Sample records for implicit time differencing

  1. On the construction and application of implicit factored schemes for conservation laws. [in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Warming, R. F.; Beam, R. M.

    1978-01-01

    Efficient, noniterative, implicit finite difference algorithms are systematically developed for nonlinear conservation laws including purely hyperbolic systems and mixed hyperbolic parabolic systems. Utilization of a rational fraction or Pade time differencing formulas, yields a direct and natural derivation of an implicit scheme in a delta form. Attention is given to advantages of the delta formation and to various properties of one- and two-dimensional algorithms.

  2. A three dimensional multigrid multiblock multistage time stepping scheme for the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.

    1991-01-01

    A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.

  3. Time-asymptotic solutions of the Navier-Stokes equation for free shear flows using an alternating-direction implicit method

    NASA Technical Reports Server (NTRS)

    Rudy, D. H.; Morris, D. J.

    1976-01-01

    An uncoupled time asymptotic alternating direction implicit method for solving the Navier-Stokes equations was tested on two laminar parallel mixing flows. A constant total temperature was assumed in order to eliminate the need to solve the full energy equation; consequently, static temperature was evaluated by using algebraic relationship. For the mixing of two supersonic streams at a Reynolds number of 1,000, convergent solutions were obtained for a time step 5 times the maximum allowable size for an explicit method. The solution diverged for a time step 10 times the explicit limit. Improved convergence was obtained when upwind differencing was used for convective terms. Larger time steps were not possible with either upwind differencing or the diagonally dominant scheme. Artificial viscosity was added to the continuity equation in order to eliminate divergence for the mixing of a subsonic stream with a supersonic stream at a Reynolds number of 1,000.

  4. Solidification of a binary mixture

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1982-01-01

    The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.

  5. Stability analysis of implicit time discretizations for the Compton-scattering Fokker-Planck equation

    NASA Astrophysics Data System (ADS)

    Densmore, Jeffery D.; Warsa, James S.; Lowrie, Robert B.; Morel, Jim E.

    2009-09-01

    The Fokker-Planck equation is a widely used approximation for modeling the Compton scattering of photons in high energy density applications. In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker-Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs backward-Euler differencing but evaluates temperature-dependent coefficients at their beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the FI discretization within each time step. Our stability analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for sufficiently large time steps. With the results of this analysis, we present time-step limits for the SI scheme that prevent undesirable behavior. We test the validity of our stability analysis and time-step limits with a set of numerical examples.

  6. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 1 is the Analysis Description, and describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  7. On improving the iterative convergence properties of an implicit approximate-factorization finite difference algorithm. [considering transonic flow

    NASA Technical Reports Server (NTRS)

    Desideri, J. A.; Steger, J. L.; Tannehill, J. C.

    1978-01-01

    The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed.

  8. Multigrid for hypersonic viscous two- and three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.

    1991-01-01

    The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that removes the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional flow over a blunt biconic.

  9. Implicit time-marching solution of the Navier-Stokes equations for thrust reversing and thrust vectoring nozzle flows

    NASA Technical Reports Server (NTRS)

    Imlay, S. T.

    1986-01-01

    An implicit finite volume method is investigated for the solution of the compressible Navier-Stokes equations for flows within thrust reversing and thrust vectoring nozzles. Thrust reversing nozzles typically have sharp corners, and the rapid expansion and large turning angles near these corners are shown to cause unacceptable time step restrictions when conventional approximate factorization methods are used. In this investigation these limitations are overcome by using second-order upwind differencing and line Gauss-Siedel relaxation. This method is implemented with a zonal mesh so that flows through complex nozzle geometries may be efficiently calculated. Results are presented for five nozzle configurations including two with time varying geometries. Three cases are compared with available experimental data and the results are generally acceptable.

  10. Three-dimensional simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  11. A consistent spatial differencing scheme for the transonic full-potential equation in three dimensions

    NASA Technical Reports Server (NTRS)

    Thomas, S. D.; Holst, T. L.

    1985-01-01

    A full-potential steady transonic wing flow solver has been modified so that freestream density and residual are captured in regions of constant velocity. This numerically precise freestream consistency is obtained by slightly altering the differencing scheme without affecting the implicit solution algorithm. The changes chiefly affect the fifteen metrics per grid point, which are computed once and stored. With this new method, the outer boundary condition is captured accurately, and the smoothness of the solution is especially improved near regions of grid discontinuity.

  12. Upwind differencing and LU factorization for chemical non-equilibrium Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    By means of either the Roe or the Van Leer flux-splittings for inviscid terms, in conjunction with central differencing for viscous terms in the explicit operator and the Steger-Warming splitting and lower-upper approximate factorization for the implicit operator, the present, robust upwind method for solving the chemical nonequilibrium Navier-Stokes equations yields formulas for finite-volume discretization in general coordinates. Numerical tests in the illustrative cases of a hypersonic blunt body, a ramped duct, divergent nozzle flows, and shock wave/boundary layer interactions, establish the method's efficiency.

  13. An Implicit Characteristic Based Method for Electromagnetics

    NASA Technical Reports Server (NTRS)

    Beggs, John H.; Briley, W. Roger

    2001-01-01

    An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, P.R.; Ramshaw, J.D.

    MAGMA is a FORTRAN computer code designed to viscous flow in in situ vitrification melt pools. It models three-dimensional, incompressible, viscous flow and heat transfer. The momentum equation is coupled to the temperature field through the buoyancy force terms arising from the Boussinesq approximation. All fluid properties, except density, are assumed variable. Density is assumed constant except in the buoyancy force terms in the momentum equation. A simple melting model based on the enthalpy method allows the study of the melt front progression and latent heat effects. An indirect addressing scheme used in the numerical solution of the momentum equationmore » voids unnecessary calculations in cells devoid of liquid. Two-dimensional calculations can be performed using either rectangular or cylindrical coordinates, while three-dimensional calculations use rectangular coordinates. All derivatives are approximated by finite differences. The incompressible Navier-Stokes equations are solved using a new fully implicit iterative technique, while the energy equation is differenced explicitly in time. Spatial derivatives are written in conservative form using a uniform, rectangular, staggered mesh based on the marker and cell placement of variables. Convective terms are differenced using a weighted average of centered and donor cell differencing to ensure numerical stability. Complete descriptions of MAGMA governing equations, numerics, code structure, and code verification are provided. 14 refs.« less

  15. An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1987-01-01

    An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.

  16. Choice of implicit and explicit operators for the upwind differencing method

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Vanleer, Bram

    1988-01-01

    The flux-vector and flux-difference splittings of Steger-Warming, van Leer and Roe are tested in all possible combinations on the implicit and explicit operators that can be distinguished in implicit relaxation methods for the steady Euler and Navier-Stokes equations. The tests include one-dimensional inviscid nozzle flow, and two-dimensional inviscid and viscous shock reflection. Roe's splitting, as anticipated, is found to uniformly yield the most accurate results. On the other hand, an approximate Roe splitting of the implicit operator (the complete Roe splitting is too complicated for practical use) proves to be the least robust with regard to convergence to the steady state. In this respect, the Steger-Warming splitting is the most robust; it leads to convergence when combined with any of the splittings in the explicit operator, although not necessarily in the most efficient way.

  17. Tidal, Residual, Intertidal Mudflat (TRIM) Model and its Applications to San Francisco Bay, California

    USGS Publications Warehouse

    Cheng, R.T.; Casulli, V.; Gartner, J.W.

    1993-01-01

    A numerical model using a semi-implicit finite-difference method for solving the two-dimensional shallow-water equations is presented. The gradient of the water surface elevation in the momentum equations and the velocity divergence in the continuity equation are finite-differenced implicitly, the remaining terms are finite-differenced explicitly. The convective terms are treated using an Eulerian-Lagrangian method. The combination of the semi-implicit finite-difference solution for the gravity wave propagation, and the Eulerian-Lagrangian treatment of the convective terms renders the numerical model unconditionally stable. When the baroclinic forcing is included, a salt transport equation is coupled to the momentum equations, and the numerical method is subject to a weak stability condition. The method of solution and the properties of the numerical model are given. This numerical model is particularly suitable for applications to coastal plain estuaries and tidal embayments in which tidal currents are dominant, and tidally generated residual currents are important. The model is applied to San Francisco Bay, California where extensive historical tides and current-meter data are available. The model calibration is considered by comparing time-series of the field data and of the model results. Alternatively, and perhaps more meaningfully, the model is calibrated by comparing the harmonic constants of tides and tidal currents derived from field data with those derived from the model. The model is further verified by comparing the model results with an independent data set representing the wet season. The strengths and the weaknesses of the model are assessed based on the results of model calibration and verification. Using the model results, the properties of tides and tidal currents in San Francisco Bay are characterized and discussed. Furthermore, using the numerical model, estimates of San Francisco Bay's volume, surface area, mean water depth, tidal prisms, and tidal excursions at spring and neap tides are computed. Additional applications of the model reveal, qualitatively the spatial distribution of residual variables. ?? 1993 Academic Press. All rights reserved.

  18. Prediction of the Thrust Performance and the Flowfield of Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Wang, T.-S.

    1990-01-01

    In an effort to improve the current solutions in the design and analysis of liquid propulsive engines, a computational fluid dynamics (CFD) model capable of calculating the reacting flows from the combustion chamber, through the nozzle to the external plume, was developed. The Space Shuttle Main Engine (SSME) fired at sea level, was investigated as a sample case. The CFD model, FDNS, is a pressure based, non-staggered grid, viscous/inviscid, ideal gas/real gas, reactive code. An adaptive upwinding differencing scheme is employed for the spatial discretization. The upwind scheme is based on fourth order central differencing with fourth order damping for smooth regions, and second order central differencing with second order damping for shock capturing. It is equipped with a CHMQGM equilibrium chemistry algorithm and a PARASOL finite rate chemistry algorithm using the point implicit method. The computed flow results and performance compared well with those of other standard codes and engine hot fire test data. In addition, the transient nozzle flowfield calculation was also performed to demonstrate the ability of FDNS in capturing the flow separation during the startup process.

  19. On the effect of using the Shapiro filter to smooth winds on a sphere

    NASA Technical Reports Server (NTRS)

    Takacs, L. L.; Balgovind, R. C.

    1984-01-01

    Spatial differencing schemes which are not enstrophy conserving nor implicitly damping require global filtering of short waves to eliminate the build-up of energy in the shortest wavelengths due to aliasing. Takacs and Balgovind (1983) have shown that filtering on a sphere with a latitude dependent damping function will cause spurious vorticity and divergence source terms to occur if care is not taken to ensure the irrotationality of the gradients of the stream function and velocity potential. Using a shallow water model with fourth-order energy-conserving spatial differencing, it is found that using a 16th-order Shapiro (1979) filter on the winds and heights to control nonlinear instability also creates spurious source terms when the winds are filtered in the meridional direction.

  20. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 3: Programmer's reference

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the 2-D or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating-direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 3 is the Programmer's Reference, and describes the program structure, the FORTRAN variables stored in common blocks, and the details of each subprogram.

  1. An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1991-01-01

    An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required for the upwind PNS code are approximately equal to an explicit PNS MacCormack's code and existing implicit PNS solvers.

  2. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  3. Computations of the three-dimensional flow and heat transfer within a coolant passage of a radial turbine blade

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    A numerical code is developed for computing three-dimensional, turbulent, compressible flow within coolant passages of turbine blades. The code is based on a formulation of the compressible Navier-Stokes equations in a rotating frame of reference in which the velocity dependent variable is specified with respect to the rotating frame instead of the inertial frame. The algorithm employed to obtain solutions to the governing equation is a finite-volume LU algorithm that allows convection, source, as well as diffusion terms to be treated implicitly. In this study, all convection terms are upwind differenced by using flux-vector splitting, and all diffusion terms are centrally differenced. This paper describes the formulation and algorithm employed in the code. Some computed solutions for the flow within a coolant passage of a radial turbine are also presented.

  4. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 2: User's guide

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 2 is the User's Guide, and describes the program's general features, the input and output, the procedure for setting up initial conditions, the computer resource requirements, the diagnostic messages that may be generated, the job control language used to run the program, and several test cases.

  5. Comparison of Implicit Schemes for the Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1995-01-01

    For a computational flow simulation tool to be useful in a design environment, it must be very robust and efficient. To develop such a tool for incompressible flow applications, a number of different implicit schemes are compared for several two-dimensional flow problems in the current study. The schemes include Point-Jacobi relaxation, Gauss-Seidel line relaxation, incomplete lower-upper decomposition, and the generalized minimum residual method preconditioned with each of the three other schemes. The efficiency of the schemes is measured in terms of the computing time required to obtain a steady-state solution for the laminar flow over a backward-facing step, the flow over a NACA 4412 airfoil, and the flow over a three-element airfoil using overset grids. The flow solver used in the study is the INS2D code that solves the incompressible Navier-Stokes equations using the method of artificial compressibility and upwind differencing of the convective terms. The results show that the generalized minimum residual method preconditioned with the incomplete lower-upper factorization outperforms all other methods by at least a factor of 2.

  6. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. The governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models are described in detail.

  7. Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  8. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  9. A set of parallel, implicit methods for a reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids

    DOE PAGES

    Xia, Yidong; Luo, Hong; Frisbey, Megan; ...

    2014-07-01

    A set of implicit methods are proposed for a third-order hierarchical WENO reconstructed discontinuous Galerkin method for compressible flows on 3D hybrid grids. An attractive feature in these methods are the application of the Jacobian matrix based on the P1 element approximation, resulting in a huge reduction of memory requirement compared with DG (P2). Also, three approaches -- analytical derivation, divided differencing, and automatic differentiation (AD) are presented to construct the Jacobian matrix respectively, where the AD approach shows the best robustness. A variety of compressible flow problems are computed to demonstrate the fast convergence property of the implemented flowmore » solver. Furthermore, an SPMD (single program, multiple data) programming paradigm based on MPI is proposed to achieve parallelism. The numerical results on complex geometries indicate that this low-storage implicit method can provide a viable and attractive DG solution for complicated flows of practical importance.« less

  10. EXPONENTIAL TIME DIFFERENCING FOR HODGKIN–HUXLEY-LIKE ODES

    PubMed Central

    Börgers, Christoph; Nectow, Alexander R.

    2013-01-01

    Several authors have proposed the use of exponential time differencing (ETD) for Hodgkin–Huxley-like partial and ordinary differential equations (PDEs and ODEs). For Hodgkin–Huxley-like PDEs, ETD is attractive because it can deal effectively with the stiffness issues that diffusion gives rise to. However, large neuronal networks are often simulated assuming “space-clamped” neurons, i.e., using the Hodgkin–Huxley ODEs, in which there are no diffusion terms. Our goal is to clarify whether ETD is a good idea even in that case. We present a numerical comparison of first- and second-order ETD with standard explicit time-stepping schemes (Euler’s method, the midpoint method, and the classical fourth-order Runge–Kutta method). We find that in the standard schemes, the stable computation of the very rapid rising phase of the action potential often forces time steps of a small fraction of a millisecond. This can result in an expensive calculation yielding greater overall accuracy than needed. Although it is tempting at first to try to address this issue with adaptive or fully implicit time-stepping, we argue that neither is effective here. The main advantage of ETD for Hodgkin–Huxley-like systems of ODEs is that it allows underresolution of the rising phase of the action potential without causing instability, using time steps on the order of one millisecond. When high quantitative accuracy is not necessary and perhaps, because of modeling inaccuracies, not even useful, ETD allows much faster simulations than standard explicit time-stepping schemes. The second-order ETD scheme is found to be substantially more accurate than the first-order one even for large values of Δt. PMID:24058276

  11. Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.

    1996-01-01

    A method Is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization Is accomplished by a cell-centered finite-volume formulation using an accurate lin- ear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward- Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy In predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.

  12. Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows

    NASA Technical Reports Server (NTRS)

    Frink, Neal T.

    1996-01-01

    A method is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization is accomplished by a cell-centered finite-volume formulation using an accurate linear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy in predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.

  13. Fully Implicit, Nonlinear 3D Extended Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Knoll, Dana

    2003-10-01

    Extended magnetohydrodynamics (XMHD) includes nonideal effects such as nonlinear, anisotropic transport and two-fluid (Hall) effects. XMHD supports multiple, separate time scales that make explicit time differencing approaches extremely inefficient. While a fully implicit implementation promises efficiency without sacrificing numerical accuracy,(D. A. Knoll et al., phJ. Comput. Phys.) 185 (2), 583-611 (2003) the nonlinear nature of the XMHD system and the numerical stiffness associated with the fast waves make this endeavor difficult. Newton-Krylov methods are, however, ideally suited for such a task. These synergistically combine Newton's method for nonlinear convergence, and Krylov techniques to solve the associated Jacobian (linear) systems. Krylov methods can be implemented Jacobian-free and can be preconditioned for efficiency. Successful preconditioning strategies have been developed for 2D incompressible resistive(L. Chacón et al., phJ. Comput. Phys). 178 (1), 15- 36 (2002) and Hall(L. Chacón and D. A. Knoll, phJ. Comput. Phys.), 188 (2), 573-592 (2003) MHD models. These are based on ``physics-based'' ideas, in which knowledge of the physics is exploited to derive well-conditioned (diagonally-dominant) approximations to the original system that are amenable to optimal solver technologies (multigrid). In this work, we will describe the status of the extension of the 2D preconditioning ideas for a 3D compressible, single-fluid XMHD model.

  14. Orbit determination performances using single- and double-differenced methods: SAC-C and KOMPSAT-2

    NASA Astrophysics Data System (ADS)

    Hwang, Yoola; Lee, Byoung-Sun; Kim, Haedong; Kim, Jaehoon

    2011-01-01

    In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.

  15. On the sensitivity of complex, internally coupled systems

    NASA Technical Reports Server (NTRS)

    Sobieszczanskisobieski, Jaroslaw

    1988-01-01

    A method is presented for computing sensitivity derivatives with respect to independent (input) variables for complex, internally coupled systems, while avoiding the cost and inaccuracy of finite differencing performed on the entire system analysis. The method entails two alternative algorithms: the first is based on the classical implicit function theorem formulated on residuals of governing equations, and the second develops the system sensitivity equations in a new form using the partial (local) sensitivity derivatives of the output with respect to the input of each part of the system. A few application examples are presented to illustrate the discussion.

  16. The art of spacecraft design: A multidisciplinary challenge

    NASA Technical Reports Server (NTRS)

    Abdi, F.; Ide, H.; Levine, M.; Austel, L.

    1989-01-01

    Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.

  17. Computation of incompressible viscous flows through artificial heart devices with moving boundaries

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Rogers, Stuart; Kwak, Dochan; Chang, I.-DEE

    1991-01-01

    The extension of computational fluid dynamics techniques to artificial heart flow simulations is illustrated. Unsteady incompressible Navier-Stokes equations written in 3-D generalized curvilinear coordinates are solved iteratively at each physical time step until the incompressibility condition is satisfied. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. The efficiency and robustness of the time accurate formulation of the algorithm are tested by computing the flow through model geometries. A channel flow with a moving indentation is computed and validated with experimental measurements and other numerical solutions. In order to handle the geometric complexity and the moving boundary problems, a zonal method and an overlapping grid embedding scheme are used, respectively. Steady state solutions for the flow through a tilting disk heart valve was compared against experimental measurements. Good agreement was obtained. The flow computation during the valve opening and closing is carried out to illustrate the moving boundary capability.

  18. A Least-Squares Finite Element Method for Electromagnetic Scattering Problems

    NASA Technical Reports Server (NTRS)

    Wu, Jie; Jiang, Bo-nan

    1996-01-01

    The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.

  19. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite-difference, three-dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. In this work, the equations are solved in steadily rotating reference frames by using the steady-state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two. Included in the appendix is a paper on incompressible viscous flow through artificial heart devices with moving boundaries. Time-accurate calculations, such as impeller and diffusor interaction, will be reported in future work.

  20. Volume 2: Explicit, multistage upwind schemes for Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Ash, Robert L.

    1992-01-01

    The objective of this study was to develop a high-resolution-explicit-multi-block numerical algorithm, suitable for efficient computation of the three-dimensional, time-dependent Euler and Navier-Stokes equations. The resulting algorithm has employed a finite volume approach, using monotonic upstream schemes for conservation laws (MUSCL)-type differencing to obtain state variables at cell interface. Variable interpolations were written in the k-scheme formulation. Inviscid fluxes were calculated via Roe's flux-difference splitting, and van Leer's flux-vector splitting techniques, which are considered state of the art. The viscous terms were discretized using a second-order, central-difference operator. Two classes of explicit time integration has been investigated for solving the compressible inviscid/viscous flow problems--two-state predictor-corrector schemes, and multistage time-stepping schemes. The coefficients of the multistage time-stepping schemes have been modified successfully to achieve better performance with upwind differencing. A technique was developed to optimize the coefficients for good high-frequency damping at relatively high CFL numbers. Local time-stepping, implicit residual smoothing, and multigrid procedure were added to the explicit time stepping scheme to accelerate convergence to steady-state. The developed algorithm was implemented successfully in a multi-block code, which provides complete topological and geometric flexibility. The only requirement is C degree continuity of the grid across the block interface. The algorithm has been validated on a diverse set of three-dimensional test cases of increasing complexity. The cases studied were: (1) supersonic corner flow; (2) supersonic plume flow; (3) laminar and turbulent flow over a flat plate; (4) transonic flow over an ONERA M6 wing; and (5) unsteady flow of a compressible jet impinging on a ground plane (with and without cross flow). The emphasis of the test cases was validation of code, and assessment of performance, as well as demonstration of flexibility.

  1. Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction

    NASA Astrophysics Data System (ADS)

    Moeeni, Hamid; Bonakdari, Hossein; Fatemi, Seyed Ehsan

    2017-04-01

    Because time series stationarization has a key role in stochastic modeling results, three methods are analyzed in this study. The methods are seasonal differencing, seasonal standardization and spectral analysis to eliminate the periodic effect on time series stationarity. First, six time series including 4 streamflow series and 2 water temperature series are stationarized. The stochastic term for these series obtained with ARIMA is subsequently modeled. For the analysis, 9228 models are introduced. It is observed that seasonal standardization and spectral analysis eliminate the periodic term completely, while seasonal differencing maintains seasonal correlation structures. The obtained results indicate that all three methods present acceptable performance overall. However, model accuracy in monthly streamflow prediction is higher with seasonal differencing than with the other two methods. Another advantage of seasonal differencing over the other methods is that the monthly streamflow is never estimated as negative. Standardization is the best method for predicting monthly water temperature although it is quite similar to seasonal differencing, while spectral analysis performed the weakest in all cases. It is concluded that for each monthly seasonal series, seasonal differencing is the best stationarization method in terms of periodic effect elimination. Moreover, the monthly water temperature is predicted with more accuracy than monthly streamflow. The criteria of the average stochastic term divided by the amplitude of the periodic term obtained for monthly streamflow and monthly water temperature were 0.19 and 0.30, 0.21 and 0.13, and 0.07 and 0.04 respectively. As a result, the periodic term is more dominant than the stochastic term for water temperature in the monthly water temperature series compared to streamflow series.

  2. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2015-01-01

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada’s GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference. PMID:26102495

  3. Performance Analysis of Several GPS/Galileo Precise Point Positioning Models.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2015-06-19

    This paper examines the performance of several precise point positioning (PPP) models, which combine dual-frequency GPS/Galileo observations in the un-differenced and between-satellite single-difference (BSSD) modes. These include the traditional un-differenced model, the decoupled clock model, the semi-decoupled clock model, and the between-satellite single-difference model. We take advantage of the IGS-MGEX network products to correct for the satellite differential code biases and the orbital and satellite clock errors. Natural Resources Canada's GPSPace PPP software is modified to handle the various GPS/Galileo PPP models. A total of six data sets of GPS and Galileo observations at six IGS stations are processed to examine the performance of the various PPP models. It is shown that the traditional un-differenced GPS/Galileo PPP model, the GPS decoupled clock model, and the semi-decoupled clock GPS/Galileo PPP model improve the convergence time by about 25% in comparison with the un-differenced GPS-only model. In addition, the semi-decoupled GPS/Galileo PPP model improves the solution precision by about 25% compared to the traditional un-differenced GPS/Galileo PPP model. Moreover, the BSSD GPS/Galileo PPP model improves the solution convergence time by about 50%, in comparison with the un-differenced GPS PPP model, regardless of the type of BSSD combination used. As well, the BSSD model improves the precision of the estimated parameters by about 50% and 25% when the loose and the tight combinations are used, respectively, in comparison with the un-differenced GPS-only model. Comparable results are obtained through the tight combination when either a GPS or a Galileo satellite is selected as a reference.

  4. A Numerical Method of Calculating Propeller Noise Including Acoustic Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.

    1985-01-01

    Using the transonic flow fields(s) generated by the NASPROP-E computer code for an eight blade SR3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the Ffowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASPROP-E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. the methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.

  5. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  6. Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Liou, M.-S.; Povinelli, L. A.

    1993-01-01

    A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.

  7. Neoclassical Simulation of Tokamak Plasmas using Continuum Gyrokinetc Code TEMPEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, X Q

    We present gyrokinetic neoclassical simulations of tokamak plasmas with self-consistent electric field for the first time using a fully nonlinear (full-f) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five dimensional computational grid in phase space. The present implementation is a Method of Lines approach where the phase-space derivatives are discretized with finite differences and implicit backwards differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving gyrokinetic Poisson equation with self-consistent poloidal variation. Withmore » our 4D ({psi}, {theta}, {epsilon}, {mu}) version of the TEMPEST code we compute radial particle and heat flux, the Geodesic-Acoustic Mode (GAM), and the development of neoclassical electric field, which we compare with neoclassical theory with a Lorentz collision model. The present work provides a numerical scheme and a new capability for self-consistently studying important aspects of neoclassical transport and rotations in toroidal magnetic fusion devices.« less

  8. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.

    2010-10-01

    Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.

  9. Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP

    NASA Technical Reports Server (NTRS)

    Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)

    1995-01-01

    The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time, load balancing, and scalability will be provided.

  10. Development of an upwind, finite-volume code with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1994-01-01

    Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.

  11. Investigation of the transient fuel preburner manifold and combustor

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Chen, Yen-Sen; Farmer, Richard C.

    1989-01-01

    A computational fluid dynamics (CFD) model with finite rate reactions, FDNS, was developed to study the start transient of the Space Shuttle Main Engine (SSME) fuel preburner (FPB). FDNS is a time accurate, pressure based CFD code. An upwind scheme was employed for spatial discretization. The upwind scheme was based on second and fourth order central differencing with adaptive artificial dissipation. A state of the art two-equation k-epsilon (T) turbulence model was employed for the turbulence calculation. A Pade' Rational Solution (PARASOL) chemistry algorithm was coupled with the point implicit procedure. FDNS was benchmarked with three well documented experiments: a confined swirling coaxial jet, a non-reactive ramjet dump combustor, and a reactive ramjet dump combustor. Excellent comparisons were obtained for the benchmark cases. The code was then used to study the start transient of an axisymmetric SSME fuel preburner. Predicted transient operation of the preburner agrees well with experiment. Furthermore, it was also found that an appreciable amount of unburned oxygen entered the turbine stages.

  12. Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver

    NASA Technical Reports Server (NTRS)

    Bates, J. R.; Semazzi, F. H. M.; Higgins, R. W.; Barros, Saulo R. M.

    1990-01-01

    A vector semi-Lagrangian semi-implicit two-time-level finite-difference integration scheme for the shallow water equations on the sphere is presented. A C-grid is used for the spatial differencing. The trajectory-centered discretization of the momentum equation in vector form eliminates pole problems and, at comparable cost, gives greater accuracy than a previous semi-Lagrangian finite-difference scheme which used a rotated spherical coordinate system. In terms of the insensitivity of the results to increasing timestep, the new scheme is as successful as recent spectral semi-Lagrangian schemes. In addition, the use of a multigrid method for solving the elliptic equation for the geopotential allows efficient integration with an operation count which, at high resolution, is of lower order than in the case of the spectral models. The properties of the new scheme should allow finite-difference models to compete with spectral models more effectively than has previously been possible.

  13. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST.

    PubMed

    Xu, X Q

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (psi,theta,micro) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  14. Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST

    NASA Astrophysics Data System (ADS)

    Xu, X. Q.

    2008-07-01

    We present gyrokinetic neoclassical simulations of tokamak plasmas with a self-consistent electric field using a fully nonlinear (full- f ) continuum code TEMPEST in a circular geometry. A set of gyrokinetic equations are discretized on a five-dimensional computational grid in phase space. The present implementation is a method of lines approach where the phase-space derivatives are discretized with finite differences, and implicit backward differencing formulas are used to advance the system in time. The fully nonlinear Boltzmann model is used for electrons. The neoclassical electric field is obtained by solving the gyrokinetic Poisson equation with self-consistent poloidal variation. With a four-dimensional (ψ,θ,γ,μ) version of the TEMPEST code, we compute the radial particle and heat fluxes, the geodesic-acoustic mode, and the development of the neoclassical electric field, which we compare with neoclassical theory using a Lorentz collision model. The present work provides a numerical scheme for self-consistently studying important dynamical aspects of neoclassical transport and electric field in toroidal magnetic fusion devices.

  15. An entropy correction method for unsteady full potential flows with strong shocks

    NASA Technical Reports Server (NTRS)

    Whitlow, W., Jr.; Hafez, M. M.; Osher, S. J.

    1986-01-01

    An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.

  16. Incompressible viscous flow computations for the pump components and the artificial heart

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin

    1992-01-01

    A finite difference, three dimensional incompressible Navier-Stokes formulation to calculate the flow through turbopump components is utilized. The solution method is based on the pseudo compressibility approach and uses an implicit upwind differencing scheme together with the Gauss-Seidel line relaxation method. Both steady and unsteady flow calculations can be performed using the current algorithm. Here, equations are solved in steadily rotating reference frames by using the steady state formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity is computed by using an algebraic mixing-length turbulence model. Numerical results are compared with experimental measurements and a good agreement is found between the two.

  17. A numerical method for the solution of internal pipe/channel flows in laminar or turbulent motion

    NASA Astrophysics Data System (ADS)

    Lourenco, L.; Essers, J. A.

    1981-11-01

    A computer program which is useful in the solution of problems of internal turbulent or laminar flow without recirculation is described. The flow is treated in terms of parabolic boundary layer differential equations. The eddy diffusivity concept is used to model turbulent stresses. Two turbulent models are available: the Prandtl mixing length model and the Nee-Kovasznay model for the effective viscosity. Fluid is considered incompressible, but little program modification is needed to treat compressible flows. Initial conditions are prescribed as well as the boundary conditions. The differencing scheme employed is fully implicit for the dependent variables. This allows the use of relatively large forward steps without stability problems.

  18. Numerical Solution of Incompressible Navier-Stokes Equations Using a Fractional-Step Approach

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan

    1999-01-01

    A fractional step method for the solution of steady and unsteady incompressible Navier-Stokes equations is outlined. The method is based on a finite volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (3rd and 5th) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds Numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when 5th-order upwind differencing and a modified production term in the Baldwin-Barth one-equation turbulence model are used with adequate grid resolution.

  19. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1990-01-01

    A process is disclosed for x ray registration and differencing which results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  20. Digital Data Registration and Differencing Compression System

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1996-01-01

    A process for X-ray registration and differencing results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic X-ray digital images.

  1. MACH2: A Two-Dimensional Magnetohydrodynamic Simulation Code for Complex Experimental Configurations.

    DTIC Science & Technology

    1987-09-01

    Eulerian or Lagrangian flow problems, use of real equations of state and transport properties from the Los Alamos National Laboratory SESAME package...permissible problem geometries; time differencing; and spatial discretization, centering, and differ- encing of MACH2. /. I." - Magnetohydrodynamics...R-A & Y7 24 9 5.2 THE IDEAL COORDINATE SYSTEM DTIC TAB 13 24 5.3 THE MATERIAL DERIVATIVE Uannounoed 0 26 Justifloatlo- 6. TIME DIFFERENCING 31 6.1

  2. Challenges and Opportunities in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko

    2016-04-01

    Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Relaxing the hydrostatic approximation requieres careful reformulation of the model dynamics and more computations and communications. The unified Non-hydrostatic Multi-scale Model (NMMB) will be briefly discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable without modifying their amplitudes. The model has been successfully tested on various scales. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models, and its computational efficiency on parallel computers is good.

  3. Filtering of non-linear instabilities

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1978-01-01

    For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown that these problems can be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate filtering can reduce the intensity of these oscillations and possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and nonconservation differencing. The entire spectrum of filtered equations retains a three point character as well as second order spatial accuracy. Burgers equation was considered as a model.

  4. A Navier-Stokes Solution of Hull-Ring Wing-Thruster Interaction

    NASA Technical Reports Server (NTRS)

    Yang, C.-I.; Hartwich, P.; Sundaram, P.

    1991-01-01

    Navier-Stokes simulations of high Reynolds number flow around an axisymmetric body supported in a water tunnel were made. The numerical method is based on a finite-differencing high resolution second-order accurate implicit upwind scheme. Four different configurations were investigated, these are: (1) barebody; (2) body with an operating propeller; (3) body with a ring wing; and (4) body with a ring wing and an operating propeller. Pressure and velocity components near the stern region were obtained computationally and are shown to compare favorably with the experimental data. The method correctly predicts the existence and extent of stern flow separation for the barebody and the absence of flow separation for the three other configurations with ring wing and/or propeller.

  5. Trend time-series modeling and forecasting with neural networks.

    PubMed

    Qi, Min; Zhang, G Peter

    2008-05-01

    Despite its great importance, there has been no general consensus on how to model the trends in time-series data. Compared to traditional approaches, neural networks (NNs) have shown some promise in time-series forecasting. This paper investigates how to best model trend time series using NNs. Four different strategies (raw data, raw data with time index, detrending, and differencing) are used to model various trend patterns (linear, nonlinear, deterministic, stochastic, and breaking trend). We find that with NNs differencing often gives meritorious results regardless of the underlying data generating processes (DGPs). This finding is also confirmed by the real gross national product (GNP) series.

  6. Numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis - Stanford Univ., Mar. 1989

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.

    1990-01-01

    The current work is initiated in an effort to obtain an efficient, accurate, and robust algorithm for the numerical solution of the incompressible Navier-Stokes equations in two- and three-dimensional generalized curvilinear coordinates for both steady-state and time-dependent flow problems. This is accomplished with the use of the method of artificial compressibility and a high-order flux-difference splitting technique for the differencing of the convective terms. Time accuracy is obtained in the numerical solutions by subiterating the equations in psuedo-time for each physical time step. The system of equations is solved with a line-relaxation scheme which allows the use of very large pseudo-time steps leading to fast convergence for steady-state problems as well as for the subiterations of time-dependent problems. Numerous laminar test flow problems are computed and presented with a comparison against analytically known solutions or experimental results. These include the flow in a driven cavity, the flow over a backward-facing step, the steady and unsteady flow over a circular cylinder, flow over an oscillating plate, flow through a one-dimensional inviscid channel with oscillating back pressure, the steady-state flow through a square duct with a 90 degree bend, and the flow through an artificial heart configuration with moving boundaries. An adequate comparison with the analytical or experimental results is obtained in all cases. Numerical comparisons of the upwind differencing with central differencing plus artificial dissipation indicates that the upwind differencing provides a much more robust algorithm, which requires significantly less computing time. The time-dependent problems require on the order of 10 to 20 subiterations, indicating that the elliptical nature of the problem does require a substantial amount of computing effort.

  7. Development of an upwind, finite-volume code with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Molvik, Gregory A.

    1995-01-01

    Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.

  8. GNSS global real-time augmentation positioning: Real-time precise satellite clock estimation, prototype system construction and performance analysis

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zhao, Qile; Hu, Zhigang; Jiang, Xinyuan; Geng, Changjiang; Ge, Maorong; Shi, Chuang

    2018-01-01

    Lots of ambiguities in un-differenced (UD) model lead to lower calculation efficiency, which isn't appropriate for the high-frequency real-time GNSS clock estimation, like 1 Hz. Mixed differenced model fusing UD pseudo-range and epoch-differenced (ED) phase observations has been introduced into real-time clock estimation. In this contribution, we extend the mixed differenced model for realizing multi-GNSS real-time clock high-frequency updating and a rigorous comparison and analysis on same conditions are performed to achieve the best real-time clock estimation performance taking the efficiency, accuracy, consistency and reliability into consideration. Based on the multi-GNSS real-time data streams provided by multi-GNSS Experiment (MGEX) and Wuhan University, GPS + BeiDou + Galileo global real-time augmentation positioning prototype system is designed and constructed, including real-time precise orbit determination, real-time precise clock estimation, real-time Precise Point Positioning (RT-PPP) and real-time Standard Point Positioning (RT-SPP). The statistical analysis of the 6 h-predicted real-time orbits shows that the root mean square (RMS) in radial direction is about 1-5 cm for GPS, Beidou MEO and Galileo satellites and about 10 cm for Beidou GEO and IGSO satellites. Using the mixed differenced estimation model, the prototype system can realize high-efficient real-time satellite absolute clock estimation with no constant clock-bias and can be used for high-frequency augmentation message updating (such as 1 Hz). The real-time augmentation message signal-in-space ranging error (SISRE), a comprehensive accuracy of orbit and clock and effecting the users' actual positioning performance, is introduced to evaluate and analyze the performance of GPS + BeiDou + Galileo global real-time augmentation positioning system. The statistical analysis of real-time augmentation message SISRE is about 4-7 cm for GPS, whlile 10 cm for Beidou IGSO/MEO, Galileo and about 30 cm for BeiDou GEO satellites. The real-time positioning results prove that the GPS + BeiDou + Galileo RT-PPP comparing to GPS-only can effectively accelerate convergence time by about 60%, improve the positioning accuracy by about 30% and obtain averaged RMS 4 cm in horizontal and 6 cm in vertical; additionally RT-SPP accuracy in the prototype system can realize positioning accuracy with about averaged RMS 1 m in horizontal and 1.5-2 m in vertical, which are improved by 60% and 70% to SPP based on broadcast ephemeris, respectively.

