Sample records for implicit non-rigid shape

  1. Robust non-rigid registration algorithm based on local affine registration

    NASA Astrophysics Data System (ADS)

    Wu, Liyang; Xiong, Lei; Du, Shaoyi; Bi, Duyan; Fang, Ting; Liu, Kun; Wu, Dongpeng

    2018-04-01

    Aiming at the problem that the traditional point set non-rigid registration algorithm has low precision and slow convergence speed for complex local deformation data, this paper proposes a robust non-rigid registration algorithm based on local affine registration. The algorithm uses a hierarchical iterative method to complete the point set non-rigid registration from coarse to fine. In each iteration, the sub data point sets and sub model point sets are divided and the shape control points of each sub point set are updated. Then we use the control point guided affine ICP algorithm to solve the local affine transformation between the corresponding sub point sets. Next, the local affine transformation obtained by the previous step is used to update the sub data point sets and their shape control point sets. When the algorithm reaches the maximum iteration layer K, the loop ends and outputs the updated sub data point sets. Experimental results demonstrate that the accuracy and convergence of our algorithm are greatly improved compared with the traditional point set non-rigid registration algorithms.

  2. Nonlinear mechanics of non-rigid origami: an efficient computational approach

    NASA Astrophysics Data System (ADS)

    Liu, K.; Paulino, G. H.

    2017-10-01

    Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on `bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.

  3. Nonlinear mechanics of non-rigid origami: an efficient computational approach.

    PubMed

    Liu, K; Paulino, G H

    2017-10-01

    Origami-inspired designs possess attractive applications to science and engineering (e.g. deployable, self-assembling, adaptable systems). The special geometric arrangement of panels and creases gives rise to unique mechanical properties of origami, such as reconfigurability, making origami designs well suited for tunable structures. Although often being ignored, origami structures exhibit additional soft modes beyond rigid folding due to the flexibility of thin sheets that further influence their behaviour. Actual behaviour of origami structures usually involves significant geometric nonlinearity, which amplifies the influence of additional soft modes. To investigate the nonlinear mechanics of origami structures with deformable panels, we present a structural engineering approach for simulating the nonlinear response of non-rigid origami structures. In this paper, we propose a fully nonlinear, displacement-based implicit formulation for performing static/quasi-static analyses of non-rigid origami structures based on 'bar-and-hinge' models. The formulation itself leads to an efficient and robust numerical implementation. Agreement between real models and numerical simulations demonstrates the ability of the proposed approach to capture key features of origami behaviour.

  4. Real-time motion compensated patient positioning and non-rigid deformation estimation using 4-D shape priors.

    PubMed

    Wasza, Jakob; Bauer, Sebastian; Hornegger, Joachim

    2012-01-01

    Over the last years, range imaging (RI) techniques have been proposed for patient positioning and respiration analysis in motion compensation. Yet, current RI based approaches for patient positioning employ rigid-body transformations, thus neglecting free-form deformations induced by respiratory motion. Furthermore, RI based respiration analysis relies on non-rigid registration techniques with run-times of several seconds. In this paper we propose a real-time framework based on RI to perform respiratory motion compensated positioning and non-rigid surface deformation estimation in a joint manner. The core of our method are pre-procedurally obtained 4-D shape priors that drive the intra-procedural alignment of the patient to the reference state, simultaneously yielding a rigid-body table transformation and a free-form deformation accounting for respiratory motion. We show that our method outperforms conventional alignment strategies by a factor of 3.0 and 2.3 in the rotation and translation accuracy, respectively. Using a GPU based implementation, we achieve run-times of 40 ms.

  5. Bacterial Flagella as a Model Rigid Rod of Tunable Shape

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter; Yardimci, Sevim; Gibaud, Thomas; Snow, Henry; Urbach, Jeff; Dogic, Zvonimir

    In this research, we study the physical properties of suspensions of bacterial flagella from Salmonella typhimurium prepared in a variety of rigid polymorphic shapes. Flagella act as a rigid colloidal particle that can exhibit non-trivial geometry including helices of varying dimensions, straight rods, or a combination of the two in the same filament. By controlling the conditions in which flagella are prepared, the polymorphic shape assumed by the filament can be controlled. Utilizing different polymorphic shapes, we combine results from optical microscopy observations of single filaments with bulk rheological measurements to help understand the role that constituent colloidal geometry plays in complex bulk behavior.

  6. Analytical approximations for spiral waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Löber, Jakob, E-mail: jakob@physik.tu-berlin.de; Engel, Harald

    2013-12-15

    We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +}more » with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.« less

  7. Encountered-Type Haptic Interface for Representation of Shape and Rigidity of 3D Virtual Objects.

    PubMed

    Takizawa, Naoki; Yano, Hiroaki; Iwata, Hiroo; Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-01-01

    This paper describes the development of an encountered-type haptic interface that can generate the physical characteristics, such as shape and rigidity, of three-dimensional (3D) virtual objects using an array of newly developed non-expandable balloons. To alter the rigidity of each non-expandable balloon, the volume of air in it is controlled through a linear actuator and a pressure sensor based on Hooke's law. Furthermore, to change the volume of each balloon, its exposed surface area is controlled by using another linear actuator with a trumpet-shaped tube. A position control mechanism is constructed to display virtual objects using the balloons. The 3D position of each balloon is controlled using a flexible tube and a string. The performance of the system is tested and the results confirm the effectiveness of the proposed principle and interface.

  8. Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-Newtonian fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janečka, Adam, E-mail: janecka@karlin.mff.cuni.cz; Průša, Vít, E-mail: prusv@karlin.mff.cuni.cz

    2015-04-28

    We discuss the benefits of using the so-called implicit type constitutive relations introduced by K. R. Rajagopal, J. Fluid Mech. 550, 243-249 (2006) and K. R. Rajagopal, Appl. Math. 48, 279-319 (2003) in the description of the behaviour of non-Newtonian fluids. In particular, we focus on the benefits of using the implicit type constitutive relations in the mathematical modelling of fluids in which the shear stress/shear rate dependence is given by an S-shaped curve, and in modelling of fluids that exhibit nonzero normal stress differences. We also discuss a thermodynamical framework that allows one to cope with the implicit typemore » constitutive relations.« less

  9. Design of a dynamic sensor inspired by bat ears

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Pannala, Mittu; Reddy, O. Praveen K.; Meymand, Sajjad Z.

    2012-09-01

    In bats, the outer ear shapes act as beamforming baffles that create a spatial sensitivity pattern for the reception of the biosonar signals. Whereas technical receivers for wave-based signals usually have rigid geometries, the outer ears of some bat species, such as horseshoe bats, can undergo non-rigid deformations as a result of muscular actuation. It is hypothesized that these deformations provide the animals with a mechanism to adapt their spatial hearing sensitivity on short, sub-second time scales. This biological approach could be of interest to engineering as an inspiration for the design of beamforming devices that combine flexibility with parsimonious implementation. To explore this possibility, a biomimetic dynamic baffle was designed based on a simple shape overall geometry based on an average bat ear. This shape was augmented with three different biomimetic local shape features, a ridge on its exposed surface as well as a flap and an incision along its rim. Dynamic non-rigid deformations of the shape were accomplished through a simple actuation mechanism based on linear actuation inserted at a single point. Despite its simplicity, the prototype device was able to reproduce the dynamic functional characteristics that have been predicted for its biological paragon in a qualitative fashion.

  10. Using the implicit relational assessment procedure to compare implicit pro-thin/anti-fat attitudes of patients with anorexia nervosa and non-clinical controls.

    PubMed

    Parling, Thomas; Cernvall, Martin; Stewart, Ian; Barnes-Holmes, Dermot; Ghaderi, Ata

    2012-01-01

    Implicit pro-thin/anti-fat attitudes were investigated among a mixed group of patients with full and sub-threshold Anorexia Nervosa (n = 17), and a matched-age control group (n = 17). The Implicit Relational Assessment Procedure (IRAP) was employed to measure implicit pro-thin and anti-fat attitudes towards Self and Others in addition to "striving for thinness" and "avoidance of fatness." The clinical group showed an implicit pro-fat attitude towards Others and stronger anti-fat attitudes towards Self and avoidance of fatness compared with controls. The findings are discussed in relation to the over-evaluation of weight and shape in the clinical group.

  11. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Shi, Ruchao; Batra, Romesh C.

    2018-02-01

    We present a robust sharp-interface immersed boundary method for numerically studying high speed flows of compressible and viscous fluids interacting with arbitrarily shaped either stationary or moving rigid solids. The Navier-Stokes equations are discretized on a rectangular Cartesian grid based on a low-diffusion flux splitting method for inviscid fluxes and conservative high-order central-difference schemes for the viscous components. Discontinuities such as those introduced by shock waves and contact surfaces are captured by using a high-resolution weighted essentially non-oscillatory (WENO) scheme. Ghost cells in the vicinity of the fluid-solid interface are introduced to satisfy boundary conditions on the interface. Values of variables in the ghost cells are found by using a constrained moving least squares method (CMLS) that eliminates numerical instabilities encountered in the conventional MLS formulation. The solution of the fluid flow and the solid motion equations is advanced in time by using the third-order Runge-Kutta and the implicit Newmark integration schemes, respectively. The performance of the proposed method has been assessed by computing results for the following four problems: shock-boundary layer interaction, supersonic viscous flows past a rigid cylinder, moving piston in a shock tube and lifting off from a flat surface of circular, rectangular and elliptic cylinders triggered by shock waves, and comparing computed results with those available in the literature.

  12. A Rigid Mid-Lift-to-Drag Ratio Approach to Human Mars Entry, Descent, and Landing

    NASA Technical Reports Server (NTRS)

    Cerimele, Christopher J.; Robertson, Edward A.; Sostaric, Ronald R.; Campbell, Charles H.; Robinson, Phil; Matz, Daniel A.; Johnson, Breanna J.; Stachowiak, Susan J.; Garcia, Joseph A.; Bowles, Jeffrey V.; hide

    2017-01-01

    Current NASA Human Mars architectures require delivery of approximately 20 metric tons of cargo to the surface in a single landing. A proposed vehicle type for performing the entry, descent, and landing at Mars associated with this architecture is a rigid, enclosed, elongated lifting body shape that provides a higher lift-to-drag ratio (L/D) than a typical entry capsule, but lower than a typical winged entry vehicle (such as the Space Shuttle Orbiter). A rigid Mid-L/D shape has advantages for large mass Mars EDL, including loads management, range capability during entry, and human spaceflight heritage. Previous large mass Mars studies have focused more on symmetric and/or circular cross-section Mid-L/D shapes such as the ellipsled. More recent work has shown performance advantages for non-circular cross section shapes. This paper will describe efforts to design a rigid Mid-L/D entry vehicle for Mars which shows mass and performance improvements over previous Mid-L/D studies. The proposed concept, work to date and evolution, forward path, and suggested future strategy are described.

  13. u-w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme

    NASA Astrophysics Data System (ADS)

    Navas, Pedro; Sanavia, Lorenzo; López-Querol, Susana; Yu, Rena C.

    2017-12-01

    Solving dynamic problems for fluid saturated porous media at large deformation regime is an interesting but complex issue. An implicit time integration scheme is herein developed within the framework of the u-w (solid displacement-relative fluid displacement) formulation for the Biot's equations. In particular, liquid water saturated porous media is considered and the linearization of the linear momentum equations taking into account all the inertia terms for both solid and fluid phases is for the first time presented. The spatial discretization is carried out through a meshfree method, in which the shape functions are based on the principle of local maximum entropy LME. The current methodology is firstly validated with the dynamic consolidation of a soil column and the plastic shear band formulation of a square domain loaded by a rigid footing. The feasibility of this new numerical approach for solving large deformation dynamic problems is finally demonstrated through the application to an embankment problem subjected to an earthquake.

  14. Implicit Multibody Penalty-BasedDistributed Contact.

    PubMed

    Xu, Hongyi; Zhao, Yili; Barbic, Jernej

    2014-09-01

    The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time.

  15. Extracting a Purely Non-rigid Deformation Field of a Single Structure

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and the stent graft. The problem definition of deformable registration of images covering the entire abdominal region, however, is highly ill-posed. We present a new method for extracting the deformation of an aneurysmatic aorta. The outline of the procedure includes initial rigid alignment of two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. Our non-rigid registration procedure then only computes local non-rigid deformation and leaves out all remaining global rigid transformations. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  16. Reconstruction of fluorescence molecular tomography with a cosinoidal level set method.

    PubMed

    Zhang, Xuanxuan; Cao, Xu; Zhu, Shouping

    2017-06-27

    Implicit shape-based reconstruction method in fluorescence molecular tomography (FMT) is capable of achieving higher image clarity than image-based reconstruction method. However, the implicit shape method suffers from a low convergence speed and performs unstably due to the utilization of gradient-based optimization methods. Moreover, the implicit shape method requires priori information about the number of targets. A shape-based reconstruction scheme of FMT with a cosinoidal level set method is proposed in this paper. The Heaviside function in the classical implicit shape method is replaced with a cosine function, and then the reconstruction can be accomplished with the Levenberg-Marquardt method rather than gradient-based methods. As a result, the priori information about the number of targets is not required anymore and the choice of step length is avoided. Numerical simulations and phantom experiments were carried out to validate the proposed method. Results of the proposed method show higher contrast to noise ratios and Pearson correlations than the implicit shape method and image-based reconstruction method. Moreover, the number of iterations required in the proposed method is much less than the implicit shape method. The proposed method performs more stably, provides a faster convergence speed than the implicit shape method, and achieves higher image clarity than the image-based reconstruction method.

  17. Numerical study of rigid and flexible wing shapes in hover

    NASA Astrophysics Data System (ADS)

    Shahzad, Aamer; Tian, Fang-Bao; Young, John; Lai, Joseph C. S.

    2017-04-01

    This study is focused on evaluating the aerodynamic performance of rigid and isotropic flexible wing shapes defined by the radius of the first moment of wing area ({\\bar{r}}1) at Reynolds number of 6000. An immersed boundary method was used to solve the 3D, viscous, incompressible Navier-Stokes equations, and coupled with an in-house non-linear finite element solver for fluid structure interaction simulations. Numerical simulations of flexible {\\bar{r}}1=0.43,0.53{and}0.63 wing shapes performed with a single degree of freedom flapping shows that thrust and peak lift coefficients increase with {\\bar{r}}1. Higher thrust in the {\\bar{r}}1=0.63 wing is attributed to the large induced pitch angle, and higher peak lift (compared to the rigid counterpart) results from an increase in the stroke amplitude and spanwise deformation of the wing that anchors the leading edge vortex.

  18. Optimal matrix rigidity for stress fiber polarization in stem cells

    PubMed Central

    Rehfeldt, F.; Brown, A. E. X.; Discher, D. E.; Safran, S. A.

    2010-01-01

    The shape and differentiation of human mesenchymal stem cells is especially sensitive to the rigidity of their environment; the physical mechanisms involved are unknown. A theoretical model and experiments demonstrate here that the polarization/alignment of stress-fibers within stem cells is a non-monotonic function of matrix rigidity. We treat the cell as an active elastic inclusion in a surrounding matrix whose polarizability, unlike dead matter, depends on the feedback of cellular forces that develop in response to matrix stresses. The theory correctly predicts the monotonic increase of the cellular forces with the matrix rigidity and the alignment of stress-fibers parallel to the long axis of cells. We show that the anisotropy of this alignment depends non-monotonically on matrix rigidity and demonstrate it experimentally by quantifying the orientational distribution of stress-fibers in stem cells. These findings offer a first physical insight for the dependence of stem cell differentiation on tissue elasticity. PMID:20563235

  19. Rigid aggregates: theory and applications

    NASA Astrophysics Data System (ADS)

    Richardson, D. C.

    2005-08-01

    Numerical models employing ``perfect'' self-gravitating rubble piles that consist of monodisperse rigid spheres with configurable contact dissipation have been used to explore collisional and rotational disruption of gravitational aggregates. Applications of these simple models include numerical simulations of planetesimal evolution, asteroid family formation, tidal disruption, and binary asteroid formation. These studies may be limited by the idealized nature of the rubble pile model, since perfect identical spheres stack and shear in a very specific, possibly over-idealized way. To investigate how constituent properties affect the overall characteristics of a gravitational aggregate, particularly its failure modes, we have generalized our numerical code to model colliding, self-gravitating, rigid aggregates made up of variable-size spheres. Euler's equation of rigid-body motion in the presence of external torques are implemented, along with a self-consistent prescription for handling non-central impacts. Simple rules for sticking and breaking are also included. Preliminary results will be presented showing the failure modes of gravitational aggregates made up of smaller, rigid, non-idealized components. Applications of this new capability include more realistic aggregate models, convenient modeling of arbitrary rigid shapes for studies of the stability of orbiting companions (replacing one or both bodies with rigid aggregates eliminates expensive interparticle collisions while preserving the shape, spin, and gravity field of the bodies), and sticky particle aggregation in dense planetary rings. This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. NAG511722 issued through the Office of Space Science and by the National Science Foundation under Grant No. AST0307549.

  20. Implicit learning of non-linguistic and linguistic regularities in children with dyslexia.

    PubMed

    Nigro, Luciana; Jiménez-Fernández, Gracia; Simpson, Ian C; Defior, Sylvia

    2016-07-01

    One of the hallmarks of dyslexia is the failure to automatise written patterns despite repeated exposure to print. Although many explanations have been proposed to explain this problem, researchers have recently begun to explore the possibility that an underlying implicit learning deficit may play a role in dyslexia. This hypothesis has been investigated through non-linguistic tasks exploring implicit learning in a general domain. In this study, we examined the abilities of children with dyslexia to implicitly acquire positional regularities embedded in both non-linguistic and linguistic stimuli. In experiment 1, 42 children (21 with dyslexia and 21 typically developing) were exposed to rule-governed shape sequences; whereas in experiment 2, a new group of 42 children were exposed to rule-governed letter strings. Implicit learning was assessed in both experiments via a forced-choice task. Experiments 1 and 2 showed a similar pattern of results. ANOVA analyses revealed no significant differences between the dyslexic and the typically developing group, indicating that children with dyslexia are not impaired in the acquisition of simple positional regularities, regardless of the nature of the stimuli. However, within group t-tests suggested that children from the dyslexic group could not transfer the underlying positional rules to novel instances as efficiently as typically developing children.

  1. Mutual potential between two rigid bodies with arbitrary shapes and mass distributions

    NASA Astrophysics Data System (ADS)

    Hou, Xiyun; Scheeres, Daniel J.; Xin, Xiaosheng

    2017-03-01

    Formulae to compute the mutual potential, force, and torque between two rigid bodies are given. These formulae are expressed in Cartesian coordinates using inertia integrals. They are valid for rigid bodies with arbitrary shapes and mass distributions. By using recursive relations, these formulae can be easily implemented on computers. Comparisons with previous studies show their superiority in computation speed. Using the algorithm as a tool, the planar problem of two ellipsoids is studied. Generally, potential truncated at the second order is good enough for a qualitative description of the mutual dynamics. However, for ellipsoids with very large non-spherical terms, higher order terms of the potential should be considered, at the cost of a higher computational cost. Explicit formulae of the potential truncated to the fourth order are given.

  2. Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice.

    PubMed

    Cunningham, William A; Nezlek, John B; Banaji, Mahzarin R

    2004-10-01

    Two studies investigated relationships among individual differences in implicit and explicit prejudice, right-wing ideology, and rigidity in thinking. The first study examined these relationships focusing on White Americans' prejudice toward Black Americans. The second study provided the first test of implicit ethnocentrism and its relationship to explicit ethnocentrism by studying the relationship between attitudes toward five social groups. Factor analyses found support for both implicit and explicit ethnocentrism. In both studies, mean explicit attitudes toward out groups were positive, whereas implicit attitudes were negative, suggesting that implicit and explicit prejudices are distinct; however, in both studies, implicit and explicit attitudes were related (r = .37, .47). Latent variable modeling indicates a simple structure within this ethnocentric system, with variables organized in order of specificity. These results lead to the conclusion that (a) implicit ethnocentrism exists and (b) it is related to and distinct from explicit ethnocentrism.

  3. Flexible explicit but rigid implicit learning in a visuomotor adaptation task

    PubMed Central

    Bond, Krista M.

    2015-01-01

    There is mounting evidence for the idea that performance in a visuomotor rotation task can be supported by both implicit and explicit forms of learning. The implicit component of learning has been well characterized in previous experiments and is thought to arise from the adaptation of an internal model driven by sensorimotor prediction errors. However, the role of explicit learning is less clear, and previous investigations aimed at characterizing the explicit component have relied on indirect measures such as dual-task manipulations, posttests, and descriptive computational models. To address this problem, we developed a new method for directly assaying explicit learning by having participants verbally report their intended aiming direction on each trial. While our previous research employing this method has demonstrated the possibility of measuring explicit learning over the course of training, it was only tested over a limited scope of manipulations common to visuomotor rotation tasks. In the present study, we sought to better characterize explicit and implicit learning over a wider range of task conditions. We tested how explicit and implicit learning change as a function of the specific visual landmarks used to probe explicit learning, the number of training targets, and the size of the rotation. We found that explicit learning was remarkably flexible, responding appropriately to task demands. In contrast, implicit learning was strikingly rigid, with each task condition producing a similar degree of implicit learning. These results suggest that explicit learning is a fundamental component of motor learning and has been overlooked or conflated in previous visuomotor tasks. PMID:25855690

  4. Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion

    PubMed Central

    Hamsici, Onur C.; Gotardo, Paulo F.U.; Martinez, Aleix M.

    2013-01-01

    Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function. PMID:23946937

  5. Learning Spatially-Smooth Mappings in Non-Rigid Structure from Motion.

    PubMed

    Hamsici, Onur C; Gotardo, Paulo F U; Martinez, Aleix M

    2012-01-01

    Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation to be smooth over time. This constraint has been used to compress the deformation model and reduce the number of unknowns that are estimated. However, temporal smoothness cannot be enforced when the data lacks temporal ordering and its benefits are less evident when objects undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these problems by considering deformations as spatial variations in shape space and then enforcing spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our model represents shape variations compactly using custom-built coefficient bases learned from the input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply evaluating the learned function.

  6. WE-H-207A-02: Attenuation Correction in 4D-PET Using a Single-Phase Attenuation Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalantari, F; Wang, J

    2016-06-15

    Purpose: 4D-PET imaging has been proposed as a potential solution to the respiratory motion effect in thoracic region. CT-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference of 4D-PET and a single breath-hold CT, motion artifacts are observed in the attenuation-corrected PET images that can lead to error in tumor shape and uptake. We introduce a practical method for aligning single-phase CT to all other 4D-PET phases using a penalized non-rigid demons registration. Methods: Individual 4D-PET frames were reconstructed without AC. Non-rigid Demons registration was used to derive deformation vectormore » fields (DVFs) between the PET matched with CT phase and other 4D-PET images. While attenuated PET images provide enough useful data for organ borders such as lung and liver, tumors are not distinguishable from background due to loss of contrast. To preserve tumor shape in different phases, from CT image an ROI covering tumor was excluded from non-rigid transformation. Mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of tumor along with a non-rigid transformation of other organs. 4D XCAT phantom with spherical tumors in lung with diameters ranging from 10 to 40 mm was used to evaluate the algorithm. Results: Motion related induced artifacts in attenuation-corrected 4D-PET images were significantly reduced. For tumors smaller than 20 mm, non-rigid transformation was capable to provide quantitative results. However, for larger tumors, where tumor self-attenuation is considerable, our combined method yields superior results. Conclusion: We introduced a practical method for deforming a single CT to match all 4D-PET images for accurate AC. Although 4D-PET data include insignificant anatomical information, we showed that they are still useful to estimate DVFs for aligning attenuation map and accurate AC.« less

  7. Vision-based stress estimation model for steel frame structures with rigid links

    NASA Astrophysics Data System (ADS)

    Park, Hyo Seon; Park, Jun Su; Oh, Byung Kwan

    2017-07-01

    This paper presents a stress estimation model for the safety evaluation of steel frame structures with rigid links using a vision-based monitoring system. In this model, the deformed shape of a structure under external loads is estimated via displacements measured by a motion capture system (MCS), which is a non-contact displacement measurement device. During the estimation of the deformed shape, the effective lengths of the rigid link ranges in the frame structure are identified. The radius of the curvature of the structural member to be monitored is calculated using the estimated deformed shape and is employed to estimate stress. Using MCS in the presented model, the safety of a structure can be assessed gauge-freely. In addition, because the stress is directly extracted from the radius of the curvature obtained from the measured deformed shape, information on the loadings and boundary conditions of the structure are not required. Furthermore, the model, which includes the identification of the effective lengths of the rigid links, can consider the influences of the stiffness of the connection and support on the deformation in the stress estimation. To verify the applicability of the presented model, static loading tests for a steel frame specimen were conducted. By comparing the stress estimated by the model with the measured stress, the validity of the model was confirmed.

  8. A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-Rigid Shape Matching

    DTIC Science & Technology

    2009-02-01

    topology changes. We used a subset of the TOSCA shape database , [10], consisting of four different objects: cat, dog, male, and female. Each of the...often encountered as acquisition imperfections when the shapes are acquired using a 3D scanner. We used a subset of the TOSCA shape database , consisting...object recognition, Point Based Graphics, Prague, 2007. 18 44. A. Spira and R. Kimmel, An efficient solution to the eikonal equation on parametric

  9. A New Twisting Somersault: 513XD

    NASA Astrophysics Data System (ADS)

    Tong, William; Dullin, Holger R.

    2017-12-01

    We present the mathematical framework of an athlete modelled as a system of coupled rigid bodies to simulate platform and springboard diving. Euler's equations of motion are generalised to non-rigid bodies and are then used to innovate a new dive sequence that in principle can be performed by real-world athletes. We begin by assuming that shape changes are instantaneous so that the equations of motion simplify enough to be solved analytically, and then use this insight to present a new dive (513XD) consisting of 1.5 somersaults and five twists using realistic shape changes. Finally, we demonstrate the phenomenon of converting pure somersaulting motion into pure twisting motion by using a sequence of impulsive shape changes, which may have applications in other fields such as space aeronautics.

  10. Implicit Boundary Integral Methods for the Helmholtz Equation in Exterior Domains

    DTIC Science & Technology

    2016-06-01

    1 2 Figure 3.3: (Left) The “Kite shape. Right: The bean shape. The interface is the zero set of φ(x, y, z) = 9(1.6x+ ( y 1.6 )2)2 + ( y 1.5 )2 + ( z...1.5 )2 − 10. 3.4 Scattering in three dimensions by a “ Bean ” shape We test on a non-convex shape in 3D as shown in figure 3.3, the bean shape. The...solutions computed by EIBIM and IBIM using different mesh sizes. The scattering surface is the bean shape shown in Figure (3.3). k = 1, 0 = √ ∆x. Evaluated

  11. Confined semiflexible polymers suppress fluctuations of soft membrane tubes.

    PubMed

    Mirzaeifard, Sina; Abel, Steven M

    2016-02-14

    We use Monte Carlo computer simulations to investigate tubular membrane structures with and without semiflexible polymers confined inside. At small values of membrane bending rigidity, empty fluid and non-fluid membrane tubes exhibit markedly different behavior, with fluid membranes adopting irregular, highly fluctuating shapes and non-fluid membranes maintaining extended tube-like structures. Fluid membranes, unlike non-fluid membranes, exhibit a local maximum in specific heat as their bending rigidity increases. The peak is coincident with a transition to extended tube-like structures. We further find that confining a semiflexible polymer within a fluid membrane tube reduces the specific heat of the membrane, which is a consequence of suppressed membrane shape fluctuations. Polymers with a sufficiently large persistence length can significantly deform the membrane tube, with long polymers leading to localized bulges in the membrane that accommodate regions in which the polymer forms loops. Analytical calculations of the energies of idealized polymer-membrane configurations provide additional insight into the formation of polymer-induced membrane deformations.

  12. Do prescribed prompts prime sensemaking during group problem solving?

    NASA Astrophysics Data System (ADS)

    Martinuk, Mathew "Sandy"; Ives, Joss

    2012-02-01

    Many researchers and textbooks have promoted the use of rigid prescribed strategies for encouraging development of expert-like problem-solving behavior in novice students. The University of British Columbia's introductory algebra-based course for non-physics majors uses Context-Rich problems with a prescribed six-step strategy. We have coded audio recordings of group problem-solving sessions to analyze students' epistemological framing based on the implicit goal of their discussions. By treating the goal of "understanding the physics of the situation" as sensemaking, we argue that prescribed problem-solving prompts are not sufficient to induce subsequent sensemaking discussion.

  13. Simulation Studies of LCST-like Phase Transitions in Elastin-like Polypeptides (ELPs) and Conjugates of ELP with Rigid Macromolecules

    NASA Astrophysics Data System (ADS)

    Condon, Joshua; Martin, Tyler; Jayaraman, Arthi

    We use atomistic (AA) and coarse-grained (CG) molecular dynamics simulations to elucidate the thermodynamic driving forces governing lower critical solution temperature (LCST)-like phase transition exhibited by elastin-like peptides (ELPs) and conjugates of ELP with other macromolecules. In the AA simulations, we study ELP oligomers in explicit water, and mark the transition as the temperature at which they undergo a change in ``hydration'' state. While AA simulations are restricted to small systems of short ELPs and do not capture the chain aggregation observed in experiments of ELPs, they guide the phenomenological CG model development by highlighting the solvent induced polymer-polymer effective interactions with changing temperature. In the CG simulations, we capture the LCST polymer aggregation by increasing polymer-polymer effective attractive interactions in an implicit solvent. We examine the impact of conjugating a block of LCST polymer to another rigid unresponsive macromolecular block on the LCST-like transition. We find that when multiple LCST polymers are conjugated to a rigid polymer block, increased crowding of the LCST polymers shifts the onset of chain aggregation to smaller effective polymer-polymer attraction compared to the free LCST polymers. These simulation results provide guidance on the design of conjugated bio-mimetic thermoresponsive materials, and shape the fundamental understanding of the impact of polymer crowding on phase behavior in thermoresponsive LCST polymer systems.

  14. Closed-Form Jensen-Renyi Divergence for Mixture of Gaussians and Applications to Group-Wise Shape Registration*

    PubMed Central

    Wang, Fei; Syeda-Mahmood, Tanveer; Vemuri, Baba C.; Beymer, David; Rangarajan, Anand

    2010-01-01

    In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions – specifically Mixture of Gaussians – estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes. PMID:20426043

  15. Closed-form Jensen-Renyi divergence for mixture of Gaussians and applications to group-wise shape registration.

    PubMed

    Wang, Fei; Syeda-Mahmood, Tanveer; Vemuri, Baba C; Beymer, David; Rangarajan, Anand

    2009-01-01

    In this paper, we propose a generalized group-wise non-rigid registration strategy for multiple unlabeled point-sets of unequal cardinality, with no bias toward any of the given point-sets. To quantify the divergence between the probability distributions--specifically Mixture of Gaussians--estimated from the given point sets, we use a recently developed information-theoretic measure called Jensen-Renyi (JR) divergence. We evaluate a closed-form JR divergence between multiple probabilistic representations for the general case where the mixture models differ in variance and the number of components. We derive the analytic gradient of the divergence measure with respect to the non-rigid registration parameters, and apply it to numerical optimization of the group-wise registration, leading to a computationally efficient and accurate algorithm. We validate our approach on synthetic data, and evaluate it on 3D cardiac shapes.

  16. Dimensional Metrology of Non-rigid Parts Without Specialized Inspection Fixtures =

    NASA Astrophysics Data System (ADS)

    Sabri, Vahid

    Quality control is an important factor for manufacturing companies looking to prosper in an era of globalization, market pressures and technological advances. Functionality and product quality cannot be guaranteed without this important aspect. Manufactured parts have deviations from their nominal (CAD) shape caused by the manufacturing process. Thus, geometric inspection is a very important element in the quality control of mechanical parts. We will focus here on the geometric inspection of non-rigid (flexible) parts which are widely used in the aeronautic and automotive industries. Non-rigid parts can have different forms in a free-state condition compared with their nominal models due to residual stress and gravity loads. To solve this problem, dedicated inspection fixtures are generally used in industry to compensate for the displacement of such parts for simulating the use state in order to perform geometric inspections. These fixtures and the installation and inspection processes are expensive and time-consuming. Our aim in this thesis is therefore to develop an inspection method which eliminates the need for specialized fixtures. This is done by acquiring a point cloud from the part in a free-state condition using a contactless measuring device such as optical scanning and comparing it with the CAD model for the deviation identification. Using a non-rigid registration method and finite element analysis, we numerically inspect the profile of a non-rigid part. To do so, a simulated displacement is performed using an improved definition of displacement boundary conditions for simulating unfixed parts. In addition, we propose a numerical method for dimensional metrology of non-rigid parts in a free-state condition based on the arc length measurement by calculating the geodesic distance using the Fast Marching Method (FMM). In this thesis, we apply our developed methods on industrial non-rigid parts with free-form surfaces simulated with different types of displacement, defect, and measurement noise in order to evaluate the metrological performance of the developed methods.

  17. Iterative refinement of implicit boundary models for improved geological feature reproduction

    NASA Astrophysics Data System (ADS)

    Martin, Ryan; Boisvert, Jeff B.

    2017-12-01

    Geological domains contain non-stationary features that cannot be described by a single direction of continuity. Non-stationary estimation frameworks generate more realistic curvilinear interpretations of subsurface geometries. A radial basis function (RBF) based implicit modeling framework using domain decomposition is developed that permits introduction of locally varying orientations and magnitudes of anisotropy for boundary models to better account for the local variability of complex geological deposits. The interpolation framework is paired with a method to automatically infer the locally predominant orientations, which results in a rapid and robust iterative non-stationary boundary modeling technique that can refine locally anisotropic geological shapes automatically from the sample data. The method also permits quantification of the volumetric uncertainty associated with the boundary modeling. The methodology is demonstrated on a porphyry dataset and shows improved local geological features.

  18. Enhancing Perception with Tactile Object Recognition in Adaptive Grippers for Human-Robot Interaction.

    PubMed

    Gandarias, Juan M; Gómez-de-Gabriel, Jesús M; García-Cerezo, Alfonso J

    2018-02-26

    The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human-robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.

  19. A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrie, Michael; Shadwick, B. A.

    2016-01-04

    Here, we present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Juttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviors that do not exist in the non relativistic case.more » The numerical study of the relativistic two-stream instability completes the set of benchmarking tests.« less

  20. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.

    PubMed

    Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo

    2014-11-01

    Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Quantification of abdominal aortic deformation after EVAR

    NASA Astrophysics Data System (ADS)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    2009-02-01

    Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  2. Modeling patterns of anatomical deformations in prostate patients undergoing radiation therapy with an endorectal balloon

    NASA Astrophysics Data System (ADS)

    Brion, Eliott; Richter, Christian; Macq, Benoit; Stützer, Kristin; Exner, Florian; Troost, Esther; Hölscher, Tobias; Bondar, Luiza

    2017-03-01

    External beam radiation therapy (EBRT) treats cancer by delivering daily fractions of radiation to a target volume. For prostate cancer, the target undergoes day-to-day variations in position, volume, and shape. For stereotactic photon and for proton EBRT, endorectal balloons (ERBs) can be used to limit variations. To date, patterns of non-rigid variations for patients with ERB have not been modeled. We extracted and modeled the patient-specific patterns of variations, using regularly acquired CT-images, non-rigid point cloud registration, and principal component analysis (PCA). For each patient, a non-rigid point-set registration method, called Coherent Point Drift, (CPD) was used to automatically generate landmark correspondences between all target shapes. To ensure accurate registrations, we tested and validated CPD by identifying parameter values leading to the smallest registration errors (surface matching error 0.13+/-0.09 mm). PCA demonstrated that 88+/-3.2% of the target motion could be explained using only 4 principal modes. The most dominant component of target motion is a squeezing and stretching in the anterior-posterior and superior-inferior directions. A PCA model of daily landmark displacements, generated using 6 to 10 CT-scans, could explain well the target motion for the CT-scans not included in the model (modeling error decreased from 1.83+/-0.8 mm for 6 CT-scans to 1.6+/-0.7 mm for 10 CT-scans). PCA modeling error was smaller than the naive approximation by the mean shape (approximation error 2.66+/-0.59 mm). Future work will investigate the use of the PCA-model to improve the accuracy of EBRT techniques that are highly susceptible to anatomical variations such as, proton therapy

  3. What predicts successful literacy acquisition in a second language?

    PubMed Central

    Frost, Ram; Siegelman, Noam; Narkiss, Alona; Afek, Liron

    2013-01-01

    We examined whether success (or failure) in assimilating the structure of a second language could be predicted by general statistical learning abilities that are non-linguistic in nature. We employed a visual statistical learning (VSL) task, monitoring our participants’ implicit learning of the transitional probabilities of visual shapes. A pretest revealed that performance in the VSL task is not correlated with abilities related to a general G factor or working memory. We found that native speakers of English who picked up the implicit statistical structure embedded in the continuous stream of shapes, on average, better assimilated the Semitic structure of Hebrew words. Our findings thus suggest that languages and their writing systems are characterized by idiosyncratic correlations of form and meaning, and these are picked up in the process of literacy acquisition, as they are picked up in any other type of learning, for the purpose of making sense of the environment. PMID:23698615

  4. Contribution a l'inspection automatique des pieces flexibles a l'etat libre sans gabarit de conformation

    NASA Astrophysics Data System (ADS)

    Sattarpanah Karganroudi, Sasan

    The competitive industrial market demands manufacturing companies to provide the markets with a higher quality of production. The quality control department in industrial sectors verifies geometrical requirements of products with consistent tolerances. These requirements are presented in Geometric Dimensioning and Tolerancing (GD&T) standards. However, conventional measuring and dimensioning methods for manufactured parts are time-consuming and costly. Nowadays manual and tactile measuring methods have been replaced by Computer-Aided Inspection (CAI) methods. The CAI methods apply improvements in computational calculations and 3-D data acquisition devices (scanners) to compare the scan mesh of manufactured parts with the Computer-Aided Design (CAD) model. Metrology standards, such as ASME-Y14.5 and ISO-GPS, require implementing the inspection in free-state, wherein the part is only under its weight. Non-rigid parts are exempted from the free-state inspection rule because of their significant geometrical deviation in a free-state with respect to the tolerances. Despite the developments in CAI methods, inspection of non-rigid parts still remains a serious challenge. Conventional inspection methods apply complex fixtures for non-rigid parts to retrieve the functional shape of these parts on physical fixtures; however, the fabrication and setup of these fixtures are sophisticated and expensive. The cost of fixtures has doubled since the client and manufacturing sectors require repetitive and independent inspection fixtures. To eliminate the need for costly and time-consuming inspection fixtures, fixtureless inspection methods of non-rigid parts based on CAI methods have been developed. These methods aim at distinguishing flexible deformations of parts in a free-state from defects. Fixtureless inspection methods are required to be automatic, reliable, reasonably accurate and repeatable for non-rigid parts with complex shapes. The scan model, which is acquired as point clouds, represent the shape of a part in a free-state. Afterward, the inspection of defects is performed by comparing the scan and CAD models, but these models are presented in different coordinate systems. Indeed, the scan model is presented in the measurement coordinate system whereas the CAD model is introduced in the designed coordinate system. To accomplish the inspection and facilitate an accurate comparison between the models, the registration process is required to align the scan and CAD models in a common coordinate system. The registration includes a virtual compensation for the flexible deformation of the parts in a free-state. Then, the inspection is implemented as a geometrical comparison between the CAD and scan models. This thesis focuses on developing automatic and accurate fixtureless CAI methods for non-rigid parts along with assessing the robustness of the methods. To this end, an automatic fixtureless CAI method for non-rigid parts based on filtering registration points is developed to identify and quantify defects more accurately on the surface of scan models. The flexible deformation of parts in a free-state in our developed automatic fixtureless CAI method is compensated by applying FE non-rigid Registration (FENR) to deform the CAD model towards the scan mesh. The displacement boundary conditions (BCs) for FENR are determined based on the corresponding sample points, which are generated by the Generalized Numerical Inspection Fixture (GNIF) method on the CAD and scan models. These corresponding sample points are evenly distributed on the surface of the models. The comparison between this deformed CAD model and the scan mesh intend to evaluate and quantify the defects on the scan model. However, some sample points can be located close or on defect areas which result in an inaccurate estimation of defects. These sample points are automatically filtered out in our CAI method based on curvature and von Mises stress criteria. Once filtered out, the remaining sample points are used in a new FENR, which allows an accurate evaluation of defects with respect to the tolerances. The performance and robustness of all CAI methods are generally required to be assessed with respect to the actual measurements. This thesis also introduces a new validation metric for Verification and Validation (V&V) of CAI methods based on ASME recommendations. The developed V&V approach uses a nonparametric statistical hypothesis test, namely the Kolmogorov-Smirnov (K-S) test. In addition to validating the defects size, the K-S test allows a deeper evaluation based on distance distribution of defects. The robustness of CAI method with respect to uncertainties such as scanning noise is quantitatively assessed using the developed validation metric. Due to the compliance of non-rigid parts, a geometrically deviated part can still be assembled in the assembly-state. This thesis also presents a fixtureless CAI method for geometrically deviated (presenting defects) non-rigid parts to evaluate the feasibility of mounting these parts in the functional assembly-state. Our developed Virtual Mounting Assembly-State Inspection (VMASI) method performs a non-rigid registration to virtually mount the scan mesh in assembly-state. To this end, the point clouds of scan model representing the part in a free-state is deformed to meet the assembly constraints such as fixation position (e.g. mounting holes). In some cases, the functional shape of a deviated part can be retrieved by applying assembly loads, which are limited to permissible loads, on the surface of the part. The required assembly loads are estimated through our developed Restraining Pressures Optimization (RPO) aiming at displacing the deviated scan model to achieve the tolerance for mounting holes. Therefore, the deviated scan model can be assembled if the mounting holes on the predicted functional shape of scan model attain the tolerance range. Different industrial parts are used to evaluate the performance of our developed methods in this thesis. The automatic inspection for identifying different types of small (local) and big (global) defects on the parts results in an accurate evaluation of defects. The robustness of this inspection method is also validated with respect to different levels of scanning noise, which shows promising results. Meanwhile, the VMASI method is performed on various parts with different types of defects, which concludes that in some cases the functional shape of deviated parts can be retrieved by mounting them on a virtual fixture in assembly-state under restraining loads.

  5. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  6. Analyse et caracterisation d'interactions fluide-structure instationnaires en grands deplacements

    NASA Astrophysics Data System (ADS)

    Cori, Jean-Francois

    Flapping wings for flying and oscillating fins for swimming stand out as the most complex yet efficient propulsion methods found in nature. Understanding the phenomena involved is a great challenge generating significant interests, especially in the growing field of Micro Air Vehicles. The thrust and lift are induced by oscillating foils thanks to a complex phenomenon of unsteady fluid-structure interaction (FSI). The aim of the dissertation is to develop an efficient CFD framework for simulating the FSI process involved in the propulsion or the power extraction of an oscillating flexible airfoil in a viscous incompressible flow. The numerical method relies on direct implicit monolithic formulation using high-order implicit time integrators. We use an Arbitrary Lagrangian Eulerian (ALE) formulation of the equations designed to satisfy the Geometric Conservation Law (GCL) and to guarantee that the high order temporal accuracy of the time integrators observed on fixed meshes is preserved on ALE deforming meshes. Hyperelastic structural Saint-Venant Kirchhoff model, viscous incompressible Navier-Stokes equations for the flow, Newton's law for the point mass and equilibrium equations at the interface form one large monolithic system. The fully implicit FSI approach uses coincidents nodes on the fluid-structure interface, so that loads, velocities and displacements are evaluated at the same location and at the same time. The problem is solved in an implicit manner using a Newton-Raphson pseudo-solid finite element approach. High-order implicit Runge-Kutta time integrators are implemented (up to 5th order) to improve the accuracy and reduce the computational cost. In this context of stiff interaction problems, the highly stable fully implicit one-step approach is an original alternative to traditional multistep or explicit one-step finite element approaches. The methodology has been verified with three different test-cases. Thorough time-step refinement studies for a rigid oscillating airfoil on deforming meshes, for flow induced vibrations of a flexible strip and for a self-propulsed flapping airfoil indicate that the stability of the proposed approach is always observed even with large time steps, spurious oscillations on the structure are avoided without any damping and the high order accuracy of the IRK schemes is maintained. We have applied our powerful FSI framework on three interesting applications, with a detailed dimensional analysis to obtain their characteristic parameters. Firstly, we have studied the vibrational characteristics of a well-documented fluid-structure interaction case : a flexible strip fixed behind a rigid square cylinder. Our results compare favorably with previous works. The accuracy of the IRK time integrators (even for the pressure field of incompressible flow), their unconditional stability and their non-dissipative nature produced results revealing new, never previously reported, higher frequency structural forces weakly coupled with the fluid. Secondly, we have explored the propulsive and power extraction characteristics of rigid and flexible flapping airfoils. For the power extraction, we found an excellent agreement with literature results. A parametric study indicates the optimal motion parameters to get high propulsive efficiencies. An optimal flexibility seems to improve power extraction efficiency. Finally, a survey on flapping propulsion has given initial results for a self-propulsed airfoil and has opened a new way of studying propulsive efficiency. (Abstract shortened by UMI.)

  7. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  8. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part II

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  9. Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings

    NASA Astrophysics Data System (ADS)

    Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis

    2014-05-01

    The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.

  10. Free-form geometric modeling by integrating parametric and implicit PDEs.

    PubMed

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  11. A semi-implicit finite element method for viscous lipid membranes

    NASA Astrophysics Data System (ADS)

    Rodrigues, Diego S.; Ausas, Roberto F.; Mut, Fernando; Buscaglia, Gustavo C.

    2015-10-01

    A finite element formulation to approximate the behavior of lipid membranes is proposed. The mathematical model incorporates tangential viscous stresses and bending elastic forces, together with the inextensibility constraint and the enclosed volume constraint. The membrane is discretized by a surface mesh made up of planar triangles, over which a mixed formulation (velocity-curvature) is built based on the viscous bilinear form (Boussinesq-Scriven operator) and the Laplace-Beltrami identity relating position and curvature. A semi-implicit approach is then used to discretize in time, with piecewise linear interpolants for all variables. Two stabilization terms are needed: The first one stabilizes the inextensibility constraint by a pressure-gradient-projection scheme (Codina and Blasco (1997) [33]), the second couples curvature and velocity to improve temporal stability, as proposed by Bänsch (2001) [36]. The volume constraint is handled by a Lagrange multiplier (which turns out to be the internal pressure), and an analogous strategy is used to filter out rigid-body motions. The nodal positions are updated in a Lagrangian manner according to the velocity solution at each time step. An automatic remeshing strategy maintains suitable refinement and mesh quality throughout the simulation. Numerical experiments show the convergent and robust behavior of the proposed method. Stability limits are obtained from numerous relaxation tests, and convergence with mesh refinement is confirmed both in the relaxation transient and in the final equilibrium shape. Virtual tweezing experiments are also reported, computing the dependence of the deformed membrane shape with the tweezing velocity (a purely dynamical effect). For sufficiently high velocities, a tether develops which shows good agreement, both in its final radius and in its transient behavior, with available analytical solutions. Finally, simulation results of a membrane subject to the simultaneous action of six tweezers illustrate the robustness of the method.

  12. Attenuation correction in 4D-PET using a single-phase attenuation map and rigidity-adaptive deformable registration

    PubMed Central

    Kalantari, Faraz; Wang, Jing

    2017-01-01

    Purpose Four-dimensional positron emission tomography (4D-PET) imaging is a potential solution to the respiratory motion effect in the thoracic region. Computed tomography (CT)-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference between 4D-PET and a single attenuation map from CT, typically available in routine clinical scanning, motion artifacts are observed in the attenuation-corrected PET images, leading to errors in tumor shape and uptake. We introduced a practical method to align single-phase CT with all other 4D-PET phases for AC. Methods A penalized non-rigid Demons registration between individual 4D-PET frames without AC provides the motion vectors to be used for warping single-phase attenuation map. The non-rigid Demons registration was used to derive deformation vector fields (DVFs) between PET matched with the CT phase and other 4D-PET images. While attenuated PET images provide useful data for organ borders such as those of the lung and the liver, tumors cannot be distinguished from the background due to loss of contrast. To preserve the tumor shape in different phases, an ROI-covering tumor was excluded from non-rigid transformation. Instead the mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of the tumor along with a non-rigid transformation of other organs. A 4D-XCAT phantom with spherical lung tumors, with diameters ranging from 10 to 40 mm, was used to evaluate the algorithm. The performance of the proposed hybrid method for attenuation map estimation was compared to 1) the Demons non-rigid registration only and 2) a single attenuation map based on quantitative parameters in individual PET frames. Results Motion-related artifacts were significantly reduced in the attenuation-corrected 4D-PET images. When a single attenuation map was used for all individual PET frames, the normalized root mean square error (NRMSE) values in tumor region were 49.3% (STD: 8.3%), 50.5% (STD: 9.3%), 51.8% (STD: 10.8%) and 51.5% (STD: 12.1%) for 10-mm, 20-mm, 30-mm and 40-mm tumors respectively. These errors were reduced to 11.9% (STD: 2.9%), 13.6% (STD: 3.9%), 13.8% (STD: 4.8%), and 16.7% (STD: 9.3%) by our proposed method for deforming the attenuation map. The relative errors in total lesion glycolysis (TLG) values were −0.25% (STD: 2.87%) and 3.19% (STD: 2.35%) for 30-mm and 40-mm tumors respectively in proposed method. The corresponding values for Demons method were 25.22% (STD: 14.79%) and 18.42% (STD: 7.06%). Our proposed hybrid method outperforms the Demons method especially for larger tumors. For tumors smaller than 20 mm, non-rigid transformation could also provide quantitative results. Conclusion Although non-AC 4D-PET frames include insignificant anatomical information, they are still useful to estimate the DVFs to align the attenuation map for accurate AC. The proposed hybrid method can recover the AC-related artifacts and provide quantitative AC-PET images. PMID:27987223

  13. Non-rigid alignment in electron tomography in materials science.

    PubMed

    Printemps, Tony; Bernier, Nicolas; Bleuet, Pierre; Mula, Guido; Hervé, Lionel

    2016-09-01

    Electron tomography is a key technique that enables the visualization of an object in three dimensions with a resolution of about a nanometre. High-quality 3D reconstruction is possible thanks to the latest compressed sensing algorithms and/or better alignment and preprocessing of the 2D projections. Rigid alignment of 2D projections is routine in electron tomography. However, it cannot correct misalignments induced by (i) deformations of the sample due to radiation damage or (ii) drifting of the sample during the acquisition of an image in scanning transmission electron microscope mode. In both cases, those misalignments can give rise to artefacts in the reconstruction. We propose a simple-to-implement non-rigid alignment technique to correct those artefacts. This technique is particularly suited for needle-shaped samples in materials science. It is initiated by a rigid alignment of the projections and it is then followed by several rigid alignments of different parts of the projections. Piecewise linear deformations are applied to each projection to force them to simultaneously satisfy the rigid alignments of the different parts. The efficiency of this technique is demonstrated on three samples, an intermetallic sample with deformation misalignments due to a high electron dose typical to spectroscopic electron tomography, a porous silicon sample with an extremely thin end particularly sensitive to electron beam and another porous silicon sample that was drifting during image acquisitions. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  14. Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.

    2016-03-01

    Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.

  15. Comparing Angular and Curved Shapes in Terms of Implicit Associations and Approach/Avoidance Responses.

    PubMed

    Palumbo, Letizia; Ruta, Nicole; Bertamini, Marco

    2015-01-01

    Most people prefer smoothly curved shapes over more angular shapes. We investigated the origin of this effect using abstract shapes and implicit measures of semantic association and preference. In Experiment 1 we used a multidimensional Implicit Association Test (IAT) to verify the strength of the association of curved and angular polygons with danger (safe vs. danger words), valence (positive vs. negative words) and gender (female vs. male names). Results showed that curved polygons were associated with safe and positive concepts and with female names, whereas angular polygons were associated with danger and negative concepts and with male names. Experiment 2 used a different implicit measure, which avoided any need to categorise the stimuli. Using a revised version of the Stimulus Response Compatibility (SRC) task we tested with a stick figure (i.e., the manikin) approach and avoidance reactions to curved and angular polygons. We found that RTs for approaching vs. avoiding angular polygons did not differ, even in the condition where the angles were more pronounced. By contrast participants were faster and more accurate when moving the manikin towards curved shapes. Experiment 2 suggests that preference for curvature cannot derive entirely from an association of angles with threat. We conclude that smoothly curved contours make these abstract shapes more pleasant. Further studies are needed to clarify the nature of such a preference.

  16. Comparing Angular and Curved Shapes in Terms of Implicit Associations and Approach/Avoidance Responses

    PubMed Central

    Palumbo, Letizia; Ruta, Nicole; Bertamini, Marco

    2015-01-01

    Most people prefer smoothly curved shapes over more angular shapes. We investigated the origin of this effect using abstract shapes and implicit measures of semantic association and preference. In Experiment 1 we used a multidimensional Implicit Association Test (IAT) to verify the strength of the association of curved and angular polygons with danger (safe vs. danger words), valence (positive vs. negative words) and gender (female vs. male names). Results showed that curved polygons were associated with safe and positive concepts and with female names, whereas angular polygons were associated with danger and negative concepts and with male names. Experiment 2 used a different implicit measure, which avoided any need to categorise the stimuli. Using a revised version of the Stimulus Response Compatibility (SRC) task we tested with a stick figure (i.e., the manikin) approach and avoidance reactions to curved and angular polygons. We found that RTs for approaching vs. avoiding angular polygons did not differ, even in the condition where the angles were more pronounced. By contrast participants were faster and more accurate when moving the manikin towards curved shapes. Experiment 2 suggests that preference for curvature cannot derive entirely from an association of angles with threat. We conclude that smoothly curved contours make these abstract shapes more pleasant. Further studies are needed to clarify the nature of such a preference. PMID:26460610

  17. An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, R; Stolken, J; Jannetti, C

    Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numericalmore » simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.« less

  18. Fast viscosity solutions for shape from shading under a more realistic imaging model

    NASA Astrophysics Data System (ADS)

    Wang, Guohui; Han, Jiuqiang; Jia, Honghai; Zhang, Xinman

    2009-11-01

    Shape from shading (SFS) has been a classical and important problem in the domain of computer vision. The goal of SFS is to reconstruct the 3-D shape of an object from its 2-D intensity image. To this end, an image irradiance equation describing the relation between the shape of a surface and its corresponding brightness variations is used. Then it is derived as an explicit partial differential equation (PDE). Using the nonlinear programming principle, we propose a detailed solution to Prados and Faugeras's implicit scheme for approximating the viscosity solution of the resulting PDE. Furthermore, by combining implicit and semi-implicit schemes, a new approximation scheme is presented. In order to accelerate the convergence speed, we adopt the Gauss-Seidel idea and alternating sweeping strategy to the approximation schemes. Experimental results on both synthetic and real images are performed to demonstrate that the proposed methods are fast and accurate.

