operation speed and higher efficiency than the implicit-explicit order solution method while the solution accuracy is almost the same. Hence, the explicit-explicit order solution method is more suitable for the wheel/rail rolling contact model with large scale and high nonlinearity.
NASA Astrophysics Data System (ADS)
Welch, Dale; Font, Gabriel; Mitchell, Robert; Rose, David
2017-10-01
We report on particle-in-cell developments of the study of the Compact Fusion Reactor. Millisecond, two and three-dimensional simulations (cubic meter volume) of confinement and neutral beam heating of the magnetic confinement device requires accurate representation of the complex orbits, near perfect energy conservation, and significant computational power. In order to determine initial plasma fill and neutral beam heating, these simulations include ionization, elastic and charge exchange hydrogen reactions. To this end, we are pursuing fast electromagnetic kinetic modeling algorithms including a two implicit techniques and a hybrid quasi-neutral algorithm with kinetic ions. The kinetic modeling includes use of the Poisson-corrected direct implicit, magnetic implicit, as well as second-order cloud-in-cell techniques. The hybrid algorithm, ignoring electron inertial effects, is two orders of magnitude faster than kinetic but not as accurate with respect to confinement. The advantages and disadvantages of these techniques will be presented. Funded by Lockheed Martin.
Retinal Degeneration in a Rodent Model of Smith-Lemli-Opitz Syndrome
Fliesler, Steven J.; Peachey, Neal S.; Richards, Michael J.; Nagel, Barbara A.; Vaughan, Dana K.
2010-01-01
Objective To assess the electrophysiologic, histologic, and biochemical features of an animal model of Smith-Lemli-Opitz syndrome (SLOS). Methods Sprague-Dawley rats were treated with AY9944, a selective inhibitor of 3β-hydroxysterol-Δ7-reductase (the affected enzyme in SLOS). Dark- and light-adapted electroretinograms were obtained from treated and control animals. From each animal, 1 retina was analyzed by microscopy, and the contralateral retina plus serum samples were analyzed for sterol composition. The main outcome measures were rod and cone electroretinographic amplitudes and implicit times, outer nuclear layer (ONL) thickness, rod outer segment length, pyknotic ONL nucleus counts, and the 7-dehydrocholesterol/ cholesterol mole ratio in the retina and serum. Results By 10 weeks’ postnatal age, rod and cone electroretinographic wave amplitudes in AY9944-treated animals were significantly reduced and implicit times were significantly increased relative to controls. Maximal rod photoresponse and gain values were reduced approximately 2-fold in treated animals relative to controls. The ONL thickness and average rod outer segment length were reduced by approximately 18% and 33%, respectively, and ONL pyknotic nucleus counts were approximately 4.5-fold greater in treated animals relative to controls. The retinal pigment epithelium of treated animals contained massive amounts of membranous/lipid inclusions not routinely observed in controls. The 7-dehydrocholesterol/cholesterol mole ratios in treated retinas and serum samples were approximately 5:1 and 9:1, respectively, whereas the ratios in control tissues were essentially zero. Conclusions This rodent model exhibits the key biochemical hallmarks associated with SLOS and displays electrophysiologic deficits comparable to or greater than those observed in the human disease. Clinical Relevance These results predict retinal degeneration in patients with SLOS, particularly those with the more severe (type II) form of the disease, and may be more broadly relevant to other inborn errors of cholesterol biosynthesis. This animal model may also be of use in evaluating therapeutic treatments for SLOS and in understanding the slow phototransduction kinetics observed in patients with SLOS. PMID:15302661
NASA Technical Reports Server (NTRS)
Walker, K. P.; Freed, A. D.
1991-01-01
New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.
NASA Astrophysics Data System (ADS)
Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.
2009-09-01
The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.
Zsoldos, Isabella; Cousin, Emilie; Klein-Koerkamp, Yanica; Pichat, Cédric; Hot, Pascal
2016-11-01
Age-related differences in neural correlates underlying implicit and explicit emotion processing are unclear. Within the framework of the Frontoamygdalar Age-related Differences in Emotion model (St Jacques et al., 2009), our objectives were to examine the behavioral and neural modifications that occur with age for both processes. During explicit and implicit processing of fearful faces, we expected to observe less amygdala activity in older adults (OA) than in younger adults (YA), associated with poorer recognition performance in the explicit task, and more frontal activity during implicit processing, suggesting compensation. At a behavioral level, explicit recognition of fearful faces was impaired in OA compared with YA. We did not observe any cerebral differences between OA and YA during the implicit task, whereas in the explicit task, OA recruited more frontal, parietal, temporal, occipital, and cingulate areas. Our findings suggest that automatic processing of emotion may be preserved during aging, whereas deliberate processing is impaired. Additional neural recruitment in OA did not appear to compensate for their behavioral deficits. Copyright © 2016 Elsevier B.V. All rights reserved.
König, Laura M.; Giese, Helge; Schupp, Harald T.; Renner, Britta
2016-01-01
Studies show that implicit and explicit attitudes influence food choice. However, precursors of food choice often are investigated using tasks offering a very limited number of options despite the comparably complex environment surrounding real life food choice. In the present study, we investigated how the assortment impacts the relationship between implicit and explicit attitudes and food choice (confectionery and fruit), assuming that a more complex choice architecture is more taxing on cognitive resources. Specifically, a binary and a multiple option choice task based on the same stimulus set (fake food items) were presented to ninety-seven participants. Path modeling revealed that both explicit and implicit attitudes were associated with relative food choice (confectionery vs. fruit) in both tasks. In the binary option choice task, both explicit and implicit attitudes were significant precursors of food choice, with explicit attitudes having a greater impact. Conversely, in the multiple option choice task, the additive impact of explicit and implicit attitudes was qualified by an interaction indicating that, even if explicit and implicit attitudes toward confectionery were inconsistent, more confectionery was chosen than fruit if either was positive. This compensatory ‘one is sufficient’-effect indicates that the structure of the choice environment modulates the relationship between attitudes and choice. The study highlights that environmental constraints, such as the number of choice options, are an important boundary condition that need to be included when investigating the relationship between psychological precursors and behavior. PMID:27621719
König, Laura M; Giese, Helge; Schupp, Harald T; Renner, Britta
2016-01-01
Studies show that implicit and explicit attitudes influence food choice. However, precursors of food choice often are investigated using tasks offering a very limited number of options despite the comparably complex environment surrounding real life food choice. In the present study, we investigated how the assortment impacts the relationship between implicit and explicit attitudes and food choice (confectionery and fruit), assuming that a more complex choice architecture is more taxing on cognitive resources. Specifically, a binary and a multiple option choice task based on the same stimulus set (fake food items) were presented to ninety-seven participants. Path modeling revealed that both explicit and implicit attitudes were associated with relative food choice (confectionery vs. fruit) in both tasks. In the binary option choice task, both explicit and implicit attitudes were significant precursors of food choice, with explicit attitudes having a greater impact. Conversely, in the multiple option choice task, the additive impact of explicit and implicit attitudes was qualified by an interaction indicating that, even if explicit and implicit attitudes toward confectionery were inconsistent, more confectionery was chosen than fruit if either was positive. This compensatory 'one is sufficient'-effect indicates that the structure of the choice environment modulates the relationship between attitudes and choice. The study highlights that environmental constraints, such as the number of choice options, are an important boundary condition that need to be included when investigating the relationship between psychological precursors and behavior.
ERIC Educational Resources Information Center
Dupeyrat, Caroline; Marine, Claudette
2005-01-01
This study tested and extended Dweck's social-cognitive theory of motivation with adults who deliberately chose to face the challenge of returning to school. We examined the relationships among beliefs (implicit theories) on the nature of intelligence, goal orientation, cognitive engagement in learning, and achievement using path analyses.…
Wei, Kun; Zhong, Suchuan
2017-08-01
Phenomenologically inspired by dolphins' unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker's risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.
Qin, Zhao; Buehler, Markus J
2011-01-01
Intermediate filaments, in addition to microtubules and microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells, and play an important role in mechanotransduction as well as in providing mechanical stability to cells at large stretch. The molecular structures, mechanical and dynamical properties of the intermediate filament basic building blocks, the dimer and the tetramer, however, have remained elusive due to persistent experimental challenges owing to the large size and fibrillar geometry of this protein. We have recently reported an atomistic-level model of the human vimentin dimer and tetramer, obtained through a bottom-up approach based on structural optimization via molecular simulation based on an implicit solvent model (Qin et al. in PLoS ONE 2009 4(10):e7294, 9). Here we present extensive simulations and structural analyses of the model based on ultra large-scale atomistic-level simulations in an explicit solvent model, with system sizes exceeding 500,000 atoms and simulations carried out at 20 ns time-scales. We report a detailed comparison of the structural and dynamical behavior of this large biomolecular model with implicit and explicit solvent models. Our simulations confirm the stability of the molecular model and provide insight into the dynamical properties of the dimer and tetramer. Specifically, our simulations reveal a heterogeneous distribution of the bending stiffness along the molecular axis with the formation of rather soft and highly flexible hinge-like regions defined by non-alpha-helical linker domains. We report a comparison of Ramachandran maps and the solvent accessible surface area between implicit and explicit solvent models, and compute the persistence length of the dimer and tetramer structure of vimentin intermediate filaments for various subdomains of the protein. Our simulations provide detailed insight into the dynamical properties of the vimentin dimer and tetramer intermediate filament building blocks, which may guide the development of novel coarse-grained models of intermediate filaments, and could also help in understanding assembly mechanisms.
A scalable, fully implicit algorithm for the reduced two-field low-β extended MHD model
Chacon, Luis; Stanier, Adam John
2016-12-01
Here, we demonstrate a scalable fully implicit algorithm for the two-field low-β extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton–Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm ismore » shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 × 4096 mesh, we demonstrate a wall-clock-time speedup of ~6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement.« less
Martijn, Carolien; Sheeran, Paschal; Wesseldijk, Laura W; Merrick, Hannah; Webb, Thomas L; Roefs, Anne; Jansen, Anita
2013-04-01
The present research tested whether an evaluative conditioning intervention makes thin-ideal models less enviable as standards for appearance-based social comparisons (Study 1), and increases body satisfaction (Study 2). Female participants were randomly assigned to intervention versus control conditions in both studies (ns = 66 and 39). Intervention participants learned to associate thin-ideal models with synonyms of fake whereas control participants completed an equivalent task that did not involve learning this association. The dependent variable in Study 1 was an implicit measure of idealization of slim models assessed via a modified Implicit Association Test (IAT). Study 2 used a validated, self-report measure of body satisfaction as the outcome variable. Intervention participants showed significantly less implicit idealization of slim models on the IAT compared to controls (Study 1). In Study 2, participants who undertook the intervention exhibited an increase in body satisfaction scores whereas no such increase was observed for control participants. The present research indicates that it is possible to overcome the characteristic impact of thin-ideal models on women's judgments of their bodies. An evaluative conditioning intervention made it less likely that slim models were perceived as targets to be emulated, and enhanced body satisfaction. 2013 APA, all rights reserved
Strong claims and weak evidence: reassessing the predictive validity of the IAT.
Blanton, Hart; Jaccard, James; Klick, Jonathan; Mellers, Barbara; Mitchell, Gregory; Tetlock, Philip E
2009-05-01
The authors reanalyzed data from 2 influential studies-A. R. McConnell and J. M. Leibold and J. C. Ziegert and P. J. Hanges-that explore links between implicit bias and discriminatory behavior and that have been invoked to support strong claims about the predictive validity of the Implicit Association Test. In both of these studies, the inclusion of race Implicit Association Test scores in regression models reduced prediction errors by only tiny amounts, and Implicit Association Test scores did not permit prediction of individual-level behaviors. Furthermore, the results were not robust when the impact of rater reliability, statistical specifications, and/or outliers were taken into account, and reanalysis of A. R. McConnell & J. M. Leibold (2001) revealed a pattern of behavior consistent with a pro-Black behavioral bias, rather than the anti-Black bias suggested in the original study. (c) 2009 APA, all rights reserved.
Development of the Semi-implicit Time Integration in KIM-SH
NASA Astrophysics Data System (ADS)
NAM, H.
2015-12-01
The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. The KIM-SH is a KIAPS integrated model-spectral element based in the HOMME. In KIM-SH, the explicit schemes are employed. We introduce the three- and two-time-level semi-implicit scheme in KIM-SH as the time integration. Explicit schemes however have a tendancy to be unstable and require very small timesteps while semi-implicit schemes are very stable and can have much larger timesteps.We define the linear and reference values, then by definition of semi-implicit scheme, we apply the linear solver as GMRES. The numerical results from experiments will be introduced with the current development status of the time integration in KIM-SH. Several numerical examples are shown to confirm the efficiency and reliability of the proposed schemes.
Semi-implicit time integration of atmospheric flows with characteristic-based flux partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Constantinescu, Emil M.
2016-06-23
Here, this paper presents a characteristic-based flux partitioning for the semi-implicit time integration of atmospheric flows. Nonhydrostatic models require the solution of the compressible Euler equations. The acoustic time scale is significantly faster than the advective scale, yet it is typically not relevant to atmospheric and weather phenomena. The acoustic and advective components of the hyperbolic flux are separated in the characteristic space. High-order, conservative additive Runge-Kutta methods are applied to the partitioned equations so that the acoustic component is integrated in time implicitly with an unconditionally stable method, while the advective component is integrated explicitly. The time step ofmore » the overall algorithm is thus determined by the advective scale. Benchmark flow problems are used to demonstrate the accuracy, stability, and convergence of the proposed algorithm. The computational cost of the partitioned semi-implicit approach is compared with that of explicit time integration.« less
Kemény, Ferenc; Meier, Beat
2016-02-01
While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence. Copyright © 2015 Elsevier B.V. All rights reserved.
Implicit Self-Importance in an Interpersonal Pronoun Categorization Task
Fetterman, Adam K.; Robinson, Michael D.; Gilbertson, Elizabeth P.
2014-01-01
Object relations theories emphasize the manner in which the salience/importance of implicit representations of self and other guide interpersonal functioning. Two studies and a pilot test (total N = 304) sought to model such representations. In dyadic contexts, the self is a “you” and the other is a “me”, as verified in a pilot test. Study 1 then used a simple categorization task and found evidence for implicit self-importance: The pronoun “you” was categorized more quickly and accurately when presented in a larger font size, whereas the pronoun “me” was categorized more quickly and accurately when presented in a smaller font size. Study 2 showed that this pattern possesses value in understanding individual differences in interpersonal functioning. As predicted, arrogant people scored higher in implicit self-importance in the paradigm. Findings are discussed from the perspective of dyadic interpersonal dynamics. PMID:25419089
Uncertainty in sample estimates and the implicit loss function for soil information.
NASA Astrophysics Data System (ADS)
Lark, Murray
2015-04-01
One significant challenge in the communication of uncertain information is how to enable the sponsors of sampling exercises to make a rational choice of sample size. One way to do this is to compute the value of additional information given the loss function for errors. The loss function expresses the costs that result from decisions made using erroneous information. In certain circumstances, such as remediation of contaminated land prior to development, loss functions can be computed and used to guide rational decision making on the amount of resource to spend on sampling to collect soil information. In many circumstances the loss function cannot be obtained prior to decision making. This may be the case when multiple decisions may be based on the soil information and the costs of errors are hard to predict. The implicit loss function is proposed as a tool to aid decision making in these circumstances. Conditional on a logistical model which expresses costs of soil sampling as a function of effort, and statistical information from which the error of estimates can be modelled as a function of effort, the implicit loss function is the loss function which makes a particular decision on effort rational. In this presentation the loss function is defined and computed for a number of arbitrary decisions on sampling effort for a hypothetical soil monitoring problem. This is based on a logistical model of sampling cost parameterized from a recent geochemical survey of soil in Donegal, Ireland and on statistical parameters estimated with the aid of a process model for change in soil organic carbon. It is shown how the implicit loss function might provide a basis for reflection on a particular choice of sample size by comparing it with the values attributed to soil properties and functions. Scope for further research to develop and apply the implicit loss function to help decision making by policy makers and regulators is then discussed.
Sierra/Solid Mechanics 4.48 User's Guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merewether, Mark Thomas; Crane, Nathan K; de Frias, Gabriel Jose
Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutionsmore » of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.« less
Group-based differences in anti-aging bias among medical students.
Ruiz, Jorge G; Andrade, Allen D; Anam, Ramanakumar; Taldone, Sabrina; Karanam, Chandana; Hogue, Christie; Mintzer, Michael J
2015-01-01
Medical students (MS) may develop ageist attitudes early in their training that may predict their future avoidance of caring for the elderly. This study sought to determine MS' patterns of explicit and implicit anti-aging bias, intent to practice with older people and using the quad model, the role of gender, race, and motivation-based differences. One hundred and three MS completed an online survey that included explicit and implicit measures. Explicit measures revealed a moderately positive perception of older people. Female medical students and those high in internal motivation showed lower anti-aging bias, and both were more likely to intend to practice with older people. Although the implicit measure revealed more negativity toward the elderly than the explicit measures, there were no group differences. However, using the quad model the authors identified gender, race, and motivation-based differences in controlled and automatic processes involved in anti-aging bias.
NASA Technical Reports Server (NTRS)
Perri, Todd A.; Mckillip, R. M., Jr.; Curtiss, H. C., Jr.
1987-01-01
The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design.
NASA Technical Reports Server (NTRS)
Hampton, Roy David; Whorton, Mark S.
1999-01-01
Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station (ISS) have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, since there is a kinematic relationship among the various states, any frequency weighting applied to one state will implicitly weight other states. These implicit frequency-weighting effects must be considered, for intelligent frequency-weighting filter assignment. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.
The Impact of Cognitive Stressors in the Emergency Department on Physician Implicit Racial Bias.
Johnson, Tiffani J; Hickey, Robert W; Switzer, Galen E; Miller, Elizabeth; Winger, Daniel G; Nguyen, Margaret; Saladino, Richard A; Hausmann, Leslie R M
2016-03-01
The emergency department (ED) is characterized by stressors (e.g., fatigue, stress, time pressure, and complex decision-making) that can pose challenges to delivering high-quality, equitable care. Although it has been suggested that characteristics of the ED may exacerbate reliance on cognitive heuristics, no research has directly investigated whether stressors in the ED impact physician racial bias, a common heuristic. We seek to determine if physicians have different levels of implicit racial bias post-ED shift versus preshift and to examine associations between demographics and cognitive stressors with bias. This repeated-measures study of resident physicians in a pediatric ED used electronic pre- and postshift assessments of implicit racial bias, demographics, and cognitive stressors. Implicit bias was measured using the Race Implicit Association Test (IAT). Linear regression models compared differences in IAT scores pre- to postshift and determined associations between participant demographics and cognitive stressors with postshift IAT and pre- to postshift difference scores. Participants (n = 91) displayed moderate prowhite/antiblack bias on preshift (mean ± SD = 0.50 ± 0.34, d = 1.48) and postshift (mean ± SD = 0.55 ± 0.39, d = 1.40) IAT scores. Overall, IAT scores did not differ preshift to postshift (mean increase = 0.05, 95% CI = -0.02 to 0.14, d = 0.13). Subanalyses revealed increased pre- to postshift bias among participants working when the ED was more overcrowded (mean increase = 0.09, 95% CI = 0.01 to 0.17, d = 0.24) and among those caring for >10 patients (mean increase = 0.17, 95% CI = 0.05 to 0.27, d = 0.47). Residents' demographics (including specialty), fatigue, busyness, stressfulness, and number of shifts were not associated with postshift IAT or difference scores. In multivariable models, ED overcrowding was associated with greater postshift bias (coefficient = 0.11 per 1 unit of NEDOCS score, SE = 0.05, 95% CI = 0.00 to 0.21). While resident implicit bias remained stable overall preshift to postshift, cognitive stressors (overcrowding and patient load) were associated with increased implicit bias. Physicians in the ED should be aware of how cognitive stressors may exacerbate implicit racial bias. © 2016 by the Society for Academic Emergency Medicine.
The Impact of Cognitive Stressors in the Emergency Department on Physician Implicit Racial Bias
Johnson, Tiffani J.; Hickey, Robert W.; Switzer, Galen E.; Miller, Elizabeth; Winger, Daniel G.; Nguyen, Margaret; Saladino, Richard A.; Hausmann, Leslie R. M.
2016-01-01
Objectives The emergency department (ED) is characterized by stressors (e.g. fatigue, stress, time-pressure, and complex decision-making) that can pose challenges to delivering high quality, equitable care. Although it has been suggested that characteristics of the ED may exacerbate reliance on cognitive heuristics, no research has directly investigated whether stressors in the ED impact physician racial bias, a common heuristic. We seek to determine if physicians have different levels of implicit racial bias post-ED shift versus pre-shift, and to examine associations between demographics and cognitive stressors with bias. Methods This repeated measures study of resident physicians in a pediatric ED used electronic pre- and post-shift assessments of implicit racial bias, demographics, and cognitive stressors. Implicit bias was measured using the Race Implicit Association Test (IAT). Linear regression models compared differences in IAT scores pre- to post-shift, and determined associations between participant demographics and cognitive stressors with post-shift IAT and pre- to post-shift difference scores. Results Participants (n=91) displayed moderate pro-white/anti-black bias on pre-shift (M=0.50, SD=0.34, d=1.48) and post-shift (M=0.55, SD=0.39, d=1.40) IAT scores. Overall, IAT scores did not differ pre-shift to post-shift (mean increase=0.05, 95% CI −0.02,0.14, d=0.13). Sub-analyses revealed increased pre- to post-shift bias among participants working when the ED was more overcrowded (mean increase=0.09, 95% CI 0.01,0.17, d=0.24) and among those caring for >10 patients (mean increase=0.17, 95% CI 0.05,0.27, d=0.47). Residents’ demographics (including specialty), fatigue, busyness, stressfulness, and number of shifts were not associated with post-shift IAT or difference scores. In multivariable models, ED overcrowding was associated with greater post-shift bias (coefficient=0.11 per 1 unit of NEDOCS score, SE=0.05, 95% CI 0.00,0.21). Conclusions While resident implicit bias remained stable overall pre-shift to post-shift, cognitive stressors (overcrowding and patient load) were associated with increased implicit bias. Physicians in the ED should be aware of how cognitive stressors may exacerbate implicit racial bias. PMID:26763939
Modeling electrokinetic flows by consistent implicit incompressible smoothed particle hydrodynamics
Pan, Wenxiao; Kim, Kyungjoo; Perego, Mauro; ...
2017-01-03
In this paper, we present a consistent implicit incompressible smoothed particle hydrodynamics (I 2SPH) discretization of Navier–Stokes, Poisson–Boltzmann, and advection–diffusion equations subject to Dirichlet or Robin boundary conditions. It is applied to model various two and three dimensional electrokinetic flows in simple or complex geometries. The accuracy and convergence of the consistent I 2SPH are examined via comparison with analytical solutions, grid-based numerical solutions, or empirical models. Lastly, the new method provides a framework to explore broader applications of SPH in microfluidics and complex fluids with charged objects, such as colloids and biomolecules, in arbitrary complex geometries.
2014-01-01
Background The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease. Results We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism. Conclusion This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use. PMID:25170421
ERIC Educational Resources Information Center
Kumar, Revathy; Karabenick, Stuart A.; Burgoon, Jacob N.
2015-01-01
The theory of planned behavior and the dual process attitude-to-behavior MODE model framed an examination of how White teachers' (N = 241) implicit and explicit attitudes toward White versus non-White students were related to their classroom instructional practices in 2 school districts with a high percentage of Arab American and Chaldean American…
Exponential integration algorithms applied to viscoplasticity
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Walker, Kevin P.
1991-01-01
Four, linear, exponential, integration algorithms (two implicit, one explicit, and one predictor/corrector) are applied to a viscoplastic model to assess their capabilities. Viscoplasticity comprises a system of coupled, nonlinear, stiff, first order, ordinary differential equations which are a challenge to integrate by any means. Two of the algorithms (the predictor/corrector and one of the implicits) give outstanding results, even for very large time steps.
Adapting cultural mixture modeling for continuous measures of knowledge and memory fluency.
Tan, Yin-Yin Sarah; Mueller, Shane T
2016-09-01
Previous research (e.g., cultural consensus theory (Romney, Weller, & Batchelder, American Anthropologist, 88, 313-338, 1986); cultural mixture modeling (Mueller & Veinott, 2008)) has used overt response patterns (i.e., responses to questionnaires and surveys) to identify whether a group shares a single coherent attitude or belief set. Yet many domains in social science have focused on implicit attitudes that are not apparent in overt responses but still may be detected via response time patterns. We propose a method for modeling response times as a mixture of Gaussians, adapting the strong-consensus model of cultural mixture modeling to model this implicit measure of knowledge strength. We report the results of two behavioral experiments and one simulation experiment that establish the usefulness of the approach, as well as some of the boundary conditions under which distinct groups of shared agreement might be recovered, even when the group identity is not known. The results reveal that the ability to recover and identify shared-belief groups depends on (1) the level of noise in the measurement, (2) the differential signals for strong versus weak attitudes, and (3) the similarity between group attitudes. Consequently, the method shows promise for identifying latent groups among a population whose overt attitudes do not differ, but whose implicit or covert attitudes or knowledge may differ.
NASA Astrophysics Data System (ADS)
Yetna n'jock, M.; Houssem, B.; Labergere, C.; Saanouni, K.; Zhenming, Y.
2018-05-01
The springback is an important phenomenon which accompanies the forming of metallic sheets especially for high strength materials. A quantitative prediction of springback becomes very important for newly developed material with high mechanical characteristics. In this work, a numerical methodology is developed to quantify this undesirable phenomenon. This methodoly is based on the use of both explicit and implicit finite element solvers of Abaqus®. The most important ingredient of this methodology consists on the use of highly predictive mechanical model. A thermodynamically-consistent, non-associative and fully anisotropic elastoplastic constitutive model strongly coupled with isotropic ductile damage and accounting for distortional hardening is then used. An algorithm for local integration of the complete set of the constitutive equations is developed. This algorithm considers the rotated frame formulation (RFF) to ensure the incremental objectivity of the model in the framework of finite strains. This algorithm is implemented in both explicit (Abaqus/Explicit®) and implicit (Abaqus/Standard®) solvers of Abaqus® through the users routine VUMAT and UMAT respectively. The implicit solver of Abaqus® has been used to study spingback as it is generally a quasi-static unloading. In order to compare the methods `efficiency, the explicit method (Dynamic Relaxation Method) proposed by Rayleigh has been also used for springback prediction. The results obtained within U draw/bending benchmark are studied, discussed and compared with experimental results as reference. Finally, the purpose of this work is to evaluate the reliability of different methods predict efficiently springback in sheet metal forming.