  9. A comparative study and validation of upwind and central-difference Navier-Stokes codes for high-speed flows

    NASA Technical Reports Server (NTRS)

    Rudy, David H.; Kumar, Ajay; Thomas, James L.; Gnoffo, Peter A.; Chakravarthy, Sukumar R.

    1988-01-01

    A comparative study was made using 4 different computer codes for solving the compressible Navier-Stokes equations. Three different test problems were used, each of which has features typical of high speed internal flow problems of practical importance in the design and analysis of propulsion systems for advanced hypersonic vehicles. These problems are the supersonic flow between two walls, one of which contains a 10 deg compression ramp, the flow through a hypersonic inlet, and the flow in a 3-D corner formed by the intersection of two symmetric wedges. Three of the computer codes use similar recently developed implicit upwind differencing technology, while the fourth uses a well established explicit method. The computed results were compared with experimental data where available.

  10. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1992-01-01

    A process for x ray registration and differencing results in more efficient compression is discussed. Differencing of registered modeled subject image with a modeled reference image forms a differential image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three dimensional model, which three dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  11. Non-oscillatory central differencing for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Nessyahu, Haim; Tadmor, Eitan

    1988-01-01

    Many of the recently developed high resolution schemes for hyperbolic conservation laws are based on upwind differencing. The building block for these schemes is the averaging of an appropriate Godunov solver; its time consuming part involves the field-by-field decomposition which is required in order to identify the direction of the wind. Instead, the use of the more robust Lax-Friedrichs (LxF) solver is proposed. The main advantage is simplicity: no Riemann problems are solved and hence field-by-field decompositions are avoided. The main disadvantage is the excessive numerical viscosity typical to the LxF solver. This is compensated for by using high-resolution MUSCL-type interpolants. Numerical experiments show that the quality of results obtained by such convenient central differencing is comparable with those of the upwind schemes.

  12. One-dimensional transient radiative transfer by lattice Boltzmann method.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  13. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    NASA Astrophysics Data System (ADS)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  14. Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations

    DOE PAGES

    Liang, Xiao; Khaliq, Abdul Q. M.; Xing, Yulong

    2015-01-23

    In this paper, we study a local discontinuous Galerkin method combined with fourth order exponential time differencing Runge-Kutta time discretization and a fourth order conservative method for solving the nonlinear Schrödinger equations. Based on different choices of numerical fluxes, we propose both energy-conserving and energy-dissipative local discontinuous Galerkin methods, and have proven the error estimates for the semi-discrete methods applied to linear Schrödinger equation. The numerical methods are proven to be highly efficient and stable for long-range soliton computations. Finally, extensive numerical examples are provided to illustrate the accuracy, efficiency and reliability of the proposed methods.

  15. Efficient simulation of incompressible viscous flow over multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan

    1992-01-01

    The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The computer code uses the method of pseudo-compressibility with an upwind-differencing scheme for the convective fluxes and an implicit line-relaxation solution algorithm. The motivation for this work includes interest in studying the high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack, up to stall, is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared: a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time (on a CRAY YMP) per element in the airfoil configuration.

  16. Efficient simulation of incompressible viscous flow over multi-element airfoils

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan

    1993-01-01

    The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The solution algorithm employs the method of pseudo compressibility and utilizes an upwind differencing scheme for the convective fluxes, and an implicit line-relaxation scheme. The motivation for this work includes interest in studying high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack up to stall is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared; a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time on a CRAY YMP per element in the airfoil configuration.

  17. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves

    USGS Publications Warehouse

    Harris, C.K.; Wiberg, P.L.

    2001-01-01

    A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.

  18. A fully redundant double difference algorithm for obtaining minimum variance estimates from GPS observations

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.

    1986-01-01

    In double differencing a regression system obtained from concurrent Global Positioning System (GPS) observation sequences, one either undersamples the system to avoid introducing colored measurement statistics, or one fully samples the system incurring the resulting non-diagonal covariance matrix for the differenced measurement errors. A suboptimal estimation result will be obtained in the undersampling case and will also be obtained in the fully sampled case unless the color noise statistics are taken into account. The latter approach requires a least squares weighting matrix derived from inversion of a non-diagonal covariance matrix for the differenced measurement errors instead of inversion of the customary diagonal one associated with white noise processes. Presented is the so-called fully redundant double differencing algorithm for generating a weighted double differenced regression system that yields equivalent estimation results, but features for certain cases a diagonal weighting matrix even though the differenced measurement error statistics are highly colored.

  19. Computation of incompressible viscous flows through turbopump components

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, Leon

    1993-01-01

    Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.

  20. Study of shock-induced combustion using an implicit TVD scheme

    NASA Technical Reports Server (NTRS)

    Yungster, Shayne

    1992-01-01

    The supersonic combustion flowfields associated with various hypersonic propulsion systems, such as the ram accelerator, the oblique detonation wave engine, and the scramjet, are being investigated using a new computational fluid dynamics (CFD) code. The code solves the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. It employs an iterative method and a second order differencing scheme to improve computational efficiency. The code is currently being applied to study shock wave/boundary layer interactions in premixed combustible gases, and to investigate the ram accelerator concept. Results obtained for a ram accelerator configuration indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outward and downstream. The combustion process creates a high pressure region over the back of the projectile resulting in a net positive thrust forward.

  1. Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.

    PubMed

    Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin

    2015-10-15

    Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Incompressible Navier-Stokes Computations with Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan; Rogers, Stuart; Kutler, Paul (Technical Monitor)

    1994-01-01

    The existing pseudocompressibility method for the system of incompressible Navier-Stokes equations is extended to heat transfer problems by including the energy equation. The solution method is based on the pseudo compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. Both forced and natural convection problems are examined. Numerical results from turbulent reattaching flow behind a backward-facing step will be compared against experimental measurements for the forced convection case. The validity of Boussinesq approximation to simplify the buoyancy force term will be investigated. The natural convective flow structure generated by heat transfer in a vertical rectangular cavity will be studied. The numerical results will be compared by experimental measurements by Morrison and Tran.

  3. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  4. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  5. Newton-Krylov-Schwarz: An implicit solver for CFD

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Keyes, David E.; Venkatakrishnan, V.

    1995-01-01

    Newton-Krylov methods and Krylov-Schwarz (domain decomposition) methods have begun to become established in computational fluid dynamics (CFD) over the past decade. The former employ a Krylov method inside of Newton's method in a Jacobian-free manner, through directional differencing. The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that relies primarily on local information, for data-parallel concurrency. They may be composed as Newton-Krylov-Schwarz (NKS) methods, which seem particularly well suited for solving nonlinear elliptic systems in high-latency, distributed-memory environments. We give a brief description of this family of algorithms, with an emphasis on domain decomposition iterative aspects. We then describe numerical simulations with Newton-Krylov-Schwarz methods on aerodynamics applications emphasizing comparisons with a standard defect-correction approach, subdomain preconditioner consistency, subdomain preconditioner quality, and the effect of a coarse grid.

  6. Filtering of non-linear instabilities. [from finite difference solution of fluid dynamics equations

    NASA Technical Reports Server (NTRS)

    Khosla, P. K.; Rubin, S. G.

    1979-01-01

    For Courant numbers larger than one and cell Reynolds numbers larger than two, oscillations and in some cases instabilities are typically found with implicit numerical solutions of the fluid dynamics equations. This behavior has sometimes been associated with the loss of diagonal dominance of the coefficient matrix. It is shown here that these problems can in fact be related to the choice of the spatial differences, with the resulting instability related to aliasing or nonlinear interaction. Appropriate 'filtering' can reduce the intensity of these oscillations and in some cases possibly eliminate the instability. These filtering procedures are equivalent to a weighted average of conservation and non-conservation differencing. The entire spectrum of filtered equations retains a three-point character as well as second-order spatial accuracy. Burgers equation has been considered as a model. Several filters are examined in detail, and smooth solutions have been obtained for extremely large cell Reynolds numbers.

  7. Far-Field Turbulent Vortex-Wake/Exhaust Plume Interaction for Subsonic and HSCT Airplanes

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Adam, Ihab; Wong, Tin-Chee

    1996-01-01

    Computational study of the far-field turbulent vortex-wake/exhaust plume interaction for subsonic and high speed civil transport (HSCT) airplanes is carried out. The Reynolds-averaged Navier-Stokes (NS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The two-equation shear stress transport model of Menter is implemented with the NS solver for turbulent-flow calculation. For the far-field study, the computations of vortex-wake interaction with the exhaust plume of a single engine of a Boeing 727 wing in a holding condition and two engines of an HSCT in a cruise condition are carried out using overlapping zonal method for several miles downstream. These results are obtained using the computer code FTNS3D. The results of the subsonic flow of this code are compared with those of a parabolized NS solver known as the UNIWAKE code.

  8. Reducing numerical diffusion for incompressible flow calculations

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Neely, G. M.; Syed, S. A.

    1984-01-01

    A number of approaches for improving the accuracy of incompressible, steady-state flow calculations are examined. Two improved differencing schemes, Quadratic Upstream Interpolation for Convective Kinematics (QUICK) and Skew-Upwind Differencing (SUD), are applied to the convective terms in the Navier-Stokes equations and compared with results obtained using hybrid differencing. In a number of test calculations, it is illustrated that no single scheme exhibits superior performance for all flow situations. However, both SUD and QUICK are shown to be generally more accurate than hybrid differencing.

  9. Challenges in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  10. Method and apparatus for rate integration supplement for attitude referencing with quaternion differencing

    NASA Technical Reports Server (NTRS)

    Rodden, John James (Inventor); Price, Xenophon (Inventor); Carrou, Stephane (Inventor); Stevens, Homer Darling (Inventor)

    2002-01-01

    A control system for providing attitude control in spacecraft. The control system comprising a primary attitude reference system, a secondary attitude reference system, and a hyper-complex number differencing system. The hyper-complex number differencing system is connectable to the primary attitude reference system and the secondary attitude reference system.

  11. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M. S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.

  12. Baseline Computational Fluid Dynamics Methodology for Longitudinal-Mode Liquid-Propellant Rocket Combustion Instability

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2005-01-01

    A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.

  13. Performance of differenced range data types in Voyager navigation

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.; Campbell, J. K.; Jacobson, R. A.; Moultrie, B.; Nichols, R. A., Jr.; Riedel, J. E.

    1982-01-01

    Voyager radio navigation made use of a differenced rage data type for both Saturn encounters because of the low declination singularity of Doppler data. Nearly simultaneous two-way range from two-station baselines was explicitly differenced to produce this data type. Concurrently, a differential VLBI data type (DDOR), utilizing doubly differenced quasar-spacecraft delays, with potentially higher precision was demonstrated. Performance of these data types is investigated on the Jupiter-to-Saturn leg of Voyager 2. The statistics of performance are presented in terms of actual data noise comparisons and sample orbit estimates. Use of DDOR as a primary data type for navigation to Uranus is discussed.

  14. Performance of differenced range data types in Voyager navigation

    NASA Technical Reports Server (NTRS)

    Taylor, T. H.; Campbell, J. K.; Jacobson, R. A.; Moultrie, B.; Nichols, R. A., Jr.; Riedel, J. E.

    1982-01-01

    Voyager radio navigation made use of differenced range data type for both Saturn encounters because of the low declination singularity of Doppler data. Nearly simultaneous two-way range from two-station baselines was explicitly differenced to produce this data type. Concurrently, a differential VLBI data type (DDOR), utilizing doubly differenced quasar-spacecraft delays, with potentially higher precision was demonstrated. Performance of these data types is investigated on the Jupiter to Saturn leg of Voyager 2. The statistics of performance are presented in terms of actual data noise comparisons and sample orbit estimates. Use of DDOR as a primary data type for navigation to Uranus is discussed.

  15. Deep-space navigation with differenced data types. Part 3: An expanded information content and sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Thurman, S. W.

    1992-01-01

    An approximate six-parameter analytic model for Earth-based differenced range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 microrad, and angular rate precision on the order of 10 to 25(10)(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wide band and narrow band (delta)VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 /microrad, and angular rate precisions of 0.5 to 1.0(10)(exp -12) rad/sec.

  16. Split Space-Marching Finite-Volume Method for Chemically Reacting Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Rizzi, Arthur W.; Bailey, Harry E.

    1976-01-01

    A space-marching finite-volume method employing a nonorthogonal coordinate system and using a split differencing scheme for calculating steady supersonic flow over aerodynamic shapes is presented. It is a second-order-accurate mixed explicit-implicit procedure that solves the inviscid adiabatic and nondiffusive equations for chemically reacting flow in integral conservation-law form. The relationship between the finite-volume and differential forms of the equations is examined and the relative merits of each discussed. The method admits initial Cauchy data situated on any arbitrary surface and integrates them forward along a general curvilinear coordinate, distorting and deforming the surface as it advances. The chemical kinetics term is split from the convective terms which are themselves dimensionally split, thereby freeing the fluid operators from the restricted step size imposed by the chemical reactions and increasing the computational efficiency. The accuracy of this splitting technique is analyzed, a sufficient stability criterion is established, a representative flow computation is discussed, and some comparisons are made with another method.

  17. A NUMERICAL ALGORITHM FOR MODELING MULTIGROUP NEUTRINO-RADIATION HYDRODYNAMICS IN TWO SPATIAL DIMENSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swesty, F. Douglas; Myra, Eric S.

    It is now generally agreed that multidimensional, multigroup, neutrino-radiation hydrodynamics (RHD) is an indispensable element of any realistic model of stellar-core collapse, core-collapse supernovae, and proto-neutron star instabilities. We have developed a new, two-dimensional, multigroup algorithm that can model neutrino-RHD flows in core-collapse supernovae. Our algorithm uses an approach similar to the ZEUS family of algorithms, originally developed by Stone and Norman. However, this completely new implementation extends that previous work in three significant ways: first, we incorporate multispecies, multigroup RHD in a flux-limited-diffusion approximation. Our approach is capable of modeling pair-coupled neutrino-RHD, and includes effects of Pauli blocking inmore » the collision integrals. Blocking gives rise to nonlinearities in the discretized radiation-transport equations, which we evolve implicitly in time. We employ parallelized Newton-Krylov methods to obtain a solution of these nonlinear, implicit equations. Our second major extension to the ZEUS algorithm is the inclusion of an electron conservation equation that describes the evolution of electron-number density in the hydrodynamic flow. This permits calculating deleptonization of a stellar core. Our third extension modifies the hydrodynamics algorithm to accommodate realistic, complex equations of state, including those having nonconvex behavior. In this paper, we present a description of our complete algorithm, giving sufficient details to allow others to implement, reproduce, and extend our work. Finite-differencing details are presented in appendices. We also discuss implementation of this algorithm on state-of-the-art, parallel-computing architectures. Finally, we present results of verification tests that demonstrate the numerical accuracy of this algorithm on diverse hydrodynamic, gravitational, radiation-transport, and RHD sample problems. We believe our methods to be of general use in a variety of model settings where radiation transport or RHD is important. Extension of this work to three spatial dimensions is straightforward.« less

  18. Effective image differencing with convolutional neural networks for real-time transient hunting

    NASA Astrophysics Data System (ADS)

    Sedaghat, Nima; Mahabal, Ashish

    2018-06-01

    Large sky surveys are increasingly relying on image subtraction pipelines for real-time (and archival) transient detection. In this process one has to contend with varying point-spread function (PSF) and small brightness variations in many sources, as well as artefacts resulting from saturated stars and, in general, matching errors. Very often the differencing is done with a reference image that is deeper than individual images and the attendant difference in noise characteristics can also lead to artefacts. We present here a deep-learning approach to transient detection that encapsulates all the steps of a traditional image-subtraction pipeline - image registration, background subtraction, noise removal, PSF matching and subtraction - in a single real-time convolutional network. Once trained, the method works lightening-fast and, given that it performs multiple steps in one go, the time saved and false positives eliminated for multi-CCD surveys like Zwicky Transient Facility and Large Synoptic Survey Telescope will be immense, as millions of subtractions will be needed per night.

  19. Flux splitting algorithms for two-dimensional viscous flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Liou, Meng-Sing

    1989-01-01

    The Roe flux difference splitting method was extended to treat 2-D viscous flows with nonequilibrium chemistry. The derivations have avoided unnecessary assumptions or approximations. For spatial discretization, the second-order Roe upwind differencing is used for the convective terms and central differencing for the viscous terms. An upwind-based TVD scheme is applied to eliminate oscillations and obtain a sharp representation of discontinuities. A two-state Runge-Kutta method is used to time integrate the discretized Navier-Stokes and species transport equations for the asymptotic steady solutions. The present method is then applied to two types of flows: the shock wave/boundary layer interaction problems and the jet in cross flows.

  20. Flux splitting algorithms for two-dimensional viscous flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Liou, Meng-Sing

    1989-01-01

    The Roe flux-difference splitting method has been extended to treat two-dimensional viscous flows with nonequilibrium chemistry. The derivations have avoided unnecessary assumptions or approximations. For spatial discretization, the second-order Roe upwind differencing is used for the convective terms and central differencing for the viscous terms. An upwind-based TVD scheme is applied to eliminate oscillations and obtain a sharp representation of discontinuities. A two-stage Runge-Kutta method is used to time integrate the discretized Navier-Stokes and species transport equations for the asymptotic steady solutions. The present method is then applied to two types of flows: the shock wave/boundary layer interaction problems and the jet in cross flows.

  1. A Parallel Implicit Reconstructed Discontinuous Galerkin Method for Compressible Flows on Hybrid Grids

    NASA Astrophysics Data System (ADS)

    Xia, Yidong

    The objective this work is to develop a parallel, implicit reconstructed discontinuous Galerkin (RDG) method using Taylor basis for the solution of the compressible Navier-Stokes equations on 3D hybrid grids. This third-order accurate RDG method is based on a hierarchical weighed essentially non- oscillatory reconstruction scheme, termed as HWENO(P1P 2) to indicate that a quadratic polynomial solution is obtained from the underlying linear polynomial DG solution via a hierarchical WENO reconstruction. The HWENO(P1P2) is designed not only to enhance the accuracy of the underlying DG(P1) method but also to ensure non-linear stability of the RDG method. In this reconstruction scheme, a quadratic polynomial (P2) solution is first reconstructed using a least-squares approach from the underlying linear (P1) discontinuous Galerkin solution. The final quadratic solution is then obtained using a Hermite WENO reconstruction, which is necessary to ensure the linear stability of the RDG method on 3D unstructured grids. The first derivatives of the quadratic polynomial solution are then reconstructed using a WENO reconstruction in order to eliminate spurious oscillations in the vicinity of strong discontinuities, thus ensuring the non-linear stability of the RDG method. The parallelization in the RDG method is based on a message passing interface (MPI) programming paradigm, where the METIS library is used for the partitioning of a mesh into subdomain meshes of approximately the same size. Both multi-stage explicit Runge-Kutta and simple implicit backward Euler methods are implemented for time advancement in the RDG method. In the implicit method, three approaches: analytical differentiation, divided differencing (DD), and automatic differentiation (AD) are developed and implemented to obtain the resulting flux Jacobian matrices. The automatic differentiation is a set of techniques based on the mechanical application of the chain rule to obtain derivatives of a function given as a computer program. By using an AD tool, the manpower can be significantly reduced for deriving the flux Jacobians, which can be quite complicated, tedious, and error-prone if done by hand or symbolic arithmetic software, depending on the complexity of the numerical flux scheme. In addition, the workload for code maintenance can also be largely reduced in case the underlying flux scheme is updated. The approximate system of linear equations arising from the Newton linearization is solved by the general minimum residual (GMRES) algorithm with lower-upper symmetric gauss-seidel (LUSGS) preconditioning. This GMRES+LU-SGS linear solver is the most robust and efficient for implicit time integration of the discretized Navier-Stokes equations when the AD-based flux Jacobians are provided other than the other two approaches. The developed HWENO(P1P2) method is used to compute a variety of well-documented compressible inviscid and viscous flow test cases on 3D hybrid grids, including some standard benchmark test cases such as the Sod shock tube, flow past a circular cylinder, and laminar flow past a at plate. The computed solutions are compared with either analytical solutions or experimental data, if available to assess the accuracy of the HWENO(P 1P2) method. Numerical results demonstrate that the HWENO(P 1P2) method is able to not only enhance the accuracy of the underlying HWENO(P1) method, but also ensure the linear and non-linear stability at the presence of strong discontinuities. An extensive study of grid convergence analysis on various types of elements: tetrahedron, prism, hexahedron, and hybrid prism/hexahedron, for a number of test cases indicates that the developed HWENO(P1P2) method is able to achieve the designed third-order accuracy of spatial convergence for smooth inviscid flows: one order higher than the underlying second-order DG(P1) method without significant increase in computing costs and storage requirements. The performance of the the developed GMRES+LU-SGS implicit method is compared with the multi-stage Runge-Kutta time stepping scheme for a number of test cases in terms of the timestep and CPU time. Numerical results indicate that the overall performance of the implicit method with AD-based Jacobians is order of magnitude better than the its explicit counterpart. Finally, a set of parallel scaling tests for both explicit and implicit methods is conducted on North Carolina State University's ARC cluster, demonstrating almost an ideal scalability of the RDG method. (Abstract shortened by UMI.)

  2. The terminal area simulation system. Volume 1: Theoretical formulation

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.

    1987-01-01

    A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.

  3. A class of the van Leer-type transport schemes and its application to the moisture transport in a general circulation model

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Chao, Winston C.; Sud, Y. C.; Walker, G. K.

    1994-01-01

    A generalized form of the second-order van Leer transport scheme is derived. Several constraints to the implied subgrid linear distribution are discussed. A very simple positive-definite scheme can be derived directly from the generalized form. A monotonic version of the scheme is applied to the Goddard Laboratory for Atmospheres (GLA) general circulation model (GCM) for the moisture transport calculations, replacing the original fourth-order center-differencing scheme. Comparisons with the original scheme are made in idealized tests as well as in a summer climate simulation using the full GLA GCM. A distinct advantage of the monotonic transport scheme is its ability to transport sharp gradients without producing spurious oscillations and unphysical negative mixing ratio. Within the context of low-resolution climate simulations, the aforementioned characteristics are demonstrated to be very beneficial in regions where cumulus convection is active. The model-produced precipitation pattern using the new transport scheme is more coherently organized both in time and in space, and correlates better with observations. The side effect of the filling algorithm used in conjunction with the original scheme is also discussed, in the context of idealized tests. The major weakness of the proposed transport scheme with a local monotonic constraint is its substantial implicit diffusion at low resolution. Alternative constraints are discussed to counter this problem.

  4. Numerical implementation, verification and validation of two-phase flow four-equation drift flux model with Jacobian-free Newton–Krylov method

    DOE PAGES

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-08-24

    This study presents a numerical investigation on using the Jacobian-free Newton–Krylov (JFNK) method to solve the two-phase flow four-equation drift flux model with realistic constitutive correlations (‘closure models’). The drift flux model is based on Isshi and his collaborators’ work. Additional constitutive correlations for vertical channel flow, such as two-phase flow pressure drop, flow regime map, wall boiling and interfacial heat transfer models, were taken from the RELAP5-3D Code Manual and included to complete the model. The staggered grid finite volume method and fully implicit backward Euler method was used for the spatial discretization and time integration schemes, respectively. Themore » Jacobian-free Newton–Krylov method shows no difficulty in solving the two-phase flow drift flux model with a discrete flow regime map. In addition to the Jacobian-free approach, the preconditioning matrix is obtained by using the default finite differencing method provided in the PETSc package, and consequently the labor-intensive implementation of complex analytical Jacobian matrix is avoided. Extensive and successful numerical verification and validation have been performed to prove the correct implementation of the models and methods. Code-to-code comparison with RELAP5-3D has further demonstrated the successful implementation of the drift flux model.« less

  5. Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandar, L. C.; Engineering Department, Cambridge University, 9 J J Thomson Ave, Cambridge CB3 0FA; Fröhlich, B.

    We report on a gated single-photon detector based on InGaAs/InP avalanche photodiodes (APDs) with a single-photon detection efficiency exceeding 55% at 1550 nm. Our detector is gated at 1 GHz and employs the self-differencing technique for gate transient suppression. It can operate nearly dead time free, except for the one clock cycle dead time intrinsic to self-differencing, and we demonstrate a count rate of 500 Mcps. We present a careful analysis of the optimal driving conditions of the APD measured with a dead time free detector characterization setup. It is found that a shortened gate width of 360 ps together with anmore » increased driving signal amplitude and operation at higher temperatures leads to improved performance of the detector. We achieve an afterpulse probability of 7% at 50% detection efficiency with dead time free measurement and a record efficiency for InGaAs/InP APDs of 55% at an afterpulse probability of only 10.2% with a moderate dead time of 10 ns.« less

  6. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors.

    PubMed

    Forrest, Lauren N; Smith, April R; Fussner, Lauren M; Dodd, Dorian R; Clerkin, Elise M

    2016-01-01

    "Fast" (i.e., implicit) processing is relatively automatic; "slow" (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence.

  7. Using implicit attitudes of exercise importance to predict explicit exercise dependence symptoms and exercise behaviors

    PubMed Central

    Forrest, Lauren N.; Smith, April R.; Fussner, Lauren M.; Dodd, Dorian R.; Clerkin, Elise M.

    2015-01-01

    Objectives ”Fast” (i.e., implicit) processing is relatively automatic; “slow” (i.e., explicit) processing is relatively controlled and can override automatic processing. These different processing types often produce different responses that uniquely predict behaviors. In the present study, we tested if explicit, self-reported symptoms of exercise dependence and an implicit association of exercise as important predicted exercise behaviors and change in problematic exercise attitudes. Design We assessed implicit attitudes of exercise importance and self-reported symptoms of exercise dependence at Time 1. Participants reported daily exercise behaviors for approximately one month, and then completed a Time 2 assessment of self-reported exercise dependence symptoms. Method Undergraduate males and females (Time 1, N = 93; Time 2, N = 74) tracked daily exercise behaviors for one month and completed an Implicit Association Test assessing implicit exercise importance and subscales of the Exercise Dependence Questionnaire (EDQ) assessing exercise dependence symptoms. Results Implicit attitudes of exercise importance and Time 1 EDQ scores predicted Time 2 EDQ scores. Further, implicit exercise importance and Time 1 EDQ scores predicted daily exercise intensity while Time 1 EDQ scores predicted the amount of days exercised. Conclusion Implicit and explicit processing appear to uniquely predict exercise behaviors and attitudes. Given that different implicit and explicit processes may drive certain exercise factors (e.g., intensity and frequency, respectively), these behaviors may contribute to different aspects of exercise dependence. PMID:26195916

  8. Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqiang; Ju, Lili; Du, Qiang

    2016-07-01

    The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.

  9. Interferometric observations of an artificial satellite.

    PubMed

    Preston, R A; Ergas, R; Hinteregger, H F; Knight, C A; Robertson, D S; Shapiro, I I; Whitney, A R; Rogers, A E; Clark, T A

    1972-10-27

    Very-long-baseline interferometric observations of radio signals from the TACSAT synchronous satellite, even though extending over only 7 hours, have enabled an excellent orbit to be deduced. Precision in differenced delay and delay-rate measurements reached 0.15 nanosecond ( approximately 5 centimeters in equivalent differenced distance) and 0.05 picosecond per second ( approximately 0.002 centimeter per second in equivalent differenced velocity), respectively. The results from this initial three-station experiment demonstrate the feasibility of using the method for accurate satellite tracking and for geodesy. Comparisons are made with other techniques.

  10. Implicit and semi-implicit schemes in the Versatile Advection Code: numerical tests

    NASA Astrophysics Data System (ADS)

    Toth, G.; Keppens, R.; Botchev, M. A.

    1998-04-01

    We describe and evaluate various implicit and semi-implicit time integration schemes applied to the numerical simulation of hydrodynamical and magnetohydrodynamical problems. The schemes were implemented recently in the software package Versatile Advection Code, which uses modern shock capturing methods to solve systems of conservation laws with optional source terms. The main advantage of implicit solution strategies over explicit time integration is that the restrictive constraint on the allowed time step can be (partially) eliminated, thus the computational cost is reduced. The test problems cover one and two dimensional, steady state and time accurate computations, and the solutions contain discontinuities. For each test, we confront explicit with implicit solution strategies.

  11. AN IMMERSED BOUNDARY METHOD FOR COMPLEX INCOMPRESSIBLE FLOWS

    EPA Science Inventory

    An immersed boundary method for time-dependant, three- dimensional, incompressible flows is presented in this paper. The incompressible Navier-Stokes equations are discretized using a low-diffusion flux splitting method for the inviscid fluxes and a second order central differenc...

  12. The study and realization of BDS un-differenced network-RTK based on raw observations

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Pengfei; Zhang, Rui; Lu, Cuixian; Liu, Jinhai; Lu, Xiaochun

    2017-06-01

    A BeiDou Navigation Satellite System (BDS) Un-Differenced (UD) Network Real Time Kinematic (URTK) positioning algorithm, which is based on raw observations, is developed in this study. Given an integer ambiguity datum, the UD integer ambiguity can be recovered from Double-Differenced (DD) integer ambiguities, thus the UD observation corrections can be calculated and interpolated for the rover station to achieve the fast positioning. As this URTK model uses raw observations instead of the ionospheric-free combinations, it is applicable for both dual- and single-frequency users to realize the URTK service. The algorithm was validated with the experimental BDS data collected at four regional stations from day of year 080 to 083 in 2016. The achieved results confirmed the high efficiency of the proposed URTK for providing the rover users a rapid and precise positioning service compared to the standard NRTK. In our test, the BDS URTK can provide a positioning service with cm level accuracy, i.e., 1 cm in the horizontal components, and 2-3 cm in the vertical component. Within the regional network, the mean convergence time for the users to fix the UD ambiguities is 2.7 s for the dual-frequency observations and of 6.3 s for the single-frequency observations after the DD ambiguity resolution. Furthermore, due to the feature of realizing URTK technology under the UD processing mode, it is possible to integrate the global Precise Point Positioning (PPP) and the local NRTK into a seamless positioning service.

  13. Change Detection in Uav Video Mosaics Combining a Feature Based Approach and Extended Image Differencing

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang

    2016-06-01

    Change detection is an important task when using unmanned aerial vehicles (UAV) for video surveillance. We address changes of short time scale using observations in time distances of a few hours. Each observation (previous and current) is a short video sequence acquired by UAV in near-Nadir view. Relevant changes are, e.g., recently parked or moved vehicles. Examples for non-relevant changes are parallaxes caused by 3D structures of the scene, shadow and illumination changes, and compression or transmission artifacts. In this paper we present (1) a new feature based approach to change detection, (2) a combination with extended image differencing (Saur et al., 2014), and (3) the application to video sequences using temporal filtering. In the feature based approach, information about local image features, e.g., corners, is extracted in both images. The label "new object" is generated at image points, where features occur in the current image and no or weaker features are present in the previous image. The label "vanished object" corresponds to missing or weaker features in the current image and present features in the previous image. This leads to two "directed" change masks and differs from image differencing where only one "undirected" change mask is extracted which combines both label types to the single label "changed object". The combination of both algorithms is performed by merging the change masks of both approaches. A color mask showing the different contributions is used for visual inspection by a human image interpreter.

  14. Visible and near-infrared laser radiation in a biological tissue. A forward model for medical imaging by optical tomography.

    PubMed

    Trabelsi, H; Gantri, M; Sediki, E

    2010-01-01

    We present a numerical model for the study of a general, two-dimensional, time-dependent, laser radiation transfer problem in a biological tissue. The model is suitable for many situations, especially when the external laser source is pulsed or continuous. We used a control volume discrete-ordinate method associated with an implicit, three-level, second-order, time-differencing scheme. In medical imaging by laser techniques, this could be an optical tomography forward model. We considered a very thin rectangular biological tissue-like medium submitted to a visible or a near-infrared laser source. Different cases were treated numerically. The source was assumed to be monochromatic and collimated. We used either a continuous source or a short-pulsed source. The transmitted radiance was computed in detector points on the boundaries. Also, the distribution of the internal radiation intensity for different instants is presented. According to the source type, we examined either the steady-state response or the transient response of the medium. First, our model was validated by experimental results from the literature for a homogeneous biological tissue. The space and angular grid independency of our results is shown. Next, the proposed model was used to study changes in transmitted radiation for a homogeneous background medium in which were imbedded two heterogeneous objects. As a last investigation, we studied a multilayered biological tissue. We simulated near-infrared radiation in human skin, fat and muscle. Some results concerning the effects of fat thickness and positions of the detector source on the reflected radiation are presented.

  15. Implicit timing activates the left inferior parietal cortex.

    PubMed

    Wiener, Martin; Turkeltaub, Peter E; Coslett, H Branch

    2010-11-01

    Coull and Nobre (2008) suggested that tasks that employ temporal cues might be divided on the basis of whether these cues are explicitly or implicitly processed. Furthermore, they suggested that implicit timing preferentially engages the left cerebral hemisphere. We tested this hypothesis by conducting a quantitative meta-analysis of eleven neuroimaging studies of implicit timing using the activation-likelihood estimation (ALE) algorithm (Turkeltaub, Eden, Jones, & Zeffiro, 2002). Our analysis revealed a single but robust cluster of activation-likelihood in the left inferior parietal cortex (supramarginal gyrus). This result is in accord with the hypothesis that the left hemisphere subserves implicit timing mechanisms. Furthermore, in conjunction with a previously reported meta-analysis of explicit timing tasks, our data support the claim that implicit and explicit timing are supported by at least partially distinct neural structures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. A numerical study of thermal stratification due to transient natural convection in densified liquid propellant tanks

    NASA Astrophysics Data System (ADS)

    Manalo, Lawrence B.

    A comprehensive, non-equilibrium, two-domain (liquid and vapor), physics based, mathematical model is developed to investigate the onset and growth of the natural circulation and thermal stratification inside cryogenic propellant storage tanks due to heat transfer from the surroundings. A two-dimensional (planar) model is incorporated for the liquid domain while a lumped, thermodynamic model is utilized for the vapor domain. The mathematical model in the liquid domain consists of the conservation of mass, momentum, and energy equations and incorporates the Boussinesq approximation (constant fluid density except in the buoyancy term of the momentum equation). In addition, the vapor is assumed to behave like an ideal gas with uniform thermodynamic properties. Furthermore, the time-dependent nature of the heat leaks from the surroundings to the propellant (due to imperfect tank insulation) is considered. Also, heterogeneous nucleation, although not significant in the temperature range of study, has been included. The transport of mass and energy between the liquid and vapor domains leads to transient ullage vapor temperatures and pressures. (The latter of which affects the saturation temperature of the liquid at the liquid-vapor interface.) This coupling between the two domains is accomplished through an energy balance (based on a micro-layer concept) at the interface. The resulting governing, non-linear, partial differential equations (which include a Poisson's equation for determining the pressure distribution) in the liquid domain are solved by an implicit, finite-differencing technique utilizing a non-uniform (stretched) mesh (in both directions) for predicting the velocity and temperature fields. (The accuracy of the numerical scheme is validated by comparing the model's results to a benchmark numerical case as well as to available experimental data.) The mass, temperature, and pressure of the vapor is determined by using a simple explicit finite-differencing technique. With the model at hand, the effects of variable fluid transport/thermo-physical properties, levels of initial sub-cooling, operating pressure, and initial liquid aspect ratio on the natural circulation patterns and thermal stratification are numerically investigated. Liquid oxygen (LOx) is the primary working fluid in the study. However, a simulation with liquid nitrogen (LN2) as the propellant is also carried out for comparison purposes.

  17. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.

    PubMed

    de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D

    2005-05-15

    We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

  18. Deep-space navigation with differenced data types. Part 3: An expanded information content and sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Estefan, J. A.; Thurman, S. W.

    1992-01-01

    An approximate six-parameter analytic model for Earth-based differential range measurements is presented and is used to derive a representative analytic approximation for differenced Doppler measurements. The analytical models are tasked to investigate the ability of these data types to estimate spacecraft geocentric angular motion, Deep Space Network station oscillator (clock/frequency) offsets, and signal-path calibration errors over a period of a few days, in the presence of systematic station location and transmission media calibration errors. Quantitative results indicate that a few differenced Doppler plus ranging passes yield angular position estimates with a precision on the order of 0.1 to 0.4 micro-rad, and angular rate precision on the order of 10 to 25 x 10(exp -12) rad/sec, assuming no a priori information on the coordinate parameters. Sensitivity analyses suggest that troposphere zenith delay calibration error is the dominant systematic error source in most of the tracking scenarios investigated; as expected, the differenced Doppler data were found to be much more sensitive to troposphere calibration errors than differenced range. By comparison, results computed using wideband and narrowband (delta) VLBI under similar circumstances yielded angular precisions of 0.07 to 0.4 micro-rad, and angular rate precisions of 0.5 to 1.0 x 10(exp -12) rad/sec.

  19. An efficient solution technique for shockwave-boundary layer interactions with flow separation and slot suction effects

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; Mcrae, D. Scott

    1991-01-01

    An efficient method for computing two-dimensional compressible Navier-Stokes flow fields is presented. The solution algorithm is a fully-implicit approximate factorization technique based on an unsymmetric line Gauss-Seidel splitting of the equation system Jacobian matrix. Convergence characteristics are improved by the addition of acceleration techniques based on Shamanskii's method for nonlinear equations and Broyden's quasi-Newton update. Characteristic-based differencing of the equations is provided by means of Van Leer's flux vector splitting. In this investigation, emphasis is placed on the fast and accurate computation of shock-wave-boundary layer interactions with and without slot suction effects. In the latter context, a set of numerical boundary conditions for simulating the transpiration flow in an open slot is devised. Both laminar and turbulent cases are considered, with turbulent closure provided by a modified Cebeci-Smith algebraic model. Comparisons with computational and experimental data sets are presented for a variety of interactions, and a fully-coupled simulation of a plenum chamber/inlet flowfield with shock interaction and suction is also shown and discussed.