  19. Changes of Explicit and Implicit Stigma in Medical Students during Psychiatric Clerkship.

    PubMed

    Wang, Peng-Wei; Ko, Chih-Hung; Chen, Cheng-Sheng; Yang, Yi-Hsin Connine; Lin, Huang-Chi; Cheng, Cheng-Chung; Tsang, Hin-Yeung; Wu, Ching-Kuan; Yen, Cheng-Fang

    2016-04-01

    This study examines the differences in explicit and implicit stigma between medical and non-medical undergraduate students at baseline; the changes of explicit and implicit stigma in medical undergraduate and non-medical undergraduate students after a 1-month psychiatric clerkship and 1-month follow-up period; and the differences in the changes of explicit and implicit stigma between medical and non-medical undergraduate students. Seventy-two medical undergraduate students and 64 non-medical undergraduate students were enrolled. All participants were interviewed at intake and after 1 month. The Taiwanese version of the Stigma Assessment Scale and the Implicit Association Test were used to measure the participants' explicit and implicit stigma. Neither explicit nor implicit stigma differed between two groups at baseline. The medical, but not the non-medical, undergraduate students had a significant decrease in explicit stigma during the 1-month period of follow-up. Neither the medical nor the non-medical undergraduate students exhibited a significant change in implicit stigma during the one-month of follow-up, however. There was an interactive effect between group and time on explicit stigma but not on implicit stigma. Explicit but not implicit stigma toward mental illness decreased in the medical undergraduate students after a psychiatric clerkship. Further study is needed to examine how to improve implicit stigma toward mental illness.

  20. Implicit associative learning in synesthetes and nonsynesthetes

    PubMed Central

    Bankieris, Kaitlyn R.; Aslin, Richard N.

    2016-01-01

    Although cross-modal neural connections and genetic underpinnings are prominent in most current theories regarding the development of synesthesia, the potential role of associative learning in the formation of synesthetic associations has recently been revitalized. In this study, we investigated implicit associative learning in synesthetes and nonsynesthetes by recording reaction times to a target whose color was probabilistically correlated with its shape. A continuous measure of target detection at multiple time points during learning revealed that synesthetes and nonsynesthetes learn associations differently. Specifically, our results demonstrate a ‘fast facilitation’ learning effect for nonsynesthetes and ‘fast interference, slow facilitation’ learning effect for synesthetes. Additionally, synesthetes exhibited superior long-term memory for learned associations in a surprise-delayed retest. After this retest, participants implicitly learned new (shuffled) shape-color associations. We found that synesthetes experienced greater interference while learning these new shape-color associations. These results detail ways in which implicit associative learning and memory differ between synesthetes and nonsynesthetes. PMID:27612860

  1. Flowfield analysis of helicopter rotor in hover and forward flight based on CFD

    NASA Astrophysics Data System (ADS)

    Zhao, Qinghe; Li, Xiaodong

    2018-05-01

    The helicopter rotor field is simulated in hover and forward flight based on Computational Fluid Dynamics(CFD). In hover case only one rotor is simulated with the periodic boundary condition in the rotational coordinate system and the grid is fixed. In the non-lift forward flight case, the total rotor is simulated in inertia coordinate system and the whole grid moves rigidly. The dual-time implicit scheme is applied to simulate the unsteady flowfield on the movement grids. The k – ω turbulence model is employed in order to capture the effects of turbulence. To verify the solver, the flowfield around the Caradonna-Tung rotor is computed. The comparison shows a good agreement between the numerical results and the experimental data.

  2. Implicit ligand theory for relative binding free energies

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Hai; Minh, David D. L.

    2018-03-01

    Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.

  3. Automatic ethics: the effects of implicit assumptions and contextual cues on moral behavior.

    PubMed

    Reynolds, Scott J; Leavitt, Keith; DeCelles, Katherine A

    2010-07-01

    We empirically examine the reflexive or automatic aspects of moral decision making. To begin, we develop and validate a measure of an individual's implicit assumption regarding the inherent morality of business. Then, using an in-basket exercise, we demonstrate that an implicit assumption that business is inherently moral impacts day-to-day business decisions and interacts with contextual cues to shape moral behavior. Ultimately, we offer evidence supporting a characterization of employees as reflexive interactionists: moral agents whose automatic decision-making processes interact with the environment to shape their moral behavior.

  4. Dichotomous Thinking Leads to Entity Theories of Human Ability

    ERIC Educational Resources Information Center

    Oshio, Atsushi

    2012-01-01

    Previous research has indicated that dichotomous thinkers have stereotypic and rigid views of others. This study focuses on the world-view of dichotomous thinkers from the perspective of entity vs. incremental theory. Study 1 explored the relationship between dichotomous thinking and the IPTM (implicit person theory measure) (Dweck, Chiu, &…

  5. Optimizing the static-dynamic performance of the body-in-white using a modified non-dominated sorting genetic algorithm coupled with grey relational analysis

    NASA Astrophysics Data System (ADS)

    Wang, Dengfeng; Cai, Kefang

    2018-04-01

    This article presents a hybrid method combining a modified non-dominated sorting genetic algorithm (MNSGA-II) with grey relational analysis (GRA) to improve the static-dynamic performance of a body-in-white (BIW). First, an implicit parametric model of the BIW was built using SFE-CONCEPT software, and then the validity of the implicit parametric model was verified by physical testing. Eight shape design variables were defined for BIW beam structures based on the implicit parametric technology. Subsequently, MNSGA-II was used to determine the optimal combination of the design parameters that can improve the bending stiffness, torsion stiffness and low-order natural frequencies of the BIW without considerable increase in the mass. A set of non-dominated solutions was then obtained in the multi-objective optimization design. Finally, the grey entropy theory and GRA were applied to rank all non-dominated solutions from best to worst to determine the best trade-off solution. The comparison between the GRA and the technique for order of preference by similarity to ideal solution (TOPSIS) illustrated the reliability and rationality of GRA. Moreover, the effectiveness of the hybrid method was verified by the optimal results such that the bending stiffness, torsion stiffness, first order bending and first order torsion natural frequency were improved by 5.46%, 9.30%, 7.32% and 5.73%, respectively, with the mass of the BIW increasing by 1.30%.

  6. SPX: The Tenth International Conference on Stochastic Programming

    DTIC Science & Technology

    2004-10-01

    On structuring energy contract portfolios in competitive markets . Antonio Alonso-Ayuso, Universidad Rey Juan Carlos. (p. 28) 2. Mean-risk optimization ...ThA 8:00-9:30 Ballroom South: Portfolio Optimization Chair: Gerd Infanger, Stanford University 1. The impact of serial correlation of returns on ... the L-shaped method is to approximate the non-linear penalty term in the objective by a linear one . We use the implicit LX

  7. Building the Implicit BSW Curriculum at a Large Southern State University

    ERIC Educational Resources Information Center

    Holosko, Michael; Skinner, Jeffrey; MacCaughelty, Chelsea; Stahl, Kate Morrissey

    2010-01-01

    The Council on Social Work Education's Educational Policy and Accreditation Standards (EPAS) stresses the importance of the implicit curriculum in shaping a school's culture. This timely article describes how the implicit BSW curriculum was developed at a large Southern state university using three Web-based projects: (1) a glossary of terms for…

  8. Implicit Assumptions in Special Education Policy: Promoting Full Inclusion for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Kirby, Moira

    2017-01-01

    Introduction: Everyday millions of students in the United States receive special education services. Special education is an institution shaped by societal norms. Inherent in these norms are implicit assumptions regarding disability and the nature of special education services. The two dominant implicit assumptions evident in the American…

  9. Sound iconicity of abstract concepts: Place of articulation is implicitly associated with abstract concepts of size and social dominance.

    PubMed

    Auracher, Jan

    2017-01-01

    The concept of sound iconicity implies that phonemes are intrinsically associated with non-acoustic phenomena, such as emotional expression, object size or shape, or other perceptual features. In this respect, sound iconicity is related to other forms of cross-modal associations in which stimuli from different sensory modalities are associated with each other due to the implicitly perceived correspondence of their primal features. One prominent example is the association between vowels, categorized according to their place of articulation, and size, with back vowels being associated with bigness and front vowels with smallness. However, to date the relative influence of perceptual and conceptual cognitive processing on this association is not clear. To bridge this gap, three experiments were conducted in which associations between nonsense words and pictures of animals or emotional body postures were tested. In these experiments participants had to infer the relation between visual stimuli and the notion of size from the content of the pictures, while directly perceivable features did not support-or even contradicted-the predicted association. Results show that implicit associations between articulatory-acoustic characteristics of phonemes and pictures are mainly influenced by semantic features, i.e., the content of a picture, whereas the influence of perceivable features, i.e., size or shape, is overridden. This suggests that abstract semantic concepts can function as an interface between different sensory modalities, facilitating cross-modal associations.

  10. Contact-aware simulations of particulate Stokesian suspensions

    NASA Astrophysics Data System (ADS)

    Lu, Libin; Rahimian, Abtin; Zorin, Denis

    2017-10-01

    We present an efficient, accurate, and robust method for simulation of dense suspensions of deformable and rigid particles immersed in Stokesian fluid in two dimensions. We use a well-established boundary integral formulation for the problem as the foundation of our approach. This type of formulation, with a high-order spatial discretization and an implicit and adaptive time discretization, have been shown to be able to handle complex interactions between particles with high accuracy. Yet, for dense suspensions, very small time-steps or expensive implicit solves as well as a large number of discretization points are required to avoid non-physical contact and intersections between particles, leading to infinite forces and numerical instability. Our method maintains the accuracy of previous methods at a significantly lower cost for dense suspensions. The key idea is to ensure interference-free configuration by introducing explicit contact constraints into the system. While such constraints are unnecessary in the formulation, in the discrete form of the problem, they make it possible to eliminate catastrophic loss of accuracy by preventing contact explicitly. Introducing contact constraints results in a significant increase in stable time-step size for explicit time-stepping, and a reduction in the number of points adequate for stability.

  11. Evaluation of a Shape Memory Alloy Reinforced Annuloplasty Band for Minimally Invasive Mitral Valve Repair

    PubMed Central

    Purser, Molly F.; Richards, Andrew L.; Cook, Richard C.; Osborne, Jason A.; Cormier, Denis R.; Buckner, Gregory D.

    2013-01-01

    Purpose An in vitro study using explanted porcine hearts was conducted to evaluate a novel annuloplasty band, reinforced with a two-phase, shape memory alloy, designed specifically for minimally invasive mitral valve repair. Description In its rigid (austenitic) phase, this band provides the same mechanical properties as the commercial semi-rigid bands. In its compliant (martensitic) phase, this band is flexible enough to be introduced through an 8-mm trocar and is easily manipulated within the heart. Evaluation In its rigid phase, the prototype band displayed similar mechanical properties to commercially available semi-rigid rings. Dynamic flow testing demonstrated no statistical differences in the reduction of mitral valve regurgitation. In its flexible phase, the band was easily deployed through an 8-mm trocar, robotically manipulated and sutured into place. Conclusions Experimental results suggest that the shape memory alloy reinforced band could be a viable alternative to flexible and semi-rigid bands in minimally invasive mitral valve repair. PMID:19766827

  12. Investigation of flow-induced numerical instability in a mixed semi-implicit, implicit leapfrog time discretization

    NASA Astrophysics Data System (ADS)

    King, Jacob; Kruger, Scott

    2017-10-01

    Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).

  13. Compaction of granular materials composed of deformable particles

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang

    2017-06-01

    In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.

  14. Genetic counselors’ implicit racial attitudes and their relationship to communication

    PubMed Central

    Schaa, Kendra L; Roter, Debra L; Biesecker, Barbara B; Cooper, Lisa A; Erby, Lori H

    2015-01-01

    Objective Implicit racial attitudes are thought to shape interpersonal interactions and may contribute to health care disparities. This study explored the relationship between genetic counselors’ implicit racial attitudes and their communication during simulated genetic counseling sessions. Methods A nationally representative sample of genetic counselors completed a web-based survey that included the Race Implicit Association Test (IAT). A subset of these counselors (n=67) had participated in an earlier study in which they were video recorded counseling Black, Hispanic and non-Hispanic White simulated clients (SC) about their prenatal or cancer risks. The counselors’ IAT scores were related to their session communication through robust regression modeling. Results Genetic counselors showed a moderate to strong pro-White bias on the Race IAT (M=0.41, SD=0.35). Counselors with stronger pro-White bias were rated as displaying lower levels of positive affect (p<.05) and tended to use less emotionally responsive communication (p<.10) when counseling minority SCs. When counseling White SCs, pro-White bias was associated with lower levels of verbal dominance during sessions (p<.10). Stronger pro-White bias was also associated with more positive ratings of counselors’ nonverbal effectiveness by White SCs. Conclusions Implicit racial bias is associated with negative markers of communication in minority client sessions and may contribute to racial disparities in processes of care related to genetic services. PMID:25622081

  15. Development and application of pulmonary structure-function registration methods: towards pulmonary image-guidance tools for improved airway targeted therapies and outcomes

    NASA Astrophysics Data System (ADS)

    Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace

    2014-03-01

    Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.

  16. Implicit race attitudes predict trustworthiness judgments and economic trust decisions

    PubMed Central

    Stanley, Damian A.; Sokol-Hessner, Peter; Banaji, Mahzarin R.; Phelps, Elizabeth A.

    2011-01-01

    Trust lies at the heart of every social interaction. Each day we face decisions in which we must accurately assess another individual's trustworthiness or risk suffering very real consequences. In a global marketplace of increasing heterogeneity with respect to nationality, race, and multiple other social categories, it is of great value to understand how implicitly held attitudes about group membership may support or undermine social trust and thereby implicitly shape the decisions we make. Recent behavioral and neuroimaging work suggests that a common mechanism may underlie the expression of implicit race bias and evaluations of trustworthiness, although no direct evidence of a connection exists. In two behavioral studies, we investigated the relationship between implicit race attitude (as measured by the Implicit Association Test) and social trust. We demonstrate that race disparity in both an individual's explicit evaluations of trustworthiness and, more crucially, his or her economic decisions to trust is predicted by that person's bias in implicit race attitude. Importantly, this relationship is robust and is independent of the individual's bias in explicit race attitude. These data demonstrate that the extent to which an individual invests in and trusts others with different racial backgrounds is related to the magnitude of that individual's implicit race bias. The core dimension of social trust can be shaped, to some degree, by attitudes that reside outside conscious awareness and intention. PMID:21518877

  17. Implicit race attitudes predict trustworthiness judgments and economic trust decisions.

    PubMed

    Stanley, Damian A; Sokol-Hessner, Peter; Banaji, Mahzarin R; Phelps, Elizabeth A

    2011-05-10

    Trust lies at the heart of every social interaction. Each day we face decisions in which we must accurately assess another individual's trustworthiness or risk suffering very real consequences. In a global marketplace of increasing heterogeneity with respect to nationality, race, and multiple other social categories, it is of great value to understand how implicitly held attitudes about group membership may support or undermine social trust and thereby implicitly shape the decisions we make. Recent behavioral and neuroimaging work suggests that a common mechanism may underlie the expression of implicit race bias and evaluations of trustworthiness, although no direct evidence of a connection exists. In two behavioral studies, we investigated the relationship between implicit race attitude (as measured by the Implicit Association Test) and social trust. We demonstrate that race disparity in both an individual's explicit evaluations of trustworthiness and, more crucially, his or her economic decisions to trust is predicted by that person's bias in implicit race attitude. Importantly, this relationship is robust and is independent of the individual's bias in explicit race attitude. These data demonstrate that the extent to which an individual invests in and trusts others with different racial backgrounds is related to the magnitude of that individual's implicit race bias. The core dimension of social trust can be shaped, to some degree, by attitudes that reside outside conscious awareness and intention.

  18. Elastic Instability of Slender Rods in Steady Shear Flow Yields Positive First Normal Stress Differences

    NASA Astrophysics Data System (ADS)

    Becker, Leif E.; Shelley, Michael J.

    2000-11-01

    First normal stress differences in shear flow are a fundamental property of Non-Newtonian fluids. Experiments involving dilute suspensions of slender fibers exhibit a sharp transition to non-zero normal stress differences beyond a critical shear rate, but existing continuum theories for rigid rods predict neither this transition nor the corresponding magnitude of this effect. We present the first conclusive evidence that elastic instabilities are predominantly responsible for observed deviations from the dilute suspension theory of rigid rods. Our analysis is based on slender body theory and the equilibrium equations of elastica. A straight slender body executing its Jeffery orbit in Couette flow is subject to axial fluid forcing, alternating between compression and tension. We present a stability analysis showing that elastic instabilities are possible for strong flows. Simulations give the fully non-linear evolution of this shape instability, and show that flexibility of the fibers alone is sufficient to cause both shear-thinning and significant first normal stress differences.

  19. Operational Determination of Physical and Mechanical Properties of Cast Samples of High-Strength Iron by Means of a Magnetic-Mechanical Method

    NASA Astrophysics Data System (ADS)

    Slyusarev, Yu. K.; Braga, A. V.; Slyusarev, I. Yu.

    2017-09-01

    The effect of the chemical composition of high-strength cast iron VCh35 on the content, shape and diameter of graphite inclusions and on the presence of structurally-free cementite and defects is studied. A relationship is determined between the structure and metallurgical defects and characteristics of the mechanical and magnetic rigidity of cast samples. Relationships are established in a group of factors and property characteristics: chemical composition - microstructure - mechanical rigidity - magnetic stiffness. The basis of a method is established making it possible to perform operative non-destructive monitoring of the melt quality preparation for high-strength iron casting.

  20. Using the fast fourier transform in binding free energy calculations.

    PubMed

    Nguyen, Trung Hai; Zhou, Huan-Xiang; Minh, David D L

    2018-04-30

    According to implicit ligand theory, the standard binding free energy is an exponential average of the binding potential of mean force (BPMF), an exponential average of the interaction energy between the unbound ligand ensemble and a rigid receptor. Here, we use the fast Fourier transform (FFT) to efficiently evaluate BPMFs by calculating interaction energies when rigid ligand configurations from the unbound ensemble are discretely translated across rigid receptor conformations. Results for standard binding free energies between T4 lysozyme and 141 small organic molecules are in good agreement with previous alchemical calculations based on (1) a flexible complex ( R≈0.9 for 24 systems) and (2) flexible ligand with multiple rigid receptor configurations ( R≈0.8 for 141 systems). While the FFT is routinely used for molecular docking, to our knowledge this is the first time that the algorithm has been used for rigorous binding free energy calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. A Second-Order Implicit Knowledge: Its Implications for E-Learning

    ERIC Educational Resources Information Center

    Noaparast, Khosrow Bagheri

    2014-01-01

    The dichotomous epistemology of explicit/implicit knowledge has led to two parallel lines of research; one putting the emphasis on explicit knowledge which has been the main road of e-learning, and the other taking implicit knowledge as the core of learning which has shaped a critical line to the current e-learning. It is argued in this article…

  2. Co-rotational thermo-mechanically coupled multi-field framework and finite element for the large displacement analysis of multi-layered shape memory alloy beam-like structures

    NASA Astrophysics Data System (ADS)

    Solomou, Alexandros G.; Machairas, Theodoros T.; Karakalas, Anargyros A.; Saravanos, Dimitris A.

    2017-06-01

    A thermo-mechanically coupled finite element (FE) for the simulation of multi-layered shape memory alloy (SMA) beams admitting large displacements and rotations (LDRs) is developed to capture the geometrically nonlinear effects which are present in many SMA applications. A generalized multi-field beam theory implementing a SMA constitutive model based on small strain theory, thermo-mechanically coupled governing equations and multi-field kinematic hypotheses combining first order shear deformation assumptions with a sixth order polynomial temperature field through the thickness of the beam section are extended to admit LDRs. The co-rotational formulation is adopted, where the motion of the beam is decomposed to rigid body motion and relative small deformation in the local frame. A new generalized multi-layered SMA FE is formulated. The nonlinear transient spatial discretized equations of motion of the SMA structure are synthesized and solved using the Newton-Raphson method combined with an implicit time integration scheme. Correlations of models incorporating the present beam FE with respective results of models incorporating plane stress SMA FEs, demonstrate excellent agreement of the predicted LDRs response, temperature and phase transformation fields, as well as, significant gains in computational time.

  3. Role of virtual bronchoscopy in children with a vegetable foreign body in the tracheobronchial tree.

    PubMed

    Behera, G; Tripathy, N; Maru, Y K; Mundra, R K; Gupta, Y; Lodha, M

    2014-12-01

    Multidetector computed tomography virtual bronchoscopy is a non-invasive diagnostic tool which provides a three-dimensional view of the tracheobronchial airway. This study aimed to evaluate the usefulness of virtual bronchoscopy in cases of vegetable foreign body aspiration in children. The medical records of patients with a history of foreign body aspiration from August 2006 to August 2010 were reviewed. Data were collected regarding their clinical presentation and chest X-ray, virtual bronchoscopy and rigid bronchoscopy findings. Cases of metallic and other non-vegetable foreign bodies were excluded from the analysis. Patients with multidetector computed tomography virtual bronchoscopy showing features of vegetable foreign body were included in the analysis. For each patient, virtual bronchoscopy findings were reviewed and compared with those of rigid bronchoscopy. A total of 60 patients; all children ranging from 1 month to 8 years of age, were included. The mean age at presentation was 2.01 years. Rigid bronchoscopy confirmed the results of multidetector computed tomography virtual bronchoscopy (i.e. presence of foreign body, site of lodgement, and size and shape) in 59 patients. In the remaining case, a vegetable foreign body identified by virtual bronchoscopy was revealed by rigid bronchoscopy to be a thick mucus plug. Thus, the positive predictive value of virtual bronchoscopy was 98.3 per cent. Multidetector computed tomography virtual bronchoscopy is a sensitive and specific diagnostic tool for identifying radiolucent vegetable foreign bodies in the tracheobronchial tree. It can also provide a useful pre-operative road map for rigid bronchoscopy. Patients suspected of having an airway foreign body or chronic unexplained respiratory symptoms should undergo multidetector computed tomography virtual bronchoscopy to rule out a vegetable foreign body in the tracheobronchial tree and avoid general anaesthesia and invasive rigid bronchoscopy.

  4. Absolute binding free energies between T4 lysozyme and 141 small molecules: calculations based on multiple rigid receptor configurations

    PubMed Central

    Xie, Bing; Nguyen, Trung Hai; Minh, David D. L.

    2017-01-01

    We demonstrate the feasibility of estimating protein-ligand binding free energies using multiple rigid receptor configurations. Based on T4 lysozyme snapshots extracted from six alchemical binding free energy calculations with a flexible receptor, binding free energies were estimated for a total of 141 ligands. For 24 ligands, the calculations reproduced flexible-receptor estimates with a correlation coefficient of 0.90 and a root mean square error of 1.59 kcal/mol. The accuracy of calculations based on Poisson-Boltzmann/Surface Area implicit solvent was comparable to previously reported free energy calculations. PMID:28430432

  5. Friendships Influence Hispanic Students' Implicit Attitudes toward White Non-Hispanics Relative to African Americans

    ERIC Educational Resources Information Center

    Aberson, Christopher L.; Porter, Michael K.; Gaffney, Amber M.

    2008-01-01

    This study examined the role of Hispanic students' friendships with White non-Hispanics (n-Hs) and African Americans (AAs) in predicting implicit and explicit prejudices toward these groups. Participants (N = 73) completed implicit and explicit attitude measures and a friendship questionnaire. Friendships were associated with implicit attitudes…

  6. Learning intervention-induced deformations for non-rigid MR-CT registration and electrode localization in epilepsy patients

    PubMed Central

    Onofrey, John A.; Staib, Lawrence H.; Papademetris, Xenophon

    2015-01-01

    This paper describes a framework for learning a statistical model of non-rigid deformations induced by interventional procedures. We make use of this learned model to perform constrained non-rigid registration of pre-procedural and post-procedural imaging. We demonstrate results applying this framework to non-rigidly register post-surgical computed tomography (CT) brain images to pre-surgical magnetic resonance images (MRIs) of epilepsy patients who had intra-cranial electroencephalography electrodes surgically implanted. Deformations caused by this surgical procedure, imaging artifacts caused by the electrodes, and the use of multi-modal imaging data make non-rigid registration challenging. Our results show that the use of our proposed framework to constrain the non-rigid registration process results in significantly improved and more robust registration performance compared to using standard rigid and non-rigid registration methods. PMID:26900569

  7. Analysis and optimization of the active rigidity joint

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim

    2009-12-01

    The active rigidity joint is a composite mechanism using shape memory alloy and shape memory polymer to create a passively rigid joint with thermally activated deflection. A new model for the active rigidity joint relaxes constraints of earlier methods and allows for more accurate deflection predictions compared to finite element results. Using an iterative process to determine the strain distribution and deflection, the method demonstrates accurate results for both surface bonded and embedded actuators with and without external loading. Deflection capabilities are explored through simulated annealing heuristic optimization using a variety of cost functions to explore actuator performance. A family of responses presents actuator characteristics in terms of load bearing and deflection capabilities given material and thermal constraints. Optimization greatly expands the available workspace of the active rigidity joint from the initial configuration, demonstrating specific work capabilities comparable to those of muscle tissue.

  8. The Use of Non-Standard Devices in Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Schur, Willi W.; Broduer, Steve (Technical Monitor)

    2001-01-01

    A general mathematical description of the response behavior of thin-skin pneumatic envelopes and many other membrane and cable structures produces under-constrained systems that pose severe difficulties to analysis. These systems are mobile, and the general mathematical description exposes the mobility. Yet the response behavior of special under-constrained structures under special loadings can be accurately predicted using a constrained mathematical description. The static response behavior of systems that are infinitesimally mobile, such as a non-slack membrane subtended from a rigid or elastic boundary frame, can be easily analyzed using such general mathematical description as afforded by the non-linear, finite element method using an implicit solution scheme if the incremental uploading is guided through a suitable path. Similarly, if such structures are assembled with structural lack of fit that provides suitable self-stress, then dynamic response behavior can be predicted by the non-linear, finite element method and an implicit solution scheme. An explicit solution scheme is available for evolution problems. Such scheme can be used via the method of dynamic relaxation to obtain the solution to a static problem. In some sense, pneumatic envelopes and many other compliant structures can be said to have destiny under a specified loading system. What that means to the analyst is that what happens on the evolution path of the solution is irrelevant as long as equilibrium is achieved at destiny under full load and that the equilibrium is stable in the vicinity of that load. The purpose of this paper is to alert practitioners to the fact that non-standard procedures in finite element analysis are useful and can be legitimate although they burden their users with the requirement to use special caution. Some interesting findings that are useful to the US Scientific Balloon Program and that could not be obtained without non-standard techniques are presented.

  9. Towards Long-Time Simulation of Soft Tissue Simulant Penetration

    DTIC Science & Technology

    2008-12-01

    materials involved in testing. Experiments, for instance firing high speed bullets at steel plates of different thicknesses (see [2]), reveal large...L’ shaped beam against a rigid wall using AVI and the almost exact en- ergy conservation of the system . With traditional time integrators, the time...and avoiding ill-conditioning issues is often non trivial. Likewise, Lagrange multipliers have also been used to impose the contact con- straint at

  10. Gambling and Sport: Implicit Association and Explicit Intention Among Underage Youth.

    PubMed

    Li, En; Langham, Erika; Browne, Matthew; Rockloff, Matthew; Thorne, Hannah

    2018-03-23

    This study examined whether an implicit association existed between gambling and sport among underage youth in Australia, and whether this implicit association could shape their explicit intention to gamble. A sample of 14-17 year old Australian participants completed two phases of tasks, including an implicit association test based online experiment, and a post-experiment online survey. The results supported the existence of an implicit association between gambling and sport among the participants. This implicit association became stronger when they saw sport-relevant (vs. sport-irrelevant) gambling logos, or gambling-relevant (vs. gambling-irrelevant) sport names. In addition, this implicit association was positively related to the amount of sport viewing, but only among those participants who had more favorable gambling attitudes. Lastly, gambling attitudes and advertising knowledge, rather than the implicit association, turned out to be significant predictors of the explicit intention to gamble.

  11. Can implicit appraisal concepts produce emotion-specific effects? A focus on unfairness and anger.

    PubMed

    Tong, Eddie M W; Tan, Deborah H; Tan, Yan Lin

    2013-06-01

    This research examined whether the non-conscious activation of an implicit appraisal concept could affect responses associated with the corresponding emotion as predicted by appraisal theories. Explicit and implicit emotional responses were examined. We focused on implicit unfairness and its effect on anger. The results show that subliminal activation of implicit unfairness affected implicit anger responses (anger facial expression and latency responses to anger words) but not explicit anger feelings (i.e., reported anger). The non-conscious effect of implicit unfairness was specific to anger, as no effect on sadness, fear, and guilt was found. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. An improved understanding of the natural resonances of moonpools contained within floating rigid-bodies: Theory and application to oscillating water column devices

    DOE PAGES

    Bull, Diana L.

    2015-09-23

    The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometriesmore » that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.« less

  13. An improved understanding of the natural resonances of moonpools contained within floating rigid-bodies: Theory and application to oscillating water column devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bull, Diana L.

    The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometriesmore » that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.« less

  14. The mere exposure effect is sensitive to color information: evidence for color effects in a perceptual implicit memory test.

    PubMed

    Hupbach, Almut; Melzer, André; Hardt, Oliver

    2006-01-01

    Priming effects in perceptual tests of implicit memory are assumed to be perceptually specific. Surprisingly, changing object colors from study to test did not diminish priming in most previous studies. However, these studies used implicit tests that are based on object identification, which mainly depends on the analysis of the object shape and therefore operates color-independently. The present study shows that color effects can be found in perceptual implicit tests when the test task requires the processing of color information. In Experiment 1, reliable color priming was found in a mere exposure design (preference test). In Experiment 2, the preference test was contrasted with a conceptually driven color-choice test. Altering the shape of object from study to test resulted in significant priming in the color-choice test but eliminated priming in the preference test. Preference judgments thus largely depend on perceptual processes. In Experiment 3, the preference and the color-choice test were studied under explicit test instructions. Differences in reaction times between the implicit and the explicit test suggest that the implicit test results were not an artifact of explicit retrieval attempts. In contrast with previous assumptions, it is therefore concluded that color is part of the representation that mediates perceptual priming.

  15. Defensive function of persecutory delusion and discrepancy between explicit and implicit self-esteem in schizophrenia: study using the Brief Implicit Association Test

    PubMed Central

    Nakamura, Mitsuo; Hayakawa, Tomomi; Okamura, Aiko; Kohigashi, Mutsumi; Fukui, Kenji; Narumoto, Jin

    2015-01-01

    Background If delusions serve as a defense mechanism in schizophrenia patients with paranoia, then they should show normal or high explicit self-esteem and low implicit self-esteem. However, the results of previous studies are inconsistent. One possible explanation for this inconsistency is that there are two types of paranoia, “bad me” (self-blaming) paranoia and “poor me” (non-self-blaming) paranoia. We thus examined implicit and explicit self-esteem and self-blaming tendency in patients with schizophrenia and schizoaffective disorder. We hypothesized that patients with paranoia would show lower implicit self-esteem and only those with non-self-blaming paranoia would experience a discrepancy between explicit and implicit self-esteem. Methods Participants consisted of patients with schizophrenia and schizoaffective disorder recruited from a day hospital (N=71). Participants were assessed for psychotic symptoms, using the Brief Psychiatric Rating Scale (BPRS), and self-blaming tendency, using the brief COPE. We also assessed explicit self-esteem, using the Rosenberg Self-Esteem Scale (RSES), implicit self-esteem, using Brief Implicit Association Test (BIAT), and discrepancy between explicit and implicit self-esteem. Results Contrary to our hypothesis, implicit self-esteem in paranoia and nonparanoia showed no statistical difference. As expected, only patients with non-self-blaming paranoia experienced a discrepancy between explicit and implicit self-esteem; other groups showed no such discrepancy. Conclusion These results suggest that persecutory delusion plays a defensive role in non-self-blaming paranoia. PMID:25565849

  16. Complex patchy colloids shaped from deformable seed particles through capillary interactions.

    PubMed

    Meester, V; Kraft, D J

    2018-02-14

    We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.

  17. Assessment of implicit sexual associations in non-incarcerated pedophiles.

    PubMed

    van Leeuwen, Matthijs L; van Baaren, Rick B; Chakhssi, Farid; Loonen, Marijke G M; Lippman, Maarten; Dijksterhuis, Ap

    2013-11-01

    Offences committed by pedophiles are crimes that evoke serious public concern and outrage. Although recent research using implicit measures has shown promise in detecting deviant sexual associations, the discriminatory and predictive quality of implicit tasks has not yet surpassed traditional assessment methods such as questionnaires and phallometry. The current research extended previous findings by examining whether a combination of two implicit tasks, the Implicit Association Task (IAT) and the Picture Association Task (PAT), was capable of differentiating pedophiles from non-pedophiles, and whether the PAT, which allows separate analysis for male, female, boy and girl stimulus categories, was more sensitive to specific sexual associations in pedophiles than the IAT. A total of 20 male self-reported pedophiles (10 offender and 10 non-offenders) and 20 male self-reported heterosexual controls completed the two implicit measures. Results indicated that the combination of both tasks produced the strongest results to date in detecting implicit pedophilic preferences (AUC = .97). Additionally, the PAT showed promise in decomposing the sexual associations in pedophiles. Interestingly, as there was an equal distribution of offenders and non-offenders in the pedophile group, it was possible to test for implicit association differences between these groups. This comparison showed no clear link between having these implicit sexual associations and actual offending.

  18. Non-monotonic relationships between emotional arousal and memory for color and location.

    PubMed

    Boywitt, C Dennis

    2015-01-01

    Recent research points to the decreased diagnostic value of subjective retrieval experience for memory accuracy for emotional stimuli. While for neutral stimuli rich recollective experiences are associated with better context memory than merely familiar memories this association appears questionable for emotional stimuli. The present research tested the implicit assumption that the effect of emotional arousal on memory is monotonic, that is, steadily increasing (or decreasing) with increasing arousal. In two experiments emotional arousal was manipulated in three steps using emotional pictures and subjective retrieval experience as well as context memory were assessed. The results show an inverted U-shape relationship between arousal and recognition memory but for context memory and retrieval experience the relationship was more complex. For frame colour, context memory decreased linearly while for spatial location it followed the inverted U-shape function. The complex, non-monotonic relationships between arousal and memory are discussed as possible explanations for earlier divergent findings.

  19. A wave model for rigid-frame porous materials using lumped parameter concepts

    NASA Astrophysics Data System (ADS)

    Rossetti, S.; Gardonio, P.; Brennan, M. J.

    2005-08-01

    The work presented in this paper concerns the behaviour of porous media when exposed to a normal incidence sound field. A propagating wave model based on lumped parameter concepts of acoustic mass, stiffness and damping is used to investigate the absorption phenomena due to the wave propagation in the layer(s) and interference effects due to the wave reflection-transmission at the interfaces of the layer(s). Results from the theoretical model have been validated by measurements on samples of consolidated rubber granulate material. Two typical installations where a layer of porous material is placed next to a rigid wall, and where it is placed at a distance from a rigid wall are used as reference cases. The geometrical and physical properties of porous materials can be described by such parameters as the non-dimensional shape factor and the porosity. The propagating model introduced is used to investigate the effect of these two parameters on acoustic absorption and thus relate the physical properties to the acoustic behaviour.

  20. Strain memory of 2D and 3D rigid inclusion populations in viscous flows - What is clast SPO telling us?

    NASA Astrophysics Data System (ADS)

    Stahr, Donald W.; Law, Richard D.

    2014-11-01

    We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.

  1. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    PubMed

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Impaired acquisition of novel grapheme-color correspondences in synesthesia

    PubMed Central

    Brang, David; Ghiam, Michael; Ramachandran, Vilayanur S.

    2013-01-01

    Grapheme-color synesthesia is a neurological phenomenon in which letters and numbers (graphemes) consistently evoke particular colors (e.g., A may be experienced as red). These sensations are thought to arise through the cross-activation of grapheme processing regions in the fusiform gyrus and color area V4, supported by anatomical and functional imaging. However, the developmental onset of grapheme-color synesthesia remains elusive as research in this area has largely relied on self-report of these experiences in children. One possible account suggests that synesthesia is present at or near birth and initially binds basic shapes and forms to colors, which are later refined to grapheme-color associations through experience. Consistent with this view, studies show that similarly shaped letters and numbers tend to elicit similar colors in synesthesia and that some synesthetes consciously associate basic shapes with colors; research additionally suggests that synesthetic colors can emerge for newly learned characters with repeated presentation. This model further predicts that the initial shape-color correspondences in synesthesia may persist as implicit associations, driving the acquisition of colors for novel characters. To examine the presence of latent color associations for novel characters, synesthetes and controls were trained on pre-defined associations between colors and complex shapes, on the assumption that the prescribed shape-color correspondences would on average differ from implicit synesthetic associations. Results revealed synesthetes were less accurate than controls to learn novel shape-color associations, consistent with our suggestion that implicit form-color associations conflicted with the learned pairings. PMID:24198775

  3. Impaired acquisition of novel grapheme-color correspondences in synesthesia.

    PubMed

    Brang, David; Ghiam, Michael; Ramachandran, Vilayanur S

    2013-01-01

    Grapheme-color synesthesia is a neurological phenomenon in which letters and numbers (graphemes) consistently evoke particular colors (e.g., A may be experienced as red). These sensations are thought to arise through the cross-activation of grapheme processing regions in the fusiform gyrus and color area V4, supported by anatomical and functional imaging. However, the developmental onset of grapheme-color synesthesia remains elusive as research in this area has largely relied on self-report of these experiences in children. One possible account suggests that synesthesia is present at or near birth and initially binds basic shapes and forms to colors, which are later refined to grapheme-color associations through experience. Consistent with this view, studies show that similarly shaped letters and numbers tend to elicit similar colors in synesthesia and that some synesthetes consciously associate basic shapes with colors; research additionally suggests that synesthetic colors can emerge for newly learned characters with repeated presentation. This model further predicts that the initial shape-color correspondences in synesthesia may persist as implicit associations, driving the acquisition of colors for novel characters. To examine the presence of latent color associations for novel characters, synesthetes and controls were trained on pre-defined associations between colors and complex shapes, on the assumption that the prescribed shape-color correspondences would on average differ from implicit synesthetic associations. Results revealed synesthetes were less accurate than controls to learn novel shape-color associations, consistent with our suggestion that implicit form-color associations conflicted with the learned pairings.

  4. Sources of implicit and explicit intergroup race bias among African-American children and young adults

    PubMed Central

    Rochat, Philippe; Tone, Erin B.; Baron, Andrew S.

    2017-01-01

    Implicit intergroup bias emerges early in development, are typically pro-ingroup, and remain stable across the lifespan. Such findings have been interpreted in terms of an automatic ingroup bias similar to what is observed with minimal groups paradigms. These studies are typically conducted with groups of high cultural standing (e.g., Caucasians in North America and Europe). Research conducted among culturally lower status groups (e.g., African-Americans, Latino-Americans) reveals a notable absence of an implicit ingroup bias. Understanding the environmental factors that contribute to the absence of an implicit ingroup bias among people from culturally lower status groups is critical for advancing theories of implicit intergroup cognition. The present study aimed to elucidate the factors that shape racial group bias among African-American children and young adults by examining their relationship with age, school composition (predominantly Black schools or racially mixed schools), parental racial attitudes and socialization messages among African-American children (N = 86) and young adults (N = 130). Age, school-type and parents’ racial socialization messages were all found to be related to the strength of pro-Black (ingroup) bias. We also found that relationships between implicit and explicit bias and frequency of parents' racial socialization messages depended on the type of school participants attended. Our results highlight the importance of considering environmental factors in shaping the magnitude and direction of implicit and explicit race bias among African-Americans rather than treating them as a monolithic group. PMID:28957353

  5. Dielectric elastomer bending tube actuators with rigid electrode structures

    NASA Astrophysics Data System (ADS)

    Wehrheim, F.; Schlaak, H. F.; Meyer, J.-U.

    2010-04-01

    The common approach for dielectric elastomer actuators (DEA) is based on the assumption that compliant electrodes are a fundamental design requirement. For tube-like applications compliant electrodes cause a change of the actuator diameter during actuation and would require additional support-structures. Focused on thinwalled actuator-tube geometries room consumption and radial stabilityr epresent crucial criteria. Following the ambition of maximum functional integration, the concept of using a rigid electrode structure arises. This structure realizes both, actuation and support characteristics. The intended rigid electrode structure is based on a stacked DEA with a non-compressible dielectric. Byactu ation, the displaced dielectric causes an overlap. This overlap serves as an indicator for geometrical limitations and has been used to extract design rules regarding the electrode size, electrode distance and maximum electrode travel. Bycons idering the strain in anydir ection, the mechanical efficiencyhas been used to define further design aspects. To verifyt he theoretic analysis, a test for determination of the compressive stress-strain-characteristics has been applied for different electrode setups. As result the geometrydep ending elastic pressure module has been formulated by implementation of a shape factor. The presented investigations consider exclusive the static behavior of a DEA-setup with rigid electrodes.

  6. The role of color in the implicit memory performance of healthy older adults and individuals with Alzheimer's disease.

    PubMed

    Lloyd-Jones, Toby J

    2005-01-01

    Although the Alzheimer's disease (AD) patients in this study were severely impaired in recognition performance, their naming performance demonstrated normal priming across transformations in object color. This is evidence for preserved implicit shape-based memory performance in AD patients. For colored-object decision, healthy older adult control participants but not AD patients showed priming for new associations between previously encountered object shapes and colors. The author argues, on the basis of this colored object decision performance, that the deficits present in AD do not allow shape and color to be integrated to form a novel unitized representation that can be used to benefit cognitive performance. 2005 APA

  7. A Continuum Mechanical Approach to Geodesics in Shape Space

    DTIC Science & Technology

    2010-01-01

    the space of shapes, where shapes are implicitly described as boundary contours of objects. The proposed shape metric is derived from a ...investigate the close link between abstract geometry on the infinite -dimen- sional space of shapes and the continuum mechanical view of shapes as boundary...are texture-coded in the bottom row. of multiple components of volumetric objects. The

  8. Jig-Shape Optimization of a Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2018-01-01

    A simple approach for optimizing the jig-shape is proposed in this study. This simple approach is based on an unconstrained optimization problem and applied to a low-boom supersonic aircraft. In this study, the jig-shape optimization is performed using the two-step approach. First, starting design variables are computed using the least-squares surface fitting technique. Next, the jig-shape is further tuned using a numerical optimization procedure based on an in-house object-oriented optimization tool. During the numerical optimization procedure, a design jig-shape is determined by the baseline jig-shape and basis functions. A total of 12 symmetric mode shapes of the cruise-weight configuration, rigid pitch shape, rigid left and right stabilator rotation shapes, and a residual shape are selected as sixteen basis functions. After three optimization runs, the trim shape error distribution is improved, and the maximum trim shape error of 0.9844 inches of the starting configuration becomes 0.00367 inch by the end of the third optimization run.

  9. Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes

    PubMed Central

    Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.

    2013-01-01

    The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575

  10. Contact Modelling in Isogeometric Analysis: Application to Sheet Metal Forming Processes

    NASA Astrophysics Data System (ADS)

    Cardoso, Rui P. R.; Adetoro, O. B.; Adan, D.

    2016-08-01

    Isogeometric Analysis (IGA) has been growing in popularity in the past few years essentially due to the extra flexibility it introduces with the use of higher degrees in the basis functions leading to higher convergence rates. IGA also offers the capability of easily reproducing discontinuous displacement and/or strain fields by just manipulating the multiplicity of the knot parametric coordinates. Another advantage of IGA is that it uses the Non-Uniform Rational B-Splines (NURBS) basis functions, that are very common in CAD solid modelling, and consequently it makes easier the transition from CAD models to numerical analysis. In this work it is explored the contact analysis in IGA for both implicit and explicit time integration schemes. Special focus will be given on contact search and contact detection techniques under NURBS patches for both the rigid tools and the deformed sheet blank.

  11. Skepticism: Genuine unbelief or implicit beliefs in the supernatural?

    PubMed

    Lindeman, Marjaana; Svedholm-Häkkinen, Annika M; Riekki, Tapani

    2016-05-01

    We examined whether skeptics hold implicit supernatural beliefs or implicit cognitive underpinnings of the beliefs. In study 1 (N=57), participants read a biological or a religious story about death. The story content had no effect on skeptics' (or believers') afterlife beliefs. Study 2 examined the relationships between religious and non-religious paranormal beliefs and implicit views about whether supernatural and religious phenomena are imaginary or real (n1=33, n2=31). The less supernatural beliefs were endorsed the easier it was to connect "supernatural" with "imaginary". Study 3 (N=63) investigated whether participants' supernatural beliefs and ontological confusions differ between speeded and non-speeded response conditions. Only non-analytical skeptics' ontological confusions increased in speeded conditions. The results indicate that skeptics overall do not hold implicit supernatural beliefs, but that non-analytically thinking skeptics may, under supporting conditions, be prone to biases that predispose to supernatural beliefs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Racial-ethnic biases, time pressure, and medical decisions.

    PubMed

    Stepanikova, Irena

    2012-09-01

    This study examined two types of potential sources of racial-ethnic disparities in medical care: implicit biases and time pressure. Eighty-one family physicians and general internists responded to a case vignette describing a patient with chest pain. Time pressure was manipulated experimentally. Under high time pressure, but not under low time pressure, implicit biases regarding blacks and Hispanics led to a less serious diagnosis. In addition, implicit biases regarding blacks led to a lower likelihood of a referral to specialist when physicians were under high time pressure. The results suggest that when physicians face stress, their implicit biases may shape medical decisions in ways that disadvantage minority patients.

  13. Dissociation between implicit and explicit expectancies of cannabis use in adolescence.

    PubMed

    Schmits, Emilie; Maurage, Pierre; Thirion, Romain; Quertemont, Etienne

    2015-12-30

    Cannabis is one of the most commonly drugs used by teenagers. Expectancies about its effects play a crucial role in cannabis consumption. Various tools have been used to assess expectancies, mainly self-report questionnaires measuring explicit expectancies, but implicit measures based on experimental tasks have also been developed, measuring implicit expectancies. The aim of this study was to simultaneously assess implicit/explicit expectancies related to cannabis among adolescent users and non-users. 130 teenagers attending school (55 girls) were enrolled (Age: M=16.40 years); 43.84% had never used cannabis ("non-users") and 56.16% had used cannabis ("users"). They completed self-report questionnaires evaluating cannabis use, cannabis-related problems, effect expectancies (explicit expectancies), alcohol use, social and trait anxiety, depression, as well as three Implicit Association Tests (IAT) assessing implicit expectancies. Adolescents manifested more implicit affective associations (relaxation, excitation, negative) than neutral ones regarding cannabis. These were not related to explicit expectancies. Cannabis users reported more implicit relaxation expectancies and less negative explicit expectancies than non-users. The frequency of use and related problems were positively associated with the explicit expectancies regarding relaxation and enhancement, and were negatively associated with negative explicit expectancies and negative implicit expectancies. Findings indicate that implicit and explicit expectancies play different roles in cannabis use by adolescents. The implications for experimentation and prevention are discussed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.

    2018-04-01

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  15. Three-Dimensional Viscous Alternating Direction Implicit Algorithm and Strategies for Shape Optimization

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.

  16. Implicit Attitude Toward Caregiving: The Moderating Role of Adult Attachment Styles

    PubMed Central

    De Carli, Pietro; Tagini, Angela; Sarracino, Diego; Santona, Alessandra; Parolin, Laura

    2016-01-01

    Attachment and caregiving are separate motivational systems that share the common evolutionary purpose of favoring child security. In the goal of studying the processes underlying the transmission of attachment styles, this study focused on the role of adult attachment styles in shaping preferences toward particular styles of caregiving. We hypothesized a correspondence between attachment and caregiving styles: we expect an individual to show a preference for a caregiving behavior coherent with his/her own attachment style, in order to increase the chance of passing it on to offspring. We activated different representations of specific caregiving modalities in females, by using three videos in which mothers with different Adult Attachment states of mind played with their infants. Participants' facial expressions while watching were recorded and analyzed with FaceReader software. After each video, participants' attitudes toward the category “mother” were measured, both explicitly (semantic differential) and implicitly (single target-implicit association task, ST-IAT). Participants' adult attachment styles (experiences in close relationships revised) predicted attitudes scores, but only when measured implicitly. Participants scored higher on the ST-IAT after watching a video coherent with their attachment style. No effect was found on the facial expressions of disgust. These findings suggest a role of adult attachment styles in shaping implicit attitudes related to the caregiving system. PMID:26779060

  17. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    NASA Astrophysics Data System (ADS)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  18. ‘Beauty Is No Quality in Things Themselves’: Epistemic Motivation Affects Implicit Preferences for Art

    PubMed Central

    Chirumbolo, Antonio; Brizi, Ambra; Mastandrea, Stefano; Mannetti, Lucia

    2014-01-01

    Art preferences are affected by a number of subjective factors. This paper reports two studies which investigated whether need for closure shapes implicit art preferences. It was predicted that higher need for closure would negatively affect implicit preferences for abstract art. In study one, 60 participants were tested for dispositional need for closure and then completed an Implicit Association Test (IAT) task to measure their implicit preference for abstract (vs. figurative) paintings. In study two, 54 participants completed the same IAT task. In this experiment need for closure was both manipulated by cognitive load and tapped as a dispositional trait. Results of the studies converged in showing that after controlling for other important individual factors such as participants'expertise and cognitive ability, need for closure, both as a dispositional trait and as a situationally induced motivational state, was negatively associated with implicit preference for abstract art. PMID:25360697

  19. 'Beauty is no quality in things themselves': epistemic motivation affects implicit preferences for art.

    PubMed

    Chirumbolo, Antonio; Brizi, Ambra; Mastandrea, Stefano; Mannetti, Lucia

    2014-01-01

    Art preferences are affected by a number of subjective factors. This paper reports two studies which investigated whether need for closure shapes implicit art preferences. It was predicted that higher need for closure would negatively affect implicit preferences for abstract art. In study one, 60 participants were tested for dispositional need for closure and then completed an Implicit Association Test (IAT) task to measure their implicit preference for abstract (vs. figurative) paintings. In study two, 54 participants completed the same IAT task. In this experiment need for closure was both manipulated by cognitive load and tapped as a dispositional trait. Results of the studies converged in showing that after controlling for other important individual factors such as participants'expertise and cognitive ability, need for closure, both as a dispositional trait and as a situationally induced motivational state, was negatively associated with implicit preference for abstract art.

  20. How implicit motives and everyday self-regulatory abilities shape cardiovascular risk in youth.

    PubMed

    Ewart, Craig K; Elder, Gavin J; Smyth, Joshua M

    2012-06-01

    Tested hypotheses from social action theory that (a) implicit and explicit measures of agonistic (social control) motives and transcendence (self-control) motives differentially predict cardiovascular risk; and (b) implicit motives interact with everyday self-regulation behaviors to magnify risk. Implicit/explicit agonistic/transcendence motives were assessed in a multi-ethnic sample of 64 high school students with the Social Competence Interview (SCI). Everyday self-regulation was assessed with teacher ratings of internalizing, externalizing, and self-control behaviors. Ambulatory blood pressure and daily activities were measured over 48 h. Study hypotheses were supported: implicit goals predicted blood pressure levels but explicit self-reported coping goals did not; self-regulation indices did not predict blood pressure directly but interacted with implicit agonistic/transcendence motives to identify individuals at greatest risk (all p ≤ 0.05). Assessment of implicit motives by SCI, and everyday self-regulation by teachers may improve identification of youth at risk for cardiovascular disease.

  1. Multi-contrast MRI registration of carotid arteries based on cross-sectional images and lumen boundaries

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Xia; Zhang, Xi; Xu, Xiao-Pan; Liu, Yang; Zhang, Guo-Peng; Li, Bao-Juan; Chen, Hui-Jun; Lu, Hong-Bing

    2017-02-01

    Ischemic stroke has great correlation with carotid atherosclerosis and is mostly caused by vulnerable plaques. It's particularly important to analysis the components of plaques for the detection of vulnerable plaques. Recently plaque analysis based on multi-contrast magnetic resonance imaging has attracted great attention. Though multi-contrast MR imaging has potentials in enhanced demonstration of carotid wall, its performance is hampered by the misalignment of different imaging sequences. In this study, a coarse-to-fine registration strategy based on cross-sectional images and wall boundaries is proposed to solve the problem. It includes two steps: a rigid step using the iterative closest points to register the centerlines of carotid artery extracted from multi-contrast MR images, and a non-rigid step using the thin plate spline to register the lumen boundaries of carotid artery. In the rigid step, the centerline was extracted by tracking the crosssectional images along the vessel direction calculated by Hessian matrix. In the non-rigid step, a shape context descriptor is introduced to find corresponding points of two similar boundaries. In addition, the deterministic annealing technique is used to find a globally optimized solution. The proposed strategy was evaluated by newly developed three-dimensional, fast and high resolution multi-contrast black blood MR imaging. Quantitative validation indicated that after registration, the overlap of two boundaries from different sequences is 95%, and their mean surface distance is 0.12 mm. In conclusion, the proposed algorithm has improved the accuracy of registration effectively for further component analysis of carotid plaques.

  2. The edge complex: implicit memory for figure assignment in shape perception.

    PubMed

    Peterson, Mary A; Enns, James T

    2005-05-01

    Viewing a stepped edge is likely to prompt the perceptual assignment of one side of the edge as figure. This study demonstrates that even a single brief glance at a novel edge gives rise to an implicit memory regarding which side was seen as figure; this edge complex enters into the figure assignment process the next time the edge is encountered, both speeding same-different judgments when the figural side is repeated and slowing these judgments when the new figural side is identical to the former ground side (Experiments 1A and 1B). These results were obtained even when the facing direction of the repeated edge was mirror reversed (Experiment 2). This study shows that implicit measures can reveal the effects of past experience on figure assignment, following a single prior exposure to a novel shape, and supports a competitive model of figure assignment in which past experience serves as one of many figural cues.

  3. NoRMCorre: An online algorithm for piecewise rigid motion correction of calcium imaging data.

    PubMed

    Pnevmatikakis, Eftychios A; Giovannucci, Andrea

    2017-11-01

    Motion correction is a challenging pre-processing problem that arises early in the analysis pipeline of calcium imaging data sequences. The motion artifacts in two-photon microscopy recordings can be non-rigid, arising from the finite time of raster scanning and non-uniform deformations of the brain medium. We introduce an algorithm for fast Non-Rigid Motion Correction (NoRMCorre) based on template matching. NoRMCorre operates by splitting the field of view (FOV) into overlapping spatial patches along all directions. The patches are registered at a sub-pixel resolution for rigid translation against a regularly updated template. The estimated alignments are subsequently up-sampled to create a smooth motion field for each frame that can efficiently approximate non-rigid artifacts in a piecewise-rigid manner. Existing approaches either do not scale well in terms of computational performance or are targeted to non-rigid artifacts arising just from the finite speed of raster scanning, and thus cannot correct for non-rigid motion observable in datasets from a large FOV. NoRMCorre can be run in an online mode resulting in comparable to or even faster than real time motion registration of streaming data. We evaluate its performance with simple yet intuitive metrics and compare against other non-rigid registration methods on simulated data and in vivo two-photon calcium imaging datasets. Open source Matlab and Python code is also made available. The proposed method and accompanying code can be useful for solving large scale image registration problems in calcium imaging, especially in the presence of non-rigid deformations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. Rigidity of transmembrane proteins determines their cluster shape

    NASA Astrophysics Data System (ADS)

    Jafarinia, Hamidreza; Khoshnood, Atefeh; Jalali, Mir Abbas

    2016-01-01

    Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α -helices and β -sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch, which has been previously proposed as the mechanism of protein aggregation. According to our results, semiflexible proteins aggregate to form two-dimensional clusters, while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.