Ferdinand, Nicola K; Kray, Jutta
2017-03-01
This study aimed at investigating the ability to learn regularities across the life span and examine whether this learning process can be supported or hampered by verbalizations. For this purpose, children (aged 8-10 years) and younger (aged 19-30 years) and older (aged 70-80 years) adults took part in a sequence learning experiment. We found that verbalizing sequence-congruent information during learning is a powerful tool to generate explicit knowledge and it is especially helpful for younger adults. Although recent research suggests that implicit learning can be influenced by directing the participants' attention to relevant aspects of the task, verbalizations had a much weaker influence on implicit than explicit learning. Our results show that verbalizing during learning slows down reaction times (RTs) but does not influence the amount of implicit learning. Especially older adults were not able to overcome the cost of the dual-task situation. Younger adults, in contrast, show an initial dual-tasking cost that, in the case of a helpful verbalization, is overcome with practice and turns into a RT and learning benefit. However, when the verbalization is omitted this benefit is lost, that is, better implicit learning seems to be confined to situations in which the supporting verbalization is maintained. Additionally, we did not find reliable age differences in implicit learning in the no verbalization groups, which speaks in favor of age-invariant models of implicit learning across the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Implicit theories of writing and their impact on students' response to a SRSD intervention.
Limpo, Teresa; Alves, Rui A
2014-12-01
In the field of intelligence research, it has been shown that some people conceive intelligence as a fixed trait that cannot be changed (entity beliefs), whereas others conceive it as a malleable trait that can be developed (incremental beliefs). What about writing? Do people hold similar implicit theories about the nature of their writing ability? Furthermore, are these beliefs likely to influence students' response to a writing intervention? We aimed to develop a scale to measure students' implicit theories of writing (pilot study) and to test whether these beliefs influence strategy-instruction effectiveness (intervention study). In the pilot and intervention studies participated, respectively, 128 and 192 students (Grades 5-6). Based on existing instruments that measure self-theories of intelligence, we developed the Implicit Theories of Writing (ITW) scale that was tested with the pilot sample. In the intervention study, 109 students received planning instruction based on the self-regulated strategy development model, whereas 83 students received standard writing instruction. Students were evaluated before, in the middle, and after instruction. ITW's validity was supported by piloting results and their successful cross-validation in the intervention study. In this, intervention students wrote longer and better texts than control students. Moreover, latent growth curve modelling showed that the more the intervention students conceived writing as a malleable skill, the more the quality of their texts improved. This research is of educational relevance because it provides a measure to evaluate students' implicit theories of writing and shows their impact on response to intervention. © 2014 The British Psychological Society.
Robust Integration Schemes for Generalized Viscoplasticity with Internal-State Variables
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Li, W.; Wilt, Thomas E.
1997-01-01
The scope of the work in this presentation focuses on the development of algorithms for the integration of rate dependent constitutive equations. In view of their robustness; i.e., their superior stability and convergence properties for isotropic and anisotropic coupled viscoplastic-damage models, implicit integration schemes have been selected. This is the simplest in its class and is one of the most widely used implicit integrators at present.
Disease Modeling via Large-Scale Network Analysis
2015-05-20
SECURITY CLASSIFICATION OF: A central goal of genetics is to learn how the genotype of an organism determines its phenotype. We address the implicit...guarantees for the methods. In the past, we have developed predictive methods general enough to apply to potentially any genetic trait, varying from... genetics is to learn how the genotype of an organism determines its phenotype. We address the implicit problem of predicting the association of genes with
Performance Benchmark for a Prismatic Flow Solver
2007-03-26
Gauss- Seidel (LU-SGS) implicit method is used for time integration to reduce the computational time. A one-equation turbulence model by Goldberg and...numerical flux computations. The Lower-Upper-Symmetric Gauss- Seidel (LU-SGS) implicit method [1] is used for time integration to reduce the...Sharov, D. and Nakahashi, K., “Reordering of Hybrid Unstructured Grids for Lower-Upper Symmetric Gauss- Seidel Computations,” AIAA Journal, Vol. 36
Multigrid treatment of implicit continuum diffusion
NASA Astrophysics Data System (ADS)
Francisquez, Manaure; Zhu, Ben; Rogers, Barrett
2017-10-01
Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).
Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations.
Godschalk, Frithjof; Genheden, Samuel; Söderhjelm, Pär; Ryde, Ulf
2013-05-28
Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) is a popular method to calculate the free energy of the binding of ligands to proteins. It involves molecular dynamics (MD) simulations with an explicit solvent of the protein-ligand complex to give a set of snapshots for which energies are calculated with an implicit solvent. This change in the solvation method (explicit → implicit) would strictly require that the energies are reweighted with the implicit-solvent energies, which is normally not done. In this paper we calculate MM/GBSA energies with two generalised Born models for snapshots generated by the same methods or by explicit-solvent simulations for five synthetic N-acetyllactosamine derivatives binding to galectin-3. We show that the resulting energies are very different both in absolute and relative terms, showing that the change in the solvent model is far from innocent and that standard MM/GBSA is not a consistent method. The ensembles generated with the various solvent models are quite different with root-mean-square deviations of 1.2-1.4 Å. The ensembles can be converted to each other by performing short MD simulations with the new method, but the convergence is slow, showing mean absolute differences in the calculated energies of 6-7 kJ mol(-1) after 2 ps simulations. Minimisations show even slower convergence and there are strong indications that the energies obtained from minimised structures are different from those obtained by MD.
Baker, Nathan A.; McCammon, J. Andrew
2008-01-01
The solvent reaction field potential of an uncharged protein immersed in Simple Point Charge/Extended (SPC/E) explicit solvent was computed over a series of molecular dynamics trajectories, intotal 1560 ns of simulation time. A finite, positive potential of 13 to 24 kbTec−1 (where T = 300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0 Å from the solute surface, on average 0.008 ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit-solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99. PMID:17949217
NASA Astrophysics Data System (ADS)
Cerutti, David S.; Baker, Nathan A.; McCammon, J. Andrew
2007-10-01
The solvent reaction field potential of an uncharged protein immersed in simple point charge/extended explicit solvent was computed over a series of molecular dynamics trajectories, in total 1560ns of simulation time. A finite, positive potential of 13-24 kbTec-1 (where T =300K), dependent on the geometry of the solvent-accessible surface, was observed inside the biomolecule. The primary contribution to this potential arose from a layer of positive charge density 1.0Å from the solute surface, on average 0.008ec/Å3, which we found to be the product of a highly ordered first solvation shell. Significant second solvation shell effects, including additional layers of charge density and a slight decrease in the short-range solvent-solvent interaction strength, were also observed. The impact of these findings on implicit solvent models was assessed by running similar explicit solvent simulations on the fully charged protein system. When the energy due to the solvent reaction field in the uncharged system is accounted for, correlation between per-atom electrostatic energies for the explicit solvent model and a simple implicit (Poisson) calculation is 0.97, and correlation between per-atom energies for the explicit solvent model and a previously published, optimized Poisson model is 0.99.
An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.; Barnes, D. C.
2011-08-01
This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampére (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier "energy-conserving" explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.
Enhanced cardiac perception is associated with increased susceptibility to framing effects.
Sütterlin, Stefan; Schulz, Stefan M; Stumpf, Theresa; Pauli, Paul; Vögele, Claus
2013-07-01
Previous studies suggest in line with dual process models that interoceptive skills affect controlled decisions via automatic or implicit processing. The "framing effect" is considered to capture implicit effects of task-irrelevant emotional stimuli on decision-making. We hypothesized that cardiac awareness, as a measure of interoceptive skills, is positively associated with susceptibility to the framing effect. Forty volunteers performed a risky-choice framing task in which the effect of loss versus gain frames on decisions based on identical information was assessed. The results show a positive association between cardiac awareness and the framing effect, accounting for 24% of the variance in the framing effect. These findings demonstrate that good interoceptive skills are linked to poorer performance in risky choices based on ambivalent information when implicit bias is induced by task-irrelevant emotional information. These findings support a dual process perspective on decision-making and suggest that interoceptive skills mediate effects of implicit bias on decisions. Copyright © 2013 Cognitive Science Society, Inc.
Implicit continuum mechanics approach to heat conduction in granular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massoudi, M.; Mehrabadi, M.
In this paper, we derive a properly frame-invariant implicit constitutive relationship for the heat flux vector for a granular medium (or a density-gradient-type fluid). The heat flux vector is commonly modeled by Fourier’s law of heat conduction, and for complex materials such as nonlinear fluids, porous media, or granular materials, the coefficient of thermal conductivity is generalized by assuming that it would depend on a host of material and kinematic parameters such as temperature, shear rate, porosity, concentration, etc. In this paper, we extend the approach of Massoudi [Massoudi, M. Math. Methods Appl. Sci. 2006, 29, 1585; Massoudi, M. Math.more » Methods Appl. Sci. 2006, 29, 1599], who provided explicit constitutive relations for the heat flux vector for flowing granular materials; in order to do so, we use the implicit scheme suggested by Fox [Fox, N. Int. J. Eng. Sci. 1969, 7, 437], who obtained implicit relations in thermoelasticity.« less
Epitropaki, Olga; Martin, Robin
2005-07-01
The results of the present longitudinal study demonstrate the importance of implicit leadership theories (ILTs) for the quality of leader-member exchanges (LMX) and employees' organizational commitment, job satisfaction, and well-being. Results based on a sample of 439 employees who completed the study questionnaires at 2 time points showed that the closer employees perceived their actual manager's profile to be to the ILTs they endorsed, the better the quality of LMX. Results also indicated that the implicit-explicit leadership traits difference had indirect effects on employee attitudes and well-being. These findings were consistent across employee groups that differed in terms of job demand and the duration of manager-employee relation, but not in terms of motivation. Furthermore, crossed-lagged modeling analyses of the longitudinal data explored the possibility of reciprocal effects between implicit-explicit leadership traits difference and LMX and provided support for the initially hypothesized direction of causal effects. Copyright 2005 APA, all rights reserved.
Daikoku, Tatsuya
2018-01-01
Learning and knowledge of transitional probability in sequences like music, called statistical learning and knowledge, are considered implicit processes that occur without intention to learn and awareness of what one knows. This implicit statistical knowledge can be alternatively expressed via abstract medium such as musical melody, which suggests this knowledge is reflected in melodies written by a composer. This study investigates how statistics in music vary over a composer's lifetime. Transitional probabilities of highest-pitch sequences in Ludwig van Beethoven's Piano Sonata were calculated based on different hierarchical Markov models. Each interval pattern was ordered based on the sonata opus number. The transitional probabilities of sequential patterns that are musical universal in music gradually decreased, suggesting that time-course variations of statistics in music reflect time-course variations of a composer's statistical knowledge. This study sheds new light on novel methodologies that may be able to evaluate the time-course variation of composer's implicit knowledge using musical scores.
Preconditioned implicit solvers for the Navier-Stokes equations on distributed-memory machines
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Liou, Meng-Sing; Dyson, Rodger W.
1994-01-01
The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-decomposition is used to partition the computational domain amongst the available processing nodes of the parallel machine. The SPMD (Single-Program Multiple-Data) programming model is combined with message-passing tools to develop the parallel code on a 32-node Intel Hypercube and a 512-node Intel Delta machine. The implicit parallel solver is validated for internal and external flow problems, and is found to compare identically with flow solutions obtained on a Cray Y-MP/8. A peak computational speed of 2300 MFlops/sec has been achieved on 512 nodes of the Intel Delta machine,k for a problem size of 1024 K equations (256 K grid points).
Chae, David H; Nuru-Jeter, Amani M; Adler, Nancy E
2012-01-01
Empirical findings on racial discrimination and hypertension risk have been inconsistent. Some studies have found no association between self-reported experiences of discrimination and cardiovascular health outcomes, whereas others have found moderated or curvilinear relationships. The current cross-sectional study examined whether the association between racial discrimination and hypertension is moderated by implicit racial bias among African American midlife men. This study examined the data on 91 African American men between 30 and 50 years of age. Primary variables were self-reported experiences of racial discrimination and unconscious racial bias as measured by the Black-White Implicit Association Test. Modified Poisson regression models were specified, examining hypertension, defined as a mean resting systolic level of at least 140 mm Hg or diastolic level of at least 90 mm Hg, or self-reported history of cardiovascular medication use with a physician diagnosis of hypertension. No main effects for discrimination or implicit racial bias were found, but the interaction of the two variables was significantly related to hypertension (χ(2)(1) = 4.89, p < .05). Among participants with an implicit antiblack bias, more frequent reports of discrimination were associated with a higher probability of hypertension, whereas among those with an implicit problack bias, it was associated with lower risk. The combination of experiencing racial discrimination and holding an antiblack bias may have particularly detrimental consequences on hypertension among African American midlife men, whereas holding an implicit problack bias may buffer the effects of racial discrimination. Efforts to address both internalized racial bias and racial discrimination may lower cardiovascular risk in this population.
Fisher, David M; Bell, Suzanne T; Dierdorff, Erich C; Belohlav, James A
2012-07-01
Team mental models (TMMs) have received much attention as important drivers of effective team processes and performance. Less is known about the factors that give rise to these shared cognitive structures. We examined potential antecedents of TMMs, with a specific focus on team composition variables, including various facets of personality and surface-level diversity. Further, we examined implicit coordination as an important outcome of TMMs. Results suggest that team composition in terms of the cooperation facet of agreeableness and racial diversity were significantly related to team-focused TMM similarity. TMM similarity was also positively predictive of implicit coordination, which mediated the relationship between TMM similarity and team performance. Post hoc analyses revealed a significant interaction between the trust facet of agreeableness and racial diversity in predicting TMM similarity. Results are discussed in terms of facilitating the emergence of TMMs and corresponding implications for team-related human resource practices. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Ahern, Amy L; Bennett, Kate M; Hetherington, Marion M
2008-01-01
This study examined whether young women who make implicit associations between underweight models and positive attributes report elevated eating disorder symptoms. Ninety nine female undergraduates completed a weight based implicit association test (IAT) and self report measures of body dissatisfaction, thin-ideal internalization and eating disorder symptoms. IAT scores were associated with drive for thinness (r = -0.26, p < 0.05). This relationship was moderated by attitude importance. The relationship between drive for thinness and IAT scores was stronger (r = 0.34; p < 0.02) in participants who report that the media is an important source of information about fashion and being attractive. The IAT used in the current study is sensitive enough to discriminate between participants on drive for thinness. Women who have developed cognitive schemas that associate being underweight with positive attributes report higher eating disorder symptoms. Attitude importance is highlighted as a key construct in thin ideal internalization.
Towards full-Braginskii implicit extended MHD
NASA Astrophysics Data System (ADS)
Chacon, Luis
2009-05-01
Recently, viable algorithms have been proposed for the scalable, fully-implicit temporal integration of 3D resistive MHD and cold-ion extended MHD models. While significant, these achievements must be tempered by the fact that such models lack predictive capabilities in regimes of interest for magnetic fusion. Short of including kinetic closures, a natural evolution path towards predictability starts by considering additional terms as described in Braginskii's fluid closures in the collisional regime. Here, we focus on the inclusion of two fundamental elements of relevance for fusion plasmas: anisotropic parallel electron transport, and warm-ion physics (i.e., ion finite Larmor radius effects, included via gyroviscosity). Both these elements introduce significant numerical difficulties, due to the strong anisotropy in the former, and the presence of dispersive waves in the latter. In this presentation, we will discuss progress in our fully implicit algorithmic formulation towards the inclusion of both these elements. L. Chac'on, Phys. Plasmas, 15, 056103 (2008) L. Chac'on, J. Physics: Conf. Series, 125, 012041 (2008)
Zúñiga, Franziska; Ausserhofer, Dietmar; Hamers, Jan P H; Engberg, Sandra; Simon, Michael; Schwendimann, René
2015-09-01
Implicit rationing of nursing care refers to the withdrawal of or failure to carry out necessary nursing care activities due to lack of resources, in the literature also described as missed care, omitted care, or nursing care left undone. Under time constraints, nurses give priority to activities related to vital medical needs and the safety of the patient, leaving out documentation, rehabilitation, or emotional support of patients. In nursing homes, little is known about the occurrence of implicit rationing of nursing care and possible contributing factors. The purpose of this study was (1) to describe levels and patterns of self-reported implicit rationing of nursing care in Swiss nursing homes and (2) to explore the relationship between staffing level, turnover, and work environment factors and implicit rationing of nursing care. Cross-sectional, multi-center sub-study of the Swiss Nursing Home Human Resources Project (SHURP). Nursing homes from all three language regions of Switzerland. A random selection of 156 facilities with 402 units and 4307 direct care workers from all educational levels (including 25% registered nurses). We utilized data from established scales to measure implicit rationing of nursing care (Basel Extent of Rationing of Nursing Care), perceptions of leadership ability and staffing resources (Practice Environment Scale of the Nursing Work Index), teamwork and safety climate (Safety Attitudes Questionnaire), and work stressors (Health Professions Stress Inventory). Staffing level and turnover at the unit level were measured with self-developed questions. Multilevel linear regression models were used to explore the proposed relationships. Implicit rationing of nursing care does not occur frequently in Swiss nursing homes. Care workers ration support in activities of daily living, such as eating, drinking, elimination and mobilization less often than documentation of care and the social care of nursing homes residents. Statistically significant factors related to implicit rationing of care were the perception of lower staffing resources, teamwork and safety climate, and higher work stressors. Unit staffing and turnover levels were not related to rationing activities. Improving teamwork and reducing work stressors could possibly lead to less implicit rationing of nursing care. Further research on the relationship of implicit rationing of nursing care and resident and care worker outcomes in nursing homes is requested. Copyright © 2015 Elsevier Ltd. All rights reserved.
Allen, Joseph P.
2012-01-01
Little is known about how to predict which individuals with known temperament vulnerabilities will go on to develop social anxiety problems. Adolescents (N = 185) were followed from age 13 to 18 to evaluate psychosocial, prospective predictors of social anxiety symptoms and fears of negative evaluation (FNE), after accounting for pre-existing social withdrawal symptoms. Results from structural equation modeling suggest that lack of perceived social acceptance predicts subsequent explicit social anxiety and FNE, whereas the emotional intensity of close peer interactions predicts subsequent implicit FNE. Results are discussed in terms of the importance of peer interaction in the development of social anxiety, and the value of measuring both implicit and explicit FNE. PMID:17171538
Efficient multiscale magnetic-domain analysis of iron-core material under mechanical stress
NASA Astrophysics Data System (ADS)
Nishikubo, Atsushi; Ito, Shumpei; Mifune, Takeshi; Matsuo, Tetsuji; Kaido, Chikara; Takahashi, Yasuhito; Fujiwara, Koji
2018-05-01
For an efficient analysis of magnetization, a partial-implicit solution method is improved using an assembled domain structure model with six-domain mesoscopic particles exhibiting pinning-type hysteresis. The quantitative analysis of non-oriented silicon steel succeeds in predicting the stress dependence of hysteresis loss with computation times greatly reduced by using the improved partial-implicit method. The effect of cell division along the thickness direction is also evaluated.
Toward a Comprehensive Understanding of Executive Cognitive Function in Implicit Racial Bias
Ito, Tiffany A.; Friedman, Naomi P.; Bartholow, Bruce D.; Correll, Joshua; Loersch, Chris; Altamirano, Lee J.; Miyake, Akira
2014-01-01
Although performance on laboratory-based implicit bias tasks often is interpreted strictly in terms of the strength of automatic associations, recent evidence suggests that such tasks are influenced by higher-order cognitive control processes, so-called executive functions (EFs). However, extant work in this area has been limited by failure to account for the unity and diversity of EFs, focus on only a single measure of bias and/or EF, and relatively small sample sizes. The current study sought to comprehensively model the relation between individual differences in EFs and the expression of racial bias in three commonly used laboratory measures. Participants (N=485) completed a battery of EF tasks (session 1) and three racial bias tasks (session 2), along with numerous individual difference questionnaires. The main findings were as follows: (1) measures of implicit bias were only weakly intercorrelated; (2) EF and estimates of automatic processes both predicted implicit bias and also interacted, such that the relation between automatic processes and bias expression was reduced at higher levels of EF; (3) specific facets of EF were differentially associated with overall task performance and controlled processing estimates across different bias tasks; (4) EF did not moderate associations between implicit and explicit measures of bias; and (5) external, but not internal, motivation to control prejudice depended on EF to reduce bias expression. Findings are discussed in terms of the importance of global and specific EF abilities in determining expression of implicit racial bias. PMID:25603372
O'Brien, Susan H; Cook, Aonghais S C P; Robinson, Robert A
2017-10-01
Assessing the potential impact of additional mortality from anthropogenic causes on animal populations requires detailed demographic information. However, these data are frequently lacking, making simple algorithms, which require little data, appealing. Because of their simplicity, these algorithms often rely on implicit assumptions, some of which may be quite restrictive. Potential Biological Removal (PBR) is a simple harvest model that estimates the number of additional mortalities that a population can theoretically sustain without causing population extinction. However, PBR relies on a number of implicit assumptions, particularly around density dependence and population trajectory that limit its applicability in many situations. Among several uses, it has been widely employed in Europe in Environmental Impact Assessments (EIA), to examine the acceptability of potential effects of offshore wind farms on marine bird populations. As a case study, we use PBR to estimate the number of additional mortalities that a population with characteristics typical of a seabird population can theoretically sustain. We incorporated this level of additional mortality within Leslie matrix models to test assumptions within the PBR algorithm about density dependence and current population trajectory. Our analyses suggest that the PBR algorithm identifies levels of mortality which cause population declines for most population trajectories and forms of population regulation. Consequently, we recommend that practitioners do not use PBR in an EIA context for offshore wind energy developments. Rather than using simple algorithms that rely on potentially invalid implicit assumptions, we recommend use of Leslie matrix models for assessing the impact of additional mortality on a population, enabling the user to explicitly define assumptions and test their importance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Implicit prosody mining based on the human eye image capture technology
NASA Astrophysics Data System (ADS)
Gao, Pei-pei; Liu, Feng
2013-08-01
The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of disabled assisted speech interaction. Experiments show that Implicit Prosody mining based on the human eye image capture technology makes the synthesized speech has more flexible expressions.
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.;
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical schemes. Depending on the application, we find that different time stepping methods are optimal. Several of the time integration schemes exploit the block-based granularity of the grid structure. The framework and the adaptive algorithms enable physics based space weather modeling and even forecasting.
Blind test of physics-based prediction of protein structures.
Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A
2009-02-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.
Blind Test of Physics-Based Prediction of Protein Structures
Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.
2009-01-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130
Iterative refinement of implicit boundary models for improved geological feature reproduction
NASA Astrophysics Data System (ADS)
Martin, Ryan; Boisvert, Jeff B.
2017-12-01
Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.
Mannarini, Stefania; Boffo, Marilisa
2014-01-01
The present study aimed at the definition of a latent measurement dimension underlying an implicit measure of automatic associations between the concept of mental illness and the psychosocial and biogenetic causal explanatory attributes. To this end, an Implicit Association Test (IAT) assessing the association between the Mental Illness and Physical Illness target categories to the Psychological and Biologic attribute categories, representative of the causal explanation domains, was developed. The IAT presented 22 stimuli (words and pictures) to be categorized into the four categories. After 360 university students completed the IAT, a Many-Facet Rasch Measurement (MFRM) modelling approach was applied. The model specified a person latency parameter and a stimulus latency parameter. Two additional parameters were introduced to denote the order of presentation of the task associative conditions and the general response accuracy. Beyond the overall definition of the latent measurement dimension, the MFRM was also applied to disentangle the effect of the task block order and the general response accuracy on the stimuli response latency. Further, the MFRM allowed detecting any differential functioning of each stimulus in relation to both block ordering and accuracy. The results evidenced: a) the existence of a latency measurement dimension underlying the Mental Illness versus Physical Illness - Implicit Association Test; b) significant effects of block order and accuracy on the overall latency; c) a differential functioning of specific stimuli. The results of the present study can contribute to a better understanding of the functioning of an implicit measure of semantic associations with mental illness and give a first blueprint for the examination of relevant issues in the development of an IAT. PMID:25000406
Mannarini, Stefania; Boffo, Marilisa
2014-01-01
The present study aimed at the definition of a latent measurement dimension underlying an implicit measure of automatic associations between the concept of mental illness and the psychosocial and biogenetic causal explanatory attributes. To this end, an Implicit Association Test (IAT) assessing the association between the Mental Illness and Physical Illness target categories to the Psychological and Biologic attribute categories, representative of the causal explanation domains, was developed. The IAT presented 22 stimuli (words and pictures) to be categorized into the four categories. After 360 university students completed the IAT, a Many-Facet Rasch Measurement (MFRM) modelling approach was applied. The model specified a person latency parameter and a stimulus latency parameter. Two additional parameters were introduced to denote the order of presentation of the task associative conditions and the general response accuracy. Beyond the overall definition of the latent measurement dimension, the MFRM was also applied to disentangle the effect of the task block order and the general response accuracy on the stimuli response latency. Further, the MFRM allowed detecting any differential functioning of each stimulus in relation to both block ordering and accuracy. The results evidenced: a) the existence of a latency measurement dimension underlying the Mental Illness versus Physical Illness - Implicit Association Test; b) significant effects of block order and accuracy on the overall latency; c) a differential functioning of specific stimuli. The results of the present study can contribute to a better understanding of the functioning of an implicit measure of semantic associations with mental illness and give a first blueprint for the examination of relevant issues in the development of an IAT.
NASA Astrophysics Data System (ADS)
Sinitskiy, Anton V.; Pande, Vijay S.
2018-01-01
Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit time scale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule has never been formally proved. In this work, we present analytical results for the slowest time scale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit time scale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit time scale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit time scale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest time scales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.
2012-01-01
Implicit solvation is a mean force approach to model solvent forces acting on a solute molecule. It is frequently used in molecular simulations to reduce the computational cost of solvent treatment. In the first instance, the free energy of solvation and the associated solvent–solute forces can be approximated by a function of the solvent-accessible surface area (SASA) of the solute and differentiated by an atom–specific solvation parameter σiSASA. A procedure for the determination of values for the σiSASA parameters through matching of explicit and implicit solvation forces is proposed. Using the results of Molecular Dynamics simulations of 188 topologically diverse protein structures in water and in implicit solvent, values for the σiSASA parameters for atom types i of the standard amino acids in the GROMOS force field have been determined. A simplified representation based on groups of atom types σgSASA was obtained via partitioning of the atom–type σiSASA distributions by dynamic programming. Three groups of atom types with well separated parameter ranges were obtained, and their performance in implicit versus explicit simulations was assessed. The solvent forces are available at http://mathbio.nimr.mrc.ac.uk/wiki/Solvent_Forces. PMID:23180979
Ható, Zoltán; Valiskó, Mónika; Kristóf, Tamás; Gillespie, Dirk; Boda, Dezsö
2017-07-21
In a multiscale modeling approach, we present computer simulation results for a rectifying bipolar nanopore at two modeling levels. In an all-atom model, we use explicit water to simulate ion transport directly with the molecular dynamics technique. In a reduced model, we use implicit water and apply the Local Equilibrium Monte Carlo method together with the Nernst-Planck transport equation. This hybrid method makes the fast calculation of ion transport possible at the price of lost details. We show that the implicit-water model is an appropriate representation of the explicit-water model when we look at the system at the device (i.e., input vs. output) level. The two models produce qualitatively similar behavior of the electrical current for different voltages and model parameters. Looking at the details of concentration and potential profiles, we find profound differences between the two models. These differences, however, do not influence the basic behavior of the model as a device because they do not influence the z-dependence of the concentration profiles which are the main determinants of current. These results then address an old paradox: how do reduced models, whose assumptions should break down in a nanoscale device, predict experimental data? Our simulations show that reduced models can still capture the overall device physics correctly, even though they get some important aspects of the molecular-scale physics quite wrong; reduced models work because they include the physics that is necessary from the point of view of device function. Therefore, reduced models can suffice for general device understanding and device design, but more detailed models might be needed for molecular level understanding.