  20. A point implicit time integration technique for slow transient flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less

  1. Proportionality between Doppler noise and integrated signal path electron density validated by differenced S-X range

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.

  2. Continuous non-invasive blood glucose monitoring by spectral image differencing method

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Liao, Ningfang; Cheng, Haobo; Liang, Jing

    2018-01-01

    Currently, the use of implantable enzyme electrode sensor is the main method for continuous blood glucose monitoring. But the effect of electrochemical reactions and the significant drift caused by bioelectricity in body will reduce the accuracy of the glucose measurements. So the enzyme-based glucose sensors need to be calibrated several times each day by the finger-prick blood corrections. This increases the patient's pain. In this paper, we proposed a method for continuous Non-invasive blood glucose monitoring by spectral image differencing method in the near infrared band. The method uses a high-precision CCD detector to switch the filter in a very short period of time, obtains the spectral images. And then by using the morphological method to obtain the spectral image differences, the dynamic change of blood sugar is reflected in the image difference data. Through the experiment proved that this method can be used to monitor blood glucose dynamically to a certain extent.

  3. Basic research for the Earth dynamics program

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The technique of range differencing with Lageos ranges to obtain more accurate estimates of baseline lengths and polar motion variation was studied. Differencing quasi simultaneous range observations eliminate a great deal of orbital biases. Progress is reported on the definition and maintenance of a conventional terrestrial reference system.

  4. RESULTS FROM KINEROS STREAM CHANNEL ELEMENTS MODEL OUTPUT THROUGH AGWA DIFFERENCING 1973 AND 1997 NALC LANDCOVER DATA

    EPA Science Inventory

    Results from differencing KINEROS model output through AGWA for Sierra Vista subwatershed. Percent change between 1973 and 1997 is presented for all KINEROS output values (and some derived from the KINEROS output by AGWA) for the stream channels.

  5. Change analysis in the United Arab Emirates: An investigation of techniques

    USGS Publications Warehouse

    Sohl, Terry L.

    1999-01-01

    Much of the landscape of the United Arab Emirates has been transformed over the past 15 years by massive afforestation, beautification, and agricultural programs. The "greening" of the United Arab Emirates has had environmental consequences, however, including degraded groundwater quality and possible damage to natural regional ecosystems. Personnel from the Ground- Water Research project, a joint effort between the National Drilling Company of the Abu Dhabi Emirate and the U.S. Geological Survey, were interested in studying landscape change in the Abu Dhabi Emirate using Landsat thematic mapper (TM) data. The EROs Data Center in Sioux Falls, South Dakota was asked to investigate land-cover change techniques that (1) provided locational, quantitative, and qualitative information on landcover change within the Abu Dhabi Emirate; and (2) could be easily implemented by project personnel who were relatively inexperienced in remote sensing. A number of products were created with 1987 and 1996 Landsat TM data using change-detection techniques, including univariate image differencing, an "enhanced" image differencing, vegetation index differencing, post-classification differencing, and changevector analysis. The different techniques provided products that varied in levels of adequacy according to the specific application and the ease of implementation and interpretation. Specific quantitative values of change were most accurately and easily provided by the enhanced image-differencing technique, while the change-vector analysis excelled at providing rich qualitative detail about the nature of a change. 

  6. Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.

    2018-04-01

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  7. Using classification and NDVI differencing methods for monitoring sparse vegetation coverage: a case study of saltcedar in Nevada, USA.

    USDA-ARS?s Scientific Manuscript database

    A change detection experiment for an invasive species, saltcedar, near Lovelock, Nevada, was conducted with multi-date Compact Airborne Spectrographic Imager (CASI) hyperspectral datasets. Classification and NDVI differencing change detection methods were tested, In the classification strategy, a p...

  8. CINDA-3G: Improved Numerical Differencing Analyzer Program for Third-Generation Computers

    NASA Technical Reports Server (NTRS)

    Gaski, J. D.; Lewis, D. R.; Thompson, L. R.

    1970-01-01

    The goal of this work was to develop a new and versatile program to supplement or replace the original Chrysler Improved Numerical Differencing Analyzer (CINDA) thermal analyzer program in order to take advantage of the improved systems software and machine speeds of the third-generation computers.

  9. TAIR- TRANSONIC AIRFOIL ANALYSIS COMPUTER CODE

    NASA Technical Reports Server (NTRS)

    Dougherty, F. C.

    1994-01-01

    The Transonic Airfoil analysis computer code, TAIR, was developed to employ a fast, fully implicit algorithm to solve the conservative full-potential equation for the steady transonic flow field about an arbitrary airfoil immersed in a subsonic free stream. The full-potential formulation is considered exact under the assumptions of irrotational, isentropic, and inviscid flow. These assumptions are valid for a wide range of practical transonic flows typical of modern aircraft cruise conditions. The primary features of TAIR include: a new fully implicit iteration scheme which is typically many times faster than classical successive line overrelaxation algorithms; a new, reliable artifical density spatial differencing scheme treating the conservative form of the full-potential equation; and a numerical mapping procedure capable of generating curvilinear, body-fitted finite-difference grids about arbitrary airfoil geometries. Three aspects emphasized during the development of the TAIR code were reliability, simplicity, and speed. The reliability of TAIR comes from two sources: the new algorithm employed and the implementation of effective convergence monitoring logic. TAIR achieves ease of use by employing a "default mode" that greatly simplifies code operation, especially by inexperienced users, and many useful options including: several airfoil-geometry input options, flexible user controls over program output, and a multiple solution capability. The speed of the TAIR code is attributed to the new algorithm and the manner in which it has been implemented. Input to the TAIR program consists of airfoil coordinates, aerodynamic and flow-field convergence parameters, and geometric and grid convergence parameters. The airfoil coordinates for many airfoil shapes can be generated in TAIR from just a few input parameters. Most of the other input parameters have default values which allow the user to run an analysis in the default mode by specifing only a few input parameters. Output from TAIR may include aerodynamic coefficients, the airfoil surface solution, convergence histories, and printer plots of Mach number and density contour maps. The TAIR program is written in FORTRAN IV for batch execution and has been implemented on a CDC 7600 computer with a central memory requirement of approximately 155K (octal) of 60 bit words. The TAIR program was developed in 1981.

  10. Change in explicit and implicit motivation toward physical activity and sedentary behavior in pulmonary rehabilitation and associations with postrehabilitation behaviors.

    PubMed

    Chevance, Guillaume; Héraud, Nelly; Varray, Alain; Boiché, Julie

    2017-05-01

    The aim of this study was twofold: (a) to determine whether Theory of Planned Behavior (TPB) variables and implicit attitudes toward physical activity and sedentary behavior would change during a 5-week pulmonary rehabilitation (PR) program, and (b) to investigate the relationships between behavioral intentions, implicit attitudes, physical activity, and sedentary behavior in postrehabilitation. Out of 142 patients with respiratory disease included in this study, 119 completed 2 questionnaires measuring TPB variables with regard to physical activity and sedentary behavior, and an Implicit Association Test (IAT) measuring implicit attitudes toward physical activity in contrast to sedentary behavior. The TPB questionnaires and the IAT were administered at the beginning (Time 1) and the end of the program (Time 2). Six months after the program (Time 3), 62 patients provided self-reported measures of their recreational physical activity and screen-based, leisure-time sedentary behavior. Over the course of pulmonary rehabilitation, perceived behavioral control and intentions toward physical activity increased, as did social norms and perceived behavioral control toward sedentary behavior; implicit attitudes were also more positive toward physical activity. Implicit attitudes at the end of PR (Time 2) were significantly associated with postrehabilitation physical activity (Time 3). TPB variables toward physical activity and sedentary behavior as well as implicit attitudes were enhanced during PR. At 6 months, implicit attitudes were significantly associated with physical activity. These results suggest that motivation, particularly implicit attitudes, should be targeted in future behavioral interventions in order to optimize the effects of rehabilitation on physical activity maintenance. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Racial-ethnic biases, time pressure, and medical decisions.

    PubMed

    Stepanikova, Irena

    2012-09-01

    This study examined two types of potential sources of racial-ethnic disparities in medical care: implicit biases and time pressure. Eighty-one family physicians and general internists responded to a case vignette describing a patient with chest pain. Time pressure was manipulated experimentally. Under high time pressure, but not under low time pressure, implicit biases regarding blacks and Hispanics led to a less serious diagnosis. In addition, implicit biases regarding blacks led to a lower likelihood of a referral to specialist when physicians were under high time pressure. The results suggest that when physicians face stress, their implicit biases may shape medical decisions in ways that disadvantage minority patients.

  12. Unconscious Motivation. Part I: Implicit Attitudes toward L2 Speakers

    ERIC Educational Resources Information Center

    Al-Hoorie, Ali H.

    2016-01-01

    This paper reports the first investigation in the second language acquisition field assessing learners' implicit attitudes using the Implicit Association Test, a computerized reaction-time measure. Examination of the explicit and implicit attitudes of Arab learners of English (N = 365) showed that, particularly for males, implicit attitudes toward…

  13. Estimating the implicit component of visuomotor rotation learning by constraining movement preparation time.

    PubMed

    Leow, Li-Ann; Gunn, Reece; Marinovic, Welber; Carroll, Timothy J

    2017-08-01

    When sensory feedback is perturbed, accurate movement is restored by a combination of implicit processes and deliberate reaiming to strategically compensate for errors. Here, we directly compare two methods used previously to dissociate implicit from explicit learning on a trial-by-trial basis: 1 ) asking participants to report the direction that they aim their movements, and contrasting this with the directions of the target and the movement that they actually produce, and 2 ) manipulating movement preparation time. By instructing participants to reaim without a sensory perturbation, we show that reaiming is possible even with the shortest possible preparation times, particularly when targets are narrowly distributed. Nonetheless, reaiming is effortful and comes at the cost of increased variability, so we tested whether constraining preparation time is sufficient to suppress strategic reaiming during adaptation to visuomotor rotation with a broad target distribution. The rate and extent of error reduction under preparation time constraints were similar to estimates of implicit learning obtained from self-report without time pressure, suggesting that participants chose not to apply a reaiming strategy to correct visual errors under time pressure. Surprisingly, participants who reported aiming directions showed less implicit learning according to an alternative measure, obtained during trials performed without visual feedback. This suggests that the process of reporting can affect the extent or persistence of implicit learning. The data extend existing evidence that restricting preparation time can suppress explicit reaiming and provide an estimate of implicit visuomotor rotation learning that does not require participants to report their aiming directions. NEW & NOTEWORTHY During sensorimotor adaptation, implicit error-driven learning can be isolated from explicit strategy-driven reaiming by subtracting self-reported aiming directions from movement directions, or by restricting movement preparation time. Here, we compared the two methods. Restricting preparation times did not eliminate reaiming but was sufficient to suppress reaiming during adaptation with widely distributed targets. The self-report method produced a discrepancy in implicit learning estimated by subtracting aiming directions and implicit learning measured in no-feedback trials. Copyright © 2017 the American Physiological Society.

  14. Fast Image Subtraction Using Multi-cores and GPUs

    NASA Astrophysics Data System (ADS)

    Hartung, Steven; Shukla, H.

    2013-01-01

    Many important image processing techniques in astronomy require a massive number of computations per pixel. Among them is an image differencing technique known as Optimal Image Subtraction (OIS), which is very useful for detecting and characterizing transient phenomena. Like many image processing routines, OIS computations increase proportionally with the number of pixels being processed, and the number of pixels in need of processing is increasing rapidly. Utilizing many-core graphical processing unit (GPU) technology in a hybrid conjunction with multi-core CPU and computer clustering technologies, this work presents a new astronomy image processing pipeline architecture. The chosen OIS implementation focuses on the 2nd order spatially-varying kernel with the Dirac delta function basis, a powerful image differencing method that has seen limited deployment in part because of the heavy computational burden. This tool can process standard image calibration and OIS differencing in a fashion that is scalable with the increasing data volume. It employs several parallel processing technologies in a hierarchical fashion in order to best utilize each of their strengths. The Linux/Unix based application can operate on a single computer, or on an MPI configured cluster, with or without GPU hardware. With GPU hardware available, even low-cost commercial video cards, the OIS convolution and subtraction times for large images can be accelerated by up to three orders of magnitude.

  15. [Effects of an implicit internal working model on attachment in information processing assessed using Go/No-Go Association Task].

    PubMed

    Fujii, Tsutomu; Uebuchi, Hisashi; Yamada, Kotono; Saito, Masahiro; Ito, Eriko; Tonegawa, Akiko; Uebuchi, Marie

    2015-06-01

    The purposes of the present study were (a) to use both a relational-anxiety Go/No-Go Association Task (GNAT) and an avoidance-of-intimacy GNAT in order to assess an implicit Internal Working Model (IWM) of attachment; (b) to verify the effects of both measured implicit relational anxiety and implicit avoidance of intimacy on information processing. The implicit IWM measured by GNAT differed from the explicit IWM measured by questionnaires in terms of the effects on information processing. In particular, in subliminal priming tasks involving with others, implicit avoidance of intimacy predicted accelerated response times with negative stimulus words about attachment. Moreover, after subliminally priming stimulus words about self, implicit relational anxiety predicted delayed response times with negative stimulus words about attachment.

  16. Identification as Gifted and Implicit Beliefs About Intelligence: An Examination of Potential Moderators

    PubMed Central

    Snyder, Kate E.; Barger, Michael M.; Wormington, Stephanie V.; Schwartz-Bloom, Rochelle; Linnenbrink-Garcia, Lisa

    2015-01-01

    The current study investigated whether the developmental timing of a student’s identification as gifted (i.e., when a student is first identified) was associated with later implicit beliefs about intelligence, and whether this relation is moderated by academic ability. A sample of 1,743 high-ability college students reported on whether and when they had been identified as gifted, academic ability (SAT scores), and implicit beliefs of intelligence. Timing of identification was unrelated to implicit beliefs; academic ability was the only significant predictor. Higher ability students who had been previously identified as gifted at any point in time reported implicit beliefs more toward entity beliefs than relatively lower ability students who had also been identified; however, this effect was quite small. Implicit beliefs did not vary by ability level for nonidentified students. These findings suggest that identification as gifted at any age modestly (but not necessarily meaningfully) relates to implicit beliefs for high-ability students. PMID:25729466

  17. A space-time lower-upper symmetric Gauss-Seidel scheme for the time-spectral method

    NASA Astrophysics Data System (ADS)

    Zhan, Lei; Xiong, Juntao; Liu, Feng

    2016-05-01

    The time-spectral method (TSM) offers the advantage of increased order of accuracy compared to methods using finite-difference in time for periodic unsteady flow problems. Explicit Runge-Kutta pseudo-time marching and implicit schemes have been developed to solve iteratively the space-time coupled nonlinear equations resulting from TSM. Convergence of the explicit schemes is slow because of the stringent time-step limit. Many implicit methods have been developed for TSM. Their computational efficiency is, however, still limited in practice because of delayed implicit temporal coupling, multiple iterative loops, costly matrix operations, or lack of strong diagonal dominance of the implicit operator matrix. To overcome these shortcomings, an efficient space-time lower-upper symmetric Gauss-Seidel (ST-LU-SGS) implicit scheme with multigrid acceleration is presented. In this scheme, the implicit temporal coupling term is split as one additional dimension of space in the LU-SGS sweeps. To improve numerical stability for periodic flows with high frequency, a modification to the ST-LU-SGS scheme is proposed. Numerical results show that fast convergence is achieved using large or even infinite Courant-Friedrichs-Lewy (CFL) numbers for unsteady flow problems with moderately high frequency and with the use of moderately high numbers of time intervals. The ST-LU-SGS implicit scheme is also found to work well in calculating periodic flow problems where the frequency is not known a priori and needed to be determined by using a combined Fourier analysis and gradient-based search algorithm.

  18. An in-depth stability analysis of nonuniform FDTD combined with novel local implicitization techniques

    NASA Astrophysics Data System (ADS)

    Van Londersele, Arne; De Zutter, Daniël; Vande Ginste, Dries

    2017-08-01

    This work focuses on efficient full-wave solutions of multiscale electromagnetic problems in the time domain. Three local implicitization techniques are proposed and carefully analyzed in order to relax the traditional time step limit of the Finite-Difference Time-Domain (FDTD) method on a nonuniform, staggered, tensor product grid: Newmark, Crank-Nicolson (CN) and Alternating-Direction-Implicit (ADI) implicitization. All of them are applied in preferable directions, alike Hybrid Implicit-Explicit (HIE) methods, as to limit the rank of the sparse linear systems. Both exponential and linear stability are rigorously investigated for arbitrary grid spacings and arbitrary inhomogeneous, possibly lossy, isotropic media. Numerical examples confirm the conservation of energy inside a cavity for a million iterations if the time step is chosen below the proposed, relaxed limit. Apart from the theoretical contributions, new accomplishments such as the development of the leapfrog Alternating-Direction-Hybrid-Implicit-Explicit (ADHIE) FDTD method and a less stringent Courant-like time step limit for the conventional, fully explicit FDTD method on a nonuniform grid, have immediate practical applications.

  19. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE PAGES

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; ...

    2018-04-17

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  20. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  1. Application of non-coherent Doppler data types for deep space navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, Shyam

    1995-01-01

    Recent improvements in computational capability and Deep Space Network technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis is performed which analyzes the accuracy obtainable by combinations of one-way Doppler data and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data is capable of determining the angular position of the spacecraft to fairly high accuracy, but has relatively poor sensitivity to the range. When combined with single station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard data two-way types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.

  2. The application of noncoherent Doppler data types for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Bhaskaran, S.

    1995-01-01

    Recent improvements in computational capability and DSN technology have renewed interest in examining the possibility of using one-way Doppler data alone to navigate interplanetary spacecraft. The one-way data can be formulated as the standard differenced-count Doppler or as phase measurements, and the data can be received at a single station or differenced if obtained simultaneously at two stations. A covariance analysis, which analyzes the accuracy obtainable by combinations of one-way Doppler data, is performed and compared with similar results using standard two-way Doppler and range. The sample interplanetary trajectory used was that of the Mars Pathfinder mission to Mars. It is shown that differenced one-way data are capable of determining the angular position of the spacecraft to fairly high accuracy, but have relatively poor sensitivity to the range. When combined with single-station data, the position dispersions are roughly an order of magnitude larger in range and comparable in angular position as compared to dispersions obtained with standard two-way data types. It was also found that the phase formulation is less sensitive to data weight variations and data coverage than the differenced-count Doppler formulation.

  3. The time course of explicit and implicit categorization.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A

    2015-10-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization.

  4. Implicit Attitudes toward the Self Over Time in Chinese Undergraduates

    PubMed Central

    Yang, Qing; Zhao, Yufang; Guan, Lili; Huang, Xiting

    2017-01-01

    Although the explicit attitudes of Chinese people toward the self over time are known (i.e., past = present < future), little is known about their implicit attitudes. Two studies were conducted to measure the implicit subjective temporal trajectory (STT) of Chinese undergraduates. Study 1 used a Go/No-go association task to measure participants’ implicit attitudes toward their past, present, and future selves. The obtained implicit STT was different from the explicit pattern found in former research. It showed that the future self was viewed to be identical to the present self and participants implicitly evaluated their present self as better than the past self. Since this comparison of the past and present selves suggested a cultural difference, we aimed to replicate this finding in Study 2. Using an implicit association test, we again found that the present self was more easily associated with positive valence than the past self. Overall, both studies reveal an implicitly inclining-flat STT (i.e., past < present = future) for Chinese undergraduates. Implications of this difference in explicit-implicit measures and the cultural differences of temporal self appraisals are discussed. PMID:29163291

  5. Finite difference methods for reducing numerical diffusion in TEACH-type calculations. [Teaching Elliptic Axisymmetric Characteristics Heuristically

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; Chiappetta, L. M.

    1985-01-01

    A methodological evaluation for two-finite differencing schemes for computer-aided gas turbine design is presented. The two computational schemes include; a Bounded Skewed Finite Differencing Scheme (BSUDS); and a Quadratic Upwind Differencing Scheme (QSDS). In the evaluation, the derivations of the schemes were incorporated into two-dimensional and three-dimensional versions of the Teaching Axisymmetric Characteristics Heuristically (TEACH) computer code. Assessments were made according to performance criteria for the solution of problems of turbulent, laminar, and coannular turbulent flow. The specific performance criteria used in the evaluation were simplicity, accuracy, and computational economy. It is found that the BSUDS scheme performed better with respect to the criteria than the QUDS. Some of the reasons for the more successful performance BSUDS are discussed.

  6. Path length differencing and energy conservation of the S[sub N] Boltzmann/Spencer-Lewis equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippone, W.L.; Monahan, S.P.

    It is shown that the S[sub N] Boltzmann/Spencer-Lewis equations conserve energy locally if and only if they satisfy particle balance and diamond differencing is used in path length. In contrast, the spatial differencing schemes have no bearing on the energy balance. Energy is conserved globally if it is conserved locally and the multigroup cross sections are energy conserving. Although the coupled electron-photon cross sections generated by CEPXS conserve particles and charge, they do not precisely conserve energy. It is demonstrated that these cross sections can be adjusted such that particles, charge, and energy are conserved. Finally, since a conventional negativemore » flux fixup destroys energy balance when applied to path legend, a modified fixup scheme that does not is presented.« less

  7. Increasing women's aspirations and achievement in science: The effect of role models on implicit cognitions

    NASA Astrophysics Data System (ADS)

    Phelan, Julie E.

    This research investigated the role of implicit science beliefs in the gender gap in science aspirations and achievement, with the goal of testing identification with a female role model as a potential intervention strategy for increasing women's representation in science careers. At Time 1, women's implicit science stereotyping (i.e., associating men more than women with science) was linked to more negative (implicit and explicit) attitudes towards science and less identification with science. For men, stereotypes were either non-significantly or positively related to science attitudes and identification. Time 2 examined the influence of implicit and explicit science cognitions on students' science aspirations and achievement, and found that implicit stereotyping, attitudes, and identification were all unique predictors of science aspirations, but not achievement. Of more importance, Time 2 examined the influence of science role models, and found that identification with a role model of either gender reduced women's implicit science stereotyping and increased their positive attitudes toward science. Implications for decreasing the gender gap in advanced science achievement are discussed.

  8. Time-of-day effects in implicit racial in-group preferences are likely selection effects, not circadian rhythms

    PubMed Central

    2016-01-01

    Time-of-day effects in human psychological functioning have been known of since the 1800s. However, outside of research specifically focused on the quantification of circadian rhythms, their study has largely been neglected. Moves toward online data collection now mean that psychological investigations take place around the clock, which affords researchers the ability to easily study time-of-day effects. Recent analyses have shown, for instance, that implicit attitudes have time-of-day effects. The plausibility that these effects indicate circadian rhythms rather than selection effects is considered in the current study. There was little evidence that the time-of-day effects in implicit attitudes shifted appropriately with factors known to influence the time of circadian rhythms. Moreover, even variables that cannot logically show circadian rhythms demonstrated stronger time-of-day effects than did implicit attitudes. Taken together, these results suggest that time-of-day effects in implicit attitudes are more likely to represent processes of selection rather than circadian rhythms, but do not rule out the latter possibility. PMID:27114886

  9. Time-of-day effects in implicit racial in-group preferences are likely selection effects, not circadian rhythms.

    PubMed

    Schofield, Timothy P

    2016-01-01

    Time-of-day effects in human psychological functioning have been known of since the 1800s. However, outside of research specifically focused on the quantification of circadian rhythms, their study has largely been neglected. Moves toward online data collection now mean that psychological investigations take place around the clock, which affords researchers the ability to easily study time-of-day effects. Recent analyses have shown, for instance, that implicit attitudes have time-of-day effects. The plausibility that these effects indicate circadian rhythms rather than selection effects is considered in the current study. There was little evidence that the time-of-day effects in implicit attitudes shifted appropriately with factors known to influence the time of circadian rhythms. Moreover, even variables that cannot logically show circadian rhythms demonstrated stronger time-of-day effects than did implicit attitudes. Taken together, these results suggest that time-of-day effects in implicit attitudes are more likely to represent processes of selection rather than circadian rhythms, but do not rule out the latter possibility.

  10. Using the Implicit Association Test and the Implicit Relational Assessment Procedure to Measure Attitudes toward Meat and Vegetables in Vegetarians and Meat-Eaters

    ERIC Educational Resources Information Center

    Barnes-Holmes, Dermot; Murtagh, Louise; Barnes-Holmes, Yvonne; Stewart, Ian

    2010-01-01

    The current study aimed to assess the implicit attitudes of vegetarians and non-vegetarians towards meat and vegetables, using the Implicit Association Test (IAT) and the Implicit Relational Assessment Procedure (IRAP). Both measures involved asking participants to respond, under time pressure, to pictures of meat or vegetables as either positive…

  11. The Time Course of Explicit and Implicit Categorization

    PubMed Central

    Zakrzewski, Alexandria C.; Herberger, Eric; Boomer, Joseph; Roeder, Jessica; Ashby, F. Gregory; Church, Barbara A.

    2015-01-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization. PMID:26025556

  12. Detection and identification of six Monilinia spp. causing brown rot using TaqMan real-time PCR from pure cultures and infected apple fruit

    USDA-ARS?s Scientific Manuscript database

    Brown rot is a severe disease affecting stone and pome fruits. This disease was recently confirmed to be caused by the following six closely related species: Monilinia fructicola, Monilinia laxa, Monilinia fructigena, Monilia polystroma, Monilia mumecola and Monilia yunnanensis. Because of differenc...

  13. Joint production and substitution in timber supply: a panel data analysis

    Treesearch

    Torjus F Bolkesjo; Joseph Buongiorno; Birger Solberg

    2010-01-01

    Supply equations for sawlog and pulpwood were developed with a panel of data from 102 Norwegian municipalities, observed from 1980 to 2000. Static and dynamic models were estimated by cross-section, time-series andpanel data methods. A static model estimated by first differencing gavethe best overall results in terms of theoretical expectations, pattern ofresiduals,...

  14. a Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Jessee, J. P.; Fiveland, W. A.

    1996-08-01

    The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations.A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.

  15. Near Real-Time Event Detection & Prediction Using Intelligent Software Agents

    DTIC Science & Technology

    2006-03-01

    value was 0.06743. Multiple autoregressive integrated moving average ( ARIMA ) models were then build to see if the raw data, differenced data, or...slight improvement. The best adjusted r^2 value was found to be 0.1814. Successful results were not expected from linear or ARIMA -based modelling ...appear, 2005. [63] Mora-Lopez, L., Mora, J., Morales-Bueno, R., et al. Modelling time series of climatic parameters with probabilistic finite

  16. Higher-order differencing method with a multigrid approach for the solution of the incompressible flow equations at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Tzanos, Constantine P.

    1992-10-01

    A higher-order differencing scheme (Tzanos, 1990) is used in conjunction with a multigrid approach to obtain accurate solutions of the Navier-Stokes convection-diffusion equations at high Re numbers. Flow in a square cavity with a moving lid is used as a test problem. a multigrid approach based on the additive correction method (Settari and Aziz) and an iterative incomplete lower and upper solver demonstrated good performance for the whole range of Re number under consideration (from 1000 to 10,000) and for both uniform and nonuniform grids. It is concluded that the combination of the higher-order differencing scheme with a multigrid approach proved to be an effective technique for giving accurate solutions of the Navier-Stokes equations at high Re numbers.

  17. The Interplay of Implicit Causality, Structural Heuristics, and Anaphor Type in Ambiguous Pronoun Resolution

    ERIC Educational Resources Information Center

    Järvikivi, Juhani; van Gompel, Roger P. G.; Hyönä, Jukka

    2017-01-01

    Two visual-world eye-tracking experiments investigating pronoun resolution in Finnish examined the time course of implicit causality information relative to both grammatical role and order-of-mention information. Experiment 1 showed an effect of implicit causality that appeared at the same time as the first-mention preference. Furthermore, when we…

  18. Implicit and Explicit Memory for Affective Passages in Temporal Lobectomy Patients

    ERIC Educational Resources Information Center

    Burton, Leslie A.; Rabin, Laura; Vardy, Susan Bernstein; Frohlich, Jonathan; Porter, Gwinne Wyatt; Dimitri, Diana; Cofer, Lucas; Labar, Douglas

    2008-01-01

    Eighteen temporal lobectomy patients (9 left, LTL; 9 right, RTL) were administered four verbal tasks, an Affective Implicit Task, a Neutral Implicit Task, an Affective Explicit Task, and a Neutral Explicit Task. For the Affective and Neutral Implicit Tasks, participants were timed while reading aloud passages with affective or neutral content,…

  19. Gender-related asymmetric brain vasomotor response to color stimulation: a functional transcranial Doppler spectroscopy study.

    PubMed

    Njemanze, Philip C

    2010-11-30

    The present study was designed to examine the effects of color stimulation on cerebral blood mean flow velocity (MFV) in men and women. The study included 16 (8 men and 8 women) right-handed healthy subjects. The MFV was recorded simultaneously in both right and left middle cerebral arteries in Dark and white Light conditions, and during color (Blue, Yellow and Red) stimulations, and was analyzed using functional transcranial Doppler spectroscopy (fTCDS) technique. Color processing occurred within cortico-subcortical circuits. In men, wavelength-differencing of Yellow/Blue pairs occurred within the right hemisphere by processes of cortical long-term depression (CLTD) and subcortical long-term potentiation (SLTP). Conversely, in women, frequency-differencing of Blue/Yellow pairs occurred within the left hemisphere by processes of cortical long-term potentiation (CLTP) and subcortical long-term depression (SLTD). In both genders, there was luminance effect in the left hemisphere, while in men it was along an axis opposite (orthogonal) to that of chromatic effect, in women, it was parallel. Gender-related differences in color processing demonstrated a right hemisphere cognitive style for wavelength-differencing in men, and a left hemisphere cognitive style for frequency-differencing in women. There are potential applications of fTCDS technique, for stroke rehabilitation and monitoring of drug effects.

  20. Navier-Stokes simulations of unsteady transonic flow phenomena

    NASA Technical Reports Server (NTRS)

    Atwood, C. A.

    1992-01-01

    Numerical simulations of two classes of unsteady flows are obtained via the Navier-Stokes equations: a blast-wave/target interaction problem class and a transonic cavity flow problem class. The method developed for the viscous blast-wave/target interaction problem assumes a laminar, perfect gas implemented in a structured finite-volume framework. The approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the blast-waves with stationary targets. The inviscid flux is evaluated using either of two upwind techniques, while the full viscous terms are computed by central differencing. Comparisons of unsteady numerical, analytical, and experimental results are made in two- and three-dimensions for Couette flows, a starting shock-tunnel, and a shock-tube blockage study. The results show accurate wave speed resolution and nonoscillatory discontinuity capturing of the predominantly inviscid flows. Viscous effects were increasingly significant at large post-interaction times. While the blast-wave/target interaction problem benefits from high-resolution methods applied to the Euler terms, the transonic cavity flow problem requires the use of an efficient scheme implemented in a geometrically flexible overset mesh environment. Hence, the Reynolds averaged Navier-Stokes equations implemented in a diagonal form are applied to the cavity flow class of problems. Comparisons between numerical and experimental results are made in two-dimensions for free shear layers and both rectangular and quieted cavities, and in three-dimensions for Stratospheric Observatory For Infrared Astronomy (SOFIA) geometries. The acoustic behavior of the rectangular and three-dimensional cavity flows compare well with experiment in terms of frequency, magnitude, and quieting trends. However, there is a more rapid decrease in computed acoustic energy with frequency than observed experimentally owing to numerical dissipation. In addition, optical phase distortion due to the time-varying density field is modelled using geometrical constructs. The computed optical distortion trends compare with the experimentally inferred result, but underpredicts the fluctuating phase difference magnitude.

  1. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  2. The key to success in elite athletes? Explicit and implicit motor learning in youth elite and non-elite soccer players.

    PubMed

    Verburgh, L; Scherder, E J A; van Lange, P A M; Oosterlaan, J

    2016-09-01

    In sports, fast and accurate execution of movements is required. It has been shown that implicitly learned movements might be less vulnerable than explicitly learned movements to stressful and fast changing circumstances that exist at the elite sports level. The present study provides insight in explicit and implicit motor learning in youth soccer players with different expertise levels. Twenty-seven youth elite soccer players and 25 non-elite soccer players (aged 10-12) performed a serial reaction time task (SRTT). In the SRTT, one of the sequences must be learned explicitly, the other was implicitly learned. No main effect of group was found for implicit and explicit learning on mean reaction time (MRT) and accuracy. However, for MRT, an interaction was found between learning condition, learning phase and group. Analyses showed no group effects for the explicit learning condition, but youth elite soccer players showed better learning in the implicit learning condition. In particular, during implicit motor learning youth elite soccer showed faster MRTs in the early learning phase and earlier reached asymptote performance in terms of MRT. Present findings may be important for sports because children with superior implicit learning abilities in early learning phases may be able to learn more (durable) motor skills in a shorter time period as compared to other children.

  3. Investigation for improving Global Positioning System (GPS) orbits using a discrete sequential estimator and stochastic models of selected physical processes

    NASA Technical Reports Server (NTRS)

    Goad, Clyde C.; Chadwell, C. David

    1993-01-01

    GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.

  4. Steganography algorithm multi pixel value differencing (MPVD) to increase message capacity and data security

    NASA Astrophysics Data System (ADS)

    Rojali, Siahaan, Ida Sri Rejeki; Soewito, Benfano

    2017-08-01

    Steganography is the art and science of hiding the secret messages so the existence of the message cannot be detected by human senses. The data concealment is using the Multi Pixel Value Differencing (MPVD) algorithm, utilizing the difference from each pixel. The development was done by using six interval tables. The objective of this algorithm is to enhance the message capacity and to maintain the data security.

  5. TLE uncertainty estimation using robust weighted differencing

    NASA Astrophysics Data System (ADS)

    Geul, Jacco; Mooij, Erwin; Noomen, Ron

    2017-05-01

    Accurate knowledge of satellite orbit errors is essential for many types of analyses. Unfortunately, for two-line elements (TLEs) this is not available. This paper presents a weighted differencing method using robust least-squares regression for estimating many important error characteristics. The method is applied to both classic and enhanced TLEs, compared to previous implementations, and validated using Global Positioning System (GPS) solutions for the GOCE satellite in Low-Earth Orbit (LEO), prior to its re-entry. The method is found to be more accurate than previous TLE differencing efforts in estimating initial uncertainty, as well as error growth. The method also proves more reliable and requires no data filtering (such as outlier removal). Sensitivity analysis shows a strong relationship between argument of latitude and covariance (standard deviations and correlations), which the method is able to approximate. Overall, the method proves accurate, computationally fast, and robust, and is applicable to any object in the satellite catalogue (SATCAT).

  6. Semi-implicit time integration of atmospheric flows with characteristic-based flux partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Constantinescu, Emil M.

    2016-06-23

    Here, this paper presents a characteristic-based flux partitioning for the semi-implicit time integration of atmospheric flows. Nonhydrostatic models require the solution of the compressible Euler equations. The acoustic time scale is significantly faster than the advective scale, yet it is typically not relevant to atmospheric and weather phenomena. The acoustic and advective components of the hyperbolic flux are separated in the characteristic space. High-order, conservative additive Runge-Kutta methods are applied to the partitioned equations so that the acoustic component is integrated in time implicitly with an unconditionally stable method, while the advective component is integrated explicitly. The time step ofmore » the overall algorithm is thus determined by the advective scale. Benchmark flow problems are used to demonstrate the accuracy, stability, and convergence of the proposed algorithm. The computational cost of the partitioned semi-implicit approach is compared with that of explicit time integration.« less

  7. Implicit and explicit motor sequence learning in children born very preterm.

    PubMed

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steiner, K; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2017-01-01

    Motor skills can be learned explicitly (dependent on working memory (WM)) or implicitly (relatively independent of WM). Children born very preterm (VPT) often have working memory deficits. Explicit learning may be compromised in these children. This study investigated implicit and explicit motor learning and the role of working memory in VPT children and controls. Three groups (6-9 years) participated: 20 VPT children with motor problems, 20 VPT children without motor problems, and 20 controls. A nine button sequence was learned implicitly (pressing the lighted button as quickly as possible) and explicitly (discovering the sequence via trial-and-error). Children learned implicitly and explicitly, evidenced by decreased movement duration of the sequence over time. In the explicit condition, children also reduced the number of errors over time. Controls made more errors than VPT children without motor problems. Visual WM had positive effects on both explicit and implicit performance. VPT birth and low motor proficiency did not negatively affect implicit or explicit learning. Visual WM was positively related to both implicit and explicit performance, but did not influence learning curves. These findings question the theoretical difference between implicit and explicit learning and the proposed role of visual WM therein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Exactly energy conserving semi-implicit particle in cell formulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenta, Giovanni, E-mail: giovanni.lapenta@kuleuven.be

    We report a new particle in cell (PIC) method based on the semi-implicit approach. The novelty of the new method is that unlike any of its semi-implicit predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. Recent research has presented fully implicit methods where energy conservation is obtained as part of a non-linear iteration procedure. The new method (referred to as Energy Conserving Semi-Implicit Method, ECSIM), instead, does not require any non-linear iteration and its computational cycle is similar to that of explicit PIC. The properties of the new method are: i) it conservesmore » energy exactly to round-off for any time step or grid spacing; ii) it is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency and allowing the user to select any desired time step; iii) it eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length; iv) the particle mover has a computational complexity identical to that of the explicit PIC, only the field solver has an increased computational cost. The new ECSIM is tested in a number of benchmarks where accuracy and computational performance are tested. - Highlights: • We present a new fully energy conserving semi-implicit particle in cell (PIC) method based on the implicit moment method (IMM). The new method is called Energy Conserving Implicit Moment Method (ECIMM). • The novelty of the new method is that unlike any of its predecessors at the same time it retains the explicit computational cycle and conserves energy exactly. • The new method is unconditionally stable in time, freeing the user from the need to resolve the electron plasma frequency. • The new method eliminates the constraint of the finite grid instability, allowing the user to select any desired resolution without being forced to resolve the Debye length. • These features are achieved at a reduced cost compared with either previous IMM or fully implicit implementation of PIC.« less

  9. An improved semi-implicit method for structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Park, K. C.

    1982-01-01

    A semi-implicit algorithm is presented for direct time integration of the structural dynamics equations. The algorithm avoids the factoring of the implicit difference solution matrix and mitigates the unacceptable accuracy losses which plagued previous semi-implicit algorithms. This substantial accuracy improvement is achieved by augmenting the solution matrix with two simple diagonal matrices of the order of the integration truncation error.