  5. To Be or Want to Be: Disentangling the Role of Actual versus Ideal Self in Implicit Self-Esteem

    PubMed Central

    De Houwer, Jan; De Raedt, Rudi

    2014-01-01

    A growing body of work suggests that both depressed and non-depressed individuals display implicit positivity towards the self. In the current study, we examined whether this positivity can be underpinned by two qualitatively distinct propositions related to actual (‘I am good’) or ideal (‘I want to be good’) self-esteem. Dysphoric and non-dysphoric participants completed a self-esteem Implicit Association Test (IAT) as well an Implicit Relational Assessment Procedure (IRAP) targeting their actual self-esteem and an IRAP targeting ideal self-esteem. Both groups demonstrated similar and positive IAT effects. A more complex picture emerged with regard to the IRAP effects. Whereas non-dysphorics did not differ in their actual and ideal self-esteem, their dysphoric counterparts demonstrated lower actual than ideal self-esteem. Our results suggest that closer attention to the role of propositional processes in implicit measures may unlock novel insight into the relationship between implicit self-esteem and depression. PMID:25268889

  6. A boundary-integral representation for biphasic mixture theory, with application to the post-capillary glycocalyx

    PubMed Central

    Sumets, P. P.; Cater, J. E.; Long, D. S.; Clarke, R. J.

    2015-01-01

    We describe a new boundary-integral representation for biphasic mixture theory, which allows us to efficiently solve certain elastohydrodynamic–mobility problems using boundary element methods. We apply this formulation to model the motion of a rigid particle through a microtube which has non-uniform wall shape, is filled with a viscous Newtonian fluid, and is lined with a thin poroelastic layer. This is relevant to scenarios such as the transport of small rigid cells (such as neutrophils) through microvessels that are lined with an endothelial glycocalyx layer (EGL). In this context, we examine the impact of geometry upon some recently reported phenomena, including the creation of viscous eddies, fluid flux into the EGL, as well as the role of the EGL in transmitting mechanical signals to the underlying endothelial cells. PMID:26345494

  7. Edge-shape barrier irreversibility and decomposition of vortices in Bi 2Sr 2CaCu 2O 8

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; D'Anna, G.; André, M.-O.; Kabanov, V. V.; Benoit, W.

    1994-12-01

    Magnetic flux dynamics is studied in Bi 2Sr 2CaCu 2O 8 single crystals by means of magneto-optical technique. It is clearly demonstrated that the magnetic irreversibility of these crystals in a magnetic field perpendicular to the basal plane at temperatures higher than approximately 35 K is governed by an edge-shape barrier and its disappearance determines the high temperature part of the magnetic irreversibility line which is commonly associated in the literature with vortex lattice melting. We argue that this barrier exists because of the non ellipsoidal shape of the samples and can disappear only when the flux lines lose their rigidity decomposing into pancakes, which is the only true magnetic phase transition on the B-T diagram for Bi 2Sr 2CaCu 2O 8.

  8. Implicit self-esteem decreases in adolescence: a cross-sectional study.

    PubMed

    Cai, Huajian; Wu, Mingzheng; Luo, Yu L L; Yang, Jing

    2014-01-01

    Implicit self-esteem has remained an active research topic in both the areas of implicit social cognition and self-esteem in recent decades. The purpose of this study is to explore the development of implicit self-esteem in adolescents. A total of 599 adolescents from junior and senior high schools in East China participated in the study. They ranged in age from 11 to 18 years with a mean age of 14.10 (SD = 2.16). The degree of implicit self-esteem was assessed using the Implicit Association Test (IAT) with the improved D score as the index. Participants also completed the Rosenberg Self-Esteem Scale (α = 0.77). For all surveyed ages, implicit self-esteem was positively biased, all ts>8.59, all ps<0.001. The simple correlation between implicit self-esteem and age was significant, r =  -.25, p = 1. 10(-10). A regression with implicit self-esteem as the criterion variable, and age, gender, and age × gender interaction as predictors further revealed the significant negative linear relationship between age and implicit self-esteem, β = -0.19, t = -3.20, p = 0.001. However, explicit self-esteem manifested a reverse "U" shape throughout adolescence. Implicit self-esteem in adolescence manifests a declining trend with increasing age, suggesting that it is sensitive to developmental or age-related changes. This finding enriches our understanding of the development of implicit social cognition.

  9. Robust group-wise rigid registration of point sets using t-mixture model

    NASA Astrophysics Data System (ADS)

    Ravikumar, Nishant; Gooya, Ali; Frangi, Alejandro F.; Taylor, Zeike A.

    2016-03-01

    A probabilistic framework for robust, group-wise rigid alignment of point-sets using a mixture of Students t-distribution especially when the point sets are of varying lengths, are corrupted by an unknown degree of outliers or in the presence of missing data. Medical images (in particular magnetic resonance (MR) images), their segmentations and consequently point-sets generated from these are highly susceptible to corruption by outliers. This poses a problem for robust correspondence estimation and accurate alignment of shapes, necessary for training statistical shape models (SSMs). To address these issues, this study proposes to use a t-mixture model (TMM), to approximate the underlying joint probability density of a group of similar shapes and align them to a common reference frame. The heavy-tailed nature of t-distributions provides a more robust registration framework in comparison to state of the art algorithms. Significant reduction in alignment errors is achieved in the presence of outliers, using the proposed TMM-based group-wise rigid registration method, in comparison to its Gaussian mixture model (GMM) counterparts. The proposed TMM-framework is compared with a group-wise variant of the well-known Coherent Point Drift (CPD) algorithm and two other group-wise methods using GMMs, using both synthetic and real data sets. Rigid alignment errors for groups of shapes are quantified using the Hausdorff distance (HD) and quadratic surface distance (QSD) metrics.

  10. Non-uniqueness of the point of application of the buoyancy force

    NASA Astrophysics Data System (ADS)

    Kliava, Janis; Mégel, Jacques

    2010-07-01

    Even though the buoyancy force (also known as the Archimedes force) has always been an important topic of academic studies in physics, its point of application has not been explicitly identified yet. We present a quantitative approach to this problem based on the concept of the hydrostatic energy, considered here for a general shape of the cross-section of a floating body and for an arbitrary angle of heel. We show that the location of the point of application of the buoyancy force essentially depends (i) on the type of motion experienced by the floating body and (ii) on the definition of this point. In a rolling/pitching motion, considerations involving the rotational moment lead to a particular dynamical point of application of the buoyancy force, and for some simple shapes of the floating body this point coincides with the well-known metacentre. On the other hand, from the work-energy relation it follows that in the rolling/pitching motion the energetical point of application of this force is rigidly connected to the centre of buoyancy; in contrast, in a vertical translation this point is rigidly connected to the centre of gravity of the body. Finally, we consider the location of the characteristic points of the floating bodies for some particular shapes of immersed cross-sections. The paper is intended for higher education level physics teachers and students.

  11. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    NASA Astrophysics Data System (ADS)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  12. The drink remains the same: implicit positive associations in high but not moderate or non-caffeine users.

    PubMed

    Stafford, Lorenzo D; Wright, Claire; Yeomans, Martin R

    2010-06-01

    Research has demonstrated that high, but not low caffeine users exhibit an attentional bias to caffeine related stimuli. Separately, the Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) has been used to investigate the valence of implicit cognitions to drugs with some contradictory findings, though no work has addressed this issue with respect to caffeine. Here, we examined whether attentional bias would be found in high and moderate caffeine users using a pictorial version of the dot-probe task. A second aim was to explore differences in implicit cognitions between users and non-users. Fifteen high, moderate and non-caffeine users completed a picture dot-probe, IAT, and mood questionnaire following overnight caffeine deprivation. In the IAT, results demonstrated positive associations to caffeine related words for high but not moderate or non-users. Lower ratings for calmness were evident in both groups of caffeine compared to non-users. Dot-probe findings revealed an attentional bias among moderate caffeine users and non-users but not heavy users. The observed positive implicit associations to caffeine suggest that drug acceptability is the key in such perceptions. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  13. A rigidity transition and glassy dynamics in a model for confluent 3D tissues

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Manning, M. Lisa

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Recently, a new type of rigidity transition was discovered in a family of models for 2D biological tissues, but the mechanisms responsible for rigidity remain unclear. This is not just a statistical physics problem, but also relevant for embryonic development, cancer growth, and wound healing. To gain insight into this rigidity transition and make new predictions about biological bulk tissues, we have developed a fully 3D self-propelled Voronoi (SPV) model. The model takes into account shape, elasticity, and self-propelled motion of the individual cells. We find that in the absence of self-propulsion, this model exhibits a rigidity transition that is controlled by a dimensionless model parameter describing the preferred cell shape, with an accompanying structural order parameter. In the presence of self-propulsion, the rigidity transition appears as a glass-like transition featuring caging and aging effects. Given the similarities between this transition and jamming in particulate solids, it is natural to ask if the two transitions are related. By comparing statistics of Voronoi geometries, we show the transitions are surprisingly close but demonstrably distinct. Furthermore, an index theorem used to identify topologically protected mechanical modes in jammed systems can be extended to these vertex-type models. In our model, residual stresses govern the transition and enter the index theorem in a different way compared to jammed particles, suggesting the origin of rigidity may be different between the two.

  14. College students' stigmatization of people with mental illness: familiarity, implicit person theory, and attribution.

    PubMed

    Lyndon, Amy E; Crowe, Allison; Wuensch, Karl L; McCammon, Susan L; Davis, Karen B

    2016-11-25

    Stigma associated with mental illness (MI) results in underutilization of mental health care. We must understand factors contributing to stigma to shape anti-stigma campaigns. To investigate the factors influencing stigma in university students. Undergraduate psychology students completed measures on causal attribution, stigma, social distance, implicit person theory (IPT), and familiarity. The hypothesis was partially supported; people who felt personality traits were unchangeable (i.e. entity IPT) were more likely to stigmatize individuals with mental disorders and desired more social distance from them. Familiarity with people with a MI individually predicted less desire for social distance, yet the redundancy of the predictors made the effect of familiarity on stigma fall just short of statistical significance. Judgments of biogenetic causal attribution were related to higher stigma levels, but not so when familiarity and IPT were taken into account. Educational campaigns may be effective by focusing on aspects of MI highlighting similarity with non-diagnosed people, and that people with MI can recover.

  15. Effect of analysis parameters on non-linear implicit finite element analysis of marine corroded steel plate

    NASA Astrophysics Data System (ADS)

    Islam, Muhammad Rabiul; Sakib-Ul-Alam, Md.; Nazat, Kazi Kaarima; Hassan, M. Munir

    2017-12-01

    FEA results greatly depend on analysis parameters. MSC NASTRAN nonlinear implicit analysis code has been used in large deformation finite element analysis of pitted marine SM490A steel rectangular plate. The effect of two types actual pit shape on parameters of integrity of structure has been analyzed. For 3-D modeling, a proposed method for simulation of pitted surface by probabilistic corrosion model has been used. The result has been verified with the empirical formula proposed by finite element analysis of steel surface generated with different pitted data where analyses have been carried out by the code of LS-DYNA 971. In the both solver, an elasto-plastic material has been used where an arbitrary stress versus strain curve can be defined. In the later one, the material model is based on the J2 flow theory with isotropic hardening where a radial return algorithm is used. The comparison shows good agreement between the two results which ensures successful simulation with comparatively less energy and time.

  16. Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target.

    PubMed

    Budiarto, E; Keijzer, M; Storchi, P R M; Heemink, A W; Breedveld, S; Heijmen, B J M

    2014-01-20

    Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements.

  17. Implicit Theories of Personality and Attributions of Hostile Intent: A Meta-Analysis, an Experiment, and a Longitudinal Intervention

    ERIC Educational Resources Information Center

    Yeager, David S.; Miu, Adriana S.; Powers, Joseph; Dweck, Carol S.

    2013-01-01

    Past research has shown that hostile schemas and adverse experiences predict the hostile attributional bias. This research proposes that seemingly nonhostile beliefs (implicit theories about the malleability of personality) may also play a role in shaping it. Study 1 meta-analytically summarized 11 original tests of this hypothesis (N = 1,659),…

  18. Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α5β1 integrin engagement.

    PubMed

    Riaz, Maryam; Versaevel, Marie; Mohammed, Danahe; Glinel, Karine; Gabriele, Sylvain

    2016-09-28

    Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of α v β 3 or α 5 β 1 integrins, we show that α V β 3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α 5 β 1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of α v β 3 and α 5 β 1 integrins in the molecular clutch model.

  19. Using the Implicit Association Test and the Implicit Relational Assessment Procedure to Measure Attitudes toward Meat and Vegetables in Vegetarians and Meat-Eaters

    ERIC Educational Resources Information Center

    Barnes-Holmes, Dermot; Murtagh, Louise; Barnes-Holmes, Yvonne; Stewart, Ian

    2010-01-01

    The current study aimed to assess the implicit attitudes of vegetarians and non-vegetarians towards meat and vegetables, using the Implicit Association Test (IAT) and the Implicit Relational Assessment Procedure (IRAP). Both measures involved asking participants to respond, under time pressure, to pictures of meat or vegetables as either positive…

  20. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE PAGES

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; ...

    2018-04-17

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  1. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  2. [Effect of divided attention on explicit and implicit aspects of recall].

    PubMed

    Wippich, W; Schmitt, R; Mecklenbräuker, S

    1989-01-01

    If subjects have to form word images before spelling a word from the image, results of a repetition of the spelling test reveal a reliable priming effect: Old words can be spelled faster than comparable control words, reflecting a form of implicit memory. We investigated whether this kind of repetition priming remains stable under conditions of divided attention in the study phase. The subjects had to spell meaningful words, meaningless non-words, and non-words that were meaningful with a backward spelling direction (troper, for example). In the testing stage, recognition judgments as a form of explicit memory were required, too. Divided attention in the study phase had a negative effect on explicit memory, as revealed by performance on the recognition task, but had little effect on implicit memory, as revealed by performance on the repetition of the spelling test. A further dissociation between implicit and explicit memory showed up as meaningful words were recognized much better than non-words, whereas implicit memory was uninfluenced by the meaningfulness variable. The disadvantage of backward spellings was not reduced with non-words (like troper) spelled backwards. Finally, we analyzed the relations between spelling times and recognition judgments and found a pattern of dependency for non-words only. Generally, the results are discussed within processing-oriented approaches to implicit memory with a special emphasis on controversial findings concerning the role of attention in different expressions of memory.

  3. Intergroup contact throughout the lifespan modulates implicit racial biases across perceivers' racial group.

    PubMed

    Kubota, Jennifer T; Peiso, Jaelyn; Marcum, Kori; Cloutier, Jasmin

    2017-01-01

    Few researchers have investigated how contact across the lifespan influences racial bias and whether diversity of contact is beneficial regardless of the race of the perceiver. This research aims to address these gaps in the literature with a focus on how diversity in childhood and current contact shapes implicit racial bias across perceivers' racial group. In two investigations, participants completed an Implicit Association Test and a self-report measure of the racial diversity of their current and childhood contact. In both studies, increased contact with Black compared with White individuals, both in childhood (Study 2) and currently (Studies 1 and 2), was associated with reduced implicit pro-White racial bias. For Black individuals (Study 2) more contact with Black compared with White individuals also was associated with reduced implicit pro-White racial bias. These findings suggest that diversity in contact across the lifespan may be related to reductions in implicit racial biases and that this relationship may generalize across racial groups.

  4. Intergroup contact throughout the lifespan modulates implicit racial biases across perceivers’ racial group

    PubMed Central

    Peiso, Jaelyn; Marcum, Kori; Cloutier, Jasmin

    2017-01-01

    Few researchers have investigated how contact across the lifespan influences racial bias and whether diversity of contact is beneficial regardless of the race of the perceiver. This research aims to address these gaps in the literature with a focus on how diversity in childhood and current contact shapes implicit racial bias across perceivers’ racial group. In two investigations, participants completed an Implicit Association Test and a self-report measure of the racial diversity of their current and childhood contact. In both studies, increased contact with Black compared with White individuals, both in childhood (Study 2) and currently (Studies 1 and 2), was associated with reduced implicit pro-White racial bias. For Black individuals (Study 2) more contact with Black compared with White individuals also was associated with reduced implicit pro-White racial bias. These findings suggest that diversity in contact across the lifespan may be related to reductions in implicit racial biases and that this relationship may generalize across racial groups. PMID:28700624

  5. Implicit Self-Esteem Decreases in Adolescence: A Cross-Sectional Study

    PubMed Central

    Cai, Huajian; Wu, Mingzheng; Luo, Yu L. L.; Yang, Jing

    2014-01-01

    Implicit self-esteem has remained an active research topic in both the areas of implicit social cognition and self-esteem in recent decades. The purpose of this study is to explore the development of implicit self-esteem in adolescents. A total of 599 adolescents from junior and senior high schools in East China participated in the study. They ranged in age from 11 to 18 years with a mean age of 14.10 (SD = 2.16). The degree of implicit self-esteem was assessed using the Implicit Association Test (IAT) with the improved D score as the index. Participants also completed the Rosenberg Self-Esteem Scale (α = 0.77). For all surveyed ages, implicit self-esteem was positively biased, all ts>8.59, all ps<0.001. The simple correlation between implicit self-esteem and age was significant, r = −.25, p = 1.0×10−10. A regression with implicit self-esteem as the criterion variable, and age, gender, and age × gender interaction as predictors further revealed the significant negative linear relationship between age and implicit self-esteem, β = −0.19, t = −3.20, p = 0.001. However, explicit self-esteem manifested a reverse “U” shape throughout adolescence. Implicit self-esteem in adolescence manifests a declining trend with increasing age, suggesting that it is sensitive to developmental or age-related changes. This finding enriches our understanding of the development of implicit social cognition. PMID:24587169

  6. A geometrically controlled rigidity transition in a model for confluent 3D tissues

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Manning, M. Lisa

    2018-02-01

    The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitri, F. G., E-mail: F.G.Mitri@ieee.org

    This paper presents two key contributions; the first concerns the development of analytical expressions for the axial and transverse acoustic radiation forces exerted on a 2D rigid elliptical cylinder placed in the field of plane progressive, quasi-standing, or standing waves with arbitrary incidence. The second emphasis is on the acoustic radiation torque per length. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a cylindrical fluid column trapped in air because of the significant acoustic impedance mismatch at the particle boundary. Based on the rigorous partial-wave series expansion method in cylindricalmore » coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force components and torque, showing the transition from the progressive to the (equi-amplitude) standing wave behavior, are performed with particular emphasis on the aspect ratio a/b, where a and b are the semi-axes of the ellipse, the dimensionless size parameter, as well as the angle of incidence ranging from end-on to broadside incidence. The results show that the elliptical geometry has a direct influence on the radiation force and torque, so that the standard theory for circular cylinders (at normal incidence) leads to significant miscalculations when the cylinder cross section becomes non-circular. Moreover, the elliptical cylinder experiences, in addition to the acoustic radiation force, a radiation torque that vanishes for the circular cylinder case. The application of the formalism presented here may be extended to other 2D surfaces of arbitrary shape, such as Chebyshev cylindrical particles with a small deformation, stadiums (with oval shape), or other non-circular geometries.« less

  8. Optimization of metals and plastics recovery from electric cable wastes using a plate-type electrostatic separator.

    PubMed

    Richard, Gontran; Touhami, Seddik; Zeghloul, Thami; Dascalescu, Lucien

    2017-02-01

    Plate-type electrostatic separators are commonly employed for the selective sorting of conductive and non-conductive granular materials. The aim of this work is to identify the optimal operating conditions of such equipment, when employed for separating copper and plastics from either flexible or rigid electric wire wastes. The experiments are performed according to the response surface methodology, on samples composed of either "calibrated" particles, obtained by manually cutting of electric wires at a predefined length (4mm), or actual machine-grinded scraps, characterized by a relatively-wide size distribution (1-4mm). The results point out the effect of particle size and shape on the effectiveness of the electrostatic separation. Different optimal operating conditions are found for flexible and rigid wires. A separate processing of the two classes of wire wastes is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Single-shot three-dimensional reconstruction based on structured light line pattern

    NASA Astrophysics Data System (ADS)

    Wang, ZhenZhou; Yang, YongMing

    2018-07-01

    Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.

  10. T-Cell Receptors Binding Orientation over Peptide/MHC Class I Is Driven by Long-Range Interactions

    PubMed Central

    Ferber, Mathias; Zoete, Vincent; Michielin, Olivier

    2012-01-01

    Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes. PMID:23251658

  11. T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions.

    PubMed

    Ferber, Mathias; Zoete, Vincent; Michielin, Olivier

    2012-01-01

    Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.

  12. Infants' Individuation of Rigid and Plastic Objects Based on Shape

    ERIC Educational Resources Information Center

    Schaub, Simone; Bertin, Evelyn; Cacchione, Trix

    2013-01-01

    Recent research suggests that 12-month-old infants use shape to individuate the number of objects present in a scene. This study addressed the question of whether infants would also rely on shape when shape is only a temporary attribute of an object. Specifically, we investigated whether infants realize that shape changes reliably indicate…

  13. Implicit Associations in Social Anxiety Disorder: The Effects of Comorbid Depression

    PubMed Central

    Wong, Judy; Morrison, Amanda S.; Heimberg, Richard G.; Goldin, Philippe R.; Gross, James J.

    2014-01-01

    Implicit associations of the self to concepts like “calm” have been shown to be weaker in persons with social anxiety than in non-anxious healthy controls. However, other implicit self associations, such as those to acceptance or rejection, have been less studied in social anxiety, and none of this work has been conducted with clinical samples. Furthermore, the importance of depression in these relationships has not been well investigated. We addressed these issues by administering two Implicit Association Tests (IATs; Greenwald, McGhee, & Schwartz, 1998), one examining the implicit association of self/other to anxiety/calmness and the other examining the association of self/other to rejection/acceptance, to individuals with generalized social anxiety disorder (SAD, n = 85), individuals with generalized SAD and a current or past diagnosis of major depressive disorder or current dysthymic disorder (n = 47), and non-anxious, non-depressed healthy controls (n = 44). The SAD and SAD-depression groups showed weaker implicit self-calmness associations than healthy controls, with the comorbid group showing the weakest self-calmness associations. The SAD-depression group showed the weakest implicit self-acceptance associations; no difference was found between non-depressed individuals with SAD and healthy controls. Post hoc analyses revealed that differences appeared to be driven by those with current depression. The SAD-only and SAD-depression groups did not differ in self-reported (explicit) social anxiety. The implications of these findings for the understanding of SAD-depression comorbidity and for the treatment of SAD are considered. PMID:24983794

  14. Understanding geological processes: Visualization of rigid and non-rigid transformations

    NASA Astrophysics Data System (ADS)

    Shipley, T. F.; Atit, K.; Manduca, C. A.; Ormand, C. J.; Resnick, I.; Tikoff, B.

    2012-12-01

    Visualizations are used in the geological sciences to support reasoning about structures and events. Research in cognitive sciences offers insights into the range of skills of different users, and ultimately how visualizations might support different users. To understand the range of skills needed to reason about earth processes we have developed a program of research that is grounded in the geosciences' careful description of the spatial and spatiotemporal patterns associated with earth processes. In particular, we are pursuing a research program that identifies specific spatial skills and investigates whether and how they are related to each other. For this study, we focus on a specific question: Is there an important distinction in the geosciences between rigid and non-rigid deformation? To study a general spatial thinking skill we employed displays with non-geological objects that had been altered by rigid change (rotation), and two types of non-rigid change ("brittle" (or discontinuous) and "ductile" (or continuous) deformation). Disciplinary scientists (geosciences and chemistry faculty), and novices (non-science faculty and undergraduate psychology students) answered questions that required them to visualize the appearance of the object before the change. In one study, geologists and chemists were found to be superior to non-science faculty in reasoning about rigid rotations (e.g., what an object would look like from a different perspective). Geologists were superior to chemists in reasoning about brittle deformations (e.g., what an object looked like before it was broken - here the object was a word cut into many fragments displaced in different directions). This finding is consistent with two hypotheses: 1) Experts are good at visualizing the types of changes required for their domain; and 2) Visualization of rigid and non-rigid changes are not the same skill. An additional important finding is that there was a broad range of skill in both rigid and non-rigid reasoning within the panels of science experts. In a second study, individual differences in reasoning about brittle deformations were correlated with reasoning about ductile deformations (e.g., what a bent plastic sheet would look like when unbent). Students who were good at visualizing what something looked like before it was broken were also good at visualizing what something looked like before it was bent, and this skill was not correlated to reasoning about rigid rotations. These findings suggest the cognitive processes that support reasoning about rigid and non-rigid events may differ and thus may require different types of support and training. We do not know if differences between experts and novices result from experience or self-selection, or both. Nevertheless, the range of spatial skill evinced by novices and experts strongly argues for designing visualizations to support a variety of users.

  15. Modal mass estimation from ambient vibrations measurement: A method for civil buildings

    NASA Astrophysics Data System (ADS)

    Acunzo, G.; Fiorini, N.; Mori, F.; Spina, D.

    2018-01-01

    A new method for estimating the modal mass ratios of buildings from unscaled mode shapes identified from ambient vibrations is presented. The method is based on the Multi Rigid Polygons (MRP) model in which each floor of the building is ideally divided in several non-deformable polygons that move independent of each other. The whole mass of the building is concentrated in the centroid of the polygons and the experimental mode shapes are expressed in term of rigid translations and of rotations. In this way, the mass matrix of the building can be easily computed on the basis of simple information about the geometry and the materials of the structure. The modal mass ratios can be then obtained through the classical equation of structural dynamics. Ambient vibrations measurement must be performed according to this MRP models, using at least two biaxial accelerometers per polygon. After a brief illustration of the theoretical background of the method, numerical validations are presented analysing the method sensitivity for possible different source of errors. Quality indexes are defined for evaluating the approximation of the modal mass ratios obtained from a certain MRP model. The capability of the proposed model to be applied to real buildings is illustrated through two experimental applications. In the first one, a geometrically irregular reinforced concrete building is considered, using a calibrated Finite Element Model for validating the results of the method. The second application refers to a historical monumental masonry building, with a more complex geometry and with less information available. In both cases, MRP models with a different number of rigid polygons per floor are compared.

  16. Cultural Variation in Implicit Mental Illness Stigma.

    PubMed

    Cheon, Bobby K; Chiao, Joan Y

    2012-10-01

    Culture shapes how individuals perceive and respond to others with mental illness. Prior studies have suggested that Asians and Asian Americans typically endorse greater stigma of mental illness compared to Westerners (White Europeans and Americans). However, whether these differences in stigma arise from cultural variations in automatic affective reactions or deliberative concerns of the appropriateness of one's reactions to mental illness remains unknown. Here we compared implicit and explicit attitudes toward mental illness among Asian and Caucasian Americans. Asian Americans showed stronger negative implicit attitudes toward mental illness relative to Caucasian Americans, suggesting that cultural variation in stigma of mental illness can be observed even when concerns regarding the validity and appropriateness of one's attitudes toward mental illness are minimized. Asian Americans also explicitly endorsed greater desire for social distance from mental illness relative to Caucasian Americans. These findings suggest that cultural variations in mental illness stigma may arise from cultural differences in automatic reactions to mental illness, though cultural variations in deliberative processing may further shape differences in these immediate reactions to mental illness.

  17. A π-conjugated system with flexibility and rigidity that shows environment-dependent RGB luminescence.

    PubMed

    Yuan, Chunxue; Saito, Shohei; Camacho, Cristopher; Irle, Stephan; Hisaki, Ichiro; Yamaguchi, Shigehiro

    2013-06-19

    We have designed and synthesized a π-conjugated system that consists of a flexible and nonplanar π joint and two emissive rigid and planar wings. This molecular system exhibits respectively red, green, and blue (RGB) emission from a single-component luminophore in different environments, namely in polymer matrix, in solution, and in crystals. The flexible unit gives rise to a dynamic conformational change in the excited state from a nonplanar V-shaped structure to a planar structure, leading to a dual fluorescence of blue and green colors. The rigid and planar moieties favor the formation of a two-fold π-stacked array of the V-shaped molecules in the crystalline state, which produces a red excimer-like emission. These RGB emissions are attained without changing the excitation energy.

  18. The influence of joint rigidity on impact efficiency and ball velocity in football kicking.

    PubMed

    Peacock, James C A; Ball, Kevin

    2018-04-11

    Executing any skill with efficiency is important for performance. In football kicking, conflicting and non-significant results have existed between reducing ankle plantarflexion during foot-ball contact with impact efficiency, making it unclear as to its importance as a coaching instruction. The aims of this study were to first validate a mechanical kicking machine with a non-rigid ankle, and secondly compare a rigid to a non-rigid ankle during the impact phase of football kicking. Measures of foot-ball contact for ten trials per ankle configuration were calculated from data recorded at 4000 Hz and compared. The non-rigid ankle was characterised by initial dorsiflexion followed by plantarflexion for the remainder of impact, and based on similarities to punt and instep kicking, was considered valid. Impact efficiency (foot-to-ball speed ratio) was greater for the rigid ankle (rigid = 1.16 ± 0.02; non-rigid = 1.10 ± 0.01; p < 0.001). The rigid ankle was characterised by significantly greater effective mass and significantly less energy losses. Increasing rigidity allowed a greater portion of mass from the shank to be used during the collision. As the ankle remained in plantarflexion at impact end, stored elastic energy was not converted to ball velocity and was considered lost. Increasing rigidity is beneficial for increasing impact efficiency, and therefore ball velocity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Robust Nonrigid Multimodal Image Registration using Local Frequency Maps*

    PubMed Central

    Jian, Bing; Vemuri, Baba C.; Marroquin, José L.

    2008-01-01

    Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid registration between these local frequency maps is formulated in a statistically robust framework involving the minimization of the integral squared error a.k.a. L2E (L2 error). This error is expressed as the squared difference between the true density of the residual (which is the squared difference between the non-rigidly transformed reference and the target local frequency representations) and a Gaussian or mixture of Gaussians density approximation of the same. The non-rigid transformation is expressed in a B-spline basis to achieve the desired smoothness in the transformation as well as computational efficiency. The key contributions of this work are (i) the use of Riesz transform to achieve better efficiency in computing the local frequency representation in comparison to Gabor filter-based approaches, (ii) new mathematical model for local-frequency based non-rigid registration, (iii) analytic computation of the gradient of the robust non-rigid registration cost function to achieve efficient and accurate registration. The proposed non-rigid L2E-based registration is a significant extension of research reported in literature to date. We present experimental results for registering several real data sets with synthetic and real non-rigid misalignments. PMID:17354721

  20. Non-Rigid Structure Estimation in Trajectory Space from Monocular Vision

    PubMed Central

    Wang, Yaming; Tong, Lingling; Jiang, Mingfeng; Zheng, Junbao

    2015-01-01

    In this paper, the problem of non-rigid structure estimation in trajectory space from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), based on characteristic points’ trajectories described by a predefined Discrete Cosine Transform (DCT) basis, the structure matrix was also calculated by using a factorization method. To further optimize the non-rigid structure estimation from monocular vision, the rank minimization problem about structure matrix is proposed to implement the non-rigid structure estimation by introducing the basic low-rank condition. Moreover, the Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank minimization problem, and the initial structure matrix calculated by the PTA method is optimized. The APG algorithm can converge to efficient solutions quickly and lessen the reconstruction error obviously. The reconstruction results of real image sequences indicate that the proposed approach runs reliably, and effectively improves the accuracy of non-rigid structure estimation from monocular vision. PMID:26473863

  1. Steady finite-Reynolds-number flows in three-dimensional collapsible tubes

    NASA Astrophysics Data System (ADS)

    Hazel, Andrew L.; Heil, Matthias

    2003-07-01

    A fully coupled finite-element method is used to investigate the steady flow of a viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The steady three-dimensional Navier Stokes equations are solved simultaneously with the equations of geometrically nonlinear Kirchhoff Love shell theory. If the transmural (internal minus external) pressure acting on the tube is sufficiently negative then the tube buckles non-axisymmetrically and the subsequent large deformations lead to a strong interaction between the fluid and solid mechanics. The main effect of fluid inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which induces an additional local pressure drop when the tube buckles and its cross-sectional area is reduced. Thus, the tube collapses more strongly than it would in the absence of fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed tubes, at finite values of the Reynolds number, two ’jets‘ develop downstream of the region of strongest collapse and persist for considerable axial distances. For sufficiently high values of the Reynolds number, these jets impact upon the sidewalls and spread azimuthally. The consequent azimuthal transport of momentum dramatically changes the axial velocity profiles, which become approximately uTheta-shaped when the flow enters the rigid downstream pipe. Further convection of momentum causes the development of a ring-shaped velocity profile before the ultimate return to a parabolic profile far downstream.

  2. Finite Element Simulation of Temperature and Strain Distribution during Friction Stir Welding of AA2024 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Jain, Rahul; Pal, Surjya Kanta; Singh, Shiv Brat

    2017-02-01

    Friction Stir Welding (FSW) is a solid state joining process and is handy for welding aluminum alloys. Finite Element Method (FEM) is an important tool to predict state variables of the process but numerical simulation of FSW is highly complex due to non-linear contact interactions between tool and work piece and interdependency of displacement and temperature. In the present work, a three dimensional coupled thermo-mechanical method based on Lagrangian implicit method is proposed to study the thermal history, strain distribution and thermo-mechanical process in butt welding of Aluminum alloy 2024 using DEFORM-3D software. Workpiece is defined as rigid-visco plastic material and sticking condition between tool and work piece is defined. Adaptive re-meshing is used to tackle high mesh distortion. Effect of tool rotational and welding speed on plastic strain is studied and insight is given on asymmetric nature of FSW process. Temperature distribution on the workpiece and tool is predicted and maximum temperature is found in workpiece top surface.

  3. Convergence Acceleration of a Navier-Stokes Solver for Efficient Static Aeroelastic Computations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru; Guruswamy, Guru P.

    1995-01-01

    New capabilities have been developed for a Navier-Stokes solver to perform steady-state simulations more efficiently. The flow solver for solving the Navier-Stokes equations is based on a combination of the lower-upper factored symmetric Gauss-Seidel implicit method and the modified Harten-Lax-van Leer-Einfeldt upwind scheme. A numerically stable and efficient pseudo-time-marching method is also developed for computing steady flows over flexible wings. Results are demonstrated for transonic flows over rigid and flexible wings.

  4. Implicit associations in social anxiety disorder: the effects of comorbid depression.

    PubMed

    Wong, Judy; Morrison, Amanda S; Heimberg, Richard G; Goldin, Philippe R; Gross, James J

    2014-08-01

    Implicit associations of the self to concepts like "calm" have been shown to be weaker in persons with social anxiety than in non-anxious healthy controls. However, other implicit self associations, such as those to acceptance or rejection, have been less studied in social anxiety, and none of this work has been conducted with clinical samples. Furthermore, the importance of depression in these relationships has not been well investigated. We addressed these issues by administering two Implicit Association Tests (IATs; Greenwald, McGhee, & Schwartz, 1998), one examining the implicit association of self/other to anxiety/calmness and the other examining the association of self/other to rejection/acceptance, to individuals with generalized social anxiety disorder (SAD, n=85), individuals with generalized SAD and a current or past diagnosis of major depressive disorder or current dysthymic disorder (n=47), and non-anxious, non-depressed healthy controls (n=44). The SAD and SAD-depression groups showed weaker implicit self-calmness associations than healthy controls, with the comorbid group showing the weakest self-calmness associations. The SAD-depression group showed the weakest implicit self-acceptance associations; no difference was found between non-depressed individuals with SAD and healthy controls. Post hoc analyses revealed that differences appeared to be driven by those with current depression. The SAD-only and SAD-depression groups did not differ in self-reported (explicit) social anxiety. The implications of these findings for the understanding of SAD-depression comorbidity and for the treatment of SAD are considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Implicit learning modulates attention capture: evidence from an item-specific proportion congruency manipulation.

    PubMed

    Thomson, David R; Willoughby, Karen; Milliken, Bruce

    2014-01-01

    A host of research has now shown that our explicit goals and intentions can, in large part, overcome the capture of visual attention by objects that differ from their surroundings in terms of size, shape, or color. Surprisingly however, there is little evidence for the role of implicit learning in mitigating capture effects despite the fact that such learning has been shown to strongly affect behavior in a host of other performance domains. Here, we employ a modified attention capture paradigm, based on the work of Theeuwes (1991, 1992), in which participants must search for an odd-shaped target amongst homogeneous distracters. On each trial, there is also a salient, but irrelevant odd-colored distracter. Across the experiments reported, we intermix two search contexts: for one set of distracters (e.g., squares) the shape singleton and color singleton coincide on a majority of trials (high proportion congruent condition), whereas for the other set of distracters (e.g., circles) the shape and color singletons are highly unlikely to coincide (low proportion congruent condition). Crucially, we find that observers learn to allow the capture of attention by the salient distracter to a greater extent in the high, compared to the low proportion congruent condition, albeit only when search is sufficiently difficult. Moreover, this effect of prior experience on search behavior occurs in the absence of awareness of our proportion manipulation. We argue that low-level properties of the search displays recruit representations of prior experience in a rapid, flexible, and implicit manner.

  6. Combined Use of Residual Dipolar Couplings and Solution X-ray Scattering To Rapidly Probe Rigid-Body Conformational Transitions in a Non-phosphorylatable Active-Site Mutant of the 128 kDa Enzyme I Dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander

    2012-10-23

    The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidinemore » and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.« less

  7. A physics based method for combining multiple anatomy models with application to medical simulation.

    PubMed

    Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David

    2009-01-01

    We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.

  8. Combining color and shape information for illumination-viewpoint invariant object recognition.

    PubMed

    Diplaros, Aristeidis; Gevers, Theo; Patras, Ioannis

    2006-01-01

    In this paper, we propose a new scheme that merges color- and shape-invariant information for object recognition. To obtain robustness against photometric changes, color-invariant derivatives are computed first. Color invariance is an important aspect of any object recognition scheme, as color changes considerably with the variation in illumination, object pose, and camera viewpoint. These color invariant derivatives are then used to obtain similarity invariant shape descriptors. Shape invariance is equally important as, under a change in camera viewpoint and object pose, the shape of a rigid object undergoes a perspective projection on the image plane. Then, the color and shape invariants are combined in a multidimensional color-shape context which is subsequently used as an index. As the indexing scheme makes use of a color-shape invariant context, it provides a high-discriminative information cue robust against varying imaging conditions. The matching function of the color-shape context allows for fast recognition, even in the presence of object occlusion and cluttering. From the experimental results, it is shown that the method recognizes rigid objects with high accuracy in 3-D complex scenes and is robust against changing illumination, camera viewpoint, object pose, and noise.

  9. Dynamical stability of the one-dimensional rigid Brownian rotator: the role of the rotator’s spatial size and shape

    NASA Astrophysics Data System (ADS)

    Jeknić-Dugić, Jasmina; Petrović, Igor; Arsenijević, Momir; Dugić, Miroljub

    2018-05-01

    We investigate dynamical stability of a single propeller-like shaped molecular cogwheel modelled as the fixed-axis rigid rotator. In the realistic situations, rotation of the finite-size cogwheel is subject to the environmentally-induced Brownian-motion effect that we describe by utilizing the quantum Caldeira-Leggett master equation. Assuming the initially narrow (classical-like) standard deviations for the angle and the angular momentum of the rotator, we investigate the dynamics of the first and second moments depending on the size, i.e. on the number of blades of both the free rotator as well as of the rotator in the external harmonic field. The larger the standard deviations, the less stable (i.e. less predictable) rotation. We detect the absence of the simple and straightforward rules for utilizing the rotator’s stability. Instead, a number of the size-related criteria appear whose combinations may provide the optimal rules for the rotator dynamical stability and possibly control. In the realistic situations, the quantum-mechanical corrections, albeit individually small, may effectively prove non-negligible, and also revealing subtlety of the transition from the quantum to the classical dynamics of the rotator. As to the latter, we detect a strong size-dependence of the transition to the classical dynamics beyond the quantum decoherence process.

  10. How Good Am I? Implicit and Explicit Self-Esteem as a Function of Perceived Parenting Styles Among Children With ADHD.

    PubMed

    Kurman, Jenny; Rothschild-Yakar, Lily; Angel, Ruth; Katz, Miri

    2015-02-11

    To investigate implicit and explicit self-esteem and academic self-evaluation among children with ADHD as a function of parenting styles, namely, authoritarian, authoritative and permissive parenting. Participants included 43 children with ADHD and 35 non-ADHD controls who filled out self-concept and perceived parenting style questionnaires. They also took an Implicit Association Test (IAT) that measured unacknowledged self-esteem. Lower self-esteem was found among children with ADHD than among controls, with stronger effect on the implicit level. Perceived authoritarian parenting was related to lower implicit self-esteem among children with ADHD. Higher self-esteem was found in the authoritative than in the permissive parenting groups in the non-ADHD control group but not among children with ADHD. The role of parental support versus authoritarian parenting in terms of implicit self-esteem points to the importance of promoting responsiveness strategies among parents in the treatment of children with ADHD. © 2015 SAGE Publications.

  11. Representational momentum for the human body: awkwardness matters, experience does not.

    PubMed

    Wilson, Margaret; Lancaster, Jessy; Emmorey, Karen

    2010-08-01

    Perception of the human body appears to involve predictive simulations that project forward to track unfolding body-motion events. Here we use representational momentum (RM) to investigate whether implicit knowledge of a learned arbitrary system of body movement such as sign language influences this prediction process, and how this compares to implicit knowledge of biomechanics. Experiment 1 showed greater RM for sign language stimuli in the correct direction of the sign than in the reverse direction, but unexpectedly this held true for non-signers as well as signers. Experiment 2 supported two biomechanical explanations for this result (an effect of downward movement, and an effect of the direction that the movement had actually been performed by the model), and Experiments 3 and 4 found no residual enhancement of RM in signers when these factors were controlled. In fact, surprisingly, the opposite was found: signers showed reduced RM for signs. Experiment 5 verified the effect of biomechanical knowledge by testing arm movements that are easy to perform in one direction but awkward in the reverse direction, and found greater RM for the easy direction. We conclude that while perceptual prediction is shaped by implicit knowledge of biomechanics (the awkwardness effect), it is surprisingly insensitive to expectations derived from learned movement patterns. Results are discussed in terms of recent findings on the mirror system. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  12. Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom

    NASA Astrophysics Data System (ADS)

    Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Spadinger, Ingrid

    2016-01-01

    The problem of accurate dose accumulation in fractionated radiotherapy treatment for highly deformable organs, such as bladder, has garnered increasing interest over the past few years. However, more research is required in order to find a robust and efficient solution and to increase the accuracy over the current methods. The purpose of this study was to evaluate the feasibility and accuracy of utilizing non-rigid (affine or deformable) point-set registration in accumulating dose in bladder of different sizes and shapes. A pelvic phantom was built to house an ex vivo porcine bladder with fiducial landmarks adhered onto its surface. Four different volume fillings of the bladder were used (90, 180, 360 and 480 cc). The performance of MATLAB implementations of five different methods were compared, in aligning the bladder contour point-sets. The approaches evaluated were coherent point drift (CPD), gaussian mixture model, shape context, thin-plate spline robust point matching (TPS-RPM) and finite iterative closest point (ICP-finite). The evaluation metrics included registration runtime, target registration error (TRE), root-mean-square error (RMS) and Hausdorff distance (HD). The reference (source) dataset was alternated through all four points-sets, in order to study the effect of reference volume on the registration outcomes. While all deformable algorithms provided reasonable registration results, CPD provided the best TRE values (6.4 mm), and TPS-RPM yielded the best mean RMS and HD values (1.4 and 6.8 mm, respectively). ICP-finite was the fastest technique and TPS-RPM, the slowest.

  13. Combining the ensemble and Franck-Condon approaches for calculating spectral shapes of molecules in solution

    NASA Astrophysics Data System (ADS)

    Zuehlsdorff, T. J.; Isborn, C. M.

    2018-01-01

    The correct treatment of vibronic effects is vital for the modeling of absorption spectra of many solvated dyes. Vibronic spectra for small dyes in solution can be easily computed within the Franck-Condon approximation using an implicit solvent model. However, implicit solvent models neglect specific solute-solvent interactions on the electronic excited state. On the other hand, a straightforward way to account for solute-solvent interactions and temperature-dependent broadening is by computing vertical excitation energies obtained from an ensemble of solute-solvent conformations. Ensemble approaches usually do not account for vibronic transitions and thus often produce spectral shapes in poor agreement with experiment. We address these shortcomings by combining zero-temperature vibronic fine structure with vertical excitations computed for a room-temperature ensemble of solute-solvent configurations. In this combined approach, all temperature-dependent broadening is treated classically through the sampling of configurations and quantum mechanical vibronic contributions are included as a zero-temperature correction to each vertical transition. In our calculation of the vertical excitations, significant regions of the solvent environment are treated fully quantum mechanically to account for solute-solvent polarization and charge-transfer. For the Franck-Condon calculations, a small amount of frozen explicit solvent is considered in order to capture solvent effects on the vibronic shape function. We test the proposed method by comparing calculated and experimental absorption spectra of Nile red and the green fluorescent protein chromophore in polar and non-polar solvents. For systems with strong solute-solvent interactions, the combined approach yields significant improvements over the ensemble approach. For systems with weak to moderate solute-solvent interactions, both the high-energy vibronic tail and the width of the spectra are in excellent agreement with experiments.

  14. Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects

    PubMed Central

    Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.

    2012-01-01

    There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939

  15. Learning Non-Local Dependencies

    ERIC Educational Resources Information Center

    Kuhn, Gustav; Dienes, Zoltan

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…

  16. Application of the Hughes-LIU algorithm to the 2-dimensional heat equation

    NASA Technical Reports Server (NTRS)

    Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.

    1982-01-01

    An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.

  17. Implicit and explicit self-esteem in currently depressed individuals with and without suicidal ideation.

    PubMed

    Franck, Erik; De Raedt, Rudi; Dereu, Mieke; Van den Abbeele, Dirk

    2007-03-01

    In the present study, we have further explored implicit self-esteem in currently depressed individuals. Since suicidal ideation is associated with lower self-esteem in depressed individuals, we measured both implicit and explicit self-esteem in a population of currently depressed (CD) individuals, with and without suicidal ideation (SI), and in a group of non-depressed controls (ND). The results indicate that only CD individuals with SI show a discrepancy between their implicit and explicit self-esteem: that is, they exhibit high implicit and low explicit self-esteem. CD individuals without SI exhibit both low implicit and low explicit self-esteem; and ND controls exhibit both normal implicit and normal explicit self-esteem. These results provide new insights in the study of implicit self-esteem and the combination of implicit and explicit self-esteem in depression.

  18. Symplectic integration of closed chain rigid body dynamics with internal coordinate equations of motion

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    1999-07-01

    Internal coordinate molecular dynamics (ICMD) is a recent efficient method for modeling polymer molecules which treats them as chains of rigid bodies rather than ensembles of point particles as in Cartesian MD. Unfortunately, it is readily applicable only to linear or tree topologies without closed flexible loops. Important examples violating this condition are sugar rings of nucleic acids, proline residues in proteins, and also disulfide bridges. This paper presents the first complete numerical solution of the chain closure problem within the context of ICMD. The method combines natural implicit fixation of bond lengths and bond angles by the choice of internal coordinates with explicit constraints similar to Cartesian dynamics used to maintain the chain closure. It is affordable for large molecules and makes possible 3-5 times faster dynamics simulations of molecular systems with flexible rings, including important biological objects like nucleic acids and disulfide-bonded proteins.

  19. Learning non-local dependencies.

    PubMed

    Kuhn, Gustav; Dienes, Zoltán

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., and Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory and Cognition, 31(6) 1417-1432] showed that people could implicitly learn a musical rule that was solely based on non-local dependencies. These results seriously challenge models of implicit learning that assume knowledge merely takes the form of linking adjacent elements (chunking). We compare two models that use a buffer to allow learning of long distance dependencies, the Simple Recurrent Network (SRN) and the memory buffer model. We argue that these models - as models of the mind - should not be evaluated simply by fitting them to human data but by determining the characteristic behaviour of each model. Simulations showed for the first time that the SRN could rapidly learn non-local dependencies. However, the characteristic performance of the memory buffer model rather than SRN more closely matched how people came to like different musical structures. We conclude that the SRN is more powerful than previous demonstrations have shown, but it's flexible learned buffer does not explain people's implicit learning (at least, the affective learning of musical structures) as well as fixed memory buffer models do.

  20. Experience with Malleable Objects Influences Shape-based Object Individuation by Infants

    PubMed Central

    Woods, Rebecca J.; Schuler, Jena

    2014-01-01

    Infants’ ability to accurately represent and later recognize previously viewed objects, and conversely, to discriminate novel objects from those previously seen improves remarkably over the first two years of life. During this time, infants acquire extensive experience viewing and manipulating objects and these experiences influence their physical reasoning. Here we posited that infants’ observations of object feature stability (rigid versus malleable) can influence use of those features to individuate two successively viewed objects. We showed 8.5-month-olds a series of objects that could or could not change shape then assessed their use of shape as a basis for object individuation. Infants who explored rigid objects later used shape differences to individuate objects; however, infants who explored malleable objects did not. This outcome suggests that the latter infants did not take into account shape differences during the physical reasoning task and provides further evidence that infants’ attention to object features can be readily modified based on recent experiences. PMID:24561541

  1. The effect of social exclusion on state paranoia and explicit and implicit self-esteem in a non-clinical sample.

    PubMed

    Stewart, C; Rogers, F; Pilch, M; Stewart, I; Barnes-Holmes, Y; Westermann, S

    2017-12-01

    The relationship between self-esteem and paranoia may be influenced by social stress. This study aimed to replicate previous research on the impact ofsocial exclusion on paranoia and self-esteem in a non-clinical sample and to extend this work by examining the effect of exclusion on self-esteem at the 'implicit' level. Non-clinical participants (N = 85) were randomly allocated to the Inclusion or Exclusion condition of a virtual ball-toss game ('Cyberball'). They completed self-reportmeasures of state paranoia and self-esteem, and two implicit measures of self-esteem - theImplicit Association Task (IAT) and Implicit Relational Assessment Procedure (IRAP) -prior to and after exposure to Cyberball. Social exclusion increased state paranoia. This effect was moderated by distress associated with trait paranoia. Exclusion was also associated with decreased self-reported self-esteem, as well as reduced implicit self-esteem on the IAT. Changes in self-reported self-esteem were associated with state paranoia at post-Cyberball. The IRAP indicated that reductions in implicit self-esteem may be due to increases in 'Me-Negative' and 'Others-Positive' biases (rather than reductions in 'Me-Positive' bias). The current study involved a non-clinical sample and so findings cannot be generalized to clinical paranoia. These findings are consistent with previous evidence that paranoia is associated with negative self-evaluations, whereas positive self-evaluations can persist in paranoia. They also provide support for the suggestion that investigations of self-esteem in paranoia should extend beyond global self-esteem and might benefit from a distinction between positive and negative components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Prediction of air blast mitigation in an array of rigid obstacles using smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Prasanna Kumar, S. S.; Patnaik, B. S. V.; Ramamurthi, K.

    2018-04-01

    The mitigation of blast waves propagating in air and interacting with rigid barriers and obstacles is numerically investigated using the mesh-free smoothed particle hydrodynamics method. A novel virtual boundary particle procedure with a skewed gradient wall boundary treatment is applied at the interfaces between air and rigid bodies. This procedure is validated with closed-form solutions for strong and weak shock reflection from rigid surfaces, supersonic flows over a wedge, formation of reflected, transverse, and Mach stem shocks, and also earlier experiments on interaction of a blast wave with concrete blocks. The mitigation of the overpressure and impulse transmitted to the protected structure due to an array of rigid obstacles of different shapes placed in the path of the blast wave is thereafter determined and discussed in the context of the existing experimental and numerical studies. It is shown that blockages having the shape of a right facing triangle or square placed in tandem or staggered provide better mitigation. The influence of the distance between the blockage array and protected structure is assessed, and the incorporation of a gap in the blockages is shown to improve the mitigation. The mechanisms responsible for the attenuation of air blast are identified through the simulations.

  3. Large-strain, rigid-to-rigid deformation of bistable electroactive polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Yuan, Wei; Brochu, Paul; Chen, Bin; Liu, Zhitian; Pei, Qibing

    2009-11-01

    Thermoplastic poly(tert-butyl acrylate) (PTBA) is reported as an electroactive polymer that is rigid at ambient conditions and turns into a dielectric elastomer above a transition temperature. In the rubbery state, a PTBA thin film can be electrically actuated to strains up to 335% in area expansion. The calculated actuation pressure is 3.2 MPa. The actuation is made bistable by cooling to below glass transition temperature. The PTBA represents the bistable electroactive polymer (BSEP) that can be actuated to various largely strained, rigid shapes. The application of the BSEP for refreshable Braille display, an active tactile display, is also demonstrated.

  4. Non-rigid, but not rigid, motion interferes with the processing of structural face information in developmental prosopagnosia.

    PubMed

    Maguinness, Corrina; Newell, Fiona N

    2015-04-01

    There is growing evidence to suggest that facial motion is an important cue for face recognition. However, it is poorly understood whether motion is integrated with facial form information or whether it provides an independent cue to identity. To provide further insight into this issue, we compared the effect of motion on face perception in two developmental prosopagnosics and age-matched controls. Participants first learned faces presented dynamically (video), or in a sequence of static images, in which rigid (viewpoint) or non-rigid (expression) changes occurred. Immediately following learning, participants were required to match a static face image to the learned face. Test face images varied by viewpoint (Experiment 1) or expression (Experiment 2) and were learned or novel face images. We found similar performance across prosopagnosics and controls in matching facial identity across changes in viewpoint when the learned face was shown moving in a rigid manner. However, non-rigid motion interfered with face matching across changes in expression in both individuals with prosopagnosia compared to the performance of control participants. In contrast, non-rigid motion did not differentially affect the matching of facial expressions across changes in identity for either prosopagnosics (Experiment 3). Our results suggest that whilst the processing of rigid motion information of a face may be preserved in developmental prosopagnosia, non-rigid motion can specifically interfere with the representation of structural face information. Taken together, these results suggest that both form and motion cues are important in face perception and that these cues are likely integrated in the representation of facial identity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Isometric Non-Rigid Shape-from-Motion with Riemannian Geometry Solved in Linear Time.