RETRANO3 benchmarks for Beaver Valley plant transients and FSAR analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaumont, E.T.; Feltus, M.A.
1993-01-01
Any best-estimate code (e.g., RETRANO3) results must be validated against plant data and final safety analysis report (FSAR) predictions. The need for two independent means of benchmarking is necessary to ensure that the results were not biased toward a particular data set and to have a certain degree of accuracy. The code results need to be compared with previous results and show improvements over previous code results. Ideally, the two best means of benchmarking a thermal hydraulics code are comparing results from previous versions of the same code along with actual plant data. This paper describes RETRAN03 benchmarks against RETRAN02more » results, actual plant data, and FSAR predictions. RETRAN03, the Electric Power Research Institute's latest version of the RETRAN thermal-hydraulic analysis codes, offers several upgrades over its predecessor, RETRAN02 Mod5. RETRAN03 can use either implicit or semi-implicit numerics, whereas RETRAN02 Mod5 uses only semi-implicit numerics. Another major upgrade deals with slip model options. RETRAN03 added several new models, including a five-equation model for more accurate modeling of two-phase flow. RETPAN02 Mod5 should give similar but slightly more conservative results than RETRAN03 when executed with RETRAN02 Mod5 options.« less
Implicit Priors in Galaxy Cluster Mass and Scaling Relation Determinations
NASA Technical Reports Server (NTRS)
Mantz, A.; Allen, S. W.
2011-01-01
Deriving the total masses of galaxy clusters from observations of the intracluster medium (ICM) generally requires some prior information, in addition to the assumptions of hydrostatic equilibrium and spherical symmetry. Often, this information takes the form of particular parametrized functions used to describe the cluster gas density and temperature profiles. In this paper, we investigate the implicit priors on hydrostatic masses that result from this fully parametric approach, and the implications of such priors for scaling relations formed from those masses. We show that the application of such fully parametric models of the ICM naturally imposes a prior on the slopes of the derived scaling relations, favoring the self-similar model, and argue that this prior may be influential in practice. In contrast, this bias does not exist for techniques which adopt an explicit prior on the form of the mass profile but describe the ICM non-parametrically. Constraints on the slope of the cluster mass-temperature relation in the literature show a separation based the approach employed, with the results from fully parametric ICM modeling clustering nearer the self-similar value. Given that a primary goal of scaling relation analyses is to test the self-similar model, the application of methods subject to strong, implicit priors should be avoided. Alternative methods and best practices are discussed.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
NASA Astrophysics Data System (ADS)
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
NASA Astrophysics Data System (ADS)
König, Gerhard; Pickard, Frank C.; Mei, Ye; Brooks, Bernard R.
2014-03-01
The correct representation of solute-water interactions is essential for the accurate simulation of most biological phenomena. Several highly accurate quantum methods are available to deal with solvation by using both implicit and explicit solvents. So far, however, most evaluations of those methods were based on a single conformation, which neglects solute entropy. Here, we present the first test of a novel approach to determine hydration free energies that uses molecular mechanics (MM) to sample phase space and quantum mechanics (QM) to evaluate the potential energies. Free energies are determined by using re-weighting with the Non-Boltzmann Bennett (NBB) method. In this context, the method is referred to as QM-NBB. Based on snapshots from MM sampling and accounting for their correct Boltzmann weight, it is possible to obtain hydration free energies that incorporate the effect of solute entropy. We evaluate the performance of several QM implicit solvent models, as well as explicit solvent QM/MM for the blind subset of the SAMPL4 hydration free energy challenge. While classical free energy simulations with molecular dynamics give root mean square deviations (RMSD) of 2.8 and 2.3 kcal/mol, the hybrid approach yields an improved RMSD of 1.6 kcal/mol. By selecting an appropriate functional and basis set, the RMSD can be reduced to 1 kcal/mol for calculations based on a single conformation. Results for a selected set of challenging molecules imply that this RMSD can be further reduced by using NBB to reweight MM trajectories with the SMD implicit solvent model.
Chen, G.; Chacón, L.
2015-08-11
For decades, the Vlasov–Darwin model has been recognized to be attractive for particle-in-cell (PIC) kinetic plasma simulations in non-radiative electromagnetic regimes, to avoid radiative noise issues and gain computational efficiency. However, the Darwin model results in an elliptic set of field equations that renders conventional explicit time integration unconditionally unstable. We explore a fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions, which overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. The finite-difference scheme for Darwin field equations and particle equations of motion is space–time-centered, employing particle sub-cycling and orbit-averaging. This algorithm conserves total energy, local charge,more » canonical-momentum in the ignorable direction, and preserves the Coulomb gauge exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. Finally, we demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 2D–3V.« less
Parameter recovery, bias and standard errors in the linear ballistic accumulator model.
Visser, Ingmar; Poessé, Rens
2017-05-01
The linear ballistic accumulator (LBA) model (Brown & Heathcote, , Cogn. Psychol., 57, 153) is increasingly popular in modelling response times from experimental data. An R package, glba, has been developed to fit the LBA model using maximum likelihood estimation which is validated by means of a parameter recovery study. At sufficient sample sizes parameter recovery is good, whereas at smaller sample sizes there can be large bias in parameters. In a second simulation study, two methods for computing parameter standard errors are compared. The Hessian-based method is found to be adequate and is (much) faster than the alternative bootstrap method. The use of parameter standard errors in model selection and inference is illustrated in an example using data from an implicit learning experiment (Visser et al., , Mem. Cogn., 35, 1502). It is shown that typical implicit learning effects are captured by different parameters of the LBA model. © 2017 The British Psychological Society.
Jobson, Harvey E.; Keefer, Thomas N.
1979-01-01
A coupled flow-temperature model has been developed and verified for a 27.9-km reach of the Chattahoochee River between Buford Dam and Norcross, Ga. Flow in this reach of the Chattahoochee is continuous but highly regulated by Buford Dam, a flood-control and hydroelectric facility located near Buford, Ga. Calibration and verification utilized two sets of data collected under highly unsteady discharge conditions. Existing solution techniques, with certain minor improvements, were applied to verify the existing technology of flow and transport modeling. A linear, implicit finite-difference flow model was coupled with implicit, finite-difference transport and temperature models. Both the conservative and nonconservative forms of the transport equation were solved, and the difference in the predicted concentrations of dye were found to be insignificant. The temperature model, therefore, was based on the simpler nonconservative form of the transport equation. (Woodard-USGS)
A solution to the surface intersection problem. [Boolean functions in geometric modeling
NASA Technical Reports Server (NTRS)
Timer, H. G.
1977-01-01
An application-independent geometric model within a data base framework should support the use of Boolean operators which allow the user to construct a complex model by appropriately combining a series of simple models. The use of these operators leads to the concept of implicitly and explicitly defined surfaces. With an explicitly defined model, the surface area may be computed by simply summing the surface areas of the bounding surfaces. For an implicitly defined model, the surface area computation must deal with active and inactive regions. Because the surface intersection problem involves four unknowns and its solution is a space curve, the parametric coordinates of each surface must be determined as a function of the arc length. Various subproblems involved in the general intersection problem are discussed, and the mathematical basis for their solution is presented along with a program written in FORTRAN IV for implementation on the IBM 370 TSO system.
2014-06-19
decision theory (Berger, 1985), and quantum probability theory (Busemeyer, Pothos, Franco, & Trueblood, 2011). Similarly, explanations in the 1 rch in...trengths of associations) are consciously inaccessible and con- titute the implicit knowledge of the model (Gonzalez & Lebiere, 005; Lebiere, Wallach...in memory (Lebiere et al., 2013). It is important to note hat this wholly implicit process is not consciously available to the odel. The second level
A Numerical Model for Predicting Shoreline Changes.
1980-07-01
minimal shorelines for finite - difference scheme of time lAt (B) . . . 27 11 Transport function Q(ao) = cos ao sin za o for selected values of z . 28 12...generate the preceding examples was based on the use of implicit finite differences . Such schemes, whether implicit or ex- plicit (or both), are...10(A) shows an initially straight shoreline. In any finite - difference scheme, after one time increment At, the shoreline is bounded below by the solid
Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,
1984-01-12
Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density
The effect of combined avoidance and control training on implicit food evaluation and choice.
Kakoschke, Naomi; Kemps, Eva; Tiggemann, Marika
2017-06-01
Continual exposure to food cues in the environment contributes to unhealthy eating behaviour. According to dual-process models, such behaviour is partly determined by automatic processing of unhealthy food cues (e.g., approach bias), which fails to be regulated by controlled processing (e.g., inhibitory control). The current study aimed to investigate the effect of combined avoidance and control training on implicit evaluation (liking), choice, and consumption of unhealthy snack food. Participants were 240 undergraduate women who were randomly allocated to one of four experimental conditions of a 2 (avoidance training: training versus control) x 2 (control training: training versus control) between-subjects design. The combined training group had a more negative implicit evaluation of unhealthy food than either of the two training conditions alone or the control condition. In addition, participants trained to avoid unhealthy food cues subsequently made fewer unhealthy snack food choices. No significant group differences were found for food intake. Participants were women generally of a healthy weight. Overweight or obese individuals may derive greater benefit from combined training. Results lend support to the theoretical predictions of dual-process models, as the combined training reduced implicit liking of unhealthy food. At a practical level, the findings have implications for the effectiveness of interventions targeting unhealthy eating behaviour. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Serazio, C.; Chacon, L.; Lapenta, G.
2006-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. Crucial elements are the development of an effective multilevel treatment of the grid equation, and a robust, rigorous error estimator. For the latter, we explore the effectiveness of a coarse grid correction error estimator, which faithfully reproduces spatial truncation errors for conservative equations. We will show that the moving mesh approach is competitive vs. uniform grids both in accuracy (due to adaptivity) and efficiency. Results for a variety of models 1D and 2D geometries will be presented. L. Chac'on, G. Lapenta, J. Comput. Phys., 212 (2), 703 (2006) G. Lapenta, L. Chac'on, J. Comput. Phys., accepted (2006)
A Unified Theoretical Framework for Cognitive Sequencing.
Savalia, Tejas; Shukla, Anuj; Bapi, Raju S
2016-01-01
The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks.
A Unified Theoretical Framework for Cognitive Sequencing
Savalia, Tejas; Shukla, Anuj; Bapi, Raju S.
2016-01-01
The capacity to sequence information is central to human performance. Sequencing ability forms the foundation stone for higher order cognition related to language and goal-directed planning. Information related to the order of items, their timing, chunking and hierarchical organization are important aspects in sequencing. Past research on sequencing has emphasized two distinct and independent dichotomies: implicit vs. explicit and goal-directed vs. habits. We propose a theoretical framework unifying these two streams. Our proposal relies on brain's ability to implicitly extract statistical regularities from the stream of stimuli and with attentional engagement organizing sequences explicitly and hierarchically. Similarly, sequences that need to be assembled purposively to accomplish a goal require engagement of attentional processes. With repetition, these goal-directed plans become habits with concomitant disengagement of attention. Thus, attention and awareness play a crucial role in the implicit-to-explicit transition as well as in how goal-directed plans become automatic habits. Cortico-subcortical loops basal ganglia-frontal cortex and hippocampus-frontal cortex loops mediate the transition process. We show how the computational principles of model-free and model-based learning paradigms, along with a pivotal role for attention and awareness, offer a unifying framework for these two dichotomies. Based on this framework, we make testable predictions related to the potential influence of response-to-stimulus interval (RSI) on developing awareness in implicit learning tasks. PMID:27917146
Implicit solution of three-dimensional internal turbulent flows
NASA Technical Reports Server (NTRS)
Michelassi, V.; Liou, M.-S.; Povinelli, Louis A.; Martelli, F.
1991-01-01
The scalar form of the approximate factorization method was used to develop a new code for the solution of three dimensional internal laminar and turbulent compressible flows. The Navier-Stokes equations in their Reynolds-averaged form were iterated in time until a steady solution was reached. Evidence was given to the implicit and explicit artificial damping schemes that proved to be particularly efficient in speeding up convergence and enhancing the algorithm robustness. A conservative treatment of these terms at the domain boundaries was proposed in order to avoid undesired mass and/or momentum artificial fluxes. Turbulence effects were accounted for by the zero-equation Baldwin-Lomax turbulence model and the q-omega two-equation model. The flow in a developing S-duct was then solved in the laminar regime in a Reynolds number (Re) of 790 and in the turbulent regime at Re equals 40,000 by using the Baldwin-Lomax model. The Stanitz elbow was then solved by using an invicid version of the same code at M sub inlet equals 0.4. Grid dependence and convergence rate were investigated, showing that for this solver the implicit damping scheme may play a critical role for convergence characteristics. The same flow at Re equals 2.5 times 10(exp 6) was solved with the Baldwin-Lomax and the q-omega models. Both approaches show satisfactory agreement with experiments, although the q-omega model was slightly more accurate.
Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks
NASA Astrophysics Data System (ADS)
Hu, Youjun; Chen, Yang; Parker, Scott
2017-10-01
A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.
Toward a comprehensive understanding of executive cognitive function in implicit racial bias.
Ito, Tiffany A; Friedman, Naomi P; Bartholow, Bruce D; Correll, Joshua; Loersch, Chris; Altamirano, Lee J; Miyake, Akira
2015-02-01
Although performance on laboratory-based implicit bias tasks often is interpreted strictly in terms of the strength of automatic associations, recent evidence suggests that such tasks are influenced by higher-order cognitive control processes, so-called executive functions (EFs). However, extant work in this area has been limited by failure to account for the unity and diversity of EFs, focus on only a single measure of bias and/or EF, and relatively small sample sizes. The current study sought to comprehensively model the relation between individual differences in EFs and the expression of racial bias in 3 commonly used laboratory measures. Participants (N = 485) completed a battery of EF tasks (Session 1) and 3 racial bias tasks (Session 2), along with numerous individual difference questionnaires. The main findings were as follows: (a) measures of implicit bias were only weakly intercorrelated; (b) EF and estimates of automatic processes both predicted implicit bias and also interacted, such that the relation between automatic processes and bias expression was reduced at higher levels of EF; (c) specific facets of EF were differentially associated with overall task performance and controlled processing estimates across different bias tasks; (d) EF did not moderate associations between implicit and explicit measures of bias; and (e) external, but not internal, motivation to control prejudice depended on EF to reduce bias expression. Findings are discussed in terms of the importance of global and specific EF abilities in determining expression of implicit racial bias. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Implicit Coupling Approach for Simulation of Charring Carbon Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2013-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption
Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Method (HANIM) (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
Chae, David H; Powell, Wizdom A; Nuru-Jeter, Amani M; Smith-Bynum, Mia A; Seaton, Eleanor K; Forman, Tyrone A; Turpin, Rodman; Sellers, Robert
2017-01-01
Racial discrimination is conceptualized as a psychosocial stressor that has negative implications for mental health. However, factors related to racial identity may influence whether negative experiences are interpreted as instances of racial discrimination and subsequently reported as such in survey instruments, particularly given the ambiguous nature of contemporary racism. Along these lines, dimensions of racial identity may moderate associations between racial discrimination and mental health outcomes. This study examined relationships between racial discrimination, racial identity, implicit racial bias, and depressive symptoms among African American men between 30 and 50 years of age ( n = 95). Higher racial centrality was associated with greater reports of racial discrimination, while greater implicit anti-Black bias was associated with lower reports of racial discrimination. In models predicting elevated depressive symptoms, holding greater implicit anti-Black bias in tandem with reporting lower racial discrimination was associated with the highest risk. Results suggest that unconscious as well as conscious processes related to racial identity are important to consider in measuring racial discrimination, and should be integrated in studies of racial discrimination and mental health.
Fallin-Bennett, Keisa
2015-05-01
Despite many recent advances in rights for sexual and gender minorities in the United States, bias against lesbian, gay, bisexual, and transgender (LGBT) people still exists. In this Commentary, the author briefly reviews disparities with regard to LGBT health, in both health care and medical education, and discusses the implications of Burke and colleagues’ study of implicit and explicit biases against lesbian and gay people among heterosexual first-year medical students, published in this issue of Academic Medicine. Emphasis is placed on the ways in which physicians’ implicit bias against LGBT people can create a cycle that perpetuates a professional climate reinforcing the bias. The hidden curriculum in academic health centers is discussed as both a cause of this cycle and as a starting point for a research and intervention agenda. The findings from Burke and colleagues’ study, as well as other evidence, support raising awareness of LGBT discrimination, increasing exposure to LGBT individuals as colleagues and role models in academic health centers, and modifying medical education curricula as methods to break the cycle of implicit bias in medicine.
IMPLICIT DUAL CONTROL BASED ON PARTICLE FILTERING AND FORWARD DYNAMIC PROGRAMMING.
Bayard, David S; Schumitzky, Alan
2010-03-01
This paper develops a sampling-based approach to implicit dual control. Implicit dual control methods synthesize stochastic control policies by systematically approximating the stochastic dynamic programming equations of Bellman, in contrast to explicit dual control methods that artificially induce probing into the control law by modifying the cost function to include a term that rewards learning. The proposed implicit dual control approach is novel in that it combines a particle filter with a policy-iteration method for forward dynamic programming. The integration of the two methods provides a complete sampling-based approach to the problem. Implementation of the approach is simplified by making use of a specific architecture denoted as an H-block. Practical suggestions are given for reducing computational loads within the H-block for real-time applications. As an example, the method is applied to the control of a stochastic pendulum model having unknown mass, length, initial position and velocity, and unknown sign of its dc gain. Simulation results indicate that active controllers based on the described method can systematically improve closed-loop performance with respect to other more common stochastic control approaches.
A method for exploring implicit concept relatedness in biomedical knowledge network.
Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan
2016-07-19
Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.
Building Mental Models by Dissecting Physical Models
ERIC Educational Resources Information Center
Srivastava, Anveshna
2016-01-01
When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…
Modeling of advanced technology vehicles
DOT National Transportation Integrated Search
2003-09-01
The characterization of some types of "advanced technology vehicles" may help to understand policies that are strongly either explicitly or implicitly technology-dependent. Recent models attempt to characterize such technologies in terms of fuel econ...
NASA Astrophysics Data System (ADS)
Teeples, Ronald; Glyer, David
1987-05-01
Both policy and technical analysis of water delivery systems have been based on cost functions that are inconsistent with or are incomplete representations of the neoclassical production functions of economics. We present a full-featured production function model of water delivery which can be estimated from a multiproduct, dual cost function. The model features implicit prices for own-water inputs and is implemented as a jointly estimated system of input share equations and a translog cost function. Likelihood ratio tests are performed showing that a minimally constrained, full-featured production function is a necessary specification of the water delivery operations in our sample. This, plus the model's highly efficient and economically correct parameter estimates, confirms the usefulness of a production function approach to modeling the economic activities of water delivery systems.
Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara
2014-01-01
We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.
An implicit divalent counterion force field for RNA molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henke, Paul S.; Mak, Chi H., E-mail: cmak@usc.edu; Center of Applied Mathematical Sciences, University of Southern California, Los Angeles, California 90089
How to properly account for polyvalent counterions in a molecular dynamics simulation of polyelectrolytes such as nucleic acids remains an open question. Not only do counterions such as Mg{sup 2+} screen electrostatic interactions, they also produce attractive intrachain interactions that stabilize secondary and tertiary structures. Here, we show how a simple force field derived from a recently reported implicit counterion model can be integrated into a molecular dynamics simulation for RNAs to realistically reproduce key structural details of both single-stranded and base-paired RNA constructs. This divalent counterion model is computationally efficient. It works with existing atomistic force fields, or coarse-grainedmore » models may be tuned to work with it. We provide optimized parameters for a coarse-grained RNA model that takes advantage of this new counterion force field. Using the new model, we illustrate how the structural flexibility of RNA two-way junctions is modified under different salt conditions.« less
NASA Technical Reports Server (NTRS)
Harris, J. E.
1975-01-01
An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Fitts' Law in the Control of Isometric Grip Force With Naturalistic Targets.
Thumser, Zachary C; Slifkin, Andrew B; Beckler, Dylan T; Marasco, Paul D
2018-01-01
Fitts' law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts' law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts' law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts' law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts' law (average r 2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts' law for explicit targets with vision ( r 2 = 0.96) and implicit targets ( r 2 = 0.89), but not as well-described for explicit targets without vision ( r 2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts' law to quantify the relative speed-accuracy relationship of any given grasper.
Measuring the bias against low-income country research: an Implicit Association Test.
Harris, Matthew; Macinko, James; Jimenez, Geronimo; Mullachery, Pricila
2017-11-06
With an increasing array of innovations and research emerging from low-income countries there is a growing recognition that even high-income countries could learn from these contexts. It is well known that the source of a product influences perception of that product, but little research has examined whether this applies also in evidence-based medicine and decision-making. In order to examine likely barriers to learning from low-income countries, this study uses established methods in cognitive psychology to explore whether healthcare professionals and researchers implicitly associate good research with rich countries more so than with poor countries. Computer-based Implicit Association Test (IAT) distributed to healthcare professionals and researchers. Stimuli representing Rich Countries were chosen from OECD members in the top ten (>$36,000 per capita) World Bank rankings and Poor Countries were chosen from the bottom thirty (<$1000 per capita) countries by GDP per capita, in both cases giving attention to regional representation. Stimuli representing Research were descriptors of the motivation (objective/biased), value (useful/worthless), clarity (precise/vague), process (transparent/dishonest), and trustworthiness (credible/unreliable) of research. IAT results are presented as a Cohen's d statistic. Quantile regression was used to assess the contribution of covariates (e.g. age, sex, country of origin) to different values of IAT responses that correspond to different levels of implicit bias. Poisson regression was used to model dichotomized responses to the explicit bias item. Three hundred twenty one tests were completed in a four-week period between March and April 2015. The mean Implicit Association Test result (a standardized mean relative latency between congruent and non-congruent categories) for the sample was 0.57 (95% CI 0.52 to 0.61) indicating that on average our sample exhibited moderately strong implicit associations between Rich Countries and Good Research. People over 40 years of age were less likely to exhibit pro-poor implicit associations, and being a peer reviewer contributes to a more pro-poor association. The majority of our participants associate Good Research with Rich Countries, compared to Poor Countries. Implicit associations such as these might disfavor research from poor countries in research evaluation, evidence-based medicine and diffusion of innovations.
Two-level schemes for the advection equation
NASA Astrophysics Data System (ADS)
Vabishchevich, Petr N.
2018-06-01
The advection equation is the basis for mathematical models of continuum mechanics. In the approximate solution of nonstationary problems it is necessary to inherit main properties of the conservatism and monotonicity of the solution. In this paper, the advection equation is written in the symmetric form, where the advection operator is the half-sum of advection operators in conservative (divergent) and non-conservative (characteristic) forms. The advection operator is skew-symmetric. Standard finite element approximations in space are used. The standard explicit two-level scheme for the advection equation is absolutely unstable. New conditionally stable regularized schemes are constructed, on the basis of the general theory of stability (well-posedness) of operator-difference schemes, the stability conditions of the explicit Lax-Wendroff scheme are established. Unconditionally stable and conservative schemes are implicit schemes of the second (Crank-Nicolson scheme) and fourth order. The conditionally stable implicit Lax-Wendroff scheme is constructed. The accuracy of the investigated explicit and implicit two-level schemes for an approximate solution of the advection equation is illustrated by the numerical results of a model two-dimensional problem.
Convective penetration in a young sun
NASA Astrophysics Data System (ADS)
Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group
2018-01-01
To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.
En Route to Depression: Self-Esteem Discrepancies and Habitual Rumination.
Phillips, Wendy J; Hine, Donald W
2016-02-01
Dual-process models of cognitive vulnerability to depression suggest that some individuals possess discrepant implicit and explicit self-views, such as high explicit and low implicit self-esteem (fragile self-esteem) or low explicit and high implicit self-esteem (damaged self-esteem). This study investigated whether individuals with discrepant self-esteem may employ depressive rumination in an effort to reduce discrepancy-related dissonance, and whether the relationship between self-esteem discrepancy and future depressive symptoms varies as a function of rumination tendencies. Hierarchical regressions examined whether self-esteem discrepancy was associated with rumination in an Australian undergraduate sample at Time 1 (N = 306; M(age) = 29.9), and whether rumination tendencies moderated the relationship between self-esteem discrepancy and depressive symptoms assessed 3 months later (n = 160). Damaged self-esteem was associated with rumination at Time 1. As hypothesized, rumination moderated the relationship between self-esteem discrepancy and depressive symptoms at Time 2, where fragile self-esteem and high rumination tendencies at Time 1 predicted the highest levels of subsequent dysphoria. Results are consistent with dual-process propositions that (a) explicit self-regulation strategies may be triggered when explicit and implicit self-beliefs are incongruent, and (b) rumination may increase the likelihood of depression by expending cognitive resources and/or amplifying negative implicit biases. © 2014 Wiley Periodicals, Inc.
Stenling, Andreas; Hassmén, Peter; Holmström, Stefan
2014-01-01
People's implicit beliefs of ability have been suggested as an antecedent of achievement goal adoption, which has in turn been associated with behavioural, cognitive and affective outcomes. This study examined a conditional process model with team sport athletes' approach-avoidance achievement goals as mediators between their implicit beliefs of sport ability and sport-related cognitive anxiety. We expected gender to moderate the paths from implicit beliefs of ability to approach-avoidance goals and from approach-avoidance goals to cognitive anxiety. Team sport athletes with a mean age of 20 years (163 females and 152 males) responded to questionnaires about their implicit beliefs of sport ability, approach-avoidance goals and sport-related cognitive anxiety. Incremental beliefs, gender and the interaction between them predicted mastery-approach goals. Gender also predicted mastery-avoidance goals, with females reporting higher levels than males. Mastery-avoidance goals, gender and the interaction between them predicted cognitive anxiety, with females reporting higher levels of anxiety than males. Entity beliefs positively predicted performance-avoidance goals and the interaction between performance-approach and gender predicted anxiety. The indirect effects also showed gender differences in relation to performance-approach goals. Taken together, our results suggest that coaches trying to create a facilitating climate for their male and female athletes may be wise to consider their athletes' anxiety and achievement goal patterns as these may affect both the athletes' well-being and performance.