  10. NUEN-618 Class Project: Actually Implicit Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega, R. M.; Brunner, T. A.

    2017-12-14

    This research describes a new method for the solution of the thermal radiative transfer (TRT) equations that is implicit in time which will be called Actually Implicit Monte Carlo (AIMC). This section aims to introduce the TRT equations, as well as the current workhorse method which is known as Implicit Monte Carlo (IMC). As the name of the method proposed here indicates, IMC is a misnomer in that it is only semi-implicit, which will be shown in this section as well.

  11. On the effects of signal processing on sample entropy for postural control.

    PubMed

    Lubetzky, Anat V; Harel, Daphna; Lubetzky, Eyal

    2018-01-01

    Sample entropy, a measure of time series regularity, has become increasingly popular in postural control research. We are developing a virtual reality assessment of sensory integration for postural control in people with vestibular dysfunction and wished to apply sample entropy as an outcome measure. However, despite the common use of sample entropy to quantify postural sway, we found lack of consistency in the literature regarding center-of-pressure signal manipulations prior to the computation of sample entropy. We therefore wished to investigate the effect of parameters choice and signal processing on participants' sample entropy outcome. For that purpose, we compared center-of-pressure sample entropy data between patients with vestibular dysfunction and age-matched controls. Within our assessment, participants observed virtual reality scenes, while standing on floor or a compliant surface. We then analyzed the effect of: modification of the radius of similarity (r) and the embedding dimension (m); down-sampling or filtering and differencing or detrending. When analyzing the raw center-of-pressure data, we found a significant main effect of surface in medio-lateral and anterior-posterior directions across r's and m's. We also found a significant interaction group × surface in the medio-lateral direction when r was 0.05 or 0.1 with a monotonic increase in p value with increasing r in both m's. These effects were maintained with down-sampling by 2, 3, and 4 and with detrending but not with filtering and differencing. Based on these findings, we suggest that for sample entropy to be compared across postural control studies, there needs to be increased consistency, particularly of signal handling prior to the calculation of sample entropy. Procedures such as filtering, differencing or detrending affect sample entropy values and could artificially alter the time series pattern. Therefore, if such procedures are performed they should be well justified.

  12. Extended image differencing for change detection in UAV video mosaics

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang; Schumann, Arne

    2014-03-01

    Change detection is one of the most important tasks when using unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. We address changes of short time scale, i.e. the observations are taken in time distances from several minutes up to a few hours. Each observation is a short video sequence acquired by the UAV in near-nadir view and the relevant changes are, e.g., recently parked or moved vehicles. In this paper we extend our previous approach of image differencing for single video frames to video mosaics. A precise image-to-image registration combined with a robust matching approach is needed to stitch the video frames to a mosaic. Additionally, this matching algorithm is applied to mosaic pairs in order to align them to a common geometry. The resulting registered video mosaic pairs are the input of the change detection procedure based on extended image differencing. A change mask is generated by an adaptive threshold applied to a linear combination of difference images of intensity and gradient magnitude. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed size of shadows, and compression or transmission artifacts. The special effects of video mosaicking such as geometric distortions and artifacts at moving objects have to be considered, too. In our experiments we analyze the influence of these effects on the change detection results by considering several scenes. The results show that for video mosaics this task is more difficult than for single video frames. Therefore, we extended the image registration by estimating an elastic transformation using a thin plate spline approach. The results for mosaics are comparable to that of single video frames and are useful for interactive image exploitation due to a larger scene coverage.

  13. Investigation of flow-induced numerical instability in a mixed semi-implicit, implicit leapfrog time discretization

    NASA Astrophysics Data System (ADS)

    King, Jacob; Kruger, Scott

    2017-10-01

    Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).

  14. Studying Different Tasks of Implicit Learning across Multiple Test Sessions Conducted on the Web

    PubMed Central

    Sævland, Werner; Norman, Elisabeth

    2016-01-01

    Implicit learning is usually studied through individual performance on a single task, with the most common tasks being the Serial Reaction Time (SRT) task, the Dynamic System Control (DSC) task, and Artificial Grammar Learning (AGL). Few attempts have been made to compare performance across different implicit learning tasks within the same study. The current study was designed to explore the relationship between performance on the DSC Sugar factory task and the Alternating Serial Reaction Time (ASRT) task. We also addressed another limitation of traditional implicit learning experiments, namely that implicit learning is usually studied in laboratory settings over a restricted time span lasting for less than an hour. In everyday situations, implicit learning is assumed to involve a gradual accumulation of knowledge across several learning episodes over a longer time span. One way to increase the ecological validity of implicit learning experiments could be to present the learning material repeatedly across shorter test sessions. This can most easily be done by using a web-based setup in which participants can access the material from home. We therefore created an online web-based system for measuring implicit learning that could be administered in either single or multiple sessions. Participants (n = 66) were assigned to either a single session or a multiple session condition. Learning occurred on both tasks, and awareness measures suggested that acquired knowledge was not fully conscious on either of the tasks. Learning and the degree of conscious awareness of the learned regularities were compared across conditions and tasks. On the DSC task, performance was not affected by whether learning had taken place in one or over multiple sessions. On the ASRT task, RT improvement across blocks was larger in the multiple-session condition. Learning in the two tasks was not related. PMID:27375512

  15. Efficient high-rate satellite clock estimation for PPP ambiguity resolution using carrier-ranges.

    PubMed

    Chen, Hua; Jiang, Weiping; Ge, Maorong; Wickert, Jens; Schuh, Harald

    2014-11-25

    In order to catch up the short-term clock variation of GNSS satellites, clock corrections must be estimated and updated at a high-rate for Precise Point Positioning (PPP). This estimation is already very time-consuming for the GPS constellation only as a great number of ambiguities need to be simultaneously estimated. However, on the one hand better estimates are expected by including more stations, and on the other hand satellites from different GNSS systems must be processed integratively for a reliable multi-GNSS positioning service. To alleviate the heavy computational burden, epoch-differenced observations are always employed where ambiguities are eliminated. As the epoch-differenced method can only derive temporal clock changes which have to be aligned to the absolute clocks but always in a rather complicated way, in this paper, an efficient method for high-rate clock estimation is proposed using the concept of "carrier-range" realized by means of PPP with integer ambiguity resolution. Processing procedures for both post- and real-time processing are developed, respectively. The experimental validation shows that the computation time could be reduced to about one sixth of that of the existing methods for post-processing and less than 1 s for processing a single epoch of a network with about 200 stations in real-time mode after all ambiguities are fixed. This confirms that the proposed processing strategy will enable the high-rate clock estimation for future multi-GNSS networks in post-processing and possibly also in real-time mode.

  16. A numerical study of the steady scalar convective diffusion equation for small viscosity

    NASA Technical Reports Server (NTRS)

    Giles, M. B.; Rose, M. E.

    1983-01-01

    A time-independent convection diffusion equation is studied by means of a compact finite difference scheme and numerical solutions are compared to the analytic inviscid solutions. The correct internal and external boundary layer behavior is observed, due to an inherent feature of the scheme which automatically produces upwind differencing in inviscid regions and the correct viscous behavior in viscous regions.

  17. Short-term change detection for UAV video

    NASA Astrophysics Data System (ADS)

    Saur, Günter; Krüger, Wolfgang

    2012-11-01

    In the last years, there has been an increased use of unmanned aerial vehicles (UAV) for video reconnaissance and surveillance. An important application in this context is change detection in UAV video data. Here we address short-term change detection, in which the time between observations ranges from several minutes to a few hours. We distinguish this task from video motion detection (shorter time scale) and from long-term change detection, based on time series of still images taken between several days, weeks, or even years. Examples for relevant changes we are looking for are recently parked or moved vehicles. As a pre-requisite, a precise image-to-image registration is needed. Images are selected on the basis of the geo-coordinates of the sensor's footprint and with respect to a certain minimal overlap. The automatic imagebased fine-registration adjusts the image pair to a common geometry by using a robust matching approach to handle outliers. The change detection algorithm has to distinguish between relevant and non-relevant changes. Examples for non-relevant changes are stereo disparity at 3D structures of the scene, changed length of shadows, and compression or transmission artifacts. To detect changes in image pairs we analyzed image differencing, local image correlation, and a transformation-based approach (multivariate alteration detection). As input we used color and gradient magnitude images. To cope with local misalignment of image structures we extended the approaches by a local neighborhood search. The algorithms are applied to several examples covering both urban and rural scenes. The local neighborhood search in combination with intensity and gradient magnitude differencing clearly improved the results. Extended image differencing performed better than both the correlation based approach and the multivariate alternation detection. The algorithms are adapted to be used in semi-automatic workflows for the ABUL video exploitation system of Fraunhofer IOSB, see Heinze et. al. 2010.1 In a further step we plan to incorporate more information from the video sequences to the change detection input images, e.g., by image enhancement or by along-track stereo which are available in the ABUL system.

  18. Hydrologic and Geomorphic Changes Resulting from the Onset of Episodic Glacial Lake Outburst Floods: Colonia River, Chile

    NASA Astrophysics Data System (ADS)

    Jacquet, J.; McCoy, S. W.; McGrath, D.; Nimick, D.; Friesen, B.; Fahey, M. J.; Leidich, J.; Okuinghttons, J.

    2015-12-01

    The Colonia river system, draining the eastern edge of the Northern Patagonia Icefield, Chile, has experienced a dramatic shift in flow regime from one characterized by seasonal discharge variability to one dominated by episodic glacial lake outburst floods (GLOFs). We use multi-temporal visible satellite images, high-resolution digital elevation models (DEMs) derived from stereo image pairs, and in situ observations to quantify sediment and water fluxes out of the dammed glacial lake, Lago Cachet Dos (LC2), as well as the concomitant downstream environmental change. GLOFs initiated in April 2008 and have since occurred, on average, two to three times a year. Differencing concurrent gage measurements made on the Baker River upstream and downstream of the confluence with the Colonia river finds peak GLOF discharges of ~ 3,000 m3s-1, which is ~ 4 times the median discharge of the Baker River and over 20 times the median discharge of the Colonia river. During each GLOF, ~ 200,000,000 m3 of water evacuates from the LC2, resulting in erosion of valley-fill sediments and the delta on the upstream end of LC2. Differencing DEMs between April 2008 and February 2014 revealed that ~ 2.5 x 107 m3 of sediment was eroded. Multi-temporal DEM differencing shows that erosion rates were highest initially, with > 20 vertical m of sediment removed between 2008 and 2012, and generally less than 5 m between 2012 and 2014. The downstream Colonia River Sandur also experienced geomorphic changes due to GLOFs. Using Landsat imagery to calculate the normalized difference water index (NDWI), we demonstrate that the Colonia River was in a stable configuration between 1984 and 2008. At the onset of GLOFs in April 2008, a change in channel location began and continued with each subsequent GLOF. Quantification of sediment and water fluxes due to GLOFs in the Colonia river valley provides insight on the geomorphic and environmental changes in river systems experiencing dramatic shifts in flow regime.

  19. A direct method for the solution of unsteady two-dimensional incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ghia, K. N.; Osswald, G. A.; Ghia, U.

    1983-01-01

    The unsteady incompressible Navier-Stokes equations are formulated in terms of vorticity and stream function in generalized curvilinear orthogonal coordinates to facilitiate analysis of flow configurations with general geometries. The numerical method developed solves the conservative form of the transport equation using the alternating-direction implicit method, whereas the stream-function equation is solved by direct block Gaussian elimination. The method is applied to a model problem of flow over a back-step in a doubly infinite channel, using clustered conformal coordinates. One-dimensional stretching functions, dependent on the Reynolds number and the asymptotic behavior of the flow, are used to provide suitable grid distribution in the separation and reattachment regions, as well as in the inflow and outflow regions. The optimum grid distribution selected attempts to honor the multiple length scales of the separated-flow model problem. The asymptotic behavior of the finite-differenced transport equation near infinity is examined and the numerical method is carefully developed so as to lead to spatially second-order accurate wiggle-free solutions, i.e., with minimum dispersive error. Results have been obtained in the entire laminar range for the backstep channel and are in good agreement with the available experimental data for this flow problem.

  20. Modeling of transitional flows

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1988-01-01

    An effort directed at developing improved transitional models was initiated. The focus of this work was concentrated on the critical assessment of a popular existing transitional model developed by McDonald and Fish in 1972. The objective of this effort was to identify the shortcomings of the McDonald-Fish model and to use the insights gained to suggest modifications or alterations of the basic model. In order to evaluate the transitional model, a compressible boundary layer code was required. Accordingly, a two-dimensional compressible boundary layer code was developed. The program was based on a three-point fully implicit finite difference algorithm where the equations were solved in an uncoupled manner with second order extrapolation used to evaluate the non-linear coefficients. Iteration was offered as an option if the extrapolation error could not be tolerated. The differencing scheme was arranged to be second order in both spatial directions on an arbitrarily stretched mesh. A variety of boundary condition options were implemented including specification of an external pressure gradient, specification of a wall temperature distribution, and specification of an external temperature distribution. Overall the results of the initial phase of this work indicate that the McDonald-Fish model does a poor job at predicting the details of the turbulent flow structure during the transition region.

  1. Tidal and tidally averaged circulation characteristics of Suisun Bay, California

    USGS Publications Warehouse

    Smith, Lawrence H.; Cheng, Ralph T.

    1987-01-01

    Availability of extensive field data permitted realistic calibration and validation of a hydrodynamic model of tidal circulation and salt transport for Suisun Bay, California. Suisun Bay is a partially mixed embayment of northern San Francisco Bay located just seaward of the Sacramento-San Joaquin Delta. The model employs a variant of an alternating direction implicit finite-difference method to solve the hydrodynamic equations and an Eulerian-Lagrangian method to solve the salt transport equation. An upwind formulation of the advective acceleration terms of the momentum equations was employed to avoid oscillations in the tidally averaged velocity field produced by central spatial differencing of these terms. Simulation results of tidal circulation and salt transport demonstrate that tides and the complex bathymetry determine the patterns of tidal velocities and that net changes in the salinity distribution over a few tidal cycles are small despite large changes during each tidal cycle. Computations of tidally averaged circulation suggest that baroclinic and wind effects are important influences on tidally averaged circulation during low freshwater-inflow conditions. Exclusion of baroclinic effects would lead to overestimation of freshwater inflow by several hundred m3/s for a fixed set of model boundary conditions. Likewise, exclusion of wind would cause an underestimation of flux rates between shoals and channels by 70–100%.

  2. A study of pressure-based methodology for resonant flows in non-linear combustion instabilities

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; Pindera, M. Z.; Przekwas, A. J.; Tucker, K.

    1992-01-01

    This paper presents a systematic assessment of a large variety of spatial and temporal differencing schemes on nonstaggered grids by the pressure-based methods for the problems of fast transient flows. The observation from the present study is that for steady state flow problems, pressure-based methods can be very competitive with the density-based methods. For transient flow problems, pressure-based methods utilizing the same differencing scheme are less accurate, even though the wave speeds are correctly predicted.

  3. A specific implicit sequence learning deficit as an underlying cause of dyslexia? Investigating the role of attention in implicit learning tasks.

    PubMed

    Staels, Eva; Van den Broeck, Wim

    2017-05-01

    Recently, a general implicit sequence learning deficit was proposed as an underlying cause of dyslexia. This new hypothesis was investigated in the present study by including a number of methodological improvements, for example, the inclusion of appropriate control conditions. The second goal of the study was to explore the role of attentional functioning in implicit and explicit learning tasks. In a 2 × 2 within-subjects design 4 tasks were administered in 30 dyslexic and 38 control children: an implicit and explicit serial reaction time (RT) task and an implicit and explicit contextual cueing task. Attentional functioning was also administered. The entire learning curves of all tasks were analyzed using latent growth curve modeling in order to compare performances between groups and to examine the role of attentional functioning on the learning curves. The amount of implicit learning was similar for both groups. However, the dyslexic group showed slower RTs throughout the entire task. This group difference reduced and became nonsignificant after controlling for attentional functioning. Both implicit learning tasks, but none of the explicit learning tasks, were significantly affected by attentional functioning. Dyslexic children do not suffer from a specific implicit sequence learning deficit. The slower RTs of the dyslexic children throughout the entire implicit sequence learning process are caused by their comorbid attention problems and overall slowness. A key finding of the present study is that, in contrast to what was assumed for a long time, implicit learning relies on attentional resources, perhaps even more than explicit learning does. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. The Effects of Oncologist Implicit Racial Bias in Racially Discordant Oncology Interactions

    PubMed Central

    Dovidio, John F.; Gonzalez, Richard; Albrecht, Terrance L.; Chapman, Robert; Foster, Tanina; Harper, Felicity W.K.; Hagiwara, Nao; Hamel, Lauren M.; Shields, Anthony F.; Gadgeel, Shirish; Simon, Michael S.; Griggs, Jennifer J.; Eggly, Susan

    2016-01-01

    Purpose Health providers’ implicit racial bias negatively affects communication and patient reactions to many medical interactions. However, its effects on racially discordant oncology interactions are largely unknown. Thus, we examined whether oncologist implicit racial bias has similar effects in oncology interactions. We further investigated whether oncologist implicit bias negatively affects patients’ perceptions of recommended treatments (i.e., degree of confidence, expected difficulty). We predicted oncologist implicit bias would negatively affect communication, patient reactions to interactions, and, indirectly, patient perceptions of recommended treatments. Methods Participants were 18 non-black medical oncologists and 112 black patients. Oncologists completed an implicit racial bias measure several weeks before video-recorded treatment discussions with new patients. Observers rated oncologist communication and recorded interaction length of time and amount of time oncologists and patients spoke. Following interactions, patients answered questions about oncologists’ patient-centeredness and difficulty remembering contents of the interaction, distress, trust, and treatment perceptions. Results As predicted, oncologists higher in implicit racial bias had shorter interactions, and patients and observers rated these oncologists’ communication as less patient-centered and supportive. Higher implicit bias also was associated with more patient difficulty remembering contents of the interaction. In addition, oncologist implicit bias indirectly predicted less patient confidence in recommended treatments, and greater perceived difficulty completing them, through its impact on oncologists’ communication (as rated by both patients and observers). Conclusion Oncologist implicit racial bias is negatively associated with oncologist communication, patients’ reactions to racially discordant oncology interactions, and patient perceptions of recommended treatments. These perceptions could subsequently directly affect patient-treatment decisions. Thus, implicit racial bias is a likely source of racial treatment disparities and must be addressed in oncology training and practice. PMID:27325865

  5. The Effects of Oncologist Implicit Racial Bias in Racially Discordant Oncology Interactions.

    PubMed

    Penner, Louis A; Dovidio, John F; Gonzalez, Richard; Albrecht, Terrance L; Chapman, Robert; Foster, Tanina; Harper, Felicity W K; Hagiwara, Nao; Hamel, Lauren M; Shields, Anthony F; Gadgeel, Shirish; Simon, Michael S; Griggs, Jennifer J; Eggly, Susan

    2016-08-20

    Health providers' implicit racial bias negatively affects communication and patient reactions to many medical interactions. However, its effects on racially discordant oncology interactions are largely unknown. Thus, we examined whether oncologist implicit racial bias has similar effects in oncology interactions. We further investigated whether oncologist implicit bias negatively affects patients' perceptions of recommended treatments (i.e., degree of confidence, expected difficulty). We predicted oncologist implicit bias would negatively affect communication, patient reactions to interactions, and, indirectly, patient perceptions of recommended treatments. Participants were 18 non-black medical oncologists and 112 black patients. Oncologists completed an implicit racial bias measure several weeks before video-recorded treatment discussions with new patients. Observers rated oncologist communication and recorded interaction length of time and amount of time oncologists and patients spoke. Following interactions, patients answered questions about oncologists' patient-centeredness and difficulty remembering contents of the interaction, distress, trust, and treatment perceptions. As predicted, oncologists higher in implicit racial bias had shorter interactions, and patients and observers rated these oncologists' communication as less patient-centered and supportive. Higher implicit bias also was associated with more patient difficulty remembering contents of the interaction. In addition, oncologist implicit bias indirectly predicted less patient confidence in recommended treatments, and greater perceived difficulty completing them, through its impact on oncologists' communication (as rated by both patients and observers). Oncologist implicit racial bias is negatively associated with oncologist communication, patients' reactions to racially discordant oncology interactions, and patient perceptions of recommended treatments. These perceptions could subsequently directly affect patient-treatment decisions. Thus, implicit racial bias is a likely source of racial treatment disparities and must be addressed in oncology training and practice. © 2016 by American Society of Clinical Oncology.

  6. Development of the Semi-implicit Time Integration in KIM-SH

    NASA Astrophysics Data System (ADS)

    NAM, H.

    2015-12-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded in 2011 by the Korea Meteorological Administration (KMA) to develop Korea's own global Numerical Weather Prediction (NWP) system as nine year (2011-2019) project. The KIM-SH is a KIAPS integrated model-spectral element based in the HOMME. In KIM-SH, the explicit schemes are employed. We introduce the three- and two-time-level semi-implicit scheme in KIM-SH as the time integration. Explicit schemes however have a tendancy to be unstable and require very small timesteps while semi-implicit schemes are very stable and can have much larger timesteps.We define the linear and reference values, then by definition of semi-implicit scheme, we apply the linear solver as GMRES. The numerical results from experiments will be introduced with the current development status of the time integration in KIM-SH. Several numerical examples are shown to confirm the efficiency and reliability of the proposed schemes.

  7. Self-Regulation and Implicit Attitudes Toward Physical Activity Influence Exercise Behavior.

    PubMed

    Padin, Avelina C; Emery, Charles F; Vasey, Michael; Kiecolt-Glaser, Janice K

    2017-08-01

    Dual-process models of health behavior posit that implicit and explicit attitudes independently drive healthy behaviors. Prior evidence indicates that implicit attitudes may be related to weekly physical activity (PA) levels, but the extent to which self-regulation attenuates this link remains unknown. This study examined the associations between implicit attitudes and self-reported PA during leisure time among 150 highly active young adults and evaluated the extent to which effortful control (one aspect of self-regulation) moderated this relationship. Results indicated that implicit attitudes toward exercise were unrelated to average workout length among individuals with higher effortful control. However, those with lower effortful control and more negative implicit attitudes reported shorter average exercise sessions compared with those with more positive attitudes. Implicit and explicit attitudes were unrelated to total weekly PA. A combination of poorer self-regulation and negative implicit attitudes may leave individuals vulnerable to mental and physical health consequences of low PA.

  8. The computation of thermo-chemical nonequilibrium hypersonic flows

    NASA Technical Reports Server (NTRS)

    Candler, Graham

    1989-01-01

    Several conceptual designs for vehicles that would fly in the atmosphere at hypersonic speeds have been developed recently. For the proposed flight conditions the air in the shock layer that envelops the body is at a sufficiently high temperature to cause chemical reaction, vibrational excitation, and ionization. However, these processes occur at finite rates which, when coupled with large convection speeds, cause the gas to be removed from thermo-chemical equilibrium. This non-ideal behavior affects the aerothermal loading on the vehicle and has ramifications in its design. A numerical method to solve the equations that describe these types of flows in 2-D was developed. The state of the gas is represented with seven chemical species, a separate vibrational temperature for each diatomic species, an electron translational temperature, and a mass-average translational-rotational temperature for the heavy particles. The equations for this gas model are solved numerically in a fully coupled fashion using an implicit finite volume time-marching technique. Gauss-Seidel line-relaxation is used to reduce the cost of the solution and flux-dependent differencing is employed to maintain stability. The numerical method was tested against several experiments. The calculated bow shock wave detachment on a sphere and two cones was compared to those measured in ground testing facilities. The computed peak electron number density on a sphere-cone was compared to that measured in a flight test. In each case the results from the numerical method were in excellent agreement with experiment. The technique was used to predict the aerothermal loads on an Aeroassisted Orbital Transfer Vehicle including radiative heating. These results indicate that the current physical model of high temperature air is appropriate and that the numerical algorithm is capable of treating this class of flows.

  9. Adopting Consumer Time: Potential Issues for Higher Education

    ERIC Educational Resources Information Center

    Gibbs, Paul

    2009-01-01

    Time and temporality have received little attention in the consumerism, marketing or, until recently, higher education literature. This paper attempts to compare the notions of timing implicit in education as "paideia" (transitional personal growth) with that implicit in consumerism and the marketing practices which foster it. This…

  10. Intact implicit learning in autism spectrum conditions.

    PubMed

    Brown, Jamie; Aczel, Balazs; Jiménez, Luis; Kaufman, Scott Barry; Grant, Kate Plaisted

    2010-09-01

    Individuals with autism spectrum condition (ASC) have diagnostic impairments in skills that are associated with an implicit acquisition; however, it is not clear whether ASC individuals show specific implicit learning deficits. We compared ASC and typically developing (TD) individuals matched for IQ on five learning tasks: four implicit learning tasks--contextual cueing, serial reaction time, artificial grammar learning, and probabilistic classification learning tasks--that used procedures expressly designed to minimize the use of explicit strategies, and one comparison explicit learning task, paired associates learning. We found implicit learning to be intact in ASC. Beyond no evidence of differences, there was evidence of statistical equivalence between the groups on all the implicit learning tasks. This was not a consequence of compensation by explicit learning ability or IQ. Furthermore, there was no evidence to relate implicit learning to ASC symptomatology. We conclude that implicit mechanisms are preserved in ASC and propose that it is disruption by other atypical processes that impact negatively on the development of skills associated with an implicit acquisition.

  11. The Relationship of Explicit-Implicit Evaluative Discrepancy to Exercise Dropout in Middle-Aged Adults.

    PubMed

    Berry, Tanya R; Rodgers, Wendy M; Divine, Alison; Hall, Craig

    2018-06-19

    Discrepancies between automatically activated associations (i.e., implicit evaluations) and explicit evaluations of motives (measured with a questionnaire) could lead to greater information processing to resolve discrepancies or self-regulatory failures that may affect behavior. This research examined the relationship of health and appearance exercise-related explicit-implicit evaluative discrepancies, the interaction between implicit and explicit evaluations, and the combined value of explicit and implicit evaluations (i.e., the summed scores) to dropout from a yearlong exercise program. Participants (N = 253) completed implicit health and appearance measures and explicit health and appearance motives at baseline, prior to starting the exercise program. The sum of implicit and explicit appearance measures was positively related to weeks in the program, and discrepancy between the implicit and explicit health measures was negatively related to length of time in the program. Implicit exercise evaluations and their relationships to oft-cited motives such as appearance and health may inform exercise dropout.

  12. Higher-order hybrid implicit/explicit FDTD time-stepping

    NASA Astrophysics Data System (ADS)

    Tierens, W.

    2016-12-01

    Both partially implicit FDTD methods, and symplectic FDTD methods of high temporal accuracy (3rd or 4th order), are well documented in the literature. In this paper we combine them: we construct a conservative FDTD method which is fourth order accurate in time and is partially implicit. We show that the stability condition for this method depends exclusively on the explicit part, which makes it suitable for use in e.g. modelling wave propagation in plasmas.

  13. Benchmark measurements and calculations of a 3-dimensional neutron streaming experiment

    NASA Astrophysics Data System (ADS)

    Barnett, D. A., Jr.

    1991-02-01

    An experimental assembly known as the Dog-Legged Void assembly was constructed to measure the effect of neutron streaming in iron and void regions. The primary purpose of the measurements was to provide benchmark data against which various neutron transport calculation tools could be compared. The measurements included neutron flux spectra at four places and integral measurements at two places in the iron streaming path as well as integral measurements along several axial traverses. These data have been used in the verification of Oak Ridge National Laboratory's three-dimensional discrete ordinates code, TORT. For a base case calculation using one-half inch mesh spacing, finite difference spatial differencing, an S(sub 16) quadrature and P(sub 1) cross sections in the MUFT multigroup structure, the calculated solution agreed to within 18 percent with the spectral measurements and to within 24 percent of the integral measurements. Variations on the base case using a fewgroup energy structure and P(sub 1) and P(sub 3) cross sections showed similar agreement. Calculations using a linear nodal spatial differencing scheme and fewgroup cross sections also showed similar agreement. For the same mesh size, the nodal method was seen to require 2.2 times as much CPU time as the finite difference method. A nodal calculation using a typical mesh spacing of 2 inches, which had approximately 32 times fewer mesh cells than the base case, agreed with the measurements to within 34 percent and yet required on 8 percent of the CPU time.

  14. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1994-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.

  15. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1993-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. The Roe approximate Riemann solution scheme or the computationally less expensive Advection Upstream Splitting Method (AUSM) flux-splitting scheme are used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passage and the distribution of flow variables in the stationary inlet port region.

  16. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations

    PubMed Central

    Zhao, Qile; Wang, Guangxing; Liu, Zhizhao; Hu, Zhigang; Dai, Zhiqiang; Liu, Jingnan

    2016-01-01

    Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic “V” shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is −2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations’ time series of some GEO satellites might vary according to their relative geometries with the sun. PMID:26805831

  17. Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations.

    PubMed

    Zhao, Qile; Wang, Guangxing; Liu, Zhizhao; Hu, Zhigang; Dai, Zhiqiang; Liu, Jingnan

    2016-01-20

    Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while B3 is the highest. The code multipath combinations of BDS inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites are remarkably correlated with elevation, and the systematic "V" shape trends could be eliminated through between-station-differencing or modeling correction. Daily periodicity was found in the geometry-free ionosphere-free (GFIF) combinations of both BDS geostationary Earth orbit (GEO) and IGSO satellites. The variation range of carrier phase GFIF combinations of GEO satellites is -2.0 to 2.0 cm. The periodicity of carrier phase GFIF combination could be significantly mitigated through between-station differencing. Carrier phase GFIF combinations of BDS GEO and IGSO satellites might also contain delays related to satellites. Cross-correlation suggests that the GFIF combinations' time series of some GEO satellites might vary according to their relative geometries with the sun.

  18. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu

    2014-01-21

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents formore » a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible systems.« less

  19. The effect of stochastic modeling of ionospheric effect on the various lengths of baseline determination

    NASA Astrophysics Data System (ADS)

    Kwon, J.; Yang, H.

    2006-12-01

    Although GPS provides continuous and accurate position information, there are still some rooms for improvement of its positional accuracy, especially in the medium and long range baseline determination. In general, in case of more than 50 km baseline length, the effect of ionospheric delay is the one causing the largest degradation in positional accuracy. For example, the ionospheric delay in terms of double differenced mode easily reaches 10 cm with baseline length of 101 km. Therefore, many researchers have been tried to mitigate/reduce the effect using various modeling methods. In this paper, the optimal stochastic modeling of the ionospheric delay in terms of baseline length is presented. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. Here, the ionospheric delay is stochastically modeled by well-known Gaussian, 1st and 3rd order Gauss-Markov process. The parameters required in those models such as correlation distance and time is determined by the least-square adjustment using ionosphere-only observables. Mainly the results and analysis from this study show the effect of stochastic models of the ionospheric delay in terms of the baseline length, models, and parameters used. In the above example with 101 km baseline length, it was found that the positional accuracy with appropriate ionospheric modeling (Gaussian) was about ±2 cm whereas it reaches about ±15 cm with no stochastic modeling. It is expected that the approach in this study contributes to improve positional accuracy, especially in medium and long range baseline determination.

  20. Single-Receiver GPS Phase Bias Resolution

    NASA Technical Reports Server (NTRS)

    Bertiger, William I.; Haines, Bruce J.; Weiss, Jan P.; Harvey, Nathaniel E.

    2010-01-01

    Existing software has been modified to yield the benefits of integer fixed double-differenced GPS-phased ambiguities when processing data from a single GPS receiver with no access to any other GPS receiver data. When the double-differenced combination of phase biases can be fixed reliably, a significant improvement in solution accuracy is obtained. This innovation uses a large global set of GPS receivers (40 to 80 receivers) to solve for the GPS satellite orbits and clocks (along with any other parameters). In this process, integer ambiguities are fixed and information on the ambiguity constraints is saved. For each GPS transmitter/receiver pair, the process saves the arc start and stop times, the wide-lane average value for the arc, the standard deviation of the wide lane, and the dual-frequency phase bias after bias fixing for the arc. The second step of the process uses the orbit and clock information, the bias information from the global solution, and only data from the single receiver to resolve double-differenced phase combinations. It is called "resolved" instead of "fixed" because constraints are introduced into the problem with a finite data weight to better account for possible errors. A receiver in orbit has much shorter continuous passes of data than a receiver fixed to the Earth. The method has parameters to account for this. In particular, differences in drifting wide-lane values must be handled differently. The first step of the process is automated, using two JPL software sets, Longarc and Gipsy-Oasis. The resulting orbit/clock and bias information files are posted on anonymous ftp for use by any licensed Gipsy-Oasis user. The second step is implemented in the Gipsy-Oasis executable, gd2p.pl, which automates the entire process, including fetching the information from anonymous ftp

  1. When truth is personally inconvenient, attitudes change: the impact of extreme weather on implicit support for green politicians and explicit climate-change beliefs.

    PubMed

    Rudman, Laurie A; McLean, Meghan C; Bunzl, Martin

    2013-11-01

    A naturalistic investigation of New Jersey residents, both before and after they experienced Hurricanes Irene and Sandy, examined support for politicians committed or opposed to policies designed to combat climate change. At Time 1, before both hurricanes, participants showed negative implicit attitudes toward a green politician, but at Time 2, after the hurricanes, participants drawn from the same cohort showed a reversed automatic preference. Moreover, those who were significantly affected by Hurricane Sandy were especially likely to implicitly prefer the green politician, and implicit attitudes were the best predictor of voting after the storms, whereas explicit climate-change beliefs was the best predictor before the storms. In concert, the results suggest that direct experience with extreme weather can increase pro-environmentalism, and further support conceptualizing affective experiences as a source of implicit attitudes.

  2. Implicit Plasma Kinetic Simulation Using The Jacobian-Free Newton-Krylov Method

    NASA Astrophysics Data System (ADS)

    Taitano, William; Knoll, Dana; Chacon, Luis

    2009-11-01

    The use of fully implicit time integration methods in kinetic simulation is still area of algorithmic research. A brute-force approach to simultaneously including the field equations and the particle distribution function would result in an intractable linear algebra problem. A number of algorithms have been put forward which rely on an extrapolation in time. They can be thought of as linearly implicit methods or one-step Newton methods. However, issues related to time accuracy of these methods still remain. We are pursuing a route to implicit plasma kinetic simulation which eliminates extrapolation, eliminates phase-space from the linear algebra problem, and converges the entire nonlinear system within a time step. We accomplish all this using the Jacobian-Free Newton-Krylov algorithm. The original research along these lines considered particle methods to advance the distribution function [1]. In the current research we are advancing the Vlasov equations on a grid. Results will be presented which highlight algorithmic details for single species electrostatic problems and coupled ion-electron electrostatic problems. [4pt] [1] H. J. Kim, L. Chac'on, G. Lapenta, ``Fully implicit particle in cell algorithm,'' 47th Annual Meeting of the Division of Plasma Physics, Oct. 24-28, 2005, Denver, CO

  3. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning

    PubMed Central

    Raza, Meher; Ivry, Richard B.

    2016-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. NEW & NOTEWORTHY We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. PMID:27832611

  4. Inexact adaptive Newton methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertiger, W.I.; Kelsey, F.J.

    1985-02-01

    The Inexact Adaptive Newton method (IAN) is a modification of the Adaptive Implicit Method/sup 1/ (AIM) with improved Newton convergence. Both methods simplify the Jacobian at each time step by zeroing coefficients in regions where saturations are changing slowly. The methods differ in how the diagonal block terms are treated. On test problems with up to 3,000 cells, IAN consistently saves approximately 30% of the CPU time when compared to the fully implicit method. AIM shows similar savings on some problems, but takes as much CPU time as fully implicit on other test problems due to poor Newton convergence.

  5. A high-order spatial filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-04-01

    A high-order spatial filter is developed for the spectral-element-method dynamical core on the cubed-sphere grid which employs the Gauss-Lobatto Lagrange interpolating polynomials (GLLIP) as orthogonal basis functions. The filter equation is the high-order Helmholtz equation which corresponds to the implicit time-differencing of a diffusion equation employing the high-order Laplacian. The Laplacian operator is discretized within a cell which is a building block of the cubed sphere grid and consists of the Gauss-Lobatto grid. When discretizing a high-order Laplacian, due to the requirement of C0 continuity along the cell boundaries the grid-points in neighboring cells should be used for the target cell: The number of neighboring cells is nearly quadratically proportional to the filter order. Discrete Helmholtz equation yields a huge-sized and highly sparse matrix equation whose size is N*N with N the number of total grid points on the globe. The number of nonzero entries is also almost in quadratic proportion to the filter order. Filtering is accomplished by solving the huge-matrix equation. While requiring a significant computing time, the solution of global matrix provides the filtered field free of discontinuity along the cell boundaries. To achieve the computational efficiency and the accuracy at the same time, the solution of the matrix equation was obtained by only accounting for the finite number of adjacent cells. This is called as a local-domain filter. It was shown that to remove the numerical noise near the grid-scale, inclusion of 5*5 cells for the local-domain filter was found sufficient, giving the same accuracy as that obtained by global domain solution while reducing the computing time to a considerably lower level. The high-order filter was evaluated using the standard test cases including the baroclinic instability of the zonal flow. Results indicated that the filter performs better on the removal of grid-scale numerical noises than the explicit high-order viscosity. It was also presented that the filter can be easily implemented on the distributed-memory parallel computers with a desirable scalability.