    PubMed

    Parashar, Shaifali; Pizarro, Daniel; Bartoli, Adrien

    2017-10-06

    We study Isometric Non-Rigid Shape-from-Motion (Iso-NRSfM): given multiple intrinsically calibrated monocular images, we want to reconstruct the time-varying 3D shape of a thin-shell object undergoing isometric deformations. We show that Iso-NRSfM is solvable from local warps, the inter-image geometric transformations. We propose a new theoretical framework based on the Riemmanian manifold to represent the unknown 3D surfaces as embeddings of the camera's retinal plane. This allows us to use the manifold's metric tensor and Christoffel Symbol (CS) fields. These are expressed in terms of the first and second order derivatives of the inverse-depth of the 3D surfaces, which are the unknowns for Iso-NRSfM. We prove that the metric tensor and the CS are related across images by simple rules depending only on the warps. This forms a set of important theoretical results. We show that current solvers cannot solve for the first and second order derivatives of the inverse-depth simultaneously. We thus propose an iterative solution in two steps. 1) We solve for the first order derivatives assuming that the second order derivatives are known. We initialise the second order derivatives to zero, which is an infinitesimal planarity assumption. We derive a system of two cubics in two variables for each image pair. The sum-of-squares of these polynomials is independent of the number of images and can be solved globally, forming a well-posed problem for N ≥ 3 images. 2) We solve for the second order derivatives by initialising the first order derivatives from the previous step. We solve a linear system of 4N-4 equations in three variables. We iterate until the first order derivatives converge. The solution for the first order derivatives gives the surfaces' normal fields which we integrate to recover the 3D surfaces. The proposed method outperforms existing work in terms of accuracy and computation cost on synthetic and real datasets.

  6. Human Infant Faces Provoke Implicit Positive Affective Responses in Parents and Non-Parents Alike

    PubMed Central

    Senese, Vincenzo Paolo; De Falco, Simona; Bornstein, Marc H.; Caria, Andrea; Buffolino, Simona; Venuti, Paola

    2013-01-01

    Human infants' complete dependence on adult caregiving suggests that mechanisms associated with adult responsiveness to infant cues might be deeply embedded in the brain. Behavioural and neuroimaging research has produced converging evidence for adults' positive disposition to infant cues, but these studies have not investigated directly the valence of adults' reactions, how they are moderated by biological and social factors, and if they relate to child caregiving. This study examines implicit affective responses of 90 adults toward faces of human and non-human (cats and dogs) infants and adults. Implicit reactions were assessed with Single Category Implicit Association Tests, and reports of childrearing behaviours were assessed by the Parental Style Questionnaire. The results showed that human infant faces represent highly biologically relevant stimuli that capture attention and are implicitly associated with positive emotions. This reaction holds independent of gender and parenthood status and is associated with ideal parenting behaviors. PMID:24282537

  7. Human infant faces provoke implicit positive affective responses in parents and non-parents alike.

    PubMed

    Senese, Vincenzo Paolo; De Falco, Simona; Bornstein, Marc H; Caria, Andrea; Buffolino, Simona; Venuti, Paola

    2013-01-01

    Human infants' complete dependence on adult caregiving suggests that mechanisms associated with adult responsiveness to infant cues might be deeply embedded in the brain. Behavioural and neuroimaging research has produced converging evidence for adults' positive disposition to infant cues, but these studies have not investigated directly the valence of adults' reactions, how they are moderated by biological and social factors, and if they relate to child caregiving. This study examines implicit affective responses of 90 adults toward faces of human and non-human (cats and dogs) infants and adults. Implicit reactions were assessed with Single Category Implicit Association Tests, and reports of childrearing behaviours were assessed by the Parental Style Questionnaire. The results showed that human infant faces represent highly biologically relevant stimuli that capture attention and are implicitly associated with positive emotions. This reaction holds independent of gender and parenthood status and is associated with ideal parenting behaviors.

  8. Brownian Motion of Asymmetric Boomerang Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Ayan; Konya, Andrew; Wang, Feng; Selinger, Jonathan; Sun, Kai; Wei, Qi-Huo

    2014-03-01

    We used video microscopy and single particle tracking to study the diffusion and local behaviors of asymmetric boomerang particles in a quasi-two dimensional geometry. The motion is biased towards the center of hydrodynamic stress (CoH) and the mean square displacements of the particles are linear at short and long times with different diffusion coefficients and in the crossover regime it is sub-diffusive. Our model based on Langevin theory shows that these behaviors arise from the non-coincidence of the CoH with the center of the body. Since asymmetric boomerangs represent a class of rigid bodies of more generals shape, therefore our findings are generic and true for any non-skewed particle in two dimensions. Both experimental and theoretical results will be discussed.

  9. Low implicit self-esteem and dysfunctional automatic associations in social anxiety disorder.

    PubMed

    Glashouwer, Klaske A; Vroling, Maartje S; de Jong, Peter J; Lange, Wolf-Gero; de Keijser, Jos

    2013-06-01

    Negative automatic associations towards the self and social cues are assumed to play an important role in social anxiety disorder. We tested whether social anxiety disorder patients (n = 45) showed stronger dysfunctional automatic associations than non-clinical controls (n = 45) and panic disorder patients (n = 24) and whether there existed gender differences in this respect. We used a single-target Implicit Association Test and an Implicit Association Test to measure dysfunctional automatic associations with social cues and implicit self-esteem, respectively. Results showed that automatic associations with social cues were more dysfunctional in socially anxious patients than in both control groups, suggesting this might be a specific characteristic of social anxiety disorder. Socially anxious patients showed relatively low implicit self-esteem compared to non-clinical controls, whereas panic disorder patients scored in between both groups. Unexpectedly, we found that lower implicit self-esteem was related to higher severity of social anxiety symptoms in men, whereas no such relationship was found in women. These findings support the view that automatic negative associations with social cues and lowered implicit self-esteem may both help to enhance our understanding of the cognitive processes that underlie social anxiety disorder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Investigation of implicit avoidance of displacement-related stimuli in offspring of trauma exposed, forcibly-displaced individuals.

    PubMed

    Wittekind, Charlotte E; Muhtz, Christoph; Moritz, Steffen; Jelinek, Lena

    2017-04-01

    There is an ongoing debate as to whether traumatization also affects the close relatives of trauma survivors who have symptoms of PTSD. Although many studies provide evidence favoring a transgenerational transmission, other studies have not found evidence to support this idea. The present study examined whether adult offspring of individuals exposed to trauma during forced displacement with (n=22) and without PTSD (n=24) exhibit an implicit avoidance of stimuli related to the parental trauma compared to children of non-trauma exposed control participants (n=23) using an Approach-Avoidance task (AAT). Offspring participants were requested to push (i.e., avoidance) or pull (i.e., approach) displacement-related and neutral pictures, whereby response direction depended on a non-affective dimension (color of the pictures). Results suggest that the offspring of non-PTSD participants exhibit implicit avoidance of displacement-related stimuli. This rather unexpected finding might either indicate resilience amongst offspring of PTSD participants or that offspring of non-PTSD participants are particularly affected. If these results were to replicate, they suggest that implicit avoidance tendencies amongst the offspring of trauma exposed participants might partially contribute to their heightened PTSD vulnerability. Longitudinal studies are needed to elucidate whether implicit avoidance tendencies are associated with increased stress vulnerability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging.

    PubMed

    Barratt, Dean C; Chan, Carolyn S K; Edwards, Philip J; Penney, Graeme P; Slomczykowski, Mike; Carter, Timothy J; Hawkes, David J

    2008-06-01

    Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that enables a much greater region to be sampled compared with conventional direct-contact (i.e., pointer-based) digitisation techniques. In this paper, we describe how these approaches can be combined to simultaneously generate and register a patient-specific model of the femur and pelvis to the patient during surgery. In our implementation, a statistical deformation model (SDM) was constructed for the femur and pelvis by performing a principal component analysis on the B-spline control points that parameterise the freeform deformations required to non-rigidly register a training set of CT scans to a carefully segmented template CT scan. The segmented template bone surface, represented by a triangulated surface mesh, is instantiated and registered to a cloud of US-derived surface points using an iterative scheme in which the weights corresponding to the first five principal modes of variation of the SDM are optimised in addition to the rigid-body parameters. The accuracy of the method was evaluated using clinically realistic data obtained on three intact human cadavers (three whole pelves and six femurs). For each bone, a high-resolution CT scan and rigid-body registration transformation, calculated using bone-implanted fiducial markers, served as the gold standard bone geometry and registration transformation, respectively. After aligning the final instantiated model and CT-derived surfaces using the iterative closest point (ICP) algorithm, the average root-mean-square distance between the surfaces was 3.5mm over the whole bone and 3.7mm in the region of surgical interest. The corresponding distances after aligning the surfaces using the marker-based registration transformation were 4.6 and 4.5mm, respectively. We conclude that despite limitations on the regions of bone accessible using US imaging, this technique has potential as a cost-effective and non-invasive method to enable surgical navigation during CAOS procedures, without the additional radiation dose associated with performing a preoperative CT scan or intraoperative fluoroscopic imaging. However, further development is required to investigate errors using error measures relevant to specific surgical procedures.

  12. Implicit Association to Infant Faces: How Genetics, Early Care Experiences, and Cultural Factors Influence Caregiving Propensities

    PubMed Central

    Senese, Vincenzo Paolo; Shinohara, Kazuyuki; Esposito, Gianluca; Doi, Hirokazu; Venuti, Paola; Bornstein, Marc H.

    2018-01-01

    Genetics, early experience, and culture shape caregiving, but it is still not clear how genetics, early experiences, and cultural factors might interact to influence specific caregiving propensities, such as adult responsiveness to infant cues. To address this gap, 80 Italian adults (50% M; 18-25 years) were (1) genotyped for two oxytocin receptor gene polymorphisms (rs53576 and rs2254298) and the serotonin transporter gene polymorphism (5-HTTLPR), which are implicated in parenting behaviour, (2) completed the Adult Parental Acceptance/Rejection Questionnaire to evaluate their recollections of parental behaviours toward them in childhood, and (3) were administered a Single Category Implicit Association Test to evaluate their implicit responses to faces of Italian infants, Japanese infants, and Italian adults. Analysis of implicit associations revealed that Italian infant faces were evaluated as most positive; participants in the rs53576 GG group had the most positive implicit associations to Italian infant faces; the serotonin polymorphism moderated the effect of early care experiences on adults’ implicit association to both Italian infant and adult female faces. Finally, 5-HTTLPR S carriers showed less positive implicit responses to Japanese infant faces. We conclude that adult in-group preference extends to in-group infant faces and that implicit responses to social cues are influenced by interactions of genetics, early care experiences, and cultural factors. These findings have implications for understanding processes that regulate adult caregiving. PMID:27650102

  13. 3-D Packaging: A Technology Review

    NASA Technical Reports Server (NTRS)

    Strickland, Mark; Johnson, R. Wayne; Gerke, David

    2005-01-01

    Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be plugged into a motherboard or card cage creating a volume of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes. The flex circuit serves the role of motherboard, providing interconnection between the rigid boards. An example of a planar rigid - flex assembly prior to folding is shown. In both architectures, the interconnection is effectively 2-D.

  14. Using the Implicit Association Test to Assess Children's Implicit Attitudes toward Smoking.

    PubMed

    Andrews, Judy A; Hampson, Sarah E; Greenwald, Anthony G; Gordon, Judith; Widdop, Chris

    2010-09-01

    The development and psychometric properties of an Implicit Association Test (IAT) measuring implicit attitude toward smoking among fifth grade children were described. The IAT with "sweets" as the contrast category resulted in higher correlations with explicit attitudes than did the IAT with "healthy foods" as the contrast category. Children with family members who smoked (versus non-smoking) and children who were high in sensation seeking (versus low) had a significantly more favorable implicit attitude toward smoking. Further, implicit attitudes became less favorable after engaging in tobacco prevention activities targeting risk perceptions of addiction. Results support the reliability and validity of this version of the IAT and illustrate its usefulness in assessing young children's implicit attitude toward smoking.

  15. Using the Implicit Association Test to Assess Children's Implicit Attitudes toward Smoking

    PubMed Central

    Andrews, Judy A.; Hampson, Sarah E.; Greenwald, Anthony G.; Gordon, Judith; Widdop, Chris

    2009-01-01

    The development and psychometric properties of an Implicit Association Test (IAT) measuring implicit attitude toward smoking among fifth grade children were described. The IAT with “sweets” as the contrast category resulted in higher correlations with explicit attitudes than did the IAT with “healthy foods” as the contrast category. Children with family members who smoked (versus non-smoking) and children who were high in sensation seeking (versus low) had a significantly more favorable implicit attitude toward smoking. Further, implicit attitudes became less favorable after engaging in tobacco prevention activities targeting risk perceptions of addiction. Results support the reliability and validity of this version of the IAT and illustrate its usefulness in assessing young children's implicit attitude toward smoking. PMID:21566676

  16. The Implicit Function Theorem and Non-Existence of Limit of Functions of Several Variables

    ERIC Educational Resources Information Center

    dos Santos, A. L. C.; da Silva, P. N.

    2008-01-01

    We use the Implicit Function Theorem to establish a result of non-existence of limit to a certain class of functions of several variables. We consider functions given by quotients such that both the numerator and denominator functions are null at the limit point. We show that the non-existence of the limit of such function is related with the…

  17. Assessing breathing motion by shape matching of lung and diaphragm surfaces

    NASA Astrophysics Data System (ADS)

    Urschler, Martin; Bischof, Horst

    2005-04-01

    Studying complex thorax breating motion is an important research topic for accurate fusion of functional and anatomical data, radiotherapy planning or reduction of breathing motion artifacts. We investigate segmented CT lung, airway and diaphragm surfaces at several different breathing states between Functional Residual and Total Lung Capacity. In general, it is hard to robustly derive corresponding shape features like curvature maxima from lung and diaphragm surfaces since diaphragm and rib cage muscles tend to deform the elastic lung tissue such that e.g. ridges might disappear. A novel registration method based on the shape context approach for shape matching is presented where we extend shape context to 3D surfaces. The shape context approach was reported as a promising method for matching 2D shapes without relying on extracted shape features. We use the point correspondences for a non-rigid thin-plate-spline registration to get deformation fields that describe the movement of lung and diaphragm. Our validation consists of experiments on phantom and real sheep thorax data sets. Phantom experiments make use of shapes that are manipulated with known transformations that simulate breathing behaviour. Real thorax data experiments use a data set showing lungs and diaphragm at 5 distinct breathing states, where we compare subsets of the data sets and qualitatively and quantitatively asses the registration performance by using manually identified corresponding landmarks.

  18. Auditory access, language access, and implicit sequence learning in deaf children.

    PubMed

    Hall, Matthew L; Eigsti, Inge-Marie; Bortfeld, Heather; Lillo-Martin, Diane

    2018-05-01

    Developmental psychology plays a central role in shaping evidence-based best practices for prelingually deaf children. The Auditory Scaffolding Hypothesis (Conway et al., 2009) asserts that a lack of auditory stimulation in deaf children leads to impoverished implicit sequence learning abilities, measured via an artificial grammar learning (AGL) task. However, prior research is confounded by a lack of both auditory and language input. The current study examines implicit learning in deaf children who were (Deaf native signers) or were not (oral cochlear implant users) exposed to language from birth, and in hearing children, using both AGL and Serial Reaction Time (SRT) tasks. Neither deaf nor hearing children across the three groups show evidence of implicit learning on the AGL task, but all three groups show robust implicit learning on the SRT task. These findings argue against the Auditory Scaffolding Hypothesis, and suggest that implicit sequence learning may be resilient to both auditory and language deprivation, within the tested limits. A video abstract of this article can be viewed at: https://youtu.be/EeqfQqlVHLI [Correction added on 07 August 2017, after first online publication: The video abstract link was added.]. © 2017 John Wiley & Sons Ltd.

  19. Non-Adjacent Dependency Learning in Infants at Familial Risk of Dyslexia

    ERIC Educational Resources Information Center

    Kerkhoff, Annemarie; de Bree, Elise; de Klerk, Maartje; Wijnen, Frank

    2013-01-01

    This study tests the hypothesis that developmental dyslexia is (partly) caused by a deficit in implicit sequential learning, by investigating whether infants at familial risk of dyslexia can track non-adjacent dependencies in an artificial language. An implicit learning deficit would hinder detection of such dependencies, which mark grammatical…

  20. Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach

    DOE PAGES

    Usabiaga, Florencio Balboa; Kallemov, Bakytzhan; Delmotte, Blaise; ...

    2016-01-12

    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest numbermore » of iterations that is essentially independent of the number of particles. Key to the efficiency of the method is a technique for fast computation of the product of the blob-blob mobility matrix and a vector. For unbounded suspensions, we rely on existing analytical expressions for the Rotne-Prager-Yamakawa tensor combined with a fast multipole method (FMM) to obtain linear scaling in the number of particles. For suspensions sedimented against a single no-slip boundary, we use a direct summation on a graphical processing unit (GPU), which gives quadratic asymptotic scaling with the number of particles. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently developed rigid-body immersed boundary method by B. Kallemov, A. P. S. Bhalla, B. E. Griffith, and A. Donev (Commun. Appl. Math. Comput. Sci. 11 (2016), no. 1, 79-141) to suspensions of freely moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid-body equations converges in a bounded number of iterations regardless of the system size. In our approach, each iteration only requires a few cycles of a geometric multigrid solver for the Poisson equation, and an application of the block-diagonal preconditioner, leading to linear scaling with the number of particles. We optimize a number of parameters in the iterative solvers and apply our method to a variety of benchmark problems to carefully assess the accuracy of the rigid multiblob approach as a function of the resolution. We also model the dynamics of colloidal particles studied in recent experiments, such as passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods sedimented against a wall.« less

  1. Assessing bias against overweight individuals among nursing and psychology students: an implicit association test.

    PubMed

    Waller, Tabitha; Lampman, Claudia; Lupfer-Johnson, Gwen

    2012-12-01

    To determine the implicit or unconscious attitudes of Nursing and Psychology majors towards overweight individuals in medical and non-medical contexts. Obesity is a leading health concern today, which impacts both physical and psychological health. Overweight individuals confront social biases in many aspects of their lives including health care. Examining the views of Nursing and Psychology students may reveal implicit attitudes towards overweight individuals that may lead to prejudiced behaviours. A mixed design experiment with one between-subjects variable (student major: Nursing or Psychology) and one within-subjects variable (condition: congruent or incongruent) was used to assess implicit attitudes in two convenience samples of Nursing and Psychology students. A computerised implicit association test was used to determine implicit attitudes towards overweight individuals in medical and non-medical contexts. A total of 90 students from Nursing (n= 45) and Psychology (n = 45) were recruited to complete an implicit association test. Reaction times in milliseconds between the congruent trials (stereotype consistent) and incongruent trials (stereotype inconsistent) were compared with determine adherence to social stereotypes or weight bias. A statistically significant implicit bias towards overweight individuals was detected in both subject groups and in both target settings (medical vs. non-medical). Stronger weight bias was found when the stimulus targets were female than male. Findings from this study expand understanding of the implicit attitudes and social biases of Nursing and Psychology students. The views held by these future healthcare professionals may negatively impact patient care. Providing education and support to overweight individuals is central to Nursing practice in a society struggling to manage obesity. Negative stereotypes or beliefs about these individuals may result in poor patient care. Therefore, nurses and other healthcare professionals must be aware of personal biases and work to develop methods to address weight-related issues in a therapeutic manner. © 2012 Blackwell Publishing Ltd.

  2. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Bian, Xin; Litvinov, Sergey; Qian, Rui; Ellero, Marco; Adams, Nikolaus A.

    2012-01-01

    We apply smoothed dissipative particle dynamics (SDPD) [Español and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the diffusion-dominated regime typical of sub-micron-sized objects towards the non-Brownian regime characterizing macro-continuum flow conditions. Extensive tests of the method are performed for the case of two/three dimensional bulk particle-system both in Brownian/ non-Brownian environment showing numerical convergence and excellent agreement with analytical theories. Finally, to illustrate the ability of the model to couple with external boundary geometries, the effect of confinement on the diffusional properties of a single sphere within a micro-channel is considered, and the dependence of the diffusion coefficient on the wall-separation distance is evaluated and compared with available analytical results.

  3. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor-Bridge-Acceptor Molecules.

    PubMed

    Waskasi, Morteza M; Newton, Marshall D; Matyushov, Dmitry V

    2017-03-30

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T. This kinetic law is a temperature analogue of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganization energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. The theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.

  4. The key to success in elite athletes? Explicit and implicit motor learning in youth elite and non-elite soccer players.

    PubMed

    Verburgh, L; Scherder, E J A; van Lange, P A M; Oosterlaan, J

    2016-09-01

    In sports, fast and accurate execution of movements is required. It has been shown that implicitly learned movements might be less vulnerable than explicitly learned movements to stressful and fast changing circumstances that exist at the elite sports level. The present study provides insight in explicit and implicit motor learning in youth soccer players with different expertise levels. Twenty-seven youth elite soccer players and 25 non-elite soccer players (aged 10-12) performed a serial reaction time task (SRTT). In the SRTT, one of the sequences must be learned explicitly, the other was implicitly learned. No main effect of group was found for implicit and explicit learning on mean reaction time (MRT) and accuracy. However, for MRT, an interaction was found between learning condition, learning phase and group. Analyses showed no group effects for the explicit learning condition, but youth elite soccer players showed better learning in the implicit learning condition. In particular, during implicit motor learning youth elite soccer showed faster MRTs in the early learning phase and earlier reached asymptote performance in terms of MRT. Present findings may be important for sports because children with superior implicit learning abilities in early learning phases may be able to learn more (durable) motor skills in a shorter time period as compared to other children.

  5. Structural Modeling of a Five-Meter Thin Film Inflatable Antenna/Concentrator With Rigidized Support Struts

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Tinker, Michael L.

    2001-01-01

    Dynamic characterization of a non-rigidized thin film inflatable antenna/solar concentrator structure with rigidized composite support struts is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of: (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large 5-m lightweight inflatable are identified, including considerable difficulty in obtaining convergence in the nonlinear pressurization solution. It was found that the extremely thin polyimide film material (.001 in or I mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. It was concluded that the ratios of film thickness to other geometric dimensions such as torus cross-sectional and ring diameter and lenticular diameter are the critical parameters for convergence of the pressurization procedure. Comparison of finite element predictions for frequency and mode shapes with experimental results indicated reasonable agreement considering the complexity of the structure, the film-to-air interaction, and the nonlinear material properties of the film. It was also concluded that analysis should be done using different finite element to codes to determine if a more robust and stable solution can be obtained.

  6. Discrepancy between implicit and explicit preferences for food portions in obesity.

    PubMed

    Cserjesi, R; De Vos, I; Deroost, N

    2016-09-01

    We investigated the implicit preference in terms of food portion in obesity using the affective priming paradigm. Primes representing different portions of fast food (small, medium and large) were used to assess participants' readiness to respond to a positive or negative target word. A self-reported affective rating scale of food portion and a portion judgment task were administered to determine the explicit preference for food portion and portion misperception, respectively. The results of the affective priming paradigm showed an implicit preference for large food portions in the obese group. No implicit preference in terms of food portion was found in the non-obese group. The explicit preference measure of food portion demonstrated a rather negative attitude for large portions in the obese group, whereas the non-obese group reported no explicit preference in terms of food portion. Thus, unlike the non-obese group, the obese group showed clear discrepancies between implicit and explicit preferences in terms of food portion: obese participants demonstrated an implicit, but not an explicit preference for large food portions. These results could not be attributed to a misperception of food portion, as revealed by the portion judgment task. The current findings suggest that social desirability might conceal self-reported preference in terms of food portion and/or that obese individuals are less aware of their internal preferences.

  7. Social identity modifies face perception: an ERP study of social categorization

    PubMed Central

    Stedehouder, Jeffrey; Ito, Tiffany A.

    2015-01-01

    Two studies examined whether social identity processes, i.e. group identification and social identity threat, amplify the degree to which people attend to social category information in early perception [assessed with event-related brain potentials (ERPs)]. Participants were presented with faces of Muslims and non-Muslims in an evaluative priming task while ERPs were measured and implicit evaluative bias was assessed. Study 1 revealed that non-Muslims showed stronger differentiation between ingroup and outgroup faces in both early (N200) and later processing stages (implicit evaluations) when they identified more strongly with their ethnic group. Moreover, identification effects on implicit bias were mediated by intergroup differentiation in the N200. In Study 2, social identity threat (vs control) was manipulated among Muslims. Results revealed that high social identity threat resulted in stronger differentiation of Muslims from non-Muslims in early (N200) and late (implicit evaluations) processing stages, with N200 effects again predicting implicit bias. Combined, these studies reveal how seemingly bottom-up early social categorization processes are affected by individual and contextual variables that affect the meaning of social identity. Implications of these results for the social identity perspective as well as social cognitive theories of person perception are discussed. PMID:25140049

  8. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    NASA Astrophysics Data System (ADS)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  9. The effects of flagellar hook compliance on motility of monotrichous bacteria: A modeling study

    NASA Astrophysics Data System (ADS)

    Shum, H.; Gaffney, E. A.

    2012-06-01

    A crucial structure in the motility of flagellated bacteria is the hook, which connects the flagellum filament to the motor in the cell body. Early mathematical models of swimming bacteria assume that the helically shaped flagellum rotates rigidly about its axis, which coincides with the axis of the cell body. Motivated by evidence that the hook is much more flexible than the rest of the flagellum, we develop a new model that allows a naturally straight hook to bend. Hook dynamics are based on the Kirchhoff rod model, which is combined with a boundary element method for solving viscous interactions between the bacterium and the surrounding fluid. For swimming in unbounded fluid, we find good support for using a rigid model since the hook reaches an equilibrium configuration within several revolutions of the motor. However, for effective swimming, there are constraints on the hook stiffness relative to the scale set by the product of the motor torque with the hook length. When the hook is too flexible, its shape cannot be maintained and large deformations and stresses build up. When the hook is too rigid, the flagellum does not align with the cell body axis and the cell "wobbles" with little net forward motion. We also examine the attraction of swimmers to no-slip surfaces and find that the tendency to swim steadily close to a surface can be very sensitive to the combination of the hook rigidity and the precise shape of the cell and flagellum.

  10. Simultaneous determination of apparent tortuosity and microstructure length scale and shape: Application to rigid open cell foams

    NASA Astrophysics Data System (ADS)

    Gómez Álvarez-Arenas, T. E.; de la Fuente, S.; González Gómez, I.

    2006-05-01

    A novel experimental technique based on phase spectroscopy and through transmission of high-frequency airborne ultrasonic pulses is used to study rigid open cell foams. Phase velocity shows an anomalous relaxation like behavior which is attributed to a frequency variation of the apparent tortuosity. An explanation is proposed in terms of the relationship between the different length scales involved: microstructure and macroscopic behavior. The experimental technique together with the proposed apparent tortuosity scheme provides a novel and unique procedure to determine simultaneously tortuosity and characteristic length dimension and shape of the solid constituent of foams and porous materials in general.

  11. Corrected Implicit Monte Carlo

    DOE PAGES

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    2018-01-02

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  12. Corrected implicit Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cleveland, M. A.; Wollaber, A. B.

    2018-04-01

    In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.

  13. Construction of the Non-Rigid Earth Rotation Series

    NASA Astrophysics Data System (ADS)

    Pashkevich, V. V.

    2007-01-01

    Last years a lot of attempts to derive a high-precision theory of the non-rigid Earth rotation are carried out. For these purposes different transfer functions are used. Usually these transfer functions are applied to the series representing the nutation in the longitude and the obliquity of the rigid Earth rotation with respect to the ecliptic of date. The aim of this investigation is a construction of new high-precision non-rigid Earth rotation series (SN9000), dynamically adequate to the DE404/LE404 ephemeris over 2000 time span years, which are presented as functions of the Euler angles Ψ, θ and φ with respect to the fixed ecliptic plane and equinox J2000.0.

  14. Studies of numerical algorithms for gyrokinetics and the effects of shaping on plasma turbulence

    NASA Astrophysics Data System (ADS)

    Belli, Emily Ann

    Advanced numerical algorithms for gyrokinetic simulations are explored for more effective studies of plasma turbulent transport. The gyrokinetic equations describe the dynamics of particles in 5-dimensional phase space, averaging over the fast gyromotion, and provide a foundation for studying plasma microturbulence in fusion devices and in astrophysical plasmas. Several algorithms for Eulerian/continuum gyrokinetic solvers are compared. An iterative implicit scheme based on numerical approximations of the plasma response is developed. This method reduces the long time needed to set-up implicit arrays, yet still has larger time step advantages similar to a fully implicit method. Various model preconditioners and iteration schemes, including Krylov-based solvers, are explored. An Alternating Direction Implicit algorithm is also studied and is surprisingly found to yield a severe stability restriction on the time step. Overall, an iterative Krylov algorithm might be the best approach for extensions of core tokamak gyrokinetic simulations to edge kinetic formulations and may be particularly useful for studies of large-scale ExB shear effects. The effects of flux surface shape on the gyrokinetic stability and transport of tokamak plasmas are studied using the nonlinear GS2 gyrokinetic code with analytic equilibria based on interpolations of representative JET-like shapes. High shaping is found to be a stabilizing influence on both the linear ITG instability and nonlinear ITG turbulence. A scaling of the heat flux with elongation of chi ˜ kappa-1.5 or kappa-2 (depending on the triangularity) is observed, which is consistent with previous gyrofluid simulations. Thus, the GS2 turbulence simulations are explaining a significant fraction, but not all, of the empirical elongation scaling. The remainder of the scaling may come from (1) the edge boundary conditions for core turbulence, and (2) the larger Dimits nonlinear critical temperature gradient shift due to the enhancement of zonal flows with shaping, which is observed with the GS2 simulations. Finally, a local linear trial function-based gyrokinetic code is developed to aid in fast scoping studies of gyrokinetic linear stability. This code is successfully benchmarked with the full GS2 code in the collisionless, electrostatic limit, as well as in the more general electromagnetic description with higher-order Hermite basis functions.

  15. Hooked on a feeling: affective anti-smoking messages are more effective than cognitive messages at changing implicit evaluations of smoking

    PubMed Central

    Smith, Colin Tucker; De Houwer, Jan

    2015-01-01

    Because implicit evaluations are thought to underlie many aspects of behavior, researchers have started looking for ways to change them. We examine whether and when persuasive messages alter strongly held implicit evaluations of smoking. In smokers, an affective anti-smoking message led to more negative implicit evaluations on four different implicit measures as compared to a cognitive anti-smoking message which seemed to backfire. Additional analyses suggested that the observed effects were mediated by the feelings and emotions raised by the messages. In non-smokers, both the affective and cognitive message engendered slightly more negative implicit evaluations. We conclude that persuasive messages change implicit evaluations in a way that depends on properties of the message and of the participant. Thus, our data open new avenues for research directed at tailoring persuasive messages to change implicit evaluations. PMID:26557099

  16. Hooked on a feeling: affective anti-smoking messages are more effective than cognitive messages at changing implicit evaluations of smoking.

    PubMed

    Smith, Colin Tucker; De Houwer, Jan

    2015-01-01

    Because implicit evaluations are thought to underlie many aspects of behavior, researchers have started looking for ways to change them. We examine whether and when persuasive messages alter strongly held implicit evaluations of smoking. In smokers, an affective anti-smoking message led to more negative implicit evaluations on four different implicit measures as compared to a cognitive anti-smoking message which seemed to backfire. Additional analyses suggested that the observed effects were mediated by the feelings and emotions raised by the messages. In non-smokers, both the affective and cognitive message engendered slightly more negative implicit evaluations. We conclude that persuasive messages change implicit evaluations in a way that depends on properties of the message and of the participant. Thus, our data open new avenues for research directed at tailoring persuasive messages to change implicit evaluations.

  17. Implicit and explicit selective attention to smoking cues in smokers indexed by brain potentials.

    PubMed

    Littel, Marianne; Franken, Ingmar H A

    2011-04-01

    Substance use disorders are characterized by cognitive processing biases, such as automatically detecting and orienting attention towards drug-related stimuli. However, it is unclear how, when and what kind of attention (i.e. implicit, explicit) interacts with the processing of these stimuli. In addition, it is unclear whether smokers are hypersensitive to emotionally significant cues in general or to smoking-related cues in particular. The present event-related potential study aimed to enhance insight in drug-related processing biases by manipulating attention for smoking and other motivationally relevant (emotional) cues in smokers and non-smokers using a visual oddball task. Each of the stimulus categories served as a target (explicit attention; counting) or as a non-target (implicit attention; oddball) category. Compared with non-smokers, smokers' P300 (350-600 ms) was enhanced to smoking pictures under both attentional conditions. P300 amplitude did not differ between groups in response to positive, negative, and neutral cues. It can be concluded from this study that attention manipulation affects the P300 differently in smokers and non-smokers. Smokers display a specific bias to smoking-related cues, and this bias is present during both explicit and implicit attentional processing. Overall, it can be concluded that both explicit and implicit attentional processes appear to play an important role in drug-related processing bias.

  18. Implicit Processes, Self-Regulation, and Interventions for Behavior Change.

    PubMed

    St Quinton, Tom; Brunton, Julie A

    2017-01-01

    The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior.

  19. Implicit Processes, Self-Regulation, and Interventions for Behavior Change

    PubMed Central

    St Quinton, Tom; Brunton, Julie A.

    2017-01-01

    The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior. PMID:28337164

  20. Assessing the Role of Shape and Label in the Misleading Packaging of Food Imitating Products: From Empirical Evidence to Policy Recommendation

    PubMed Central

    Basso, Frédéric; Bouillé, Julien; Le Goff, Kévin; Robert-Demontrond, Philippe; Oullier, Olivier

    2016-01-01

    Food imitating products are chemical consumer items used frequently in the household for cleaning and personal hygiene (e.g., bleach, soap, and shampoo), which resemble food products. Their containers replicate elements of food package design such as possessing a shape close in style to drinking product containers or bearing labels that depict colorful fruits. In marketing, these incongruent forms are designed to increase the appeal of functional products, leading to chemical consumer product embellishment. However, due to the resulting visual ambiguity, food imitating products may expose consumers to the risk of being poisoned from ingestion. Thus, from a public health perspective, food imitating products are considered dangerous chemical products that should not be sold, and may merit being recalled for the safety of consumers. To help policymakers address the hazardous presence of food imitating products, the purpose of this article is to identify the specific design features that generate most ambiguity for the consumer, and therefore increase the likelihood of confusion with foodstuffs. Among the visual elements of food packaging, the two most important features (shape and label) are manipulated in a series of three lab studies combining six Implicit Association Tests (IATs) and two explicit measures on products' drinkability and safety. IATs were administered to assess consumers' implicit association of liquid products with tastiness in a within-subject design in which the participants (N = 122) were presented with two kinds of food imitating products with a drink shape or drink label compared with drinks (experiential products with congruent form) and classic chemical products (hygiene products) (functional products with congruent form). Results show that chemical consumer products with incongruent drink shapes (but not drink labels) as an element of food package design are both implicitly associated with tastiness and explicitly judged as safe and drinkable. These results require confirmation in other studies involving different shapes and labels. Notwithstanding, due to the misleading effect of this ambiguity, public health authorities are thus well advised to focus their market surveillance on chemical products emulating a food or drink shape. PMID:27065919

  1. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.

  2. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941

  3. Investigation of Drag Coefficient for Rigid Ballute-like Shapes

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel; Mastromarino, Anthony

    2014-11-01

    One common method of decelerating an object during atmospheric entry, descent, and landing is the use of parachutes. Another deceleration technology is the ballute - a combination of balloon and parachute. A CFD study was conducted using commercially available software to investigate the flow-field and the coefficient of drag for various rigid ballute-like shapes at varying Reynolds numbers. The impact of size and placement of the burble-fence as well as number, size, and shape of inlets was considered. Recent experimental measurements conducted during NASA's Low-Density Supersonic Decelerator program revealed a much higher coefficient of drag (Cd) for ballutes than previously encountered. Using atmospheric drag to slow down and land reduces the need for heavy fuel and rocket engines and thus, high values of drag are desired. Funding for this work, in part, provided by the CT Space Grant Consortium.

  4. Implicit high-order discontinuous Galerkin method with HWENO type limiters for steady viscous flow simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen-Hua; Yan, Chao; Yu, Jian

    2013-08-01

    Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.

  5. Origami Metamaterial based on Pattern Rigidity

    NASA Astrophysics Data System (ADS)

    Chen, Yan; You, Zhong

    Origami inspired mechanical metamaterials are made from a tessellation of origami units. Their mechanical behaviour is closely related to the behaviour of the origami units used. In this article, we focus on a family of metamaterials that are created by the tessellation of the square twist origami units. Generally a square twist origami unit can have four distinct hill-valley crease arrangements, two of which are rigidly foldable whereas the others are not. The rigidly foldable unit has, in general, lower stiffness than that of the non-rigidly foldable one if the facets can easily rotate about the creases. We shall show that it is possible to put rigidly foldable and non-rigidly foldable units together to form a geometrically compatible tessellation, and the stiffness of the overall structure based on such a tessellation is primarily decided by the number of non-rigid units. By astutely placing such units in a tessellation, we are able to create a metamaterial with a tunable stiffness. Y Chen acknowledges the support of the NSFC (Projects 51290293 and 51422506) and the Ministry of Science and Technology of China (Project 2014DFA70710). Z You wishes to acknowledge the support of Air Force Office of Scientific Research (FA9550-16-1-0339).

  6. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  7. Measuring the Immeasurable: Or "Could Abraham Lincoln Take the Implicit Association Test?".

    PubMed

    Bones, Arina K; Johnson, Navin R

    2007-12-01

    With the Association for Psychological Science's new ethical standards requiring that all research studies include an Implicit Association Test (IAT), forecasters predict that the population of new participants available to take IATs will expire by the year 2023. Shrill, doomsday proposals from IAT experts involve rationing the precious pool of remaining IAT novices or other naive strategies. These solutions demonstrate rigid, scientific thinking, with a distinct lack of the creative flair that makes psychology stand apart from the real sciences. Building on our prior experience of adapting the IAT for measuring infant cognition and rooting out aliens among us, we demonstrate that new pools of participant resourcesmdash;the unborn and passed on-are available, if we take the time to develop the methods to exploit them. Two studies illustrate some of the methodological challenges and opportunities that must be met in order to make better use of the new populations to keep the IAT juggernaut on its path of global (and interstellar) domination. © 2007 Association for Psychological Science.

  8. The Role of Bias by Emergency Department Providers in Care for American Indian Children.

    PubMed

    Puumala, Susan E; Burgess, Katherine M; Kharbanda, Anupam B; Zook, Heather G; Castille, Dorothy M; Pickner, Wyatt J; Payne, Nathaniel R

    2016-06-01

    American Indian children have high rates of emergency department (ED) use and face potential discrimination in health care settings. Our goal was to assess both implicit and explicit racial bias and examine their relationship with clinical care. We performed a cross-sectional survey of care providers at 5 hospitals in the Upper Midwest. Questions included American Indian stereotypes (explicit attitudes), clinical vignettes, and the Implicit Association Test. Two Implicit Association Tests were created to assess implicit bias toward the child or the parent/caregiver. Differences were assessed using linear and logistic regression models with a random effect for study site. A total of 154 care providers completed the survey. Agreement with negative American Indian stereotypes was 22%-32%. Overall, 84% of providers had an implicit preference for non-Hispanic white adults or children. Older providers (50 y and above) had lower implicit bias than those middle aged (30-49 y) (P=0.01). American Indian children were seen as increasingly challenging (P=0.04) and parents/caregivers less compliant (P=0.002) as the proportion of American Indian children seen in the ED increased. Responses to the vignettes were not related to implicit or explicit bias. The majority of ED care providers had an implicit preference for non-Hispanic white children or adults compared with those who were American Indian. Provider agreement with negative American Indian stereotypes differed by practice and respondents' characteristics. These findings require additional study to determine how these implicit and explicit biases influence health care or outcomes disparities.

  9. Implicit associations and compensatory health beliefs in smokers: exploring their role for behaviour and their change through warning labels.

    PubMed

    Glock, Sabine; Müller, Barbara C N; Krolak-Schwerdt, Sabine

    2013-11-01

    Smokers might think that the negative effects of smoking can be compensated for by other behaviours, such as doing exercise or eating healthily. This phenomenon is known as compensatory health beliefs (CHBs). Graphic warning labels on cigarette packets emphasize the negative effects of smoking, which may impact CHBs. Research so far has assessed CHBs explicitly only via questionnaires, although implicit cognition might be an important factor in continuing to smoke. This study investigated the impact of graphic warning labels on CHBs, by testing CHBs both implicitly and explicitly. The study had a three-group experimental design. ANOVAs and multiple regression analyses were run on the results. We assessed explicit CHBs among non-smokers, smokers, and smokers confronted with graphic warning labels (N = 107; 47 females, 23.89 years old, 78 daily smokers). Implicit associations between smoking and CHB-specific behaviours (e.g., eating healthy food) were measured using a Single-Target Implicit Association Test. After the experiment, participants were able to choose between a healthy and unhealthy food reward. Non-smokers and smokers differed in explicit CHBs but not in implicit cognitions. Warning labels influenced implicit associations among smokers but did not affect explicit CHBs. Most interestingly, implicit associations and explicit CHBs predicted food choice and smoking among smokers not confronted with warning labels. Graphic warning labels could be used in interventions to inhibit automatic associations between smoking and healthy behaviours. Unlearning implicit cognitions might in turn affect explicit CHBs, thus decreasing their role in reducing the negative feelings caused by smoking. © 2013 The British Psychological Society.

  10. Static and dynamic light scattering by red blood cells: A numerical study.

    PubMed

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

  11. Static and dynamic light scattering by red blood cells: A numerical study

    PubMed Central

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125

  12. Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.

    PubMed

    Leotta, Matthew J; Mundy, Joseph L

    2011-07-01

    In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.

  13. Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Baysal, Oktay

    1997-01-01

    A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.

  14. The Effect of Implicit and Explicit Feedback: A Study on the Acquisition of Mandarin Classifiers by Chinese Heritage and Non-Heritage Language Learners

    ERIC Educational Resources Information Center

    Han, Ye

    2010-01-01

    Previous studies revealed mixed results in terms of the relative effects of implicit and explicit feedback: some found that explicit feedback worked more efficiently than implicit feedback; others found no difference between the two feedback types. These contrasting results called for further investigations into this issue, particularly examining…

  15. Passing thoughts on the evolutionary stability of implicit motor behaviour: performance retention under physiological fatigue.

    PubMed

    Poolton, J M; Masters, R S W; Maxwell, J P

    2007-06-01

    Heuristics of evolutionary biology (e.g., survival of the fittest) dictate that phylogenetically older processes are inherently more stable and resilient to disruption than younger processes. On the grounds that non-declarative behaviour emerged long before declarative behaviour, Reber (1992) argues that implicit (non-declarative) learning is supported by neural processes that are evolutionarily older than those supporting explicit learning. Reber suggested that implicit learning thus leads to performance that is more robust than explicit learning. Applying this evolutionary framework to motor performance, we examined whether implicit motor learning, relative to explicit motor learning, conferred motor output that was resilient to physiological fatigue and durable over time. In Part One of the study a fatigued state was induced by a double Wingate Anaerobic test protocol. Fatigue had no affect on performance of participants in the implicit condition; whereas, performance of participants in the explicit condition deteriorated significantly. In Part Two of the study a convenience sample of participants was recalled following a one-year hiatus. In both the implicit and the explicit condition retention of performance was seen and, contrary to the findings in Part One, so was resilience to fatigue. The resilient performance in the explicit condition after one year may have resulted from forgetting (the decay of declarative knowledge) or from consolidation of declarative knowledge as implicit memories. In either case, implicit processes were left to more effectively support motor performance.

  16. Non-rigid image registration using graph-cuts.

    PubMed

    Tang, Tommy W H; Chung, Albert C S

    2007-01-01

    Non-rigid image registration is an ill-posed yet challenging problem due to its supernormal high degree of freedoms and inherent requirement of smoothness. Graph-cuts method is a powerful combinatorial optimization tool which has been successfully applied into image segmentation and stereo matching. Under some specific constraints, graph-cuts method yields either a global minimum or a local minimum in a strong sense. Thus, it is interesting to see the effects of using graph-cuts in non-rigid image registration. In this paper, we formulate non-rigid image registration as a discrete labeling problem. Each pixel in the source image is assigned a displacement label (which is a vector) indicating which position in the floating image it is spatially corresponding to. A smoothness constraint based on first derivative is used to penalize sharp changes in displacement labels across pixels. The whole system can be optimized by using the graph-cuts method via alpha-expansions. We compare 2D and 3D registration results of our method with two state-of-the-art approaches. It is found that our method is more robust to different challenging non-rigid registration cases with higher registration accuracy.

  17. Visuomotor Map Determines How Visually Guided Reaching Movements are Corrected Within and Across Trials123

    PubMed Central

    Hirashima, Masaya

    2016-01-01

    Abstract When a visually guided reaching movement is unexpectedly perturbed, it is implicitly corrected in two ways: immediately after the perturbation by feedback control (online correction) and in the next movement by adjusting feedforward motor commands (offline correction or motor adaptation). Although recent studies have revealed a close relationship between feedback and feedforward controls, the nature of this relationship is not yet fully understood. Here, we show that both implicit online and offline movement corrections utilize the same visuomotor map for feedforward movement control that transforms the spatial location of visual objects into appropriate motor commands. First, we artificially distorted the visuomotor map by applying opposite visual rotations to the cursor representing the hand position while human participants reached for two different targets. This procedure implicitly altered the visuomotor map so that changes in the movement direction to the target location were more insensitive or more sensitive. Then, we examined how such visuomotor map distortion influenced online movement correction by suddenly changing the target location. The magnitude of online movement correction was altered according to the shape of the visuomotor map. We also examined offline movement correction; the aftereffect induced by visual rotation in the previous trial was modulated according to the shape of the visuomotor map. These results highlighted the importance of the visuomotor map as a foundation for implicit motor control mechanisms and the intimate relationship between feedforward control, feedback control, and motor adaptation. PMID:27275006

  18. Visuomotor Map Determines How Visually Guided Reaching Movements are Corrected Within and Across Trials.

    PubMed

    Hayashi, Takuji; Yokoi, Atsushi; Hirashima, Masaya; Nozaki, Daichi

    2016-01-01

    When a visually guided reaching movement is unexpectedly perturbed, it is implicitly corrected in two ways: immediately after the perturbation by feedback control (online correction) and in the next movement by adjusting feedforward motor commands (offline correction or motor adaptation). Although recent studies have revealed a close relationship between feedback and feedforward controls, the nature of this relationship is not yet fully understood. Here, we show that both implicit online and offline movement corrections utilize the same visuomotor map for feedforward movement control that transforms the spatial location of visual objects into appropriate motor commands. First, we artificially distorted the visuomotor map by applying opposite visual rotations to the cursor representing the hand position while human participants reached for two different targets. This procedure implicitly altered the visuomotor map so that changes in the movement direction to the target location were more insensitive or more sensitive. Then, we examined how such visuomotor map distortion influenced online movement correction by suddenly changing the target location. The magnitude of online movement correction was altered according to the shape of the visuomotor map. We also examined offline movement correction; the aftereffect induced by visual rotation in the previous trial was modulated according to the shape of the visuomotor map. These results highlighted the importance of the visuomotor map as a foundation for implicit motor control mechanisms and the intimate relationship between feedforward control, feedback control, and motor adaptation.

  19. Digital Correction of Motion Artifacts in Microscopy Image Sequences Collected from Living Animals Using Rigid and Non-Rigid Registration

    PubMed Central

    Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2013-01-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443

  20. Representations for implicit constitutive relations describing non-dissipative response of isotropic materials

    NASA Astrophysics Data System (ADS)

    Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.

    2017-12-01

    A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.

  1. Implicit Shape Models for Object Detection in 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Velizhev, A.; Shapovalov, R.; Schindler, K.

    2012-07-01

    We present a method for automatic object localization and recognition in 3D point clouds representing outdoor urban scenes. The method is based on the implicit shape models (ISM) framework, which recognizes objects by voting for their center locations. It requires only few training examples per class, which is an important property for practical use. We also introduce and evaluate an improved version of the spin image descriptor, more robust to point density variation and uncertainty in normal direction estimation. Our experiments reveal a significant impact of these modifications on the recognition performance. We compare our results against the state-of-the-art method and get significant improvement in both precision and recall on the Ohio dataset, consisting of combined aerial and terrestrial LiDAR scans of 150,000 m2 of urban area in total.

  2. Probability density function shape sensitivity in the statistical modeling of turbulent particle dispersion

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.

  3. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme

    NASA Astrophysics Data System (ADS)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres

    2007-10-01

    Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.

  4. Implicit-Explicit Time Integration Methods for Non-hydrostatic Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Gardner, D. J.; Guerra, J. E.; Hamon, F. P.; Reynolds, D. R.; Ullrich, P. A.; Woodward, C. S.

    2016-12-01

    The Accelerated Climate Modeling for Energy (ACME) project is developing a non-hydrostatic atmospheric dynamical core for high-resolution coupled climate simulations on Department of Energy leadership class supercomputers. An important factor in computational efficiency is avoiding the overly restrictive time step size limitations of fully explicit time integration methods due to the stiffest modes present in the model (acoustic waves). In this work we compare the accuracy and performance of different Implicit-Explicit (IMEX) splittings of the non-hydrostatic equations and various Additive Runge-Kutta (ARK) time integration methods. Results utilizing the Tempest non-hydrostatic atmospheric model and the ARKode package show that the choice of IMEX splitting and ARK scheme has a significant impact on the maximum stable time step size as well as solution quality. Horizontally Explicit Vertically Implicit (HEVI) approaches paired with certain ARK methods lead to greatly improved runtimes. With effective preconditioning IMEX splittings that incorporate some implicit horizontal dynamics can be competitive with HEVI results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-699187

  5. Nearshore Pipeline Installation Methods.

    DTIC Science & Technology

    1981-08-01

    inches b) Pipe, materials of construction: fully rigid, semi-rigid, flexible c) Pipeline length, maximum 2 miles d) Pipeline design life , minimum 15...common to their operations. Permanent facilities are specified in the Statement of Work. There- fore, a minimum design life of 15 years is chosen, which...makes the pipe leakproof and resists corrosion and abrasion. 5) Interlocked Z-shaped steel or stainless steel carcass - resists internal and external

  6. Social identity modifies face perception: an ERP study of social categorization.

    PubMed

    Derks, Belle; Stedehouder, Jeffrey; Ito, Tiffany A

    2015-05-01

    Two studies examined whether social identity processes, i.e. group identification and social identity threat, amplify the degree to which people attend to social category information in early perception [assessed with event-related brain potentials (ERPs)]. Participants were presented with faces of Muslims and non-Muslims in an evaluative priming task while ERPs were measured and implicit evaluative bias was assessed. Study 1 revealed that non-Muslims showed stronger differentiation between ingroup and outgroup faces in both early (N200) and later processing stages (implicit evaluations) when they identified more strongly with their ethnic group. Moreover, identification effects on implicit bias were mediated by intergroup differentiation in the N200. In Study 2, social identity threat (vs control) was manipulated among Muslims. Results revealed that high social identity threat resulted in stronger differentiation of Muslims from non-Muslims in early (N200) and late (implicit evaluations) processing stages, with N200 effects again predicting implicit bias. Combined, these studies reveal how seemingly bottom-up early social categorization processes are affected by individual and contextual variables that affect the meaning of social identity. Implications of these results for the social identity perspective as well as social cognitive theories of person perception are discussed. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Brownian dynamics simulation of rigid particles of arbitrary shape in external fields.

    PubMed

    Fernandes, Miguel X; de la Torre, José García

    2002-12-01

    We have developed a Brownian dynamics simulation algorithm to generate Brownian trajectories of an isolated, rigid particle of arbitrary shape in the presence of electric fields or any other external agents. Starting from the generalized diffusion tensor, which can be calculated with the existing HYDRO software, the new program BROWNRIG (including a case-specific subprogram for the external agent) carries out a simulation that is analyzed later to extract the observable dynamic properties. We provide a variety of examples of utilization of this method, which serve as tests of its performance, and also illustrate its applicability. Examples include free diffusion, transport in an electric field, and diffusion in a restricting environment.

  8. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.

    PubMed

    Su, Chinh; Nguyen, Thuy-Diem; Zheng, Jie; Kwoh, Chee-Keong

    2014-01-01

    Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near native structures found. As our implementation so far targeted to improve the results of ZDOCK3.0.2, and particularly for the Antigen/Antibody complexes, it is expected in the near future that more implementations will be conducted to be applicable for other initial rigid docking algorithms.

  9. Probing the limits of the rigid-intensity-shift model in differential-phase-contrast scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Clark, L.; Brown, H. G.; Paganin, D. M.; Morgan, M. J.; Matsumoto, T.; Shibata, N.; Petersen, T. C.; Findlay, S. D.

    2018-04-01

    The rigid-intensity-shift model of differential-phase-contrast imaging assumes that the phase gradient imposed on the transmitted probe by the sample causes the diffraction pattern intensity to shift rigidly by an amount proportional to that phase gradient. This behavior is seldom realized exactly in practice. Through a combination of experimental results, analytical modeling and numerical calculations, using as case studies electron microscope imaging of the built-in electric field in a p-n junction and nanoscale domains in a magnetic alloy, we explore the breakdown of rigid-intensity-shift behavior and how this depends on the magnitude of the phase gradient and the relative scale of features in the phase profile and the probe size. We present guidelines as to when the rigid-intensity-shift model can be applied for quantitative phase reconstruction using segmented detectors, and propose probe-shaping strategies to further improve the accuracy.

  10. Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes

    NASA Technical Reports Server (NTRS)

    Marx, Yves P.

    1990-01-01

    An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.

  11. Implicit filtered P{sub N} for high-energy density thermal radiation transport using discontinuous Galerkin finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov

    2016-09-15

    In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.

  12. Mindfulness meditation and explicit and implicit indicators of personality and self-concept changes

    PubMed Central

    Crescentini, Cristiano; Capurso, Viviana

    2015-01-01

    The scientific interest on mindfulness meditation (MM) has significantly increased in the last two decades probably because of the positive health effects that this practice exerts in a great variety of clinical and non-clinical conditions. Despite attention regulation, emotional regulation, and body awareness have been argued to be critical mechanisms through which MM improves well-being, much less is known on the effects of this practice on personality. Here we review the current state of knowledge about the role of MM in promoting changes in practitioners’ personality profiles and self-concepts. We first focus on studies that investigated the relations between mindfulness and personality using well-known self-report inventories such as the Five-Factor model of personality traits and the Temperament and Character Inventory. Second, based on the intrinsic limitations of these explicit personality measures, we review a key set of results showing effects of MM on implicit, as well as explicit, self-representations. Although the research on MM and personality is still in its infancy, it appears that this form of meditative practice may notably shape individuals’ personality and self-concept toward more healthy profiles. PMID:25688222

  13. Implicit LES using adaptive filtering

    NASA Astrophysics Data System (ADS)

    Sun, Guangrui; Domaradzki, Julian A.

    2018-04-01

    In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.