Genetic counselors’ implicit racial attitudes and their relationship to communication
Schaa, Kendra L; Roter, Debra L; Biesecker, Barbara B; Cooper, Lisa A; Erby, Lori H
2015-01-01
Objective Implicit racial attitudes are thought to shape interpersonal interactions and may contribute to health care disparities. This study explored the relationship between genetic counselors’ implicit racial attitudes and their communication during simulated genetic counseling sessions. Methods A nationally representative sample of genetic counselors completed a web-based survey that included the Race Implicit Association Test (IAT). A subset of these counselors (n=67) had participated in an earlier study in which they were video recorded counseling Black, Hispanic and non-Hispanic White simulated clients (SC) about their prenatal or cancer risks. The counselors’ IAT scores were related to their session communication through robust regression modeling. Results Genetic counselors showed a moderate to strong pro-White bias on the Race IAT (M=0.41, SD=0.35). Counselors with stronger pro-White bias were rated as displaying lower levels of positive affect (p<.05) and tended to use less emotionally responsive communication (p<.10) when counseling minority SCs. When counseling White SCs, pro-White bias was associated with lower levels of verbal dominance during sessions (p<.10). Stronger pro-White bias was also associated with more positive ratings of counselors’ nonverbal effectiveness by White SCs. Conclusions Implicit racial bias is associated with negative markers of communication in minority client sessions and may contribute to racial disparities in processes of care related to genetic services. PMID:25622081
Calculation of the recirculating compressible flow downstream a sudden axisymmetric expansion
NASA Technical Reports Server (NTRS)
Vandromme, D.; Haminh, H.; Brunet, H.
1988-01-01
Significant progress has been made during the last five years to adapt conventional Navier-Stokes solver for handling nonconservative equations. A primary type of application is to use transport equation turbulence models, but the extension is also possible for describing the transport of nonpassive scalars, such as in reactive media. Among others, combustion and gas dissociation phenomena are topics needing a considerable research effort. An implicit two step scheme based on the well-known MacCormack scheme has been modified to treat compressible turbulent flows on complex geometries. Implicit treatment of nonconservative equations (in the present case a two-equation turbulence model) opens the way to the coupled solution of thermochemical transport equations.
Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions
NASA Astrophysics Data System (ADS)
Titarev, Vladimir; Dumbser, Michael; Utyuzhnikov, Sergey
2014-01-01
The paper is devoted to the further development and systematic performance evaluation of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied gas flows. Firstly, a review of the existing discretization and parallelization strategies for solving numerically the Boltzmann kinetic equation with various model collision integrals is carried out. Secondly, a new parallelization strategy for the implicit time evolution method is implemented which improves scaling on large CPU clusters. Accuracy and scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through a finite-length circular pipe as well as an external supersonic flow over a three-dimensional re-entry geometry of complicated aerodynamic shape.
Raza, Meher; Ivry, Richard B.
2016-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611
Galileo's Trajectory with Mild Resistance
ERIC Educational Resources Information Center
Groetsch, C. W.
2012-01-01
An aspect of Galileo's classical trajectory that persists in a simple resistance model is noted. The resistive model provides a case study for the classroom analysis of limiting behaviour of an implicitly defined function. (Contains 1 note.)
NASA Technical Reports Server (NTRS)
Bardina, J. E.
1994-01-01
A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in complex geometries with good accuracy.
O'Shea, Brian; Watson, Derrick G; Brown, Gordon D A
2016-02-01
How can implicit attitudes best be measured? The Implicit Relational Assessment Procedure (IRAP), unlike the Implicit Association Test (IAT), claims to measure absolute, not just relative, implicit attitudes. In the IRAP, participants make congruent (Fat Person-Active: false; Fat Person-Unhealthy: true) or incongruent (Fat Person-Active: true; Fat Person-Unhealthy: false) responses in different blocks of trials. IRAP experiments have reported positive or neutral implicit attitudes (e.g., neutral attitudes toward fat people) in cases in which negative attitudes are normally found on explicit or other implicit measures. It was hypothesized that these results might reflect a positive framing bias (PFB) that occurs when participants complete the IRAP. Implicit attitudes toward categories with varying prior associations (nonwords, social systems, flowers and insects, thin and fat people) were measured. Three conditions (standard, positive framing, and negative framing) were used to measure whether framing influenced estimates of implicit attitudes. It was found that IRAP scores were influenced by how the task was framed to the participants, that the framing effect was modulated by the strength of prior stimulus associations, and that a default PFB led to an overestimation of positive implicit attitudes when measured by the IRAP. Overall, the findings question the validity of the IRAP as a tool for the measurement of absolute implicit attitudes. A new tool (Simple Implicit Procedure:SIP) for measuring absolute, not just relative, implicit attitudes is proposed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Explicit and implicit processes in behavioural adaptation to road width.
Lewis-Evans, Ben; Charlton, Samuel G
2006-05-01
The finding that drivers may react to safety interventions in a way that is contrary to what was intended is the phenomenon of behavioural adaptation. This phenomenon has been demonstrated across various safety interventions and has serious implications for road safety programs the world over. The present research used a driving simulator to assess behavioural adaptation in drivers' speed and lateral displacement in response to manipulations of road width. Of interest was whether behavioural adaptation would occur and whether we could determine whether it was the result of explicit, conscious decisions or implicit perceptual processes. The results supported an implicit, zero perceived risk model of behavioural adaptation with reduced speeds on a narrowed road accompanied by increased ratings of risk and a marked inability of the participants to identify that any change in road width had occurred.
An implicit-iterative solution of the heat conduction equation with a radiation boundary condition
NASA Technical Reports Server (NTRS)
Williams, S. D.; Curry, D. M.
1977-01-01
For the problem of predicting one-dimensional heat transfer between conducting and radiating mediums by an implicit finite difference method, four different formulations were used to approximate the surface radiation boundary condition while retaining an implicit formulation for the interior temperature nodes. These formulations are an explicit boundary condition, a linearized boundary condition, an iterative boundary condition, and a semi-iterative boundary method. The results of these methods in predicting surface temperature on the space shuttle orbiter thermal protection system model under a variety of heating rates were compared. The iterative technique caused the surface temperature to be bounded at each step. While the linearized and explicit methods were generally more efficient, the iterative and semi-iterative techniques provided a realistic surface temperature response without requiring step size control techniques.
Transient analysis of a thermal storage unit involving a phase change material
NASA Technical Reports Server (NTRS)
Griggs, E. I.; Pitts, D. R.; Humphries, W. R.
1974-01-01
The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.
The Communication Model Perspective of Oral Interpretation.
ERIC Educational Resources Information Center
Peterson, Eric E.
Communication models suggest that oral interpretation is a communicative process, that this process may be represented by specification of implicit and explicit content and structure, and that the models themselves are useful. This paper examines these assumptions through a comparative analysis of communication models employed by oral…
NASA Astrophysics Data System (ADS)
Li, Chunggang; Tsubokura, Makoto; Wang, Weihsiang
2017-11-01
The automatic dissipation adjustment (ADA) model based on truncated Navier-Stokes equations is utilized to investigate the feasibility of using implicit large eddy simulation (ILES) with ADA model on the transition in natural convection. Due to the high Rayleigh number coming from the larger temperature difference (300K), Roe scheme modified for low Mach numbers coordinating ADA model is used to resolve the complicated flow field. Based on the qualitative agreement of the comparisons with DNS and experimental results and the capability of numerically predicating a -3 decay law for the temporal power spectrum of the temperature fluctuation, this study thus validates the feasibility of ILES with ADA model on turbulent natural convection. With the advantages of ease of implementation because no explicit modeling terms are needed and nearly free of tuning parameters, ADA model offers to become a promising tool for turbulent thermal convection. Part of the results is obtained using the K computer at the RIKEN Advanced Institute for Computational Science (Proposal number hp160232).
NASA Astrophysics Data System (ADS)
Miller, R.
2015-12-01
Following the success of the implicit particle filter in twin experiments with a shallow water model of the nearshore environment, the planned next step is application to the intensive Sandy Duck data set, gathered at Duck, NC. Adaptation of the present system to the Sandy Duck data set will require construction and evaluation of error models for both the model and the data, as well as significant modification of the system to allow for the properties of the data set. Successful implementation of the particle filter promises to shed light on the details of the capabilities and limitations of shallow water models of the nearshore ocean relative to more detailed models. Since the shallow water model admits distinct dynamical regimes, reliable parameter estimation will be important. Previous work by other groups give cause for optimism. In this talk I will describe my progress toward implementation of the new system, including problems solved, pitfalls remaining and preliminary results
A System Computational Model of Implicit Emotional Learning
Puviani, Luca; Rama, Sidita
2016-01-01
Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation. PMID:27378898
A System Computational Model of Implicit Emotional Learning.
Puviani, Luca; Rama, Sidita
2016-01-01
Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation.
ABSINTH: A new continuum solvation model for simulations of polypeptides in aqueous solutions
Vitalis, Andreas; Pappu, Rohit V.
2009-01-01
A new implicit solvation model for use in Monte Carlo simulations of polypeptides is introduced. The model is termed ABSINTH for self-Assembly of Biomolecules Studied by an Implicit, Novel, and Tunable Hamiltonian. It is designed primarily for simulating conformational equilibria and oligomerization reactions of intrinsically disordered proteins in aqueous solutions. The paradigm for ABSINTH is conceptually similar to the EEF1 model of Lazaridis and Karplus (Proteins: Struct. Func. Genet., 1999, 35: 133-152). In ABSINTH, the transfer of a polypeptide solute from the gas phase into a continuum solvent is the sum of a direct mean field interaction (DMFI), and a term to model the screening of polar interactions. Polypeptide solutes are decomposed into a set of distinct solvation groups. The DMFI is a sum of contributions from each of the solvation groups, which are analogs of model compounds. Continuum-mediated screening of electrostatic interactions is achieved using a framework similar to the one used for the DMFI. Promising results are shown for a set of test cases. These include the calculation of NMR coupling constants for short peptides, the assessment of the thermal stability of two small proteins, reversible folding of both an alpha-helix and a beta-hairpin forming peptide, and the polymeric properties of intrinsically disordered polyglutamine peptides of varying lengths. The tests reveal that the computational expense for simulations with the ABSINTH implicit solvation model increase by a factor that is in the range of 2.5-5.0 with respect to gas-phase calculations. PMID:18506808
Cameron, C. Daryl; Reber, Justin; Spring, Victoria L.; Tranel, Daniel
2018-01-01
Implicit moral evaluations—spontaneous, unintentional judgments about the moral status of actions or persons—are thought to play a pivotal role in moral experience, suggesting a need for research to model these moral evaluations in clinical populations. Prior research reveals that the ventromedial prefrontal cortex (vmPFC) is a critical area underpinning affect and morality, and patients with vmPFC lesions show abnormalities in moral judgment and moral behavior. We use indirect measurement and multinomial modeling to understand differences in implicit moral evaluations among patients with vmPFC lesions. Our model quantifies multiple processes of moral judgment: implicit moral evaluations in response to distracting moral transgressions (Unintentional Judgment), accurate moral judgments about target actions (Intentional Judgment), and a directional tendency to judge actions as morally wrong (Response Bias). Compared to individuals with non-vmPFC brain damage and neurologically healthy comparisons, patients with vmPFC lesions showed a dual deficit in processes of moral judgment. First, patients with vmPFC lesions showed reduced Unintentional Judgment about moral transgressions, but not about non-moral negative affective distracters. Second, patients with vmPFC lesions showed reduced Intentional Judgment about target actions. These findings highlight the utility of a formal modeling approach in moral psychology, revealing a dual deficit in multiple component processes of moral judgment among patients with vmPFC lesions. PMID:29382558
Cameron, C Daryl; Reber, Justin; Spring, Victoria L; Tranel, Daniel
2018-03-01
Implicit moral evaluations-spontaneous, unintentional judgments about the moral status of actions or persons-are thought to play a pivotal role in moral experience, suggesting a need for research to model these moral evaluations in clinical populations. Prior research reveals that the ventromedial prefrontal cortex (vmPFC) is a critical area underpinning affect and morality, and patients with vmPFC lesions show abnormalities in moral judgment and moral behavior. We use indirect measurement and multinomial modeling to understand differences in implicit moral evaluations among patients with vmPFC lesions. Our model quantifies multiple processes of moral judgment: implicit moral evaluations in response to distracting moral transgressions (Unintentional Judgment), accurate moral judgments about target actions (Intentional Judgment), and a directional tendency to judge actions as morally wrong (Response Bias). Compared to individuals with non-vmPFC brain damage and neurologically healthy comparisons, patients with vmPFC lesions showed a dual deficit in processes of moral judgment. First, patients with vmPFC lesions showed reduced Unintentional Judgment about moral transgressions, but not about non-moral negative affective distracters. Second, patients with vmPFC lesions showed reduced Intentional Judgment about target actions. These findings highlight the utility of a formal modeling approach in moral psychology, revealing a dual deficit in multiple component processes of moral judgment among patients with vmPFC lesions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Woodward, Carol S.; Gardner, David J.; Evans, Katherine J.
2015-01-01
Efficient solutions of global climate models require effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a step size governed by accuracy of the processes of interest rather than by stability of the fastest time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton's method is applied to solve these systems. Each iteration of the Newton's method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but thismore » Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite difference approximation which may introduce inaccuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite difference approximations of these matrix-vector products for climate dynamics within the spectral element shallow water dynamical core of the Community Atmosphere Model.« less
Meyniel, Florent; Safra, Lou; Pessiglione, Mathias
2014-01-01
A pervasive case of cost-benefit problem is how to allocate effort over time, i.e. deciding when to work and when to rest. An economic decision perspective would suggest that duration of effort is determined beforehand, depending on expected costs and benefits. However, the literature on exercise performance emphasizes that decisions are made on the fly, depending on physiological variables. Here, we propose and validate a general model of effort allocation that integrates these two views. In this model, a single variable, termed cost evidence, accumulates during effort and dissipates during rest, triggering effort cessation and resumption when reaching bounds. We assumed that such a basic mechanism could explain implicit adaptation, whereas the latent parameters (slopes and bounds) could be amenable to explicit anticipation. A series of behavioral experiments manipulating effort duration and difficulty was conducted in a total of 121 healthy humans to dissociate implicit-reactive from explicit-predictive computations. Results show 1) that effort and rest durations are adapted on the fly to variations in cost-evidence level, 2) that the cost-evidence fluctuations driving the behavior do not match explicit ratings of exhaustion, and 3) that actual difficulty impacts effort duration whereas expected difficulty impacts rest duration. Taken together, our findings suggest that cost evidence is implicitly monitored online, with an accumulation rate proportional to actual task difficulty. In contrast, cost-evidence bounds and dissipation rate might be adjusted in anticipation, depending on explicit task difficulty. PMID:24743711
Gifted Students' Implicit Beliefs about Intelligence and Giftedness
ERIC Educational Resources Information Center
Makel, Matthew C.; Snyder, Kate E.; Thomas, Chandler; Malone, Patrick S.; Putallaz, Martha
2015-01-01
Growing attention is being paid to individuals' implicit beliefs about the nature of intelligence. However, implicit beliefs about giftedness are currently underexamined. In the current study, we examined academically gifted adolescents' implicit beliefs about both intelligence and giftedness. Overall, participants' implicit beliefs about…
Clerkin, Elise M.; Fisher, Christopher R.; Sherman, Jeffrey W.; Teachman, Bethany A.
2013-01-01
Objective This study explored the automatic and controlled processes that may influence performance on an implicit measure across cognitive-behavioral group therapy for panic disorder. Method The Quadruple Process model was applied to error scores from an Implicit Association Test evaluating associations between the concepts Me (vs. Not Me) + Calm (vs. Panicked) to evaluate four distinct processes: Association Activation, Detection, Guessing, and Overcoming Bias. Parameter estimates were calculated in the panic group (n=28) across each treatment session where the IAT was administered, and at matched times when the IAT was completed in the healthy control group (n=31). Results Association Activation for Me + Calm became stronger over treatment for participants in the panic group, demonstrating that it is possible to change automatically activated associations in memory (vs. simply overriding those associations) in a clinical sample via therapy. As well, the Guessing bias toward the calm category increased over treatment for participants in the panic group. Conclusions This research evaluates key tenets about the role of automatic processing in cognitive models of anxiety, and emphasizes the viability of changing the actual activation of automatic associations in the context of treatment, versus only changing a person’s ability to use reflective processing to overcome biased automatic processing. PMID:24275066
Franck, Erik; De Raedt, Rudi; Dereu, Mieke; Van den Abbeele, Dirk
2007-03-01
In the present study, we have further explored implicit self-esteem in currently depressed individuals. Since suicidal ideation is associated with lower self-esteem in depressed individuals, we measured both implicit and explicit self-esteem in a population of currently depressed (CD) individuals, with and without suicidal ideation (SI), and in a group of non-depressed controls (ND). The results indicate that only CD individuals with SI show a discrepancy between their implicit and explicit self-esteem: that is, they exhibit high implicit and low explicit self-esteem. CD individuals without SI exhibit both low implicit and low explicit self-esteem; and ND controls exhibit both normal implicit and normal explicit self-esteem. These results provide new insights in the study of implicit self-esteem and the combination of implicit and explicit self-esteem in depression.
Dijksterhuis, Ap
2004-02-01
On the basis of a conceptualization of implicit self-esteem as the implicit attitude toward the self, it was predicted that implicit self-esteem could be enhanced by subliminal evaluative conditioning. In 5 experiments, participants were repeatedly presented with trials in which the word I was paired with positive trait terms. Relative to control conditions, this procedure enhanced implicit self-esteem. The effects generalized across 3 measures of implicit self-esteem (Experiments 1-3). Furthermore, evaluative conditioning enhanced implicit self-esteem among people with low-temporal implicit self-esteem and among people with high-temporal implicit self-esteem (Experiment 4). In addition, it was shown that conditioning enhanced self-esteem to such an extent that it made participants insensitive to negative intelligence feedback (Experiments 5a and 5b). Various implications are discussed.
Tracking Temporal Hazard in the Human Electroencephalogram Using a Forward Encoding Model
2018-01-01
Abstract Human observers automatically extract temporal contingencies from the environment and predict the onset of future events. Temporal predictions are modeled by the hazard function, which describes the instantaneous probability for an event to occur given it has not occurred yet. Here, we tackle the question of whether and how the human brain tracks continuous temporal hazard on a moment-to-moment basis, and how flexibly it adjusts to strictly implicit variations in the hazard function. We applied an encoding-model approach to human electroencephalographic data recorded during a pitch-discrimination task, in which we implicitly manipulated temporal predictability of the target tones by varying the interval between cue and target tone (i.e. the foreperiod). Critically, temporal predictability either was driven solely by the passage of time (resulting in a monotonic hazard function) or was modulated to increase at intermediate foreperiods (resulting in a modulated hazard function with a peak at the intermediate foreperiod). Forward-encoding models trained to predict the recorded EEG signal from different temporal hazard functions were able to distinguish between experimental conditions, showing that implicit variations of temporal hazard bear tractable signatures in the human electroencephalogram. Notably, this tracking signal was reconstructed best from the supplementary motor area, underlining this area’s link to cognitive processing of time. Our results underline the relevance of temporal hazard to cognitive processing and show that the predictive accuracy of the encoding-model approach can be utilized to track abstract time-resolved stimuli. PMID:29740594
Pulawski, Wojciech; Jamroz, Michal; Kolinski, Michal; Kolinski, Andrzej; Kmiecik, Sebastian
2016-11-28
The CABS coarse-grained model is a well-established tool for modeling globular proteins (predicting their structure, dynamics, and interactions). Here we introduce an extension of the CABS representation and force field (CABS-membrane) to the modeling of the effect of the biological membrane environment on the structure of membrane proteins. We validate the CABS-membrane model in folding simulations of 10 short helical membrane proteins not using any knowledge about their structure. The simulations start from random protein conformations placed outside the membrane environment and allow for full flexibility of the modeled proteins during their spontaneous insertion into the membrane. In the resulting trajectories, we have found models close to the experimental membrane structures. We also attempted to select the correctly folded models using simple filtering followed by structural clustering combined with reconstruction to the all-atom representation and all-atom scoring. The CABS-membrane model is a promising approach for further development toward modeling of large protein-membrane systems.
Chevance, Guillaume; Caudroit, Johan; Romain, Ahmed J; Boiché, Julie
2017-03-01
Obesity can be prevented by the combined adoption of a regular physical activity (PA) and healthy eating behaviors (EB). Researchers mainly focused on socio-cognitive models, such as the Theory of Planned Behavior (TPB), to identify the psychological antecedents of these behaviors. However, few studies were interested in testing the potential contribution of automatic processes in the prediction of PA and EB. Thus, the main objective of this study was to explore the specific role of implicit attitudes in the pattern of prediction of self-reported PA and EB in the TPB framework, among persons with obesity and in adults from the general population. One hundred and fifty-three adults participated to this cross-sectional study among which 59 obese persons (74% women, age: 50.6 ± 12.3 years, BMI: 36.8 ± 4.03 kg m - ²) and 94 people from the general population (51% women; age: 34.7 ± 8.9 years). Implicit attitudes toward PA and EB were estimated through two Implicit Association Tests. TPB variables, PA and EB were assessed by questionnaire. Regarding to the prediction of PA, a significant contribution of implicit attitudes emerged in obese people, β = .25; 95%[CI: .01, .50]; P = .044, beyond the TPB variables, contrary to participants from the general population. The present study suggests that implicit attitudes play a specific role among persons with obesity regarding PA. Other studies are needed to examine which kind of psychological processes are specifically associated with PA and EB among obese people.
A Framework for Integrating Implicit Bias Recognition Into Health Professions Education.
Sukhera, Javeed; Watling, Chris
2018-01-01
Existing literature on implicit bias is fragmented and comes from a variety of fields like cognitive psychology, business ethics, and higher education, but implicit-bias-informed educational approaches have been underexplored in health professions education and are difficult to evaluate using existing tools. Despite increasing attention to implicit bias recognition and management in health professions education, many programs struggle to meaningfully integrate these topics into curricula. The authors propose a six-point actionable framework for integrating implicit bias recognition and management into health professions education that draws on the work of previous researchers and includes practical tools to guide curriculum developers. The six key features of this framework are creating a safe and nonthreatening learning context, increasing knowledge about the science of implicit bias, emphasizing how implicit bias influences behaviors and patient outcomes, increasing self-awareness of existing implicit biases, improving conscious efforts to overcome implicit bias, and enhancing awareness of how implicit bias influences others. Important considerations for designing implicit-bias-informed curricula-such as individual and contextual variables, as well as formal and informal cultural influences-are discussed. The authors also outline assessment and evaluation approaches that consider outcomes at individual, organizational, community, and societal levels. The proposed framework may facilitate future research and exploration regarding the use of implicit bias in health professions education.
NASA Astrophysics Data System (ADS)
Burlatsky, S. F.; Gummalla, M.; O'Neill, J.; Atrazhev, V. V.; Varyukhin, A. N.; Dmitriev, D. V.; Erikhman, N. S.
2012-10-01
Under typical Polymer Electrolyte Membrane Fuel Cell (PEMFC) fuel cell operating conditions, part of the membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEMFC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane lifetime. Short descriptions of the model components along with overall framework are presented in the paper. The model was used for lifetime prediction of a GORE-SELECT membrane.
The Use of Non-Standard Devices in Finite Element Analysis
NASA Technical Reports Server (NTRS)
Schur, Willi W.; Broduer, Steve (Technical Monitor)
2001-01-01
A general mathematical description of the response behavior of thin-skin pneumatic envelopes and many other membrane and cable structures produces under-constrained systems that pose severe difficulties to analysis. These systems are mobile, and the general mathematical description exposes the mobility. Yet the response behavior of special under-constrained structures under special loadings can be accurately predicted using a constrained mathematical description. The static response behavior of systems that are infinitesimally mobile, such as a non-slack membrane subtended from a rigid or elastic boundary frame, can be easily analyzed using such general mathematical description as afforded by the non-linear, finite element method using an implicit solution scheme if the incremental uploading is guided through a suitable path. Similarly, if such structures are assembled with structural lack of fit that provides suitable self-stress, then dynamic response behavior can be predicted by the non-linear, finite element method and an implicit solution scheme. An explicit solution scheme is available for evolution problems. Such scheme can be used via the method of dynamic relaxation to obtain the solution to a static problem. In some sense, pneumatic envelopes and many other compliant structures can be said to have destiny under a specified loading system. What that means to the analyst is that what happens on the evolution path of the solution is irrelevant as long as equilibrium is achieved at destiny under full load and that the equilibrium is stable in the vicinity of that load. The purpose of this paper is to alert practitioners to the fact that non-standard procedures in finite element analysis are useful and can be legitimate although they burden their users with the requirement to use special caution. Some interesting findings that are useful to the US Scientific Balloon Program and that could not be obtained without non-standard techniques are presented.
An unstructured grid, three-dimensional model based on the shallow water equations
Casulli, V.; Walters, R.A.
2000-01-01
A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.
Theoretical Commitment and Implicit Knowledge: Why Anomalies do not Trigger Learning
NASA Astrophysics Data System (ADS)
Ohlsson, Stellan
A theory consists of a mental model, laws that specify parameters of the model and one or more explanatory schemas. Models represent by being isomorphic to real systems. To explain an event is to reenact its genesis by executing the relevant model in the mind's eye. Schemas capture recurring structural features of explanations. To subscribe to a theory is to be committed to explaining a particular class of events with that theory (and nothing else). Given theoretical commitment, an anomaly, i.e., an event that cannot be explained, is an occasion for theory change, but in the absence of commitment, the response is instead to exclude the anomalous event from the domain of application of the theory. Lay people and children hold their theories implicitly and hence without commitment. These observations imply that the analogy between scientist's theories and children's knowledge is valid, but that the analogy between theory change and learning is not.
Refinement of NMR structures using implicit solvent and advanced sampling techniques.
Chen, Jianhan; Im, Wonpil; Brooks, Charles L
2004-12-15
NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified force field and then refines these structures with implicit solvent using the REX method. We systematically examine the reliability and efficacy of this protocol using four proteins of various sizes ranging from the 56-residue B1 domain of Streptococcal protein G to the 370-residue Maltose-binding protein. Significant improvement in the structures was observed in all cases when refinement was based on low-redundancy restraint data. The proposed protocol is anticipated to be particularly useful in early stages of NMR structure determination where a reliable estimate of the native fold from limited data can significantly expedite the overall process. This refinement procedure is also expected to be useful when redundant experimental data are not readily available, such as for large multidomain biomolecules and in solid-state NMR structure determination.