  6. Exponential integrators in time-dependent density-functional calculations

    NASA Astrophysics Data System (ADS)

    Kidd, Daniel; Covington, Cody; Varga, Kálmán

    2017-12-01

    The integrating factor and exponential time differencing methods are implemented and tested for solving the time-dependent Kohn-Sham equations. Popular time propagation methods used in physics, as well as other robust numerical approaches, are compared to these exponential integrator methods in order to judge the relative merit of the computational schemes. We determine an improvement in accuracy of multiple orders of magnitude when describing dynamics driven primarily by a nonlinear potential. For cases of dynamics driven by a time-dependent external potential, the accuracy of the exponential integrator methods are less enhanced but still match or outperform the best of the conventional methods tested.

  7. Implicit Kalman filtering

    NASA Technical Reports Server (NTRS)

    Skliar, M.; Ramirez, W. F.

    1997-01-01

    For an implicitly defined discrete system, a new algorithm for Kalman filtering is developed and an efficient numerical implementation scheme is proposed. Unlike the traditional explicit approach, the implicit filter can be readily applied to ill-conditioned systems and allows for generalization to descriptor systems. The implementation of the implicit filter depends on the solution of the congruence matrix equation (A1)(Px)(AT1) = Py. We develop a general iterative method for the solution of this equation, and prove necessary and sufficient conditions for convergence. It is shown that when the system matrices of an implicit system are sparse, the implicit Kalman filter requires significantly less computer time and storage to implement as compared to the traditional explicit Kalman filter. Simulation results are presented to illustrate and substantiate the theoretical developments.

  8. A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin

    2018-09-01

    A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves. Finally, the performance of the proposed method is demonstrated in a two-dimensional hydrogen/air diffusion flame.

  9. Building the Implicit BSW Curriculum at a Large Southern State University

    ERIC Educational Resources Information Center

    Holosko, Michael; Skinner, Jeffrey; MacCaughelty, Chelsea; Stahl, Kate Morrissey

    2010-01-01

    The Council on Social Work Education's Educational Policy and Accreditation Standards (EPAS) stresses the importance of the implicit curriculum in shaping a school's culture. This timely article describes how the implicit BSW curriculum was developed at a large Southern state university using three Web-based projects: (1) a glossary of terms for…

  10. Reduced Implicit and Explicit Sequence Learning in First-Episode Schizophrenia

    ERIC Educational Resources Information Center

    Pedersen, Anya; Siegmund, Ansgar; Ohrmann, Patricia; Rist, Fred; Rothermundt, Matthias; Suslow, Thomas; Arolt, Volker

    2008-01-01

    A high prevalence of deficits in explicit learning has been reported for schizophrenic patients, but it is less clear whether these patients are impaired in implicit learning. Deficits in implicit learning indicative of a fronto-striatal dysfunction have been reported using a serial reaction-time task (SRT), but the impact of typical neuroleptic…

  11. Block Preconditioning to Enable Physics-Compatible Implicit Multifluid Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Phillips, Edward; Shadid, John; Cyr, Eric; Miller, Sean

    2017-10-01

    Multifluid plasma simulations involve large systems of partial differential equations in which many time-scales ranging over many orders of magnitude arise. Since the fastest of these time-scales may set a restrictively small time-step limit for explicit methods, the use of implicit or implicit-explicit time integrators can be more tractable for obtaining dynamics at time-scales of interest. Furthermore, to enforce properties such as charge conservation and divergence-free magnetic field, mixed discretizations using volume, nodal, edge-based, and face-based degrees of freedom are often employed in some form. Together with the presence of stiff modes due to integrating over fast time-scales, the mixed discretization makes the required linear solves for implicit methods particularly difficult for black box and monolithic solvers. This work presents a block preconditioning strategy for multifluid plasma systems that segregates the linear system based on discretization type and approximates off-diagonal coupling in block diagonal Schur complement operators. By employing multilevel methods for the block diagonal subsolves, this strategy yields algorithmic and parallel scalability which we demonstrate on a range of problems.

  12. Assessment of trend and seasonality in road accident data: an Iranian case study.

    PubMed

    Razzaghi, Alireza; Bahrampour, Abbas; Baneshi, Mohammad Reza; Zolala, Farzaneh

    2013-06-01

    Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data from Taybad city. This study is a cross-sectional study. We used data from accidents occurring in Taybad between 2007 and 2011. We obtained the data from the Ministry of Health (MOH) and used the time series method with a time lag of one month. After plotting the trend, non-stationary data in mean and variance were removed using Box-Cox transformation and a differencing method respectively. The ACF and PACF plots were used to control the stationary situation. The traffic accidents in our study had an increasing trend over the five years of study. Based on ACF and PACF plots gained after applying Box-Cox transformation and differencing, data did not fit to a time series model. Therefore, neither ARIMA model nor seasonality were observed. Traffic accidents in Taybad have an upward trend. In addition, we expected either the AR model, MA model or ARIMA model to have a seasonal trend, yet this was not observed in this analysis. Several reasons may have contributed to this situation, such as uncertainty of the quality of data, weather changes, and behavioural factors that are not taken into account by time series analysis.

  13. Methods and Applications of Time Series Analysis. Part I. Regression, Trends, Smoothing, and Differencing.

    DTIC Science & Technology

    1980-07-01

    FUNCTION ( t) CENTERED AT C WITH PERIOD n -nr 0 soTIME t FIGURE 3.4S RECTAPOOLAR PORN )=C FUNCTION g t) CENTERED AT 0 WITH PERIOD n n n 52n tI y I (h...of a typical family in Kabiria (a city in Northern Algeria) over the time period Jan.-Feb. 1975 through Nov.-Dec. 1977. We would like to obtain a...values of y .. .. ... -75- Table 4.2 The Average Bi-Monthly Expenses of a Family in Kabiria and Their Fourier Representation Fourier Coefficients x k

  14. Processing implicit control: evidence from reading times

    PubMed Central

    McCourt, Michael; Green, Jeffrey J.; Lau, Ellen; Williams, Alexander

    2015-01-01

    Sentences such as “The ship was sunk to collect the insurance” exhibit an unusual form of anaphora, implicit control, where neither anaphor nor antecedent is audible. The non-finite reason clause has an understood subject, PRO, that is anaphoric; here it may be understood as naming the agent of the event of the host clause. Yet since the host is a short passive, this agent is realized by no audible dependent. The putative antecedent to PRO is therefore implicit, which it normally cannot be. What sorts of representations subserve the comprehension of this dependency? Here we present four self-paced reading time studies directed at this question. Previous work showed no processing cost for implicit vs. explicit control, and took this to support the view that PRO is linked syntactically to a silent argument in the passive. We challenge this conclusion by reporting that we also find no processing cost for remote implicit control, as in: “The ship was sunk. The reason was to collect the insurance.” Here the dependency crosses two independent sentences, and so cannot, we argue, be mediated by syntax. Our Experiments 1–4 examined the processing of both implicit (short passive) and explicit (active or long passive) control in both local and remote configurations. Experiments 3 and 4 added either “3 days ago” or “just in order” to the local conditions, to control for the distance between the passive and infinitival verbs, and for the predictability of the reason clause, respectively. We replicate the finding that implicit control does not impose an additional processing cost. But critically we show that remote control does not impose a processing cost either. Reading times at the reason clause were never slower when control was remote. In fact they were always faster. Thus, efficient processing of local implicit control cannot show that implicit control is mediated by syntax; nor, in turn, that there is a silent but grammatically active argument in passives. PMID:26579016

  15. A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics

    NASA Astrophysics Data System (ADS)

    Fekak, Fatima-Ezzahra; Brun, Michael; Gravouil, Anthony; Depale, Bruno

    2017-07-01

    In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit-implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean's event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean's schemes and provides also an excellent energy behavior. Then, the two time scales explicit-implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit-explicit interface is well controlled and the computational time is lower than a full-explicit simulation.

  16. Changes of Explicit and Implicit Stigma in Medical Students during Psychiatric Clerkship.

    PubMed

    Wang, Peng-Wei; Ko, Chih-Hung; Chen, Cheng-Sheng; Yang, Yi-Hsin Connine; Lin, Huang-Chi; Cheng, Cheng-Chung; Tsang, Hin-Yeung; Wu, Ching-Kuan; Yen, Cheng-Fang

    2016-04-01

    This study examines the differences in explicit and implicit stigma between medical and non-medical undergraduate students at baseline; the changes of explicit and implicit stigma in medical undergraduate and non-medical undergraduate students after a 1-month psychiatric clerkship and 1-month follow-up period; and the differences in the changes of explicit and implicit stigma between medical and non-medical undergraduate students. Seventy-two medical undergraduate students and 64 non-medical undergraduate students were enrolled. All participants were interviewed at intake and after 1 month. The Taiwanese version of the Stigma Assessment Scale and the Implicit Association Test were used to measure the participants' explicit and implicit stigma. Neither explicit nor implicit stigma differed between two groups at baseline. The medical, but not the non-medical, undergraduate students had a significant decrease in explicit stigma during the 1-month period of follow-up. Neither the medical nor the non-medical undergraduate students exhibited a significant change in implicit stigma during the one-month of follow-up, however. There was an interactive effect between group and time on explicit stigma but not on implicit stigma. Explicit but not implicit stigma toward mental illness decreased in the medical undergraduate students after a psychiatric clerkship. Further study is needed to examine how to improve implicit stigma toward mental illness.

  17. Disrupted implicit motor sequence learning in schizophrenia and bipolar disorder revealed with ambidextrous Serial Reaction Time Task.

    PubMed

    Chrobak, Adrian Andrzej; Siuda-Krzywicka, Katarzyna; Siwek, Grzegorz Przemysław; Tereszko, Anna; Janeczko, Weronika; Starowicz-Filip, Anna; Siwek, Marcin; Dudek, Dominika

    2017-10-03

    Impairment of implicit motor sequence learning was shown in schizophrenia (SZ) and, most recently, in bipolar disorder (BD), and was connected to cerebellar abnormalities. The goal of this study was to compare implicit motor sequence learning in BD and SZ. We examined 33 patients with BD, 33 patients with SZ and 31 healthy controls with a use of ambidextrous Serial Reaction Time Task (SRTT), which allows exploring asymmetries in performance depending on the hand used. BD and SZ patients presented impaired implicit motor sequence learning, although the pattern of their impairments was different. While BD patients showed no signs of implicit motor sequence learning for both hands, the SZ group presented some features of motor learning when performing with the right, but not with the left hand. To our best knowledge this is the first study comparing implicit motor sequence learning in BD and SZ. We show that both diseases share impairments in this domain, however in the case of SZ this impairment differs dependently on the hand performing SRTT. We propose that implicit motor sequence learning impairments constitute an overlapping symptom in BD and SZ and suggest further neuroimaging studies to verify cerebellar underpinnings as its cause. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Reply to the Discussion of Space-Time Modelling with Long-Memory Dependence: Assessing Ireland’s Wind Resource

    DTIC Science & Technology

    1988-10-01

    meteorologists’ rule-of-thumb that climatic drift manifests itself in periods greater than 30 years. For a fractionally-differenced model with our...estimates in a univariate ARIMA (p, d, q) with I d I< 0.5 has been derived by Li and McLrjd (1986). The model used by I-Iaslett an Raftery can be viewed as...Reply to the Discussion of "Space-time Modelling with Long-mnmory cDependence: Assessing Ireland’s Wind Resource" cJohn Haslett Department of

  19. A Time Domain Analysis of Gust-Cascade Interaction Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S. D.; Dyson, R. W.

    2003-01-01

    The gust response of a 2 D cascade is studied by solving the full nonlinear Euler equations employing higher order accurate spatial differencing and time stepping techniques. The solutions exhibit the exponential decay of the two circumferential mode orders of the cutoff blade passing frequency (BPF) tone and propagation of one circumferential mode order at 2BPF, as would be expected for the flow configuration considered. Two frequency excitations indicate that the interaction between the frequencies and the self interaction contribute to the amplitude of the propagating mode.

  20. Full versus divided attention and implicit memory performance.

    PubMed

    Wolters, G; Prinsen, A

    1997-11-01

    Effects of full and divided attention during study on explicit and implicit memory performance were investigated in two experiments. Study time was manipulated in a third experiment. Experiment 1 showed that both similar and dissociative effects can be found in the two kinds of memory test, depending on the difficulty of the concurrent tasks used in the divided-attention condition. In this experiment, however, standard implicit memory tests were used and contamination by explicit memory influences cannot be ruled out. Therefore, in Experiments 2 and 3 the process dissociation procedure was applied. Manipulations of attention during study and of study time clearly affected the controlled (explicit) memory component, but had no effect on the automatic (implicit) memory component. Theoretical implications of these findings are discussed.

  1. Effects of sleep loss, time of day, and extended mental work on implicit and explicit learning of sequences

    NASA Technical Reports Server (NTRS)

    Heuer, H.; Spijkers, W.; Kiesswetter, E.; Schmidtke, V.

    1998-01-01

    Tacit knowledge is part of many professional skills and can be studied experimentally with implicit-learning paradigms. The authors explored the effects of 2 different stressors, loss of sleep and mental fatigue, on implicit learning in a serial-response time (RT) task. In the 1st experiment, 1 night of sleep deprivation was shown to impair implicit but not explicit sequence learning. In the 2nd experiment, no impairment of both types of sequence learning was found after 1.5 hr of mental work. Serial-RT performance, in contrast, suffered from both stressors. These findings suggest that sleep deprivation induces specific risks for automatic, skill-based behavior that are not present in consciously controlled performance.

  2. Algorithmically scalable block preconditioner for fully implicit shallow-water equations in CAM-SE

    DOE PAGES

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    2014-10-19

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less

  3. Time-course variation of statistics embedded in music: Corpus study on implicit learning and knowledge.

    PubMed

    Daikoku, Tatsuya

    2018-01-01

    Learning and knowledge of transitional probability in sequences like music, called statistical learning and knowledge, are considered implicit processes that occur without intention to learn and awareness of what one knows. This implicit statistical knowledge can be alternatively expressed via abstract medium such as musical melody, which suggests this knowledge is reflected in melodies written by a composer. This study investigates how statistics in music vary over a composer's lifetime. Transitional probabilities of highest-pitch sequences in Ludwig van Beethoven's Piano Sonata were calculated based on different hierarchical Markov models. Each interval pattern was ordered based on the sonata opus number. The transitional probabilities of sequential patterns that are musical universal in music gradually decreased, suggesting that time-course variations of statistics in music reflect time-course variations of a composer's statistical knowledge. This study sheds new light on novel methodologies that may be able to evaluate the time-course variation of composer's implicit knowledge using musical scores.

  4. Increasing Women's Aspirations and Achievement in Science: The Effect of Role Models on Implicit Cognitions

    ERIC Educational Resources Information Center

    Phelan, Julie E.

    2010-01-01

    This research investigated the role of implicit science beliefs in the gender gap in science aspirations and achievement, with the goal of testing identification with a female role model as a potential intervention strategy for increasing women's representation in science careers. At Time 1, women's implicit science stereotyping (i.e., associating…

  5. Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics

    NASA Technical Reports Server (NTRS)

    Roe, P. L.

    1984-01-01

    A possible technique is explored for extending to multidimensional flows some of the upwind-differencing methods that are highly successful in the one-dimensional case. Emphasis is on the two-dimensional case, and the flow domain is assumed to be divided into polygonal computational elements. Inside each element, the flow is represented by a local superposition of elementary solutions consisting of plane waves not necessarily aligned with the element boundaries.

  6. Implicit solution of Navier-Stokes equations on staggered curvilinear grids using a Newton-Krylov method with a novel analytical Jacobian.

    NASA Astrophysics Data System (ADS)

    Borazjani, Iman; Asgharzadeh, Hafez

    2015-11-01

    Flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates with explicit and semi-implicit schemes. Implicit schemes can be used to overcome these restrictions. However, implementing implicit solver for nonlinear equations including Navier-Stokes is not straightforward. Newton-Krylov subspace methods (NKMs) are one of the most advanced iterative methods to solve non-linear equations such as implicit descritization of the Navier-Stokes equation. The efficiency of NKMs massively depends on the Jacobian formation method, e.g., automatic differentiation is very expensive, and matrix-free methods slow down as the mesh is refined. Analytical Jacobian is inexpensive method, but derivation of analytical Jacobian for Navier-Stokes equation on staggered grid is challenging. The NKM with a novel analytical Jacobian was developed and validated against Taylor-Green vortex and pulsatile flow in a 90 degree bend. The developed method successfully handled the complex geometries such as an intracranial aneurysm with multiple overset grids, and immersed boundaries. It is shown that the NKM with an analytical Jacobian is 3 to 25 times faster than the fixed-point implicit Runge-Kutta method, and more than 100 times faster than automatic differentiation depending on the grid (size) and the flow problem. The developed methods are fully parallelized with parallel efficiency of 80-90% on the problems tested.

  7. Automatic differentiation evaluated as a tool for rotorcraft design and optimization

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.

    1995-01-01

    This paper investigates the use of automatic differentiation (AD) as a means for generating sensitivity analyses in rotorcraft design and optimization. This technique transforms an existing computer program into a new program that performs sensitivity analysis in addition to the original analysis. The original FORTRAN program calculates a set of dependent (output) variables from a set of independent (input) variables, the new FORTRAN program calculates the partial derivatives of the dependent variables with respect to the independent variables. The AD technique is a systematic implementation of the chain rule of differentiation, this method produces derivatives to machine accuracy at a cost that is comparable with that of finite-differencing methods. For this study, an analysis code that consists of the Langley-developed hover analysis HOVT, the comprehensive rotor analysis CAMRAD/JA, and associated preprocessors is processed through the AD preprocessor ADIFOR 2.0. The resulting derivatives are compared with derivatives obtained from finite-differencing techniques. The derivatives obtained with ADIFOR 2.0 are exact within machine accuracy and do not depend on the selection of step-size, as are the derivatives obtained with finite-differencing techniques.

  8. Ice Sheet Change Detection by Satellite Image Differencing

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A.; Scambos, Ted A.; Choi, Hyeungu; Haran, Terry M.

    2010-01-01

    Differencing of digital satellite image pairs highlights subtle changes in near-identical scenes of Earth surfaces. Using the mathematical relationships relevant to photoclinometry, we examine the effectiveness of this method for the study of localized ice sheet surface topography changes using numerical experiments. We then test these results by differencing images of several regions in West Antarctica, including some where changes have previously been identified in altimeter profiles. The technique works well with coregistered images having low noise, high radiometric sensitivity, and near-identical solar illumination geometry. Clouds and frosts detract from resolving surface features. The ETM(plus) sensor on Landsat-7, ALI sensor on EO-1, and MODIS sensor on the Aqua and Terra satellite platforms all have potential for detecting localized topographic changes such as shifting dunes, surface inflation and deflation features associated with sub-glacial lake fill-drain events, or grounding line changes. Availability and frequency of MODIS images favor this sensor for wide application, and using it, we demonstrate both qualitative identification of changes in topography and quantitative mapping of slope and elevation changes.

  9. An implicit time-marching method for studying unsteady flow with massive separation

    NASA Technical Reports Server (NTRS)

    Osswald, G. A.; Ghia, K. N.; Chia, U.

    1985-01-01

    A fully implicit time-marching method is developed such that all spatial derivatives are approximated using central differences, but no use is made of any artificial dissipation. The numerical method solves the discretized equations using Alternating Direction Implicit-Block Gaussian Elimination technique. The method is implemented in the unsteady analysis, which solves the incompressible Navier-Stokes equations in terms of vorticity and stream function in generalized orthogonal coordinates. A clustered conformal C-grid is employed, and every effort is made to resolve the various length scales in the flow problem. The metric discontinuity at the branch-cut is treated appropriately using analytic continuation. Introduction of the BGE reordering permits implicit treatment of the branch cut in the numerical method. The vorticity singularity at the cusped trailing edge is also appropriately treated. This accurate and efficient implicit method is used to study flow at Re = 1000, past a 12-percent thick symmetric Joukowski airfoil at high angle of attack 30 and 53 deg.

  10. Reproducibility of UAV-based earth surface topography based on structure-from-motion algorithms.

    NASA Astrophysics Data System (ADS)

    Clapuyt, François; Vanacker, Veerle; Van Oost, Kristof

    2014-05-01

    A representation of the earth surface at very high spatial resolution is crucial to accurately map small geomorphic landforms with high precision. Very high resolution digital surface models (DSM) can then be used to quantify changes in earth surface topography over time, based on differencing of DSMs taken at various moments in time. However, it is compulsory to have both high accuracy for each topographic representation and consistency between measurements over time, as DSM differencing automatically leads to error propagation. This study investigates the reproducibility of reconstructions of earth surface topography based on structure-from-motion (SFM) algorithms. To this end, we equipped an eight-propeller drone with a standard reflex camera. This equipment can easily be deployed in the field, as it is a lightweight, low-cost system in comparison with classic aerial photo surveys and terrestrial or airborne LiDAR scanning. Four sets of aerial photographs were created for one test field. The sets of airphotos differ in focal length, and viewing angles, i.e. nadir view and ground-level view. In addition, the importance of the accuracy of ground control points for the construction of a georeferenced point cloud was assessed using two different GPS devices with horizontal accuracy at resp. the sub-meter and sub-decimeter level. Airphoto datasets were processed with SFM algorithm and the resulting point clouds were georeferenced. Then, the surface representations were compared with each other to assess the reproducibility of the earth surface topography. Finally, consistency between independent datasets is discussed.

  11. Rapid, Quantitative Assessment of Submerged Cultural Resource Degradation Using Repeat Video Surveys and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Mertes, J. R.; Zant, C. N.; Gulley, J. D.; Thomsen, T. L.

    2017-08-01

    Monitoring, managing and preserving submerged cultural resources (SCR) such as shipwrecks can involve time consuming detailed physical surveys, expensive side-scan sonar surveys, the study of photomosaics and even photogrammetric analysis. In some cases, surveys of SCR have produced 3D models, though these models have not typically been used to document patterns of site degradation over time. In this study, we report a novel approach for quantifying degradation and changes to SCR that relies on diver-acquired video surveys, generation of 3D models from data acquired at different points in time using structure from motion, and differencing of these models. We focus our study on the shipwreck S.S. Wisconsin, which is located roughly 10.2 km southeast of Kenosha, Wisconsin, in Lake Michigan. We created two digital elevation models of the shipwreck using surveys performed during the summers of 2006 and 2015 and differenced these models to map spatial changes within the wreck. Using orthomosaics and difference map data, we identified a change in degradation patterns. Degradation was anecdotally believed to be caused by inward collapse, but maps indicated a pattern of outward collapse of the hull structure, which has resulted in large scale shifting of material in the central upper deck. In addition, comparison of the orthomosaics with the difference map clearly shows movement of objects, degradation of smaller pieces and in some locations, an increase in colonization of mussels.

  12. The Best Time to Acquire New Skills: Age-Related Differences in Implicit Sequence Learning across the Human Lifespan

    ERIC Educational Resources Information Center

    Janacsek, Karolina; Fiser, Jozsef; Nemeth, Dezso

    2012-01-01

    Implicit skill learning underlies obtaining not only motor, but also cognitive and social skills through the life of an individual. Yet, the ontogenetic changes in humans' implicit learning abilities have not yet been characterized, and, thus, their role in acquiring new knowledge efficiently during development is unknown. We investigated such…

  13. Implementation of an improved adaptive-implicit method in a thermal compositional simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, T.B.

    1988-11-01

    A multicomponent thermal simulator with an adaptive-implicit-method (AIM) formulation/inexact-adaptive-Newton (IAN) method is presented. The final coefficient matrix retains the original banded structure so that conventional iterative methods can be used. Various methods for selection of the eliminated unknowns are tested. AIM/IAN method has a lower work count per Newtonian iteration than fully implicit methods, but a wrong choice of unknowns will result in excessive Newtonian iterations. For the problems tested, the residual-error method described in the paper for selecting implicit unknowns, together with the IAN method, had an improvement of up to 28% of the CPU time over the fullymore » implicit method.« less

  14. Implicit and explicit social mentalizing: dual processes driven by a shared neural network

    PubMed Central

    Van Overwalle, Frank; Vandekerckhove, Marie

    2013-01-01

    Recent social neuroscientific evidence indicates that implicit and explicit inferences on the mind of another person (i.e., intentions, attributions or traits), are subserved by a shared mentalizing network. Under both implicit and explicit instructions, ERP studies reveal that early inferences occur at about the same time, and fMRI studies demonstrate an overlap in core mentalizing areas, including the temporo-parietal junction (TPJ) and the medial prefrontal cortex (mPFC). These results suggest a rapid shared implicit intuition followed by a slower explicit verification processes (as revealed by additional brain activation during explicit vs. implicit inferences). These data provide support for a default-adjustment dual-process framework of social mentalizing. PMID:24062663

  15. Dyslexics’ faster decay of implicit memory for sounds and words is manifested in their shorter neural adaptation

    PubMed Central

    Jaffe-Dax, Sagi; Frenkel, Or; Ahissar, Merav

    2017-01-01

    Dyslexia is a prevalent reading disability whose underlying mechanisms are still disputed. We studied the neural mechanisms underlying dyslexia using a simple frequency-discrimination task. Though participants were asked to compare the two tones in each trial, implicit memory of previous trials affected their responses. We hypothesized that implicit memory decays faster among dyslexics. We tested this by increasing the temporal intervals between consecutive trials, and by measuring the behavioral impact and ERP responses from the auditory cortex. Dyslexics showed a faster decay of implicit memory effects on both measures, with similar time constants. Finally, faster decay of implicit memory also characterized the impact of sound regularities in benefitting dyslexics' oral reading rate. Their benefit decreased faster as a function of the time interval from the previous reading of the same non-word. We propose that dyslexics’ shorter neural adaptation paradoxically accounts for their longer reading times, since it reduces their temporal window of integration of past stimuli, resulting in noisier and less reliable predictions for both simple and complex stimuli. Less reliable predictions limit their acquisition of reading expertise. DOI: http://dx.doi.org/10.7554/eLife.20557.001 PMID:28115055

  16. Towards an explicit account of implicit learning.

    PubMed

    Forkstam, Christian; Petersson, Karl Magnus

    2005-08-01

    The human brain supports acquisition mechanisms that can extract structural regularities implicitly from experience without the induction of an explicit model. Reber defined the process by which an individual comes to respond appropriately to the statistical structure of the input ensemble as implicit learning. He argued that the capacity to generalize to new input is based on the acquisition of abstract representations that reflect underlying structural regularities in the acquisition input. We focus this review of the implicit learning literature on studies published during 2004 and 2005. We will not review studies of repetition priming ('implicit memory'). Instead we focus on two commonly used experimental paradigms: the serial reaction time task and artificial grammar learning. Previous comprehensive reviews can be found in Seger's 1994 article and the Handbook of Implicit Learning. Emerging themes include the interaction between implicit and explicit processes, the role of the medial temporal lobe, developmental aspects of implicit learning, age-dependence, the role of sleep and consolidation. The attempts to characterize the interaction between implicit and explicit learning are promising although not well understood. The same can be said about the role of sleep and consolidation. Despite the fact that lesion studies have relatively consistently suggested that the medial temporal lobe memory system is not necessary for implicit learning, a number of functional magnetic resonance studies have reported medial temporal lobe activation in implicit learning. This issue merits further research. Finally, the clinical relevance of implicit learning remains to be determined.

  17. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning.

    PubMed

    Stark-Inbar, Alit; Raza, Meher; Taylor, Jordan A; Ivry, Richard B

    2017-01-01

    In standard taxonomies, motor skills are typically treated as representative of implicit or procedural memory. We examined two emblematic tasks of implicit motor learning, sensorimotor adaptation and sequence learning, asking whether individual differences in learning are correlated between these tasks, as well as how individual differences within each task are related to different performance variables. As a prerequisite, it was essential to establish the reliability of learning measures for each task. Participants were tested twice on a visuomotor adaptation task and on a sequence learning task, either the serial reaction time task or the alternating reaction time task. Learning was evident in all tasks at the group level and reliable at the individual level in visuomotor adaptation and the alternating reaction time task but not in the serial reaction time task. Performance variability was predictive of learning in both domains, yet the relationship was in the opposite direction for adaptation and sequence learning. For the former, faster learning was associated with lower variability, consistent with models of sensorimotor adaptation in which learning rates are sensitive to noise. For the latter, greater learning was associated with higher variability and slower reaction times, factors that may facilitate the spread of activation required to form predictive, sequential associations. Interestingly, learning measures of the different tasks were not correlated. Together, these results oppose a shared process for implicit learning in sensorimotor adaptation and sequence learning and provide insight into the factors that account for individual differences in learning within each task domain. We investigated individual differences in the ability to implicitly learn motor skills. As a prerequisite, we assessed whether individual differences were reliable across test sessions. We found that two commonly used tasks of implicit learning, visuomotor adaptation and the alternating serial reaction time task, exhibited good test-retest reliability in measures of learning and performance. However, the learning measures did not correlate between the two tasks, arguing against a shared process for implicit motor learning. Copyright © 2017 the American Physiological Society.

  18. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2011-08-01

    This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov-Poisson formulation), ours is based on a nonlinearly converged Vlasov-Ampére (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant-Friedrichs-Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicit time steps (unlike the earlier "energy-conserving" explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton-Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.

  19. A Rapidly Prototyped Vegetation Dryness Index Evaluated for Wildfire Risk Assessment at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, Kenton; Graham, William; Prados, Don; Spruce, Joseph

    2007-01-01

    MVDI, which effectively involves the differencing of NDMI and NDVI, appears to display increased noise that is consistent with a differencing technique. This effect masks finer variations in vegetation moisture, preventing MVDI from fulfilling the requirement of giving decision makers insight into spatial variation of fire risk. MVDI shows dependencies on land cover and phenology which also argue against its use as a fire risk proxy in an area of diverse and fragmented land covers. The conclusion of the rapid prototyping effort is that MVDI should not be implemented for SSC decision support.

  20. Relative motion using analytical differential gravity

    NASA Technical Reports Server (NTRS)

    Gottlieb, Robert G.

    1988-01-01

    This paper presents a new approach to the computation of the motion of one satellite relative to another. The trajectory of the reference satellite is computed accurately subject to geopotential perturbations. This precise trajectory is used as a reference in computing the position of a nearby body, or bodies. The problem that arises in this approach is differencing nearly equal terms in the geopotential model, especially as the separation of the reference and nearby bodies approaches zero. By developing closed form expressions for differences in higher order and degree geopotential terms, the numerical problem inherent in the differencing approach is eliminated.

  1. SCISEAL: A CFD code for analysis of fluid dynamic forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, Mahesh; Przekwas, Andrzej

    1994-01-01

    A viewgraph presentation is made of the objectives, capabilities, and test results of the computer code SCISEAL. Currently, the seal code has: a finite volume, pressure-based integration scheme; colocated variables with strong conservation approach; high-order spatial differencing, up to third-order; up to second-order temporal differencing; a comprehensive set of boundary conditions; a variety of turbulence models and surface roughness treatment; moving grid formulation for arbitrary rotor whirl; rotor dynamic coefficients calculated by the circular whirl and numerical shaker methods; and small perturbation capabilities to handle centered and eccentric seals.

  2. Implicit time accurate simulation of unsteady flow

    NASA Astrophysics Data System (ADS)

    van Buuren, René; Kuerten, Hans; Geurts, Bernard J.

    2001-03-01

    Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright

  3. High-Order Space-Time Methods for Conservation Laws

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.

    2013-01-01

    Current high-order methods such as discontinuous Galerkin and/or flux reconstruction can provide effective discretization for the spatial derivatives. Together with a time discretization, such methods result in either too small a time step size in the case of an explicit scheme or a very large system in the case of an implicit one. To tackle these problems, two new high-order space-time schemes for conservation laws are introduced: the first is explicit and the second, implicit. The explicit method here, also called the moment scheme, achieves a Courant-Friedrichs-Lewy (CFL) condition of 1 for the case of one-spatial dimension regardless of the degree of the polynomial approximation. (For standard explicit methods, if the spatial approximation is of degree p, then the time step sizes are typically proportional to 1/p(exp 2)). Fourier analyses for the one and two-dimensional cases are carried out. The property of super accuracy (or super convergence) is discussed. The implicit method is a simplified but optimal version of the discontinuous Galerkin scheme applied to time. It reduces to a collocation implicit Runge-Kutta (RK) method for ordinary differential equations (ODE) called Radau IIA. The explicit and implicit schemes are closely related since they employ the same intermediate time levels, and the former can serve as a key building block in an iterative procedure for the latter. A limiting technique for the piecewise linear scheme is also discussed. The technique can suppress oscillations near a discontinuity while preserving accuracy near extrema. Preliminary numerical results are shown

  4. Neural Manifestations of Implicit Self-Esteem: An ERP Study

    PubMed Central

    Wu, Lili; Cai, Huajian; Gu, Ruolei; Luo, Yu L. L.; Zhang, Jianxin; Yang, Jing; Shi, Yuanyuan; Ding, Lei

    2014-01-01

    Behavioral research has established that humans implicitly tend to hold a positive view toward themselves. In this study, we employed the event-related potential (ERP) technique to explore neural manifestations of positive implicit self-esteem using the Go/Nogo association task (GNAT). Participants generated a response (Go) or withheld a response (Nogo) to self or others words and good or bad attributes. Behavioral data showed that participants responded faster to the self paired with good than the self paired with bad, whereas the opposite proved true for others, reflecting the positive nature of implicit self-esteem. ERP results showed an augmented N200 over the frontal areas in Nogo responses relative to Go responses. Moreover, the positive implicit self-positivity bias delayed the onset time of the N200 wave difference between Nogo and Go trials, suggesting that positive implicit self-esteem is manifested on neural activity about 270 ms after the presentation of self-relevant stimuli. These findings provide neural evidence for the positivity and automaticity of implicit self-esteem. PMID:25006966

  5. Computer program documentation: Raw-to-processed SINDA program (RTOPHS) user's guide

    NASA Technical Reports Server (NTRS)

    Damico, S. J.

    1980-01-01

    Use of the Raw to Processed SINDA(System Improved Numerical Differencing Analyzer) Program, RTOPHS, which provides a means of making the temperature prediction data on binary HSTFLO and HISTRY units generated by SINDA available to engineers in an easy to use format, is discussed. The program accomplishes this by reading the HISTRY unit and according to user input instructions, the desired times and temperature prediction data are extracted and written to a word addressable drum file.

  6. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    DTIC Science & Technology

    2008-06-06

    energy and pressure described in § 4 are solved using a mixed finite - difference pseudospectral scheme with a third-order Runge-Kutta time stepping with a...to that in our DNS code (Sullivan and McWilliams 2002; Sullivan et al. 2000). For our mixed finite - difference pseudospec- tral differencing scheme a...Poisson equation. The spatial discretization is pseu- dospectral along lines of constant or and second- order finite difference in the vertical

  7. Repeated evaluative pairings and evaluative statements: How effectively do they shift implicit attitudes?

    PubMed

    Kurdi, Benedek; Banaji, Mahzarin R

    2017-02-01

    Six experiments, involving a total of 6,492 participants, were conducted to investigate the relative effectiveness of repeated evaluative pairings (REP; exposure to category members paired with pleasant or unpleasant images), evaluative statements (ES; verbally signaling upcoming pairings without actual exposure), and their combination (ES + REP) in shifting implicit social and nonsocial attitudes. Learning modality (REP, ES, and ES + REP) was varied between participants and implicit attitudes were assessed using an Implicit Association Test (IAT). Study 1 (N = 675) used fictitious social groups (NIFFs and LAAPs), Study 2 (N = 1,034) used novel social groups (humans with long vs. square faces), Study 3 (N = 1,072) used nonsocial stimuli (squares vs. rectangles), and Study 4 (N = 848) and Study 5 (N = 958) used known social groups (young vs. elderly; American vs. foreign). ES were more effective than REP and no less superior than ES + REP in producing implicit attitude change. Results were robust across social and nonsocial domains and for known and novel groups. Study 6 (N = 1,905) eliminated time on intervention, levels of construal, and expectancy effects as possible explanations for these findings. Associative theories of implicit evaluation posit that implicit attitudes should shift piecemeal over time; yet, in these experiments, one-shot language-based learning led to larger shifts in implicit attitude than exposure to stimulus pairings. Moreover, the redundancy observed in REP + ES suggests that attitude acquisition from repeated pairings and evaluative instructions may rely on shared mental representations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Happiness is pleasant, or is it? Implicit representations of affect valence are associated with contrahedonic motivation and mixed affect in daily life.

    PubMed

    Riediger, Michaela; Wrzus, Cornelia; Wagner, Gert G

    2014-10-01

    People typically want to feel good. At times, however, they seek to maintain or enhance negative affect or to dampen positive affect. The prevalence of such contrahedonic motivation has been related to simultaneous experiences of positive and negative (i.e., mixed) affect. We investigated the role that implicit mental representations of affect valence may play in this regard in a study with N = 400 participants aged 11-88 years. Results demonstrated the age-fairness and reliability of the affect-valence Implicit Association Test, a newly developed implicit measure of interindividual differences in mental representations of affect valence. The older participants were, the more distinctively they implicitly associated happiness with pleasantness and/or unhappiness with unpleasantness. Participants furthermore carried mobile phones as assessment instruments with them for 3 weeks while pursuing their daily routines. The phones prompted participants on average 54 times to report their momentary affective experience and affect-regulation motivation. Contrahedonic motivation and mixed affect were most prevalent among adolescents and least prevalent among older adults, and thus showed a similar pattern of age differences as the affect-valence Implicit Association Test. Furthermore, the more distinctive participants' implicit associations of happiness with pleasantness, and/or unhappiness with unpleasantness, the less likely participants were to report contrahedonic motivation and mixed affect in their daily lives. These findings contribute to a refined understanding of the mixed-affect perspective on contrahedonic motivation by demonstrating the respective role of implicit affect-valence representations. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Is Implicit Sequence Learning Impaired in Schizophrenia? A Meta-Analysis

    ERIC Educational Resources Information Center

    Siegert, Richard J.; Weatherall, Mark; Bell, Elliot M.