  14. Stiffness-generated rigid-body mode shapes for Lanczos eigensolution with SUPORT DOF by way of a MSC/NASTRAN DMAP alter

    NASA Technical Reports Server (NTRS)

    Abdallah, Ayman A.; Barnett, Alan R.; Widrick, Timothy W.; Manella, Richard T.; Miller, Robert P.

    1994-01-01

    When using all MSC/NASTRAN eigensolution methods except Lanczos, the analyst can replace the coupled system rigid-body modes calculated within DMAP module READ with mass orthogonalized and normalized rigid-body modes generated from the system stiffness. This option is invoked by defining MSC/NASTRAN r-set degrees of freedom via the SUPORT bulk data card. The newly calculated modes are required if the rigid-body modes calculated by the eigensolver are not 'clean' due to numerical roundoffs in the solution. When performing transient structural dynamic load analysis, the numerical roundoffs can result in inaccurate rigid-body accelerations which affect steady-state responses. Unfortunately, when using the Lanczos method and defining r-set degrees of freedom, the rigid-body modes calculated within DMAP module REIGL are retained. To overcome this limitation and to allow MSC/NASTRAN to handle SUPORT degrees of freedom identically for all eigensolvers, a DMAP Alter has been written which replaces Lanczos-calculated rigid-body modes with stiffness-generated rigid-body modes. The newly generated rigid-body modes are normalized with respect to the system mass and orthogonalized using the Gram-Schmidt technique. This algorithm has been implemented as an enhancement to an existing coupled loads methodology.

  15. Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    2013-01-01

    Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.

  16. Improved Atomistic Monte Carlo Simulations Demonstrate that Poly-L-Proline Adopts Heterogeneous Ensembles of Conformations of Semi-Rigid Segments Interrupted by Kinks

    PubMed Central

    Radhakrishnan, Aditya; Vitalis, Andreas; Mao, Albert H.; Steffen, Adam T.; Pappu, Rohit V.

    2012-01-01

    Poly-L-proline (PLP) polymers are useful mimics of biologically relevant proline-rich sequences. Biophysical and computational studies of PLP polymers in aqueous solutions are challenging because of the diversity of length scales and the slow time scales for conformational conversions. We describe an atomistic simulation approach that combines an improved ABSINTH implicit solvation model, with conformational sampling based on standard and novel Metropolis Monte Carlo moves. Refinements to forcefield parameters were guided by published experimental data for proline-rich systems. We assessed the validity of our simulation results through quantitative comparisons to experimental data that were not used in refining the forcefield parameters. Our analysis shows that PLP polymers form heterogeneous ensembles of conformations characterized by semi-rigid, rod-like segments interrupted by kinks, which result from a combination of internal cis peptide bonds, flexible backbone ψ-angles, and the coupling between ring puckering and backbone degrees of freedom. PMID:22329658

  17. Can a proton be encapsulated in tetraamido/diamino quaternized macrocycles in aqueous solution and electric field?

    PubMed

    Jiang, Nan; Ma, Jing

    2011-09-12

    The proton-binding behavior of solvated tetraamido/diamino quaternized macrocyclic compounds with rigid phenyl and flexible phenyl bridges in the absence or presence of an external electric field is investigated by molecular dynamics simulation. The proton can be held through H-bonding interactions with the two carbonyl oxygen atoms in macrocycles containing rigid (phenyl) and flexible (propyl) bridges. The solute-solvent H-bonding interactions cause the macrocyclic backbones to twist to different extents, depending on the different bridges. The macrocycle with the rigid phenyl linkages folds into a cuplike shape due to π-π interaction, while the propyl analogue still maintains the ellipsoidal ringlike shape with just a slight distortion. The potential energy required for proton transfer is larger in the phenyl-containing macrocycle than in the compound with propyl units. When an external electric field with a strength of 2.5 V nm(-1) is exerted along the carbonyl oxygen atoms, a difference in proton encircling is exhibited for macrocycles with rigid and flexible bridges. In contrast to encapsulation of a proton in the propyl analogue, the intermolecular solute-solvent H-bonding and intramolecular π-π stacking between the two rigid phenyl spacers leads to loss of the proton from the highly distorted cuplike macrocycle with phenyl bridges. The competition between intra- and intermolecular interactions governs the behavior of proton encircling in macrocycles. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrié, Michael, E-mail: mcarrie2@unl.edu; Shadwick, B. A., E-mail: shadwick@mailaps.org

    2016-01-15

    We present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Jüttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviours that do not exist in the nonrelativistic case. The numericalmore » study of the relativistic two-stream instability completes the set of benchmarking tests.« less

  19. Where Will the Triangle Look for It? Attributing False Beliefs to a Geometric Shape at 17 Months

    ERIC Educational Resources Information Center

    Surian, Luca; Geraci, Alessandra

    2012-01-01

    Prior research on implicit mind-reading skills has focussed on how infants anticipate other persons' actions. This study investigated whether 11- and 17-month-olds spontaneously attribute false beliefs (FB) even to a simple animated geometric shape. Infants were shown a triangle chasing a disk through a tunnel. Using an eye-tracker, we found that…

  20. Effects of subtle cognitive manipulations on placebo analgesia - An implicit priming study.

    PubMed

    Rosén, A; Yi, J; Kirsch, I; Kaptchuk, T J; Ingvar, M; Jensen, K B

    2017-04-01

    Expectancy is widely accepted as a key contributor to placebo effects. However, it is not known whether non-conscious expectancies achieved through semantic priming may contribute to placebo analgesia. In this study, we investigated if an implicit priming procedure, where participants were unaware of the intended priming influence, affected placebo analgesia. In a double-blind experiment, healthy participants (n = 36) were randomized to different implicit priming types; one aimed at increasing positive expectations and one neutral control condition. First, pain calibration (thermal) and a credibility demonstration of the placebo analgesic device were performed. In a second step, an independent experimenter administered the priming task; Scrambled Sentence Test. Then, pain sensitivity was assessed while telling participants that the analgesic device was either turned on (placebo) or turned off (baseline). Pain responses were recorded on a 0-100 Numeric Response Scale. Overall, there was a significant placebo effect (p < 0.001), however, the priming conditions (positive/neutral) did not lead to differences in placebo outcome. Prior experience of pain relief (during initial pain testing) correlated significantly with placebo analgesia (p < 0.001) and explained 34% of placebo variance. Trait neuroticism correlated positively with placebo analgesia (p < 0.05) and explained 21% of placebo variance. Priming is one of many ways to influence behaviour, and non-conscious activation of positive expectations could theoretically affect placebo analgesia. Yet, we found no SST priming effect on placebo analgesia. Instead, our data point to the significance of prior experience of pain relief, trait neuroticism and social interaction with the treating clinician. Our findings challenge the role of semantic priming as a behavioural modifier that may shape expectations of pain relief, and affect placebo analgesia. © 2016 The Authors. European Journal of Pain published by John Wiley & Sons Ltd on behalf of European Pain Federation - EFIC®.

  1. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  2. The Role of Bias by Emergency Department Providers in Care for American Indian Children

    PubMed Central

    Puumala, Susan E.; Burgess, Katherine M.; Kharbanda, Anupam B.; Zook, Heather G.; Castille, Dorothy M.; Pickner, Wyatt J.; Payne, Nathaniel R.

    2016-01-01

    Background American Indian children have high rates of emergency department (ED) use and face potential discrimination in health care settings. Objective Our goal was to assess both implicit and explicit racial bias and examine their relationship with clinical care. Research Design We performed a cross-sectional survey of care providers at five hospitals in the Upper Midwest. Questions included American Indian stereotypes (explicit attitudes), clinical vignettes and the Implicit Association Test (IAT). Two IATs were created to assess implicit bias toward the child or the parent/caregiver. Differences were assessed using linear and logistic regression models with a random effect for study site. Results A total of 154 care providers completed the survey. Agreement with negative American Indian stereotypes was 22–32%. Overall, 84% of providers had an implicit preference for non-Hispanic white adults or children. Older providers (≥ 50 years) had lower implicit bias than those middle aged (30–49 years), (p = 0.01). American Indian children were seen as increasingly challenging (p = 0.04) and parents/caregivers less compliant (p = 0.002) as the proportion of American Indian children seen in the ED increased. Responses to the vignettes were not related to implicit or explicit bias. Conclusions The majority of ED care providers had an implicit preference for non-Hispanic white children or adults compared to those who were American Indian. Provider agreement with negative American Indian stereotypes differed by practice and respondents’ characteristics. These findings require additional study to determine how these implicit and explicit biases influence healthcare or outcomes disparities. PMID:26974675

  3. Structural stability of posterior retainer design for resin-bonded prostheses: a 3D finite element study.

    PubMed

    Lin, Jie; Zheng, Zhiqiang; Shinya, Akikazu; Matinlinna, Jukka Pekka; Botelho, Michael George; Shinya, Akiyoshi

    2015-09-01

    The purpose of this in vitro study was to compare the stress distribution and natural frequency of different shape and thickness retainer designs for maxillary posterior resin-bonded prostheses using finite element (FE) method. A 3D FE model of a three unit posterior resin-bonded prosthesis analysis model was generated. Three different shaped retainer designs, viz. C-shaped (three axial surface wraparounds), D-shaped (three axial surface wraparounds with central groove) and O-shaped (360° wraparounds), and three different thicknesses, viz., 0.4, 0.8, and 1.2 mm, resin-bonded prostheses were used in this study. The resin-bonded prosthesis analysis model was imported into an FE analysis software (ANSYS 10.0, ANSYS, USA) and attribution of material properties. The nodes at the bottom surface of the roots were assigned fixed zero displacement in the three spatial dimensions. A simulated angle of 45° loading of a 100 N force was applied to the node of the pontic lingual cusp surface. The stress distributions and corresponding natural frequencies were analyzed and resolved. The C-shaped retainer for 0.4 mm thickness recorded the greatest von Mises stresses of 71.4 MPa for all three groups. C-shaped, D-shaped and O-shaped retainer presented natural frequencies 3,988, 7,754, and 10,494 Hz, respectively. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer. The maximum von Mises stresses values of the remaining tooth and prosthesis decreased with greater retainer thickness. D-shaped retainer and O-shaped retainer increased natural frequencies and structural rigidity over the traditional C-shaped retainer.

  4. Qualitative identification of rigid gas permeable contact lens materials by densitometry.

    PubMed

    Arce, C G; Schuman, P D; Schuman, W P

    1999-10-01

    We describe a practical method to qualitatively identify polymethylmethacrylate (PMMA) and rigid gas permeable (RGP) contact lens materials. By progressive dilution of a saturated saline solution made with distilled or tap water and sodium chloride, we recorded comparative densitometry of rigid contact lens materials using a small hydrometer or by liquid displacement. The method was sensitive enough to separate the polymethylmethacrylate, all silicon-methacrylates, and all but two fluorine-containing silicon-methacrylates. The hydrometer had a precision of three decimals rounded to the nearest 0.005. There was only one RGP product that could have been confused with the PMMA material. Most silicon-methacrylates had lower densities than fluorine containing silicon-methacrylates. Only four of 25 products under 1.117 gm/cm3 contained fluorine. Densitometry with a hydrometer is an effective non-destructive method to identify RGP materials and to verify their quality. The method is easier when lens blanks are tested, but in spite of differences in shape, size, and weight, densitometry may also be used with new or used contact lenses. Its simplicity and low cost makes densitometry feasible for any contact lens laboratory or clinic to use on a routine basis. Only silicon-methacrylates had an inverse relationship between density and oxygen permeability. As the silicon content of the contact lens increases, the Dk increases and the density decreases.

  5. Rigid and non-rigid micro-plates: Philippines and Myanmar-Andaman case studies

    NASA Astrophysics Data System (ADS)

    Rangin, Claude

    2016-01-01

    Generally, tectonic plates are considered as rigid. Oblique plate convergence favors the development of micro-plates along the converging boundaries. The north-south-trending Philippines archipelago (here named Philippine Mobile Belt, PMB), a few hundreds kilometers wide, is one of such complex tectonic zones. We show here that it is composed of rigid rotating crustal blocks (here called platelets). In Myanmar, the northernmost tip of the Sumatra-Andaman subduction system is another complex zone made of various crustal blocks in-between convergent plates. Yet, contrary to PMB, it sustains internal deformation with platelet buckling, altogether indicative of a non-rigid behavior. Therefore, the two case studies, Philippine Mobile Belt and Myanmar-Andaman micro-plate (MAS), illustrate the complexity of micro-plate tectonics and kinematics at convergent plate boundaries.

  6. Liquid metals as ultra-stretchable, soft, and shape reconfigurable conductors

    NASA Astrophysics Data System (ADS)

    Eaker, Collin B.; Dickey, Michael D.

    2015-05-01

    Conventional, rigid materials remain the key building blocks of most modern electronic devices, but they are limited in their ability to conform to curvilinear surfaces. It is possible to make electronic components that are flexible and in some cases stretchable by utilizing thin films, engineered geometries, or inherently soft and stretchable materials that maintain their function during deformation. Here, we describe the properties and applications of a micromoldable liquid metal that can form conductive components that are ultra-stretchable, soft, and shape-reconfigurable. This liquid metal is a gallium-based alloy with low viscosity and high conductivity. The metal develops spontaneously a thin, passivating oxide layer on the surface that allows the metal to be molded into non-spherical shapes, including films and wires, and patterned by direct-write techniques or microfluidic injection. Furthermore, unlike mercury, the liquid metal has low toxicity and negligible vapor pressure. This paper discusses the mechanical and electrical properties of the metal in the context of electronics, and discusses how the properties of the oxide layer have been exploited for new patterning techniques that enable soft, stretchable and reconfigurable devices.

  7. On the shape memory of red blood cells

    NASA Astrophysics Data System (ADS)

    Cordasco, Daniel; Bagchi, Prosenjit

    2017-04-01

    Red blood cells (RBCs) undergo remarkably large deformations when subjected to external forces but return to their biconcave discoid resting shape as the forces are withdrawn. In many experiments, such as when RBCs are subjected to a shear flow and undergo the tank-treading motion, the membrane elements are also displaced from their original (resting) locations along the cell surface with respect to the cell axis, in addition to the cell being deformed. A shape memory is said to exist if after the flow is stopped the RBC regains its biconcave shape and the membrane elements also return to their original locations. The shape memory of RBCs was demonstrated by Fischer ["Shape memory of human red blood cells," Biophys. J. 86, 3304-3313 (2004)] using shear flow go-and-stop experiments. Optical tweezer and micropipette based stretch-relaxation experiments do not reveal the complete shape memory because while the RBC may be deformed, the membrane elements are not significantly displaced from their original locations with respect to the cell axis. Here we present the first three-dimensional computational study predicting the complete shape memory of RBCs using shear flow go-and-stop simulations. The influence of different parameters, namely, membrane shear elasticity and bending rigidity, membrane viscosity, cytoplasmic and suspending fluid viscosity, as well as different stress-free states of the RBC is studied. For all cases, the RBCs always exhibit shape memory. The complete recovery of the RBC in shear flow go-and-stop simulations occurs over a time that is orders of magnitude longer than that for optical tweezer and micropipette based relaxations. The response is also observed to be more complex and composed of widely disparate time scales as opposed to only one time scale that characterizes the optical tweezer and micropipette based relaxations. We observe that the recovery occurs in three phases: a rapid compression of the RBC immediately after the flow is stopped, followed by a slow recovery to the biconcave shape combined with membrane rotation, and a final rotational return of the membrane elements back to their original locations. A fast time scale on the order of a few hundred milliseconds characterizes the initial compression phase while a slow time scale on the order of tens of seconds is associated with the rotational phase. We observe that the response is strongly dependent on the stress-free state of the cells, that is, the relaxation time decreases significantly and the mode of recovery changes from rotation-driven to deformation-driven as the stress-free state becomes more non-spherical. We show that while membrane shear elasticity and non-spherical stress-free shape are necessary and sufficient for the membrane elements to return to their original locations, bending rigidity is needed for the "global" recovery of the biconcave shape. We also perform a novel relaxation simulation in which the cell axis of revolution is not aligned with the shear plane and show that the shape memory is exhibited even when the membrane elements are displaced normal to the imposed flow direction. The results presented here could motivate new experiments to determine the exact stress-free state of the RBC and also to clearly identify different tank-treading modes.

  8. Impact of Temperature and Non-Gaussian Statistics on Electron Transfer in Donor–Bridge–Acceptor Molecules

    DOE PAGES

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-03-16

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  9. Image based cardiac acceleration map using statistical shape and 3D+t myocardial tracking models; in-vitro study on heart phantom

    NASA Astrophysics Data System (ADS)

    Pashaei, Ali; Piella, Gemma; Planes, Xavier; Duchateau, Nicolas; de Caralt, Teresa M.; Sitges, Marta; Frangi, Alejandro F.

    2013-03-01

    It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal di eomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.

  10. Patient-specific non-linear finite element modelling for predicting soft organ deformation in real-time: application to non-rigid neuroimage registration.

    PubMed

    Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol

    2010-12-01

    Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Inertial migrations of cylindrical particles in rectangular microchannels: Variations of equilibrium positions and equivalent diameters

    NASA Astrophysics Data System (ADS)

    Su, Jinghong; Chen, Xiaodong; Hu, Guoqing

    2018-03-01

    Inertial migration has emerged as an efficient tool for manipulating both biological and engineered particles that commonly exist with non-spherical shapes in microfluidic devices. There have been numerous studies on the inertial migration of spherical particles, whereas the non-spherical particles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to study the inertial migration of rigid cylindrical particles in rectangular microchannels with different width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical particles with different length/diameter ratios and blockage ratios are also concerned. Distributions of surface force with the change of rotation angle show that surface stresses acting on the particle end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced by cylindrical particles at different lateral positions on cross sections of two types of microchannels at various Re. It is found that there are always four stable equilibrium positions on the cross section of a square channel, while the stable positions are two or four in a rectangular channel, depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical particles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and can be useful for the precise manipulation of non-spherical particles.

  12. Integrating shape into an interactive segmentation framework

    NASA Astrophysics Data System (ADS)

    Kamalakannan, S.; Bryant, B.; Sari-Sarraf, H.; Long, R.; Antani, S.; Thoma, G.

    2013-02-01

    This paper presents a novel interactive annotation toolbox which extends a well-known user-steered segmentation framework, namely Intelligent Scissors (IS). IS, posed as a shortest path problem, is essentially driven by lower level image based features. All the higher level knowledge about the problem domain is obtained from the user through mouse clicks. The proposed work integrates one higher level feature, namely shape up to a rigid transform, into the IS framework, thus reducing the burden on the user and the subjectivity involved in the annotation procedure, especially during instances of occlusions, broken edges, noise and spurious boundaries. The above mentioned scenarios are commonplace in medical image annotation applications and, hence, such a tool will be of immense help to the medical community. As a first step, an offline training procedure is performed in which a mean shape and the corresponding shape variance is computed by registering training shapes up to a rigid transform in a level-set framework. The user starts the interactive segmentation procedure by providing a training segment, which is a part of the target boundary. A partial shape matching scheme based on a scale-invariant curvature signature is employed in order to extract shape correspondences and subsequently predict the shape of the unsegmented target boundary. A `zone of confidence' is generated for the predicted boundary to accommodate shape variations. The method is evaluated on segmentation of digital chest x-ray images for lung annotation which is a crucial step in developing algorithms for screening Tuberculosis.

  13. CRP - VD Tube & Closure -  Unit Non-Reclosable Packaging Rigid

    EPA Pesticide Factsheets

    This is a unit-dose non-reclosable rigid package. The package consists of a tube and a closure that is permanently attached to the tube neck. The package is opened by pushing down on the closure and simultaneously turning it counterclockwise.

  14. A functional magnetic resonance imaging investigation of theory of mind impairments in patients with temporal lobe epilepsy.

    PubMed

    Hennion, Sophie; Delbeuck, Xavier; Koelkebeck, Katja; Brion, Marine; Tyvaert, Louise; Plomhause, Lucie; Derambure, Philippe; Lopes, Renaud; Szurhaj, William

    2016-12-01

    Although patients with mesial temporal lobe epilepsy (mTLE) are known to have theory of mind (ToM) impairments, the latter's neural functional bases have yet to be explored. We used functional magnetic resonance imaging (fMRI) to gain insights into the neural dysfunction associated with ToM impairments in patients with mTLE. Twenty-five patients (12 and 13 with right and left mTLE, respectively) and 25 healthy controls performed the "animated shapes" task during fMRI. This complex ToM task requires both explicit reasoning about mental states and implicit processing of information on biological motion and action. The animated shapes evoke both ToM and non-ToM interaction perception, and the corresponding neural activation patterns were compared. Behavioral performance (i.e. categorization of the interactions) was also recorded. Relative to healthy controls, both patients with right and left mTLE were impaired in categorizing ToM interactions. The fMRI results showed that both patients with right and left mTLE had less intense neural activation (relative to controls) in regions involved in the implicit component of ToM processes (i.e. the fusiform gyrus in patients with right mTLE and the supplementary motor area in patients with left mTLE). In patients with right mTLE, we also observed more intense activation (relative to controls) in regions involved in the explicit component of ToM processes (i.e. the dorsal medial prefrontal cortex); age at onset of epilepsy also mediated activation in regions involved in the explicit component (i.e. the ventral medial prefrontal cortex and the temporoparietal junction). Patients with left mTLE displayed greater activation of the contralateral mesial regions (relative to controls); we speculate that this may correspond to the deployment of a compensatory mechanism. This study provides insights into the disturbances of the implicit/explicit ToM neural network in patients with mTLE. These impairments in the ToM neural network depend on clinical characteristics, such as the laterality (right or left mTLE) and the age at onset of epilepsy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Implicit Sex Guilt Predicts Sexual Behaviors: Evidence for the Validity of the Sex Guilt Implicit Association Test.

    PubMed

    Totonchi, Delaram A; Derlega, Valerian J; Janda, Louis H

    2018-05-14

    Self-report measures of sexuality may be influenced by people's conscious concerns about confidentiality and social desirability. Alternatively, non-conscious measures (e.g., implicit association tests; IATs) are designed to minimize these validity concerns. We constructed an IAT measure of sex guilt using 154 male and female university students. The sex guilt IAT demonstrated convergent validity as it correlated with various sexual behaviors and incremental validity as it improved the prediction of several sexual behaviors beyond that provided by the Mosher sex guilt scale. We conclude that a non-conscious measure of sex guilt may complement the use of self-reports in studying sexual behaviors.

  16. Disjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation.

    PubMed

    Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga

    2015-10-01

    The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. Active shape and appearance models require landmark points and assume unimodal shape and appearance distributions. Level set based shape priors are limited to global shape similarity. In this paper, we present a novel shape and appearance priors for image segmentation based on an implicit parametric shape representation called disjunctive normal shape model (DNSM). DNSM is formed by disjunction of conjunctions of half-spaces defined by discriminants. We learn shape and appearance statistics at varying spatial scales using nonparametric density estimation. Our method can generate a rich set of shape variations by locally combining training shapes. Additionally, by studying the intensity and texture statistics around each discriminant of our shape model, we construct a local appearance probability map. Experiments carried out on both medical and natural image datasets show the potential of the proposed method.

  17. Computer program for determining mass properties of a rigid structure

    NASA Technical Reports Server (NTRS)

    Hull, R. A.; Gilbert, J. L.; Klich, P. J.

    1978-01-01

    A computer program was developed for the rapid computation of the mass properties of complex structural systems. The program uses rigid body analyses and permits differences in structural material throughout the total system. It is based on the premise that complex systems can be adequately described by a combination of basic elemental shapes. Simple geometric data describing size and location of each element and the respective material density or weight of each element were the only required input data. From this minimum input, the program yields system weight, center of gravity, moments of inertia and products of inertia with respect to mutually perpendicular axes through the system center of gravity. The program also yields mass properties of the individual shapes relative to component axes.

  18. Bending and splitting of spoof surface acoustic waves through structured rigid surface

    NASA Astrophysics Data System (ADS)

    Xie, Sujun; Ouyang, Shiliang; He, Zhaojian; Wang, Xiaoyun; Deng, Ke; Zhao, Heping

    2018-03-01

    In this paper, we demonstrated that a 90°-bended imaging of spoof surface acoustic waves with subwavelength resolution of 0.316λ can be realized by a 45° prism-shaped surface phononic crystal (SPC), which is composed of borehole arrays with square lattice in a rigid plate. Furthermore, by combining two identical prism-shaped phononic crystal to form an interface (to form a line-defect), the excited spoof surface acoustic waves can be split into bended and transmitted parts. The power ratio between the bended and transmitted surface waves can be tuned arbitrarily by adjusting the defect size. This acoustic system is believed to have potential applications in various multifunctional acoustic solutions integrated by different acoustical devices.

  19. The Things You Do: Internal Models of Others’ Expected Behaviour Guide Action Observation

    PubMed Central

    Schenke, Kimberley C.; Wyer, Natalie A.; Bach, Patric

    2016-01-01

    Predictions allow humans to manage uncertainties within social interactions. Here, we investigate how explicit and implicit person models–how different people behave in different situations–shape these predictions. In a novel action identification task, participants judged whether actors interacted with or withdrew from objects. In two experiments, we manipulated, unbeknownst to participants, the two actors action likelihoods across situations, such that one actor typically interacted with one object and withdrew from the other, while the other actor showed the opposite behaviour. In Experiment 2, participants additionally received explicit information about the two individuals that either matched or mismatched their actual behaviours. The data revealed direct but dissociable effects of both kinds of person information on action identification. Implicit action likelihoods affected response times, speeding up the identification of typical relative to atypical actions, irrespective of the explicit knowledge about the individual’s behaviour. Explicit person knowledge, in contrast, affected error rates, causing participants to respond according to expectations instead of observed behaviour, even when they were aware that the explicit information might not be valid. Together, the data show that internal models of others’ behaviour are routinely re-activated during action observation. They provide first evidence of a person-specific social anticipation system, which predicts forthcoming actions from both explicit information and an individuals’ prior behaviour in a situation. These data link action observation to recent models of predictive coding in the non-social domain where similar dissociations between implicit effects on stimulus identification and explicit behavioural wagers have been reported. PMID:27434265

  20. Perceptual, Cognitive, and Personality Rigidity in Parkinson’s Disease

    PubMed Central

    Díaz-Santos, Mirella; Cao, Bo; Yazdanbakhsh, Arash; Norton, Daniel J.; Neargarder, Sandy; Cronin-Golomb, Alice

    2015-01-01

    Parkinson’s disease (PD) is associated with motor and non-motor rigidity symptoms (e.g., cognitive and personality). The question is raised as to whether rigidity in PD also extends to perception, and if so, whether perceptual, cognitive, and personality rigidities are correlated. Bistable stimuli were presented to 28 non-demented individuals with PD and 26 normal control adults (NC). Necker cube perception and binocular rivalry were examined during passive viewing, and the Necker cube was additionally used for two volitional-control conditions: Hold one percept in front, and Switch between the two percepts. Relative to passive viewing, PD were significantly less able than NC to reduce dominance durations in the Switch condition, indicating perceptual rigidity. Tests of cognitive flexibility and a personality questionnaire were administered to explore the association with perceptual rigidity. Cognitive flexibility was not correlated with perceptual rigidity for either group. Personality (novelty seeking) correlated with dominance durations on Necker passive viewing for PD but not NC. The results indicate the presence in mild-moderate PD of perceptual rigidity and suggest shared neural substrates with novelty seeking, but functional divergence from those supporting cognitive flexibility. The possibility is raised that perceptual rigidity may be a harbinger of cognitive inflexibility later in the disease course. PMID:25640973

  1. Appearances Aren't Everything: Shape Classifiers and Referential Processing in Cantonese

    ERIC Educational Resources Information Center

    Tsang, Cara; Chambers, Craig G.

    2011-01-01

    Cantonese shape classifiers encode perceptual information that is characteristic of their associated nouns, although certain nouns are exceptional. For example, the classifier "tiu" occurs primarily with nouns for long-narrow-flexible objects (e.g., scarves, snakes, and ropes) and also occurs with the noun for a (short, rigid) key. In 3…

  2. Rotor cascade shape optimization with unsteady passing wakes using implicit dual time stepping method

    NASA Astrophysics Data System (ADS)

    Lee, Eun Seok

    2000-10-01

    An improved aerodynamics performance of a turbine cascade shape can be achieved by an understanding of the flow-field associated with the stator-rotor interaction. In this research, an axial gas turbine airfoil cascade shape is optimized for improved aerodynamic performance by using an unsteady Navier-Stokes solver and a parallel genetic algorithm. The objective of the research is twofold: (1) to develop a computational fluid dynamics code having faster convergence rate and unsteady flow simulation capabilities, and (2) to optimize a turbine airfoil cascade shape with unsteady passing wakes for improved aerodynamic performance. The computer code solves the Reynolds averaged Navier-Stokes equations. It is based on the explicit, finite difference, Runge-Kutta time marching scheme and the Diagonalized Alternating Direction Implicit (DADI) scheme, with the Baldwin-Lomax algebraic and k-epsilon turbulence modeling. Improvements in the code focused on the cascade shape design capability, convergence acceleration and unsteady formulation. First, the inverse shape design method was implemented in the code to provide the design capability, where a surface transpiration concept was employed as an inverse technique to modify the geometry satisfying the user specified pressure distribution on the airfoil surface. Second, an approximation storage multigrid method was implemented as an acceleration technique. Third, the preconditioning method was adopted to speed up the convergence rate in solving the low Mach number flows. Finally, the implicit dual time stepping method was incorporated in order to simulate the unsteady flow-fields. For the unsteady code validation, the Stokes's 2nd problem and the Poiseuille flow were chosen and compared with the computed results and analytic solutions. To test the code's ability to capture the natural unsteady flow phenomena, vortex shedding past a cylinder and the shock oscillation over a bicircular airfoil were simulated and compared with experiments and other research results. The rotor cascade shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using the unsteady Navier-Stokes solver. Two objective functions were defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed. A parallel genetic algorithm was used as an optimizer and the penalty method was introduced. Each individual's objective function was computed simultaneously by using a 32 processor distributed memory computer. One optimization took about four days.

  3. E-cigarette advertising exposure and implicit attitudes among young adult non-smokers

    PubMed Central

    Fagan, Pebbles; Herzog, Thaddeus A.; Chen, Qimei; Muranaka, Nicholas; Kehl, Lisa; Unger, Jennifer B.

    2016-01-01

    Background This study tested whether exposure to e-cigarette advertising affects the subliminal—spontaneous or automatic—attitudes towards e-cigarettes as a more pleasant or safer alternative to cigarettes among non-smoking young adults. Methods 187 young adult (mean age = 21.9; SD = 4.1) current non-smokers who had never used an e-cigarette were randomly assigned to one of the 3 conditions that involved viewing magazine advertisements. Two of the 3 conditions were experimental conditions where thematically different [harm-reduction (“Health”) vs. social enhancement (“Social”) focused] e-cigarette ads were interspersed among ads of everyday objects. The third condition was the control condition in which participants viewed ads of everyday objects only. Participants provided data on explicit (e.g., harm perceptions) and implicit [e.g., Implicit Association Test (IAT), Affect Misattribution Procedure (AMP)] measures after viewing the ads. Results Relative to the Control condition, participants in the Social condition showed 2.8 times higher odds of being open to using an e-cigarette in the future. Participants in the Health condition showed significantly higher implicit attitudes towards e-cigarettes as a safer alternative to cigarettes than participants in the Control condition. E-cigarette stimuli elicited more positive spontaneous affective reactions among participants in the Social condition than participants in the Health condition. Conclusions E-cigarette ads may implicitly promote e-cigarettes as a reduced-harm cigarette alternative. Marketing of e-cigarette use as a way to enhance social life or self-image may encourage non-smoking young adults to try e-cigarettes. Findings may inform regulations on e-cigarette marketing. PMID:27125661

  4. Seeing the Wood for the Trees: Applying the dual-memory system model to investigate expert teachers' observational skills in natural ecological learning environments

    NASA Astrophysics Data System (ADS)

    Stolpe, Karin; Björklund, Lars

    2012-01-01

    This study aims to investigate two expert ecology teachers' ability to attend to essential details in a complex environment during a field excursion, as well as how they teach this ability to their students. In applying a cognitive dual-memory system model for learning, we also suggest a rationale for their behaviour. The model implies two separate memory systems: the implicit, non-conscious, non-declarative system and the explicit, conscious, declarative system. This model provided the starting point for the research design. However, it was revised from the empirical findings supported by new theoretical insights. The teachers were video and audio recorded during their excursion and interviewed in a stimulated recall setting afterwards. The data were qualitatively analysed using the dual-memory system model. The results show that the teachers used holistic pattern recognition in their own identification of natural objects. However, teachers' main strategy to teach this ability is to give the students explicit rules or specific characteristics. According to the dual-memory system model the holistic pattern recognition is processed in the implicit memory system as a non-conscious match with earlier experienced situations. We suggest that this implicit pattern matching serves as an explanation for teachers' ecological and teaching observational skills. Another function of the implicit memory system is its ability to control automatic behaviour and non-conscious decision-making. The teachers offer the students firsthand sensory experiences which provide a prerequisite for the formation of implicit memories that provides a foundation for expertise.

  5. E-cigarette advertising exposure and implicit attitudes among young adult non-smokers.

    PubMed

    Pokhrel, Pallav; Fagan, Pebbles; Herzog, Thaddeus A; Chen, Qimei; Muranaka, Nicholas; Kehl, Lisa; Unger, Jennifer B

    2016-06-01

    This study tested whether exposure to e-cigarette advertising affects the subliminal-spontaneous or automatic-attitudes towards e-cigarettes as a more pleasant or safer alternative to cigarettes among non-smoking young adults. 187 young adult (mean age=21.9; SD=4.1) current non-smokers who had never used an e-cigarette were randomly assigned to one of the 3 conditions that involved viewing magazine advertisements. Two of the 3 conditions were experimental conditions where thematically different [harm-reduction ("Health") vs. social enhancement ("Social") focused] e-cigarette ads were interspersed among ads of everyday objects. The third condition was the control condition in which participants viewed ads of everyday objects only. Participants provided data on explicit (e.g., harm perceptions) and implicit [e.g., Implicit Association Test (IAT), Affect Misattribution Procedure (AMP)] measures after viewing the ads. Relative to the Control condition, participants in the Social condition showed 2.8 times higher odds of being open to using an e-cigarette in the future. Participants in the Health condition showed significantly higher implicit attitudes towards e-cigarettes as a safer alternative to cigarettes than participants in the Control condition. E-cigarette stimuli elicited more positive spontaneous affective reactions among participants in the Social condition than participants in the Health condition. E-cigarette ads may implicitly promote e-cigarettes as a reduced-harm cigarette alternative. Marketing of e-cigarette use as a way to enhance social life or self-image may encourage non-smoking young adults to try e-cigarettes. Findings may inform regulations on e-cigarette marketing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    PubMed

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  7. Soft-matter composites with electrically tunable elastic rigidity

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Lu, Tong; Majidi, Carmel

    2013-08-01

    We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.

  8. Astronaut mass measurement using linear acceleration method and the effect of body non-rigidity

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Li, LuMing; Hu, ChunHua; Chen, Hao; Hao, HongWei

    2011-04-01

    Astronaut's body mass is an essential factor of health monitoring in space. The latest mass measurement device for the International Space Station (ISS) has employed a linear acceleration method. The principle of this method is that the device generates a constant pulling force, and the astronaut is accelerated on a parallelogram motion guide which rotates at a large radius to achieve a nearly linear trajectory. The acceleration is calculated by regression analysis of the displacement versus time trajectory and the body mass is calculated by using the formula m= F/ a. However, in actual flight, the device is instable that the deviation between runs could be 6-7 kg. This paper considers the body non-rigidity as the major cause of error and instability and analyzes the effects of body non-rigidity from different aspects. Body non-rigidity makes the acceleration of the center of mass (C.M.) oscillate and fall behind the point where force is applied. Actual acceleration curves showed that the overall effect of body non-rigidity is an oscillation at about 7 Hz and a deviation of about 25%. To enhance body rigidity, better body restraints were introduced and a prototype based on linear acceleration method was built. Measurement experiment was carried out on ground on an air table. Three human subjects weighing 60-70 kg were measured. The average variance was 0.04 kg and the average measurement error was 0.4%. This study will provide reference for future development of China's own mass measurement device.

  9. Nonlinear finite element formulation for the large displacement analysis in multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Rismantab-Sany, J.; Chang, B.; Shabana, A. A.

    1989-01-01

    A total Lagrangian finite element formulation for the deformable bodies in multibody mechanical systems that undergo finite relative rotations is developed. The deformable bodies are discretized using finite element methods. The shape functions that are used to describe the displacement field are required to include the rigid body modes that describe only large translational displacements. This does not impose any limitations on the technique because most commonly used shape functions satisfy this requirement. The configuration of an element is defined using four sets of coordinate systems: Body, Element, Intermediate element, Global. The body coordinate system serves as a unique standard for the assembly of the elements forming the deformable body. The element coordinate system is rigidly attached to the element and therefore it translates and rotates with the element. The intermediate element coordinate system, whose axes are initially parallel to the element axes, has an origin which is rigidly attached to the origin of the body coordinate system and is used to conveniently describe the configuration of the element in undeformed state with respect to the body coordinate system.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waskasi, Morteza M.; Newton, Marshall D.; Matyushov, Dmitry V.

    A combination of experimental data and theoretical analysis provides evidence of a bell-shaped kinetics of electron transfer in the Arrhenius coordinates ln k vs 1/T . This kinetic law is a temperature analog of the familiar Marcus bell-shaped dependence based on ln k vs the reaction free energy. These results were obtained for reactions of intramolecular charge shift between the donor and acceptor separated by a rigid spacer studied experimentally by Miller and co-workers. The non-Arrhenius kinetic law is a direct consequence of the solvent reorganization energy and reaction driving force changing approximately as hyperbolic functions with temperature. The reorganizationmore » energy decreases and the driving force increases when temperature is increased. The point of equality between them marks the maximum of the activationless reaction rate. Reaching the consistency between the kinetic and thermodynamic experimental data requires the non-Gaussian statistics of the donor-acceptor energy gap described by the Q-model of electron transfer. Furthermore, the theoretical formalism combines the vibrational envelope of quantum vibronic transitions with the Q-model describing the classical component of the Franck-Condon factor and a microscopic solvation model of the solvent reorganization energy and the reaction free energy.« less

  11. Effect of wind-induced drag on leaf shapes

    NASA Astrophysics Data System (ADS)

    Louf, Jean-Francois; Ntoh Song, Pierre; Zehnbauer, Tim; Jung, Sunghwan

    2016-11-01

    Under windy conditions everyone can see leaves bending and twisting. From a geometrical point of view, a leaf is composed of two parts: a large flat plate called the lamina, and a small beam called the petiole, connecting the lamina to the branch/stem. While the wind is exerting forces (e.g. drag) on the lamina, the petiole undergoes twisting and bending stresses. To survive in harsh abiotic conditions, leaves might have evolved to form in many different shapes, resulting from a coupling between the lamina and the petiole. In this study we measure the twisting modulus (G) of the petiole using a twisting setup, and its Young modulus (E) by performing tensile tests. Micro-CT scan is used to precisely measure the cross section of the petiole allowing us to calculate the second moment of inertia (I) and the second moment of area (J). We then use the non-dimensional number EI/GJ and compare it to a geometrical non-dimensional number (Lpetiole +Llamina/2)/W, where Lpetiole is the length of the petiole, Llamina the length of the lamina, and W the width of the lamina. We found a linear relation between the ratio of the bending to twisting rigidity and the leaf geometry.

  12. Learning stage-dependent effect of M1 disruption on value-based motor decisions.

    PubMed

    Derosiere, Gerard; Vassiliadis, Pierre; Demaret, Sophie; Zénon, Alexandre; Duque, Julie

    2017-11-15

    The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBS Learning group) or after consolidation of the implicit rule, during decision-making (cTBS Decision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mitral stenosis due to pannus overgrowth after rigid ring annuloplasty.

    PubMed

    Oda, Takeshi; Kato, Seiya; Tayama, Eiki; Fukunaga, Shuji; Akashi, Hidetoshi; Aoyagi, Shigeaki

    2010-03-01

    Although mitral stenosis (MS) due to pannus overgrowth after mitral valve repair for rheumatic mitral regurgitation (MR) is not uncommon, it is extremely rare in relation to non-rheumatic mitral regurgitation. Whilst it has been suggested that the rigid annuloplasty ring induces pannus overgrowth in the same manner as the flexible ring, to date only in cases using the flexible ring has pannus formation been confirmed by a pathological examination after redo surgery. The case is described of a woman who had undergone mitral valve repair using a 28 mm rigid ring three years previously because of non-rheumatic MR, and subsequently suffered from MS due to pannus formation over the annuloplasty ring. To the present authors' knowledge, this is the first report of MS due to pannus formation after mitral valve repair using a rigid annuloplasty ring to treat non-rheumatic MR documented at reoperation.

  14. Rotating concave eddy current probe

    DOEpatents

    Roach, Dennis P [Albuquerque, NM; Walkington, Phil [Albuquerque, NM; Rackow, Kirk A [Albuquerque, NM; Hohman, Ed [Albuquerque, NM

    2008-04-01

    A rotating concave eddy current probe for detecting fatigue cracks hidden from view underneath the head of a raised head fastener, such as a buttonhead-type rivet, used to join together structural skins, such as aluminum aircraft skins. The probe has a recessed concave dimple in its bottom surface that closely conforms to the shape of the raised head. The concave dimple holds the probe in good alignment on top of the rivet while the probe is rotated around the rivet's centerline. One or more magnetic coils are rigidly embedded within the probe's cylindrical body, which is made of a non-conducting material. This design overcomes the inspection impediment associated with widely varying conductivity in fastened joints.

  15. SU-E-J-225: Quantitative Evaluation of Rigid and Non-Rigid Motion of Liver Tumors Using Stereo Imaging During SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Q; Hanna, G; Kubicek, G

    2014-06-01

    Purpose: To quantitatively evaluate rigid and nonrigid motion of liver tumors based on fiducial tracking in 3D by stereo imaging during CyberKnife SBRT. Methods: Twenty-five liver patients previously treated with three-fractions of SBRT were retrospectively recruited in this study. During treatment, the 3D locations of fiducials were reported by the CyberKnife system after two orthogonal kV X-ray images were taken and further validated by geometry derivations. A total of 5004 pairs of X-ray images acquired during the course of treatment for all the patients, were analyzed. For rigid motion, the rotational angles and translational shifts by aligning 3D fiducial groupsmore » in different image pairs after least-square fitting were reported. For nonrigid motion, the relative interfractional tumor shape variations were reported and correlated to the sum of inter-fiducial distances. The individual fiducial displacements were also reported after rigid corrections and without angle corrections. Results: The relative tumor volume variation indicated by the inter-fiducial distances demonstrated an increasing trend in the second (101.6±3.4%) and third fraction (101.2±5.6%) among most patients. The cause could be possibly due to radiation-induced edema. For all the patients, the translational shift was 8.1±5.7 mm, with shifts in LR, AP and SI were 2.1±2.4 mm, 2.8±2.9 mm and 6.7±5.1 mm, respectively. The greatest translation shift occurred in SI, mainly due the breathing motion of diaphragm The rotational angles were 1.1±1.7°, 1.9±2.6° and 1.6±2.2°, in roll, pitch, and yaw, respectively. The 3D fiducial displacement with rigid corrections were 0.2±0.2 mm and increased to 0.6±0.3 mm without rotational corrections. Conclusion: The fiducial locations in 3D can be precisely reconstructed from CyberKnife stereo imaging system during treatment. The fiducials provide close estimation of both rigid and nonrigid motion of .liver tumors. The reported data could be further utilized for tumor margin design and motion management in in conventional linac-based treatments.« less

  16. MHD Instabilities and Toroidal Field Effects on Plasma Column Behavior in Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khorshid, Pejman; Plasma Physics Research Center, Islamic Azad University, 14665-678, Tehran; Wang, L.

    2006-12-04

    In the edge plasma of the CT-6B and IRAN-T1 tokamaks the shape of plasma column based on MHD behavior has been studied. The bulk of plasma behavior during plasma column rotation as non-rigid body plasma has been investigated. We found that mode number and rotation frequency of plasma column are different in angle position, so that the mode number detected from Mirnov coils array located in poloidal angle on the inner side of chamber is more than outer side which it can be because of toroidal magnetic field effects. The results of IR-T1 and CT-6B tokamaks compared with each other,more » so that in the CT-6B because of its coils number must be less, but because of its Iron core the effect of toroidal magnetic field became more effective with respect to IR-T1. In addition, it is shown that the plasma column behaves as non-Rigid body plasma so that the poloidal rotation velocity variation in CT-6B is more than IR-T1. A relative correction for island rotation frequency has been suggested in connection with IRAN-T1 and CT-6B tokamak results, which can be considered for optical measurement purposes and also for future advanced tokamak control design.« less

  17. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer

    NASA Astrophysics Data System (ADS)

    Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-01

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  18. Intra-patient semi-automated segmentation of the cervix-uterus in CT-images for adaptive radiotherapy of cervical cancer.

    PubMed

    Bondar, M Luiza; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben

    2013-08-07

    For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.

  19. The effect of rigid and non-rigid connections between implants and teeth on biological and technical complications: a systematic review and a meta-analysis.

    PubMed

    Tsaousoglou, Phoebus; Michalakis, Konstantinos; Kang, Kiho; Weber, Hans-Peter; Sculean, Anton

    2017-07-01

    To assess survival, as well as technical and biological complication rates of partial fixed dental prostheses (FDPs) supported by implants and teeth. An electronic Medline search was conducted to identify articles, published in dental journals from January 1980 to August 2015, reporting on partial FDPs supported by implants and teeth. The search terms were categorized into four groups comprising the PICO question. Manual searches of published full-text articles and related reviews were also performed. The initial database search produced 3587 relevant titles. Three hundred and eighty-six articles were retrieved for abstract review, while 39 articles were selected for full-text review. A total of 10 studies were selected for inclusion. Overall survival rate for implants ranged between 90% and 100%, after follow-up periods with a mean range of 18-120 months. The survival of the abutment teeth was 94.1-100%, while the prostheses survival was 85-100% for the same time period. The most frequent complications were "periapical lesions" (11.53%). The most frequent technical complication was "porcelain occlusal fracture" (16.6%), followed by "screw loosening" (15%). According to the meta-analysis, no intrusion was noted on the rigid connection group, while five teeth (8.19%) were intruded in the non-rigid connection group [95% CI (0.013-0.151)]. The tooth-implant FDP seems to be a possible alternative to an implant-supported FDP. There is limited evidence that rigid connection between teeth and implants presents better results when compared with the non-rigid one. The major drawback of non-rigidly connected FDPs is tooth intrusion. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Scleronomic Holonomic Constraints and Conservative Nonlinear Oscillators

    ERIC Educational Resources Information Center

    Munoz, R.; Gonzalez-Garcia, G.; Izquierdo-De La Cruz, E.; Fernandez-Anaya, G.

    2011-01-01

    A bead sliding, under the sole influence of its own weight, on a rigid wire shaped in the fashion of a plane curve, will describe (generally anharmonic) oscillations around a local minimum. For given shapes, the bead will behave as a harmonic oscillator in the whole range, such as an unforced, undamped, Duffing oscillator, etc. We also present…

  1. Multiscale multimodal fusion of histological and MRI volumes for characterization of lung inflammation

    NASA Astrophysics Data System (ADS)

    Rusu, Mirabela; Wang, Haibo; Golden, Thea; Gow, Andrew; Madabhushi, Anant

    2013-03-01

    Mouse lung models facilitate the investigation of conditions such as chronic inflammation which are associated with common lung diseases. The multi-scale manifestation of lung inflammation prompted us to use multi-scale imaging - both in vivo, ex vivo MRI along with ex vivo histology, for its study in a new quantitative way. Some imaging modalities, such as MRI, are non-invasive and capture macroscopic features of the pathology, while others, e.g. ex vivo histology, depict detailed structures. Registering such multi-modal data to the same spatial coordinates will allow the construction of a comprehensive 3D model to enable the multi-scale study of diseases. Moreover, it may facilitate the identification and definition of quantitative of in vivo imaging signatures for diseases and pathologic processes. We introduce a quantitative, image analytic framework to integrate in vivo MR images of the entire mouse with ex vivo histology of the lung alone, using lung ex vivo MRI as conduit to facilitate their co-registration. In our framework, we first align the MR images by registering the in vivo and ex vivo MRI of the lung using an interactive rigid registration approach. Then we reconstruct the 3D volume of the ex vivo histological specimen by efficient group wise registration of the 2D slices. The resulting 3D histologic volume is subsequently registered to the MRI volumes by interactive rigid registration, directly to the ex vivo MRI, and implicitly to in vivo MRI. Qualitative evaluation of the registration framework was performed by comparing airway tree structures in ex vivo MRI and ex vivo histology where airways are visible and may be annotated. We present a use case for evaluation of our co-registration framework in the context of studying chronic inammation in a diseased mouse.

  2. Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification.

    PubMed

    Vrooman, Henri A; Cocosco, Chris A; van der Lijn, Fedde; Stokking, Rik; Ikram, M Arfan; Vernooij, Meike W; Breteler, Monique M B; Niessen, Wiro J

    2007-08-01

    Conventional k-Nearest-Neighbor (kNN) classification, which has been successfully applied to classify brain tissue in MR data, requires training on manually labeled subjects. This manual labeling is a laborious and time-consuming procedure. In this work, a new fully automated brain tissue classification procedure is presented, in which kNN training is automated. This is achieved by non-rigidly registering the MR data with a tissue probability atlas to automatically select training samples, followed by a post-processing step to keep the most reliable samples. The accuracy of the new method was compared to rigid registration-based training and to conventional kNN-based segmentation using training on manually labeled subjects for segmenting gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in 12 data sets. Furthermore, for all classification methods, the performance was assessed when varying the free parameters. Finally, the robustness of the fully automated procedure was evaluated on 59 subjects. The automated training method using non-rigid registration with a tissue probability atlas was significantly more accurate than rigid registration. For both automated training using non-rigid registration and for the manually trained kNN classifier, the difference with the manual labeling by observers was not significantly larger than inter-observer variability for all tissue types. From the robustness study, it was clear that, given an appropriate brain atlas and optimal parameters, our new fully automated, non-rigid registration-based method gives accurate and robust segmentation results. A similarity index was used for comparison with manually trained kNN. The similarity indices were 0.93, 0.92 and 0.92, for CSF, GM and WM, respectively. It can be concluded that our fully automated method using non-rigid registration may replace manual segmentation, and thus that automated brain tissue segmentation without laborious manual training is feasible.

  3. A Chip Off the Old Block: Parents’ Subtle Ethnic Prejudice Predicts Children’s Implicit Prejudice

    PubMed Central

    Pirchio, Sabine; Passiatore, Ylenia; Panno, Angelo; Maricchiolo, Fridanna; Carrus, Giuseppe

    2018-01-01

    The increasing flow of immigrants in many European countries and the growing presence of children from immigrant families in schools makes it relevant to study the development of prejudice in children. Parents play an important role in shaping children’s values and their attitudes toward members of other ethnic groups; an intergenerational transmission of prejudice has been found in a number of studies targeting adolescents. The present study aims to investigate the intergenerational transmission of ethnic prejudice in 3- to 9- year-old children and its relations to parenting styles. Parents’ blatant and subtle ethnic prejudice and parenting style are measured together with children’s explicit and implicit ethnic prejudice in pupils and parents of preschool and primary schools in the region of Rome, Italy (N = 318). Results show that parents’ subtle prejudice predicts children’s implicit prejudice regardless of the parenting style. Findings indicate that children might acquire prejudice by means of the parents’ implicit cognition and automatic behavior and educational actions. Implications for future studies and insights for possible applied interventions are discussed. PMID:29479328

  4. Application of a lower-upper implicit scheme and an interactive grid generation for turbomachinery flow field simulations

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Soh, Woo-Yung; Yoon, Seokkwan

    1989-01-01

    A finite-volume lower-upper (LU) implicit scheme is used to simulate an inviscid flow in a tubine cascade. This approximate factorization scheme requires only the inversion of sparse lower and upper triangular matrices, which can be done efficiently without extensive storage. As an implicit scheme it allows a large time step to reach the steady state. An interactive grid generation program (TURBO), which is being developed, is used to generate grids. This program uses the control point form of algebraic grid generation which uses a sparse collection of control points from which the shape and position of coordinate curves can be adjusted. A distinct advantage of TURBO compared with other grid generation programs is that it allows the easy change of local mesh structure without affecting the grid outside the domain of independence. Sample grids are generated by TURBO for a compressor rotor blade and a turbine cascade. The turbine cascade flow is simulated by using the LU implicit scheme on the grid generated by TURBO.

  5. Accuracy of the domain method for the material derivative approach to shape design sensitivities

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Botkin, M. E.

    1987-01-01

    Numerical accuracy for the boundary and domain methods of the material derivative approach to shape design sensitivities is investigated through the use of mesh refinement. The results show that the domain method is generally more accurate than the boundary method, using the finite element technique. It is also shown that the domain method is equivalent, under certain assumptions, to the implicit differentiation approach not only theoretically but also numerically.

  6. Improving the Efficiency of Non-equilibrium Sampling in the Aqueous Environment via Implicit-Solvent Simulations.

    PubMed

    Liu, Hui; Chen, Fu; Sun, Huiyong; Li, Dan; Hou, Tingjun

    2017-04-11

    By means of estimators based on non-equilibrium work, equilibrium free energy differences or potentials of mean force (PMFs) of a system of interest can be computed from biased molecular dynamics (MD) simulations. The approach, however, is often plagued by slow conformational sampling and poor convergence, especially when the solvent effects are taken into account. Here, as a possible way to alleviate the problem, several widely used implicit-solvent models, which are derived from the analytic generalized Born (GB) equation and implemented in the AMBER suite of programs, were employed in free energy calculations based on non-equilibrium work and evaluated for their abilities to emulate explicit water. As a test case, pulling MD simulations were carried out on an alanine polypeptide with different solvent models and protocols, followed by comparisons of the reconstructed PMF profiles along the unfolding coordinate. The results show that when employing the non-equilibrium work method, sampling with an implicit-solvent model is several times faster and, more importantly, converges more rapidly than that with explicit water due to reduction of dissipation. Among the assessed GB models, the Neck variants outperform the OBC and HCT variants in terms of accuracy, whereas their computational costs are comparable. In addition, for the best-performing models, the impact of the solvent-accessible surface area (SASA) dependent nonpolar solvation term was also examined. The present study highlights the advantages of implicit-solvent models for non-equilibrium sampling.