Maina, Ivy W; Belton, Tanisha D; Ginzberg, Sara; Singh, Ajit; Johnson, Tiffani J
2018-02-01
Disparities in the care and outcomes of US racial/ethnic minorities are well documented. Research suggests that provider bias plays a role in these disparities. The implicit association test enables measurement of implicit bias via tests of automatic associations between concepts. Hundreds of studies have examined implicit bias in various settings, but relatively few have been conducted in healthcare. The aim of this systematic review is to synthesize the current knowledge on the role of implicit bias in healthcare disparities. A comprehensive literature search of several databases between May 2015 and September 2016 identified 37 qualifying studies. Of these, 31 found evidence of pro-White or light-skin/anti-Black, Hispanic, American Indian or dark-skin bias among a variety of HCPs across multiple levels of training and disciplines. Fourteen studies examined the association between implicit bias and healthcare outcomes using clinical vignettes or simulated patients. Eight found no statistically significant association between implicit bias and patient care while six studies found that higher implicit bias was associated with disparities in treatment recommendations, expectations of therapeutic bonds, pain management, and empathy. All seven studies that examined the impact of implicit provider bias on real-world patient-provider interaction found that providers with stronger implicit bias demonstrated poorer patient-provider communication. Two studies examined the effect of implicit bias on real-world clinical outcomes. One found an association and the other did not. Two studies tested interventions aimed at reducing bias, but only one found a post-intervention reduction in implicit bias. This review reveals a need for more research exploring implicit bias in real-world patient care, potential modifiers and confounders of the effect of implicit bias on care, and strategies aimed at reducing implicit bias and improving patient-provider communication. Future studies have the opportunity to build on this current body of research, and in doing so will enable us to achieve equity in healthcare and outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
State-and-transition model archetypes: a global taxonomy of rangeland change
USDA-ARS?s Scientific Manuscript database
State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...
NASA Astrophysics Data System (ADS)
Jansen van Rensburg, Gerhardus J.; Kok, Schalk; Wilke, Daniel N.
2018-03-01
This paper presents the development and numerical implementation of a state variable based thermomechanical material model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete numerical implementation is presented as an Abaqus UMAT and linked subroutines. Implementation is discussed with detailed explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are also presented.
Efficient implicit LES method for the simulation of turbulent cavitating flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egerer, Christian P., E-mail: christian.egerer@aer.mw.tum.de; Schmidt, Steffen J.; Hickel, Stefan
2016-07-01
We present a numerical method for efficient large-eddy simulation of compressible liquid flows with cavitation based on an implicit subgrid-scale model. Phase change and subgrid-scale interface structures are modeled by a homogeneous mixture model that assumes local thermodynamic equilibrium. Unlike previous approaches, emphasis is placed on operating on a small stencil (at most four cells). The truncation error of the discretization is designed to function as a physically consistent subgrid-scale model for turbulence. We formulate a sensor functional that detects shock waves or pseudo-phase boundaries within the homogeneous mixture model for localizing numerical dissipation. In smooth regions of the flowmore » field, a formally non-dissipative central discretization scheme is used in combination with a regularization term to model the effect of unresolved subgrid scales. The new method is validated by computing standard single- and two-phase test-cases. Comparison of results for a turbulent cavitating mixing layer obtained with the new method demonstrates its suitability for the target applications.« less
Cheng, R.T.; Casulli, V.; Gartner, J.W.
1993-01-01
A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.
Unconscious Motivation. Part I: Implicit Attitudes toward L2 Speakers
ERIC Educational Resources Information Center
Al-Hoorie, Ali H.
2016-01-01
This paper reports the first investigation in the second language acquisition field assessing learners' implicit attitudes using the Implicit Association Test, a computerized reaction-time measure. Examination of the explicit and implicit attitudes of Arab learners of English (N = 365) showed that, particularly for males, implicit attitudes toward…
Unified gas-kinetic scheme with multigrid convergence for rarefied flow study
NASA Astrophysics Data System (ADS)
Zhu, Yajun; Zhong, Chengwen; Xu, Kun
2017-09-01
The unified gas kinetic scheme (UGKS) is based on direct modeling of gas dynamics on the mesh size and time step scales. With the modeling of particle transport and collision in a time-dependent flux function in a finite volume framework, the UGKS can connect the flow physics smoothly from the kinetic particle transport to the hydrodynamic wave propagation. In comparison with the direct simulation Monte Carlo (DSMC) method, the current equation-based UGKS can implement implicit techniques in the updates of macroscopic conservative variables and microscopic distribution functions. The implicit UGKS significantly increases the convergence speed for steady flow computations, especially in the highly rarefied and near continuum regimes. In order to further improve the computational efficiency, for the first time, a geometric multigrid technique is introduced into the implicit UGKS, where the prediction step for the equilibrium state and the evolution step for the distribution function are both treated with multigrid acceleration. More specifically, a full approximate nonlinear system is employed in the prediction step for fast evaluation of the equilibrium state, and a correction linear equation is solved in the evolution step for the update of the gas distribution function. As a result, convergent speed has been greatly improved in all flow regimes from rarefied to the continuum ones. The multigrid implicit UGKS (MIUGKS) is used in the non-equilibrium flow study, which includes microflow, such as lid-driven cavity flow and the flow passing through a finite-length flat plate, and high speed one, such as supersonic flow over a square cylinder. The MIUGKS shows 5-9 times efficiency increase over the previous implicit scheme. For the low speed microflow, the efficiency of MIUGKS is several orders of magnitude higher than the DSMC. Even for the hypersonic flow at Mach number 5 and Knudsen number 0.1, the MIUGKS is still more than 100 times faster than the DSMC method for obtaining a convergent steady state solution.
Exact charge and energy conservation in implicit PIC with mapped computational meshes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guangye; Barnes, D. C.
This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov Poisson formulation), ours is based on a nonlinearly converged Vlasov Amp re (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant Friedrichs Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicitmore » time steps (unlike the earlier energy-conserving explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.« less
2009-01-01
is usually implemented as an implicit correction to an explicit predictor substep [43]. In our case, this leads to the following algorithm : (i...ref., 50m ç C 10-6 10-5 10-4 0.01 0.1 1 s 0.01 0.1 1 m10 100 1000 Fig. 6.7. Self -convergence experiment for the density current test as in [51], Figure...by SIAM. Unauthorized reproduction of this article is prohibited. SIAM J. SCI. COMPUT. c © 2009 Society for Industrial and Applied Mathematics Vol
Numerical study of supersonic combustion using a finite rate chemistry model
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.; Kumar, A.; Drummond, J. P.
1986-01-01
The governing equations of two-dimensional chemically reacting flows are presented together with a global two-step chemistry model for H2-air combustion. The explicit unsplit MacCormack finite difference algorithm is used to advance the discrete system of the governing equations in time until convergence is attained. The source terms in the species equations are evaluated implicitly to alleviate stiffness associated with fast reactions. With implicit source terms, the species equations give rise to a block-diagonal system which can be solved very efficiently on vector-processing computers. A supersonic reacting flow in an inlet-combustor configuration is calculated for the case where H2 is injected into the flow from the side walls and the strut. Results of the calculation are compared against the results obtained by using a complete reaction model.
An unconditionally stable Runge-Kutta method for unsteady flows
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Chima, Rodrick V.
1988-01-01
A quasi-three dimensional analysis was developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body fitted coordinate system. It accounts for the effects of rotation, radius change, and stream surface thickness. The Baldwin-Lomax eddy viscosity model is used for turbulent flows. The equations are integrated in time using a four stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing was employed to accelerate the solution of the time accurate computations. The scheme is described and accuracy analyses are given. Results are shown for a supersonic through-flow fan designed for NASA Lewis. The rotor:stator blade ratio was taken as 1:1. Results are also shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Here the blade ratio is 2:3. Implicit residual smoothing was used to increase the time step limit of the unsmoothed scheme by a factor of six with negligible differences in the unsteady results. It is felt that the implicitly smoothed Runge-Kutta scheme is easily competitive with implicit schemes for unsteady flows while retaining the simplicity of an explicit scheme.
Chae, David H.; Powell, Wizdom A.; Nuru-Jeter, Amani M.; Smith-Bynum, Mia A.; Seaton, Eleanor K.; Forman, Tyrone A.; Turpin, Rodman; Sellers, Robert
2017-01-01
Racial discrimination is conceptualized as a psychosocial stressor that has negative implications for mental health. However, factors related to racial identity may influence whether negative experiences are interpreted as instances of racial discrimination and subsequently reported as such in survey instruments, particularly given the ambiguous nature of contemporary racism. Along these lines, dimensions of racial identity may moderate associations between racial discrimination and mental health outcomes. This study examined relationships between racial discrimination, racial identity, implicit racial bias, and depressive symptoms among African American men between 30 and 50 years of age (n = 95). Higher racial centrality was associated with greater reports of racial discrimination, while greater implicit anti-Black bias was associated with lower reports of racial discrimination. In models predicting elevated depressive symptoms, holding greater implicit anti-Black bias in tandem with reporting lower racial discrimination was associated with the highest risk. Results suggest that unconscious as well as conscious processes related to racial identity are important to consider in measuring racial discrimination, and should be integrated in studies of racial discrimination and mental health. PMID:29386696
Are implicit self-esteem measures valid for assessing individual and cultural differences?
Falk, Carl F; Heine, Steven J; Takemura, Kosuke; Zhang, Cathy X J; Hsu, Chih-Wei
2015-02-01
Our research utilized two popular theoretical conceptualizations of implicit self-esteem: 1) implicit self-esteem as a global automatic reaction to the self; and 2) implicit self-esteem as a context/domain specific construct. Under this framework, we present an extensive search for implicit self-esteem measure validity among different cultural groups (Study 1) and under several experimental manipulations (Study 2). In Study 1, Euro-Canadians (N = 107), Asian-Canadians (N = 187), and Japanese (N = 112) completed a battery of implicit self-esteem, explicit self-esteem, and criterion measures. Included implicit self-esteem measures were either popular or provided methodological improvements upon older methods. Criterion measures were sampled from previous research on implicit self-esteem and included self-report and independent ratings. In Study 2, Americans (N = 582) completed a shorter battery of these same types of measures under either a control condition, an explicit prime meant to activate the self-concept in a particular context, or prime meant to activate self-competence related implicit attitudes. Across both studies, explicit self-esteem measures far outperformed implicit self-esteem measures in all cultural groups and under all experimental manipulations. Implicit self-esteem measures are not valid for individual or cross-cultural comparisons. We speculate that individuals may not form implicit associations with the self as an attitudinal object. © 2013 Wiley Periodicals, Inc.
Implicit self-esteem decreases in adolescence: a cross-sectional study.
Cai, Huajian; Wu, Mingzheng; Luo, Yu L L; Yang, Jing
2014-01-01
Implicit self-esteem has remained an active research topic in both the areas of implicit social cognition and self-esteem in recent decades. The purpose of this study is to explore the development of implicit self-esteem in adolescents. A total of 599 adolescents from junior and senior high schools in East China participated in the study. They ranged in age from 11 to 18 years with a mean age of 14.10 (SD = 2.16). The degree of implicit self-esteem was assessed using the Implicit Association Test (IAT) with the improved D score as the index. Participants also completed the Rosenberg Self-Esteem Scale (α = 0.77). For all surveyed ages, implicit self-esteem was positively biased, all ts>8.59, all ps<0.001. The simple correlation between implicit self-esteem and age was significant, r = -.25, p = 1. 10(-10). A regression with implicit self-esteem as the criterion variable, and age, gender, and age × gender interaction as predictors further revealed the significant negative linear relationship between age and implicit self-esteem, β = -0.19, t = -3.20, p = 0.001. However, explicit self-esteem manifested a reverse "U" shape throughout adolescence. Implicit self-esteem in adolescence manifests a declining trend with increasing age, suggesting that it is sensitive to developmental or age-related changes. This finding enriches our understanding of the development of implicit social cognition.
Using Implicit Measures to Highlight Science Teachers' Implicit Theories of Intelligence
ERIC Educational Resources Information Center
Mascret, Nicolas; Roussel, Peggy; Cury, François
2015-01-01
Using an innovative method, a Single-Target Implicit Association Test (ST-IAT) was created to explore the implicit theories of intelligence among science and liberal arts teachers and their relationships with their gender. The results showed that for science teachers--especially for male teachers--there was a negative implicit association between…
The Roles of Implicit Understanding of Engineering Ethics in Student Teams' Discussion.
Lee, Eun Ah; Grohman, Magdalena; Gans, Nicholas R; Tacca, Marco; Brown, Matthew J
2017-12-01
Following previous work that shows engineering students possess different levels of understanding of ethics-implicit and explicit-this study focuses on how students' implicit understanding of engineering ethics influences their team discussion process, in cases where there is significant divergence between their explicit and implicit understanding. We observed student teams during group discussions of the ethical issues involved in their engineering design projects. Through the micro-scale discourse analysis based on cognitive ethnography, we found two possible ways in which implicit understanding influenced the discussion. In one case, implicit understanding played the role of intuitive ethics-an intuitive judgment followed by reasoning. In the other case, implicit understanding played the role of ethical insight, emotionally guiding the direction of the discussion. In either case, however, implicit understanding did not have a strong influence, and the conclusion of the discussion reflected students' explicit understanding. Because students' implicit understanding represented broader social implication of engineering design in both cases, we suggest to take account of students' relevant implicit understanding in engineering education, to help students become more socially responsible engineers.
The edge complex: implicit memory for figure assignment in shape perception.
Peterson, Mary A; Enns, James T
2005-05-01
Viewing a stepped edge is likely to prompt the perceptual assignment of one side of the edge as figure. This study demonstrates that even a single brief glance at a novel edge gives rise to an implicit memory regarding which side was seen as figure; this edge complex enters into the figure assignment process the next time the edge is encountered, both speeding same-different judgments when the figural side is repeated and slowing these judgments when the new figural side is identical to the former ground side (Experiments 1A and 1B). These results were obtained even when the facing direction of the repeated edge was mirror reversed (Experiment 2). This study shows that implicit measures can reveal the effects of past experience on figure assignment, following a single prior exposure to a novel shape, and supports a competitive model of figure assignment in which past experience serves as one of many figural cues.
Motor learning and consolidation: the case of visuomotor rotation.
Krakauer, John W
2009-01-01
Adaptation to visuomotor rotation is a particular form of motor learning distinct from force-field adaptation, sequence learning, and skill learning. Nevertheless, study of adaptation to visuomotor rotation has yielded a number of findings and principles that are likely of general importance to procedural learning and memory. First, rotation learning is implicit and appears to proceed through reduction in a visual prediction error generated by a forward model, such implicit adaptation occurs even when it is in conflict with an explicit task goal. Second, rotation learning is subject to different forms of interference: retrograde, anterograde through aftereffects, and contextual blocking of retrieval. Third, opposite rotations can be recalled within a short time interval without interference if implicit contextual cues (effector change) rather than explicit cues (color change) are used. Fourth, rotation learning consolidates both over time and with increased initial training (saturation learning).
Fast viscosity solutions for shape from shading under a more realistic imaging model
NASA Astrophysics Data System (ADS)
Wang, Guohui; Han, Jiuqiang; Jia, Honghai; Zhang, Xinman
2009-11-01
Shape from shading (SFS) has been a classical and important problem in the domain of computer vision. The goal of SFS is to reconstruct the 3-D shape of an object from its 2-D intensity image. To this end, an image irradiance equation describing the relation between the shape of a surface and its corresponding brightness variations is used. Then it is derived as an explicit partial differential equation (PDE). Using the nonlinear programming principle, we propose a detailed solution to Prados and Faugeras's implicit scheme for approximating the viscosity solution of the resulting PDE. Furthermore, by combining implicit and semi-implicit schemes, a new approximation scheme is presented. In order to accelerate the convergence speed, we adopt the Gauss-Seidel idea and alternating sweeping strategy to the approximation schemes. Experimental results on both synthetic and real images are performed to demonstrate that the proposed methods are fast and accurate.
Strategic processing in long-term repetition priming in the lexical decision task.
Kessler, Yoav; Moscovitch, Morris
2013-04-01
In a lexical decision task, faster reaction times (RTs) for old than new items is taken as evidence for an implicit memory involvement in this task. In contrast, the present study shows the involvement of both implicit and explicit memory in repetition priming. We propose a dual route model, in which lexical decisions can be made using one of two parallel processing routes: a lexical route, in which the lexical properties of the stimulus are used to determine whether it is a word or not, and a strategic route that builds on the inherent correlation between "wordness" and "oldness" in the experiment. Eliminating the strategic route by removing this correlation diminishes the priming effect at the slow end of the RT distribution, but not at the fast end. This dissociation is interpreted as evidence for the involvement of both implicit and explicit memory in repetition priming.
Can implicit appraisal concepts produce emotion-specific effects? A focus on unfairness and anger.
Tong, Eddie M W; Tan, Deborah H; Tan, Yan Lin
2013-06-01
This research examined whether the non-conscious activation of an implicit appraisal concept could affect responses associated with the corresponding emotion as predicted by appraisal theories. Explicit and implicit emotional responses were examined. We focused on implicit unfairness and its effect on anger. The results show that subliminal activation of implicit unfairness affected implicit anger responses (anger facial expression and latency responses to anger words) but not explicit anger feelings (i.e., reported anger). The non-conscious effect of implicit unfairness was specific to anger, as no effect on sadness, fear, and guilt was found. Copyright © 2013 Elsevier Inc. All rights reserved.
The Intergenerational Transmission of Implicit and Explicit Attitudes Toward Smoking
Sherman, Steven J.; Chassin, Laurie; Presson, Clark; Seo, Dong-Chul; Macy, Jonathan T.
2009-01-01
This study examined the intergenerational transmission of implicit and explicit attitudes toward smoking, as well as the role of these attitudes in adolescents’ smoking initiation. There was evidence of intergenerational transmission of implicit attitudes. Mothers who had more positive implicit attitudes had children with more positive implicit attitudes. In turn, these positive implicit attitudes of adolescents predicted their smoking initiation 18-months later. Moreover, these effects were obtained above and beyond the effects of explicit attitudes. These findings provide the first evidence that the intergenerational transmission of implicit cognition may play a role in the intergenerational transmission of an addictive behavior. PMID:20126293
On the nature of implicit soul beliefs: when the past weighs more than the present.
Anglin, Stephanie M
2015-06-01
Intuitive childhood beliefs in dualism may lay the foundation for implicit soul and afterlife beliefs, which may diverge from explicit beliefs formed later in adulthood. Brief Implicit Association Tests were developed to investigate the relation of implicit soul and afterlife beliefs to childhood and current beliefs. Early but not current beliefs covaried with implicit beliefs. Results demonstrated greater discrepancies in current than in childhood soul and afterlife beliefs among religious groups, and no differences in implicit beliefs. These findings suggest that implicit soul and afterlife beliefs diverge from current self-reported beliefs, stemming instead from childhood beliefs. © 2014 The British Psychological Society.
Knowledge represented using RDF semantic network in the concept of semantic web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukasova, A., E-mail: alena.lukasova@osu.cz; Vajgl, M., E-mail: marek.vajgl@osu.cz; Zacek, M., E-mail: martin.zacek@osu.cz
The RDF(S) model has been declared as the basic model to capture knowledge of the semantic web. It provides a common and flexible way to decompose composed knowledge to elementary statements, which can be represented by RDF triples or by RDF graph vectors. From the logical point of view, elements of knowledge can be expressed using at most binary predicates, which can be converted to RDF-triples or graph vectors. However, it is not able to capture implicit knowledge representable by logical formulas. This contribution shows how existing approaches (semantic networks and clausal form logic) can be combined together with RDFmore » to obtain RDF-compatible system with ability to represent implicit knowledge and inference over knowledge base.« less
Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry
NASA Technical Reports Server (NTRS)
Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve
1996-01-01
A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.
Masereeuw, R; van Pelt, A P; van Os, S H; Willems, P H; Smits, P; Russel, F G
2000-09-01
The anionic drug probenecid has been traditionally used as an inhibitor of renal organic anion transport. More recently the drug was found to inhibit organic cation transport as well, and it is used to retain intracellularly loaded fluorophores. In these investigations it is implicitly assumed that probenecid performs its activity through competition for transport. Here we studied the possibility that probenecid provokes its effect through inhibition of cellular oxidative metabolism. Oxygen consumption was measured in isolated rat kidney cortex mitochondria. At concentrations of 1 mM or higher, probenecid increased the resting state (state 4) and decreased the ADP-stimulated respiration (state 3). A complete loss in respiratory control was observed at 10 mM probenecid. After incubating isolated rat kidney proximal tubular cells (PTC) for 30 min with probenecid a concentration-dependent reduction in ATP content was observed, which was significant at concentrations of 1 mM and higher. Using digital image fluorescence microscopy the membrane potential in PTC was measured with bisoxonol. The mitochondrial effects of probenecid were paralleled by a depolarization of the plasma membrane, immediately after drug addition. All events are likely to be a result of membrane disordering due to the lipophilic character of probenecid, and may explain, at least in part, the various inhibitory effects found for the drug. We recommend to be cautious with applying probenecid in cellular research.
Processing of false belief passages during natural story comprehension: An fMRI study.
Kandylaki, Katerina D; Nagels, Arne; Tune, Sarah; Wiese, Richard; Bornkessel-Schlesewsky, Ina; Kircher, Tilo
2015-11-01
The neural correlates of theory of mind (ToM) are typically studied using paradigms which require participants to draw explicit, task-related inferences (e.g., in the false belief task). In a natural setup, such as listening to stories, false belief mentalizing occurs incidentally as part of narrative processing. In our experiment, participants listened to auditorily presented stories with false belief passages (implicit false belief processing) and immediately after each story answered comprehension questions (explicit false belief processing), while neural responses were measured with functional magnetic resonance imaging (fMRI). All stories included (among other situations) one false belief condition and one closely matched control condition. For the implicit ToM processing, we modeled the hemodynamic response during the false belief passages in the story and compared it to the hemodynamic response during the closely matched control passages. For implicit mentalizing, we found activation in typical ToM processing regions, that is the angular gyrus (AG), superior medial frontal gyrus (SmFG), precuneus (PCUN), middle temporal gyrus (MTG) as well as in the inferior frontal gyrus (IFG) billaterally. For explicit ToM, we only found AG activation. The conjunction analysis highlighted the left AG and MTG as well as the bilateral IFG as overlapping ToM processing regions for both implicit and explicit modes. Implicit ToM processing during listening to false belief passages, recruits the left SmFG and billateral PCUN in addition to the "mentalizing network" known form explicit processing tasks. © 2015 Wiley Periodicals, Inc.
Doron, Julie; Stephan, Yannick; Boiché, Julie; Le Scanff, Christine
2009-09-01
Relatively little is known about the contribution of students' beliefs regarding the nature of academic ability (i.e. their implicit theories) on strategies used to deal with examinations. This study applied Dweck's socio-cognitive model of achievement motivation to better understand how students cope with examinations. It was expected that students' implicit theories of academic ability would be related to their use of particular coping strategies to deal with exam-related stress. Additionally, it was predicted that perceived control over exams acts as a mediator between implicit theories of ability and coping. Four hundred and ten undergraduate students (263 males, 147 females), aged from 17 to 26 years old (M=19.73, SD=1.46) were volunteers for the present study. Students completed measures of coping, implicit theories of academic ability, and perception of control over academic examinations during regular classes in the first term of the university year. Multiple regression analyses revealed that incremental beliefs of ability significantly and positively predicted active coping, planning, venting of emotions, seeking social support for emotional and instrumental reasons, whereas entity beliefs positively predicted behavioural disengagement and negatively predicted active coping and acceptance. In addition, analyses revealed that entity beliefs of ability were related to coping strategies through students' perception of control over academic examinations. These results confirm that exam-related coping varies as a function of students' beliefs about the nature of academic ability and their perceptions of control when approaching examinations.
Drinkers’ memory bias for alcohol picture cues in explicit and implicit memory tasks
Nguyen-Louie, Tam T.; Buckman, Jennifer F.; Ray, Suchismita
2016-01-01
Background Alcohol cues can bias attention and elicit emotional reactions, especially in drinkers. Yet, little is known about how alcohol cues affect explicit and implicit memory processes, and how memory for alcohol cues is affected by acute alcohol intoxication. Methods Young adult participants (N=161) were randomly assigned to alcohol, placebo, or control beverage conditions. Following beverage consumption, they were shown neutral, emotional and alcohol-related pictures cues. Participants then completed free recall and repetition priming tasks to test explicit and implicit memory, respectively, for picture cues. Average blood alcohol concentration for the alcohol group was 74 ± 13 mg/dl when memory testing began. Two mixed linear model analyses were conducted to examine the effects of beverage condition, picture cue type, and their interaction on explicit and implicit memory. Results Picture cue type and beverage condition each significantly affected explicit recall of picture cues, whereas only picture cue type significantly influenced repetition priming. Individuals in the alcohol condition recalled significantly fewer pictures than those in other conditions, regardless of cue type. Both free recall and repetition priming were greater for emotional and alcohol-related cues compared to neutral picture cues. No interaction effects were detected. Conclusions Young adult drinkers showed enhanced explicit and implicit memory processing of alcohol cues compared to emotionally neutral cues. This enhanced processing for alcohol cues was on par with that seen for positive emotional cues. Acute alcohol intoxication did not alter this preferential memory processing for alcohol cues over neutral cues. PMID:26811126
Morigaki, Kenichi; Tanimoto, Yasushi
2018-03-14
One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.
Changes of Explicit and Implicit Stigma in Medical Students during Psychiatric Clerkship.
Wang, Peng-Wei; Ko, Chih-Hung; Chen, Cheng-Sheng; Yang, Yi-Hsin Connine; Lin, Huang-Chi; Cheng, Cheng-Chung; Tsang, Hin-Yeung; Wu, Ching-Kuan; Yen, Cheng-Fang
2016-04-01
This study examines the differences in explicit and implicit stigma between medical and non-medical undergraduate students at baseline; the changes of explicit and implicit stigma in medical undergraduate and non-medical undergraduate students after a 1-month psychiatric clerkship and 1-month follow-up period; and the differences in the changes of explicit and implicit stigma between medical and non-medical undergraduate students. Seventy-two medical undergraduate students and 64 non-medical undergraduate students were enrolled. All participants were interviewed at intake and after 1 month. The Taiwanese version of the Stigma Assessment Scale and the Implicit Association Test were used to measure the participants' explicit and implicit stigma. Neither explicit nor implicit stigma differed between two groups at baseline. The medical, but not the non-medical, undergraduate students had a significant decrease in explicit stigma during the 1-month period of follow-up. Neither the medical nor the non-medical undergraduate students exhibited a significant change in implicit stigma during the one-month of follow-up, however. There was an interactive effect between group and time on explicit stigma but not on implicit stigma. Explicit but not implicit stigma toward mental illness decreased in the medical undergraduate students after a psychiatric clerkship. Further study is needed to examine how to improve implicit stigma toward mental illness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, J.D.