    2008-01-01

    Cognition in schizophrenia seems to be characterized by impaired performance on most tests of explicit or declarative learning contrasting with relatively intact performance on most tests of implicit or procedural learning. At the same time there have been conflicting results for studies that have used the Serial Reaction Time (SRT) task to…

  10. Time-varying volatility in Malaysian stock exchange: An empirical study using multiple-volatility-shift fractionally integrated model

    NASA Astrophysics Data System (ADS)

    Cheong, Chin Wen

    2008-02-01

    This article investigated the influences of structural breaks on the fractionally integrated time-varying volatility model in the Malaysian stock markets which included the Kuala Lumpur composite index and four major sectoral indices. A fractionally integrated time-varying volatility model combined with sudden changes is developed to study the possibility of structural change in the empirical data sets. Our empirical results showed substantial reduction in fractional differencing parameters after the inclusion of structural change during the Asian financial and currency crises. Moreover, the fractionally integrated model with sudden change in volatility performed better in the estimation and specification evaluations.

  11. Category 3: Sound Generation by Interacting with a Gust

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2004-01-01

    The cascade-gust interaction problem is solved employing a time-domain approach. The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.Nonlinear time dependent Euler equations are solved using higher order spatial differencing and time marching techniques. The solutions indicate the generation and propagation of expected mode orders for the given configuration and flow conditions. The blade passing frequency (BPF) is cut off for this cascade while higher harmonic, 2BPF and 3BPF, modes are cut on.

  12. Efficiency and flexibility using implicit methods within atmosphere dycores

    NASA Astrophysics Data System (ADS)

    Evans, K. J.; Archibald, R.; Norman, M. R.; Gardner, D. J.; Woodward, C. S.; Worley, P.; Taylor, M.

    2016-12-01

    A suite of explicit and implicit methods are evaluated for a range of configurations of the shallow water dynamical core within the spectral-element Community Atmosphere Model (CAM-SE) to explore their relative computational performance. The configurations are designed to explore the attributes of each method under different but relevant model usage scenarios including varied spectral order within an element, static regional refinement, and scaling to large problem sizes. The limitations and benefits of using explicit versus implicit, with different discretizations and parameters, are discussed in light of trade-offs such as MPI communication, memory, and inherent efficiency bottlenecks. For the regionally refined shallow water configurations, the implicit BDF2 method is about the same efficiency as an explicit Runge-Kutta method, without including a preconditioner. Performance of the implicit methods with the residual function executed on a GPU is also presented; there is speed up for the residual relative to a CPU, but overwhelming transfer costs motivate moving more of the solver to the device. Given the performance behavior of implicit methods within the shallow water dynamical core, the recommendation for future work using implicit solvers is conditional based on scale separation and the stiffness of the problem. The strong growth of linear iterations with increasing resolution or time step size is the main bottleneck to computational efficiency. Within the hydrostatic dynamical core, of CAM-SE, we present results utilizing approximate block factorization preconditioners implemented using the Trilinos library of solvers. They reduce the cost of linear system solves and improve parallel scalability. We provide a summary of the remaining efficiency considerations within the preconditioner and utilization of the GPU, as well as a discussion about the benefits of a time stepping method that provides converged and stable solutions for a much wider range of time step sizes. As more complex model components, for example new physics and aerosols, are connected in the model, having flexibility in the time stepping will enable more options for combining and resolving multiple scales of behavior.

  13. An Implicit Solver on A Parallel Block-Structured Adaptive Mesh Grid for FLASH

    NASA Astrophysics Data System (ADS)

    Lee, D.; Gopal, S.; Mohapatra, P.

    2012-07-01

    We introduce a fully implicit solver for FLASH based on a Jacobian-Free Newton-Krylov (JFNK) approach with an appropriate preconditioner. The main goal of developing this JFNK-type implicit solver is to provide efficient high-order numerical algorithms and methodology for simulating stiff systems of differential equations on large-scale parallel computer architectures. A large number of natural problems in nonlinear physics involve a wide range of spatial and time scales of interest. A system that encompasses such a wide magnitude of scales is described as "stiff." A stiff system can arise in many different fields of physics, including fluid dynamics/aerodynamics, laboratory/space plasma physics, low Mach number flows, reactive flows, radiation hydrodynamics, and geophysical flows. One of the big challenges in solving such a stiff system using current-day computational resources lies in resolving time and length scales varying by several orders of magnitude. We introduce FLASH's preliminary implementation of a time-accurate JFNK-based implicit solver in the framework of FLASH's unsplit hydro solver.

  14. On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws. II - Five-point schemes

    NASA Technical Reports Server (NTRS)

    Harten, A.; Tal-Ezer, H.

    1981-01-01

    This paper presents a family of two-level five-point implicit schemes for the solution of one-dimensional systems of hyperbolic conservation laws, which generalized the Crank-Nicholson scheme to fourth order accuracy (4-4) in both time and space. These 4-4 schemes are nondissipative and unconditionally stable. Special attention is given to the system of linear equations associated with these 4-4 implicit schemes. The regularity of this system is analyzed and efficiency of solution-algorithms is examined. A two-datum representation of these 4-4 implicit schemes brings about a compactification of the stencil to three mesh points at each time-level. This compact two-datum representation is particularly useful in deriving boundary treatments. Numerical results are presented to illustrate some properties of the proposed scheme.

  15. Theoretical restrictions on longest implicit time scales in Markov state models of biomolecular dynamics

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Pande, Vijay S.

    2018-01-01

    Markov state models (MSMs) have been widely used to analyze computer simulations of various biomolecular systems. They can capture conformational transitions much slower than an average or maximal length of a single molecular dynamics (MD) trajectory from the set of trajectories used to build the MSM. A rule of thumb claiming that the slowest implicit time scale captured by an MSM should be comparable by the order of magnitude to the aggregate duration of all MD trajectories used to build this MSM has been known in the field. However, this rule has never been formally proved. In this work, we present analytical results for the slowest time scale in several types of MSMs, supporting the above rule. We conclude that the slowest implicit time scale equals the product of the aggregate sampling and four factors that quantify: (1) how much statistics on the conformational transitions corresponding to the longest implicit time scale is available, (2) how good the sampling of the destination Markov state is, (3) the gain in statistics from using a sliding window for counting transitions between Markov states, and (4) a bias in the estimate of the implicit time scale arising from finite sampling of the conformational transitions. We demonstrate that in many practically important cases all these four factors are on the order of unity, and we analyze possible scenarios that could lead to their significant deviation from unity. Overall, we provide for the first time analytical results on the slowest time scales captured by MSMs. These results can guide further practical applications of MSMs to biomolecular dynamics and allow for higher computational efficiency of simulations.

  16. En Route to Depression: Self-Esteem Discrepancies and Habitual Rumination.

    PubMed

    Phillips, Wendy J; Hine, Donald W

    2016-02-01

    Dual-process models of cognitive vulnerability to depression suggest that some individuals possess discrepant implicit and explicit self-views, such as high explicit and low implicit self-esteem (fragile self-esteem) or low explicit and high implicit self-esteem (damaged self-esteem). This study investigated whether individuals with discrepant self-esteem may employ depressive rumination in an effort to reduce discrepancy-related dissonance, and whether the relationship between self-esteem discrepancy and future depressive symptoms varies as a function of rumination tendencies. Hierarchical regressions examined whether self-esteem discrepancy was associated with rumination in an Australian undergraduate sample at Time 1 (N = 306; M(age) = 29.9), and whether rumination tendencies moderated the relationship between self-esteem discrepancy and depressive symptoms assessed 3 months later (n = 160). Damaged self-esteem was associated with rumination at Time 1. As hypothesized, rumination moderated the relationship between self-esteem discrepancy and depressive symptoms at Time 2, where fragile self-esteem and high rumination tendencies at Time 1 predicted the highest levels of subsequent dysphoria. Results are consistent with dual-process propositions that (a) explicit self-regulation strategies may be triggered when explicit and implicit self-beliefs are incongruent, and (b) rumination may increase the likelihood of depression by expending cognitive resources and/or amplifying negative implicit biases. © 2014 Wiley Periodicals, Inc.

  17. The pursuit of happiness: time, money, and social connection.

    PubMed

    Mogilner, Cassie

    2010-09-01

    Does thinking about time, rather than money, influence how effectively individuals pursue personal happiness? Laboratory and field experiments revealed that implicitly activating the construct of time motivates individuals to spend more time with friends and family and less time working-behaviors that are associated with greater happiness. In contrast, implicitly activating money motivates individuals to work more and socialize less, which (although productive) does not increase happiness. Implications for the relative roles of time versus money in the pursuit of happiness are discussed.

  18. Consider the source: persuasion of implicit evaluations is moderated by source credibility.

    PubMed

    Smith, Colin Tucker; De Houwer, Jan; Nosek, Brian A

    2013-02-01

    The long history of persuasion research shows how to change explicit, self-reported evaluations through direct appeals. At the same time, research on how to change implicit evaluations has focused almost entirely on techniques of retraining existing evaluations or manipulating contexts. In five studies, we examined whether direct appeals can change implicit evaluations in the same way as they do explicit evaluations. In five studies, both explicit and implicit evaluations showed greater evidence of persuasion following information presented by a highly credible source than a source low in credibility. Whereas cognitive load did not alter the effect of source credibility on explicit evaluations, source credibility had an effect on the persuasion of implicit evaluations only when participants were encouraged and able to consider information about the source. Our findings reveal the relevance of persuasion research for changing implicit evaluations and provide new ideas about the processes underlying both types of evaluation.

  19. What do we know about implicit false-belief tracking?

    PubMed

    Schneider, Dana; Slaughter, Virginia P; Dux, Paul E

    2015-02-01

    There is now considerable evidence that neurotypical individuals track the internal cognitions of others, even in the absence of instructions to do so. This finding has prompted the suggestion that humans possess an implicit mental state tracking system (implicit Theory of Mind, ToM) that exists alongside a system that allows the deliberate and explicit analysis of the mental states of others (explicit ToM). Here we evaluate the evidence for this hypothesis and assess the extent to which implicit and explicit ToM operations are distinct. We review evidence showing that adults can indeed engage in ToM processing even without being conscious of doing so. However, at the same time, there is evidence that explicit and implicit ToM operations share some functional features, including drawing on executive resources. Based on the available evidence, we propose that implicit and explicit ToM operations overlap and should only be considered partially distinct.

  20. Hand-held UXO Discriminator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, E.; Smith, J.T.; Kappler, K.N.

    2010-04-01

    With prior funding (UX-1225, MM-0437, and MM-0838), we have successfully designed and built a cart-mounted Berkeley UXO Discriminator (BUD) and demonstrated its performance at various test sites (e.g., Gasperikova et al., 2007, 2009). It is a multi-transmitter multi-receiver active electromagnetic system that is able to discriminate UXO from scrap at a single measurement position, hence eliminates equirement of a very accurate sensor location. The cart-mounted system comprises of three orthogonal transmitters and eight pairs of differenced receivers (Smith et al., 2007). Receiver coils are located on ymmetry lines through the center of the system and see identical fields during themore » on-time of the pulse in all of the transmitter coils. They can then be wired in opposition to produce zero output during the n-ime of the pulses in three orthogonal transmitters. Moreover, this configuration dramatically reduces noise in the measurements by canceling the background electromagnetic fields (these fields are uniform ver the scale of the receiver array and are consequently nulled by the differencing operation), and by canceling the noise contributed by the tilt of the receivers in the Earth's magnetic field, and therefore reatly enhances receivers sensitivity to the gradients of the target.« less

  1. Extension of a streamwise upwind algorithm to a moving grid system

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru; Goorjian, Peter M.; Guruswamy, Guru P.

    1990-01-01

    A new streamwise upwind algorithm was derived to compute unsteady flow fields with the use of a moving-grid system. The temporally nonconservative LU-ADI (lower-upper-factored, alternating-direction-implicit) method was applied for time marching computations. A comparison of the temporally nonconservative method with a time-conservative implicit upwind method indicates that the solutions are insensitive to the conservative properties of the implicit solvers when practical time steps are used. Using this new method, computations were made for an oscillating wing at a transonic Mach number. The computed results confirm that the present upwind scheme captures the shock motion better than the central-difference scheme based on the beam-warming algorithm. The new upwind option of the code allows larger time-steps and thus is more efficient, even though it requires slightly more computational time per time step than the central-difference option.

  2. Implicit-Explicit Time Integration Methods for Non-hydrostatic Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Gardner, D. J.; Guerra, J. E.; Hamon, F. P.; Reynolds, D. R.; Ullrich, P. A.; Woodward, C. S.

    2016-12-01

    The Accelerated Climate Modeling for Energy (ACME) project is developing a non-hydrostatic atmospheric dynamical core for high-resolution coupled climate simulations on Department of Energy leadership class supercomputers. An important factor in computational efficiency is avoiding the overly restrictive time step size limitations of fully explicit time integration methods due to the stiffest modes present in the model (acoustic waves). In this work we compare the accuracy and performance of different Implicit-Explicit (IMEX) splittings of the non-hydrostatic equations and various Additive Runge-Kutta (ARK) time integration methods. Results utilizing the Tempest non-hydrostatic atmospheric model and the ARKode package show that the choice of IMEX splitting and ARK scheme has a significant impact on the maximum stable time step size as well as solution quality. Horizontally Explicit Vertically Implicit (HEVI) approaches paired with certain ARK methods lead to greatly improved runtimes. With effective preconditioning IMEX splittings that incorporate some implicit horizontal dynamics can be competitive with HEVI results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-699187

  3. The influence of linguistic and cognitive factors on the time course of verb-based implicit causality.

    PubMed

    Koornneef, Arnout; Dotlačil, Jakub; van den Broek, Paul; Sanders, Ted

    2016-01-01

    In three eye-tracking experiments the influence of the Dutch causal connective "want" (because) and the working memory capacity of readers on the usage of verb-based implicit causality was examined. Experiments 1 and 2 showed that although a causal connective is not required to activate implicit causality information during reading, effects of implicit causality surfaced more rapidly and were more pronounced when a connective was present in the discourse than when it was absent. In addition, Experiment 3 revealed that-in contrast to previous claims-the activation of implicit causality is not a resource-consuming mental operation. Moreover, readers with higher and lower working memory capacities behaved differently in a dual-task situation. Higher span readers were more likely to use implicit causality when they had all their working memory resources at their disposal. Lower span readers showed the opposite pattern as they were more likely to use the implicit causality cue in the case of an additional working memory load. The results emphasize that both linguistic and cognitive factors mediate the impact of implicit causality on text comprehension. The implications of these results are discussed in terms of the ongoing controversies in the literature-that is, the focusing-integration debate and the debates on the source of implicit causality.

  4. Interprofessional Collaboration and Turf Wars How Prevalent Are Hidden Attitudes?*

    PubMed Central

    Chung, Chadwick L. R.; Manga, Jasmin; McGregor, Marion; Michailidis, Christos; Stavros, Demetrios; Woodhouse, Linda J.

    2012-01-01

    Purpose: Interprofessional collaboration in health care is believed to enhance patient outcomes. However, where professions have overlapping scopes of practice (eg, chiropractors and physical therapists), "turf wars" can hinder effective collaboration. Deep-rooted beliefs, identified as implicit attitudes, provide a potential explanation. Even with positive explicit attitudes toward a social group, negative stereotypes may be influential. Previous studies on interprofessional attitudes have mostly used qualitative research methodologies. This study used quantitative methods to evaluate explicit and implicit attitudes of physical therapy students toward chiropractic. Methods: A paper-and-pencil instrument was developed and administered to 49 individuals (students and faculty) associated with a Canadian University master's entry-level physical therapy program after approval by the Research Ethics Board. The instrument evaluated explicit and implicit attitudes toward the chiropractic profession. Implicit attitudes were determined by comparing response times of chiropractic paired with positive versus negative descriptors. Results: Mean time to complete a word association task was significantly longer (t = 4.75, p =.00) when chiropractic was associated with positive rather than negative words. Explicit and implicit attitudes were not correlated (r = 0.13, p =.38). Conclusions: While little explicit bias existed, individuals associated with a master's entry-level physical therapy program appeared to have a significant negative implicit bias toward chiropractic PMID:22778528

  5. Interprofessional collaboration and turf wars how prevalent are hidden attitudes?

    PubMed

    Chung, Chadwick L R; Manga, Jasmin; McGregor, Marion; Michailidis, Christos; Stavros, Demetrios; Woodhouse, Linda J

    2012-01-01

    Interprofessional collaboration in health care is believed to enhance patient outcomes. However, where professions have overlapping scopes of practice (eg, chiropractors and physical therapists), "turf wars" can hinder effective collaboration. Deep-rooted beliefs, identified as implicit attitudes, provide a potential explanation. Even with positive explicit attitudes toward a social group, negative stereotypes may be influential. Previous studies on interprofessional attitudes have mostly used qualitative research methodologies. This study used quantitative methods to evaluate explicit and implicit attitudes of physical therapy students toward chiropractic. A paper-and-pencil instrument was developed and administered to 49 individuals (students and faculty) associated with a Canadian University master's entry-level physical therapy program after approval by the Research Ethics Board. The instrument evaluated explicit and implicit attitudes toward the chiropractic profession. Implicit attitudes were determined by comparing response times of chiropractic paired with positive versus negative descriptors. Mean time to complete a word association task was significantly longer (t = 4.75, p =.00) when chiropractic was associated with positive rather than negative words. Explicit and implicit attitudes were not correlated (r = 0.13, p =.38). While little explicit bias existed, individuals associated with a master's entry-level physical therapy program appeared to have a significant negative implicit bias toward chiropractic.

  6. Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Walker, K. P.; Freed, A. D.

    1991-01-01

    New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist.

  7. Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems

    NASA Astrophysics Data System (ADS)

    Cavaglieri, Daniele; Bewley, Thomas

    2015-04-01

    Implicit/explicit (IMEX) Runge-Kutta (RK) schemes are effective for time-marching ODE systems with both stiff and nonstiff terms on the RHS; such schemes implement an (often A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear, and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-marching high-dimensional ODE discretizations of PDE systems on modern (cache-based) computational hardware, in which memory management is often the most significant computational bottleneck. In this paper, we develop and characterize eight new low-storage implicit/explicit RK schemes which have higher accuracy and better stability properties than the only low-storage implicit/explicit RK scheme available previously, the venerable second-order Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) algorithm that has dominated the DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or four registers of length N) and comparable floating-point operations per timestep.

  8. Investigating the predictive validity of implicit and explicit measures of motivation in problem-solving behavioural tasks.

    PubMed

    Keatley, David; Clarke, David D; Hagger, Martin S

    2013-09-01

    Research into the effects of individuals'autonomous motivation on behaviour has traditionally adopted explicit measures and self-reported outcome assessment. Recently, there has been increased interest in the effects of implicit motivational processes underlying behaviour from a self-determination theory (SDT) perspective. The aim of the present research was to provide support for the predictive validity of an implicit measure of autonomous motivation on behavioural persistence on two objectively measurable tasks. SDT and a dual-systems model were adopted as frameworks to explain the unique effects offered by explicit and implicit autonomous motivational constructs on behavioural persistence. In both studies, implicit autonomous motivation significantly predicted unique variance in time spent on each task. Several explicit measures of autonomous motivation also significantly predicted persistence. Results provide support for the proposed model and the inclusion of implicit measures in research on motivated behaviour. In addition, implicit measures of autonomous motivation appear to be better suited to explaining variance in behaviours that are more spontaneous or unplanned. Future implications for research examining implicit motivation from dual-systems models and SDT approaches are outlined. © 2012 The British Psychological Society.

  9. Haptics-based dynamic implicit solid modeling.

    PubMed

    Hua, Jing; Qin, Hong

    2004-01-01

    This paper systematically presents a novel, interactive solid modeling framework, Haptics-based Dynamic Implicit Solid Modeling, which is founded upon volumetric implicit functions and powerful physics-based modeling. In particular, we augment our modeling framework with a haptic mechanism in order to take advantage of additional realism associated with a 3D haptic interface. Our dynamic implicit solids are semi-algebraic sets of volumetric implicit functions and are governed by the principles of dynamics, hence responding to sculpting forces in a natural and predictable manner. In order to directly manipulate existing volumetric data sets as well as point clouds, we develop a hierarchical fitting algorithm to reconstruct and represent discrete data sets using our continuous implicit functions, which permit users to further design and edit those existing 3D models in real-time using a large variety of haptic and geometric toolkits, and visualize their interactive deformation at arbitrary resolution. The additional geometric and physical constraints afford more sophisticated control of the dynamic implicit solids. The versatility of our dynamic implicit modeling enables the user to easily modify both the geometry and the topology of modeled objects, while the inherent physical properties can offer an intuitive haptic interface for direct manipulation with force feedback.

  10. Performance Benchmark for a Prismatic Flow Solver

    DTIC Science & Technology

    2007-03-26

    Gauss- Seidel (LU-SGS) implicit method is used for time integration to reduce the computational time. A one-equation turbulence model by Goldberg and...numerical flux computations. The Lower-Upper-Symmetric Gauss- Seidel (LU-SGS) implicit method [1] is used for time integration to reduce the...Sharov, D. and Nakahashi, K., “Reordering of Hybrid Unstructured Grids for Lower-Upper Symmetric Gauss- Seidel Computations,” AIAA Journal, Vol. 36

  11. Time integration algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Slack, David C.; Whitaker, D. L.; Walters, Robert W.

    1994-01-01

    Explicit and implicit time integration algorithms for the two-dimensional Euler equations on unstructured grids are presented. Both cell-centered and cell-vertex finite volume upwind schemes utilizing Roe's approximate Riemann solver are developed. For the cell-vertex scheme, a four-stage Runge-Kutta time integration, a fourstage Runge-Kutta time integration with implicit residual averaging, a point Jacobi method, a symmetric point Gauss-Seidel method and two methods utilizing preconditioned sparse matrix solvers are presented. For the cell-centered scheme, a Runge-Kutta scheme, an implicit tridiagonal relaxation scheme modeled after line Gauss-Seidel, a fully implicit lower-upper (LU) decomposition, and a hybrid scheme utilizing both Runge-Kutta and LU methods are presented. A reverse Cuthill-McKee renumbering scheme is employed for the direct solver to decrease CPU time by reducing the fill of the Jacobian matrix. A comparison of the various time integration schemes is made for both first-order and higher order accurate solutions using several mesh sizes, higher order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The results obtained for a transonic flow over a circular arc suggest that the preconditioned sparse matrix solvers perform better than the other methods as the number of elements in the mesh increases.

  12. Efficient entanglement distribution over 200 kilometers.

    PubMed

    Dynes, J F; Takesue, H; Yuan, Z L; Sharpe, A W; Harada, K; Honjo, T; Kamada, H; Tadanaga, O; Nishida, Y; Asobe, M; Shields, A J

    2009-07-06

    Here we report the first demonstration of entanglement distribution over a record distance of 200 km which is of sufficient fidelity to realize secure communication. In contrast to previous entanglement distribution schemes, we use detection elements based on practical avalanche photodiodes (APDs) operating in a self-differencing mode. These APDs are low-cost, compact and easy to operate requiring only electrical cooling to achieve high single photon detection efficiency. The self-differencing APDs in combination with a reliable parametric down-conversion source demonstrate that entanglement distribution over ultra-long distances has become both possible and practical. Consequently the outlook is extremely promising for real world entanglement-based communication between distantly separated parties.

  13. On the geodetic applications of simultaneous range-differencing to LAGEOS

    NASA Technical Reports Server (NTRS)

    Pablis, E. C.

    1982-01-01

    The possibility of improving the accuracy of geodetic results by use of simultaneously observed ranges to Lageos, in a differencing mode, from pairs of stations was studied. Simulation tests show that model errors can be effectively minimized by simultaneous range differencing (SRD) for a rather broad class of network satellite pass configurations. The methods of least squares approximation are compared with monomials and Chebyshev polynomials and the cubic spline interpolation. Analysis of three types of orbital biases (radial, along- and across track) shows that radial biases are the ones most efficiently minimized in the SRC mode. The degree to which the other two can be minimized depends on the type of parameters under estimation and the geometry of the problem. Sensitivity analyses of the SRD observation show that for baseline length estimations the most useful data are those collected in a direction parallel to the baseline and at a low elevation. Estimating individual baseline lengths with respect to an assumed but fixed orbit not only decreases the cost, but it further reduces the effects of model biases on the results as opposed to a network solution. Analogous results and conclusions are obtained for the estimates of the coordinates of the pole.

  14. A Navier-Strokes Chimera Code on the Connection Machine CM-5: Design and Performance

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon; Kwak, Dochan (Technical Monitor)

    1994-01-01

    We have implemented a three-dimensional compressible Navier-Stokes code on the Connection Machine CM-5. The code is set up for implicit time-stepping on single or multiple structured grids. For multiple grids and geometrically complex problems, we follow the 'chimera' approach, where flow data on one zone is interpolated onto another in the region of overlap. We will describe our design philosophy and give some timing results for the current code. A parallel machine like the CM-5 is well-suited for finite-difference methods on structured grids. The regular pattern of connections of a structured mesh maps well onto the architecture of the machine. So the first design choice, finite differences on a structured mesh, is natural. We use centered differences in space, with added artificial dissipation terms. When numerically solving the Navier-Stokes equations, there are liable to be some mesh cells near a solid body that are small in at least one direction. This mesh cell geometry can impose a very severe CFL (Courant-Friedrichs-Lewy) condition on the time step for explicit time-stepping methods. Thus, though explicit time-stepping is well-suited to the architecture of the machine, we have adopted implicit time-stepping. We have further taken the approximate factorization approach. This creates the need to solve large banded linear systems and creates the first possible barrier to an efficient algorithm. To overcome this first possible barrier we have considered two options. The first is just to solve the banded linear systems with data spread over the whole machine, using whatever fast method is available. This option is adequate for solving scalar tridiagonal systems, but for scalar pentadiagonal or block tridiagonal systems it is somewhat slower than desired. The second option is to 'transpose' the flow and geometry variables as part of the time-stepping process: Start with x-lines of data in-processor. Form explicit terms in x, then transpose so y-lines of data are in-processor. Form explicit terms in y, then transpose so z-lines are in processor. Form explicit terms in z, then solve linear systems in the z-direction. Transpose to the y-direction, then solve linear systems in the y-direction. Finally transpose to the x direction and solve linear systems in the x-direction. This strategy avoids inter-processor communication when differencing and solving linear systems, but requires a large amount of communication when doing the transposes. The transpose method is more efficient than the non-transpose strategy when dealing with scalar pentadiagonal or block tridiagonal systems. For handling geometrically complex problems the chimera strategy was adopted. For multiple zone cases we compute on each zone sequentially (using the whole parallel machine), then send the chimera interpolation data to a distributed data structure (array) laid out over the whole machine. This information transfer implies an irregular communication pattern, and is the second possible barrier to an efficient algorithm. We have implemented these ideas on the CM-5 using CMF (Connection Machine Fortran), a data parallel language which combines elements of Fortran 90 and certain extensions, and which bears a strong similarity to High Performance Fortran. We make use of the Connection Machine Scientific Software Library (CMSSL) for the linear solver and array transpose operations.

  15. Proceedings of the Conference on the Design of Experiments in Army Research Development and Testing (32nd)

    DTIC Science & Technology

    1987-06-01

    number of series among the 63 which were identified as a particular ARIMA form and were "best" modeled by a particular technique. Figure 1 illustrates a...th time from xe’s. The integrbted autoregressive - moving average model , denoted by ARIMA (p,d,q) is a result of combining d-th differencing process...Experiments, (4) Data Analysis and Modeling , (5) Theory and Probablistic Inference, (6) Fuzzy Statistics, (7) Forecasting and Prediction, (8) Small Sample

  16. CFD in the 1980's from one point of view

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard

    1991-01-01

    The present interpretive treatment of the development history of CFD in the 1980s gives attention to advancements in such algorithmic techniques as flux Jacobian-based upwind differencing, total variation-diminishing and essentially nonoscillatory schemes, multigrid methods, unstructured grids, and nonrectangular structured grids. At the same time, computational turbulence research gave attention to turbulence modeling on the bases of increasingly powerful supercomputers and meticulously constructed databases. The major future developments in CFD will encompass such capabilities as structured and unstructured three-dimensional grids.

  17. A multi-dimensional nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell (PIC) algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacón, Luis; CoCoMans Team

    2014-10-01

    For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.

  18. Primary motor and premotor cortex in implicit sequence learning--evidence for competition between implicit and explicit human motor memory systems.

    PubMed

    Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W

    2012-09-01

    Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Boundary conditions for the solution of compressible Navier-Stokes equations by an implicit factored method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Smith, G. E.; Springer, G. S.; Rimon, Y.

    1983-01-01

    A method is presented for formulating the boundary conditions in implicit finite-difference form needed for obtaining solutions to the compressible Navier-Stokes equations by the Beam and Warming implicit factored method. The usefulness of the method was demonstrated (a) by establishing the boundary conditions applicable to the analysis of the flow inside an axisymmetric piston-cylinder configuration and (b) by calculating velocities and mass fractions inside the cylinder for different geometries and different operating conditions. Stability, selection of time step and grid sizes, and computer time requirements are discussed in reference to the piston-cylinder problem analyzed.

  20. Implicit Multibody Penalty-BasedDistributed Contact.

    PubMed

    Xu, Hongyi; Zhao, Yili; Barbic, Jernej

    2014-09-01

    The penalty method is a simple and popular approach to resolving contact in computer graphics and robotics. Penalty-based contact, however, suffers from stability problems due to the highly variable and unpredictable net stiffness, and this is particularly pronounced in simulations with time-varying distributed geometrically complex contact. We employ semi-implicit integration, exact analytical contact gradients, symbolic Gaussian elimination and a SVD solver to simulate stable penalty-based frictional contact with large, time-varying contact areas, involving many rigid objects and articulated rigid objects in complex conforming contact and self-contact. We also derive implicit proportional-derivative control forces for real-time control of articulated structures with loops. We present challenging contact scenarios such as screwing a hexbolt into a hole, bowls stacked in perfectly conforming configurations, and manipulating many objects using actively controlled articulated mechanisms in real time.

  1. Solving the Sea-Level Equation in an Explicit Time Differencing Scheme

    NASA Astrophysics Data System (ADS)

    Klemann, V.; Hagedoorn, J. M.; Thomas, M.

    2016-12-01

    In preparation of coupling the solid-earth to an ice-sheet compartment in an earth-system model, the dependency of initial topography on the ice-sheet history and viscosity structure has to be analysed. In this study, we discuss this dependency and how it influences the reconstruction of former sea level during a glacial cycle. The modelling is based on the VILMA code in which the field equations are solved in the time domain applying an explicit time-differencing scheme. The sea-level equation is solved simultaneously in the same explicit scheme as the viscoleastic field equations (Hagedoorn et al., 2007). With the assumption of only small changes, we neglect the iterative solution at each time step as suggested by e.g. Kendall et al. (2005). Nevertheless, the prediction of the initial paleo topography in case of moving coastlines remains to be iterated by repeated integration of the whole load history. The sensitivity study sketched at the beginning is accordingly motivated by the question if the iteration of the paleo topography can be replaced by a predefined one. This study is part of the German paleoclimate modelling initiative PalMod. Lit:Hagedoorn JM, Wolf D, Martinec Z, 2007. An estimate of global mean sea-level rise inferred from tide-gauge measurements using glacial-isostatic models consistent with the relative sea-level record. Pure appl. Geophys. 164: 791-818, doi:10.1007/s00024-007-0186-7Kendall RA, Mitrovica JX, Milne GA, 2005. On post-glacial sea level - II. Numerical formulation and comparative reesults on spherically symmetric models. Geophys. J. Int., 161: 679-706, doi:10.1111/j.365-246.X.2005.02553.x

  2. Subliminal mere exposure and explicit and implicit positive affective responses.

    PubMed

    Hicks, Joshua A; King, Laura A

    2011-06-01

    Research suggests that repeated subliminal exposure to environmental stimuli enhances positive affective responses. To date, this research has primarily concentrated on the effects of repeated exposure on explicit measures of positive affect (PA). However, recent research suggests that repeated subliminal presentations may increase implicit PA as well. The present study tested this hypothesis. Participants were either subliminally primed with repeated presentations of the same stimuli or only exposed to each stimulus one time. Results confirmed predictions showing that repeated exposure to the same stimuli increased both explicit and implicit PA. Implications for the role of explicit and implicit PA in attitudinal judgements are discussed.

  3. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  4. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  5. An unconditionally stable Runge-Kutta method for unsteady flows

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Chima, Rodrick V.

    1988-01-01

    A quasi-three dimensional analysis was developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body fitted coordinate system. It accounts for the effects of rotation, radius change, and stream surface thickness. The Baldwin-Lomax eddy viscosity model is used for turbulent flows. The equations are integrated in time using a four stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing was employed to accelerate the solution of the time accurate computations. The scheme is described and accuracy analyses are given. Results are shown for a supersonic through-flow fan designed for NASA Lewis. The rotor:stator blade ratio was taken as 1:1. Results are also shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Here the blade ratio is 2:3. Implicit residual smoothing was used to increase the time step limit of the unsmoothed scheme by a factor of six with negligible differences in the unsteady results. It is felt that the implicitly smoothed Runge-Kutta scheme is easily competitive with implicit schemes for unsteady flows while retaining the simplicity of an explicit scheme.

  6. Adaptive Implicit Non-Equilibrium Radiation Diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Bobby; Wang, Zhen; Berrill, Mark A

    2013-01-01

    We describe methods for accurate and efficient long term time integra- tion of non-equilibrium radiation diffusion systems: implicit time integration for effi- cient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while control- ling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  7. Independent operation of implicit working memory under cognitive load.

    PubMed

    Ji, Eunhee; Lee, Kyung Min; Kim, Min-Shik

    2017-10-01

    Implicit working memory (WM) has been known to operate non-consciously and unintentionally. The current study investigated whether implicit WM is a discrete mechanism from explicit WM in terms of cognitive resource. To induce cognitive resource competition, we used a conjunction search task (Experiment 1) and imposed spatial WM load (Experiment 2a and 2b). Each trial was composed of a set of five consecutive search displays. The location of the first four displays appeared as per pre-determined patterns, but the fifth display could follow the same pattern or not. If implicit WM can extract the moving pattern of stimuli, response times for the fifth target would be faster when it followed the pattern compared to when it did not. Our results showed implicit WM can operate when participants are searching for the conjunction target and even while maintaining spatial WM information. These results suggest that implicit WM is independent from explicit spatial WM. Copyright © 2017. Published by Elsevier Inc.

  8. Is homophobia associated with an implicit same-sex attraction?

    PubMed

    Macinnis, Cara C; Hodson, Gordon

    2013-01-01

    Some theorists propose that homophobia stems from underlying same-sex attraction. A few studies have tested this hypothesis, yet without a clear measure of implicit sexual attraction, producing mixed results. For the first time, we test this attraction-based account of homophobia among both men and women using an implicit measure of sexual attraction. No evidence of an attraction-based account of homophobia emerged. Instead, implicit same-sex attraction was related to positive evaluations of gay men and lesbians among female participants. Even in targeted analyses examining the relation between implicit same-sex attraction and homosexual evaluations among only those theoretically most likely to demonstrate an attraction-based homophobic effect, implicit same-sex attraction was not associated with evaluations of homosexuals or was associated with more positive evaluations of homosexuals. In addition, explicit same-sex attraction was related to positive evaluations of gay men and lesbians for male participants. These results are more in keeping with the attitude-similarity effect (i.e., people like, rather than dislike, similar others).

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lott, P. Aaron; Woodward, Carol S.; Evans, Katherine J.

    Performing accurate and efficient numerical simulation of global atmospheric climate models is challenging due to the disparate length and time scales over which physical processes interact. Implicit solvers enable the physical system to be integrated with a time step commensurate with processes being studied. The dominant cost of an implicit time step is the ancillary linear system solves, so we have developed a preconditioner aimed at improving the efficiency of these linear system solves. Our preconditioner is based on an approximate block factorization of the linearized shallow-water equations and has been implemented within the spectral element dynamical core within themore » Community Atmospheric Model (CAM-SE). Furthermore, in this paper we discuss the development and scalability of the preconditioner for a suite of test cases with the implicit shallow-water solver within CAM-SE.« less

  10. A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrie, Michael; Shadwick, B. A.

    2016-01-04

    Here, we present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Juttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviors that do not exist in the non relativistic case.more » The numerical study of the relativistic two-stream instability completes the set of benchmarking tests.« less

  11. A time-implicit numerical method and benchmarks for the relativistic Vlasov–Ampere equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrié, Michael, E-mail: mcarrie2@unl.edu; Shadwick, B. A., E-mail: shadwick@mailaps.org

    2016-01-15

    We present a time-implicit numerical method to solve the relativistic Vlasov–Ampere system of equations on a two dimensional phase space grid. The time-splitting algorithm we use allows the generalization of the work presented here to higher dimensions keeping the linear aspect of the resulting discrete set of equations. The implicit method is benchmarked against linear theory results for the relativistic Landau damping for which analytical expressions using the Maxwell-Jüttner distribution function are derived. We note that, independently from the shape of the distribution function, the relativistic treatment features collective behaviours that do not exist in the nonrelativistic case. The numericalmore » study of the relativistic two-stream instability completes the set of benchmarking tests.« less

  12. Reactivity to negative affect in smokers: the role of implicit associations and distress tolerance in smoking cessation.