  7. Dynamic Projection Mapping onto Deforming Non-Rigid Surface Using Deformable Dot Cluster Marker.

    PubMed

    Narita, Gaku; Watanabe, Yoshihiro; Ishikawa, Masatoshi

    2017-03-01

    Dynamic projection mapping for moving objects has attracted much attention in recent years. However, conventional approaches have faced some issues, such as the target objects being limited to rigid objects, and the limited moving speed of the targets. In this paper, we focus on dynamic projection mapping onto rapidly deforming non-rigid surfaces with a speed sufficiently high that a human does not perceive any misalignment between the target object and the projected images. In order to achieve such projection mapping, we need a high-speed technique for tracking non-rigid surfaces, which is still a challenging problem in the field of computer vision. We propose the Deformable Dot Cluster Marker (DDCM), a novel fiducial marker for high-speed tracking of non-rigid surfaces using a high-frame-rate camera. The DDCM has three performance advantages. First, it can be detected even when it is strongly deformed. Second, it realizes robust tracking even in the presence of external and self occlusions. Third, it allows millisecond-order computational speed. Using DDCM and a high-speed projector, we realized dynamic projection mapping onto a deformed sheet of paper and a T-shirt with a speed sufficiently high that the projected images appeared to be printed on the objects.

  8. Gas-induced friction and diffusion of rigid rotors

    NASA Astrophysics Data System (ADS)

    Martinetz, Lukas; Hornberger, Klaus; Stickler, Benjamin A.

    2018-05-01

    We derive the Boltzmann equation for the rotranslational dynamics of an arbitrary convex rigid body in a rarefied gas. It yields as a limiting case the Fokker-Planck equation accounting for friction, diffusion, and nonconservative drift forces and torques. We provide the rotranslational friction and diffusion tensors for specular and diffuse reflection off particles with spherical, cylindrical, and cuboidal shape, and show that the theory describes thermalization, photophoresis, and the inverse Magnus effect in the free molecular regime.

  9. Nuclear shapes: Quest for triaxiality in 86Ge and the shape of 98Zr

    NASA Astrophysics Data System (ADS)

    Werner, V.; Lettmann, M.; Lizarazo, C.; Witt, W.; Cline, D.; Carpenter, M.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Savard, G.; Söderström, P.-A.; Wu, C.-Y.; Zhu, S.

    2018-05-01

    The region of neutron-rich nuclei above the N = 50 magic neutron shell closure encompasses a rich variety of nuclear structure, especially shapeevolutionary phenomena. This can be attributed to the complexity of sub-shell closures, their appearance and disappearance in the region, such as the N = 56 sub shell or Z = 40 for protons. Structural effects reach from a shape phase transition in the Zr isotopes, over shape coexistence between spherical, prolate, and oblate shapes, to possibly rigid triaxial deformation. Recent experiments in this region and their main physics viewpoints are summarized.

  10. The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes

    PubMed Central

    Almeida, Inês; Soares, Sandra C.; Castelo-Branco, Miguel

    2015-01-01

    Introduction Visual processing of ecologically relevant stimuli involves a central bias for stimuli demanding detailed processing (e.g., faces), whereas peripheral object processing is based on coarse identification. Fast detection of animal shapes holding a significant phylogenetic value, such as snakes, may benefit from peripheral vision. The amygdala together with the pulvinar and the superior colliculus are implicated in an ongoing debate regarding their role in automatic and deliberate spatial processing of threat signals. Methods Here we tested twenty healthy participants in an fMRI task, and investigated the role of spatial demands (the main effect of central vs. peripheral vision) in the processing of fear-relevant ecological features. We controlled for stimulus dependence using true or false snakes; snake shapes or snake faces and for task constraints (implicit or explicit). The main idea justifying this double task is that amygdala and superior colliculus are involved in both automatic and controlled processes. Moreover the explicit/implicit instruction in the task with respect to emotion is not necessarily equivalent to explicit vs. implicit in the sense of endogenous vs. exogenous attention, or controlled vs. automatic processes. Results We found that stimulus-driven processing led to increased amygdala responses specifically to true snake shapes presented in the centre or in the peripheral left hemifield (right hemisphere). Importantly, the superior colliculus showed significantly biased and explicit central responses to snake-related stimuli. Moreover, the pulvinar, which also contains foveal representations, also showed strong central responses, extending the results of a recent single cell pulvinar study in monkeys. Similar hemispheric specialization was found across structures: increased amygdala responses occurred to true snake shapes presented to the right hemisphere, with this pattern being closely followed by the superior colliculus and the pulvinar. Conclusion These results show that subcortical structures containing foveal representations such as the amygdala, pulvinar and superior colliculus play distinct roles in the central and peripheral processing of snake shapes. Our findings suggest multiple phylogenetic fingerprints in the responses of subcortical structures to fear-relevant stimuli. PMID:26075614

  11. Aeroelastic Analysis of a Trimmed Generic Hypersonic Vehicle

    NASA Technical Reports Server (NTRS)

    Nydick, I.; Friedmann, P. P.

    1999-01-01

    The aeroelastic equations of motion governing a hypersonic vehicle in free flight are derived. The equations of motion for a translating and rotating flexible body using Lagrange's equations in terms of quasi-coordinates are presented. These equations are simplified for the case of a vehicle with pitch and plunge rigid body degrees of freedom and small elastic displacements. The displacements are approximated by a truncated series of the unrestrained mode shapes, which are obtained using equivalent plate theory. Subsequently, the nonlinear equations of motion are linearized about the trim state, which is obtained using a rigid body trim model and steady hypersonic aerodynamics. The appropriate flutter derivatives are calculated from piston theory. Results describing mode shapes, trim behavior, and aeroelastic stability of a generic hypersonic vehicle are presented.

  12. The dead weight of the airship and the number of passengers that can be carried

    NASA Technical Reports Server (NTRS)

    CROCCO

    1922-01-01

    In order to determine an approximate formula giving the weight of a dead load as a function of the volume (V) of the envelope and of the maximum velocity (v), we will take the relative weight of the various parts of the airship (P(sub v), M, V, A, T(sup 34)), adopting a mean value of the coefficients determined. This formula may be adopted both for semi-rigid airships with suspended nacelle and non-rigid envelope, with or without internal suspensions. It may also be adapted to airships with rigid longitudinal beam, with power units on external supports or in nacelles, and with non-rigid envelopes, with or without internal bracing cables.

  13. Method of making reflecting film reflector

    DOEpatents

    Cottingham, James G.

    1980-01-01

    A reflector of the reflecting film type is disclosed and which may be used in a heliostatic system for concentrating solar energy and comprising a reflecting film bonded to an appropriate rigid substrate in such a way that specularity of a very high order is achieved. A method of bonding the reflecting film to the substrate is also disclosed and comprises the steps of initially adhering the film to a smooth, clean flat rigid surface with a non-bonding liquid between the rigid surface and film, and then bonding the substrate and film. The non-bonding liquid has a molecular adhesion greater than any stresses due to handling or curing of the bonding agent which is applied between the film and the opposing surface of the rigid substrate.

  14. How Rules Shape Experience

    ERIC Educational Resources Information Center

    Emo, Kenneth

    2008-01-01

    Rules guide and constrain participants' actions as they participate in any educational activity. This ethnographically driven case study examines how organizational rules--the implicit and explicit regulations that constrain actions and interactions--influence children to use science in the experiential educational activity of raising 4-H market…

  15. Implicit and explicit weight bias in a national sample of 4,732 medical students: the medical student CHANGES study.

    PubMed

    Phelan, Sean M; Dovidio, John F; Puhl, Rebecca M; Burgess, Diana J; Nelson, David B; Yeazel, Mark W; Hardeman, Rachel; Perry, Sylvia; van Ryn, Michelle

    2014-04-01

    To examine the magnitude of explicit and implicit weight biases compared to biases against other groups; and identify student factors predicting bias in a large national sample of medical students. A web-based survey was completed by 4,732 1st year medical students from 49 medical schools as part of a longitudinal study of medical education. The survey included a validated measure of implicit weight bias, the implicit association test, and 2 measures of explicit bias: a feeling thermometer and the anti-fat attitudes test. A majority of students exhibited implicit (74%) and explicit (67%) weight bias. Implicit weight bias scores were comparable to reported bias against racial minorities. Explicit attitudes were more negative toward obese people than toward racial minorities, gays, lesbians, and poor people. In multivariate regression models, implicit and explicit weight bias was predicted by lower BMI, male sex, and non-Black race. Either implicit or explicit bias was also predicted by age, SES, country of birth, and specialty choice. Implicit and explicit weight bias is common among 1st year medical students, and varies across student factors. Future research should assess implications of biases and test interventions to reduce their impact. Copyright © 2013 The Obesity Society.

  16. (Implicitly) judging a book by its cover: the power of pride and shame expressions in shaping judgments of social status.

    PubMed

    Shariff, Azim F; Tracy, Jessica L; Markusoff, Jeffrey L

    2012-09-01

    How do we decide who merits social status? According to functionalist theories of emotion, the nonverbal expressions of pride and shame play a key role, functioning as automatically perceived status signals. In this view, observers automatically make status inferences about expressers on the basis of these expressions, even when contradictory contextual information about the expressers' status is available. In four studies, the authors tested whether implicit and explicit status perceptions are influenced by pride and shame expressions even when these expressions' status-related messages are contradicted by contextual information. Results indicate that emotion expressions powerfully influence implicit and explicit status inferences, at times neutralizing or even overriding situational knowledge. These findings demonstrate the irrepressible communicative power of emotion displays and indicate that status judgments can be informed as much (and often more) by automatic responses to nonverbal expressions of emotion as by rational, contextually bound knowledge.

  17. I'm no longer torn after choice: how explicit choices implicitly shape preferences of odors.

    PubMed

    Coppin, Géraldine; Delplanque, Sylvain; Cayeux, Isabelle; Porcherot, Christelle; Sander, David

    2010-04-01

    Several studies have shown that preferences can be strongly modulated by cognitive processes such as decision making and choices. However, it is still unclear whether choices can influence preferences of sensory stimuli implicitly. This question was addressed here by asking participants to evaluate odors, to choose their preferred odors within pairs, to reevaluate the odors, and to perform an unexpected memory test. Results revealed, for the first time in the study of olfaction, the existence of postchoice preference changes, in the sense of an overvaluation of chosen odors and a devaluation of rejected ones, even when choices were forgotten. These results suggest that chemosensory preferences can be modulated by explicit choices and that such modulation might rely on implicit mechanisms. This finding rules out any explanation of postchoice preference changes in terms of experimental demand and strongly challenges the classical cognitive-dissonance-reduction account of such preference changes.

  18. Radiation-MHD Simulations of Pillars and Globules in HII Regions

    NASA Astrophysics Data System (ADS)

    Mackey, J.

    2012-07-01

    Implicit and explicit raytracing-photoionisation algorithms have been implemented in the author's radiation-magnetohydrodynamics code. The algorithms are described briefly and their efficiency and parallel scaling are investigated. The implicit algorithm is more efficient for calculations where ionisation fronts have very supersonic velocities, and the explicit algorithm is favoured in the opposite limit because of its better parallel scaling. The implicit method is used to investigate the effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of HII regions. It is shown that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the ‘Pillars of Creation’ in M16. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped, dense, ionised ribbon which partially shields the ionisation front.

  19. Automatic categorization of anatomical landmark-local appearances based on diffeomorphic demons and spectral clustering for constructing detector ensembles.

    PubMed

    Hanaoka, Shouhei; Masutani, Yoshitaka; Nemoto, Mitsutaka; Nomura, Yukihiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni

    2012-01-01

    A method for categorizing landmark-local appearances extracted from computed tomography (CT) datasets is presented. Anatomical landmarks in the human body inevitably have inter-individual variations that cause difficulty in automatic landmark detection processes. The goal of this study is to categorize subjects (i.e., training datasets) according to local shape variations of such a landmark so that each subgroup has less shape variation and thus the machine learning of each landmark detector is much easier. The similarity between each subject pair is measured based on the non-rigid registration result between them. These similarities are used by the spectral clustering process. After the clustering, all training datasets in each cluster, as well as synthesized intermediate images calculated from all subject-pairs in the cluster, are used to train the corresponding subgroup detector. All of these trained detectors compose a detector ensemble to detect the target landmark. Evaluation with clinical CT datasets showed great improvement in the detection performance.

  20. ShapeRotator: An R tool for standardized rigid rotations of articulated three-dimensional structures with application for geometric morphometrics.

    PubMed

    Vidal-García, Marta; Bandara, Lashi; Keogh, J Scott

    2018-05-01

    The quantification of complex morphological patterns typically involves comprehensive shape and size analyses, usually obtained by gathering morphological data from all the structures that capture the phenotypic diversity of an organism or object. Articulated structures are a critical component of overall phenotypic diversity, but data gathered from these structures are difficult to incorporate into modern analyses because of the complexities associated with jointly quantifying 3D shape in multiple structures. While there are existing methods for analyzing shape variation in articulated structures in two-dimensional (2D) space, these methods do not work in 3D, a rapidly growing area of capability and research. Here, we describe a simple geometric rigid rotation approach that removes the effect of random translation and rotation, enabling the morphological analysis of 3D articulated structures. Our method is based on Cartesian coordinates in 3D space, so it can be applied to any morphometric problem that also uses 3D coordinates (e.g., spherical harmonics). We demonstrate the method by applying it to a landmark-based dataset for analyzing shape variation using geometric morphometrics. We have developed an R tool (ShapeRotator) so that the method can be easily implemented in the commonly used R package geomorph and MorphoJ software. This method will be a valuable tool for 3D morphological analyses in articulated structures by allowing an exhaustive examination of shape and size diversity.

  1. Eating on impulse: Implicit attitudes, self-regulatory resources, and trait self-control as determinants of food consumption.

    PubMed

    Wang, Yan; Wang, Lei; Cui, Xianghua; Fang, Yuan; Chen, Qianqiu; Wang, Ya; Qiang, Yao

    2015-12-01

    Self-regulatory resources and trait self-control have been found to moderate the impulse-behavior relationship. The current study investigated whether the interaction of self-regulatory resources and trait self-control moderates the association between implicit attitudes and food consumption. One hundred twenty female participants were randomly assigned to either a depletion condition in which their self-regulatory resources were reduced or a no-depletion condition. Participants' implicit attitudes for chocolate were measured with the Single Category Implicit Association Test and self-report measures of trait self-control were collected. The dependent variable was chocolate consumption in an ostensible taste and rate task. Implicit attitudes predicted chocolate consumption in depleted participants but not in non-depleted participants. However, this predictive power of implicit attitudes on eating in depleted condition disappeared in participants with high trait self-control. Thus, trait self-control and self-regulatory resources interact to moderate the prediction of implicit attitude on eating behavior. Results suggest that high trait self-control buffers the effect of self-regulatory depletion on impulsive eating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Increasing women's aspirations and achievement in science: The effect of role models on implicit cognitions

    NASA Astrophysics Data System (ADS)

    Phelan, Julie E.

    This research investigated the role of implicit science beliefs in the gender gap in science aspirations and achievement, with the goal of testing identification with a female role model as a potential intervention strategy for increasing women's representation in science careers. At Time 1, women's implicit science stereotyping (i.e., associating men more than women with science) was linked to more negative (implicit and explicit) attitudes towards science and less identification with science. For men, stereotypes were either non-significantly or positively related to science attitudes and identification. Time 2 examined the influence of implicit and explicit science cognitions on students' science aspirations and achievement, and found that implicit stereotyping, attitudes, and identification were all unique predictors of science aspirations, but not achievement. Of more importance, Time 2 examined the influence of science role models, and found that identification with a role model of either gender reduced women's implicit science stereotyping and increased their positive attitudes toward science. Implications for decreasing the gender gap in advanced science achievement are discussed.

  3. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking

    PubMed Central

    2014-01-01

    Background Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. In this paper, we propose a new re-ranking technique using a new energy-based scoring function, namely IFACEwat - a combined Interface Atomic Contact Energy (IFACE) and water effect. The IFACEwat aims to further improve the discrimination of the near-native structures of the initial rigid docking algorithm ZDOCK3.0.2. Unlike other re-ranking techniques, the IFACEwat explicitly implements interfacial water into the protein interfaces to account for the water-mediated contacts during the protein interactions. Results Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. Conclusions With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near native structures found. As our implementation so far targeted to improve the results of ZDOCK3.0.2, and particularly for the Antigen/Antibody complexes, it is expected in the near future that more implementations will be conducted to be applicable for other initial rigid docking algorithms. PMID:25521441

  4. Inter- and Intra-Dimensional Dependencies in Implicit Phonotactic Learning

    ERIC Educational Resources Information Center

    Moreton, Elliott

    2012-01-01

    Is phonological learning subject to the same inductive biases as learning in other domains? Previous studies of non-linguistic learning found that intra-dimensional dependencies (between two instances of the same feature) were learned more easily than inter-dimensional ones. This study compares implicit learning of intra- and inter-dimensional…

  5. Aeromechanical stability of helicopters with a bearingless main rotor. Part 1: Equations of motion

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.

    1978-01-01

    Equations of motion for a coupled rotor-body system were derived for the purpose of studying air and ground resonance characteristics of helicopters that have bearingless main rotors. For the fuselage, only four rigid body degrees of freedom are considered; longitudinal and lateral translations, pitch, and roll. The rotor is assumed to consist of three or more rigid blades. Each blade is joined to the hub by means of a flexible beam segment (flexbeam or strap). Pitch change is accomplished by twisting the flexbeam with the pitch-control system, the characteristics of which are variable. Thus, the analysis is capable of implicitly treating aeroelastic couplings generated by the flexbeam elastic deflections, the pitch-control system, and the angular offsets of the blade and flexbeam. The linearized equations are written in the nonrotating system retaining only the cyclic rotor modes; thus, they comprise a system of homogeneous ordinary differential equations with constant coefficients. All contributions to the linearized perturbation equations from inertia, gravity, quasi-steady aerodynamics, and the flexbeam equilibrium deflections are retained exactly.

  6. Pneumatic tyres interacting with deformable terrains

    NASA Astrophysics Data System (ADS)

    Bekakos, C. A.; Papazafeiropoulos, G.; O'Boy, D. J.; Prins, J.

    2016-09-01

    In this study, a numerical model of a deformable tyre interacting with a deformable road has been developed with the use of the finite element code ABAQUS (v. 6.13). Two tyre models with different widths, not necessarily identical to any real industry tyres, have been created purely for research use. The behaviour of these tyres under various vertical loads and different inflation pressures is studied, initially in contact with a rigid surface and then with a deformable terrain. After ensuring that the tyre model gives realistic results in terms of the interaction with a rigid surface, the rolling process of the tyre on a deformable road was studied. The effects of friction coefficient, inflation pressure, rebar orientation and vertical load on the overall performance are reported. Regarding the modelling procedure, a sequence of models were analysed, using the coupling implicit - explicit method. The numerical results reveal that not only there is significant dependence of the final tyre response on the various initial driving parameters, but also special conditions emerge, where the desired response of the tyre results from specific optimum combination of these parameters.

  7. Quantum angular momentum diffusion of rigid bodies

    NASA Astrophysics Data System (ADS)

    Papendell, Birthe; Stickler, Benjamin A.; Hornberger, Klaus

    2017-12-01

    We show how to describe the diffusion of the quantized angular momentum vector of an arbitrarily shaped rigid rotor as induced by its collisional interaction with an environment. We present the general form of the Lindblad-type master equation and relate it to the orientational decoherence of an asymmetric nanoparticle in the limit of small anisotropies. The corresponding diffusion coefficients are derived for gas particles scattering off large molecules and for ambient photons scattering off dielectric particles, using the elastic scattering amplitudes.

  8. An inverse approach to constraining strain and vorticity using rigid clast shape preferred orientation data

    NASA Astrophysics Data System (ADS)

    Davis, Joshua R.; Giorgis, Scott

    2014-11-01

    We describe a three-part approach for modeling shape preferred orientation (SPO) data of spheroidal clasts. The first part consists of criteria to determine whether a given SPO and clast shape are compatible. The second part is an algorithm for randomly generating spheroid populations that match a prescribed SPO and clast shape. In the third part, numerical optimization software is used to infer deformation from spheroid populations, by finding the deformation that returns a set of post-deformation spheroids to a minimally anisotropic initial configuration. Two numerical experiments explore the strengths and weaknesses of this approach, while giving information about the sensitivity of the model to noise in data. In monoclinic transpression of oblate rigid spheroids, the model is found to constrain the shortening component but not the simple shear component. This modeling approach is applied to previously published SPO data from the western Idaho shear zone, a monoclinic transpressional zone that deformed a feldspar megacrystic gneiss. Results suggest at most 5 km of shortening, as well as pre-deformation SPO fabric. The shortening estimate is corroborated by a second model that assumes no pre-deformation fabric.

  9. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the distribution of mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the appropriate propellant model is coupled with the dry structure model for the stage. Then using vehicle configuration data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The system mode shapes and frequencies can then be computed from the resulting generalized mass and stiffness matrices for that mass configuration. The rigid body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV-)class problems worked in the TREETOPS simulation package and by Wilson [2]. The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and stimulate avionics hardware. Due to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that vary significant with time during the flight. All forces that act on the vehicle during flight must be simulated, including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Highly effective matrix math operations on a distributed, threaded high-performance simulation node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage elements that separate from the stack during flight are propagated as independent rigid six degrees of freedom (6DOF) bodies. This paper will present the formulation of the resulting equations of motion, solutions to example problems, and describe the resulting dynamics simulation engine within ARTEMIS.

  10. Are implicit motives revealed in mere words? Testing the marker-word hypothesis with computer-based text analysis

    PubMed Central

    Schultheiss, Oliver C.

    2013-01-01

    Traditionally, implicit motives (i.e., non-conscious preferences for specific classes of incentives) are assessed through semantic coding of imaginative stories. The present research tested the marker-word hypothesis, which states that implicit motives are reflected in the frequencies of specific words. Using Linguistic Inquiry and Word Count (LIWC; Pennebaker et al., 2001), Study 1 identified word categories that converged with a content-coding measure of the implicit motives for power, achievement, and affiliation in picture stories collected in German and US student samples, showed discriminant validity with self-reported motives, and predicted well-validated criteria of implicit motives (gender difference for the affiliation motive; in interaction with personal-goal progress: emotional well-being). Study 2 demonstrated LIWC-based motive scores' causal validity by documenting their sensitivity to motive arousal. PMID:24137149

  11. Parametric FEM for geometric biomembranes

    NASA Astrophysics Data System (ADS)

    Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.

    2010-05-01

    We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.

  12. Implicit and Multigrid Method for Ideal Multigrid Convergence: Direct Numerical Simulation of Separated Flow Around NACA 0012 Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Chao-Qun; Shan, H.; Jiang, L.

    1999-01-01

    Numerical investigation of flow separation over a NACA 0012 airfoil at large angles of attack has been carried out. The numerical calculation is performed by solving the full Navier-Stokes equations in generalized curvilinear coordinates. The second-order LU-SGS implicit scheme is applied for time integration. This scheme requires no tridiagonal inversion and is capable of being completely vectorized, provided the corresponding Jacobian matrices are properly selected. A fourth-order centered compact scheme is used for spatial derivatives. In order to reduce numerical oscillation, a sixth-order implicit filter is employed. Non-reflecting boundary conditions are imposed at the far-field and outlet boundaries to avoid possible non-physical wave reflection. Complex flow separation and vortex shedding phenomenon have been observed and discussed.

  13. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby; Wang, Zhen; Berrill, Mark A

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  14. Morphological and mechanical changes in juvenile red-eared slider turtle (Trachemys scripta elegans) shells during ontogeny.

    PubMed

    Fish, Jennifer F; Stayton, Charles T

    2014-04-01

    Turtles experience numerous modifications in the morphological, physiological, and mechanical characteristics of their shells through ontogeny. Although a general picture is available of the nature of these modifications, few quantitative studies have been conducted on changes in turtle shell shape through ontogeny, and none on changes in strength or rigidity. This study investigates the morphological and mechanical changes that juvenile Trachemys scripta elegans undergo as they increase in size. Morphology and shell rigidity were quantified in a sample of 36 alcohol-preserved juvenile Trachemys scripta elegans. Morphometric information was used to create finite element models of all specimens. These models were used to assess the mechanical behavior of the shells under various loading conditions. Overall, we find that turtles experience complementary changes in size, shape, deformability, and relative strength as they grow. As turtles age their shells become larger, more elongate, relatively flatter, and more rigid. These changes are associated with decreases in relative (size independent) strength, even though the shells of larger turtles are stronger in an absolute sense. Decreased deformability is primarily due to changes in the size of the animals. Residual variation in deformability cannot be explained by changes in shell shape. This variation is more likely due to changes in the degree of connectedness of the skeletal elements in the turtle's shells, along with changes in the thickness and degree of mineralization of shell bone. We suggest that the mechanical implications of shell size, shape, and deformability may have a large impact on survivorship and development in members of this species as they mature. Copyright © 2013 Wiley Periodicals, Inc.

  15. Proximity Begins with a Smile, But Which One? Associating Non-duchenne Smiles with Higher Psychological Distance

    PubMed Central

    Bogodistov, Yevgen; Dost, Florian

    2017-01-01

    This study reveals that Duchenne (genuine) and non-Duchenne (non-genuine, polite) smiles are implicitly associated with psychological proximity and distance, respectively. These findings link two extensive research streams from human communication and psychology. Interestingly, extant construal-level theory research suggests the link may work as smiles signaling either a benign situation or politeness, resulting in conflicting predictions for the association between smile type and psychological distance. The current study uses implicit association tests to reveal theoretically and empirically consistent non-Duchenne-smile–distance and Duchenne-smile–proximity associations for all four types of psychological distance: temporal, spatial, social, and hypothetical. Practically, the results suggest several useful applications of non-Duchenne smiles in human communication contexts. PMID:28848483

  16. Toward an implicit measure of emotions: ratings of abstract images reveal distinct emotional states.

    PubMed

    Bartoszek, Gregory; Cervone, Daniel

    2017-11-01

    Although implicit tests of positive and negative affect exist, implicit measures of distinct emotional states are scarce. Three experiments examined whether a novel implicit emotion-assessment task, the rating of emotion expressed in abstract images, would reveal distinct emotional states. In Experiment 1, participants exposed to a sadness-inducing story inferred more sadness, and less happiness, in abstract images. In Experiment 2, an anger-provoking interaction increased anger ratings. In Experiment 3, compared to neutral images, spider images increased fear ratings in spider-fearful participants but not in controls. In each experiment, the implicit task indicated elevated levels of the target emotion and did not indicate elevated levels of non-target negative emotions; the task thus differentiated among emotional states of the same valence. Correlations also supported the convergent and discriminant validity of the implicit task. Supporting the possibility that heuristic processes underlie the ratings, group differences were stronger among those who responded relatively quickly.

  17. A Meta-Analysis Suggests Different Neural Correlates for Implicit and Explicit Learning.

    PubMed

    Loonis, Roman F; Brincat, Scott L; Antzoulatos, Evan G; Miller, Earl K

    2017-10-11

    A meta-analysis of non-human primates performing three different tasks (Object-Match, Category-Match, and Category-Saccade associations) revealed signatures of explicit and implicit learning. Performance improved equally following correct and error trials in the Match (explicit) tasks, but it improved more after correct trials in the Saccade (implicit) task, a signature of explicit versus implicit learning. Likewise, error-related negativity, a marker for error processing, was greater in the Match (explicit) tasks. All tasks showed an increase in alpha/beta (10-30 Hz) synchrony after correct choices. However, only the implicit task showed an increase in theta (3-7 Hz) synchrony after correct choices that decreased with learning. In contrast, in the explicit tasks, alpha/beta synchrony increased with learning and decreased thereafter. Our results suggest that explicit versus implicit learning engages different neural mechanisms that rely on different patterns of oscillatory synchrony. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Independent operation of implicit working memory under cognitive load.

    PubMed

    Ji, Eunhee; Lee, Kyung Min; Kim, Min-Shik

    2017-10-01

    Implicit working memory (WM) has been known to operate non-consciously and unintentionally. The current study investigated whether implicit WM is a discrete mechanism from explicit WM in terms of cognitive resource. To induce cognitive resource competition, we used a conjunction search task (Experiment 1) and imposed spatial WM load (Experiment 2a and 2b). Each trial was composed of a set of five consecutive search displays. The location of the first four displays appeared as per pre-determined patterns, but the fifth display could follow the same pattern or not. If implicit WM can extract the moving pattern of stimuli, response times for the fifth target would be faster when it followed the pattern compared to when it did not. Our results showed implicit WM can operate when participants are searching for the conjunction target and even while maintaining spatial WM information. These results suggest that implicit WM is independent from explicit spatial WM. Copyright © 2017. Published by Elsevier Inc.

  19. Dynamic analysis of ultrasonically levitated droplet with moving particle semi-implicit and distributed point source method

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Yuge, Kohei; Nakamura, Ryohei; Tanaka, Hiroki; Nakamura, Kentaro

    2015-07-01

    Numerical analysis of an ultrasonically levitated droplet with a free surface boundary is discussed. The droplet is known to change its shape from sphere to spheroid when it is suspended in a standing wave owing to the acoustic radiation force. However, few studies on numerical simulation have been reported in association with this phenomenon including fluid dynamics inside the droplet. In this paper, coupled analysis using the distributed point source method (DPSM) and the moving particle semi-implicit (MPS) method, both of which do not require grids or meshes to handle the moving boundary with ease, is suggested. A droplet levitated in a plane standing wave field between a piston-vibrating ultrasonic transducer and a reflector is simulated with the DPSM-MPS coupled method. The dynamic change in the spheroidal shape of the droplet is successfully reproduced numerically, and the gravitational center and the change in the spheroidal aspect ratio are discussed and compared with the previous literature.

  20. Does tonality boost short-term memory in congenital amusia?

    PubMed

    Albouy, Philippe; Schulze, Katrin; Caclin, Anne; Tillmann, Barbara

    2013-11-06

    Congenital amusia is a neuro-developmental disorder of music perception and production. Recent findings have demonstrated that this deficit is linked to an impaired short-term memory for tone sequences. As it has been shown before that non-musicians' implicit knowledge of musical regularities can improve short-term memory for tone information, the present study investigated if this type of implicit knowledge could also influence amusics' short-term memory performance. Congenital amusics and their matched controls, who were non-musicians, had to indicate whether sequences of five tones, presented in pairs, were the same or different; half of the pairs respected musical regularities (tonal sequences) and the other half did not (atonal sequences). As previously reported for non-musician participants, the control participants showed better performance (as measured with d') for tonal sequences than for atonal ones. While this improvement was not observed in amusics, both control and amusic participants showed faster response times for tonal sequences than for atonal sequences. These findings suggest that some implicit processing of tonal structures is potentially preserved in congenital amusia. This observation is encouraging as it strengthens the perspective to exploit implicit knowledge to help reducing pitch perception and memory deficits in amusia. © 2013 Elsevier B.V. All rights reserved.

  1. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

  2. Of Meat and Men: Sex Differences in Implicit and Explicit Attitudes Toward Meat.

    PubMed

    Love, Hamish J; Sulikowski, Danielle

    2018-01-01

    Modern attitudes to meat in both men and women reflect a strong meat-masculinity association. Sex differences in the relationship between meat and masculinity have not been previously explored. In the current study we used two IATs (implicit association tasks), a visual search task, and a questionnaire to measure implicit and explicit attitudes toward meat in men and women. Men exhibited stronger implicit associations between meat and healthiness than did women, but both sexes associated meat more strongly with 'healthy' than 'unhealthy' concepts. As 'healthy' was operationalized in the current study using terms such as "virile" and "powerful," this suggests that a meat-strength/power association may mediate the meat-masculinity link readily observed across western cultures. The sex difference was not related to explicit attitudes to meat, nor was it attributable to a variety of other factors, such as a generally more positive disposition toward meat in men than women. Men also exhibited an attention bias toward meats, compared to non-meat foods, while females exhibited more caution when searching for non-meat foods, compared to meat. These biases were not related to implicit attitudes, but did tend to increase with increasing hunger levels. Potential ultimate explanations for these differences, including sex differences in bio-physiological needs and receptivity to social signals are discussed.

  3. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  4. Non-rigid Reconstruction of Casting Process with Temperature Feature

    NASA Astrophysics Data System (ADS)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  5. Post-operative pulmonary and shoulder function after sternal reconstruction for patients with chest wall sarcomas.

    PubMed

    Nishida, Yoshihiro; Tsukushi, Satoshi; Urakawa, Hiroshi; Toriyama, Kazuhiro; Kamei, Yuzuru; Yokoi, Kohei; Ishiguro, Naoki

    2015-12-01

    Sternal resection is occasionally required for patients with malignant tumors, particularly sarcomas, in the sternal region. Few reports have described post-operative respiratory and shoulder function after sternal resection for patients with bone and soft-tissue sarcomas. Eight consecutive patients with bone and soft tissue sarcomas requiring sternal resection were the focus of this study. Chest wall was reconstructed with a non-rigid or semi-rigid prosthesis combined, in most cases, with soft tissue flap reconstruction. Clinical outcomes investigated included complications, shoulder function, evaluated with Musculoskeletal Tumor Society-International Symposium of Limb Salvage system, and respiratory function, evaluated by use of spirometry. The anterior chest wall was reconstructed with non-rigid strings for 3 patients and with polypropylene mesh for 5. There were no severe post-operative complications, for example surgical site infection or pneumonia. All 3 patients with non-rigid reconstruction experienced paradoxical breathing, whereas none with polypropylene mesh did so. Post-operatively, FEV(1)% was unchanged but %VC was significantly reduced (p = 0.01), irrespective of the reconstruction method used (strings or polypropylene mesh). Shoulder function was not impaired. Among patients undergoing sternal resection, post-operative shoulder function was excellent. Pulmonary function was slightly restricted, but not sufficiently so to interfere with the activities of daily living (ADL). Paradoxical breathing is a slight concern for non-rigid reconstruction.

  6. The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.

    PubMed

    Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin

    2012-08-30

    Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Deformable anatomical templates for brachytherapy treatment planning in radiotherapy of cervical cancer

    NASA Astrophysics Data System (ADS)

    Christensen, Gary E.; Williamson, Jeffrey F.; Chao, K. S. C.; Miller, Michael I.; So, F. B.; Vannier, Michael W.

    1997-10-01

    This paper describes a new method to register serial, volumetric x-ray computed tomography (CT) data sets for tracking soft-tissue deformation caused by insertion of intracavity brachytherapy applicators to treat cervical cancer. 3D CT scans collected from the same patient with and without a brachytherapy applicator are registered to aid in computation of the radiation dose to tumor and normal tissue. The 3D CT image volume of pelvic anatomy with the applicator. Initial registration is accomplished by rigid alignment of the pelvic bones and non-rigid alignment of gray scale CT data and hand segmentations of the vagina, cervix, bladder, and rectum. A viscous fluid transformation model is used for non-rigid registration to allow for local, non-linear registration of the vagina, cervix, bladder, and rectum without disturbing the rigid registration of the bony pelvis and adjacent structures. Results are presented in which two 3D CT data sets of the same patient - imaged with and without a brachytherapy applicator - are registered.

  8. Morphing Compression Garments for Space Medicine and Extravehicular Activity Using Active Materials.

    PubMed

    Holschuh, Bradley T; Newman, Dava J

    2016-02-01

    Compression garments tend to be difficult to don/doff, due to their intentional function of squeezing the wearer. This is especially true for compression garments used for space medicine and for extravehicular activity (EVA). We present an innovative solution to this problem by integrating shape changing materials-NiTi shape memory alloy (SMA) coil actuators formed into modular, 3D-printed cartridges-into compression garments to produce garments capable of constricting on command. A parameterized, 2-spring analytic counterpressure model based on 12 garment and material inputs was developed to inform garment design. A methodology was developed for producing novel SMA cartridge systems to enable active compression garment construction. Five active compression sleeve prototypes were manufactured and tested: each sleeve was placed on a rigid cylindrical object and counterpressure was measured as a function of spatial location and time before, during, and after the application of a step voltage input. Controllable active counterpressures were measured up to 34.3 kPa, exceeding the requirement for EVA life support (29.6 kPa). Prototypes which incorporated fabrics with linear properties closely matched analytic model predictions (4.1%/-10.5% error in passive/active pressure predictions); prototypes using nonlinear fabrics did not match model predictions (errors >100%). Pressure non-uniformities were observed due to friction and the rigid SMA cartridge structure. To our knowledge this is the first demonstration of controllable compression technology incorporating active materials, a novel contribution to the field of compression garment design. This technology could lead to easy-to-don compression garments with widespread space and terrestrial applications.

  9. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of orthobiom™

    PubMed Central

    Zander, T.; Burra, N. K.; Bergmann, G.

    2007-01-01

    The orthobiom™ non-fusion scoliosis correction system consists of two longitudinal rods, polyaxial pedicle screws, mobile and fixed connectors and a cross-connector. The mobile connectors can move along and around the rod, thus allowing length adaptation during growth. The aim of this study was to determine the effects of different features of this novel implant on intervertebral rotations, to calculate the movement of the mobile connectors along the rods for different loading cases and to compare the results with those of a rigid implant construct. A finite element analysis was performed using six versions (M1–M6) of a three-dimensional, nonlinear model of a spine ranging from T3 to L2. The models were loaded with pure moments of 7.5 N m in the three main anatomical planes. First, the validated intact model (M1) was studied. Then, the orthobiom™ implant system was inserted, bridging the segments between T4 and L1 (M2). The effect of pedicle screws only in every second vertebrae was investigated (M3). For comparison, three connection variations of screws and rods were investigated: (1) an implant with rigid screws and mobile connectors (M4), (2) an implant with non-locking polyaxial screws and fixed connectors (M5) and (3) a completely rigid implant construct (M6). For flexion, extension and lateral bending, intervertebral rotation was reduced at all implant levels due to the implants. A rigid implant construct (M6) and an implant with non-locking polyaxial screws and fixed connectors (M5) led to the strongest reduction of intervertebral rotation. The orthobiom™ non-fusion implant system (M2, M3) allowed much more intervertebral rotation than a rigid implant (M6). Differences in intervertebral rotations were small when polyaxial screws were placed at every second level only (M3) instead of at every level (M2). For axial rotation, intervertebral rotation was strongly reduced by a rigid implant construct (M6) and by an implant with rigid screws and mobile connectors (M4). For rotation, an implant with non-locking polyaxial screws (M2, M3, M5) led to nearly the same intervertebral rotations as in an intact spine without an implant (M1). The predicted maximum translation of the mobile connectors along the rod was 4.2 mm for extension, 3.1 mm for lateral bending, 1.6 mm for flexion and 0.8 mm for axial rotation. The movement of the connectors was highest for those closest to the ends of the rods. With rigid screws, the maximum translation was significantly reduced. This study, conducted under a load-controlled loading protocol, showed that intervertebral rotation was reduced much less by the non-fusion orthobiom™ system than by a rigid implant. The mobile connectors moved considerably along the rod when the spine was bent. It can be expected that the connectors also move along the rod as the adolescent grows, possibly leaving the discs intact until the patient is fully grown. PMID:17712575

  10. Wave energy absorption by a submerged air bag connected to a rigid float.

    PubMed

    Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  11. Wave energy absorption by a submerged air bag connected to a rigid float

    PubMed Central

    Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.

    2017-01-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section. PMID:28484330

  12. Robot Swarms

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2005-01-01

    Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."

  13. Wave energy absorption by a submerged air bag connected to a rigid float

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  14. Flexible circuits with integrated switches for robotic shape sensing

    NASA Astrophysics Data System (ADS)

    Harnett, C. K.

    2016-05-01

    Digital switches are commonly used for detecting surface contact and limb-position limits in robotics. The typical momentary-contact digital switch is a mechanical device made from metal springs, designed to connect with a rigid printed circuit board (PCB). However, flexible printed circuits are taking over from the rigid PCB in robotics because the circuits can bend while carrying signals and power through moving joints. This project is motivated by a previous work where an array of surface-mount momentary contact switches on a flexible circuit acted as an all-digital shape sensor compatible with the power resources of energy harvesting systems. Without a rigid segment, the smallest commercially-available surface-mount switches would detach from the flexible circuit after several bending cycles, sometimes violently. This report describes a low-cost, conductive fiber based method to integrate electromechanical switches into flexible circuits and other soft, bendable materials. Because the switches are digital (on/off), they differ from commercially-available continuous-valued bend/flex sensors. No amplification or analog-to-digital conversion is needed to read the signal, but the tradeoff is that the digital switches only give a threshold curvature value. Boundary conditions on the edges of the flexible circuit are key to setting the threshold curvature value for switching. This presentation will discuss threshold-setting, size scaling of the design, automation for inserting a digital switch into the flexible circuit fabrication process, and methods for reconstructing a shape from an array of digital switch states.

  15. Botulinum toxin in myotonia congenita: it does not help against rigidity and pain.

    PubMed

    Dressler, Dirk; Adib Saberi, Fereshte

    2014-05-01

    Botulinum toxin (BT) is a potent local muscle relaxant with analgetic properties. Myotonia congenita (MC) is a genetic disorder producing muscle rigidity and pain. BT injected into the trapezius produced mild paresis, but no effect on rigidity and pain. There were no signs of systemic effects. Lack of BT efficacy on MC rigidity confirms its origin from muscle membrane dysfunction rather than from inappropriate neuromuscular activation. Lack of BT efficacy on pain could be caused by lack of anti-rigidity effect. It could also be due to separate non-muscular pain mechanisms unresponsive to BT.

  16. Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations

    PubMed Central

    Hoogeveen, Heleen R.; ter Horst, Gert J.

    2016-01-01

    Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food’s sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice. PMID:27213567

  17. Sexual Health Curricula in U.S. Medical Schools: Current Educational Objectives

    ERIC Educational Resources Information Center

    Galletly, Carol; Lechuga, Julia; Layde, Joseph B.; Pinkerton, Steven

    2010-01-01

    Objective: The authors identify the explicit and implicit objectives that shape decisions about what medical schools teach regarding human sexuality. Methods: The authors reviewed relevant articles in journals, physician licensing examinations, and publications by professional organizations to identify learning objectives for human sexuality in…

  18. Uncommon Caring: Primary Males and Implicit Judgments.

    ERIC Educational Resources Information Center

    King, James R.

    The caring and nurturing of children, which characterize primary education culture, have tended to shape a public perception of primary teaching as "women's work." Several social factors influence men's underrepresentation in the profession of primary education, such as parents not wanting their children exposed to "soft"…

  19. A method for exploring implicit concept relatedness in biomedical knowledge network.

    PubMed

    Bai, Tian; Gong, Leiguang; Wang, Ye; Wang, Yan; Kulikowski, Casimir A; Huang, Lan

    2016-07-19

    Biomedical information and knowledge, structural and non-structural, stored in different repositories can be semantically connected to form a hybrid knowledge network. How to compute relatedness between concepts and discover valuable but implicit information or knowledge from it effectively and efficiently is of paramount importance for precision medicine, and a major challenge facing the biomedical research community. In this study, a hybrid biomedical knowledge network is constructed by linking concepts across multiple biomedical ontologies as well as non-structural biomedical knowledge sources. To discover implicit relatedness between concepts in ontologies for which potentially valuable relationships (implicit knowledge) may exist, we developed a Multi-Ontology Relatedness Model (MORM) within the knowledge network, for which a relatedness network (RN) is defined and computed across multiple ontologies using a formal inference mechanism of set-theoretic operations. Semantic constraints are designed and implemented to prune the search space of the relatedness network. Experiments to test examples of several biomedical applications have been carried out, and the evaluation of the results showed an encouraging potential of the proposed approach to biomedical knowledge discovery.

  20. Recent progress of flexible AMOLED displays

    NASA Astrophysics Data System (ADS)

    Pang, Huiqing; Rajan, Kamala; Silvernail, Jeff; Mandlik, Prashant; Ma, Ruiqing; Hack, Mike; Brown, Julie J.; Yoo, Juhn S.; Jung, Sang-Hoon; Kim, Yong-Cheol; Byun, Seung-Chan; Kim, Jong-Moo; Yoon, Soo-Young; Kim, Chang-Dong; Hwang, Yong-Kee; Chung, In-Jae; Fletcher, Mark; Green, Derek; Pangle, Mike; McIntyre, Jim; Smith, Randal D.

    2011-03-01

    Significant progress has been made in recent years in flexible AMOLED displays and numerous prototypes have been demonstrated. Replacing rigid glass with flexible substrates and thin-film encapsulation makes displays thinner, lighter, and non-breakable - all attractive features for portable applications. Flexible AMOLEDs equipped with phosphorescent OLEDs are considered one of the best candidates for low-power, rugged, full-color video applications. Recently, we have demonstrated a portable communication display device, built upon a full-color 4.3-inch HVGA foil display with a resolution of 134 dpi using an all-phosphorescent OLED frontplane. The prototype is shaped into a thin and rugged housing that will fit over a user's wrist, providing situational awareness and enabling the wearer to see real-time video and graphics information.

  1. Components of Implicit Stigma against Mental Illness among Chinese Students

    PubMed Central

    Wang, Xiaogang; Huang, Xiting; Jackson, Todd; Chen, Ruijun

    2012-01-01

    Although some research has examined negative automatic aspects of attitudes toward mental illness via relatively indirect measures among Western samples, it is unclear whether negative attitudes can be automatically activated in individuals from non-Western countries. This study attempted to validate results from Western samples with Chinese college students. We first examined the three-component model of implicit stigma (negative cognition, negative affect, and discriminatory tendencies) toward mental illness with the Single Category Implicit Association Test (SC-IAT). We also explored the relationship between explicit and implicit stigma among 56 Chinese university college students. In the three separate SC-IATs and the combined SC-IAT, automatic associations between mental illness and negative descriptors were stronger relative to those with positive descriptors and the implicit effect of cognitive and affective SC-IATs were significant. Explicit and implicit measures of stigma toward mental illness were unrelated. In our sample, women's overall attitudes toward mental illness were more negative than men's were, but no gender differences were found for explicit measures. These findings suggested that implicit stigma toward mental illness exists in Chinese students, and provide some support for the three-component model of implicit stigma toward mental illness. Future studies that focus on automatic components of stigmatization and stigma-reduction in China are warranted. PMID:23029366

  2. Non-rigid Earth rotation series

    NASA Astrophysics Data System (ADS)

    Pashkevich, V. V.

    2008-04-01

    The last years a lot of attempts to derive a high-precision theory of the non-rigid Earth rotation was carried out. For these purposes the different transfer functions are used. Usually these transfer func- tions are applied to the series representing the nutation in longitude and in obliquity of the rigid Earth rotation with respect to the ecliptic of date. The aim of this investigation is a construction of the new high- precision non-rigid Earth rotation series (SN9000), dynamically adequate to the DE404/LE404 ephemeris over 2000 years, which are expressed as a function of Euler angles ψ, θ and φ with respect to the fixed ecliptic plane and equinox J2000.0. The early stages of the previous investigation: 1. The high-precision numerical solution of the rigid Earth rotation have been constructed (V.V.Pashkevich, G.I.Eroshkin and A.Brzezinski, 2004), (V.V.Pashkevich and G.I.Eroshkin, Proceedings of Journees 2004). The initial con- ditions have been calculated from SMART97 (P.Bretagnon, G.Francou, P.Rocher, J.L.Simon,1998). The discrepancies between the numerical solution and the semi-analytical solution SMART97 were obtained in Euler angles over 2000 years with one-day spacing. 2. Investigation of the discrepancies is carried out by the least squares and by the spectral analysis algorithms (V.V.Pashkevich and G.I.Eroshkin, Proceedings of Journees 2005). The high-precision rigid Earth rotation series S9000 are determined (V.V.Pashkevich and G.I.Eroshkin, 2005 ). The next stage of this investigation: 3. The new high-precision non-rigid Earth rotation series (SN9000), which are expressed as a function of Euler angles, are constructed by using the method (P.Bretagnon, P.M.Mathews, J.-L.Simon: 1999) and the transfer function MHB2002 (Mathews, P. M., Herring, T. A., and Buffett B. A., 2002).

  3. Contact interaction between a layered foundation and a system of annular punches with complex base shapes

    NASA Astrophysics Data System (ADS)

    Kazakov, K. E.; Kurdina, S. P.

    2018-04-01

    We study the contact interaction between a system of rigid annular punches and a viscoelastic two-layer foundation. The upper layer is thin compared with the punch width. We study the case where the punch shapes are described by a rapidly varying functions. We use special methods for constructing the solutions, because the standard methods are inefficient.

  4. Exactly energy conserving semi-implicit particle in cell formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conservesmore » energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These features are achieved at a reduced cost compared with either previous IMM or fully implicit implementation of PIC.« less

  5. Non-rigid registration between 3D ultrasound and CT images of the liver based on intensity and gradient information

    NASA Astrophysics Data System (ADS)

    Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom

    2011-01-01

    In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.

  6. E-cigarette Advertising Exposure, Explicit and Implicit Harm Perceptions, and E-Cigarette use Susceptibility Among Non-Smoking Young Adults.

    PubMed

    Pokhrel, Pallav; Herzog, Thaddeus A; Fagan, Pebbles; Unger, Jennifer B; Stacy, Alan W

    2018-02-10

    This study tested whether exposure to e-cigarette advertising increases e-cigarette use susceptibility among non-smoking young adults by promoting explicit and implicit attitudes towards e-cigarettes as a safer and healthier alternative to combustible cigarettes. Young adult current non-smokers who had never used an e-cigarette (N = 393; Mean age = 22.1, Standard Deviation = 3.9; 66% Women) were randomly assigned to one of the 3 conditions that involved viewing real-world, print e-cigarette ads. Two of the 3 conditions were experimental conditions where ads with different predominant themes [harm-reduction ("Health") vs. social enhancement ("Social") focused] were interspersed among ads of everyday objects. The third condition was the control condition involving ads of everyday objects only. Participants provided data on explicit (i.e., self-reported harm perceptions) and implicit (i.e., Implicit Association Test) attitudes towards e-cigarette use and e-cigarette use intentions. Hypotheses were tested using structural equation modeling. Relative to Control participants, participants in Health and Social conditions were more likely to show higher implicit attitudes towards e-cigarettes as a safer alternative to cigarettes. Only the Social condition, relative to Control, had a significant effect on lower explicit harm perceptions of e-cigarette versus cigarette use. The Social condition had a significant indirect effect on e-cigarette use susceptibility, mediated by explicit harm perceptions. Social enhancement-themed ads may communicate the reduced-harm messages more strongly among young adults so as to affect both explicit and implicit attitudes and, through these, e-cigarette use susceptibility. Regulatory bodies may need to scrutinize reduced-harm claims communicated through social enhancement-themed ads. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Implicit Coupling Approach for Simulation of Charring Carbon Ablators

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Gokcen, Tahir

    2013-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver with nonequilibrium gas/surface interaction for simulation of charring carbon ablators can be performed using an implicit approach. The material thermal response code used in this study is the three-dimensional version of Fully Implicit Ablation and Thermal response program, which predicts charring material thermal response and shape change on hypersonic space vehicles. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation method. Coupling between the material response and flow codes is performed by solving the surface mass balance in flow solver and the surface energy balance in material response code. Thus, the material surface recession is predicted in flow code, and the surface temperature and pyrolysis gas injection rate are computed in material response code. It is demonstrated that the time-lagged explicit approach is sufficient for simulations at low surface heating conditions, in which the surface ablation rate is not a strong function of the surface temperature. At elevated surface heating conditions, the implicit approach has to be taken, because the carbon ablation rate becomes a stiff function of the surface temperature, and thus the explicit approach appears to be inappropriate resulting in severe numerical oscillations of predicted surface temperature. Implicit coupling for simulation of arc-jet models is performed, and the predictions are compared with measured data. Implicit coupling for trajectory based simulation of Stardust fore-body heat shield is also conducted. The predicted stagnation point total recession is compared with that predicted using the chemical equilibrium surface assumption

  8. Neptune

    NASA Image and Video Library

    1999-08-08

    NASA Voyager 2 obtained these images of satellite 1989N2 and revealed it to be and irregularly shaped, dark object. The satellite appeared to have several craters. The irregular outline suggests that this moon has remained cold and rigid throughout much

  9. A depth-averaged 2-D shallow water model for breaking and non-breaking long waves affected by rigid vegetation

    USDA-ARS?s Scientific Manuscript database

    This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The dr...

  10. Non-rigid ultrasound image registration using generalized relaxation labeling process

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  11. Modeling the interactions between a prosthetic socket, polyurethane liners and the residual limb in transtibial amputees using non-linear finite element analysis.

    PubMed

    Simpson, G; Fisher, C; Wright, D K

    2001-01-01

    Continuing earlier studies into the relationship between the residual limb, liner and socket in transtibial amputees, we describe a geometrically accurate non-linear model simulating the donning of a liner and then a socket. The socket is rigid and rectified and the liner is a polyurethane geltype which is accurately described using non-linear (Mooney-Rivlin) material properties. The soft tissue of the residual limb is modelled as homogeneous, non-linear and hyperelastic and the bone structure within the residual limb is taken as rigid. The work gives an indication of how the stress induced by the process of donning the rigid socket is redistributed by the liner. Ultimately we hope to understand how the liner design might be modified to reduce discomfort. The ANSYS finite element code, version 5.6 is used.

  12. Attachment system for silica tiles. [thermal protection for space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Holt, J. W. (Inventor)

    1982-01-01

    An improved method for markedly increasing the bond strength between a rigid, porous refractory material and non-rigid substrate by densifying the face of the rigid material opposing the substrate is discussed. Densification is accomplished by wetting the refractory material and then impregnating it with a composite slurry having a particle size to fill voids of the porous material.

  13. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.

  14. Implicit and explicit self-esteem and their reciprocal relationship with symptoms of depression and social anxiety: a longitudinal study in adolescents.

    PubMed

    van Tuijl, Lonneke A; de Jong, Peter J; Sportel, B Esther; de Hullu, Eva; Nauta, Maaike H

    2014-03-01

    A negative self-view is a prominent factor in most cognitive vulnerability models of depression and anxiety. Recently, there has been increased attention to differentiate between the implicit (automatic) and the explicit (reflective) processing of self-related evaluations. This longitudinal study aimed to test the association between implicit and explicit self-esteem and symptoms of adolescent depression and social anxiety disorder. Two complementary models were tested: the vulnerability model and the scarring effect model. Participants were 1641 first and second year pupils of secondary schools in the Netherlands. The Rosenberg Self-Esteem Scale, self-esteem Implicit Association Test and Revised Child Anxiety and Depression Scale were completed to measure explicit self-esteem, implicit self-esteem and symptoms of social anxiety disorder (SAD) and major depressive disorder (MDD), respectively, at baseline and two-year follow-up. Explicit self-esteem at baseline was associated with symptoms of MDD and SAD at follow-up. Symptomatology at baseline was not associated with explicit self-esteem at follow-up. Implicit self-esteem was not associated with symptoms of MDD or SAD in either direction. We relied on self-report measures of MDD and SAD symptomatology. Also, findings are based on a non-clinical sample. Our findings support the vulnerability model, and not the scarring effect model. The implications of these findings suggest support of an explicit self-esteem intervention to prevent increases in MDD and SAD symptomatology in non-clinical adolescents. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.

    PubMed

    Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang

    2018-01-01

    The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Using the Logarithm of Odds to Define a Vector Space on Probabilistic Atlases

    PubMed Central

    Pohl, Kilian M.; Fisher, John; Bouix, Sylvain; Shenton, Martha; McCarley, Robert W.; Grimson, W. Eric L.; Kikinis, Ron; Wells, William M.