1994-08-04
This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.
Intact implicit learning in autism spectrum conditions.
Brown, Jamie; Aczel, Balazs; Jiménez, Luis; Kaufman, Scott Barry; Grant, Kate Plaisted
2010-09-01
Individuals with autism spectrum condition (ASC) have diagnostic impairments in skills that are associated with an implicit acquisition; however, it is not clear whether ASC individuals show specific implicit learning deficits. We compared ASC and typically developing (TD) individuals matched for IQ on five learning tasks: four implicit learning tasks--contextual cueing, serial reaction time, artificial grammar learning, and probabilistic classification learning tasks--that used procedures expressly designed to minimize the use of explicit strategies, and one comparison explicit learning task, paired associates learning. We found implicit learning to be intact in ASC. Beyond no evidence of differences, there was evidence of statistical equivalence between the groups on all the implicit learning tasks. This was not a consequence of compensation by explicit learning ability or IQ. Furthermore, there was no evidence to relate implicit learning to ASC symptomatology. We conclude that implicit mechanisms are preserved in ASC and propose that it is disruption by other atypical processes that impact negatively on the development of skills associated with an implicit acquisition.
Berry, Tanya R; Rodgers, Wendy M; Divine, Alison; Hall, Craig
2018-06-19
Discrepancies between automatically activated associations (i.e., implicit evaluations) and explicit evaluations of motives (measured with a questionnaire) could lead to greater information processing to resolve discrepancies or self-regulatory failures that may affect behavior. This research examined the relationship of health and appearance exercise-related explicit-implicit evaluative discrepancies, the interaction between implicit and explicit evaluations, and the combined value of explicit and implicit evaluations (i.e., the summed scores) to dropout from a yearlong exercise program. Participants (N = 253) completed implicit health and appearance measures and explicit health and appearance motives at baseline, prior to starting the exercise program. The sum of implicit and explicit appearance measures was positively related to weeks in the program, and discrepancy between the implicit and explicit health measures was negatively related to length of time in the program. Implicit exercise evaluations and their relationships to oft-cited motives such as appearance and health may inform exercise dropout.
IMPLEMENTATION AND VALIDATION OF A FULLY IMPLICIT ACCUMULATOR MODEL IN RELAP-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zou, Ling; Zhang, Hongbin
2016-01-01
This paper presents the implementation and validation of an accumulator model in RELAP-7 under the framework of preconditioned Jacobian free Newton Krylov (JFNK) method, based on the similar model used in RELAP5. RELAP-7 is a new nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). RELAP-7 is a fully implicit system code. The JFNK and preconditioning methods used in RELAP-7 is briefly discussed. The slightly modified accumulator model is summarized for completeness. The implemented model was validated with LOFT L3-1 test and benchmarked with RELAP5 results. RELAP-7 and RELAP5 had almost identical results for themore » accumulator gas pressure and water level, although there were some minor difference in other parameters such as accumulator gas temperature and tank wall temperature. One advantage of the JFNK method is its easiness to maintain and modify models due to fully separation of numerical methods from physical models. It would be straightforward to extend the current RELAP-7 accumulator model to simulate the advanced accumulator design.« less
Rohrmeier, Martin A; Cross, Ian
2014-07-01
Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Li, Y.; Navon, I. M.; Courtier, P.; Gauthier, P.
1993-01-01
An adjoint model is developed for variational data assimilation using the 2D semi-Lagrangian semi-implicit (SLSI) shallow-water equation global model of Bates et al. with special attention being paid to the linearization of the interpolation routines. It is demonstrated that with larger time steps the limit of the validity of the tangent linear model will be curtailed due to the interpolations, especially in regions where sharp gradients in the interpolated variables coupled with strong advective wind occur, a synoptic situation common in the high latitudes. This effect is particularly evident near the pole in the Northern Hemisphere during the winter season. Variational data assimilation experiments of 'identical twin' type with observations available only at the end of the assimilation period perform well with this adjoint model. It is confirmed that the computational efficiency of the semi-Lagrangian scheme is preserved during the minimization process, related to the variational data assimilation procedure.
NASA Astrophysics Data System (ADS)
Gonçalves, Ítalo Gomes; Kumaira, Sissa; Guadagnin, Felipe
2017-06-01
Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of speed and reproducibility in comparison with manual digitization of geological structures. The potential-field method consists in interpolating a scalar function that indicates to which side of a geological boundary a given point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector potential-field solution from a machine learning perspective, recasting the problem as multi-class classification, which alleviates some of the original method's assumptions. The potentials related to each geological class are interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R language and 3D visualizations were prepared with the rgl package.
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2015-11-03
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
Conformation of ionizable poly Para phenylene ethynylene in dilute solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora
The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonylmore » PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone.« less
THE IMPACT OF RACISM ON CLINICIAN COGNITION, BEHAVIOR, AND CLINICAL DECISION MAKING
van Ryn, Michelle; Burgess, Diana J.; Dovidio, John F.; Phelan, Sean M.; Saha, Somnath; Malat, Jennifer; Griffin, Joan M.; Fu, Steven S.; Perry, Sylvia
2014-01-01
Over the past two decades, thousands of studies have demonstrated that Blacks receive lower quality medical care than Whites, independent of disease status, setting, insurance, and other clinically relevant factors. Despite this, there has been little progress towards eradicating these inequities. Almost a decade ago we proposed a conceptual model identifying mechanisms through which clinicians’ behavior, cognition, and decision making might be influenced by implicit racial biases and explicit racial stereotypes, and thereby contribute to racial inequities in care. Empirical evidence has supported many of these hypothesized mechanisms, demonstrating that White medical care clinicians: (1) hold negative implicit racial biases and explicit racial stereotypes, (2) have implicit racial biases that persist independently of and in contrast to their explicit (conscious) racial attitudes, and (3) can be influenced by racial bias in their clinical decision making and behavior during encounters with Black patients. This paper applies evidence from several disciplines to further specify our original model and elaborate on the ways racism can interact with cognitive biases to affect clinicians’ behavior and decisions and in turn, patient behavior and decisions. We then highlight avenues for intervention and make specific recommendations to medical care and grant-making organizations. PMID:24761152
Implicit Self-Esteem Decreases in Adolescence: A Cross-Sectional Study
Cai, Huajian; Wu, Mingzheng; Luo, Yu L. L.; Yang, Jing
2014-01-01
Implicit self-esteem has remained an active research topic in both the areas of implicit social cognition and self-esteem in recent decades. The purpose of this study is to explore the development of implicit self-esteem in adolescents. A total of 599 adolescents from junior and senior high schools in East China participated in the study. They ranged in age from 11 to 18 years with a mean age of 14.10 (SD = 2.16). The degree of implicit self-esteem was assessed using the Implicit Association Test (IAT) with the improved D score as the index. Participants also completed the Rosenberg Self-Esteem Scale (α = 0.77). For all surveyed ages, implicit self-esteem was positively biased, all ts>8.59, all ps<0.001. The simple correlation between implicit self-esteem and age was significant, r = −.25, p = 1.0×10−10. A regression with implicit self-esteem as the criterion variable, and age, gender, and age × gender interaction as predictors further revealed the significant negative linear relationship between age and implicit self-esteem, β = −0.19, t = −3.20, p = 0.001. However, explicit self-esteem manifested a reverse “U” shape throughout adolescence. Implicit self-esteem in adolescence manifests a declining trend with increasing age, suggesting that it is sensitive to developmental or age-related changes. This finding enriches our understanding of the development of implicit social cognition. PMID:24587169
ERIC Educational Resources Information Center
Spindler, George; Spindler, Louise
1984-01-01
Sees Dobbert et al's model of cultural transmission (this issue) as generalizing, structural, mechanical, predetermined, formal, digital, and etic. Posits an alternative approach that is idiographic, processual, organic, open, nonformal, analogical, and attentive to emic data. Argues that the Dobbert model accounts inadequately for the implicit,…
Sensory Impairments and Autism: A Re-Examination of Causal Modelling
ERIC Educational Resources Information Center
Gerrard, Sue; Rugg, Gordon
2009-01-01
Sensory impairments are widely reported in autism, but remain largely unexplained by existing models. This article examines Kanner's causal reasoning and identifies unsupported assumptions implicit in later empirical work. Our analysis supports a heterogeneous causal model for autistic characteristics. We propose that the development of a…
Fitts’ Law in the Control of Isometric Grip Force With Naturalistic Targets
Thumser, Zachary C.; Slifkin, Andrew B.; Beckler, Dylan T.; Marasco, Paul D.
2018-01-01
Fitts’ law models the relationship between amplitude, precision, and speed of rapid movements. It is widely used to quantify performance in pointing tasks, study human-computer interaction, and generally to understand perceptual-motor information processes, including research to model performance in isometric force production tasks. Applying Fitts’ law to an isometric grip force task would allow for quantifying grasp performance in rehabilitative medicine and may aid research on prosthetic control and design. We examined whether Fitts’ law would hold when participants attempted to accurately produce their intended force output while grasping a manipulandum when presented with images of various everyday objects (we termed this the implicit task). Although our main interest was the implicit task, to benchmark it and establish validity, we examined performance against a more standard visual feedback condition via a digital force-feedback meter on a video monitor (explicit task). Next, we progressed from visual force feedback with force meter targets to the same targets without visual force feedback (operating largely on feedforward control with tactile feedback). This provided an opportunity to see if Fitts’ law would hold without vision, and allowed us to progress toward the more naturalistic implicit task (which does not include visual feedback). Finally, we changed the nature of the targets from requiring explicit force values presented as arrows on a force-feedback meter (explicit targets) to the more naturalistic and intuitive target forces implied by images of objects (implicit targets). With visual force feedback the relation between task difficulty and the time to produce the target grip force was predicted by Fitts’ law (average r2 = 0.82). Without vision, average grip force scaled accurately although force variability was insensitive to the target presented. In contrast, images of everyday objects generated more reliable grip forces without the visualized force meter. In sum, population means were well-described by Fitts’ law for explicit targets with vision (r2 = 0.96) and implicit targets (r2 = 0.89), but not as well-described for explicit targets without vision (r2 = 0.54). Implicit targets should provide a realistic see-object-squeeze-object test using Fitts’ law to quantify the relative speed-accuracy relationship of any given grasper. PMID:29773999
Ramirez, Jason J; Olin, Cecilia C; Lindgren, Kristen P
2017-09-01
Two variations of the Implicit Association Test (IAT), the Drinking Identity IAT and the Alcohol Identity IAT, assess implicit associations held in memory between one's identity and alcohol-related constructs. Both have been shown to predict numerous drinking outcomes, but these IATs have never been directly compared to one another. The purpose of this study was to compare these IATs and evaluate their incremental predictive validity. US undergraduate students (N=64, 50% female, mean age=21.98years) completed the Drinking Identity IAT, the Alcohol Identity IAT, an explicit measure of drinking identity, as well as measures of typical alcohol consumption and hazardous drinking. When evaluated in separate regression models that controlled for explicit drinking identity, results indicated that the Drinking Identity IAT and the Alcohol Identity IAT were significant, positive predictors of typical alcohol consumption, and that the Drinking Identity IAT, but not the Alcohol Identity IAT, was a significant predictor of hazardous drinking. When evaluated in the same regression models, the Drinking Identity IAT, but not the Alcohol Identity IAT, was significantly associated with typical and hazardous drinking. These results suggest that the Drinking Identity IAT and Alcohol Identity IAT are related but not redundant. Moreover, given that the Drinking Identity IAT, but not the Alcohol Identity IAT, incrementally predicted variance in drinking outcomes, identification with drinking behavior and social groups, as opposed to identification with alcohol itself, may be an especially strong predictor of drinking outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Trendel, Olivier; Werle, Carolina O C
2016-09-01
Eating behaviors largely result from automatic processes. Yet, in existing research, automatic or implicit attitudes toward food often fail to predict eating behaviors. Applying findings in cognitive neuroscience research, we propose and find that a central reason why implicit attitudes toward food are not good predictors of eating behaviors is that implicit attitudes are driven by two distinct constructs that often have diverging evaluative consequences: the automatic affective reactions to food (e.g., tastiness; the affective basis of implicit attitudes) and the automatic cognitive reactions to food (e.g., healthiness; the cognitive basis of implicit attitudes). More importantly, we find that the affective and cognitive bases of implicit attitudes directly and uniquely influence actual food choices under different conditions. While the affective basis of implicit attitude is the main driver of food choices, it is the only driver when cognitive resources during choice are limited. The cognitive basis of implicit attitudes uniquely influences food choices when cognitive resources during choice are plentiful but only for participants low in impulsivity. Researchers interested in automatic processes in eating behaviors could thus benefit by distinguishing between the affective and cognitive bases of implicit attitudes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Explicit ions/implicit water generalized Born model for nucleic acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.
Ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model, and utilizes a non-standard approach to defining the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes – disconnected dielectric boundary around the solute-ion or ion-ion pairs. Fully analytical description of all energymore » components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force (PMF) for Na+-Cl− ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of DNA duplex; these differences in the counterion binding patters were shown earlier to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with homopolymeric poly(dA·dT) DNA duplex with modified (de-methylated) and native Thymine bases are used to explore the physics behind CoHex-Thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-Thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range, and may be important to consider in the context of methylation effects on DNA condensation.« less
Explicit ions/implicit water generalized Born model for nucleic acids
NASA Astrophysics Data System (ADS)
Tolokh, Igor S.; Thomas, Dennis G.; Onufriev, Alexey V.
2018-05-01
The ion atmosphere around highly charged nucleic acid molecules plays a significant role in their dynamics, structure, and interactions. Here we utilized the implicit solvent framework to develop a model for the explicit treatment of ions interacting with nucleic acid molecules. The proposed explicit ions/implicit water model is based on a significantly modified generalized Born (GB) model and utilizes a non-standard approach to define the solute/solvent dielectric boundary. Specifically, the model includes modifications to the GB interaction terms for the case of multiple interacting solutes—disconnected dielectric boundary around the solute-ion or ion-ion pairs. A fully analytical description of all energy components for charge-charge interactions is provided. The effectiveness of the approach is demonstrated by calculating the potential of mean force for Na+-Cl- ion pair and by carrying out a set of Monte Carlo (MC) simulations of mono- and trivalent ions interacting with DNA and RNA duplexes. The monovalent (Na+) and trivalent (CoHex3+) counterion distributions predicted by the model are in close quantitative agreement with all-atom explicit water molecular dynamics simulations used as reference. Expressed in the units of energy, the maximum deviations of local ion concentrations from the reference are within kBT. The proposed explicit ions/implicit water GB model is able to resolve subtle features and differences of CoHex distributions around DNA and RNA duplexes. These features include preferential CoHex binding inside the major groove of the RNA duplex, in contrast to CoHex biding at the "external" surface of the sugar-phosphate backbone of the DNA duplex; these differences in the counterion binding patters were earlier shown to be responsible for the observed drastic differences in condensation propensities between short DNA and RNA duplexes. MC simulations of CoHex ions interacting with the homopolymeric poly(dA.dT) DNA duplex with modified (de-methylated) and native thymine bases are used to explore the physics behind CoHex-thymine interactions. The simulations suggest that the ion desolvation penalty due to proximity to the low dielectric volume of the methyl group can contribute significantly to CoHex-thymine interactions. Compared to the steric repulsion between the ion and the methyl group, the desolvation penalty interaction has a longer range and may be important to consider in the context of methylation effects on DNA condensation.
Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data
Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho
2017-01-01
With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models. PMID:28335486
Implicit Regularization for Reconstructing 3D Building Rooftop Models Using Airborne LiDAR Data.
Jung, Jaewook; Jwa, Yoonseok; Sohn, Gunho
2017-03-19
With rapid urbanization, highly accurate and semantically rich virtualization of building assets in 3D become more critical for supporting various applications, including urban planning, emergency response and location-based services. Many research efforts have been conducted to automatically reconstruct building models at city-scale from remotely sensed data. However, developing a fully-automated photogrammetric computer vision system enabling the massive generation of highly accurate building models still remains a challenging task. One the most challenging task for 3D building model reconstruction is to regularize the noises introduced in the boundary of building object retrieved from a raw data with lack of knowledge on its true shape. This paper proposes a data-driven modeling approach to reconstruct 3D rooftop models at city-scale from airborne laser scanning (ALS) data. The focus of the proposed method is to implicitly derive the shape regularity of 3D building rooftops from given noisy information of building boundary in a progressive manner. This study covers a full chain of 3D building modeling from low level processing to realistic 3D building rooftop modeling. In the element clustering step, building-labeled point clouds are clustered into homogeneous groups by applying height similarity and plane similarity. Based on segmented clusters, linear modeling cues including outer boundaries, intersection lines, and step lines are extracted. Topology elements among the modeling cues are recovered by the Binary Space Partitioning (BSP) technique. The regularity of the building rooftop model is achieved by an implicit regularization process in the framework of Minimum Description Length (MDL) combined with Hypothesize and Test (HAT). The parameters governing the MDL optimization are automatically estimated based on Min-Max optimization and Entropy-based weighting method. The performance of the proposed method is tested over the International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark datasets. The results show that the proposed method can robustly produce accurate regularized 3D building rooftop models.
Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary
Nowacki, Daniel J.; Beudin, Alexis; Ganju, Neil K.
2017-01-01
Submerged aquatic vegetation is generally thought to attenuate waves, but this interaction remains poorly characterized in shallow-water field settings with locally generated wind waves. Better quantification of wave–vegetation interaction can provide insight to morphodynamic changes in a variety of environments and also is relevant to the planning of nature-based coastal protection measures. Toward that end, an instrumented transect was deployed across a Zostera marina (common eelgrass) meadow in Chincoteague Bay, Maryland/Virginia, U.S.A., to characterize wind-wave transformation within the vegetated region. Field observations revealed wave-height reduction, wave-period transformation, and wave-energy dissipation with distance into the meadow, and the data informed and calibrated a spectral wave model of the study area. The field observations and model results agreed well when local wind forcing and vegetation-induced drag were included in the model, either explicitly as rigid vegetation elements or implicitly as large bed-roughness values. Mean modeled parameters were similar for both the explicit and implicit approaches, but the spectral performance of the explicit approach was poor compared to the implicit approach. The explicit approach over-predicted low-frequency energy within the meadow because the vegetation scheme determines dissipation using mean wavenumber and frequency, in contrast to the bed-friction formulations, which dissipate energy in a variable fashion across frequency bands. Regardless of the vegetation scheme used, vegetation was the most important component of wave dissipation within much of the study area. These results help to quantify the influence of submerged aquatic vegetation on wave dynamics in future model parameterizations, field efforts, and coastal-protection measures.
Burroughs, Nigel J.; Köhler, Karsten; Miloserdov, Vladimir; Dustin, Michael L.; van der Merwe, P. Anton; Davis, Daniel M.
2011-01-01
Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell) or KIR (NK cell). However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D) and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell∶cell communication and cell signalling, governing protein interactions and protein aggregation. PMID:21829338
Suslow, Thomas; Lindner, Christian; Kugel, Harald; Egloff, Boris; Schmukle, Stefan C
2014-08-30
There is evidence from research based on self-report personality measures that schizophrenia patients tend to be lower in extraversion and higher in neuroticism than healthy individuals. Self-report personality measures assess aspects of the explicit self-concept. The Implicit Association Test (IAT) has been developed to assess aspects of implicit cognition such as implicit attitudes and implicit personality traits. The present study was conducted to investigate the applicability and reliability of the IAT in schizophrenia patients and test whether they differ from healthy individuals on implicitly measured extraversion and neuroticism. The IAT and the NEO-FFI were administered as implicit and explicit measures of extraversion and neuroticism to 34 schizophrenia patients and 45 healthy subjects. For all IAT scores satisfactory to good reliabilities were observed in the patient sample. In both study groups, IAT scores were not related to NEO-FFI scores. Schizophrenia patients were lower in implicit and explicit extraversion and higher in implicit and explicit neuroticism than healthy individuals. Our data show that the IAT can be reliably applied to schizophrenia patients and suggest that they differ from healthy individuals not only in their conscious representation but also in their implicit representation of the self with regard to neuroticism and extraversion-related characteristics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Implicit Associations and Explicit Expectancies toward Cannabis in Heavy Cannabis Users and Controls
Beraha, Esther M.; Cousijn, Janna; Hermanides, Elisa; Goudriaan, Anna E.; Wiers, Reinout W.
2013-01-01
Cognitive biases, including implicit memory associations are thought to play an important role in the development of addictive behaviors. The aim of the present study was to investigate implicit affective memory associations in heavy cannabis users. Implicit positive-arousal, sedation, and negative associations toward cannabis were measured with three Single Category Implicit Association Tests (SC-IAT’s) and compared between 59 heavy cannabis users and 89 controls. Moreover, we investigated the relationship between these implicit affective associations and explicit expectancies, subjective craving, cannabis use, and cannabis related problems. Results show that heavy cannabis users had stronger implicit positive-arousal associations but weaker implicit negative associations toward cannabis compared to controls. Moreover, heavy cannabis users had stronger sedation but weaker negative explicit expectancies toward cannabis compared to controls. Within heavy cannabis users, more cannabis use was associated with stronger implicit negative associations whereas more cannabis use related problems was associated with stronger explicit negative expectancies, decreasing the overall difference on negative associations between cannabis users and controls. No other associations were observed between implicit associations, explicit expectancies, measures of cannabis use, cannabis use related problems, or subjective craving. These findings indicate that, in contrast to other substances of abuse like alcohol and tobacco, the relationship between implicit associations and cannabis use appears to be weak in heavy cannabis users. PMID:23801968
Gambling and Sport: Implicit Association and Explicit Intention Among Underage Youth.
Li, En; Langham, Erika; Browne, Matthew; Rockloff, Matthew; Thorne, Hannah
2018-03-23
This study examined whether an implicit association existed between gambling and sport among underage youth in Australia, and whether this implicit association could shape their explicit intention to gamble. A sample of 14-17 year old Australian participants completed two phases of tasks, including an implicit association test based online experiment, and a post-experiment online survey. The results supported the existence of an implicit association between gambling and sport among the participants. This implicit association became stronger when they saw sport-relevant (vs. sport-irrelevant) gambling logos, or gambling-relevant (vs. gambling-irrelevant) sport names. In addition, this implicit association was positively related to the amount of sport viewing, but only among those participants who had more favorable gambling attitudes. Lastly, gambling attitudes and advertising knowledge, rather than the implicit association, turned out to be significant predictors of the explicit intention to gamble.
Smith, Colin Tucker; De Houwer, Jan
2015-01-01
Because implicit evaluations are thought to underlie many aspects of behavior, researchers have started looking for ways to change them. We examine whether and when persuasive messages alter strongly held implicit evaluations of smoking. In smokers, an affective anti-smoking message led to more negative implicit evaluations on four different implicit measures as compared to a cognitive anti-smoking message which seemed to backfire. Additional analyses suggested that the observed effects were mediated by the feelings and emotions raised by the messages. In non-smokers, both the affective and cognitive message engendered slightly more negative implicit evaluations. We conclude that persuasive messages change implicit evaluations in a way that depends on properties of the message and of the participant. Thus, our data open new avenues for research directed at tailoring persuasive messages to change implicit evaluations. PMID:26557099
Smith, Colin Tucker; De Houwer, Jan
2015-01-01
Because implicit evaluations are thought to underlie many aspects of behavior, researchers have started looking for ways to change them. We examine whether and when persuasive messages alter strongly held implicit evaluations of smoking. In smokers, an affective anti-smoking message led to more negative implicit evaluations on four different implicit measures as compared to a cognitive anti-smoking message which seemed to backfire. Additional analyses suggested that the observed effects were mediated by the feelings and emotions raised by the messages. In non-smokers, both the affective and cognitive message engendered slightly more negative implicit evaluations. We conclude that persuasive messages change implicit evaluations in a way that depends on properties of the message and of the participant. Thus, our data open new avenues for research directed at tailoring persuasive messages to change implicit evaluations.
Senese, Vincenzo Paolo; Venuti, Paola; Giordano, Francesca; Napolitano, Maria; Esposito, Gianluca; Bornstein, Marc H
2017-09-01
In this study a novel auditory version of the Single Category Implicit Association Test (SC-IAT-A) was developed to investigate (a) the valence of adults' associations to infant cries and laughs, (b) moderation of implicit associations by gender and empathy, and (c) the robustness of implicit associations controlling for auditory sensitivity. Eighty adults (50% females) were administered two SC-IAT-As, the Empathy Quotient, and the Weinstein Noise Sensitivity Scale. Adults showed positive implicit associations to infant laugh and negative ones to infant cry; only the implicit associations with the infant laugh were negatively related to empathy scores, and no gender differences were observed. Finally, implicit associations to infant cry were affected by noise sensitivity. The SC-IAT-A is useful to evaluate the valence of implicit reactions to infant auditory cues and could provide fresh insights into understanding processes that regulate the quality of adult-infant relationships.
New Age of 3D Geological Modelling or Complexity is not an Issue Anymore
NASA Astrophysics Data System (ADS)
Mitrofanov, Aleksandr
2017-04-01
Geological model has a significant value in almost all types of researches related to regional mapping, geodynamics and especially to structural and resource geology of mineral deposits. Well-developed geological model must take into account all vital features of modelling object without over-simplification and also should adequately represent the interpretation of the geologist. In recent years with the gradual exhaustion deposits with relatively simple morphology geologists from all over the world are faced with the necessity of building the representative models for more and more structurally complex objects. Meanwhile, the amount of tools used for that has not significantly changed in the last two-three decades. The most widespread method of wireframe geological modelling now was developed in 1990s and is fully based on engineering design set of instruments (so-called CAD). Strings and polygons representing the section-based interpretation are being used as an intermediate step in the process of wireframes generation. Despite of significant time required for this type of modelling, it still can provide sufficient results for simple and medium-complexity geological objects. However, with the increasing complexity more and more vital features of the deposit are being sacrificed because of fundamental inability (or much greater time required for modelling) of CAD-based explicit techniques to develop the wireframes of the appropriate complexity. At the same time alternative technology which is not based on sectional approach and which uses the fundamentally different mathematical algorithms is being actively developed in the variety of other disciplines: medicine, advanced industrial design, game and cinema industry. In the recent years this implicit technology started to being developed for geological modelling purpose and nowadays it is represented by very powerful set of tools that has been integrated in almost all major commercial software packages. Implicit modelling allows to develop geological models that really correspond with complicated geological reality. Models can include fault blocking, complex structural trends and folding; can be based on excessive input dataset (like lots of drilling on the mining stage) or, on the other hand, on a quite few drillholes intersections with significant input from geological interpretation of the deposit. In any case implicit modelling, if is used correctly, allows to incorporate the whole batch of geological data and relatively quickly get the easily adjustable, flexible and robust geological wireframes that can be used as a reliable foundation on the following stages of geological investigations. In SRK practice nowadays almost all the wireframe models used for structural and resource geology are developed with implicit modelling tools which significantly increased the speed and quality of geological modelling.