    PubMed

    Cameron, Amy; Reed, Kathleen Palm; Ninnemann, Andrew

    2013-12-01

    Avoidance of negative affect is one motivational factor that explains smoking cessation relapse during cessation attempts. This negative reinforcement model of smoking cessation and relapse has demonstrated the importance of one's ability to tolerate nicotine withdrawal symptoms, particularly negative affect states, in remaining abstinent from smoking. Distress tolerance and implicit associations are two individual constructs that may influence the strength of this relationship. In this pilot study the authors examined implicit associations related to avoidance and negative affect using a modified Implicit Association Test (IAT), a measure designed to examine implicit associations related to negative affect and avoidance, and the relationship of these associations to distress tolerance and smoking relapse. In total, 40 participants were recruited through community flyers as part of a larger smoking cessation study. Participants completed a brief smoking history, behavioral distress tolerance assessments, and the modified IAT. Smoking status was assessed via phone 3days and 6days post-quit date. Results from a Cox proportional hazard model revealed that implicit associations between avoidance and negative affect were significantly negatively correlated with time to relapse after a smoking cessation attempt, whereas the behavioral distress tolerance assessments did not predict time to relapse. This study provides novel information about the cognitive associations that may underlie avoidant behavior in smokers, and may be important for understanding smoking relapse when negative affect states are particularly difficult to tolerate. Authors discuss the importance of implicit associations in understanding smoking relapse and how they can be targeted in treatment. © 2013.

  13. An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model

    USGS Publications Warehouse

    Kipp, K.L.; Konikow, Leonard F.; Hornberger, G.Z.

    1998-01-01

    This report documents an extension to the U.S. Geological Survey MOC3D transport model that incorporates an implicit-in-time difference approximation for the dispersive transport equation, including source/sink terms. The original MOC3D transport model (Version 1) uses the method of characteristics to solve the transport equation on the basis of the velocity field. The original MOC3D solution algorithm incorporates particle tracking to represent advective processes and an explicit finite-difference formulation to calculate dispersive fluxes. The new implicit procedure eliminates several stability criteria required for the previous explicit formulation. This allows much larger transport time increments to be used in dispersion-dominated problems. The decoupling of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit extension, the MOC3D model is upgraded to Version 2. A description of the numerical method of the implicit dispersion calculation, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. Version 2 of MOC3D was evaluated for the same set of problems used for verification of Version 1. These test results indicate that the implicit calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the explicit calculation for transport problems that are characterized by a grid Peclet number less than about 1.0.

  14. Global Positioning System Time Transfer Receiver (GPS/TTR) prototype design and initial test evaluation

    NASA Technical Reports Server (NTRS)

    Oaks, J.; Frank, A.; Falvey, S.; Lister, M.; Buisson, J.; Wardrip, C.; Warren, H.

    1982-01-01

    Time transfer equipment and techniques used with the Navigation Technology Satellites were modified and extended for use with the Global Positioning System (GPS) satellites. A prototype receiver was built and field tested. The receiver uses the GPS L1 link at 1575 MHz with C/A code only to resolve a measured range to the satellite. A theoretical range is computed from the satellite ephemeris transmitted in the data message and the user's coordinates. Results of user offset from GPS time are obtained by differencing the measured and theoretical ranges and applying calibration corrections. Results of the first field test evaluation of the receiver are presented.

  15. Multi-transmitter multi-receiver null coupled systems for inductive detection and characterization of metallic objects

    NASA Astrophysics Data System (ADS)

    Smith, J. Torquil; Morrison, H. Frank; Doolittle, Lawrence R.; Tseng, Hung-Wen

    2007-03-01

    Equivalent dipole polarizabilities are a succinct way to summarize the inductive response of an isolated conductive body at distances greater than the scale of the body. Their estimation requires measurement of secondary magnetic fields due to currents induced in the body by time varying magnetic fields in at least three linearly independent (e.g., orthogonal) directions. Secondary fields due to an object are typically orders of magnitude smaller than the primary inducing fields near the primary field sources (transmitters). Receiver coils may be oriented orthogonal to primary fields from one or two transmitters, nulling their response to those fields, but simultaneously nulling to fields of additional transmitters is problematic. If transmitter coils are constructed symmetrically with respect to inversion in a point, their magnetic fields are symmetric with respect to that point. If receiver coils are operated in pairs symmetric with respect to inversion in the same point, then their differenced output is insensitive to the primary fields of any symmetrically constructed transmitters, allowing nulling to three (or more) transmitters. With a sufficient number of receivers pairs, object equivalent dipole polarizabilities can be estimated in situ from measurements at a single instrument sitting, eliminating effects of inaccurate instrument location on polarizability estimates. The method is illustrated with data from a multi-transmitter multi-receiver system with primary field nulling through differenced receiver pairs, interpreted in terms of principal equivalent dipole polarizabilities as a function of time.

  16. A numerical study of the axisymmetric Couette-Taylor problem using a fast high-resolution second-order central scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupferman, R.

    The author presents a numerical study of the axisymmetric Couette-Taylor problem using a finite difference scheme. The scheme is based on a staggered version of a second-order central-differencing method combined with a discrete Hodge projection. The use of central-differencing operators obviates the need to trace the characteristic flow associated with the hyperbolic terms. The result is a simple and efficient scheme which is readily adaptable to other geometries and to more complicated flows. The scheme exhibits competitive performance in terms of accuracy, resolution, and robustness. The numerical results agree accurately with linear stability theory and with previous numerical studies.

  17. Response functions of free mass gravitational wave antennas

    NASA Technical Reports Server (NTRS)

    Estabrook, F. B.

    1985-01-01

    The work of Gursel, Linsay, Spero, Saulson, Whitcomb and Weiss (1984) on the response of a free-mass interferometric antenna is extended. Starting from first principles, the earlier work derived the response of a 2-arm gravitational wave antenna to plane polarized gravitational waves. Equivalent formulas (generalized slightly to allow for arbitrary elliptical polarization) are obtained by a simple differencing of the '3-pulse' Doppler response functions of two 1-arm antennas. A '4-pulse' response function is found, with quite complicated angular dependences for arbitrary incident polarization. The differencing method can as readily be used to write exact response functions ('3n+1 pulse') for antennas having multiple passes or more arms.

  18. Tracking and Data Relay Satellite System (TDRSS) Support of User Spacecraft without TDRSS Transponders

    NASA Technical Reports Server (NTRS)

    Jackson, James A.; Marr, Greg C.; Maher, Michael J.

    1995-01-01

    NASA GSFC VNS TSG personnel have proposed the use of TDRSS to obtain telemetry and/or S-band one-way return Doppler tracking data for spacecraft which do not have TDRSS-compatible transponders and therefore were never considered candidates for TDRSS support. For spacecraft with less stable local oscillators (LO), one-way return Doppler tracking data is typically of poor quality. It has been demonstrated using UARS, WIND, and NOAA-J tracking data that the simultaneous use of two TDRSS spacecraft can yield differenced one-way return Doppler data of high quality which is usable for orbit determination by differencing away the effects of oscillator instability.

  19. Three-dimensional time dependent computation of turbulent flow

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Reynolds, W. C.; Ferziger, J. H.

    1975-01-01

    The three-dimensional, primitive equations of motion are solved numerically for the case of isotropic box turbulence and the distortion of homogeneous turbulence by irrotational plane strain at large Reynolds numbers. A Gaussian filter is applied to governing equations to define the large scale field. This gives rise to additional second order computed scale stresses (Leonard stresses). The residual stresses are simulated through an eddy viscosity. Uniform grids are used, with a fourth order differencing scheme in space and a second order Adams-Bashforth predictor for explicit time stepping. The results are compared to the experiments and statistical information extracted from the computer generated data.

  20. The computation of dynamic fractional difference parameter for S&P500 index

    NASA Astrophysics Data System (ADS)

    Pei, Tan Pei; Cheong, Chin Wen; Galagedera, Don U. A.

    2015-10-01

    This study evaluates the time-varying long memory behaviors of the S&P500 volatility index using dynamic fractional difference parameters. Time-varying fractional difference parameter shows the dynamic of long memory in volatility series for the pre and post subprime mortgage crisis triggered by U.S. The results find an increasing trend in the S&P500 long memory volatility for the pre-crisis period. However, the onset of Lehman Brothers event reduces the predictability of volatility series following by a slight fluctuation of the factional differencing parameters. After that, the U.S. financial market becomes more informationally efficient and follows a non-stationary random process.

  1. Implicit Theories, Expectancies, and Values Predict Mathematics Motivation and Behavior across High School and College.

    PubMed

    Priess-Groben, Heather A; Hyde, Janet Shibley

    2017-06-01

    Mathematics motivation declines for many adolescents, which limits future educational and career options. The present study sought to identify predictors of this decline by examining whether implicit theories assessed in ninth grade (incremental/entity) predicted course-taking behaviors and utility value in college. The study integrated implicit theory with variables from expectancy-value theory to examine potential moderators and mediators of the association of implicit theories with college mathematics outcomes. Implicit theories and expectancy-value variables were assessed in 165 American high school students (47 % female; 92 % White), who were then followed into their college years, at which time mathematics courses taken, course-taking intentions, and utility value were assessed. Implicit theories predicted course-taking intentions and utility value, but only self-concept of ability predicted courses taken, course-taking intentions, and utility value after controlling for prior mathematics achievement and baseline values. Expectancy for success in mathematics mediated associations between self-concept of ability and college outcomes. This research identifies self-concept of ability as a stronger predictor than implicit theories of mathematics motivation and behavior across several years: math self-concept is critical to sustained engagement in mathematics.

  2. Assessment of Biases Against Latinos and African Americans Among Primary Care Providers and Community Members

    PubMed Central

    Havranek, Edward P.; Price, David W.; Hanratty, Rebecca; Fairclough, Diane L.; Farley, Tillman; Hirsh, Holen K.; Steiner, John F.

    2013-01-01

    Objectives. We assessed implicit and explicit bias against both Latinos and African Americans among experienced primary care providers (PCPs) and community members (CMs) in the same geographic area. Methods. Two hundred ten PCPs and 190 CMs from 3 health care organizations in the Denver, Colorado, metropolitan area completed Implicit Association Tests and self-report measures of implicit and explicit bias, respectively. Results. With a 60% participation rate, the PCPs demonstrated substantial implicit bias against both Latinos and African Americans, but this was no different from CMs. Explicit bias was largely absent in both groups. Adjustment for background characteristics showed the PCPs had slightly weaker ethnic/racial bias than CMs. Conclusions. This research provided the first evidence of implicit bias against Latinos in health care, as well as confirming previous findings of implicit bias against African Americans. Lack of substantive differences in bias between the experienced PCPs and CMs suggested a wider societal problem. At the same time, the wide range of implicit bias suggested that bias in health care is neither uniform nor inevitable, and important lessons might be learned from providers who do not exhibit bias. PMID:23153155

  3. A semi-implicit level set method for multiphase flows and fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Cottet, Georges-Henri; Maitre, Emmanuel

    2016-06-01

    In this paper we present a novel semi-implicit time-discretization of the level set method introduced in [8] for fluid-structure interaction problems. The idea stems from a linear stability analysis derived on a simplified one-dimensional problem. The semi-implicit scheme relies on a simple filter operating as a pre-processing on the level set function. It applies to multiphase flows driven by surface tension as well as to fluid-structure interaction problems. The semi-implicit scheme avoids the stability constraints that explicit scheme need to satisfy and reduces significantly the computational cost. It is validated through comparisons with the original explicit scheme and refinement studies on two-dimensional benchmarks.

  4. Parallel Implementation of a High Order Implicit Collocation Method for the Heat Equation

    NASA Technical Reports Server (NTRS)

    Kouatchou, Jules; Halem, Milton (Technical Monitor)

    2000-01-01

    We combine a high order compact finite difference approximation and collocation techniques to numerically solve the two dimensional heat equation. The resulting method is implicit arid can be parallelized with a strategy that allows parallelization across both time and space. We compare the parallel implementation of the new method with a classical implicit method, namely the Crank-Nicolson method, where the parallelization is done across space only. Numerical experiments are carried out on the SGI Origin 2000.

  5. Implicit integration methods for dislocation dynamics

    DOE PAGES

    Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; ...

    2015-01-20

    In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less

  6. Personal attitudes toward time: The relationship between temporal focus, space-time mappings and real life experiences.

    PubMed

    Li, Heng; Cao, Yu

    2017-06-01

    What influences how people implicitly associate "past" and "future" with "front" and "back?" Whereas previous research has shown that cultural attitudes toward time play a role in modulating space-time mappings in people's mental models (de la Fuente, Santiago, Román, Dumitrache & Casasanto, 2014), we investigated real life experiences as potential additional influences on these implicit associations. Participants within the same single culture, who are engaged in different intermediate-term educational experiences (Study 1), long-term living experiences (Study 2), and short-term visiting experiences (Study 3), showed their distinct differences in temporal focus, thereby influencing their implicit spatializations of time. Results across samples suggest that personal attitudes toward time related to real life experiences may influence people's space-time mappings. The findings we report on shed further light on the high flexibility of human conceptualization system. While culture may exert an important influence on temporal focus, a person's conceptualization of time may be attributed to a culmination of factors. © 2017 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  7. Implicit methods for efficient musculoskeletal simulation and optimal control

    PubMed Central

    van den Bogert, Antonie J.; Blana, Dimitra; Heinrich, Dieter

    2011-01-01

    The ordinary differential equations for musculoskeletal dynamics are often numerically stiff and highly nonlinear. Consequently, simulations require small time steps, and optimal control problems are slow to solve and have poor convergence. In this paper, we present an implicit formulation of musculoskeletal dynamics, which leads to new numerical methods for simulation and optimal control, with the expectation that we can mitigate some of these problems. A first order Rosenbrock method was developed for solving forward dynamic problems using the implicit formulation. It was used to perform real-time dynamic simulation of a complex shoulder arm system with extreme dynamic stiffness. Simulations had an RMS error of only 0.11 degrees in joint angles when running at real-time speed. For optimal control of musculoskeletal systems, a direct collocation method was developed for implicitly formulated models. The method was applied to predict gait with a prosthetic foot and ankle. Solutions were obtained in well under one hour of computation time and demonstrated how patients may adapt their gait to compensate for limitations of a specific prosthetic limb design. The optimal control method was also applied to a state estimation problem in sports biomechanics, where forces during skiing were estimated from noisy and incomplete kinematic data. Using a full musculoskeletal dynamics model for state estimation had the additional advantage that forward dynamic simulations, could be done with the same implicitly formulated model to simulate injuries and perturbation responses. While these methods are powerful and allow solution of previously intractable problems, there are still considerable numerical challenges, especially related to the convergence of gradient-based solvers. PMID:22102983

  8. Implicit Coordination Strategies for Effective Team Communication.

    PubMed

    Butchibabu, Abhizna; Sparano-Huiban, Christopher; Sonenberg, Liz; Shah, Julie

    2016-06-01

    We investigated implicit communication strategies for anticipatory information sharing during team performance of tasks with varying degrees of complexity. We compared the strategies used by teams with the highest level of performance to those used by the lowest-performing teams to evaluate the frequency and methods of communications used as a function of task structure. High-performing teams share information by anticipating the needs of their teammates rather than explicitly requesting the exchange of information. As the complexity of a task increases to involve more interdependence among teammates, the impact of coordination on team performance also increases. This observation motivated us to conduct a study of anticipatory information sharing as a function of task complexity. We conducted an experiment in which 13 teams of four people performed collaborative search-and-deliver tasks with varying degrees of complexity in a simulation environment. We elaborated upon prior characterizations of communication as implicit versus explicit by dividing implicit communication into two subtypes: (a) deliberative/goal information and (b) reactive status updates. We then characterized relationships between task structure, implicit communication, and team performance. We found that the five teams with the fastest task completion times and lowest idle times exhibited higher rates of deliberative communication versus reactive communication during high-complexity tasks compared with the five teams with the slowest completion times and longest idle times (p = .039). Teams in which members proactively communicated information about their next goal to teammates exhibited improved team performance. The findings from our work can inform the design of communication strategies for team training to improve performance of complex tasks. © 2016, Human Factors and Ergonomics Society.

  9. The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Zhang, Hongping; Nischan, Thomas; Wickert, Jens

    2013-03-01

    Motivated by the IGS real-time Pilot Project, GFZ has been developing its own real-time precise positioning service for various applications. An operational system at GFZ is now broadcasting real-time orbits, clocks, global ionospheric model, uncalibrated phase delays and regional atmospheric corrections for standard PPP, PPP with ambiguity fixing, single-frequency PPP and regional augmented PPP. To avoid developing various algorithms for different applications, we proposed a uniform algorithm and implemented it into our real-time software. In the new processing scheme, we employed un-differenced raw observations with atmospheric delays as parameters, which are properly constrained by real-time derived global ionospheric model or regional atmospheric corrections and by the empirical characteristics of the atmospheric delay variation in time and space. The positioning performance in terms of convergence time and ambiguity fixing depends mainly on the quality of the received atmospheric information and the spatial and temporal constraints. The un-differenced raw observation model can not only integrate PPP and NRTK into a seamless positioning service, but also syncretize these two techniques into a unique model and algorithm. Furthermore, it is suitable for both dual-frequency and sing-frequency receivers. Based on the real-time data streams from IGS, EUREF and SAPOS reference networks, we can provide services of global precise point positioning (PPP) with 5-10 cm accuracy, PPP with ambiguity-fixing of 2-5 cm accuracy, PPP using single-frequency receiver with accuracy of better than 50 cm and PPP with regional augmentation for instantaneous ambiguity resolution of 1-3 cm accuracy. We adapted the system for current COMPASS to provide PPP service. COMPASS observations from a regional network of nine stations are used for precise orbit determination and clock estimation in simulated real-time mode, the orbit and clock products are applied for real-time precise point positioning. The simulated real-time PPP service confirms that real-time positioning services of accuracy at dm-level and even cm-level is achievable with COMPASS only.

  10. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  11. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.

  12. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941

  13. Implicit visual learning and the expression of learning.

    PubMed

    Haider, Hilde; Eberhardt, Katharina; Kunde, Alexander; Rose, Michael

    2013-03-01

    Although the existence of implicit motor learning is now widely accepted, the findings concerning perceptual implicit learning are ambiguous. Some researchers have observed perceptual learning whereas other authors have not. The review of the literature provides different reasons to explain this ambiguous picture, such as differences in the underlying learning processes, selective attention, or differences in the difficulty to express this knowledge. In three experiments, we investigated implicit visual learning within the original serial reaction time task. We used different response devices (keyboard vs. mouse) in order to manipulate selective attention towards response dimensions. Results showed that visual and motor sequence learning differed in terms of RT-benefits, but not in terms of the amount of knowledge assessed after training. Furthermore, visual sequence learning was modulated by selective attention. However, the findings of all three experiments suggest that selective attention did not alter implicit but rather explicit learning processes. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Smoking in movies, implicit associations of smoking with the self, and intentions to smoke.

    PubMed

    Dal Cin, Sonya; Gibson, Bryan; Zanna, Mark P; Shumate, Roberta; Fong, Geoffrey T

    2007-07-01

    We examined whether identifying with a film character who smokes increases implicit associations of the self with smoking. Undergraduate men were randomly assigned to view film clips in which the male protagonist either smoked or did not smoke. We measured subsequent levels of self-smoking associations using a reaction time task, as well as self-reported beliefs about smoking and smokers. Greater identification with the smoking protagonist predicted stronger implicit associations between the self and smoking (for both smokers and nonsmokers) and increased intention to smoke (among the smokers). Stronger implicit self-smoking associations uniquely predicted increases in smokers' intentions to smoke, over and above the effects of explicit beliefs about smoking. The results provide evidence that exposure to smoking in movies is causally related to changes in smoking-related thoughts, that identification with protagonists is an important feature of narrative influence, and that implicit measures may be useful in predicting deliberative behavior.

  15. Differenced Range Versus Integrated Doppler (DRVID) ionospheric analysis of metric tracking in the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Doll, C. E.

    1995-01-01

    The Differenced Range (DR) Versus Integrated Doppler (ID) (DRVID) method exploits the opposition of high-frequency signal versus phase retardation by plasma media to obtain information about the plasma's corruption of simultaneous range and Doppler spacecraft tracking measurements. Thus, DR Plus ID (DRPID) is an observable independent of plasma refraction, while actual DRVID (DR minus ID) measures the time variation of the path electron content independently of spacecraft motion. The DRVID principle has been known since 1961. It has been used to observe interplanetary plasmas, is implemented in Deep Space Network tracking hardware, and has recently been applied to single-frequency Global Positioning System user navigation This paper discusses exploration at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) of DRVID synthesized from simultaneous two-way range and Doppler tracking for low Earth-orbiting missions supported by the Tracking and Data Relay Satellite System (TDRSS) The paper presents comparisons of actual DR and ID residuals and relates those comparisons to predictions of the Bent model. The complications due to the pilot tone influence on relayed Doppler measurements are considered. Further use of DRVID to evaluate ionospheric models is discussed, as is use of DRPID in reducing dependence on ionospheric modeling in orbit determination.

  16. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP)Observations: Beam Maps and Window Functions

    NASA Technical Reports Server (NTRS)

    Hill, R.S.; Weiland, J.L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C.L.; Halpern, M.; Kogut, A.; Page, L.; hide

    2008-01-01

    Cosmology and other scientific results from the WMAP mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of approximately 2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of approximately 1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of approximately 2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly. errors in the measured disk temperature are approximately 0.5%.

  17. Adaptive Kalman filter based on variance component estimation for the prediction of ionospheric delay in aiding the cycle slip repair of GNSS triple-frequency signals

    NASA Astrophysics Data System (ADS)

    Chang, Guobin; Xu, Tianhe; Yao, Yifei; Wang, Qianxin

    2018-01-01

    In order to incorporate the time smoothness of ionospheric delay to aid the cycle slip detection, an adaptive Kalman filter is developed based on variance component estimation. The correlations between measurements at neighboring epochs are fully considered in developing a filtering algorithm for colored measurement noise. Within this filtering framework, epoch-differenced ionospheric delays are predicted. Using this prediction, the potential cycle slips are repaired for triple-frequency signals of global navigation satellite systems. Cycle slips are repaired in a stepwise manner; i.e., for two extra wide lane combinations firstly and then for the third frequency. In the estimation for the third frequency, a stochastic model is followed in which the correlations between the ionospheric delay prediction errors and the errors in the epoch-differenced phase measurements are considered. The implementing details of the proposed method are tabulated. A real BeiDou Navigation Satellite System data set is used to check the performance of the proposed method. Most cycle slips, no matter trivial or nontrivial, can be estimated in float values with satisfactorily high accuracy and their integer values can hence be correctly obtained by simple rounding. To be more specific, all manually introduced nontrivial cycle slips are correctly repaired.

  18. Implicit associative learning in synesthetes and nonsynesthetes

    PubMed Central

    Bankieris, Kaitlyn R.; Aslin, Richard N.

    2016-01-01

    Although cross-modal neural connections and genetic underpinnings are prominent in most current theories regarding the development of synesthesia, the potential role of associative learning in the formation of synesthetic associations has recently been revitalized. In this study, we investigated implicit associative learning in synesthetes and nonsynesthetes by recording reaction times to a target whose color was probabilistically correlated with its shape. A continuous measure of target detection at multiple time points during learning revealed that synesthetes and nonsynesthetes learn associations differently. Specifically, our results demonstrate a ‘fast facilitation’ learning effect for nonsynesthetes and ‘fast interference, slow facilitation’ learning effect for synesthetes. Additionally, synesthetes exhibited superior long-term memory for learned associations in a surprise-delayed retest. After this retest, participants implicitly learned new (shuffled) shape-color associations. We found that synesthetes experienced greater interference while learning these new shape-color associations. These results detail ways in which implicit associative learning and memory differ between synesthetes and nonsynesthetes. PMID:27612860

  19. An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang

    2018-01-01

    The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.

  20. The Time Course of the Influence of Valence and Arousal on the Implicit Processing of Affective Pictures

    PubMed Central

    Feng, Chunliang; Wang, Lili; Liu, Chao; Zhu, Xiangru; Dai, Ruina; Mai, Xiaoqin; Luo, Yue-Jia

    2012-01-01

    In the current study, we investigated the time course of the implicit processing of affective pictures with an orthogonal design of valence (negative vs. positive) by arousal (low vs. high). Previous studies with explicit tasks suggested that valence mainly modulates early event-related potential (ERP) components, whereas arousal mainly modulates late components. However, in this study with an implicit task, we observed significant interactions between valence and arousal at both early and late stages over both parietal and frontal sites, which were reflected by three different ERP components: P2a (100–200 ms), N2 (200–300 ms), and P3 (300–400 ms). Furthermore, there was also a significant main effect of arousal on P2b (200–300 ms) over parieto-occipital sites. Our results suggest that valence and arousal effects on implicit affective processing are more complicated than previous ERP studies with explicit tasks have revealed. PMID:22295062

  1. Can Mapping Algorithms Based on Raw Scores Overestimate QALYs Gained by Treatment? A Comparison of Mappings Between the Roland-Morris Disability Questionnaire and the EQ-5D-3L Based on Raw and Differenced Score Data.

    PubMed

    Madan, Jason; Khan, Kamran A; Petrou, Stavros; Lamb, Sarah E

    2017-05-01

    Mapping algorithms are increasingly being used to predict health-utility values based on responses or scores from non-preference-based measures, thereby informing economic evaluations. We explored whether predictions in the EuroQol 5-dimension 3-level instrument (EQ-5D-3L) health-utility gains from mapping algorithms might differ if estimated using differenced versus raw scores, using the Roland-Morris Disability Questionnaire (RMQ), a widely used health status measure for low back pain, as an example. We estimated algorithms mapping within-person changes in RMQ scores to changes in EQ-5D-3L health utilities using data from two clinical trials with repeated observations. We also used logistic regression models to estimate response mapping algorithms from these data to predict within-person changes in responses to each EQ-5D-3L dimension from changes in RMQ scores. Predicted health-utility gains from these mappings were compared with predictions based on raw RMQ data. Using differenced scores reduced the predicted health-utility gain from a unit decrease in RMQ score from 0.037 (standard error [SE] 0.001) to 0.020 (SE 0.002). Analysis of response mapping data suggests that the use of differenced data reduces the predicted impact of reducing RMQ scores across EQ-5D-3L dimensions and that patients can experience health-utility gains on the EQ-5D-3L 'usual activity' dimension independent from improvements captured by the RMQ. Mappings based on raw RMQ data overestimate the EQ-5D-3L health utility gains from interventions that reduce RMQ scores. Where possible, mapping algorithms should reflect within-person changes in health outcome and be estimated from datasets containing repeated observations if they are to be used to estimate incremental health-utility gains.

  2. On multigrid solution of the implicit equations of hydrodynamics. Experiments for the compressible Euler equations in general coordinates

    NASA Astrophysics Data System (ADS)

    Kifonidis, K.; Müller, E.

    2012-08-01

    Aims: We describe and study a family of new multigrid iterative solvers for the multidimensional, implicitly discretized equations of hydrodynamics. Schemes of this class are free of the Courant-Friedrichs-Lewy condition. They are intended for simulations in which widely differing wave propagation timescales are present. A preferred solver in this class is identified. Applications to some simple stiff test problems that are governed by the compressible Euler equations, are presented to evaluate the convergence behavior, and the stability properties of this solver. Algorithmic areas are determined where further work is required to make the method sufficiently efficient and robust for future application to difficult astrophysical flow problems. Methods: The basic equations are formulated and discretized on non-orthogonal, structured curvilinear meshes. Roe's approximate Riemann solver and a second-order accurate reconstruction scheme are used for spatial discretization. Implicit Runge-Kutta (ESDIRK) schemes are employed for temporal discretization. The resulting discrete equations are solved with a full-coarsening, non-linear multigrid method. Smoothing is performed with multistage-implicit smoothers. These are applied here to the time-dependent equations by means of dual time stepping. Results: For steady-state problems, our results show that the efficiency of the present approach is comparable to the best implicit solvers for conservative discretizations of the compressible Euler equations that can be found in the literature. The use of red-black as opposed to symmetric Gauss-Seidel iteration in the multistage-smoother is found to have only a minor impact on multigrid convergence. This should enable scalable parallelization without having to seriously compromise the method's algorithmic efficiency. For time-dependent test problems, our results reveal that the multigrid convergence rate degrades with increasing Courant numbers (i.e. time step sizes). Beyond a Courant number of nine thousand, even complete multigrid breakdown is observed. Local Fourier analysis indicates that the degradation of the convergence rate is associated with the coarse-grid correction algorithm. An implicit scheme for the Euler equations that makes use of the present method was, nevertheless, able to outperform a standard explicit scheme on a time-dependent problem with a Courant number of order 1000. Conclusions: For steady-state problems, the described approach enables the construction of parallelizable, efficient, and robust implicit hydrodynamics solvers. The applicability of the method to time-dependent problems is presently restricted to cases with moderately high Courant numbers. This is due to an insufficient coarse-grid correction of the employed multigrid algorithm for large time steps. Further research will be required to help us to understand and overcome the observed multigrid convergence difficulties for time-dependent problems.

  3. The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.

    PubMed

    Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin

    2012-08-30

    Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Fibonacci Grids

    NASA Technical Reports Server (NTRS)

    Swinbank, Richard; Purser, James

    2006-01-01

    Recent years have seen a resurgence of interest in a variety of non-standard computational grids for global numerical prediction. The motivation has been to reduce problems associated with the converging meridians and the polar singularities of conventional regular latitude-longitude grids. A further impetus has come from the adoption of massively parallel computers, for which it is necessary to distribute work equitably across the processors; this is more practicable for some non-standard grids. Desirable attributes of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of the grid points where the numerical procedures require special customization (such as near coordinate singularities or grid edges). One family of grid arrangements which, to our knowledge, has never before been applied to numerical weather prediction, but which appears to offer several technical advantages, are what we shall refer to as "Fibonacci grids". They can be thought of as mathematically ideal generalizations of the patterns occurring naturally in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples (to give two of the many botanical examples). These grids possess virtually uniform and highly isotropic resolution, with an equal area for each grid point. There are only two compact singular regions on a sphere that require customized numerics. We demonstrate the practicality of these grids in shallow water simulations, and discuss the prospects for efficiently using these frameworks in three-dimensional semi-implicit and semi-Lagrangian weather prediction or climate models.

  5. Exact charge and energy conservation in implicit PIC with mapped computational meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guangye; Barnes, D. C.

    This paper discusses a novel fully implicit formulation for a one-dimensional electrostatic particle-in-cell (PIC) plasma simulation approach. Unlike earlier implicit electrostatic PIC approaches (which are based on a linearized Vlasov Poisson formulation), ours is based on a nonlinearly converged Vlasov Amp re (VA) model. By iterating particles and fields to a tight nonlinear convergence tolerance, the approach features superior stability and accuracy properties, avoiding most of the accuracy pitfalls in earlier implicit PIC implementations. In particular, the formulation is stable against temporal (Courant Friedrichs Lewy) and spatial (aliasing) instabilities. It is charge- and energy-conserving to numerical round-off for arbitrary implicitmore » time steps (unlike the earlier energy-conserving explicit PIC formulation, which only conserves energy in the limit of arbitrarily small time steps). While momentum is not exactly conserved, errors are kept small by an adaptive particle sub-stepping orbit integrator, which is instrumental to prevent particle tunneling (a deleterious effect for long-term accuracy). The VA model is orbit-averaged along particle orbits to enforce an energy conservation theorem with particle sub-stepping. As a result, very large time steps, constrained only by the dynamical time scale of interest, are possible without accuracy loss. Algorithmically, the approach features a Jacobian-free Newton Krylov solver. A main development in this study is the nonlinear elimination of the new-time particle variables (positions and velocities). Such nonlinear elimination, which we term particle enslavement, results in a nonlinear formulation with memory requirements comparable to those of a fluid computation, and affords us substantial freedom in regards to the particle orbit integrator. Numerical examples are presented that demonstrate the advertised properties of the scheme. In particular, long-time ion acoustic wave simulations show that numerical accuracy does not degrade even with very large implicit time steps, and that significant CPU gains are possible.« less

  6. Finite-difference model for 3-D flow in bays and estuaries

    USGS Publications Warehouse

    Smith, Peter E.; Larock, Bruce E.; ,

    1993-01-01

    This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.

  7. Implicit learning seems to come naturally for children with autism, but not for children with specific language impairment: Evidence from behavioral and ERP data.

    PubMed

    Zwart, Fenny S; Vissers, Constance Th W M; Kessels, Roy P C; Maes, Joseph H R

    2018-04-20

    Autism spectrum disorder (ASD) and specific language impairment (SLI) are two neurodevelopmental disorders characterized by deficits in verbal and nonverbal communication skills. These skills are thought to develop largely through implicit-or automatic-learning mechanisms. The aim of the current paper was to investigate the role of implicit learning abilities in the atypical development of communication skills in ASD and SLI. In the current study, we investigated Response Times (RTs) and Event Related Potentials (ERPs) during implicit learning on a Serial Reaction Time (SRT) task in a group of typically developing (TD) children (n = 17), a group of autistic children (n = 16), and a group of children with SLI (n = 13). Findings suggest that learning in both ASD and SLI are similar to that in TD. However, electrophysiological findings suggest that autistic children seem to rely mainly on more automatic processes (as reflected by an N2b component), whereas the children with SLI seem to rely on more controlled processes (as reflected by a P3 component). The TD children appear to use a combination of both learning mechanisms. These findings suggest that clinical interventions should aim at compensating for an implicit learning deficit in children with SLI, but not in children with ASD. Future research should focus on developmental differences in implicit learning and related neural correlates in TD, ASD, and SLI. Autism Res 2018. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. Autism and Specific Language Impairment (SLI) are two disorders characterized by problems in social communication and language. Social communication and language are believed to be learned in an automatic way. This is called "implicit learning." We have found that implicit learning is intact in autism. However, in SLI there seems different brain activity during implicit learning. Maybe children with SLI learn differently, and maybe this different learning makes it more difficult for them to learn language. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc.

  8. Geometric multigrid for an implicit-time immersed boundary method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, Robert D.; Philip, Bobby; Griffith, Boyce E.

    2014-10-12

    The immersed boundary (IB) method is an approach to fluid-structure interaction that uses Lagrangian variables to describe the deformations and resulting forces of the structure and Eulerian variables to describe the motion and forces of the fluid. Explicit time stepping schemes for the IB method require solvers only for Eulerian equations, for which fast Cartesian grid solution methods are available. Such methods are relatively straightforward to develop and are widely used in practice but often require very small time steps to maintain stability. Implicit-time IB methods permit the stable use of large time steps, but efficient implementations of such methodsmore » require significantly more complex solvers that effectively treat both Lagrangian and Eulerian variables simultaneously. Moreover, several different approaches to solving the coupled Lagrangian-Eulerian equations have been proposed, but a complete understanding of this problem is still emerging. This paper presents a geometric multigrid method for an implicit-time discretization of the IB equations. This multigrid scheme uses a generalization of box relaxation that is shown to handle problems in which the physical stiffness of the structure is very large. Numerical examples are provided to illustrate the effectiveness and efficiency of the algorithms described herein. Finally, these tests show that using multigrid as a preconditioner for a Krylov method yields improvements in both robustness and efficiency as compared to using multigrid as a solver. They also demonstrate that with a time step 100–1000 times larger than that permitted by an explicit IB method, the multigrid-preconditioned implicit IB method is approximately 50–200 times more efficient than the explicit method.« less

  9. A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation

    USGS Publications Warehouse

    Smith, Peter E.

    2006-01-01

    A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.

  10. When less is more - Implicit preference for incomplete bodies in xenomelia.

    PubMed

    Macauda, Gianluca; Bekrater-Bodmann, Robin; Brugger, Peter; Lenggenhager, Bigna

    2017-01-01

    Individuals with xenomelia identify with an amputated rather than with their physically complete, healthy body. They often mimic amputees and show a strong admiration of and sexual attraction towards them. Here we investigated for the first time empirically whether such unusual preference for amputated bodies is present also on an implicit level. Using the well-validated Implicit Association Test we show that individuals with xenomelia manifested a stronger implicit and explicit preference for amputated bodies than a normally-limbed control group and a group of involuntary amputees did. Interestingly, the two latter groups did not differ in their implicit and explicit preference for complete versus amputated bodies. These findings are an important step in understanding how deeply rooted attitudes about a socially normative body appearance may be influenced by a developmentally disordered experience of one's own bodily self. We conclude that this is the first behavioral evidence demonstrating a conflict of self-identification on an implicit level and this enriches current understandings of xenomelia as a primarily neurological disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Implicit and explicit motor learning: Application to children with Autism Spectrum Disorder (ASD).

    PubMed

    Izadi-Najafabadi, Sara; Mirzakhani-Araghi, Navid; Miri-Lavasani, Negar; Nejati, Vahid; Pashazadeh-Azari, Zahra

    2015-12-01

    This study aims to determine whether children with Autism Spectrum Disorder (ASD) are capable of learning a motor skill both implicitly and explicitly. In the present study, 30 boys with ASD, aged 7-11 with IQ average of 81.2, were compared with 32 typical IQ- and age-matched boys on their performance on a serial reaction time task (SRTT). Children were grouped by ASD and typical children and by implicit and explicit learning groups for the SRTT. Implicit motor learning occurred in both children with ASD (p=.02) and typical children (p=.01). There were no significant differences between groups (p=.39). However, explicit motor learning was only observed in typical children (p=.01) not children with ASD (p=.40). There was a significant difference between groups for explicit learning (p=.01). The results of our study showed that implicit motor learning is not affected in children with ASD. Implications for implicit and explicit learning are applied to the CO-OP approach of motor learning with children with ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, M.E.; Ritchie, A.B.