    2007-01-01

    The Logarithm of the Odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures. PMID:17698403

  17. Implicit Sequence Learning in Dyslexia: A Within-Sequence Comparison of First- and Higher-Order Information

    ERIC Educational Resources Information Center

    Du, Wenchong; Kelly, Steve W.

    2013-01-01

    The present study examines implicit sequence learning in adult dyslexics with a focus on comparing sequence transitions with different statistical complexities. Learning of a 12-item deterministic sequence was assessed in 12 dyslexic and 12 non-dyslexic university students. Both groups showed equivalent standard reaction time increments when the…

  18. Implicit Learning of Non-Linguistic and Linguistic Regularities in Children with Dyslexia

    ERIC Educational Resources Information Center

    Nigro, Luciana; Jiménez-Fernández, Gracia; Simpson, Ian C.; Defior, Sylvia

    2016-01-01

    One of the hallmarks of dyslexia is the failure to automatise written patterns despite repeated exposure to print. Although many explanations have been proposed to explain this problem, researchers have recently begun to explore the possibility that an underlying implicit learning deficit may play a role in dyslexia. This hypothesis has been…

  19. Bistable electroactive polymer for refreshable Braille display with improved actuation stability

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing

    2012-04-01

    Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.

  20. The Effects of Oncologist Implicit Racial Bias in Racially Discordant Oncology Interactions

    PubMed Central

    Dovidio, John F.; Gonzalez, Richard; Albrecht, Terrance L.; Chapman, Robert; Foster, Tanina; Harper, Felicity W.K.; Hagiwara, Nao; Hamel, Lauren M.; Shields, Anthony F.; Gadgeel, Shirish; Simon, Michael S.; Griggs, Jennifer J.; Eggly, Susan

    2016-01-01

    Purpose Health providers’ implicit racial bias negatively affects communication and patient reactions to many medical interactions. However, its effects on racially discordant oncology interactions are largely unknown. Thus, we examined whether oncologist implicit racial bias has similar effects in oncology interactions. We further investigated whether oncologist implicit bias negatively affects patients’ perceptions of recommended treatments (i.e., degree of confidence, expected difficulty). We predicted oncologist implicit bias would negatively affect communication, patient reactions to interactions, and, indirectly, patient perceptions of recommended treatments. Methods Participants were 18 non-black medical oncologists and 112 black patients. Oncologists completed an implicit racial bias measure several weeks before video-recorded treatment discussions with new patients. Observers rated oncologist communication and recorded interaction length of time and amount of time oncologists and patients spoke. Following interactions, patients answered questions about oncologists’ patient-centeredness and difficulty remembering contents of the interaction, distress, trust, and treatment perceptions. Results As predicted, oncologists higher in implicit racial bias had shorter interactions, and patients and observers rated these oncologists’ communication as less patient-centered and supportive. Higher implicit bias also was associated with more patient difficulty remembering contents of the interaction. In addition, oncologist implicit bias indirectly predicted less patient confidence in recommended treatments, and greater perceived difficulty completing them, through its impact on oncologists’ communication (as rated by both patients and observers). Conclusion Oncologist implicit racial bias is negatively associated with oncologist communication, patients’ reactions to racially discordant oncology interactions, and patient perceptions of recommended treatments. These perceptions could subsequently directly affect patient-treatment decisions. Thus, implicit racial bias is a likely source of racial treatment disparities and must be addressed in oncology training and practice. PMID:27325865

  1. The Effects of Oncologist Implicit Racial Bias in Racially Discordant Oncology Interactions.

    PubMed

    Penner, Louis A; Dovidio, John F; Gonzalez, Richard; Albrecht, Terrance L; Chapman, Robert; Foster, Tanina; Harper, Felicity W K; Hagiwara, Nao; Hamel, Lauren M; Shields, Anthony F; Gadgeel, Shirish; Simon, Michael S; Griggs, Jennifer J; Eggly, Susan

    2016-08-20

    Health providers' implicit racial bias negatively affects communication and patient reactions to many medical interactions. However, its effects on racially discordant oncology interactions are largely unknown. Thus, we examined whether oncologist implicit racial bias has similar effects in oncology interactions. We further investigated whether oncologist implicit bias negatively affects patients' perceptions of recommended treatments (i.e., degree of confidence, expected difficulty). We predicted oncologist implicit bias would negatively affect communication, patient reactions to interactions, and, indirectly, patient perceptions of recommended treatments. Participants were 18 non-black medical oncologists and 112 black patients. Oncologists completed an implicit racial bias measure several weeks before video-recorded treatment discussions with new patients. Observers rated oncologist communication and recorded interaction length of time and amount of time oncologists and patients spoke. Following interactions, patients answered questions about oncologists' patient-centeredness and difficulty remembering contents of the interaction, distress, trust, and treatment perceptions. As predicted, oncologists higher in implicit racial bias had shorter interactions, and patients and observers rated these oncologists' communication as less patient-centered and supportive. Higher implicit bias also was associated with more patient difficulty remembering contents of the interaction. In addition, oncologist implicit bias indirectly predicted less patient confidence in recommended treatments, and greater perceived difficulty completing them, through its impact on oncologists' communication (as rated by both patients and observers). Oncologist implicit racial bias is negatively associated with oncologist communication, patients' reactions to racially discordant oncology interactions, and patient perceptions of recommended treatments. These perceptions could subsequently directly affect patient-treatment decisions. Thus, implicit racial bias is a likely source of racial treatment disparities and must be addressed in oncology training and practice. © 2016 by American Society of Clinical Oncology.

  2. Evaluating OpenSHMEM Explicit Remote Memory Access Operations and Merged Requests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehm, Swen; Pophale, Swaroop S; Gorentla Venkata, Manjunath

    The OpenSHMEM Library Specification has evolved consid- erably since version 1.0. Recently, non-blocking implicit Remote Memory Access (RMA) operations were introduced in OpenSHMEM 1.3. These provide a way to achieve better overlap between communication and computation. However, the implicit non-blocking operations do not pro- vide a separate handle to track and complete the individual RMA opera- tions. They are guaranteed to be completed after either a shmem quiet(), shmem barrier() or a shmem barrier all() is called. These are global com- pletion and synchronization operations. Though this semantic is expected to achieve a higher message rate for the applications, themore » drawback is that it does not allow fine-grained control over the completion of RMA operations. In this paper, first, we introduce non-blocking RMA operations with requests, where each operation has an explicit request to track and com- plete the operation. Second, we introduce interfaces to merge multiple requests into a single request handle. The merged request tracks multiple user-selected RMA operations, which provides the flexibility of tracking related communication operations with one request handle. Lastly, we explore the implications in terms of performance, productivity, usability and the possibility of defining different patterns of communication via merging of requests. Our experimental results show that a well designed and implemented OpenSHMEM stack can hide the overhead of allocating and managing the requests. The latency of RMA operations with requests is similar to blocking and implicit non-blocking RMA operations. We test our implementation with the Scalable Synthetic Compact Applications (SSCA #1) benchmark and observe that using RMA operations with requests and merging of these requests outperform the implementation using blocking RMA operations and implicit non-blocking operations by 49% and 74% respectively.« less

  3. True and False DRM Memories: Differences Detected with an Implicit Task

    PubMed Central

    Marini, Maddalena; Agosta, Sara; Mazzoni, Giuliana; Barba, Gianfranco Dalla; Sartori, Giuseppe

    2012-01-01

    Memory is prone to illusions. When people are presented with lists of words associated with a non-presented critical lure, they produce a high level of false recognitions (false memories) for non-presented related stimuli indistinguishable, at the explicit level, from presented words (DRM paradigm). We assessed whether true and false DRM memories can be distinguished at the implicit level by using the autobiographical IAT (aIAT), a novel method based on indirect measures that permits to detect true autobiographical events encoded in the respondent’s mind/brain. In our experiment, after a DRM task participants performed two aIATs: the first aimed at testing implicit memory for presented words (true-memories aIAT) and the second aimed at evaluating implicit memory for critical lures (false-memories aIAT). Specifically, the two aIATs assessed the association of presented words and critical lures with the logical dimension “true.” Results showed that the aIAT detected a greater association of presented words than critical lures with the logical dimension “true.” This result indicates that although true and false DRM memories are indistinguishable at the explicit level a different association of the true and false DRM memories with the logical dimension “true” can be detected at the implicit level, and suggests that the aIAT may be a sensitive instrument to detect differences between true and false DRM memories. PMID:22969740

  4. Of Meat and Men: Sex Differences in Implicit and Explicit Attitudes Toward Meat

    PubMed Central

    Love, Hamish J.; Sulikowski, Danielle

    2018-01-01

    Modern attitudes to meat in both men and women reflect a strong meat-masculinity association. Sex differences in the relationship between meat and masculinity have not been previously explored. In the current study we used two IATs (implicit association tasks), a visual search task, and a questionnaire to measure implicit and explicit attitudes toward meat in men and women. Men exhibited stronger implicit associations between meat and healthiness than did women, but both sexes associated meat more strongly with ‘healthy’ than ‘unhealthy’ concepts. As ‘healthy’ was operationalized in the current study using terms such as “virile” and “powerful,” this suggests that a meat-strength/power association may mediate the meat-masculinity link readily observed across western cultures. The sex difference was not related to explicit attitudes to meat, nor was it attributable to a variety of other factors, such as a generally more positive disposition toward meat in men than women. Men also exhibited an attention bias toward meats, compared to non-meat foods, while females exhibited more caution when searching for non-meat foods, compared to meat. These biases were not related to implicit attitudes, but did tend to increase with increasing hunger levels. Potential ultimate explanations for these differences, including sex differences in bio-physiological needs and receptivity to social signals are discussed. PMID:29731733

  5. Determination of strain fields in porous shape memory alloys using micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Bormann, Therese; Friess, Sebastian; de Wild, Michael; Schumacher, Ralf; Schulz, Georg; Müller, Bert

    2010-09-01

    Shape memory alloys (SMAs) belong to 'intelligent' materials since the metal alloy can change its macroscopic shape as the result of the temperature-induced, reversible martensite-austenite phase transition. SMAs are often applied for medical applications such as stents, hinge-less instruments, artificial muscles, and dental braces. Rapid prototyping techniques, including selective laser melting (SLM), allow fabricating complex porous SMA microstructures. In the present study, the macroscopic shape changes of the SMA test structures fabricated by SLM have been investigated by means of micro computed tomography (μCT). For this purpose, the SMA structures are placed into the heating stage of the μCT system SkyScan 1172™ (SkyScan, Kontich, Belgium) to acquire three-dimensional datasets above and below the transition temperature, i.e. at room temperature and at about 80°C, respectively. The two datasets were registered on the basis of an affine registration algorithm with nine independent parameters - three for the translation, three for the rotation and three for the scaling in orthogonal directions. Essentially, the scaling parameters characterize the macroscopic deformation of the SMA structure of interest. Furthermore, applying the non-rigid registration algorithm, the three-dimensional strain field of the SMA structure on the micrometer scale comes to light. The strain fields obtained will serve for the optimization of the SLM-process and, more important, of the design of the complex shaped SMA structures for tissue engineering and medical implants.

  6. Implicit memory for novel figure-ground displays includes a history of cross-border competition.

    PubMed

    Peterson, Mary A; Lampignano, Daniel W

    2003-08-01

    When configural cues specify that a figure lies on opposite sides of a repeated border in prime andprobe shapes, probe latencies are longer than when prime and probe borders are unrelated. Do such results reflect negative priming for the shape of the prime ground or cross-border competition from figure memory? The present study tested these alternatives by adding partial closure as a competing cue and reducing the similarity between the prime ground and the shape of the probe. Results supported the cross-border competition interpretation. Additional findings were that partial closure is a configural cue and that response effects can emerge from the potential shape on the ground side of a border. One prior experience was sufficient for these effects.

  7. Fixture for winding transformers

    NASA Technical Reports Server (NTRS)

    Mclyman, M. T.

    1980-01-01

    Bench-mounted fixture assists operator in winding toroid-shaped transformer cores. Toroid is rigidly held in place as wires are looped around. Arrangement frees both hands for rapid winding and untangling of wires that occurs when core is hand held.

  8. On the multi-scale description of micro-structured fluids composed of aggregating rods

    NASA Astrophysics Data System (ADS)

    Perez, Marta; Scheuer, Adrien; Abisset-Chavanne, Emmanuelle; Ammar, Amine; Chinesta, Francisco; Keunings, Roland

    2018-05-01

    When addressing the flow of concentrated suspensions composed of rods, dense clusters are observed. Thus, the adequate modelling and simulation of such a flow requires addressing the kinematics of these dense clusters and their impact on the flow in which they are immersed. In a former work, we addressed a first modelling framework of these clusters, assumed so dense that they were considered rigid and their kinematics (flow-induced rotation) were totally defined by a symmetric tensor c with unit trace representing the cluster conformation. Then, the rigid nature of the clusters was relaxed, assuming them deformable, and a model giving the evolution of both the cluster shape and its microstructural orientation descriptor (the so-called shape and orientation tensors) was proposed. This paper compares the predictions coming from those models with finer-scale discrete simulations inspired from molecular dynamics modelling.

  9. Rigidity and pH dependent Morphology of Beta-Lactoglobulin Spherulites

    NASA Astrophysics Data System (ADS)

    Gayetsky, Lisa; Armstead, Douglas

    2008-03-01

    Beta-Lactoglobulin is a milk protein that will denature in acidic solution (less than 2.0 pH) and if heated for extended periods (greater than 18 hours) it will form radial structures called Spherulites. Spherulites, along with the amyloid fibrils that compose them, are of practical importance because they form in the human body and cause the amyloidosis diseases. Different amyloidosis are caused by different types of denatured proteins occurring in different parts of the body. Since it is believed that Spherulite formation is a generic protein characteristic, Beta-Lactoglobulin is a legitimate and easy to use protein to study these structures. In this study we are quantifying the shape of Beta-Lactoglobulin Spherulites to determine if the pH of the protein solution has an impact on the morphology due to side chain interactions or other causes. We are also testing the rigidity of these structures to determine the relevance of small shape changes.

  10. Investigation on Tensile Fatigue Characteristics of Meshed GUM Metal Plates for Bone Graft Applications

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Koki; He, Jianmei

    2017-11-01

    GUM Metal has characteristics of lower elasticity rigidity, large elastic deformation, higher strength and biocompatibility etc. When it is used for implant applications, there is still problem like overloading on the natural-bone because of its high rigidity compared with the human bones. Therefore, the purpose of this study is to create more flexible meshed plates for implant applications from the viewpoints of elastic rigidity and volume density. Basic mesh shapes are designed, devised and applied for meshed GUM Metal plates using three dimensional (3D) CAD tools. Experimental evaluation on tensile fatigue characteristics of meshed GUM Metal plate specimens are carried out. Analytical approaches on stress evaluation are also executed through finite element method to obtain the S-N curve for fatigue characteristic evaluation.

  11. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    NASA Technical Reports Server (NTRS)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  12. Pre- and postprandial variation in implicit attention to food images reflects appetite and sensory-specific satiety.

    PubMed

    Davidson, Graeme R; Giesbrecht, Timo; Thomas, Anna M; Kirkham, Tim C

    2018-06-01

    Implicit attentional processes are biased toward food-related stimuli, with the extent of that bias reflecting relative motivation to eat. These interactions have typically been investigated by comparisons between fasted and sated individuals. In this study, temporal changes in implicit attention to food were assessed in relation to natural, spontaneous changes in appetite occurring before and after an anticipated midday meal. Non-fasted adults performed an emotional blink of attention (EBA) task at intervals, before and after consuming preferred, pre-selected sandwiches to satiety. Participants were required to detect targets within a rapid visual stream, presented after task-irrelevant food (preferred or non-preferred sandwiches, or desserts) or non-food distractor images. All categories of food distractor preferentially captured attention even when appetite levels were low, but became more distracting as appetite increased preprandially, reducing task accuracy maximally as hunger peaked before lunch. Postprandially, attentional capture was markedly reduced for images of the specific sandwich type consumed and, to a lesser extent, for images of other sandwich types that had not been eaten. Attentional capture by images of desserts was unaffected by satiation. These findings support an important role of selective visual attention in the guidance of motivated behaviour. Naturalistic, meal-related changes in appetite are accompanied by changes in implicit attention to visual food stimuli that are easily detected using the EBA paradigm. Preprandial enhancement of attention capture by food cues likely reflects increases in the incentive motivational value of all food stimuli, perhaps providing an implicit index of wanting. Postprandial EBA responses confirm that satiation on a particular food results in relative inattention to that food, supporting an important attentional component in the operation of sensory-specific satiety. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Electrically operated magnetic switch designed to display reduced leakage inductance

    DOEpatents

    Cook, Edward G.

    1994-01-01

    An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together.

  14. Rigid High Temperature Heat-Shrinkable Polyimide Tubes with Functionality as Reducer Couplings

    PubMed Central

    Kong, Deyan; Xiao, Xinli

    2017-01-01

    Flexible and semi-rigid heat-shrinkable tubes (HSTs) have been used in thousands of applications, and here rigid high temperature HSTs are reported for the first time. These rigid HSTs are prepared with shape memory polyimides possessing glass transition temperatures (Tgs) from 182 to 295 °C, and the relationships between Tg and their molecular structures are studied. The polyimide HSTs (PIHSTs) can fix expanded diameters and shrink back to original diameters very well, and the mechanisms of their heat-shrinkage performance are discussed. Their differences from commercially available HSTs in heat-shrinkage are also analyzed. They can withstand low temperature of −196 °C, much lower than those of other HSTs. The PIHSTs can also connect subjects of different sizes by heat-shrinkage and then fix them upon cooling like reducer couplings, and the possible mechanisms of their reducer coupling effect are analyzed. With their unique characteristics, PIHSTs will expand the application areas of HSTs enormously. PMID:28317905

  15. Mechanics of Lamellipodia

    NASA Astrophysics Data System (ADS)

    Quint, D. A.; Schwarz, J. M.

    2008-03-01

    The actin cytoskeleton is a morphologically-complex assembly of cross-linked F-actin filaments. The cytoskeleton provides rigidity for the cell within appropriate time scales so that it can change its shape to, for example, crawl along surfaces. In addition to cross-linking proteins, many other proteins are involved in the assembly of the actin cytoskeleton such as branching proteins, capping proteins, and severing proteins. Presumably these proteins work cooperatively toward the dynamic formation of rigidity. We will initially focus on the role of branching proteins. The F-actin filaments in lamellipodia---protrusions of the mobile edge of a crawling cell---have some overall orientation due to the branching. Branched filaments emerge at a 70 degree angle from the mother filament's growing end.^1 This overall orientation is modelled as an anisotropy in an effective medium theory determining the cytoskeleton's elasticity in the static regime. The potential for a splay rigid phase, in addition to a rigid phase, is also investigated. ^1T. M. Svitkina and G. G. Borisy, J. Cell Biol. 145, 1009 (1999).

  16. Development of a High-Order Navier-Stokes Solver Using Flux Reconstruction to Simulate Three-Dimensional Vortex Structures in a Curved Artery Model

    NASA Astrophysics Data System (ADS)

    Cox, Christopher

    Low-order numerical methods are widespread in academic solvers and ubiquitous in industrial solvers due to their robustness and usability. High-order methods are less robust and more complicated to implement; however, they exhibit low numerical dissipation and have the potential to improve the accuracy of flow simulations at a lower computational cost when compared to low-order methods. This motivates our development of a high-order compact method using Huynh's flux reconstruction scheme for solving unsteady incompressible flow on unstructured grids. We use Chorin's classic artificial compressibility formulation with dual time stepping to solve unsteady flow problems. In 2D, an implicit non-linear lower-upper symmetric Gauss-Seidel scheme with backward Euler discretization is used to efficiently march the solution in pseudo time, while a second-order backward Euler discretization is used to march in physical time. We verify and validate implementation of the high-order method coupled with our implicit time stepping scheme using both steady and unsteady incompressible flow problems. The current implicit time stepping scheme is proven effective in satisfying the divergence-free constraint on the velocity field in the artificial compressibility formulation. The high-order solver is extended to 3D and parallelized using MPI. Due to its simplicity, time marching for 3D problems is done explicitly. The feasibility of using the current implicit time stepping scheme for large scale three-dimensional problems with high-order polynomial basis still remains to be seen. We directly use the aforementioned numerical solver to simulate pulsatile flow of a Newtonian blood-analog fluid through a rigid 180-degree curved artery model. One of the most physiologically relevant forces within the cardiovascular system is the wall shear stress. This force is important because atherosclerotic regions are strongly correlated with curvature and branching in the human vasculature, where the shear stress is both oscillatory and multidirectional. Also, the combined effect of curvature and pulsatility in cardiovascular flows produces unsteady vortices. The aim of this research as it relates to cardiovascular fluid dynamics is to predict the spatial and temporal evolution of vortical structures generated by secondary flows, as well as to assess the correlation between multiple vortex pairs and wall shear stress. We use a physiologically (pulsatile) relevant flow rate and generate results using both fully developed and uniform entrance conditions, the latter being motivated by the fact that flow upstream of a curved artery may not have sufficient straight entrance length to become fully developed. Under the two pulsatile inflow conditions, we characterize the morphology and evolution of various vortex pairs and their subsequent effect on relevant haemodynamic wall shear stress metrics.

  17. Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Titarev, Vladimir; Dumbser, Michael; Utyuzhnikov, Sergey

    2014-01-01

    The paper is devoted to the further development and systematic performance evaluation of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied gas flows. Firstly, a review of the existing discretization and parallelization strategies for solving numerically the Boltzmann kinetic equation with various model collision integrals is carried out. Secondly, a new parallelization strategy for the implicit time evolution method is implemented which improves scaling on large CPU clusters. Accuracy and scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through a finite-length circular pipe as well as an external supersonic flow over a three-dimensional re-entry geometry of complicated aerodynamic shape.

  18. Egocentric pattern projection: how implicit personality theories recapitulate the geography of the self.

    PubMed

    Critcher, Clayton R; Dunning, David

    2009-07-01

    Five studies demonstrated egocentric pattern projection, in that the implicit personality theories (IPTs) that participants held about other people tended to recapitulate the terrain of their own personality. To the extent that participants believed they possessed 2 traits to a similar degree within themselves, they tended, through their judgments of others and estimates of population parameters, to claim that the 2 traits were positively correlated in other people; and if they believed they possessed 2 traits to a dissimilar degree within themselves, they tended to claim that the 2 traits were negatively correlated in other people. Further evidence showed that information about the self plays a causal role in the construction of implicit theories, making a unique contribution to the shape of IPTs over and above that of information about another person. The relevance of these data for recent controversies over egocentric social judgment is discussed. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  19. Meshless Modeling of Deformable Shapes and their Motion

    PubMed Central

    Adams, Bart; Ovsjanikov, Maks; Wand, Michael; Seidel, Hans-Peter; Guibas, Leonidas J.

    2010-01-01

    We present a new framework for interactive shape deformation modeling and key frame interpolation based on a meshless finite element formulation. Starting from a coarse nodal sampling of an object’s volume, we formulate rigidity and volume preservation constraints that are enforced to yield realistic shape deformations at interactive frame rates. Additionally, by specifying key frame poses of the deforming shape and optimizing the nodal displacements while targeting smooth interpolated motion, our algorithm extends to a motion planning framework for deformable objects. This allows reconstructing smooth and plausible deformable shape trajectories in the presence of possibly moving obstacles. The presented results illustrate that our framework can handle complex shapes at interactive rates and hence is a valuable tool for animators to realistically and efficiently model and interpolate deforming 3D shapes. PMID:24839614

  20. Prehensile and non-prehensile tails among syngnathid fishes: what's the difference?

    PubMed

    Neutens, Céline; de Dobbelaer, Bart; Claes, Peter; Adriaens, Dominique

    2017-02-01

    All syngnathid fishes are characterized by a tail with a vertebral column that is surrounded by dermal Plates - four per vertebra. Seahorses and pipehorses have prehensile tails, a unique characteristic among teleosts that allows them to grasp and hold onto substrates. Pipefishes, in contrast, possess a more rigid tail. Previous research (Neutens et al., 2014) showed a wide range of variation within the skeletal morphology of different members in the syngnathid family. The goal of this study is to explore whether the diversity in the three-dimensional (3D) shape of different tail types reflects grasping performance, and to what degree grasping tails occupy a different and more constrained diversity. For this, a 3D morphometrical analysis based on surfaces was performed. Four different analyses were performed on the tail skeleton of nine species exhibiting different levels of tail grasping capacities (four pipehorse, three seahorse, one pipefish and one seadragon species) to examine the intra-individual variation across the anteroposterior and dorso-ventral axis. In the two interspecific analyses, all vertebrae and all dermal plates were mutually compared. Overall, intra-individual variation was larger in species with a prehensile tail. The analysis on the vertebrae showed differences in the length and orientation of the hemal spine as well as the inclination angle between the anterior and posterior surface of the vertebral body. This was observed at an intra-individual level across the anteroposterior axis in prehensile species and at an inter-individual level between prehensile and non-prehensile species. Across the anteroposterior axis in prehensile tails, the overall shape of the plates changes from rectangular at the anterior end to square at the posterior end. Across the dorso-ventral axis, the ventral dermal plates carry a significantly longer caudal spine than the dorsal ones in all prehensile-tailed species. It can therefore be concluded that prehensile tails exhibit a larger anteroposterior and dorso-ventral shape variation than non-prehensile ones. However, the hypothesis that there is a more constrained shape variation among prehensile species compared to non-prehensile ones had to be rejected. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    PubMed

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  2. Intra-patient comparison of parietal pleural biopsies by rigid forceps, flexible forceps and cryoprobe obtained during medical thoracoscopy: a prospective series of 80 cases with pleural effusion.

    PubMed

    Wurps, H; Schönfeld, N; Bauer, T T; Bock, M; Duve, C; Sauer, R; Mairinger, T; Griff, S

    2016-07-07

    There is only few data available on the use of cryotechnique during medical thoracoscopy. Medical thoracoscopy was performed in consecutive patients with pleural effusion. Prospectively, biopsies were taken by rigid forceps, flexible forceps and cryoprobe. Specimen size, depth and diagnostic yield were compared. 80 Patients were included. 408 biopsies were taken (205 rigid biopsies, 104 flexible biopsies, 99 cryobiopsies). Mean surface area of rigid biopsies was 22.6 ± 20.4 mm(2) (flexible biopsies: 7.1 ± 9.3 mm(2), cryobiopsies: 14.4 ± 12.8 mm(2)). Rigid biopsies were significantly larger than cryobiopsies (p < 0.001) and flexible biopsies (p < 0.001), crybiopsies were significantly larger than flexible biopsies (p < 0.01). A deep biopsy containing fatty tissue was harvested in 63 % of rigid biopsies (cryobiopsy: 49.5 % flexible biopsy: 39.5 %). In 79/80 cases (98.7 % 95 % CI cannot be calculated) a diagnosis was obtained by rigid biopsy (cryobiopsy: 73/80 cases (91.3 % 95 % CI 86.0 - 96.5 %), flexible biopsy: 74/80 cases (92.5 % 95 % CI 88.6 - 97.4 %)). Diagnostic yield achieved with cryobiopsies was inferior to the yield of rigid biopsies (Difference: 12.7 %), but non-inferior to flexible biopsies (Difference: 6.5 %). Cryobiopsies in medical thoracoscopy are safe with high diagnostic yield, non-inferior to flexible biopsies with increased tissue quantity and quality. Cryotechnique can develop an important role in medical thoracoscopy in the near future when rigid thoracoscopy is not available.

  3. [The development of health information with the involvement of consumers at the German Institute for Quality and Efficiency in Health Care (IQWiG)].

    PubMed

    Zschorlich, B; Knelangen, M; Bastian, H

    2011-07-01

    The German Institute for Quality and Efficiency in Health Care (IQWiG) began publishing free bi-lingual (German/English) evidence-based health information in February 2006 on the website, http://www.gesundheitsinformation.de http://www.informedhealthonline.org . The Institute aims to be a patient-centred and non-directive provider of health information to the public and patients. The point of view and information needs of the public are a central element in the development of health information. People can be involved implicitly or explicitly. People can participate directly or explicitly in health information, for example, by suggesting a topic, by helping shape the content and during the development process. We do this in several ways, including surveys, consultation with consumer representatives as well as through user-testing and reader online rating. In addition, implicit involvement of patients occurs indirectly through consideration of the experiences and information needs of patients via an analysis of qualitative research. A challenge here is the generalisability of information derived from research in other cultures. The Institute monitors methodological developments in the area of patient and health information, to keep its methods up-to-date. In addition, the colleagues involved in this work participate in an in-house training program on patient-centred health information. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Spectral wave dissipation by submerged aquatic vegetation in a back-barrier estuary

    USGS Publications Warehouse

    Nowacki, Daniel J.; Beudin, Alexis; Ganju, Neil K.

    2017-01-01

    Submerged aquatic vegetation is generally thought to attenuate waves, but this interaction remains poorly characterized in shallow-water field settings with locally generated wind waves. Better quantification of wave–vegetation interaction can provide insight to morphodynamic changes in a variety of environments and also is relevant to the planning of nature-based coastal protection measures. Toward that end, an instrumented transect was deployed across a Zostera marina (common eelgrass) meadow in Chincoteague Bay, Maryland/Virginia, U.S.A., to characterize wind-wave transformation within the vegetated region. Field observations revealed wave-height reduction, wave-period transformation, and wave-energy dissipation with distance into the meadow, and the data informed and calibrated a spectral wave model of the study area. The field observations and model results agreed well when local wind forcing and vegetation-induced drag were included in the model, either explicitly as rigid vegetation elements or implicitly as large bed-roughness values. Mean modeled parameters were similar for both the explicit and implicit approaches, but the spectral performance of the explicit approach was poor compared to the implicit approach. The explicit approach over-predicted low-frequency energy within the meadow because the vegetation scheme determines dissipation using mean wavenumber and frequency, in contrast to the bed-friction formulations, which dissipate energy in a variable fashion across frequency bands. Regardless of the vegetation scheme used, vegetation was the most important component of wave dissipation within much of the study area. These results help to quantify the influence of submerged aquatic vegetation on wave dynamics in future model parameterizations, field efforts, and coastal-protection measures.

  5. Virtual screening using molecular simulations.

    PubMed

    Yang, Tianyi; Wu, Johnny C; Yan, Chunli; Wang, Yuanfeng; Luo, Ray; Gonzales, Michael B; Dalby, Kevin N; Ren, Pengyu

    2011-06-01

    Effective virtual screening relies on our ability to make accurate prediction of protein-ligand binding, which remains a great challenge. In this work, utilizing the molecular-mechanics Poisson-Boltzmann (or Generalized Born) surface area approach, we have evaluated the binding affinity of a set of 156 ligands to seven families of proteins, trypsin β, thrombin α, cyclin-dependent kinase (CDK), cAMP-dependent kinase (PKA), urokinase-type plasminogen activator, β-glucosidase A, and coagulation factor Xa. The effect of protein dielectric constant in the implicit-solvent model on the binding free energy calculation is shown to be important. The statistical correlations between the binding energy calculated from the implicit-solvent approach and experimental free energy are in the range of 0.56-0.79 across all the families. This performance is better than that of typical docking programs especially given that the latter is directly trained using known binding data whereas the molecular mechanics is based on general physical parameters. Estimation of entropic contribution remains the barrier to accurate free energy calculation. We show that the traditional rigid rotor harmonic oscillator approximation is unable to improve the binding free energy prediction. Inclusion of conformational restriction seems to be promising but requires further investigation. On the other hand, our preliminary study suggests that implicit-solvent based alchemical perturbation, which offers explicit sampling of configuration entropy, can be a viable approach to significantly improve the prediction of binding free energy. Overall, the molecular mechanics approach has the potential for medium to high-throughput computational drug discovery. Copyright © 2011 Wiley-Liss, Inc.

  6. Impact of trailing edge shape on the wake and propulsive performance of pitching panels

    NASA Astrophysics Data System (ADS)

    Van Buren, T.; Floryan, D.; Brunner, D.; Senturk, U.; Smits, A. J.

    2017-01-01

    The effects of changing the trailing edge shape on the wake and propulsive performance of a pitching rigid panel are examined experimentally. The panel aspect ratio is AR=1 , and the trailing edges are symmetric chevron shapes with convex and concave orientations of varying degree. Concave trailing edges delay the natural vortex bending and compression of the wake, and the mean streamwise velocity field contains a single jet. Conversely, convex trailing edges promote wake compression and produce a quadfurcated wake with four jets. As the trailing edge shape changes from the most concave to the most convex, the thrust and efficiency increase significantly.

  7. Curvature by design and on demand in liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Kowalski, B. A.; Mostajeran, C.; Godman, N. P.; Warner, M.; White, T. J.

    2018-01-01

    The shape of liquid crystalline elastomers (LCEs) with spatial variation in the director orientation can be transformed by exposure to a stimulus. Here, informed by previously reported analytical treatments, we prepare complex spiral patterns imprinted into LCEs and quantify the resulting shape transformation. Quantification of the stimuli-induced shapes reveals good agreement between predicted and experimentally observed curvatures. We conclude this communication by reporting a design strategy to allow LCE films to be anchored at their external boundaries onto rigid substrates without incurring internal, mechanical-mismatch stresses upon actuation, a critical advance to the realization of shape transformation of LCEs in practical device applications.

  8. Role of time in symbiotic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawala, A.K.

    1996-12-31

    All systems have a dynamics which reflects the changes in the system in time and, therefore, have to maintain a notion of time, either explicitly or implicitly. Traditionally, the notion of time in constructed systems has been implicitly specified at design time through rigid structures such as sampled data systems which operate with a fixed time tick, feedback systems which are designed reflecting a fixed time scale for the dynamics of the system as well as the controller responses, etc. In biological systems, the sense of time is a key element but it is not rigidly structured, even though allmore » such systems have a clear notion of time. We define the notion of time in systems in terms of temporal locality, time scale and time horizon. Temporal locality gives the notion of the accuracy with which the system knows about the current time. Time scale reflects the scale indicating the smallest and the largest granularity considered. It also reflects the reaction time. The time horizon indicates the time beyond which the system considers to be distant future and may not take it into account in its actions. Note that the temporal locality, time scale and the time horizon may be different for different types of actions of a system, thereby permitting the system to use multiple notions of time concurrently. In multi agent systems each subsystem may have its own notion of time but when intentions take place a coordination is necessary. Such coordination requires that the notions of time for different agents of the system be consistent. Clearly, the consistency requirement in this case does not mean exactly identical but implies that different agents can coordinate their actions which must take place in time. When the actions only require a determinate ordering the required coordination is much less severe than the case requiring actions to take place at the same time.« less

  9. Non-rigid multi-frame registration of cell nuclei in live cell fluorescence microscopy image data.

    PubMed

    Tektonidis, Marco; Kim, Il-Han; Chen, Yi-Chun M; Eils, Roland; Spector, David L; Rohr, Karl

    2015-01-01

    The analysis of the motion of subcellular particles in live cell microscopy images is essential for understanding biological processes within cells. For accurate quantification of the particle motion, compensation of the motion and deformation of the cell nucleus is required. We introduce a non-rigid multi-frame registration approach for live cell fluorescence microscopy image data. Compared to existing approaches using pairwise registration, our approach exploits information from multiple consecutive images simultaneously to improve the registration accuracy. We present three intensity-based variants of the multi-frame registration approach and we investigate two different temporal weighting schemes. The approach has been successfully applied to synthetic and live cell microscopy image sequences, and an experimental comparison with non-rigid pairwise registration has been carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins. © 2015 Wiley Periodicals, Inc.

  11. In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys

    PubMed Central

    Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo

    2014-01-01

    The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation. PMID:28788507

  12. In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys.

    PubMed

    Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo

    2014-02-12

    The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e. , strong enough, to avoid hot tear formation.

  13. Brownian dynamics of confined rigid bodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delong, Steven; Balboa Usabiaga, Florencio; Donev, Aleksandar, E-mail: donev@courant.nyu.edu

    2015-10-14

    We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the othermore » based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.« less

  14. Implicit Theories of Creativity in Computer Science in the United States and China

    ERIC Educational Resources Information Center

    Tang, Chaoying; Baer, John; Kaufman, James C.

    2015-01-01

    To study implicit concepts of creativity in computer science in the United States and mainland China, we first asked 308 Chinese computer scientists for adjectives that would describe a creative computer scientist. Computer scientists and non-computer scientists from China (N = 1069) and the United States (N = 971) then rated how well those…

  15. Do American Indian Mascots = American Indian People? Examining Implicit Bias towards American Indian People and American Indian Mascots

    ERIC Educational Resources Information Center

    Chaney, John; Burke, Amanda; Burkley, Edward

    2011-01-01

    Empirical examinations of American Indian (AI) mascots have only recently entered into the discourse of mainstream psychology. The present studies examined implicit attitudes of non-AI people towards AI mascots and the extent to which they are related to attitudes towards AI people. Significant concordance was observed between negative bias toward…

  16. Implicit Family Process Rules in Eating-Disordered and Non-Eating-Disordered Families

    ERIC Educational Resources Information Center

    Gillett, Kyle S.; Harper, James M.; Larson, Jeffry H.; Berrett, Michael E.; Hardman, Randy K.

    2009-01-01

    Family environment has been shown to be one of the factors related to the presence of eating disorders among young-adult females. Clinical experience and theories about eating disorders postulate that implicit family rules are an intricate part of family process that may have a great effect on the creation and maintenance of such problems. This…

  17. Validation of motion correction techniques for liver CT perfusion studies

    PubMed Central

    Chandler, A; Wei, W; Anderson, E F; Herron, D H; Ye, Z; Ng, C S

    2012-01-01

    Objectives Motion in images potentially compromises the evaluation of temporally acquired CT perfusion (CTp) data; image registration should mitigate this, but first requires validation. Our objective was to compare the relative performance of manual, rigid and non-rigid registration techniques to correct anatomical misalignment in acquired liver CTp data sets. Methods 17 data sets in patients with liver tumours who had undergone a CTp protocol were evaluated. Each data set consisted of a cine acquisition during a breath-hold (Phase 1), followed by six further sets of cine scans (each containing 11 images) acquired during free breathing (Phase 2). Phase 2 images were registered to a reference image from Phase 1 cine using two semi-automated intensity-based registration techniques (rigid and non-rigid) and a manual technique (the only option available in the relevant vendor CTp software). The performance of each technique to align liver anatomy was assessed by four observers, independently and blindly, on two separate occasions, using a semi-quantitative visual validation study (employing a six-point score). The registration techniques were statistically compared using an ordinal probit regression model. Results 306 registrations (2448 observer scores) were evaluated. The three registration techniques were significantly different from each other (p=0.03). On pairwise comparison, the semi-automated techniques were significantly superior to the manual technique, with non-rigid significantly superior to rigid (p<0.0001), which in turn was significantly superior to manual registration (p=0.04). Conclusion Semi-automated registration techniques achieved superior alignment of liver anatomy compared with the manual technique. We hope this will translate into more reliable CTp analyses. PMID:22374283

  18. The explicit and implicit dance in psychoanalytic change.

    PubMed

    Fosshage, James L

    2004-02-01

    How the implicit/non-declarative and explicit/declarative cognitive domains interact is centrally important in the consideration of effecting change within the psychoanalytic arena. Stern et al. (1998) declare that long-lasting change occurs in the domain of implicit relational knowledge. In the view of this author, the implicit and explicit domains are intricately intertwined in an interactive dance within a psychoanalytic process. The author views that a spirit of inquiry (Lichtenberg, Lachmann & Fosshage 2002) serves as the foundation of the psychoanalytic process. Analyst and patient strive to explore, understand and communicate and, thereby, create a 'spirit' of interaction that contributes, through gradual incremental learning, to new implicit relational knowledge. This spirit, as part of the implicit relational interaction, is a cornerstone of the analytic relationship. The 'inquiry' more directly brings explicit/declarative processing to the foreground in the joint attempt to explore and understand. The spirit of inquiry in the psychoanalytic arena highlights both the autobiographical scenarios of the explicit memory system and the mental models of the implicit memory system as each contributes to a sense of self, other, and self with other. This process facilitates the extrication and suspension of the old models, so that new models based on current relational experience can be gradually integrated into both memory systems for lasting change.

  19. A new bistable electroactive polymer for prolonged cycle lifetime of refreshable Braille displays

    NASA Astrophysics Data System (ADS)

    Ren, Zhi; Niu, Xiaofan; Chen, Dustin; Hu, Wei; Pei, Qibing

    2014-03-01

    ABSTRACT: Bistable electroactive polymers (BSEP) amalgamating electrically induced large-strain actuation and shape memory effect present a unique opportunity for refreshable Braille displays. A new BSEP material with long-chain crosslinkers to achieve prolonged cycle lifetime of refreshable Braille displays is reported here. The modulus of the BSEP material decreases by more than three orders of magnitude from a rigid, plastic state to a rubbery state when heated above the polymer's glass transition temperature. In its rubbery state, the polymer film can be electrically actuated to buckle convexly when a high voltage is applied across a circular active area. Modifying the concentration of long-chain crosslinkers in the polymer allows not only for fine-tuning of the polymer's glass transition temperature and elasticity in the rubbery state, but also enhancement of the actuation stability. For a raised height of 0.4 mm by a Braille dot with a 1.3 mm diameter, actuation can be repeated over 2000 cycles at 70°C in the rubbery state. The actuated dome shape can be fixed by cooling the polymer below the glass transition temperature. This refreshable rigid-to-rigid actuation simultaneously provides large-strain actuation and large force support. Devices capable of displaying Braille characters over a page-size area consisting of 324 Braille cells have been fabricated.

  20. The Gender Division of Labor in Two-Earner Marriages: Dimensions of Variability and Change.

    ERIC Educational Resources Information Center

    Ferree, Myra Marx

    1991-01-01

    Examined data drawn from representative sample survey of two-earner households (n=382 couples) on division of domestic labor. Concludes that implicitly and explicitly gendered expectations that both husbands and wives bring to thinking about housework play significant role in shaping degree of egalitarianism in practice. (Author/NB)

  1. Mental Muscularity: Shaping Implicit Theories of Intelligence via Metaphor

    ERIC Educational Resources Information Center

    Anderson, Scott Victor

    2009-01-01

    Motivating students is a central challenge for many teachers, particularly in subjects students commonly perceive as "impenetrable," such as statistics. One line of motivation research by C.S. Dweck (2006) has found that when students believe their intelligence is malleable (i.e., a growth mindset) and that learning is a function of effort, they…

  2. SMAUMAT_ITI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannetti, C.; Becker, R.

    The software is an ABAQUS/Standard UMAT (user defined material behavior subroutine) that implements the constitutive model for shape-memory alloy materials developed by Jannetti et. al. (2003a) using a fully implicit time integration scheme to integrate the constitutive equations. The UMAT is used in conjunction with ABAQUS/Standard to perform a finite-element analysis of SMA materials.

  3. Furthering Alternative Cultures of Valuation in Higher Education Research

    ERIC Educational Resources Information Center

    Downs, Yvonne

    2017-01-01

    The value of higher education is often implicit or assumed in educational research. The underlying and antecedent premises that shape and influence debates about value remain unchallenged, which perpetuates the dominant, but limiting, terms of the debate and fosters reductionism. The article proceeds on the premise that analyses of value are not…

  4. Parental Ethnotheories and Family Language Policy in Transnational Adoptive Families

    ERIC Educational Resources Information Center

    Fogle, Lyn Wright

    2013-01-01

    Family language policy refers to explicit and overt decisions parents make about language use and language learning as well as implicit processes that legitimize certain language and literacy practices over others in the home. Studies in family language policy have emphasized the ways in which family-internal processes are shaped by and shape…

  5. Implicit Schemata and Categories in Memory-Based Language Processing

    ERIC Educational Resources Information Center

    van den Bosch, Antal; Daelemans, Walter

    2013-01-01

    Memory-based language processing (MBLP) is an approach to language processing based on exemplar storage during learning and analogical reasoning during processing. From a cognitive perspective, the approach is attractive as a model for human language processing because it does not make any assumptions about the way abstractions are shaped, nor any…

  6. The enactment of tasks in a fifth grade classroom

    NASA Astrophysics Data System (ADS)

    Schwartz, Jonathan L.

    2007-12-01

    This study looked at one classroom's manifestation of inquiry. Looking at tasks as part of the Full Option Science System (FOSS) shed light on the way in which inquiry took shape in the classroom. To do this, detailed descriptions and analysis of the enactment of inquiry-based tasks were conducted in one fifth-grade elementary school classroom during an 8-week period of instruction. A central finding was that the intended tasks differed from the actual tasks. This incongruence occurred primarily due to the actions of individuals in the classroom. These actions shaped tasks and transformed inquiry-based tasks from highly ambiguous, high-risk tasks to a routine set of steps and procedures. Teacher's actions included establishing a classroom culture, creating a flow to classroom events, and making instructional decisions. These actions resulted in implicit structures in the classroom that determined the pace and sequence of events, as well as how the requirements and value of work were understood by students. Implicit structures reflected shared understandings between the teacher and students about work and the overall system of accountability in the classroom.

  7. Supernova Light Curves and Spectra from Two Different Codes: Supernu and Phoenix

    NASA Astrophysics Data System (ADS)

    Van Rossum, Daniel R; Wollaeger, Ryan T

    2014-08-01

    The observed similarities between light curve shapes from Type Ia supernovae, and in particular the correlation of light curve shape and brightness, have been actively studied for more than two decades. In recent years, hydronamic simulations of white dwarf explosions have advanced greatly, and multiple mechanisms that could potentially produce Type Ia supernovae have been explored in detail. The question which of the proposed mechanisms is (or are) possibly realized in nature remains challenging to answer, but detailed synthetic light curves and spectra from explosion simulations are very helpful and important guidelines towards answering this question.We present results from a newly developed radiation transport code, Supernu. Supernu solves the supernova radiation transfer problem uses a novel technique based on a hybrid between Implicit Monte Carlo and Discrete Diffusion Monte Carlo. This technique enhances the efficiency with respect to traditional implicit monte carlo codes and thus lends itself perfectly for multi-dimensional simulations. We show direct comparisons of light curves and spectra from Type Ia simulations with Supernu versus the legacy Phoenix code.

  8. Recollective performance advantages for implicit memory tasks.

    PubMed

    Sheldon, Signy A M; Moscovitch, Morris

    2010-10-01

    A commonly held assumption is that processes underlying explicit and implicit memory are distinct. Recent evidence, however, suggests that they may interact more than previously believed. Using the remember-know procedure the current study examines the relation between recollection, a process thought to be exclusive to explicit memory, and performance on two implicit memory tasks, lexical decision and word stem completion. We found that, for both implicit tasks, words that were recollected were associated with greater priming effects than were words given a subsequent familiarity rating or words that had been studied but were not recognised (misses). Broadly, our results suggest that non-voluntary processes underlying explicit memory also benefit priming, a measure of implicit memory. More specifically, given that this benefit was due to a particular aspect of explicit memory (recollection), these results are consistent with some strength models of memory and with Moscovitch's (2008) proposal that recollection is a two-stage process, one rapid and unconscious and the other more effortful and conscious.

  9. Dynamic Non-Rigid Objects Reconstruction with a Single RGB-D Sensor

    PubMed Central

    Zuo, Xinxin; Du, Chao; Wang, Runxiao; Zheng, Jiangbin; Yang, Ruigang

    2018-01-01

    This paper deals with the 3D reconstruction problem for dynamic non-rigid objects with a single RGB-D sensor. It is a challenging task as we consider the almost inevitable accumulation error issue in some previous sequential fusion methods and also the possible failure of surface tracking in a long sequence. Therefore, we propose a global non-rigid registration framework and tackle the drifting problem via an explicit loop closure. Our novel scheme starts with a fusion step to get multiple partial scans from the input sequence, followed by a pairwise non-rigid registration and loop detection step to obtain correspondences between neighboring partial pieces and those pieces that form a loop. Then, we perform a global registration procedure to align all those pieces together into a consistent canonical space as guided by those matches that we have established. Finally, our proposed model-update step helps fixing potential misalignments that still exist after the global registration. Both geometric and appearance constraints are enforced during our alignment; therefore, we are able to get the recovered model with accurate geometry as well as high fidelity color maps for the mesh. Experiments on both synthetic and various real datasets have demonstrated the capability of our approach to reconstruct complete and watertight deformable objects. PMID:29547562

  10. Effective Control of Computationally Simulated Wing Rock in Subsonic Flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Menzies, Margaret A.

    1997-01-01

    The unsteady compressible, full Navier-Stokes (NS) equations and the Euler equations of rigid-body dynamics are sequentially solved to simulate the delta wing rock phenomenon. The NS equations are solved time accurately, using the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The rigid-body dynamics equations are solved using a four-stage Runge-Kutta scheme. Once the wing reaches the limit-cycle response, an active control model using a mass injection system is applied from the wing surface to suppress the limit-cycle oscillation. The active control model is based on state feedback and the control law is established using pole placement techniques. The control law is based on the feedback of two states: the roll-angle and roll velocity. The primary model of the computational applications consists of a 80 deg swept, sharp edged, delta wing at 30 deg angle of attack in a freestream of Mach number 0.1 and Reynolds number of 0.4 x 10(exp 6). With a limit-cycle roll amplitude of 41.1 deg, the control model is applied, and the results show that within one and one half cycles of oscillation, the wing roll amplitude and velocity are brought to zero.

  11. Diffeomorphic Sulcal Shape Analysis on the Cortex

    PubMed Central

    Joshi, Shantanu H.; Cabeen, Ryan P.; Joshi, Anand A.; Sun, Bo; Dinov, Ivo; Narr, Katherine L.; Toga, Arthur W.; Woods, Roger P.

    2014-01-01

    We present a diffeomorphic approach for constructing intrinsic shape atlases of sulci on the human cortex. Sulci are represented as square-root velocity functions of continuous open curves in ℝ3, and their shapes are studied as functional representations of an infinite-dimensional sphere. This spherical manifold has some advantageous properties – it is equipped with a Riemannian metric on the tangent space and facilitates computational analyses and correspondences between sulcal shapes. Sulcal shape mapping is achieved by computing geodesics in the quotient space of shapes modulo scales, translations, rigid rotations and reparameterizations. The resulting sulcal shape atlas preserves important local geometry inherently present in the sample population. The sulcal shape atlas is integrated in a cortical registration framework and exhibits better geometric matching compared to the conventional euclidean method. We demonstrate experimental results for sulcal shape mapping, cortical surface registration, and sulcal classification for two different surface extraction protocols for separate subject populations. PMID:22328177

  12. Flow Studies of Decelerators at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Wind tunnel tests recorded the effect of decelerators on flow at various supersonic speeds. Rigid parachute models were tested for the effects of porosity, shroud length, and number of shrouds. Flexible model parachutes were tested for effects of porosity and conical-shaped canopy. Ribbon dive brakes on a missile-shaped body were tested for effect of tension cable type and ribbon flare type. The final test involved a plastic sphere on riser lines.

  13. Structure and postembryonic development of the intersegmental nodules in the non-muscular joints of the antennae in Rhodnius prolixus.

    PubMed

    Ospina-Rozo, Bibiana; Forero-Shelton, Manu; Molina, Jorge

    2017-03-01

    The antennae of Insecta consist of two basal segments and the distal annulated flagellum lacking intrinsic muscles. Non-muscular joints are important to preserve the flexibility and structure of the long heteropteran antennae which bear an intersegmental nodule on each non-muscular joint. Little is known about their properties or function. Here we characterize the structure and postembryonic development of the non-muscular joints of Rhodnius prolixus antennae. Using Scanning Electron Microscopy, we tracked the changes in shape and size of both intersegmental nodules during the course of the hemimetabolous insect life cycle. Using Atomic Force Microscopy, we established a qualitative correlation between the topography of the surface and the rigidity of the joint between pedicel and flagellum. Our results confirmed the presence of two sub-articulations on each non-muscular joint. Also, the two intersegmental nodules have different origins: the one between the two flagellar segments (intraflagelloid) is a sclerite already present from the early nymph, while the nodule between pedicel and flagellum (prebasiflagellite) originates by gradual separation of the proximal end of the basiflagellum during postembryonic development. Various changes occur in the non-muscular joints and segments of the antenna during the life cycle of R. prolixus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Velocity-based analysis of sediment incipient deposition in rigid boundary open channels.

    PubMed

    Aksoy, Hafzullah; Safari, Mir Jafar Sadegh; Unal, Necati Erdem; Mohammadi, Mirali

    2017-11-01

    Drainage systems must be designed in a way to minimize undesired problems such as decrease in hydraulic capacity of the channel, blockage and transport of pollutants due to deposition of sediment. Channel design considering self-cleansing criteria are used to solve the sedimentation problem. Incipient deposition is one of the non-deposition self-cleansing design criteria that can be used as a conservative method for channel design. Experimental studies have been carried out in five different cross-section channels, namely trapezoidal, rectangular, circular, U-shape and V-bottom. Experiments were performed in a tilting flume using four different sizes of sands as sediment in nine different channel bed slopes. Two well-known methods, namely the Novak & Nalluri and Yang methods are considered for the analysis of sediment motion. Equations developed using experimental data are found to be in agreement with the literature. It is concluded that the design velocity depends on the shape of the channel cross-section. Rectangular and V-bottom channels need lower and higher incipient deposition velocities, respectively, in comparison with other channels.

  15. Granular flows in constrained geometries

    NASA Astrophysics Data System (ADS)

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  16. Gravitational Anomalies Caused by Zonal Winds in Jupiter

    NASA Astrophysics Data System (ADS)

    Schubert, G.; Kong, D.; Zhang, K.

    2012-12-01

    We present an accurate three-dimensional non-spherical numerical calculation of the gravitational anomalies caused by zonal winds in Jupiter. The calculation is based on a three-dimensional finite element method and accounts for the full effect of significant departure from spherical geometry caused by rapid rotation. Since the speeds of Jupiter's zonal winds are much smaller than that of its rigid-body rotation, our numerical calculation is carried out in two stages. First, we compute the non-spherical distributions of density and pressure at the equilibrium within Jupiter via a hybrid inverse approach by determining an a priori unknown coefficient in the polytropic equation of state that results in a match to the observed shape of Jupiter. Second, by assuming that Jupiter's zonal winds extend throughout the interior along cylinders parallel to the rotation axis, we compute gravitational anomalies produced by the wind-related density anomalies, providing an upper bound to the gravitational anomalies caused by the Jovian zonal winds.

  17. Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble

    PubMed Central

    Barnes, Christopher O.; Calero, Monica; Malik, Indranil; Graham, Brian W.; Spahr, Henrik; Lin, Guowu; Cohen, Aina; Brown, Ian S.; Zhang, Qiangmin; Pullara, Filippo; Trakselis, Michael A.; Kaplan, Craig D.; Calero, Guillermo

    2015-01-01

    Summary Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop-1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the Trigger Loop (TL), allowing visualization of its open state. Overall, our observations suggest that “open/closed” conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation. PMID:26186291

  18. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women

    PubMed Central

    de Jong, Peter J.; Georgiadis, Janniko R.

    2014-01-01

    Lifetime experiences shape people’s attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile–vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-‘hot’ vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-‘hot’) associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli. PMID:23051899

  19. Subcortical BOLD responses during visual sexual stimulation vary as a function of implicit porn associations in women.