Krieger, Nancy; Waterman, Pamela D.; Kosheleva, Anna; Chen, Jarvis T.; Carney, Dana R.; Smith, Kevin W.; Bennett, Gary G.; Williams, David R.; Freeman, Elmer; Russell, Beverley; Thornhill, Gisele; Mikolowsky, Kristin; Rifkin, Rachel; Samuel, Latrice
2011-01-01
Background To date, research on racial discrimination and health typically has employed explicit self-report measures, despite their potentially being affected by what people are able and willing to say. We accordingly employed an Implicit Association Test (IAT) for racial discrimination, first developed and used in two recent published studies, and measured associations of the explicit and implicit discrimination measures with each other, socioeconomic and psychosocial variables, and smoking. Methodology/Principal Findings Among the 504 black and 501 white US-born participants, age 35–64, randomly recruited in 2008–2010 from 4 community health centers in Boston, MA, black participants were over 1.5 times more likely (p<0.05) to be worse off economically (e.g., for poverty and low education) and have higher social desirability scores (43.8 vs. 28.2); their explicit discrimination exposure was also 2.5 to 3.7 times higher (p<0.05) depending on the measure used, with over 60% reporting exposure in 3 or more domains and within the last year. Higher IAT scores for target vs. perpetrator of discrimination occurred for the black versus white participants: for “black person vs. white person”: 0.26 vs. 0.13; and for “me vs. them”: 0.24 vs. 0.19. In both groups, only low non-significant correlations existed between the implicit and explicit discrimination measures; social desirability was significantly associated with the explicit but not implicit measures. Although neither the explicit nor implicit discrimination measures were associated with odds of being a current smoker, the excess risk for black participants (controlling for age and gender) rose in models that also controlled for the racial discrimination and psychosocial variables; additional control for socioeconomic position sharply reduced and rendered the association null. Conclusions Implicit and explicit measures of racial discrimination are not equivalent and both warrant use in research on racial discrimination and health, along with data on socioeconomic position and social desirability. PMID:22125618
Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B
2017-01-01
In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Barnes-Holmes, Dermot; Murtagh, Louise; Barnes-Holmes, Yvonne; Stewart, Ian
2010-01-01
The current study aimed to assess the implicit attitudes of vegetarians and non-vegetarians towards meat and vegetables, using the Implicit Association Test (IAT) and the Implicit Relational Assessment Procedure (IRAP). Both measures involved asking participants to respond, under time pressure, to pictures of meat or vegetables as either positive…
Clerkin, Elise M; Fisher, Christopher R; Sherman, Jeffrey W; Teachman, Bethany A
2014-01-01
This study explored the automatic and controlled processes that may influence performance on an implicit measure across cognitive-behavioral group therapy for panic disorder. The Quadruple Process model was applied to error scores from an Implicit Association Test evaluating associations between the concepts Me (vs. Not Me) + Calm (vs. Panicked) to evaluate four distinct processes: Association Activation, Detection, Guessing, and Overcoming Bias. Parameter estimates were calculated in the panic group (n = 28) across each treatment session where the IAT was administered, and at matched times when the IAT was completed in the healthy control group (n = 31). Association Activation for Me + Calm became stronger over treatment for participants in the panic group, demonstrating that it is possible to change automatically activated associations in memory (vs. simply overriding those associations) in a clinical sample via therapy. As well, the Guessing bias toward the calm category increased over treatment for participants in the panic group. This research evaluates key tenets about the role of automatic processing in cognitive models of anxiety, and emphasizes the viability of changing the actual activation of automatic associations in the context of treatment, versus only changing a person's ability to use reflective processing to overcome biased automatic processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Merritt, Stephanie M; Heimbaugh, Heather; LaChapell, Jennifer; Lee, Deborah
2013-06-01
This study is the first to examine the influence of implicit attitudes toward automation on users' trust in automation. Past empirical work has examined explicit (conscious) influences on user level of trust in automation but has not yet measured implicit influences. We examine concurrent effects of explicit propensity to trust machines and implicit attitudes toward automation on trust in an automated system. We examine differential impacts of each under varying automation performance conditions (clearly good, ambiguous, clearly poor). Participants completed both a self-report measure of propensity to trust and an Implicit Association Test measuring implicit attitude toward automation, then performed an X-ray screening task. Automation performance was manipulated within-subjects by varying the number and obviousness of errors. Explicit propensity to trust and implicit attitude toward automation did not significantly correlate. When the automation's performance was ambiguous, implicit attitude significantly affected automation trust, and its relationship with propensity to trust was additive: Increments in either were related to increases in trust. When errors were obvious, a significant interaction between the implicit and explicit measures was found, with those high in both having higher trust. Implicit attitudes have important implications for automation trust. Users may not be able to accurately report why they experience a given level of trust. To understand why users trust or fail to trust automation, measurements of implicit and explicit predictors may be necessary. Furthermore, implicit attitude toward automation might be used as a lever to effectively calibrate trust.
Using the Implicit Association Test to Assess Children's Implicit Attitudes toward Smoking.
Andrews, Judy A; Hampson, Sarah E; Greenwald, Anthony G; Gordon, Judith; Widdop, Chris
2010-09-01
The development and psychometric properties of an Implicit Association Test (IAT) measuring implicit attitude toward smoking among fifth grade children were described. The IAT with "sweets" as the contrast category resulted in higher correlations with explicit attitudes than did the IAT with "healthy foods" as the contrast category. Children with family members who smoked (versus non-smoking) and children who were high in sensation seeking (versus low) had a significantly more favorable implicit attitude toward smoking. Further, implicit attitudes became less favorable after engaging in tobacco prevention activities targeting risk perceptions of addiction. Results support the reliability and validity of this version of the IAT and illustrate its usefulness in assessing young children's implicit attitude toward smoking.
Using the Implicit Association Test to Assess Children's Implicit Attitudes toward Smoking
Andrews, Judy A.; Hampson, Sarah E.; Greenwald, Anthony G.; Gordon, Judith; Widdop, Chris
2009-01-01
The development and psychometric properties of an Implicit Association Test (IAT) measuring implicit attitude toward smoking among fifth grade children were described. The IAT with “sweets” as the contrast category resulted in higher correlations with explicit attitudes than did the IAT with “healthy foods” as the contrast category. Children with family members who smoked (versus non-smoking) and children who were high in sensation seeking (versus low) had a significantly more favorable implicit attitude toward smoking. Further, implicit attitudes became less favorable after engaging in tobacco prevention activities targeting risk perceptions of addiction. Results support the reliability and validity of this version of the IAT and illustrate its usefulness in assessing young children's implicit attitude toward smoking. PMID:21566676
Three-dimensional modeling, estimation, and fault diagnosis of spacecraft air contaminants.
Narayan, A P; Ramirez, W F
1998-01-01
A description is given of the design and implementation of a method to track the presence of air contaminants aboard a spacecraft using an accurate physical model and of a procedure that would raise alarms when certain tolerance levels are exceeded. Because our objective is to monitor the contaminants in real time, we make use of a state estimation procedure that filters measurements from a sensor system and arrives at an optimal estimate of the state of the system. The model essentially consists of a convection-diffusion equation in three dimensions, solved implicitly using the principle of operator splitting, and uses a flowfield obtained by the solution of the Navier-Stokes equations for the cabin geometry, assuming steady-state conditions. A novel implicit Kalman filter has been used for fault detection, a procedure that is an efficient way to track the state of the system and that uses the sparse nature of the state transition matrices.
Study of the application of an implicit model-following flight controller to lift-fan VTOL aircraft
NASA Technical Reports Server (NTRS)
Merrick, V. K.
1977-01-01
An implicit model-following flight controller is proposed. This controller is relatively simple in concept: it provides an input/output relationship that is approximately that of any selected second order system; it provides good gust alleviation; and it is self-trimming. The flight controller was applied to all axes of a comprehensive mathematical model of a lift-fan V/STOL transport. Power management controls and displays were designed to match the various modes of control provided by the flight controller. A piloted simulation was performed using a six degree of freedom simulator. The fixed-operating-point handling qualities throughout the powered lift flight envelope received pilot ratings of 3-1/2 or better. Approaches and vertical landings in IFR zero-zero conditions received pilot ratings varying from 2-1/2 to 4 depending on the type of approach and weather conditions.
NASA Astrophysics Data System (ADS)
Bonaventura, Luca; Fernández-Nieto, Enrique D.; Garres-Díaz, José; Narbona-Reina, Gladys
2018-07-01
We propose an extension of the discretization approaches for multilayer shallow water models, aimed at making them more flexible and efficient for realistic applications to coastal flows. A novel discretization approach is proposed, in which the number of vertical layers and their distribution are allowed to change in different regions of the computational domain. Furthermore, semi-implicit schemes are employed for the time discretization, leading to a significant efficiency improvement for subcritical regimes. We show that, in the typical regimes in which the application of multilayer shallow water models is justified, the resulting discretization does not introduce any major spurious feature and allows again to reduce substantially the computational cost in areas with complex bathymetry. As an example of the potential of the proposed technique, an application to a sediment transport problem is presented, showing a remarkable improvement with respect to standard discretization approaches.
Power effects on implicit prejudice and stereotyping: The role of intergroup face processing.
Schmid, Petra C; Amodio, David M
2017-04-01
Power is thought to increase discrimination toward subordinate groups, yet its effect on different forms of implicit bias remains unclear. We tested whether power enhances implicit racial stereotyping, in addition to implicit prejudice (i.e., evaluative associations), and examined the effect of power on the automatic processing of faces during implicit tasks. Study 1 showed that manipulated high power increased both forms of implicit bias, relative to low power. Using a neural index of visual face processing (the N170 component of the ERP), Study 2 revealed that power affected the encoding of White ingroup vs. Black outgroup faces. Whereas high power increased the relative processing of outgroup faces during evaluative judgments in the prejudice task, it decreased the relative processing of outgroup faces during stereotype trait judgments. An indirect effect of power on implicit prejudice through enhanced processing of outgroup versus ingroup faces suggested a potential link between face processing and implicit bias. Together, these findings demonstrate that power can affect implicit prejudice and stereotyping as well as early processing of racial ingroup and outgroup faces.
Implicit Attitudes toward the Self Over Time in Chinese Undergraduates
Yang, Qing; Zhao, Yufang; Guan, Lili; Huang, Xiting
2017-01-01
Although the explicit attitudes of Chinese people toward the self over time are known (i.e., past = present < future), little is known about their implicit attitudes. Two studies were conducted to measure the implicit subjective temporal trajectory (STT) of Chinese undergraduates. Study 1 used a Go/No-go association task to measure participants’ implicit attitudes toward their past, present, and future selves. The obtained implicit STT was different from the explicit pattern found in former research. It showed that the future self was viewed to be identical to the present self and participants implicitly evaluated their present self as better than the past self. Since this comparison of the past and present selves suggested a cultural difference, we aimed to replicate this finding in Study 2. Using an implicit association test, we again found that the present self was more easily associated with positive valence than the past self. Overall, both studies reveal an implicitly inclining-flat STT (i.e., past < present = future) for Chinese undergraduates. Implications of this difference in explicit-implicit measures and the cultural differences of temporal self appraisals are discussed. PMID:29163291
Health Care Providers’ Implicit and Explicit Attitudes Toward Lesbian Women and Gay Men
Riskind, Rachel G.; Nosek, Brian A.
2015-01-01
Objectives. We examined providers’ implicit and explicit attitudes toward lesbian and gay people by provider gender, sexual identity, and race/ethnicity. Methods. We examined attitudes toward heterosexual people versus lesbian and gay people in Implicit Association Test takers: 2338 medical doctors, 5379 nurses, 8531 mental health providers, 2735 other treatment providers, and 214 110 nonproviders in the United States and internationally between May 2006 and December 2012. We characterized the sample with descriptive statistics and calculated Cohen d, a standardized effect size measure, with 95% confidence intervals. Results. Among heterosexual providers, implicit preferences always favored heterosexual people over lesbian and gay people. Implicit preferences for heterosexual women were weaker than implicit preferences for heterosexual men. Heterosexual nurses held the strongest implicit preference for heterosexual men over gay men (Cohen d = 1.30; 95% confidence interval = 1.28, 1.32 among female nurses; Cohen d = 1.38; 95% confidence interval = 1.32, 1.44 among male nurses). Among all groups, explicit preferences for heterosexual versus lesbian and gay people were weaker than implicit preferences. Conclusions. Implicit preferences for heterosexual people versus lesbian and gay people are pervasive among heterosexual health care providers. Future research should investigate how implicit sexual prejudice affects care. PMID:26180976
Implicit attitudes towards homosexuality: reliability, validity, and controllability of the IAT.
Banse, R; Seise, J; Zerbes, N
2001-01-01
Two experiments were conducted to investigate the psychometric properties of an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) that was adapted to measure implicit attitudes towards homosexuality. In a first experiment, the validity of the Homosexuality-IAT was tested using a known group approach. Implicit and explicit attitudes were assessed in heterosexual and homosexual men and women (N = 101). The results provided compelling evidence for the convergent and discriminant validity of the Homosexuality-IAT as a measure of implicit attitudes. No evidence was found for two alternative explanations of IAT effects (familiarity with stimulus material and stereotype knowledge). The internal consistency of IAT scores was satisfactory (alpha s > .80), but retest correlations were lower. In a second experiment (N = 79) it was shown that uninformed participants were able to fake positive explicit but not implicit attitudes. Discrepancies between implicit and explicit attitudes towards homosexuality could be partially accounted for by individual differences in the motivation to control prejudiced behavior, thus providing independent evidence for the validity of the implicit attitude measure. Neither explicit nor implicit attitudes could be changed by persuasive messages. The results of both experiments are interpreted as evidence for a single construct account of implicit and explicit attitudes towards homosexuality.
Keng, Shian-Ling; Seah, Stanley T H; Tong, Eddie M W; Smoski, Moria
2016-08-01
Mindfulness-based interventions have been shown to be effective in alleviating depressive symptoms. While much work has examined the effects of mindfulness training on subjective symptoms and experiences, and less is known regarding whether mindfulness training may alter relatively uncontrollable cognitive processes associated with depressed mood, particularly implicit dysfunctional attitudes. The present study examined the effects of a brief mindful acceptance induction on implicit dysfunctional attitudes and degree of concordance between implicit and explicit dysfunctional attitudes in the context of sad mood. A total of 79 adult participants with elevated depressive symptoms underwent an autobiographical mood induction procedure before being randomly assigned to mindful acceptance or thought wandering inductions. Results showed that the effect of mindful acceptance on implicit dysfunctional attitude was significantly moderated by trait mindfulness. Participants high on trait mindfulness demonstrated significant improvements in implicit dysfunctional attitudes following the mindful acceptance induction. Those low on trait mindfulness demonstrated significantly worse implicit dysfunctional attitudes following the induction. Significantly greater levels of concordance between implicit and explicit dysfunctional attitudes were observed in the mindful acceptance condition versus the thought wandering condition. The findings highlight changes in implicit dysfunctional attitudes and improvements in self-concordance as two potential mechanisms underlying the effects of mindfulness-based interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lee, Jihyun; Jang, Seonyoung
2014-01-01
Instructional design (ID) models have been developed to promote understandings of ID reality and guide ID performance. As the number and diversity of ID practices grows, implicit doubts regarding the reliability, validity, and usefulness of ID models suggest the need for methodological guidance that would help to generate ID models that are…
ERIC Educational Resources Information Center
Moore, Janette; Smith, Gillian W.; Shevlin, Mark; O'Neill, Francis A.
2010-01-01
An alternative models framework was used to test three confirmatory factor analytic models for the Short Leyton Obsessional Inventory-Children's Version (Short LOI-CV) in a general population sample of 517 young adolescent twins (11-16 years). A one-factor model as implicit in current classification systems of Obsessive-Compulsive Disorder (OCD),…
USDA-ARS?s Scientific Manuscript database
AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic and water quality (H/WQ) simulation components under the Java Connection Framework (JCF) and the Object Modeling System (OMS) environmental modeling framework. AgES-W is implicitly scala...
Michino, Mayako; Chen, Jianhan; Stevens, Raymond C; Brooks, Charles L
2010-08-01
Building reliable structural models of G protein-coupled receptors (GPCRs) is a difficult task because of the paucity of suitable templates, low sequence identity, and the wide variety of ligand specificities within the superfamily. Template-based modeling is known to be the most successful method for protein structure prediction. However, refinement of homology models within 1-3 A C alpha RMSD of the native structure remains a major challenge. Here, we address this problem by developing a novel protocol (foldGPCR) for modeling the transmembrane (TM) region of GPCRs in complex with a ligand, aimed to accurately model the structural divergence between the template and target in the TM helices. The protocol is based on predicted conserved inter-residue contacts between the template and target, and exploits an all-atom implicit membrane force field. The placement of the ligand in the binding pocket is guided by biochemical data. The foldGPCR protocol is implemented by a stepwise hierarchical approach, in which the TM helical bundle and the ligand are assembled by simulated annealing trials in the first step, and the receptor-ligand complex is refined with replica exchange sampling in the second step. The protocol is applied to model the human beta(2)-adrenergic receptor (beta(2)AR) bound to carazolol, using contacts derived from the template structure of bovine rhodopsin. Comparison with the X-ray crystal structure of the beta(2)AR shows that our protocol is particularly successful in accurately capturing helix backbone irregularities and helix-helix packing interactions that distinguish rhodopsin from beta(2)AR. (c) 2010 Wiley-Liss, Inc.
Implicit approximate-factorization schemes for the low-frequency transonic equation
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Steger, J. L.
1975-01-01
Two- and three-level implicit finite-difference algorithms for the low-frequency transonic small disturbance-equation are constructed using approximate factorization techniques. The schemes are unconditionally stable for the model linear problem. For nonlinear mixed flows, the schemes maintain stability by the use of conservatively switched difference operators for which stability is maintained only if shock propagation is restricted to be less than one spatial grid point per time step. The shock-capturing properties of the schemes were studied for various shock motions that might be encountered in problems of engineering interest. Computed results for a model airfoil problem that produces a flow field similar to that about a helicopter rotor in forward flight show the development of a shock wave and its subsequent propagation upstream off the front of the airfoil.
Characterizing Implicit Mental Health Associations across Clinical Domains
Werntz, Alexandra J.; Steinman, Shari A.; Glenn, Jeffrey J.; Nock, Matthew K.; Teachman, Bethany A.
2016-01-01
Background and objectives Implicit associations are relatively uncontrollable associations between concepts in memory. The current investigation focuses on implicit associations in four mental health domains (alcohol use, anxiety, depression, and eating disorders) and how these implicit associations: a) relate to explicit associations and b) self-reported clinical symptoms within the same domains, and c) vary based on demographic characteristics (age, gender, race, ethnicity, and education). Methods Participants (volunteers over age 18 to a research website) completed implicit association (Implicit Association Tests), explicit association (self+psychopathology or attitudes toward food, using semantic differential items), and symptom measures at the Project Implicit Mental Health website tied to: alcohol use (N=12,387), anxiety (N=21,304), depression (N=24,126), or eating disorders (N=10,115). Results Within each domain, implicit associations showed small to moderate associations with explicit associations and symptoms, and predicted self-reported symptoms beyond explicit associations. In general, implicit association strength varied little by race and ethnicity, but showed small ties to age, gender, and education. Limitations This research was conducted on a public research and education website, where participants could take more than one of the studies. Conclusions Among a large and diverse sample, implicit associations in the four domains are congruent with explicit associations and self-reported symptoms, and also add to our prediction of self-reported symptoms over and above explicit associations, pointing to the potential future clinical utility and validity of using implicit association measures with diverse populations. PMID:26962979
Nakamura, Mitsuo; Hayakawa, Tomomi; Okamura, Aiko; Kohigashi, Mutsumi; Fukui, Kenji; Narumoto, Jin
2015-01-01
Background If delusions serve as a defense mechanism in schizophrenia patients with paranoia, then they should show normal or high explicit self-esteem and low implicit self-esteem. However, the results of previous studies are inconsistent. One possible explanation for this inconsistency is that there are two types of paranoia, “bad me” (self-blaming) paranoia and “poor me” (non-self-blaming) paranoia. We thus examined implicit and explicit self-esteem and self-blaming tendency in patients with schizophrenia and schizoaffective disorder. We hypothesized that patients with paranoia would show lower implicit self-esteem and only those with non-self-blaming paranoia would experience a discrepancy between explicit and implicit self-esteem. Methods Participants consisted of patients with schizophrenia and schizoaffective disorder recruited from a day hospital (N=71). Participants were assessed for psychotic symptoms, using the Brief Psychiatric Rating Scale (BPRS), and self-blaming tendency, using the brief COPE. We also assessed explicit self-esteem, using the Rosenberg Self-Esteem Scale (RSES), implicit self-esteem, using Brief Implicit Association Test (BIAT), and discrepancy between explicit and implicit self-esteem. Results Contrary to our hypothesis, implicit self-esteem in paranoia and nonparanoia showed no statistical difference. As expected, only patients with non-self-blaming paranoia experienced a discrepancy between explicit and implicit self-esteem; other groups showed no such discrepancy. Conclusion These results suggest that persecutory delusion plays a defensive role in non-self-blaming paranoia. PMID:25565849
Characterizing implicit mental health associations across clinical domains.
Werntz, Alexandra J; Steinman, Shari A; Glenn, Jeffrey J; Nock, Matthew K; Teachman, Bethany A
2016-09-01
Implicit associations are relatively uncontrollable associations between concepts in memory. The current investigation focuses on implicit associations in four mental health domains (alcohol use, anxiety, depression, and eating disorders) and how these implicit associations: a) relate to explicit associations and b) self-reported clinical symptoms within the same domains, and c) vary based on demographic characteristics (age, gender, race, ethnicity, and education). Participants (volunteers over age 18 to a research website) completed implicit association (Implicit Association Tests), explicit association (self + psychopathology or attitudes toward food, using semantic differential items), and symptom measures at the Project Implicit Mental Health website tied to: alcohol use (N = 12,387), anxiety (N = 21,304), depression (N = 24,126), or eating disorders (N = 10,115). Within each domain, implicit associations showed small to moderate associations with explicit associations and symptoms, and predicted self-reported symptoms beyond explicit associations. In general, implicit association strength varied little by race and ethnicity, but showed small ties to age, gender, and education. This research was conducted on a public research and education website, where participants could take more than one of the studies. Among a large and diverse sample, implicit associations in the four domains are congruent with explicit associations and self-reported symptoms, and also add to our prediction of self-reported symptoms over and above explicit associations, pointing to the potential future clinical utility and validity of using implicit association measures with diverse populations. Copyright © 2016 Elsevier Ltd. All rights reserved.
An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Li, Chung-Gang; Tsubokura, Makoto
2017-09-01
The original Roe scheme is well-known to be unsuitable in simulations of turbulence because the dissipation that develops is unsatisfactory. Simulations of turbulent channel flow for Reτ = 180 show that, with the 'low-Mach-fix for Roe' (LMRoe) proposed by Rieper [J. Comput. Phys. 230 (2011) 5263-5287], the Roe dissipation term potentially equates the simulation to an implicit large eddy simulation (ILES) at low Mach number. Thus inspired, a new implicit turbulence model for low Mach numbers is proposed that controls the Roe dissipation term appropriately. Referred to as the automatic dissipation adjustment (ADA) model, the method of solution follows procedures developed previously for the truncated Navier-Stokes (TNS) equations and, without tuning of parameters, uses the energy ratio as a criterion to automatically adjust the upwind dissipation. Turbulent channel flow at two different Reynold numbers and the Taylor-Green vortex were performed to validate the ADA model. In simulations of turbulent channel flow for Reτ = 180 at Mach number of 0.05 using the ADA model, the mean velocity and turbulence intensities are in excellent agreement with DNS results. With Reτ = 950 at Mach number of 0.1, the result is also consistent with DNS results, indicating that the ADA model is also reliable at higher Reynolds numbers. In simulations of the Taylor-Green vortex at Re = 3000, the kinetic energy is consistent with the power law of decaying turbulence with -1.2 exponents for both LMRoe with and without the ADA model. However, with the ADA model, the dissipation rate can be significantly improved near the dissipation peak region and the peak duration can be also more accurately captured. With a firm basis in TNS theory, applicability at higher Reynolds number, and ease in implementation as no extra terms are needed, the ADA model offers to become a promising tool for turbulence modeling.
Not explicit but implicit memory is influenced by individual perception style
Tsushima, Yoshiaki
2018-01-01
Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style. PMID:29370212
Not explicit but implicit memory is influenced by individual perception style.
Hine, Kyoko; Tsushima, Yoshiaki
2018-01-01
Not only explicit but also implicit memory has considerable influence on our daily life. However, it is still unclear whether explicit and implicit memories are sensitive to individual differences. Here, we investigated how individual perception style (global or local) correlates with implicit and explicit memory. As a result, we found that not explicit but implicit memory was affected by the perception style: local perception style people more greatly used implicit memory than global perception style people. These results help us to make the new effective application adapting to individual perception style and understand some clinical symptoms such as autistic spectrum disorder. Furthermore, this finding might give us new insight of memory involving consciousness and unconsciousness as well as relationship between implicit/explicit memory and individual perception style.
Drinkers' memory bias for alcohol picture cues in explicit and implicit memory tasks.
Nguyen-Louie, Tam T; Buckman, Jennifer F; Ray, Suchismita; Bates, Marsha E
2016-03-01
Alcohol cues can bias attention and elicit emotional reactions, especially in drinkers. Yet, little is known about how alcohol cues affect explicit and implicit memory processes, and how memory for alcohol cues is affected by acute alcohol intoxication. Young adult participants (N=161) were randomly assigned to alcohol, placebo, or control beverage conditions. Following beverage consumption, they were shown neutral, emotional and alcohol-related pictures cues. Participants then completed free recall and repetition priming tasks to test explicit and implicit memory, respectively, for picture cues. Average blood alcohol concentration for the alcohol group was 74±13mg/dl when memory testing began. Two mixed linear model analyses were conducted to examine the effects of beverage condition, picture cue type, and their interaction on explicit and implicit memory. Picture cue type and beverage condition each significantly affected explicit recall of picture cues, whereas only picture cue type significantly influenced repetition priming. Individuals in the alcohol condition recalled significantly fewer pictures than those in other conditions, regardless of cue type. Both free recall and repetition priming were greater for emotional and alcohol-related cues compared to neutral picture cues. No interaction effects were detected. Young adult drinkers showed enhanced explicit and implicit memory processing of alcohol cues compared to emotionally neutral cues. This enhanced processing for alcohol cues was on par with that seen for positive emotional cues. Acute alcohol intoxication did not alter this preferential memory processing for alcohol cues over neutral cues. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ha, Sanghyun; Park, Junshin; You, Donghyun
2018-01-01
Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution methods used in the semi-implicit fractional-step method take advantage of multiple tridiagonal matrices whose inversion is known as the major bottleneck for acceleration on a typical multi-core machine. A novel implementation of the semi-implicit fractional-step method designed for GPU acceleration of the incompressible Navier-Stokes equations is presented. Aspects of the programing model of Compute Unified Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the present method are discussed in detail. A data layout for efficient use of CUDA libraries is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the Navier-Stokes equations are computed on a GPU. Performance of the present method using CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI with the speed of solving one heptadiagonal matrix using a conjugate gradient method. An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup is reached for the same problem using a Tesla P100 GPU.