    PubMed

    Borg, Charmaine; de Jong, Peter J; Georgiadis, Janniko R

    2014-02-01

    Lifetime experiences shape people's attitudes toward sexual stimuli. Visual sexual stimulation (VSS), for instance, may be perceived as pleasurable by some, but as disgusting or ambiguous by others. VSS depicting explicit penile-vaginal penetration (PEN) is relevant in this respect, because the act of penetration is a core sexual activity. In this study, 20 women without sexual complaints participated. We used functional magnetic resonance imaging and a single-target implicit association task to investigate how brain responses to PEN were modulated by the initial associations in memory (PEN-'hot' vs PEN-disgust) with such hardcore pornographic stimuli. Many brain areas responded to PEN in the same way they responded to disgust stimuli, and PEN-induced brain activity was prone to modulation by subjective disgust ratings toward PEN stimuli. The relative implicit PEN-disgust (relative to PEN-'hot') associations exclusively modulated PEN-induced brain responses: comparatively negative (PEN-disgust) implicit associations with pornography predicted the strongest PEN-related responses in the basal forebrain (including nucleus accumbens and bed nucleus of stria terminalis), midbrain and amygdala. Since these areas are often implicated in visual sexual processing, the present findings should be taken as a warning: apparently their involvement may also indicate a negative or ambivalent attitude toward sexual stimuli.

  20. Morphable Word Clouds for Time-Varying Text Data Visualization.

    PubMed

    Chi, Ming-Te; Lin, Shih-Syun; Chen, Shiang-Yi; Lin, Chao-Hung; Lee, Tong-Yee

    2015-12-01

    A word cloud is a visual representation of a collection of text documents that uses various font sizes, colors, and spaces to arrange and depict significant words. The majority of previous studies on time-varying word clouds focuses on layout optimization and temporal trend visualization. However, they do not fully consider the spatial shapes and temporal motions of word clouds, which are important factors for attracting people's attention and are also important cues for human visual systems in capturing information from time-varying text data. This paper presents a novel method that uses rigid body dynamics to arrange multi-temporal word-tags in a specific shape sequence under various constraints. Each word-tag is regarded as a rigid body in dynamics. With the aid of geometric, aesthetic, and temporal coherence constraints, the proposed method can generate a temporally morphable word cloud that not only arranges word-tags in their corresponding shapes but also smoothly transforms the shapes of word clouds over time, thus yielding a pleasing time-varying visualization. Using the proposed frame-by-frame and morphable word clouds, people can observe the overall story of a time-varying text data from the shape transition, and people can also observe the details from the word clouds in frames. Experimental results on various data demonstrate the feasibility and flexibility of the proposed method in morphable word cloud generation. In addition, an application that uses the proposed word clouds in a simulated exhibition demonstrates the usefulness of the proposed method.

  1. Impact of Inflow Conditions on Coherent Structures in an Aneurysm

    NASA Astrophysics Data System (ADS)

    Yu, Paulo; Durgesh, Vibhav; Johari, Hamid

    2017-11-01

    An aneurysm is an enlargement of a weakened arterial wall that can be debilitating or fatal on rupture. Studies have shown that hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. This investigation focuses on a comprehensive study of the impact of varying inflow conditions and aneurysm shapes on spatial and temporal behavior of flow parameters and structures in an aneurysm. Two different shapes of an idealized rigid aneurysm model were studied and the non-dimensional frequency and Reynolds number were varied between 2-5 and 50-250, respectively. A ViVitro Labs SuperPump system was used to precisely control inflow conditions. Particle Image Velocimetry (PIV) measurements were performed at three different locations inside the aneurysm sac to obtain detailed velocity flow field information. The results of this study showed that aneurysm morphology significantly impacts spatial and temporal behavior of large-scale flow structures as well as wall shear stress distribution. The flow behavior and structures showed a significant difference with change in inflow conditions. A primary fluctuating flow structure was observed for Reynolds number of 50, while for higher Reynolds numbers, primary and secondary flow structures were observed. Furthermore, the paths of these coherent structures were dependent on aneurysm shape and inflow parameters.

  2. The Contact Dynamics method: A nonsmooth story

    NASA Astrophysics Data System (ADS)

    Dubois, Frédéric; Acary, Vincent; Jean, Michel

    2018-03-01

    When velocity jumps are occurring, the dynamics is said to be nonsmooth. For instance, in collections of contacting rigid bodies, jumps are caused by shocks and dry friction. Without compliance at the interface, contact laws are not only non-differentiable in the usual sense but also multi-valued. Modeling contacting bodies is of interest in order to understand the behavior of numerous mechanical systems such as flexible multi-body systems, granular materials or masonry. These granular materials behave puzzlingly either like a solid or a fluid and a description in the frame of classical continuous mechanics would be welcome though far to be satisfactory nowadays. Jean-Jacques Moreau greatly contributed to convex analysis, functions of bounded variations, differential measure theory, sweeping process theory, definitive mathematical tools to deal with nonsmooth dynamics. He converted all these underlying theoretical ideas into an original nonsmooth implicit numerical method called Contact Dynamics (CD); a robust and efficient method to simulate large collections of bodies with frictional contacts and impacts. The CD method offers a very interesting complementary alternative to the family of smoothed explicit numerical methods, often called Distinct Elements Method (DEM). In this paper developments and improvements of the CD method are presented together with a critical comparative review of advantages and drawbacks of both approaches. xml:lang="fr"

  3. Energy conserving schemes for the simulation of musical instrument contact dynamics

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Vasileios; van Walstijn, Maarten

    2015-03-01

    Collisions are an innate part of the function of many musical instruments. Due to the nonlinear nature of contact forces, special care has to be taken in the construction of numerical schemes for simulation and sound synthesis. Finite difference schemes and other time-stepping algorithms used for musical instrument modelling purposes are normally arrived at by discretising a Newtonian description of the system. However because impact forces are non-analytic functions of the phase space variables, algorithm stability can rarely be established this way. This paper presents a systematic approach to deriving energy conserving schemes for frictionless impact modelling. The proposed numerical formulations follow from discretising Hamilton's equations of motion, generally leading to an implicit system of nonlinear equations that can be solved with Newton's method. The approach is first outlined for point mass collisions and then extended to distributed settings, such as vibrating strings and beams colliding with rigid obstacles. Stability and other relevant properties of the proposed approach are discussed and further demonstrated with simulation examples. The methodology is exemplified through a case study on tanpura string vibration, with the results confirming the main findings of previous studies on the role of the bridge in sound generation with this type of string instrument.

  4. Measurement of dowel bar response in rigid pavement

    DOT National Transportation Integrated Search

    1999-01-01

    The effectiveness of load transfer between adjacent slabs is an important component of long term rigid pavement performance. When load transfer is minimal or non-existent, concrete slabs must carry the full weight of truck axles across their entire l...

  5. Correlation of impression removal force with elastomeric impression material rigidity and hardness.

    PubMed

    Walker, Mary P; Alderman, Nick; Petrie, Cynthia S; Melander, Jennifer; McGuire, Jacob

    2013-07-01

    Difficult impression removal has been linked to high rigidity and hardness of elastomeric impression materials. In response to this concern, manufacturers have reformulated their materials to reduce rigidity and hardness to decrease removal difficulty; however, the relationship between impression removal and rigidity or hardness has not been evaluated. The purpose of this study was to determine if there is a positive correlation between impression removal difficulty and rigidity or hardness of current elastomeric impression materials. Light- and medium-body polyether (PE), vinylpolysiloxane (VPS), and hybrid vinyl polyether siloxane (VPES) impression materials were tested (n = 5 for each material/consistency/test method). Rigidity (elastic modulus) was measured via tensile testing of dumbbell-shaped specimens (Die C, ASTM D412). Shore A hardness was measured using disc specimens according to ASTM D2240-05 test specifications. Impressions were also made of a custom stainless steel model using a custom metal tray that could be attached to a universal tester to measure associated removal force. Within each impression material consistency, one-factor ANOVA and Tukey's post hoc analyses (α = 0.05) were used to compare rigidity, hardness, and removal force of the three types of impression materials. A Pearson's correlation (α = 0.05) was used to evaluate the association between impression removal force and rigidity or hardness. With medium-body materials, VPS exhibited significantly higher (p ≤ 0.05) rigidity and hardness than VPES or PE, while PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES impressions. With light-body materials, VPS again demonstrated significantly higher (p ≤ 0.05) hardness than VPES or PE, while the rigidity of the light-body materials did not significantly differ between materials (p > 0.05); however, just as with the medium-body materials, light-body PE impressions required significantly higher (p ≤ 0.05) removal force than VPS or VPES. Moreover, there was no positive correlation (p > 0.05) between impression removal force and rigidity or hardness with either medium- or light-body materials. The evidence suggests that high impression material rigidity and hardness are not predictors of impression removal difficulty. © 2013 by the American College of Prosthodontists.

  6. Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers

    NASA Technical Reports Server (NTRS)

    Guru Prasad, K.; Kane, J. H.

    1992-01-01

    The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.

  7. Anticipating explanations in relative clause processing.

    PubMed

    Rohde, H; Levy, R; Kehler, A

    2011-03-01

    We show that comprehenders' expectations about upcoming discourse coherence relations influence the resolution of local structural ambiguity. We employ cases in which two clauses share both a syntactic relationship and a discourse relationship, and hence in which syntactic and discourse processing might be expected to interact. An off-line sentence-completion study and an on-line self-paced reading study examined readers' expectations for high/low relative-clause attachments following implicit-causality and non-implicit causality verbs (John detests/babysits the children of the musician who…). In the off-line study, the widely reported low-attachment preference for English is observed in the non-implicit causality condition, but this preference gives way to more high attachments in the implicit-causality condition in cases in which (i) the verb's causally implicated referent occupies the high-attachment position and (ii) the relative clause provides an explanation for the event described by the matrix clause (e.g., …who are arrogant and rude). In the on-line study, a similar preference for high attachment emerges in the implicit-causality context-crucially, before the occurrence of any linguistic evidence that the RC does in fact provide an explanation-whereas the low-attachment preference is consistent elsewhere. These findings constitute the first demonstration that expectations about ensuing discourse coherence relationships can elicit full reversals in syntactic attachment preferences, and that these discourse-level expectations can affect on-line disambiguation as rapidly as lexical and morphosyntactic cues. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Anticipating Explanations in Relative Clause Processing

    PubMed Central

    Rohde, H.; Levy, R.; Kehler, A.

    2011-01-01

    We show that comprehenders’ expectations about upcoming discourse coherence relations influence the resolution of local structural ambiguity. We employ cases in which two clauses share both a syntactic relationship and a discourse relationship, and hence in which syntactic and discourse processing might be expected to interact. An off-line sentence-completion study and an on-line self-paced reading study examined readers’ expectations for high/low relative clause attachments following implicit-causality and non-implicit-causality verbs (John detests/babysits the children of the musician who…). In the off-line study, the widely reported low-attachment preference for English is observed in the non-implicit causality condition, but this preference gives way to more high attachments in the implicit causality condition in cases in which (i) the verb’s causally implicated referent occupies the high-attachment position and (ii) the relative clause provides an explanation for the event described by the matrix clause (e.g., …who are arrogant and rude). In the on-line study, a similar preference for high attachment emerges in the implicit causality context—crucially, before the occurrence of any linguistic evidence that the RC does in fact provide an explanation—whereas the low-attachment preference is consistent elsewhere. These findings constitute the first demonstration that expectations about ensuing discourse coherence relationships can elicit full reversals in syntactic attachment preferences, and that these discourse-level expectations can affect on-line disambiguation as rapidly as lexical and morphosyntactic cues. PMID:21216396

  9. Learning New Letter-like Writing Patterns Explicitly and Implicitly in Children and Adults.

    PubMed

    Jongbloed-Pereboom, M; Overvelde, A; Nijhuis-van der Sanden, M W G; Steenbergen, B

    2017-12-15

    A handwriting task was used to test the assumption that explicit learning is dependent on age and working memory, while implicit learning is not. The effect of age was examined by testing both, typically developing children (5-12 years old, n = 81) and adults (n = 27) in a counterbalanced within-subjects design. Participants were asked to repeatedly write letter-like patterns on a digitizer with a non-inking pen. Reproduction of the pattern was better after explicit learning compared to implicit learning. Age had positive effects on both explicit and implicit learning; working memory did not affect learning in either conditions. These results show that it may be more effective to learn writing new letter-like patterns explicitly and that an explicit teaching method is preferred in mainstream primary education.

  10. Shipping container for fissile material

    DOEpatents

    Crowder, H.E.

    1984-12-17

    The present invention is directed to a shipping container for the interstate transportation of enriched uranium materials. The shipping container is comprised of a rigid, high-strength, cylindrical-shaped outer vessel lined with thermal insulation. Disposed inside the thermal insulation and spaced apart from the inner walls of the outer vessel is a rigid, high-strength, cylindrical inner vessel impervious to liquid and gaseous substances and having the inner surfaces coated with a layer of cadmium to prevent nuclear criticality. The cadmium is, in turn, lined with a protective shield of high-density urethane for corrosion and wear protection. 2 figs.

  11. Geometric modeling of hepatic arteries in 3D ultrasound with unsupervised MRA fusion during liver interventions.

    PubMed

    Gérard, Maxime; Michaud, François; Bigot, Alexandre; Tang, An; Soulez, Gilles; Kadoury, Samuel

    2017-06-01

    Modulating the chemotherapy injection rate with regard to blood flow velocities in the tumor-feeding arteries during intra-arterial therapies may help improve liver tumor targeting while decreasing systemic exposure. These velocities can be obtained noninvasively using Doppler ultrasound (US). However, small vessels situated in the liver are difficult to identify and follow in US. We propose a multimodal fusion approach that non-rigidly registers a 3D geometric mesh model of the hepatic arteries obtained from preoperative MR angiography (MRA) acquisitions with intra-operative 3D US imaging. The proposed fusion tool integrates 3 imaging modalities: an arterial MRA, a portal phase MRA and an intra-operative 3D US. Preoperatively, the arterial phase MRA is used to generate a 3D model of the hepatic arteries, which is then non-rigidly co-registered with the portal phase MRA. Once the intra-operative 3D US is acquired, we register it with the portal MRA using a vessel-based rigid initialization followed by a non-rigid registration using an image-based metric based on linear correlation of linear combination. Using the combined non-rigid transformation matrices, the 3D mesh model is fused with the 3D US. 3D US and multi-phase MRA images acquired from 10 porcine models were used to test the performance of the proposed fusion tool. Unimodal registration of the MRA phases yielded a target registration error (TRE) of [Formula: see text] mm. Initial rigid alignment of the portal MRA and 3D US yielded a mean TRE of [Formula: see text] mm, which was significantly reduced to [Formula: see text] mm ([Formula: see text]) after affine image-based registration. The following deformable registration step allowed for further decrease of the mean TRE to [Formula: see text] mm. The proposed tool could facilitate visualization and localization of these vessels when using 3D US intra-operatively for either intravascular or percutaneous interventions to avoid vessel perforation.

  12. Teachers' Implicit Attitudes, Explicit Beliefs, and the Mediating Role of Respect and Cultural Responsibility on Mastery and Performance-Focused Instructional Practices

    ERIC Educational Resources Information Center

    Kumar, Revathy; Karabenick, Stuart A.; Burgoon, Jacob N.

    2015-01-01

    The theory of planned behavior and the dual process attitude-to-behavior MODE model framed an examination of how White teachers' (N = 241) implicit and explicit attitudes toward White versus non-White students were related to their classroom instructional practices in 2 school districts with a high percentage of Arab American and Chaldean American…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  14. The neural basis of implicit learning and memory: a review of neuropsychological and neuroimaging research.

    PubMed

    Reber, Paul J

    2013-08-01

    Memory systems research has typically described the different types of long-term memory in the brain as either declarative versus non-declarative or implicit versus explicit. These descriptions reflect the difference between declarative, conscious, and explicit memory that is dependent on the medial temporal lobe (MTL) memory system, and all other expressions of learning and memory. The other type of memory is generally defined by an absence: either the lack of dependence on the MTL memory system (nondeclarative) or the lack of conscious awareness of the information acquired (implicit). However, definition by absence is inherently underspecified and leaves open questions of how this type of memory operates, its neural basis, and how it differs from explicit, declarative memory. Drawing on a variety of studies of implicit learning that have attempted to identify the neural correlates of implicit learning using functional neuroimaging and neuropsychology, a theory of implicit memory is presented that describes it as a form of general plasticity within processing networks that adaptively improve function via experience. Under this model, implicit memory will not appear as a single, coherent, alternative memory system but will instead be manifested as a principle of improvement from experience based on widespread mechanisms of cortical plasticity. The implications of this characterization for understanding the role of implicit learning in complex cognitive processes and the effects of interactions between types of memory will be discussed for examples within and outside the psychology laboratory. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Ab Initio Effective Rovibrational Hamiltonians for Non-Rigid Molecules via Curvilinear VMP2

    NASA Astrophysics Data System (ADS)

    Changala, Bryan; Baraban, Joshua H.

    2017-06-01

    Accurate predictions of spectroscopic constants for non-rigid molecules are particularly challenging for ab initio theory. For all but the smallest systems, ``brute force'' diagonalization of the full rovibrational Hamiltonian is computationally prohibitive, leaving us at the mercy of perturbative approaches. However, standard perturbative techniques, such as second order vibrational perturbation theory (VPT2), are based on the approximation that a molecule makes small amplitude vibrations about a well defined equilibrium structure. Such assumptions are physically inappropriate for non-rigid systems. In this talk, we will describe extensions to curvilinear vibrational Møller-Plesset perturbation theory (VMP2) that account for rotational and rovibrational effects in the molecular Hamiltonian. Through several examples, we will show that this approach provides predictions to nearly microwave accuracy of molecular constants including rotational and centrifugal distortion parameters, Coriolis coupling constants, and anharmonic vibrational and tunneling frequencies.

  16. Implicit measures of beliefs about sport ability in swimming and basketball.

    PubMed

    Mascret, Nicolas; Falconetti, Jean-Louis; Cury, François

    2016-01-01

    Sport ability may be seen as relatively stable, genetically determined and not easily modified by practice, or as increasable with training, work and effort. Using the Implicit Association Test (IAT), the purpose of the present study is to examine whether the practice of a particular sport (swimming or basketball) can influence automatic beliefs about sport ability in these two sports. The IAT scores evidence that swimmers and basketball players automatically and implicitly associate their own sport with training rather than genetics, whereas non-sportspersons have no significant automatic association. This result is strengthened when perceived competence and intrinsic motivation in swimming or basketball are high.

  17. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE PAGES

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    2017-01-01

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  18. The mimetic finite difference method for the Landau–Lifshitz equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eugenia Hail; Lipnikov, Konstantin Nikolayevich

    The Landau–Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. Themore » developed schemes are tested on general meshes that include distorted and randomized meshes. As a result, the numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.« less

  19. Physiological responses and partisan bias: beyond self-reported measures of party identification.

    PubMed

    Petersen, Michael Bang; Giessing, Ann; Nielsen, Jesper

    2015-01-01

    People are biased partisans: they tend to agree with policies from political parties they identify with, independent of policy content. Here, we investigate how physiological reactions to political parties shape bias. Using changes in galvanic skin conductance responses to the visual presentation of party logos, we obtained an implicit and physiological measure of the affective arousal associated with political parties. Subsequently, we exposed subjects to classical party cue experiments where the party sponsors of specific policies were experimentally varied. We found that partisan bias only obtains among those exhibiting a strong physiological reaction to the party source; being a self-reported party identifier is not sufficient on its own. This suggests that partisan bias is rooted in implicit, affective reactions.

  20. Physiological Responses and Partisan Bias: Beyond Self-Reported Measures of Party Identification

    PubMed Central

    Petersen, Michael Bang; Giessing, Ann; Nielsen, Jesper

    2015-01-01

    People are biased partisans: they tend to agree with policies from political parties they identify with, independent of policy content. Here, we investigate how physiological reactions to political parties shape bias. Using changes in galvanic skin conductance responses to the visual presentation of party logos, we obtained an implicit and physiological measure of the affective arousal associated with political parties. Subsequently, we exposed subjects to classical party cue experiments where the party sponsors of specific policies were experimentally varied. We found that partisan bias only obtains among those exhibiting a strong physiological reaction to the party source; being a self-reported party identifier is not sufficient on its own. This suggests that partisan bias is rooted in implicit, affective reactions. PMID:26010527

  1. Comparison of arterial spin labeling registration strategies in the multi-center GENetic frontotemporal dementia initiative (GENFI).

    PubMed

    Mutsaerts, Henri J M M; Petr, Jan; Thomas, David L; De Vita, Enrico; Cash, David M; van Osch, Matthias J P; Golay, Xavier; Groot, Paul F C; Ourselin, Sebastien; van Swieten, John; Laforce, Robert; Tagliavini, Fabrizio; Borroni, Barbara; Galimberti, Daniela; Rowe, James B; Graff, Caroline; Pizzini, Francesca B; Finger, Elizabeth; Sorbi, Sandro; Castelo Branco, Miguel; Rohrer, Jonathan D; Masellis, Mario; MacIntosh, Bradley J

    2018-01-01

    To compare registration strategies to align arterial spin labeling (ASL) with 3D T1-weighted (T1w) images, with the goal of reducing the between-subject variability of cerebral blood flow (CBF) images. Multi-center 3T ASL data were collected at eight sites with four different sequences in the multi-center GENetic Frontotemporal dementia Initiative (GENFI) study. In a total of 48 healthy controls, we compared the following image registration options: (I) which images to use for registration (perfusion-weighted images [PWI] to the segmented gray matter (GM) probability map (pGM) (CBF-pGM) or M0 to T1w (M0-T1w); (II) which transformation to use (rigid-body or non-rigid); and (III) whether to mask or not (no masking, M0-based FMRIB software library Brain Extraction Tool [BET] masking). In addition to visual comparison, we quantified image similarity using the Pearson correlation coefficient (CC), and used the Mann-Whitney U rank sum test. CBF-pGM outperformed M0-T1w (CC improvement 47.2% ± 22.0%; P < 0.001), and the non-rigid transformation outperformed rigid-body (20.6% ± 5.3%; P < 0.001). Masking only improved the M0-T1w rigid-body registration (14.5% ± 15.5%; P = 0.007). The choice of image registration strategy impacts ASL group analyses. The non-rigid transformation is promising but requires validation. CBF-pGM rigid-body registration without masking can be used as a default strategy. In patients with expansive perfusion deficits, M0-T1w may outperform CBF-pGM in sequences with high effective spatial resolution. BET-masking only improves M0-T1w registration when the M0 image has sufficient contrast. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:131-140. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Not the typical winter cough

    PubMed Central

    Sanchez, G Parra; Chetty, Govind; Sarkar, Pradip K

    2007-01-01

    We report on a young adult with a foreign body lodged in the right main bronchus for at least 5 days, with no alleged recollection of aspiration despite the size and shape of the object, which was removed successfully by rigid bronchoscopy. PMID:17384367

  3. Integration of patient specific modeling and advanced image processing techniques for image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Archip, Neculai; Fedorov, Andriy; Lloyd, Bryn; Chrisochoides, Nikos; Golby, Alexandra; Black, Peter M.; Warfield, Simon K.

    2006-03-01

    A major challenge in neurosurgery oncology is to achieve maximal tumor removal while avoiding postoperative neurological deficits. Therefore, estimation of the brain deformation during the image guided tumor resection process is necessary. While anatomic MRI is highly sensitive for intracranial pathology, its specificity is limited. Different pathologies may have a very similar appearance on anatomic MRI. Moreover, since fMRI and diffusion tensor imaging are not currently available during the surgery, non-rigid registration of preoperative MR with intra-operative MR is necessary. This article presents a translational research effort that aims to integrate a number of state-of-the-art technologies for MRI-guided neurosurgery at the Brigham and Women's Hospital (BWH). Our ultimate goal is to routinely provide the neurosurgeons with accurate information about brain deformation during the surgery. The current system is tested during the weekly neurosurgeries in the open magnet at the BWH. The preoperative data is processed, prior to the surgery, while both rigid and non-rigid registration algorithms are run in the vicinity of the operating room. The system is tested on 9 image datasets from 3 neurosurgery cases. A method based on edge detection is used to quantitatively validate the results. 95% Hausdorff distance between points of the edges is used to estimate the accuracy of the registration. Overall, the minimum error is 1.4 mm, the mean error 2.23 mm, and the maximum error 3.1 mm. The mean ratio between brain deformation estimation and rigid alignment is 2.07. It demonstrates that our results can be 2.07 times more precise then the current technology. The major contribution of the presented work is the rigid and non-rigid alignment of the pre-operative fMRI with intra-operative 0.5T MRI achieved during the neurosurgery.

  4. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction.

    PubMed

    Povšič, K; Jezeršek, M; Možina, J

    2015-07-01

    Real-time 3D visualization of the breathing displacements can be a useful diagnostic tool in order to immediately observe the most active regions on the thoraco-abdominal surface. The developed method is capable of separating non-relevant torso movement and deformations from the deformations that are solely related to breathing. This makes it possible to visualize only the breathing displacements. The system is based on the structured laser triangulation principle, with simultaneous spatial and color data acquisition of the thoraco-abdominal region. Based on the tracking of the attached passive markers, the torso movement and deformation is compensated using rigid and non-rigid transformation models on the three-dimensional (3D) data. The total time of 3D data processing together with visualization equals 20 ms per cycle.In vitro verification of the rigid movement extraction was performed using the iterative closest point algorithm as a reference. Furthermore, a volumetric evaluation on a live subject was performed to establish the accuracy of the rigid and non-rigid model. The root mean square deviation between the measured and the reference volumes shows an error of  ±0.08 dm(3) for rigid movement extraction. Similarly, the error was calculated to be  ±0.02 dm(3) for torsional deformation extraction and  ±0.11 dm(3) for lateral bending deformation extraction. The results confirm that during the torso movement and deformation, the proposed method is sufficiently accurate to visualize only the displacements related to breathing. The method can be used, for example, during the breathing exercise on an indoor bicycle or a treadmill.

  5. Anatomy structure creation and editing using 3D implicit surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibbard, Lyndon S.

    2012-05-15

    Purpose: To accurately reconstruct, and interactively reshape 3D anatomy structures' surfaces using small numbers of 2D contours drawn in the most visually informative views of 3D imagery. The innovation of this program is that the number of 2D contours can be very much smaller than the number of transverse sections, even for anatomy structures spanning many sections. This program can edit 3D structures from prior segmentations, including those from autosegmentation programs. The reconstruction and surface editing works with any image modality. Methods: Structures are represented by variational implicit surfaces defined by weighted sums of radial basis functions (RBFs). Such surfacesmore » are smooth, continuous, and closed and can be reconstructed with RBFs optimally located to efficiently capture shape in any combination of transverse (T), sagittal (S), and coronal (C) views. The accuracy of implicit surface reconstructions was measured by comparisons with the corresponding expert-contoured surfaces in 103 prostate cancer radiotherapy plans. Editing a pre-existing surface is done by overdrawing its profiles in image views spanning the affected part of the structure, deleting an appropriate set of prior RBFs, and merging the remainder with the new edit contour RBFs. Two methods were devised to identify RBFs to be deleted based only on the geometry of the initial surface and the locations of the new RBFs. Results: Expert-contoured surfaces were compared with implicit surfaces reconstructed from them over varying numbers and combinations of T/S/C planes. Studies revealed that surface-surface agreement increases monotonically with increasing RBF-sample density, and that the rate of increase declines over the same range. These trends were observed for all surface agreement metrics and for all the organs studied--prostate, bladder, and rectum. In addition, S and C contours may convey more shape information than T views for CT studies in which the axial slice thickness is greater than the pixel size. Surface editing accuracy likewise improves with larger sampling densities, and the rate of improvement similarly declines over the same conditions. Conclusions: Implicit surfaces based on RBFs are accurate representations of anatomic structures and can be interactively generated or modified to correct segmentation errors. The number of input contours is typically smaller than the number of T contours spanned by the structure.« less

  6. Reporting the Great Railroad Strike: How Ideology Shaped the News.

    ERIC Educational Resources Information Center

    Coward, John

    The Great Railroad Strike of 1877, a national catastrophe and the major news story of the year, was the first national labor strike in U.S. history. Because of the ideological bias of the press, specifically its implicit commitment to capitalism and to objectivity (itself a "myth" of social order), newspapers of the period could be…

  7. Toward a Pragmatic Discourse of Constructivism: Reflections on Lessons from Practice

    ERIC Educational Resources Information Center

    Gordon, Mordechai

    2009-01-01

    In the past few decades, a constructivist discourse has emerged as a very powerful model for explaining how knowledge is produced in the world, as well as how students learn. Constructivists believe that what is deemed knowledge is always informed by a particular perspective and shaped by various implicit value judgments. However, there is an…

  8. A linear stepping endovascular intervention robot with variable stiffness and force sensing.

    PubMed

    He, Chengbin; Wang, Shuxin; Zuo, Siyang

    2018-05-01

    Robotic-assisted endovascular intervention surgery has attracted significant attention and interest in recent years. However, limited designs have focused on the variable stiffness mechanism of the catheter shaft. Flexible catheter needs to be partially switched to a rigid state that can hold its shape against external force to achieve a stable and effective insertion procedure. Furthermore, driving catheter in a similar way with manual procedures has the potential to make full use of the extensive experience from conventional catheter navigation. Besides driving method, force sensing is another significant factor for endovascular intervention. This paper presents a variable stiffness catheterization system that can provide stable and accurate endovascular intervention procedure with a linear stepping mechanism that has a similar operation mode to the conventional catheter navigation. A specially designed shape-memory polymer tube with water cooling structure is used to achieve variable stiffness of the catheter. Hence, four FBG sensors are attached to the catheter tip in order to monitor the tip contact force situation with temperature compensation. Experimental results show that the actuation unit is able to deliver linear and rotational motions. We have shown the feasibility of FBG force sensing to reduce the effect of temperature and detect the tip contact force. The designed catheter can change its stiffness partially, and the stiffness of the catheter can be remarkably increased in rigid state. Hence, in the rigid state, the catheter can hold its shape against a [Formula: see text] load. The prototype has also been validated with a vascular phantom, demonstrating the potential clinical value of the system. The proposed system provides important insights into the design of compact robotic-assisted catheter incorporating effective variable stiffness mechanism and real-time force sensing for intraoperative endovascular intervention.

  9. Electrically operated magnetic switch designed to display reduced leakage inductance

    DOEpatents

    Cook, E.G.

    1994-05-10

    An electrically operated magnetic switch is disclosed herein for use in opening and closing a circuit between two terminals depending upon the voltage across these terminals. The switch so disclosed is comprised of a ferrite core in the shape of a toroid having opposing ends and opposite inner and outer sides and an arrangement of electrically conductive components defining at least one current flow path which makes a number of turns around the core. This arrangement of components includes a first plurality of electrically conducive rigid rods parallel with and located outside the outer side of the core and a second plurality of electrically conductive rigid rods parallel with and located inside the inner side of the core. The arrangement also includes means for electrically connecting these rods together so that the define the current flow path. In one embodiment, this latter means uses rigid cross-tab means. In another, preferred embodiment, printed circuits on rigid dielectric substrates located on opposite ends of the core are utilized to interconnect the rods together. 10 figures.

  10. Peeling flexible beams in viscous fluids: Rigidity and extensional compliance

    NASA Astrophysics Data System (ADS)

    Dhong, Charles; Fréchette, Joëlle

    2017-01-01

    We describe small angle peeling measurements in completely submerged environments to study the coupling between viscous forces and the mechanical properties of the plates being peeled. During the experiments, the plates resist motion because of lubrication forces while van der Waals forces between the plates and the static surface are negligible. In particular, we study the role played by flexural rigidity in the force-displacement curves and in the energy release rate. We show that the coupling between the viscous forces and the flexural rigidity of the plates dictates the shape and magnitude of the force-displacement curves. We develop simple scaling relationships that combine the lubrication forces with an Euler-Bernoulli beam to extract how the peak force and energy release rates depend on the ratio between rigidity and viscosity, and show good agreement between the predictions and experimental results. We also show that increasing the extensional compliance leads to a decrease in both the force-displacement curve and in the energy release rate. We then demonstrate that this reduction can be interpreted in terms of a stress decay length.

  11. Forces and torques on rigid inclusions in an elastic environment: Resulting matrix-mediated interactions, displacements, and rotations

    NASA Astrophysics Data System (ADS)

    Puljiz, Mate; Menzel, Andreas M.

    2017-05-01

    Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.

  12. Can singular examples change implicit attitudes in the real-world?

    PubMed Central

    Roos, Leslie E.; Lebrecht, Sophie; Tanaka, James W.; Tarr, Michael J.

    2013-01-01

    Implicit attitudes about social groups persist independently of explicit beliefs and can influence not only social behavior, but also medical and legal practices. Although examples presented in the laboratory can alter such implicit attitudes, it is unclear whether the same influence is exerted by real-world exemplars. Following the 2008 US election, Plant et al. reported that the Implicit Association Test or “IAT” revealed a decrease in negative implicit attitudes toward African-Americans. However, a large-scale study also employing the IAT found little evidence for a change in implicit attitudes pre- and post-election. Here we present evidence that the 2008 US election may have facilitated at least a temporary change in implicit racial attitudes in the US. Our results rely on the Affective Lexical Priming Score or “ALPS” and pre- and post-election measurements for both US and non-US participants. US students who, pre-election, exhibited negative associations with black faces, post-election showed positive associations with black faces. Canadian students pre- and post-election did not show a similar shift. To account for these findings, we posit that the socio-cognitive processes underlying ALPS are different from those underlying the IAT. Acknowledging that we cannot form a causal link between an intervening real-world event and laboratory-measured implicit attitudes, we speculate that our findings may be driven by the fact that the 2008 election campaign included extremely positive media coverage of President Obama and prominently featured his face in association with positive words—similar to the structure of ALPS. Even so, our real-world finding adds to the literature demonstrating the malleability of implicit attitudes and has implications for how we understand the socio-cognitive mechanisms underlying stereotypes. PMID:24046756

  13. Harmonic oscillations of laminae in non-Newtonian fluids: A lattice Boltzmann-Immersed Boundary approach

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro

    2014-11-01

    In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.

  14. MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE

    NASA Technical Reports Server (NTRS)

    Hull, R. A.

    1994-01-01

    The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.

  15. Self-Deployable Membrane Structures

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.

    2010-01-01

    Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems that can use up the majority of the mass budget

  16. Implicit Learning of Complex Visual Contexts Under Non-Optimal Conditions

    DTIC Science & Technology

    2007-07-27

    Perception & Performance, 31(6), 1439-1448. 3. Jiang Y, Song J-H, Rigas A (2005). High-capacity spatial contextual memory. Psychonomic Bulletin & Review , 12...Makovski T., & Jiang YV (in press). Distributing versus focusing attention in visual short-term memory. Psychonomic Bulletin & Review . 8. Rausei V...Implicit learning of ignored visual context. Psychonomic Bulletin & Review , 12(1), 100-106. Jiang, Y. H., & Song, J. H. (2005). Spatial context

  17. Unsteady Flow Simulation: A Numerical Challenge

    DTIC Science & Technology

    2003-03-01

    drive to convergence the numerical unsteady term. The time marching procedure is based on the approximate implicit Newton method for systems of non...computed through analytical derivatives of S. The linear system stemming from equation (3) is solved at each integration step by the same iterative method...significant reduction of memory usage, thanks to the reduced dimensions of the linear system matrix during the implicit marching of the solution. The

  18. Visual artificial grammar learning in dyslexia: A meta-analysis.

    PubMed

    van Witteloostuijn, Merel; Boersma, Paul; Wijnen, Frank; Rispens, Judith

    2017-11-01

    Literacy impairments in dyslexia have been hypothesized to be (partly) due to an implicit learning deficit. However, studies of implicit visual artificial grammar learning (AGL) have often yielded null results. The aim of this study is to weigh the evidence collected thus far by performing a meta-analysis of studies on implicit visual AGL in dyslexia. Thirteen studies were selected through a systematic literature search, representing data from 255 participants with dyslexia and 292 control participants (mean age range: 8.5-36.8 years old). If the 13 selected studies constitute a random sample, individuals with dyslexia perform worse on average than non-dyslexic individuals (average weighted effect size=0.46, 95% CI [0.14 … 0.77], p=0.008), with a larger effect in children than in adults (p=0.041; average weighted effect sizes 0.71 [sig.] versus 0.16 [non-sig.]). However, the presence of a publication bias indicates the existence of missing studies that may well null the effect. While the studies under investigation demonstrate that implicit visual AGL is impaired in dyslexia (more so in children than in adults, if in adults at all), the detected publication bias suggests that the effect might in fact be zero. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Eyes that bind us: Gaze leading induces an implicit sense of agency.

    PubMed

    Stephenson, Lisa J; Edwards, S Gareth; Howard, Emma E; Bayliss, Andrew P

    2018-03-01

    Humans feel a sense of agency over the effects their motor system causes. This is the case for manual actions such as pushing buttons, kicking footballs, and all acts that affect the physical environment. We ask whether initiating joint attention - causing another person to follow our eye movement - can elicit an implicit sense of agency over this congruent gaze response. Eye movements themselves cannot directly affect the physical environment, but joint attention is an example of how eye movements can indirectly cause social outcomes. Here we show that leading the gaze of an on-screen face induces an underestimation of the temporal gap between action and consequence (Experiments 1 and 2). This underestimation effect, named 'temporal binding,' is thought to be a measure of an implicit sense of agency. Experiment 3 asked whether merely making an eye movement in a non-agentic, non-social context might also affect temporal estimation, and no reliable effects were detected, implying that inconsequential oculomotor acts do not reliably affect temporal estimations under these conditions. Together, these findings suggest that an implicit sense of agency is generated when initiating joint attention interactions. This is important for understanding how humans can efficiently detect and understand the social consequences of their actions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multigrid treatment of implicit continuum diffusion

    NASA Astrophysics Data System (ADS)

    Francisquez, Manaure; Zhu, Ben; Rogers, Barrett

    2017-10-01

    Implicit treatment of diffusive terms of various differential orders common in continuum mechanics modeling, such as computational fluid dynamics, is investigated with spectral and multigrid algorithms in non-periodic 2D domains. In doubly periodic time dependent problems these terms can be efficiently and implicitly handled by spectral methods, but in non-periodic systems solved with distributed memory parallel computing and 2D domain decomposition, this efficiency is lost for large numbers of processors. We built and present here a multigrid algorithm for these types of problems which outperforms a spectral solution that employs the highly optimized FFTW library. This multigrid algorithm is not only suitable for high performance computing but may also be able to efficiently treat implicit diffusion of arbitrary order by introducing auxiliary equations of lower order. We test these solvers for fourth and sixth order diffusion with idealized harmonic test functions as well as a turbulent 2D magnetohydrodynamic simulation. It is also shown that an anisotropic operator without cross-terms can improve model accuracy and speed, and we examine the impact that the various diffusion operators have on the energy, the enstrophy, and the qualitative aspect of a simulation. This work was supported by DOE-SC-0010508. This research used resources of the National Energy Research Scientific Computing Center (NERSC).

  1. Non-interpretive mechanisms in psychoanalytic therapy. The 'something more' than interpretation. The Process of Change Study Group.

    PubMed

    Stern, D N; Sander, L W; Nahum, J P; Harrison, A M; Lyons-Ruth, K; Morgan, A C; Bruschweiler-Stern, N; Tronick, E Z

    1998-10-01

    It is by now generally accepted that something more than interpretation is necessary to bring about therapeutic change. Using an approach based on recent studies of mother-infant interaction and non-linear dynamic systems and their relation to theories of mind, the authors propose that the something more resides in interactional intersubjective process that give rise to what they will call 'implicit relational knowing'. This relational procedural domain is intrapsychically distinct from the symbolic domain. In the analytic relationship it comprises intersubjective moments occurring between patient and analyst that can create new organisations in, or reorganise not only the relationship between the interactants, but more importantly the patient's implicit procedural knowledge, his ways of being with others. The distinct qualities and consequences of these moments (now moments, 'moments of meeting') are modelled and discussed in terms of a sequencing process that they call moving along. Conceptions of the shared implicit relationship, transference and countertransference are discussed within the parameters of this perspective, which is distinguished from other relational theories and self-psychology. In sum, powerful therapeutic action occurs within implicit relational knowledge. They propose that much of what is observed to be lasting therapeutic effect results from such changes in this intersubjective relational domain.

  2. Transient modeling/analysis of hyperbolic heat conduction problems employing mixed implicit-explicit alpha method

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; D'Costa, Joseph F.

    1991-01-01

    This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.

  3. Implicit learning of non-spatial sequences in schizophrenia

    PubMed Central

    MARVEL, CHERIE L.; SCHWARTZ, BARBARA L.; HOWARD, DARLENE V.; HOWARD, JAMES H.

    2006-01-01

    Recent studies have reported abnormal implicit learning of sequential patterns in patients with schizophrenia. Because these studies were based on visuospatial cues, the question remained whether patients were impaired simply due to the demands of spatial processing. This study examined implicit sequence learning in 24 patients with schizophrenia and 24 healthy controls using a non-spatial variation of the serial reaction time test (SRT) in which pattern stimuli alternated with random stimuli on every other trial. Both groups showed learning by responding faster and more accurately to pattern trials than to random trials. Patients, however, showed a smaller magnitude of sequence learning. Both groups were unable to demonstrate explicit knowledge of the nature of the pattern, confirming that learning occurred without awareness. Clinical variables were not correlated with the patients' learning deficits. Patients with schizophrenia have a decreased ability to develop sensitivity to regularly occurring sequences of events within their environment. This type of deficit may affect an array of cognitive and motor functions that rely on the perception of event regularity. PMID:16248901

  4. Implicit co-activation of American Sign Language in deaf readers: An ERP study.

    PubMed

    Meade, Gabriela; Midgley, Katherine J; Sevcikova Sehyr, Zed; Holcomb, Phillip J; Emmorey, Karen

    2017-07-01

    In an implicit phonological priming paradigm, deaf bimodal bilinguals made semantic relatedness decisions for pairs of English words. Half of the semantically unrelated pairs had phonologically related translations in American Sign Language (ASL). As in previous studies with unimodal bilinguals, targets in pairs with phonologically related translations elicited smaller negativities than targets in pairs with phonologically unrelated translations within the N400 window. This suggests that the same lexicosemantic mechanism underlies implicit co-activation of a non-target language, irrespective of language modality. In contrast to unimodal bilingual studies that find no behavioral effects, we observed phonological interference, indicating that bimodal bilinguals may not suppress the non-target language as robustly. Further, there was a subset of bilinguals who were aware of the ASL manipulation (determined by debrief), and they exhibited an effect of ASL phonology in a later time window (700-900ms). Overall, these results indicate modality-independent language co-activation that persists longer for bimodal bilinguals. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Training Implicit Social Anxiety Associations: An Experimental Intervention

    PubMed Central

    Clerkin, Elise M.; Teachman, Bethany A.

    2010-01-01

    The current study investigates an experimental anxiety reduction intervention among a highly socially anxious sample (N=108; n=36 per Condition; 80 women). Using a conditioning paradigm, our goal was to modify implicit social anxiety associations to directly test the premise from cognitive models that biased cognitive processing may be causally related to anxious responding. Participants were trained to preferentially process non-threatening information through repeated pairings of self-relevant stimuli and faces indicating positive social feedback. As expected, participants in this positive training condition (relative to our two control conditions) displayed less negative implicit associations following training, and were more likely to complete an impromptu speech (though they did not report less anxiety during the speech). These findings offer partial support for cognitive models and indicate that implicit associations are not only correlated with social anxiety, they may be causally related to anxiety reduction as well. PMID:20102788

  6. A multi-dimensional nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell (PIC) algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacón, Luis; CoCoMans Team

    2014-10-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.

  7. Implicit Memory in Korsakoff’s Syndrome: A Review of Procedural Learning and Priming Studies

    PubMed Central

    Hayes, Scott M.; Fortier, Catherine B.; Levine, Andrea; Milberg, William P.; McGlinchey, Regina

    2013-01-01

    Korsakoff’s syndrome (KS) is characterized by dense anterograde amnesia resulting from damage to the diencephalon region, typically resulting from chronic alcohol abuse and thiamine deficiency. This review assesses the integrity of the implicit memory system in KS, focusing on studies of procedural learning and priming. KS patients are impaired on several measures of procedural memory, most likely due to impairment in cognitive functions associated with alcohol-related neural damage outside of the diencephalon. The pattern of performance on tasks of implicit priming suggests reliance on a residual, non-flexible memory operating more or less in an automatic fashion. Our review concludes that whether measures of implicit memory reveal intact or impaired performance in individuals with KS depends heavily on specific task parameters and demands, including timing between stimuli, the specific nature of the stimuli used in a task, and the integrity of supportive cognitive functions necessary for performance. PMID:22592661

  8. Training implicit social anxiety associations: an experimental intervention.

    PubMed

    Clerkin, Elise M; Teachman, Bethany A

    2010-04-01

    The current study investigates an experimental anxiety reduction intervention among a highly socially anxious sample (N=108; n=36 per Condition; 80 women). Using a conditioning paradigm, our goal was to modify implicit social anxiety associations to directly test the premise from cognitive models that biased cognitive processing may be causally related to anxious responding. Participants were trained to preferentially process non-threatening information through repeated pairings of self-relevant stimuli and faces indicating positive social feedback. As expected, participants in this positive training condition (relative to our two control conditions) displayed less negative implicit associations following training, and were more likely to complete an impromptu speech (though they did not report less anxiety during the speech). These findings offer partial support for cognitive models and indicate that implicit associations are not only correlated with social anxiety, they may be causally related to anxiety reduction as well. (c) 2010 Elsevier Ltd. All rights reserved.

  9. Parallelization of implicit finite difference schemes in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel

    1990-01-01

    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.

  10. An Energy- and Charge-conserving, Implicit, Electrostatic Particle-in-Cell Algorithm in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2012-03-01

    A recent proof-of-principle study proposes an energy- and charge-conserving, fully implicit particle-in-cell algorithm in one dimension [1], which is able to use timesteps comparable to the dynamical timescale of interest. Here, we generalize the method to employ non-uniform meshes via a curvilinear map. The key enabling technology is a hybrid particle pusher [2], with particle positions updated in logical space and particle velocities updated in physical space. The self-adaptive, charge-conserving particle mover of Ref. [1] is extended to the non-uniform mesh case. The fully implicit implementation, using a Jacobian-free Newton-Krylov iterative solver, remains exactly charge- and energy-conserving. The extension of the formulation to multiple dimensions will be discussed. We present numerical experiments of 1D electrostatic, long-timescale ion-acoustic wave and ion-acoustic shock wave simulations, demonstrating that charge and energy are conserved to round-off for arbitrary mesh non-uniformity, and that the total momentum remains well conserved.[4pt] [1] Chen, Chac'on, Barnes, J. Comput. Phys. 230 (2011). [0pt] [2] Camporeale and Delzanno, Bull. Am. Phys. Soc. 56(6) (2011); Wang, et al., J. Plasma Physics, 61 (1999).

  11. Determination of Coherency and Rigidity Temperatures in Al-Cu Alloys Using In Situ Neutron Diffraction During Casting

    NASA Astrophysics Data System (ADS)

    Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo

    2014-08-01

    The rigidity temperature of a solidifying alloy is the temperature at which the solid phase is sufficiently coalesced to transmit tensile stress. It is a major input parameter in numerical modeling of solidification processes as it defines the point at which thermally induced deformations start to generate internal stresses in a casting. This temperature has been determined for an Al-13 wt.% Cu alloy using in situ neutron diffraction during casting in a dog-bone-shaped mold. This setup allows the sample to build up internal stress naturally as its contraction is not possible. The cooling on both sides of the mold induces a hot spot at the middle of the sample that is irradiated by neutrons. Diffraction patterns are recorded every 11 s using a large detector, and the very first change of diffraction angles allows for the determination of the rigidity temperature. We measured rigidity temperatures equal to 557°C and 548°C depending on the cooling rate for grain refined Al-13 wt.% Cu alloys. At a high cooling rate, rigidity is reached during the formation of the eutectic phase. In this case, the solid phase is not sufficiently coalesced to sustain tensile load and thus cannot avoid hot tear formation.

  12. Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages.

    PubMed

    Kant, Ravi; Rayaprolu, Vamseedhar; McDonald, Kaitlyn; Bothner, Brian

    2018-06-01

    The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein-protein interactions, and protein-nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.

  13. Differential dorsal and ventral medial prefrontal representations of the implicit self modulated by individualism and collectivism: An fMRI study.

    PubMed

    Harada, Tokiko; Li, Zhang; Chiao, Joan Y

    2010-01-01

    Individualism and collectivism, or self-construal style, refer to cultural values that influence how people think about themselves and their relation to the social and physical environment. Recent neuroimaging evidence suggests that cultural values of individualism and collectivism dynamically modulate neural response within cortical midline structures, such as the medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC), during explicit self-evaluation. However, it remains unknown whether cultural priming modulates neural response during self-evaluation due to explicit task demands. Here we investigated how cultural priming of self-construal style affects neural activity within cortical midline structures during implicit self-evaluation in bicultural individuals. Results indicate that ventral MPFC showed relatively less deactivation during implicit evaluation of both self- and father-relevant information as compared to control condition (e.g., information of an unfamiliar person), irrespective of cultural priming. By contrast, dorsal MPFC showed relatively less deactivation during implicit evaluation of father-relevant information, but not self-relevant information, as compared to control condition, only when they were primed with individualism. Furthermore, dorsal MPFC showed relatively less deactivation during implicit evaluation of father-relevant information as compared to self-relevant condition only when they were primed with individualism. Hence, our results indicate that cultural priming modulates neural response within dorsal, but not ventral, portions of MPFC in a stimulus-driven rather than task-driven manner. More broadly, these findings suggest that cultural values dynamically shape neural representations during the evaluation, rather than the detection, of self-relevant information.

  14. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  15. Changes of the boot-shaped coronal hole boundary during Whole Sun Month near sunspot minimum

    NASA Astrophysics Data System (ADS)

    Zhao, X. P.; Hoeksema, J. T.; Scherrer, P. H.

    1999-05-01

    The August 27, 1996, boot-shaped coronal hole is shown to rotate nearly rigidly at a rate of 13.25°/day, greater than the equatorial rotation rate of bipolar magnetic regions such as active regions and plages. The day-to-day variation of the coronal hole border is determined by comparing the rigid rotation projection of the disk-center hole boundary to coronal hole boundaries observed in successive daily coronal images. To determine the influence of the changing photospheric field on the location of the coronal hole boundary, a better approximation of the instantaneous global magnetic field distribution is developed and used as input to a potential-field source-surface model to compute the foot-point areas of open field lines. Day-to-day variations of the coronal hole boundary may be caused by changes of the magnetic field and plasma properties in the corona, as well as by the changing photospheric field.

  16. Photon momentum transfer plane for asteroid, meteoroid, and comet orbit shaping

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2004-01-01

    A spacecraft docks with a spinning and/or rotating asteroid, meteoroid, comet, or other space object, utilizing a tether shaped in a loop and utilizing subvehicles appropriately to control loop instabilities. The loop is positioned about a portion of the asteroid and retracted thereby docking the spacecraft to the asteroid, meteoroid, comet, or other space object. A deployable rigidized, photon momentum transfer plane of sufficient thickness may then be inflated and filled with foam. This plane has a reflective surface that assists in generating a larger momentum from impinging photons. This plane may also be moved relative to the spacecraft to alter the forces acting on it, and thus on the asteroid, meteoroid, comet, or other space object to which it is attached. In general, these forces may be utilized, over time, to alter the orbits of asteroids, meteoroids, comets, or other space objects. Sensors and communication equipment may be utilized to allow remote operation of the rigidized, photon momentum transfer plane and tether.

  17. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices

    NASA Astrophysics Data System (ADS)

    Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn

    2016-11-01

    The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.

  18. Implicit learning and reading: insights from typical children and children with developmental dyslexia using the artificial grammar learning (AGL) paradigm.

    PubMed

    Pavlidou, Elpis V; Williams, Joanne M

    2014-07-01

    We examined implicit learning in school-aged children with and without developmental dyslexia based on the proposal that implicit learning plays a significant role in mastering fluent reading. We ran two experiments with 16 typically developing children (9 to 11-years-old) and 16 age-matched children with developmental dyslexia using the artificial grammar learning (AGL) paradigm. In Experiment 1 (non-transfer task), children were trained on stimuli that followed patterns (rules) unknown to them. Subsequently, they were asked to decide from a novel set which stimuli follow the same rules (grammaticality judgments). In Experiment 2 (transfer task), training and testing stimuli differed in their superficial characteristics but followed the same rules. Again, children were asked to make grammaticality judgments. Our findings expand upon previous research by showing that children with developmental dyslexia show difficulties in implicit learning that are most likely specific to higher-order rule-like learning. These findings are discussed in relation to current theories of developmental dyslexia and of implicit learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. On becoming ready to pursue a goal you don't know you have: Effects of nonconscious goals on evaluative readiness

    PubMed Central

    Ferguson, Melissa J.

    2010-01-01

    Findings showed that the nonconscious activation of a goal in memory led to increased positive implicit attitudes toward stimuli that could facilitate the goal. This evaluative readiness to pursue the nonconscious goal emerged even when participants were consciously unaware of the goal-relevant stimuli themselves. The effect emerged the most strongly for those with some skill at the goal, and for those for whom the goal was most currently important. The effect of implicit goal activation on implicit attitudes emerged in both an immediate condition as well as a delay condition, suggesting that a goal rather than a non-motivational construct was activated. Participants' implicit attitudes toward a nonconscious goal also predicted their goal-relevant behavior. These findings suggest that people can become evaluatively ready to pursue a goal whenever it has been activated -- a readiness that apparently does not require conscious awareness or deliberation about either the goal or the goal-relevant stimuli. Theoretical implications of this type of implicit goal readiness are discussed. PMID:19025283

  20. Can culture influence body-specific associations between space and valence?

    PubMed

    de la Fuente, Juanma; Casasanto, Daniel; Román, Antonio; Santiago, Julio

    2015-05-01

    People implicitly associate positive ideas with their dominant side of space and negative ideas with their non-dominant side. Right-handers tend to associate "good" with "right" and "bad" with "left," but left-handers associate "bad" with "right" and "good" with "left." Whereas right-handers' implicit associations align with idioms in language and culture that link "good" with "right," left-handers' implicit associations go against them. Can cultural conventions modulate the body-specific association between valence and left-right space? Here, we compared people from Spanish and Moroccan cultures, which differ in the strength of taboos against the use of the left hand, and therefore in their preference for the right. Results showed stronger explicit associations between space and valence in Moroccan participants than in Spaniards, but they did not show any increased tendency for right-handed Moroccans to associate "good" with "right" implicitly. Despite differences in cultural conventions between Spaniards and Moroccans, we find no evidence for a cross-cultural difference in the implicit association between space and valence, which appears to depend on patterns of bodily experience. © 2014 Cognitive Science Society, Inc.

Top