NASA Technical Reports Server (NTRS)
McCormick, S.; Ruge, John W.
1998-01-01
This work represents a part of a project to develop an atmospheric general circulation model based on the semi-Lagrangian advection of potential vorticity (PC) with divergence as the companion prognostic variable.
Wegener, Ingo; Geiser, Franziska; Alfter, Susanne; Mierke, Jan; Imbierowicz, Katrin; Kleiman, Alexandra; Koch, Anne Sarah; Conrad, Rupert
2015-04-01
Self-esteem has been claimed to be an important factor in the development and maintenance of depression. Whereas explicit self-esteem is usually reduced in depressed individuals, studies on implicitly measured self-esteem in depression exhibit a more heterogeneous pattern of results, and the role of implicit self-esteem in depression is still ambiguous. Previous research on implicit self-esteem compensation (ISEC) revealed that implicit self-esteem can mirror processes of self-esteem compensation under conditions that threaten self-esteem. We assume that depressed individuals experience a permanent threat to their selves resulting in enduring processes of ISEC. We hypothesize that ISEC as measured by implicit self-esteem will decrease when individuals recover from depression. 45 patients with major depression received an integrative in-patient treatment in the Psychosomatic University Hospital Bonn, Germany. Depression was measured by the depression score of the Hospital Anxiety and Depression Scale (HADS-D). Self-esteem was assessed explicitly using the Rosenberg Self-Esteem Scale (RSES) and implicitly by the Implicit Association Test (IAT) and the Name Letter Test (NLT). As expected for a successful treatment of depression, depression scores declined during the eight weeks of treatment and explicit self-esteem rose. In line with our hypothesis, both measures of implicit self-esteem decreased, indicating reduced processes of ISEC. It still remains unclear, under which conditions there is an overlap of measures of implicit and explicit self-esteem. The results lend support to the concept of ISEC and demonstrate the relevance of implicit self-esteem and self-esteem compensation for the understanding of depression. Copyright © 2014 Elsevier Inc. All rights reserved.
Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W
2012-09-01
Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Evaluating an Expectation-Driven Question-under-Discussion Model of Discourse Interpretation
ERIC Educational Resources Information Center
Kehler, Andrew; Rohde, Hannah
2017-01-01
According to Question-Under-Discussion (QUD) models of discourse interpretation, clauses cohere with the preceding context by virtue of providing answers to (usually implicit) questions that are situated within a speaker's goal-driven strategy of inquiry. In this article we present four experiments that examine the predictions of a QUD model of…
Accommodating Missing Data in Mixture Models for Classification by Opinion-Changing Behavior.
ERIC Educational Resources Information Center
Hill, Jennifer L.
2001-01-01
Explored the assumptions implicit in models reflecting three different approaches to missing survey response data using opinion data collected from Swiss citizens at four time points over nearly 2 years. Results suggest that the latently ignorable model has the least restrictive structural assumptions. Discusses the idea of "durable…
Taming the Warrant in Toulmin's Model of Argument
ERIC Educational Resources Information Center
Warren, James E.
2010-01-01
In the Toulmin model, arguments begin with a "claim" supported by "data." The movement from claim to data is authorized by a general, unstated proposition Stephen E. Toulmin calls the "warrant." Unlike all other components of the Toulmin model, warrants usually remain implicit in an argument; they are the unspoken assumptions that bind together…
Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking.
Lages, Martin; Scheel, Anne
2016-01-01
We investigated the proposition of a two-systems Theory of Mind in adults' belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko
2007-10-01
The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.
Visuomotor adaptation in head-mounted virtual reality versus conventional training
Anglin, J. M.; Sugiyama, T.; Liew, S.-L.
2017-01-01
Immersive, head-mounted virtual reality (HMD-VR) provides a unique opportunity to understand how changes in sensory environments affect motor learning. However, potential differences in mechanisms of motor learning and adaptation in HMD-VR versus a conventional training (CT) environment have not been extensively explored. Here, we investigated whether adaptation on a visuomotor rotation task in HMD-VR yields similar adaptation effects in CT and whether these effects are achieved through similar mechanisms. Specifically, recent work has shown that visuomotor adaptation may occur via both an implicit, error-based internal model and a more cognitive, explicit strategic component. We sought to measure both overall adaptation and balance between implicit and explicit mechanisms in HMD-VR versus CT. Twenty-four healthy individuals were placed in either HMD-VR or CT and trained on an identical visuomotor adaptation task that measured both implicit and explicit components. Our results showed that the overall timecourse of adaption was similar in both HMD-VR and CT. However, HMD-VR participants utilized a greater cognitive strategy than CT, while CT participants engaged in greater implicit learning. These results suggest that while both conditions produce similar results in overall adaptation, the mechanisms by which visuomotor adaption occurs in HMD-VR appear to be more reliant on cognitive strategies. PMID:28374808
Implicit Space-Time Conservation Element and Solution Element Schemes
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Himansu, Ananda; Wang, Xiao-Yen
1999-01-01
Artificial numerical dissipation is in important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate implicit numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The new schemes presented are two highly accurate implicit solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to convection-dominated equations with very small viscosity. The stability and consistency of the schemes are analysed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.
Stern, D N; Sander, L W; Nahum, J P; Harrison, A M; Lyons-Ruth, K; Morgan, A C; Bruschweiler-Stern, N; Tronick, E Z
1998-10-01
It is by now generally accepted that something more than interpretation is necessary to bring about therapeutic change. Using an approach based on recent studies of mother-infant interaction and non-linear dynamic systems and their relation to theories of mind, the authors propose that the something more resides in interactional intersubjective process that give rise to what they will call 'implicit relational knowing'. This relational procedural domain is intrapsychically distinct from the symbolic domain. In the analytic relationship it comprises intersubjective moments occurring between patient and analyst that can create new organisations in, or reorganise not only the relationship between the interactants, but more importantly the patient's implicit procedural knowledge, his ways of being with others. The distinct qualities and consequences of these moments (now moments, 'moments of meeting') are modelled and discussed in terms of a sequencing process that they call moving along. Conceptions of the shared implicit relationship, transference and countertransference are discussed within the parameters of this perspective, which is distinguished from other relational theories and self-psychology. In sum, powerful therapeutic action occurs within implicit relational knowledge. They propose that much of what is observed to be lasting therapeutic effect results from such changes in this intersubjective relational domain.
Time integration algorithms for the two-dimensional Euler equations on unstructured meshes
NASA Technical Reports Server (NTRS)
Slack, David C.; Whitaker, D. L.; Walters, Robert W.
1994-01-01
Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.
Pos, Edwin; Guevara Andino, Juan Ernesto; Sabatier, Daniel; Molino, Jean-François; Pitman, Nigel; Mogollón, Hugo; Neill, David; Cerón, Carlos; Rivas-Torres, Gonzalo; Di Fiore, Anthony; Thomas, Raquel; Tirado, Milton; Young, Kenneth R; Wang, Ophelia; Sierra, Rodrigo; García-Villacorta, Roosevelt; Zagt, Roderick; Palacios Cuenca, Walter; Aulestia, Milton; Ter Steege, Hans
2017-06-01
With many sophisticated methods available for estimating migration, ecologists face the difficult decision of choosing for their specific line of work. Here we test and compare several methods, performing sanity and robustness tests, applying to large-scale data and discussing the results and interpretation. Five methods were selected to compare for their ability to estimate migration from spatially implicit and semi-explicit simulations based on three large-scale field datasets from South America (Guyana, Suriname, French Guiana and Ecuador). Space was incorporated semi-explicitly by a discrete probability mass function for local recruitment, migration from adjacent plots or from a metacommunity. Most methods were able to accurately estimate migration from spatially implicit simulations. For spatially semi-explicit simulations, estimation was shown to be the additive effect of migration from adjacent plots and the metacommunity. It was only accurate when migration from the metacommunity outweighed that of adjacent plots, discrimination, however, proved to be impossible. We show that migration should be considered more an approximation of the resemblance between communities and the summed regional species pool. Application of migration estimates to simulate field datasets did show reasonably good fits and indicated consistent differences between sets in comparison with earlier studies. We conclude that estimates of migration using these methods are more an approximation of the homogenization among local communities over time rather than a direct measurement of migration and hence have a direct relationship with beta diversity. As betadiversity is the result of many (non)-neutral processes, we have to admit that migration as estimated in a spatial explicit world encompasses not only direct migration but is an ecological aggregate of these processes. The parameter m of neutral models then appears more as an emerging property revealed by neutral theory instead of being an effective mechanistic parameter and spatially implicit models should be rejected as an approximation of forest dynamics.
Implicit Learning as an Ability
ERIC Educational Resources Information Center
Kaufman, Scott Barry; DeYoung, Caroline G.; Gray, Jeremy R.; Jimenez, Luis; Brown, Jamie; Mackintosh, Nicholas
2010-01-01
The ability to automatically and implicitly detect complex and noisy regularities in the environment is a fundamental aspect of human cognition. Despite considerable interest in implicit processes, few researchers have conceptualized implicit learning as an ability with meaningful individual differences. Instead, various researchers (e.g., Reber,…
Blair, Irene V; Steiner, John F; Hanratty, Rebecca; Price, David W; Fairclough, Diane L; Daugherty, Stacie L; Bronsert, Michael; Magid, David J; Havranek, Edward P
2014-07-01
Few studies have directly investigated the association of clinicians' implicit (unconscious) bias with health care disparities in clinical settings. To determine if clinicians' implicit ethnic or racial bias is associated with processes and outcomes of treatment for hypertension among black and Latino patients, relative to white patients. Primary care clinicians completed Implicit Association Tests of ethnic and racial bias. Electronic medical records were queried for a stratified, random sample of the clinicians' black, Latino and white patients to assess treatment intensification, adherence and control of hypertension. Multilevel random coefficient models assessed the associations between clinicians' implicit biases and ethnic or racial differences in hypertension care and outcomes. Standard measures of treatment intensification and medication adherence were calculated from pharmacy refills. Hypertension control was assessed by the percentage of time that patients met blood pressure goals recorded during primary care visits. One hundred and thirty-eight primary care clinicians and 4,794 patients with hypertension participated. Black patients received equivalent treatment intensification, but had lower medication adherence and worse hypertension control than white patients; Latino patients received equivalent treatment intensification and had similar hypertension control, but lower medication adherence than white patients. Differences in treatment intensification, medication adherence and hypertension control were unrelated to clinician implicit bias for black patients (P = 0.85, P = 0.06 and P = 0.31, respectively) and for Latino patients (P = 0.55, P = 0.40 and P = 0.79, respectively). An increase in clinician bias from average to strong was associated with a relative change of less than 5 % in all outcomes for black and Latino patients. Implicit bias did not affect clinicians' provision of care to their minority patients, nor did it affect the patients' outcomes. The identification of health care contexts in which bias does not impact outcomes can assist both patients and clinicians in their efforts to build trust and partnership.
Pokhrel, Pallav; Herzog, Thaddeus A; Fagan, Pebbles; Unger, Jennifer B; Stacy, Alan W
2018-02-10
This study tested whether exposure to e-cigarette advertising increases e-cigarette use susceptibility among non-smoking young adults by promoting explicit and implicit attitudes towards e-cigarettes as a safer and healthier alternative to combustible cigarettes. Young adult current non-smokers who had never used an e-cigarette (N = 393; Mean age = 22.1, Standard Deviation = 3.9; 66% Women) were randomly assigned to one of the 3 conditions that involved viewing real-world, print e-cigarette ads. Two of the 3 conditions were experimental conditions where ads with different predominant themes [harm-reduction ("Health") vs. social enhancement ("Social") focused] were interspersed among ads of everyday objects. The third condition was the control condition involving ads of everyday objects only. Participants provided data on explicit (i.e., self-reported harm perceptions) and implicit (i.e., Implicit Association Test) attitudes towards e-cigarette use and e-cigarette use intentions. Hypotheses were tested using structural equation modeling. Relative to Control participants, participants in Health and Social conditions were more likely to show higher implicit attitudes towards e-cigarettes as a safer alternative to cigarettes. Only the Social condition, relative to Control, had a significant effect on lower explicit harm perceptions of e-cigarette versus cigarette use. The Social condition had a significant indirect effect on e-cigarette use susceptibility, mediated by explicit harm perceptions. Social enhancement-themed ads may communicate the reduced-harm messages more strongly among young adults so as to affect both explicit and implicit attitudes and, through these, e-cigarette use susceptibility. Regulatory bodies may need to scrutinize reduced-harm claims communicated through social enhancement-themed ads. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Implicit attitudes, emotions, and helping intentions of mental health workers toward their clients.
Brener, Loren; Rose, Grenville; von Hippel, Courtney; Wilson, Hannah
2013-06-01
The attitudes of mental health care workers toward their clients may influence the quality of care they provide. There is growing recognition of the role of implicit attitudes in behavior toward people with stigmatized illnesses, such as mental illness, and of the need to measure these separately from explicit attitudes. Seventy-four mental health workers completed implicit and explicit measure of attitudes toward people with mental illness. The participants were also asked about their intention to help people with mental illness and their emotional reactions toward people with a mental illness. The findings show that the implicit attitudes of the health workers toward clients with a mental illness are somewhat negative despite the fact that their explicit attitudes are somewhat positive. Although both implicit and explicit attitudes predicted negative emotions, only implicit attitudes were related to helping intentions. This study highlights the association between implicit attitudes and behavioral intentions and confirms the importance of addressing implicit attitudes in mental health research.
Cultural variation in implicit independence: An extension of Kitayama et al. ().
Park, Jiyoung; Uchida, Yukiko; Kitayama, Shinobu
2016-08-01
Previous research shows that European Americans are consistently more independent (or less interdependent) than Japanese when implicit indices are used to assess independence (vs. interdependence). The present work extended this evidence by including a novel implicit association test (IAT), as an index of implicit attitude towards independence and interdependence. Consistent with the previous findings, as compared to Japanese, Americans were significantly higher in multiple indices of implicit independence (vs. interdependence) including personal (vs. social) self-definition, experience of disengaging (vs. engaging) emotions and personal (vs. social) form of happiness. Furthermore, as compared to Japanese, Americans had a significantly more positive implicit attitude towards independence assessed with the IAT. As also observed in the previous research, explicit measures showed inconsistent cross-cultural patterns. Lastly, we observed little statistical within-culture coherence among the implicit measures of independence (vs. interdependence), consistent with a view that the implicit indices capture alternative ways for individuals to achieve the cultural mandate of independence or interdependence. © 2015 International Union of Psychological Science.
Implicit motives, explicit traits, and task and contextual performance at work.
Lang, Jonas W B; Zettler, Ingo; Ewen, Christian; Hülsheger, Ute R
2012-11-01
Personality psychologists have long argued that explicit traits (as measured by questionnaires) channel the expression of implicit motives (as measured by coding imaginative verbal behavior) such that both interact in the prediction of relevant life outcome variables. In the present research, we apply these ideas in the context of industrial and organizational psychology and propose that 2 explicit traits work as channels for the expression of 3 core implicit motives in task and contextual job performance (extraversion for implicit affiliation and implicit power; explicit achievement for implicit achievement). As a test of these theoretical ideas, we report a study in which employees (N = 241) filled out a questionnaire booklet and worked on an improved modern implicit motive measure, the operant motive test. Their supervisors rated their task and contextual performance. Results support 4 of the 6 theoretical predictions and show that interactions between implicit motives and explicit traits increase the explained criterion variance in both task and contextual performance. (c) 2012 APA, all rights reserved.
Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P
2016-09-01
The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.
Thylakoid membrane landscape in the sixties: a tribute to Andrew Benson.
Anderson, Jan M
2007-05-01
Prior to the 1960s, the model for the molecular structure of cell membranes consisted of a lipid bilayer held in place by a thin film of electrostatically-associated protein stretched over the bilayer surface: (the Danielli-Davson-Robertson "unit membrane" model). Andrew Benson, an expert in the lipids of chloroplast thylakoid membranes, questioned the relevance of the unit membrane model for biological membranes, especially for thylakoid membranes, instead of emphasizing evidence in favour of hydrophobic interactions of membrane lipids within complementary hydrophobic regions of membrane-spanning proteins. With Elliot Weier, Benson postulated a remarkable subunit lipoprotein monolayer model for thylakoids. Following the advent of freeze fracture microscopy and the fluid lipid-protein mosaic model by Singer and Nicolson, the subunits, membrane-spanning integral proteins, span a dynamic lipid bilayer. Now that high resolution X-ray structures of photosystems I and II are being revealed, the seminal contribution of Andrew Benson can be appreciated.
Implicit cognitive processes in psychopathology: an introduction.
Wiers, Reinout W; Teachman, Bethany A; De Houwer, Jan
2007-06-01
Implicit or automatic processes are important in understanding the etiology and maintenance of psychopathological problems. In order to study implicit processes in psychopathology, measures are needed that are valid and reliable when applied to clinical problems. One of the main topics in this special issue concerns the development and validation of new or modified implicit tests in different domains of psychopathology. The other main topic concerns the prediction of clinical outcomes and new ways to directly influence implicit processes in psychopathology. We summarize the contributions to this special issue and discuss how they further our knowledge of implicit processes in psychopathology and how to measure them.
Zestcott, Colin A.; Blair, Irene V.; Stone, Jeff
2016-01-01
Recent evidence suggests that one possible cause of disparities in health outcomes for stigmatized groups is the implicit biases held by health care providers. In response, several health care organizations have called for, and developed, new training in implicit bias for their providers. This review examines current evidence on the role that provider implicit bias may play in health disparities, and whether training in implicit bias can effectively reduce the biases that providers exhibit. Directions for future research on the presence and consequences of provider implicit bias, and best practices for training to reduce such bias, will be discussed. PMID:27547105
Eastwick, Paul W; Eagly, Alice H; Finkel, Eli J; Johnson, Sarah E
2011-11-01
Five studies develop and examine the predictive validity of an implicit measure of the preference for physical attractiveness in a romantic partner. Three hypotheses were generally supported. First, 2 variants of the go/no-go association task revealed that participants, on average, demonstrate an implicit preference (i.e., a positive spontaneous affective reaction) for physical attractiveness in a romantic partner. Second, these implicit measures were not redundant with a traditional explicit measure: The correlation between these constructs was .00 on average, and the implicit measures revealed no reliable sex differences, unlike the explicit measure. Third, explicit and implicit measures exhibited a double dissociation in predictive validity. Specifically, explicit preferences predicted the extent to which attractiveness was associated with participants' romantic interest in opposite-sex photographs but not their romantic interest in real-life opposite-sex speed-daters or confederates. Implicit preferences showed the opposite pattern. This research extends prior work on implicit processes in romantic relationships and offers the first demonstration that any measure of a preference for a particular characteristic in a romantic partner (an implicit measure of physical attractiveness, in this case) predicts individuals' evaluation of live potential romantic partners.
Implicit Statistical Learning and Language Skills in Bilingual Children
ERIC Educational Resources Information Center
Yim, Dongsun; Rudoy, John
2013-01-01
Purpose: Implicit statistical learning in 2 nonlinguistic domains (visual and auditory) was used to investigate (a) whether linguistic experience influences the underlying learning mechanism and (b) whether there are modality constraints in predicting implicit statistical learning with age and language skills. Method: Implicit statistical learning…
Implicit affectivity in patients with borderline personality disorder.
Dukalski, Bibiana; Quirin, Markus; Kersting, Anette; Suslow, Thomas; Donges, Uta-Susan
2017-01-01
It has been argued that borderline personality disorder (BPD) is related to an enhanced affective reactivity. According to findings from research based on self-report, individuals with BPD develop and feel more negative and less positive affect than healthy individuals. Implicit affectivity, which can be measured using indirect assessment methods, relates to processes of the impulsive, intuitive system. In the present study, implicit and explicit affectivity was examined in patients suffering from BPD compared to healthy persons. Thirty-five women with BPD and 35 healthy women participated in the study. Implicit affectivity was assessed using the Implicit Positive and Negative Affect Test (IPANAT). Measures of explicit state and trait affectivity were also administered. BPD women had lower explicit positive state and trait affect scores and higher negative state and trait affect scores than healthy women. They had also lower implicit positive affect but they did not differ from healthy women regarding implicit negative affect. Total number of comorbid disorders was correlated with both implicit positive and implicit negative affect. According to our data, BPD patients exhibit reduced implicit positive affect as well as reduced explicit positive affect compared to healthy persons. According to our IPANAT data, BPD patients are characterized by a normal disposition to develop negative affective reactions which is in line with a number of findings from psycho-physiological research on BPD. Self-reports of negative affectivity in BPD could be biased by negative distortion.
Peeters, Margot; Koning, Ina; Monshouwer, Karin; Vollebergh, Wilma A M; Wiers, Reinout W
2016-09-01
Recent studies suggest that the predictive effect of implicit alcohol associations is context dependent. Findings indicate that implicit associations are more easily retrieved in an alcohol-associated setting or context (e.g., bar) compared with a neutral setting. In line with this reasoning, we hypothesized that alcohol availability at home might moderate the relationship between implicit alcohol associations and future drinking behavior of adolescents. Participants were 262 at-risk adolescents (235 boys, 27 girls, adolescents with externalizing behavioral problems) with a mean age of 14.11 years (SD = 0.86, age range: 12-16 years) at baseline. Adolescents completed a questionnaire and a modified version of the Implicit Association Test (i.e., Single Category Implicit Association Test; SC-IAT). Stronger implicit alcohol associations predicted increase in frequency of alcohol use, only in adolescents who indicated that alcohol was available at home. No moderating effects were found for increase in quantity of alcohol use and problematic alcohol use, suggesting that implicit alcohol associations particularly influence the decision of whether to drink in adolescence. The findings illustrate that the availability of alcohol in the home setting influences adolescents' implicit alcohol associations and consequently affects the frequency of alcohol use. In this way, alcohol availability at home may be an important contextual factor to consider when examining the effect of implicit alcohol associations on the future drinking behavior of adolescents.
Forrest, Lauren N; Smith, April R; Fussner, Lauren M; Dodd, Dorian R; Clerkin, Elise M
2016-01-01
"Fast" (i.e., implicit) processing is relatively automatic; "slow" (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence.
Dissociation between implicit and explicit expectancies of cannabis use in adolescence.
Schmits, Emilie; Maurage, Pierre; Thirion, Romain; Quertemont, Etienne
2015-12-30
Cannabis is one of the most commonly drugs used by teenagers. Expectancies about its effects play a crucial role in cannabis consumption. Various tools have been used to assess expectancies, mainly self-report questionnaires measuring explicit expectancies, but implicit measures based on experimental tasks have also been developed, measuring implicit expectancies. The aim of this study was to simultaneously assess implicit/explicit expectancies related to cannabis among adolescent users and non-users. 130 teenagers attending school (55 girls) were enrolled (Age: M=16.40 years); 43.84% had never used cannabis ("non-users") and 56.16% had used cannabis ("users"). They completed self-report questionnaires evaluating cannabis use, cannabis-related problems, effect expectancies (explicit expectancies), alcohol use, social and trait anxiety, depression, as well as three Implicit Association Tests (IAT) assessing implicit expectancies. Adolescents manifested more implicit affective associations (relaxation, excitation, negative) than neutral ones regarding cannabis. These were not related to explicit expectancies. Cannabis users reported more implicit relaxation expectancies and less negative explicit expectancies than non-users. The frequency of use and related problems were positively associated with the explicit expectancies regarding relaxation and enhancement, and were negatively associated with negative explicit expectancies and negative implicit expectancies. Findings indicate that implicit and explicit expectancies play different roles in cannabis use by adolescents. The implications for experimentation and prevention are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Forrest, Lauren N.; Smith, April R.; Fussner, Lauren M.; Dodd, Dorian R.; Clerkin, Elise M.
2015-01-01
Objectives ”Fast” (i.e., implicit) processing is relatively automatic; “slow” (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. Design We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Method Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Results Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Conclusion Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence. PMID:26195916
Decisions among the Undecided: Implicit Attitudes Predict Future Voting Behavior of Undecided Voters
Lundberg, Kristjen B.; Payne, B. Keith
2014-01-01
Implicit attitudes have been suggested as a key to unlock the hidden preferences of undecided voters. Past research, however, offered mixed support for this hypothesis. The present research used a large nationally representative sample and a longitudinal design to examine the predictive utility of implicit and explicit attitude measures in the 2008 U.S. presidential election. In our analyses, explicit attitudes toward candidates predicted voting better for decided than undecided voters, but implicit candidate attitudes were predictive of voting for both decided and undecided voters. Extending our examination to implicit and explicit racial attitudes, we found the same pattern. Taken together, these results provide convergent evidence that implicit attitudes predict voting about as well for undecided as for decided voters. We also assessed a novel explanation for these effects by evaluating whether implicit attitudes may predict the choices of undecided voters, in part, because they are neglected when people introspect about their confidence. Consistent with this idea, we found that the extremity of explicit but not implicit attitudes was associated with greater confidence. These analyses shed new light on the utility of implicit measures in predicting future behavior among individuals who feel undecided. Considering the prior studies together with this new evidence, the data seem to be consistent that implicit attitudes may be successful in predicting the behavior of undecided voters. PMID:24489666
Membrane Packing Problems: A short Review on computational Membrane Modeling Methods and Tools
Sommer, Björn
2013-01-01
The use of model membranes is currently part of the daily workflow for many biochemical and biophysical disciplines. These membranes are used to analyze the behavior of small substances, to simulate transport processes, to study the structure of macromolecules or for illustrative purposes. But, how can these membrane structures be generated? This mini review discusses a number of ways to obtain these structures. First, the problem will be formulated as the Membrane Packing Problem. It will be shown that the theoretical problem of placing proteins and lipids onto a membrane area differ significantly. Thus, two sub-problems will be defined and discussed. Then, different – partly historical – membrane modeling methods will be introduced. And finally, membrane modeling tools will be evaluated which are able to semi-automatically generate these model membranes and thus, drastically accelerate and simplify the membrane generation process. The mini review concludes with advice about which tool is appropriate for which application case. PMID:24688707