    1997-12-31

    One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less

  13. Implicit versus explicit momentum relaxation time solution for semiconductor nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marin, E. G., E-mail: egmarin@ugr.es; Ruiz, F. G., E-mail: franruiz@ugr.es; Godoy, A., E-mail: agodoy@ugr.es

    2015-07-14

    We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicitmore » approach inaccuracies on the total mobility of Si and III-V NWs are studied.« less

  14. Limited capacity of working memory in unihemispheric random walks implies conceivable slow dispersal.

    PubMed

    Wei, Kun; Zhong, Suchuan

    2017-08-01

    Phenomenologically inspired by dolphins' unihemispheric sleep, we introduce a minimal model for random walks with physiological memory. The physiological memory consists of long-term memory which includes unconscious implicit memory and conscious explicit memory, and working memory which serves as a multi-component system for integrating, manipulating and managing short-term storage. The model assumes that the sleeping state allows retrievals of episodic objects merely from the episodic buffer where these memory objects are invoked corresponding to the ambient objects and are thus object-oriented, together with intermittent but increasing use of implicit memory in which decisions are unconsciously picked up from historical time series. The process of memory decay and forgetting is constructed in the episodic buffer. The walker's risk attitude, as a product of physiological heuristics according to the performance of objected-oriented decisions, is imposed on implicit memory. The analytical results of unihemispheric random walks with the mixture of object-oriented and time-oriented memory, as well as the long-time behavior which tends to the use of implicit memory, are provided, indicating the common sense that a conservative risk attitude is inclinable to slow movement.

  15. Advancing parabolic operators in thermodynamic MHD models: Explicit super time-stepping versus implicit schemes with Krylov solvers

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.

    2017-05-01

    We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.

  16. Development of a fully implicit particle-in-cell scheme for gyrokinetic electromagnetic turbulence simulation in XGC1

    NASA Astrophysics Data System (ADS)

    Ku, Seung-Hoe; Hager, R.; Chang, C. S.; Chacon, L.; Chen, G.; EPSI Team

    2016-10-01

    The cancelation problem has been a long-standing issue for long wavelengths modes in electromagnetic gyrokinetic PIC simulations in toroidal geometry. As an attempt of resolving this issue, we implemented a fully implicit time integration scheme in the full-f, gyrokinetic PIC code XGC1. The new scheme - based on the implicit Vlasov-Darwin PIC algorithm by G. Chen and L. Chacon - can potentially resolve cancelation problem. The time advance for the field and the particle equations is space-time-centered, with particle sub-cycling. The resulting system of equations is solved by a Picard iteration solver with fixed-point accelerator. The algorithm is implemented in the parallel velocity formalism instead of the canonical parallel momentum formalism. XGC1 specializes in simulating the tokamak edge plasma with magnetic separatrix geometry. A fully implicit scheme could be a way to accurate and efficient gyrokinetic simulations. We will test if this numerical scheme overcomes the cancelation problem, and reproduces the dispersion relation of Alfven waves and tearing modes in cylindrical geometry. Funded by US DOE FES and ASCR, and computing resources provided by OLCF through ALCC.

  17. ASIS v1.0: an adaptive solver for the simulation of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Cariolle, Daniel; Moinat, Philippe; Teyssèdre, Hubert; Giraud, Luc; Josse, Béatrice; Lefèvre, Franck

    2017-04-01

    This article reports on the development and tests of the adaptive semi-implicit scheme (ASIS) solver for the simulation of atmospheric chemistry. To solve the ordinary differential equation systems associated with the time evolution of the species concentrations, ASIS adopts a one-step linearized implicit scheme with specific treatments of the Jacobian of the chemical fluxes. It conserves mass and has a time-stepping module to control the accuracy of the numerical solution. In idealized box-model simulations, ASIS gives results similar to the higher-order implicit schemes derived from the Rosenbrock's and Gear's methods and requires less computation and run time at the moderate precision required for atmospheric applications. When implemented in the MOCAGE chemical transport model and the Laboratoire de Météorologie Dynamique Mars general circulation model, the ASIS solver performs well and reveals weaknesses and limitations of the original semi-implicit solvers used by these two models. ASIS can be easily adapted to various chemical schemes and further developments are foreseen to increase its computational efficiency, and to include the computation of the concentrations of the species in aqueous-phase in addition to gas-phase chemistry.

  18. Age differences in implicit memory: conceptual, perceptual, or methodological?

    PubMed

    Mitchell, David B; Bruss, Peter J

    2003-12-01

    The authors examined age differences in conceptual and perceptual implicit memory via word-fragment completion, word-stem completion, category exemplar generation, picture-fragment identification, and picture naming. Young, middle-aged, and older participants (N = 60) named pictures and words at study. Limited test exposure minimized explicit memory contamination, yielding no reliable age differences and equivalent cross-format effects. In contrast, explicit memory and neuropsychological measures produced significant age differences. In a follow-up experiment, 24 young adults were informed a priori about implicit testing. Their priming was equivalent to the main experiment, showing that test trial time restrictions limit explicit memory strategies. The authors concluded that most implicit memory processes remain stable across adulthood and suggest that explicit contamination be rigorously monitored in aging studies.

  19. Formulation of the relativistic moment implicit particle-in-cell method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, Koichi; Tronci, Cesare; Zuccaro, Gianluca

    2007-04-15

    A new formulation is presented for the implicit moment method applied to the time-dependent relativistic Vlasov-Maxwell system. The new approach is based on a specific formulation of the implicit moment method that allows us to retain the same formalism that is valid in the classical case despite the formidable complication introduced by the nonlinear nature of the relativistic equations of motion. To demonstrate the validity of the new formulation, an implicit finite difference algorithm is developed to solve the Maxwell's equations and equations of motion. A number of benchmark problems are run: two stream instability, ion acoustic wave damping, Weibelmore » instability, and Poynting flux acceleration. The numerical results are all in agreement with analytical solutions.« less

  20. Effects of learning duration on implicit transfer.

    PubMed

    Tanaka, Kanji; Watanabe, Katsumi

    2015-10-01

    Implicit learning and transfer in sequence acquisition play important roles in daily life. Several previous studies have found that even when participants are not aware that a transfer sequence has been transformed from the learning sequence, they are able to perform the transfer sequence faster and more accurately; this suggests implicit transfer of visuomotor sequences. Here, we investigated whether implicit transfer could be modulated by the number of trials completed in a learning session. Participants learned a sequence through trial and error, known as the m × n task (Hikosaka et al. in J Neurophysiol 74:1652-1661, 1995). In the learning session, participants were required to successfully perform the same sequence 4, 12, 16, or 20 times. In the transfer session, participants then learned one of two other sequences: one where the button configuration Vertically Mirrored the learning sequence, or a randomly generated sequence. Our results show that even when participants did not notice the alternation rule (i.e., vertical mirroring), their total working time was less and their total number of errors was lower in the transfer session compared with those who performed a Random sequence, irrespective of the number of trials completed in the learning session. This result suggests that implicit transfer likely occurs even over a shorter learning duration.

  1. Retention of Implicit Sequence Learning in Persons who Stutter and Persons with Parkinson's Disease

    PubMed Central

    Smits-Bandstra, Sarah; Gracco, Vincent

    2014-01-01

    This study investigated the retention of implicit sequence learning in 14 persons with Parkinson's disease (PPD), 14 persons who stutter (PWS) and 14 control participants. Participants completed a nonsense syllable serial reaction time task in a 120-minute session. Participants named aloud four syllables in response to four visual stimuli. The syllables formed a repeating 8-item sequence not made known to participants. After one week, participants completed a 60-minute retention session that included an explicit learning questionnaire and a sequence generation task. PPD showed retention of general learning equivalent to controls but PWS's reaction times were significantly slower on early trials of the retention test relative to other groups. Controls showed implicit learning during the initial session that was retained on the retention test. In contrast, PPD and PWS did not demonstrate significant implicit learning until the retention test suggesting intact, but delayed, learning and retention of implicit sequencing skills. All groups demonstrated similar limited explicit sequence knowledge. Performance differences between PWS and PPD relative to controls during the initial session and on early retention trials indicated possible dysfunction of the cortico-striato-thalamo-cortical loop. The etiological implications for stuttering, and clinical implications for both populations, of this dysfunction are discussed. PMID:23844763

  2. Fully implicit moving mesh adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2005-10-01

    In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.

  3. Thermal modeling of a cryogenic turbopump for space shuttle applications.

    NASA Technical Reports Server (NTRS)

    Knowles, P. J.

    1971-01-01

    Thermal modeling of a cryogenic pump and a hot-gas turbine in a turbopump assembly proposed for the Space Shuttle is described in this paper. A model, developed by identifying the heat-transfer regimes and incorporating their dependencies into a turbopump system model, included heat transfer for two-phase cryogen, hot-gas (200 R) impingement on turbine blades, gas impingement on rotating disks and parallel plate fluid flow. The ?thermal analyzer' program employed to develop this model was the TRW Systems Improved Numerical Differencing Analyzer (SINDA). This program uses finite differencing with lumped parameter representation for each node. Also discussed are model development, simulations of turbopump startup/shutdown operations, and the effects of varying turbopump parameters on the thermal performance.

  4. Analysis of airfoil transitional separation bubbles

    NASA Technical Reports Server (NTRS)

    Davis, R. L.; Carter, J. E.

    1984-01-01

    A previously developed local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation) has been modified to utilize a more accurate windward finite difference procedure in the reversed flow region, and a natural transition/turbulence model has been incorporated for the prediction of transition within the separation bubble. Numerous calculations and experimental comparisons are presented to demonstrate the effects of the windward differencing scheme and the natural transition/turbulence model. Grid sensitivity and convergence capabilities of this inviscid-viscous interaction technique are briefly addressed. A major contribution of this report is that with the use of windward differencing, a second, counter-rotating eddy has been found to exist in the wall layer of the primary separation bubble.

  5. Direct numerical simulations and modeling of a spatially-evolving turbulent wake

    NASA Technical Reports Server (NTRS)

    Cimbala, John M.

    1994-01-01

    Understanding of turbulent free shear flows (wakes, jets, and mixing layers) is important, not only for scientific interest, but also because of their appearance in numerous practical applications. Turbulent wakes, in particular, have recently received increased attention by researchers at NASA Langley. The turbulent wake generated by a two-dimensional airfoil has been selected as the test-case for detailed high-resolution particle image velocimetry (PIV) experiments. This same wake has also been chosen to enhance NASA's turbulence modeling efforts. Over the past year, the author has completed several wake computations, while visiting NASA through the 1993 and 1994 ASEE summer programs, and also while on sabbatical leave during the 1993-94 academic year. These calculations have included two-equation (K-omega and K-epsilon) models, algebraic stress models (ASM), full Reynolds stress closure models, and direct numerical simulations (DNS). Recently, there has been mutually beneficial collaboration of the experimental and computational efforts. In fact, these projects have been chosen for joint presentation at the NASA Turbulence Peer Review, scheduled for September 1994. DNS calculations are presently underway for a turbulent wake at Re(sub theta) = 1000 and at a Mach number of 0.20. (Theta is the momentum thickness, which remains constant in the wake of a two dimensional body.) These calculations utilize a compressible DNS code written by M. M. Rai of NASA Ames, and modified for the wake by J. Cimbala. The code employs fifth-order accurate upwind-biased finite differencing for the convective terms, fourth-order accurate central differencing for the viscous terms, and an iterative-implicit time-integration scheme. The computational domain for these calculations starts at x/theta = 10, and extends to x/theta = 610. Fully developed turbulent wake profiles, obtained from experimental data from several wake generators, are supplied at the computational inlet, along with appropriate noise. After some adjustment period, the flow downstream of the inlet develops into a fully three-dimensional turbulent wake. Of particular interest in the present study is the far wake spreading rate and the self-similar mean and turbulence profiles. At the time of this writing, grid resolution studies are underway, and a code is being written to calculate turbulence statistics from these wake calculations; the statistics will be compared to those from the ongoing PIV wake measurements, those of previous experiments, and those predicted by the various turbulence models. These calculations will lead to significant long-term benefits for the turbulence modeling effort. In particular, quantities such as the pressure-strain correlation and the dissipation rate tensor can be easily calculated from the DNS results, whereas these quantities are nearly impossible to measure experimentally. Improvements to existing turbulence models (and development of new models) require knowledge about flow quantities such as these. Present turbulence models do a very good job at prediction of the shape of the mean velocity and Reynolds stress profiles in a turbulent wake, but significantly underpredict the magnitude of the stresses and the spreading rate of the wake. Thus, the turbulent wake is an ideal flow for turbulence modeling research. By careful comparison and analysis of each term in the modeled Reynolds stress equations, the DNS data can show where deficiencies in the models exist; improvements to the models can then be attempted.

  6. Computational plasticity algorithm for particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  7. Alternating Direction Implicit (ADI) schemes for a PDE-based image osmosis model

    NASA Astrophysics Data System (ADS)

    Calatroni, L.; Estatico, C.; Garibaldi, N.; Parisotto, S.

    2017-10-01

    We consider Alternating Direction Implicit (ADI) splitting schemes to compute efficiently the numerical solution of the PDE osmosis model considered by Weickert et al. in [10] for several imaging applications. The discretised scheme is shown to preserve analogous properties to the continuous model. The dimensional splitting strategy traduces numerically into the solution of simple tridiagonal systems for which standard matrix factorisation techniques can be used to improve upon the performance of classical implicit methods, even for large time steps. Applications to the shadow removal problem are presented.

  8. Is Implicit Motor Learning Preserved after Stroke? A Systematic Review with Meta-Analysis

    PubMed Central

    Kal, E.; Winters, M.; van der Kamp, J.; Houdijk, H.; Groet, E.; van Bennekom, C.; Scherder, E.

    2016-01-01

    Many stroke patients experience difficulty with performing dual-tasks. A promising intervention to target this issue is implicit motor learning, as it should enhance patients’ automaticity of movement. Yet, although it is often thought that implicit motor learning is preserved post-stroke, evidence for this claim has not been systematically analysed yet. Therefore, we systematically reviewed whether implicit motor learning is preserved post-stroke, and whether patients benefit more from implicit than from explicit motor learning. We comprehensively searched conventional (MEDLINE, Cochrane, Embase, PEDro, PsycINFO) and grey literature databases (BIOSIS, Web of Science, OpenGrey, British Library, trial registries) for relevant reports. Two independent reviewers screened reports, extracted data, and performed a risk of bias assessment. Overall, we included 20 out of the 2177 identified reports that allow for a succinct evaluation of implicit motor learning. Of these, only 1 study investigated learning on a relatively complex, whole-body (balance board) task. All 19 other studies concerned variants of the serial-reaction time paradigm, with most of these focusing on learning with the unaffected hand (N = 13) rather than the affected hand or both hands (both: N = 4). Four of the 20 studies compared explicit and implicit motor learning post-stroke. Meta-analyses suggest that patients with stroke can learn implicitly with their unaffected side (mean difference (MD) = 69 ms, 95% CI[45.1, 92.9], p < .00001), but not with their affected side (standardized MD = -.11, 95% CI[-.45, .25], p = .56). Finally, implicit motor learning seemed equally effective as explicit motor learning post-stroke (SMD = -.54, 95% CI[-1.37, .29], p = .20). However, overall, the high risk of bias, small samples, and limited clinical relevance of most studies make it impossible to draw reliable conclusions regarding the effect of implicit motor learning strategies post-stroke. High quality studies with larger samples are warranted to test implicit motor learning in clinically relevant contexts. PMID:27992442

  9. Fully implicit adaptive mesh refinement solver for 2D MHD

    NASA Astrophysics Data System (ADS)

    Philip, B.; Chacon, L.; Pernice, M.

    2008-11-01

    Application of implicit adaptive mesh refinement (AMR) to simulate resistive magnetohydrodynamics is described. Solving this challenging multi-scale, multi-physics problem can improve understanding of reconnection in magnetically-confined plasmas. AMR is employed to resolve extremely thin current sheets, essential for an accurate macroscopic description. Implicit time stepping allows us to accurately follow the dynamical time scale of the developing magnetic field, without being restricted by fast Alfven time scales. At each time step, the large-scale system of nonlinear equations is solved by a Jacobian-free Newton-Krylov method together with a physics-based preconditioner. Each block within the preconditioner is solved optimally using the Fast Adaptive Composite grid method, which can be considered as a multiplicative Schwarz method on AMR grids. We will demonstrate the excellent accuracy and efficiency properties of the method with several challenging reduced MHD applications, including tearing, island coalescence, and tilt instabilities. B. Philip, L. Chac'on, M. Pernice, J. Comput. Phys., in press (2008)

  10. Passing thoughts on the evolutionary stability of implicit motor behaviour: performance retention under physiological fatigue.

    PubMed

    Poolton, J M; Masters, R S W; Maxwell, J P

    2007-06-01

    Heuristics of evolutionary biology (e.g., survival of the fittest) dictate that phylogenetically older processes are inherently more stable and resilient to disruption than younger processes. On the grounds that non-declarative behaviour emerged long before declarative behaviour, Reber (1992) argues that implicit (non-declarative) learning is supported by neural processes that are evolutionarily older than those supporting explicit learning. Reber suggested that implicit learning thus leads to performance that is more robust than explicit learning. Applying this evolutionary framework to motor performance, we examined whether implicit motor learning, relative to explicit motor learning, conferred motor output that was resilient to physiological fatigue and durable over time. In Part One of the study a fatigued state was induced by a double Wingate Anaerobic test protocol. Fatigue had no affect on performance of participants in the implicit condition; whereas, performance of participants in the explicit condition deteriorated significantly. In Part Two of the study a convenience sample of participants was recalled following a one-year hiatus. In both the implicit and the explicit condition retention of performance was seen and, contrary to the findings in Part One, so was resilience to fatigue. The resilient performance in the explicit condition after one year may have resulted from forgetting (the decay of declarative knowledge) or from consolidation of declarative knowledge as implicit memories. In either case, implicit processes were left to more effectively support motor performance.

  11. Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sandham, N. D.; Djomehri, M. J.

    1998-01-01

    An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Oisson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.

  12. Low Dissipative High Order Shock-Capturing Methods using Characteristic-Based Filters

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sandham, N. D.; Djomehri, M. J.

    1998-01-01

    An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Olsson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.

  13. A behavioral window on the mind of the market: an application of the response time paradigm.

    PubMed

    Mast, Fred W; Zaltman, Gerald

    2005-11-15

    This article focuses on the role of implicit knowledge consumers have about particular brands, products or names. The major findings of several studies, conducted at the Mind of the Market Laboratory at Harvard Business School, are presented with specific emphasis on studies in which response time measurements were the core method. The results revealed that implicit measures provide a rich understanding of the meaning conveyed by a product or brand. Moreover, there is also considerable evidence that implicit measures may be better than traditional explicit measures as predictors of consumer behavior. We discuss the implications for the study of consumer behavior and the importance of combining several methods including neuroimaging, which has received recent attention by marketers, economists and social scientists.

  14. Thermal instability in post-flare plasmas

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1976-01-01

    The cooling of post-flare plasmas is discussed and the formation of loop prominences is explained as due to a thermal instability. A one-dimensional model was developed for active loop prominences. Only the motion and heat fluxes parallel to the existing magnetic fields are considered. The relevant size scales and time scales are such that single-fluid MHD equations are valid. The effects of gravity, the geometry of the field and conduction losses to the chromosphere are included. A computer code was constructed to solve the model equations. Basically, the system is treated as an initial value problem (with certain boundary conditions at the chromosphere-corona transition region), and a two-step time differencing scheme is used.

  15. Alcohol-Approach Inclinations and Drinking Identity as Predictors of Behavioral Economic Demand for Alcohol

    PubMed Central

    Ramirez, Jason J.; Dennhardt, Ashley A.; Baldwin, Scott A.; Murphy, James G.; Lindgren, Kristen P.

    2016-01-01

    Behavioral economic demand curve indices of alcohol consumption reflect decisions to consume alcohol at varying costs. Although these indices predict alcohol-related problems beyond established predictors, little is known about the determinants of elevated demand. Two cognitive constructs that may underlie alcohol demand are alcohol-approach inclinations and drinking identity. The aim of this study was to evaluate implicit and explicit measures of these constructs as predictors of alcohol demand curve indices. College student drinkers (N = 223, 59% female) completed implicit and explicit measures of drinking identity and alcohol-approach inclinations at three timepoints separated by three-month intervals, and completed the Alcohol Purchase Task to assess demand at Time 3. Given no change in our alcohol-approach inclinations and drinking identity measures over time, random intercept-only models were used to predict two demand indices: Amplitude, which represents maximum hypothetical alcohol consumption and expenditures, and Persistence, which represents sensitivity to increasing prices. When modeled separately, implicit and explicit measures of drinking identity and alcohol-approach inclinations positively predicted demand indices. When implicit and explicit measures were included in the same model, both measures of drinking identity predicted Amplitude, but only explicit drinking identity predicted Persistence. In contrast, explicit measures of alcohol-approach inclinations, but not implicit measures, predicted both demand indices. Therefore, there was more support for explicit, versus implicit, measures as unique predictors of alcohol demand. Overall, drinking identity and alcohol-approach inclinations both exhibit positive associations with alcohol demand and represent potentially modifiable cognitive constructs that may underlie elevated demand in college student drinkers. PMID:27379444

  16. Testing the implicit processing hypothesis of precognitive dream experience.

    PubMed

    Valášek, Milan; Watt, Caroline; Hutton, Jenny; Neill, Rebecca; Nuttall, Rachel; Renwick, Grace

    2014-08-01

    Seemingly precognitive (prophetic) dreams may be a result of one's unconscious processing of environmental cues and having an implicit inference based on these cues manifest itself in one's dreams. We present two studies exploring this implicit processing hypothesis of precognitive dream experience. Study 1 investigated the relationship between implicit learning, transliminality, and precognitive dream belief and experience. Participants completed the Serial Reaction Time task and several questionnaires. We predicted a positive relationship between the variables. With the exception of relationships between transliminality and precognitive dream belief and experience, this prediction was not supported. Study 2 tested the hypothesis that differences in the ability to notice subtle cues explicitly might account for precognitive dream beliefs and experiences. Participants completed a modified version of the flicker paradigm. We predicted a negative relationship between the ability to explicitly detect changes and precognitive dream variables. This relationship was not found. There was also no relationship between precognitive dream belief and experience and implicit change detection. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Changing implicit attitudes toward smoking: results from a web-based approach-avoidance practice intervention.

    PubMed

    Macy, Jonathan T; Chassin, Laurie; Presson, Clark C; Sherman, Jeffrey W

    2015-02-01

    Implicit attitudes have been shown to predict smoking behaviors. Therefore, an important goal is the development of interventions to change these attitudes. This study assessed the effects of a web-based intervention on implicit attitudes toward smoking and receptivity to smoking-related information. Smokers (N = 284) were recruited to a two-session web-based study. In the first session, baseline data were collected. Session two contained the intervention, which consisted of assignment to the experimental or control version of an approach-avoidance task and assignment to an anti-smoking or control public service announcement (PSA), and post-intervention measures. Among smokers with less education and with plans to quit, implicit attitudes were more negative for those who completed the approach-avoidance task. Smokers with more education who viewed the anti-smoking PSA and completed the approach-avoidance task spent more time reading smoking-related information. An approach-avoidance task is a potentially feasible strategy for changing implicit attitudes toward smoking and increasing receptivity to smoking-related information.

  18. Changing Implicit Attitudes toward Smoking: Results from a Web-Based Approach-Avoidance Practice Intervention

    PubMed Central

    Macy, Jonathan T.; Chassin, Laurie; Presson, Clark C.; Sherman, Jeffrey W.

    2014-01-01

    Implicit attitudes have been shown to predict smoking behaviors. Therefore, an important goal is the development of interventions to change these attitudes. This study assessed the effects of a web-based intervention on implicit attitudes toward smoking and receptivity to smoking-related information. Smokers (N=284) were recruited to a two-session web-based study. In the first session, baseline data were collected. Session two contained the intervention, which consisted of assignment to the experimental or control version of an approach-avoidance task and assignment to an anti-smoking or control public service announcement (PSA), and post-intervention measures. Among smokers with less education and with plans to quit, implicit attitudes were more negative for those who completed the approach-avoidance task. Smokers with more education who viewed the anti-smoking PSA and completed the approach-avoidance task spent more time reading smoking-related information. An approach-avoidance task is a potentially feasible strategy for changing implicit attitudes toward smoking and increasing receptivity to smoking-related information. PMID:25059750

  19. Effects of Divided Attention at Retrieval on Conceptual Implicit Memory

    PubMed Central

    Prull, Matthew W.; Lawless, Courtney; Marshall, Helen M.; Sherman, Annabella T. K.

    2016-01-01

    This study investigated whether conceptual implicit memory is sensitive to process-specific interference at the time of retrieval. Participants performed the implicit memory test of category exemplar generation (CEG; Experiments 1 and 3), or the matched explicit memory test of category-cued recall (Experiment 2), both of which are conceptually driven memory tasks, under one of two divided attention (DA) conditions in which participants simultaneously performed a distracting task. The distracting task was either syllable judgments (dissimilar processes), or semantic judgments (similar processes) on unrelated words. Compared to full attention (FA) in which no distracting task was performed, DA had no effect on CEG priming overall, but reduced category-cued recall similarly regardless of distractor task. Analyses of distractor task performance also revealed differences between implicit and explicit memory retrieval. The evidence suggests that, whereas explicit memory retrieval requires attentional resources and is disrupted by semantic and phonological distracting tasks, conceptual implicit memory is automatic and unaffected even when distractor and memory tasks involve similar processes. PMID:26834678

  20. Effects of Divided Attention at Retrieval on Conceptual Implicit Memory.

    PubMed

    Prull, Matthew W; Lawless, Courtney; Marshall, Helen M; Sherman, Annabella T K

    2016-01-01

    This study investigated whether conceptual implicit memory is sensitive to process-specific interference at the time of retrieval. Participants performed the implicit memory test of category exemplar generation (CEG; Experiments 1 and 3), or the matched explicit memory test of category-cued recall (Experiment 2), both of which are conceptually driven memory tasks, under one of two divided attention (DA) conditions in which participants simultaneously performed a distracting task. The distracting task was either syllable judgments (dissimilar processes), or semantic judgments (similar processes) on unrelated words. Compared to full attention (FA) in which no distracting task was performed, DA had no effect on CEG priming overall, but reduced category-cued recall similarly regardless of distractor task. Analyses of distractor task performance also revealed differences between implicit and explicit memory retrieval. The evidence suggests that, whereas explicit memory retrieval requires attentional resources and is disrupted by semantic and phonological distracting tasks, conceptual implicit memory is automatic and unaffected even when distractor and memory tasks involve similar processes.

  1. Investigating implicit statistical learning mechanisms through contextual cueing.

    PubMed

    Goujon, Annabelle; Didierjean, André; Thorpe, Simon

    2015-09-01

    Since its inception, the contextual cueing (CC) paradigm has generated considerable interest in various fields of cognitive sciences because it constitutes an elegant approach to understanding how statistical learning (SL) mechanisms can detect contextual regularities during a visual search. In this article we review and discuss five aspects of CC: (i) the implicit nature of learning, (ii) the mechanisms involved in CC, (iii) the mediating factors affecting CC, (iv) the generalization of CC phenomena, and (v) the dissociation between implicit and explicit CC phenomena. The findings suggest that implicit SL is an inherent component of ongoing processing which operates through clustering, associative, and reinforcement processes at various levels of sensory-motor processing, and might result from simple spike-timing-dependent plasticity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver

    NASA Technical Reports Server (NTRS)

    Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.

    2010-01-01

    The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.

  3. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    NASA Astrophysics Data System (ADS)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  4. Algorithm development for Maxwell's equations for computational electromagnetism

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.

    1990-01-01

    A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.

  5. A Numerical Model for Predicting Shoreline Changes.

    DTIC Science & Technology

    1980-07-01

    minimal shorelines for finite - difference scheme of time lAt (B) . . . 27 11 Transport function Q(ao) = cos ao sin za o for selected values of z . 28 12...generate the preceding examples was based on the use of implicit finite differences . Such schemes, whether implicit or ex- plicit (or both), are...10(A) shows an initially straight shoreline. In any finite - difference scheme, after one time increment At, the shoreline is bounded below by the solid

  6. Reward and punishment learning in daily life: A replication study.

    PubMed

    Heininga, Vera E; van Roekel, Eeske; Wichers, Marieke; Oldehinkel, Albertine J

    2017-01-01

    Day-to-day experiences are accompanied by feelings of Positive Affect (PA) and Negative Affect (NA). Implicitly, without conscious processing, individuals learn about the reward and punishment value of each context and activity. These associative learning processes, in turn, affect the probability that individuals will re-engage in such activities or seek out that context. So far, implicit learning processes are almost exclusively investigated in controlled laboratory settings and not in daily life. Here we aimed to replicate the first study that investigated implicit learning processes in real life, by means of the Experience Sampling Method (ESM). That is, using an experience-sampling study with 90 time points (three measurements over 30 days), we prospectively measured time spent in social company and amount of physical activity as well as PA and NA in the daily lives of 18-24-year-old young adults (n = 69 with anhedonia, n = 69 without anhedonia). Multilevel analyses showed a punishment learning effect with regard to time spent in company of friends, but not a reward learning effect. Neither reward nor punishment learning effects were found with regard to physical activity. Our study shows promising results for future research on implicit learning processes in daily life, with the proviso of careful consideration of the timescale used. Short-term retrospective ESM design with beeps approximately six hours apart may suffer from mismatch noise that hampers accurate detection of associative learning effects over time.

  7. Test-Retest Reliability and Predictive Validity of the Implicit Association Test in Children

    ERIC Educational Resources Information Center

    Rae, James R.; Olson, Kristina R.

    2018-01-01

    The Implicit Association Test (IAT) is increasingly used in developmental research despite minimal evidence of whether children's IAT scores are reliable across time or predictive of behavior. When test-retest reliability and predictive validity have been assessed, the results have been mixed, and because these studies have differed on many…

  8. Evaluation of Intercultural Instructional Multimedia Material on Implicit Xenophobic Cognition: Short Time Effects on Implicit Information Processing

    ERIC Educational Resources Information Center

    Zumbach, Joerg; Schrangl, Gerhard; Mortensen, Chad; Moser, Stephanie

    2016-01-01

    Considering xenophobic attacks against foreigners and ethnic or religious motivated wars, there is a need for educational concepts to extinguish xenophobia. A model describing the cognitive processes involved in Xenophobic cognition was developed. Instructional multimedia material that discussed various forms of alienation was developed and…

  9. Using Time Perception to Explore Implicit Sensitivity to Emotional Stimuli in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jones, Catherine R. G.; Lambrechts, Anna; Gaigg, Sebastian B.

    2017-01-01

    Establishing whether implicit responses to emotional cues are intact in autism spectrum disorder (ASD) is fundamental to ascertaining why their emotional understanding is compromised. We used a temporal bisection task to assess for responsiveness to face and wildlife images that varied in emotional salience. There were no significant differences…

  10. Longitudinal Changes in College Math Students' Implicit Theories of Intelligence

    ERIC Educational Resources Information Center

    Shively, Rebecca L.; Ryan, Carey S.

    2013-01-01

    This study examined changes over time in implicit theories of intelligence and their relationships to help-seeking and academic performance. College algebra students completed questionnaires during the second week of classes and 2 weeks before the end of the semester (ns = 159 and 145, respectively; 61 students completed questionnaires at both…

  11. Explicit and Implicit Verbal Response Inhibition in Preschool-Age Children Who Stutter.

    PubMed

    Anderson, Julie D; Wagovich, Stacy A

    2017-04-14

    The purpose of this study was to examine (a) explicit and implicit verbal response inhibition in preschool children who do stutter (CWS) and do not stutter (CWNS) and (b) the relationship between response inhibition and language skills. Participants were 41 CWS and 41 CWNS between the ages of 3;1 and 6;1 (years;months). Explicit verbal response inhibition was measured using a computerized version of the grass-snow task (Carlson & Moses, 2001), and implicit verbal response inhibition was measured using the baa-meow task. Main dependent variables were reaction time and accuracy. The CWS were significantly less accurate than the CWNS on the implicit task, but not the explicit task. The CWS also exhibited slower reaction times than the CWNS on both tasks. Between-group differences in performance could not be attributed to working memory demands. Overall, children's performance on the inhibition tasks corresponded with parents' perceptions of their children's inhibition skills in daily life. CWS are less effective and efficient than CWNS in suppressing a dominant response while executing a conflicting response in the verbal domain.

  12. Implicitly Coordinated Detect and Avoid Capability for Safe Autonomous Operation of Small UAS

    NASA Technical Reports Server (NTRS)

    Balachandran, Swee; Munoz, Cesar A.; Consiglio, Maria C.

    2017-01-01

    As the airspace becomes increasingly shared by autonomous small Unmanned Aerial Systems (UAS), there would be a pressing need for coordination strategies so that aircraft can safely and independently maneuver around obstacles, geofences, and traffic aircraft. Explicitly coordinating resolution strategies for small UAS would require additional components such as a reliable vehicle-to-vehicle communication infrastructure and standardized protocols for information exchange that could significantly increase the cost of deploying small UAS in a shared airspace. This paper explores a novel approach that enables multiple aircraft to implicitly coordinate their resolution maneuvers. By requiring all aircraft to execute the proposed approach deterministically, it is possible for all of them to implicitly agree on the region of airspace each will be occupying in a given time interval. The proposed approach lends itself to the construction of a suitable feedback mechanism that enables the real-time execution of an implicitly conflict-free path in a closed-loop manner dealing with uncertainties in aircraft speed. If a network infrastructure is available, the proposed approach can also exploit the benefits of explicit information.

  13. A comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows

    NASA Technical Reports Server (NTRS)

    Coakley, T. J.; Hsieh, T.

    1985-01-01

    Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.

  14. Explicit and Implicit Verbal Response Inhibition in Preschool-Age Children Who Stutter

    PubMed Central

    Wagovich, Stacy A.

    2017-01-01

    Purpose The purpose of this study was to examine (a) explicit and implicit verbal response inhibition in preschool children who do stutter (CWS) and do not stutter (CWNS) and (b) the relationship between response inhibition and language skills. Method Participants were 41 CWS and 41 CWNS between the ages of 3;1 and 6;1 (years;months). Explicit verbal response inhibition was measured using a computerized version of the grass–snow task (Carlson & Moses, 2001), and implicit verbal response inhibition was measured using the baa–meow task. Main dependent variables were reaction time and accuracy. Results The CWS were significantly less accurate than the CWNS on the implicit task, but not the explicit task. The CWS also exhibited slower reaction times than the CWNS on both tasks. Between-group differences in performance could not be attributed to working memory demands. Overall, children's performance on the inhibition tasks corresponded with parents' perceptions of their children's inhibition skills in daily life. Conclusions CWS are less effective and efficient than CWNS in suppressing a dominant response while executing a conflicting response in the verbal domain. PMID:28384673

  15. Implicit contextual learning in prodromal and early stage Huntington's disease patients.

    PubMed

    van Asselen, Marieke; Almeida, Inês; Júlio, Filipa; Januário, Cristina; Campos, Elzbieta Bobrowicz; Simões, Mário; Castelo-Branco, Miguel

    2012-07-01

    Huntington's disease (HD) is a genetic neurodegenerative disorder affecting the basal ganglia. These subcortical structures are particularly important for motor functions, response selection and implicit learning. In the current study, we have assessed prodromal and symptomatic HD participants with an implicit contextual learning task that is not based on motor learning, but on a purely visual implicit learning mechanism. We used an implicit contextual learning task in which subjects need to locate a target among several distractors. In half of the trials, the positions of the distractors and target stimuli were repeated. By memorizing this contextual information, attention can be guided faster to the target stimulus. Nine symptomatic HD participants, 16 prodromal HD participants and 22 control subjects were included. We found that the responses of the control subjects were faster for the repeated trials than for the new trials, indicating that their visual search was facilitated when repeated contextual information was present. In contrast, no difference in response times between the repeated and new trials was found for the symptomatic and prodromal HD participants. The results of the current study indicate that both prodromal and symptomatic HD participants are impaired on an implicit contextual learning task.

  16. Auditory access, language access, and implicit sequence learning in deaf children.

    PubMed

    Hall, Matthew L; Eigsti, Inge-Marie; Bortfeld, Heather; Lillo-Martin, Diane

    2018-05-01

    Developmental psychology plays a central role in shaping evidence-based best practices for prelingually deaf children. The Auditory Scaffolding Hypothesis (Conway et al., 2009) asserts that a lack of auditory stimulation in deaf children leads to impoverished implicit sequence learning abilities, measured via an artificial grammar learning (AGL) task. However, prior research is confounded by a lack of both auditory and language input. The current study examines implicit learning in deaf children who were (Deaf native signers) or were not (oral cochlear implant users) exposed to language from birth, and in hearing children, using both AGL and Serial Reaction Time (SRT) tasks. Neither deaf nor hearing children across the three groups show evidence of implicit learning on the AGL task, but all three groups show robust implicit learning on the SRT task. These findings argue against the Auditory Scaffolding Hypothesis, and suggest that implicit sequence learning may be resilient to both auditory and language deprivation, within the tested limits. A video abstract of this article can be viewed at: https://youtu.be/EeqfQqlVHLI [Correction added on 07 August 2017, after first online publication: The video abstract link was added.]. © 2017 John Wiley & Sons Ltd.

  17. Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids

    NASA Astrophysics Data System (ADS)

    Otero, Evelyn; Eliasson, Peter

    2015-03-01

    An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.

  18. Emotionality of Colors: An Implicit Link between Red and Dominance.

    PubMed

    Mentzel, Stijn V; Schücker, Linda; Hagemann, Norbert; Strauss, Bernd

    2017-01-01

    The color red has been shown to alter emotions, physiology, psychology, and behavior. Research has suggested that these alterations could possibly be due to a link between red and perceived dominance. In this study we examined if the color red is implicitly associated to the concept of dominance. In addition, we similarly hypothesized that blue is implicitly linked to rest. A modified Stroop word evaluation task was used in which 30 participants (23.07 ± 4.42 years) were asked to classify words shown in either red, blue, or gray (control condition), as being either dominant- or rest-related. The responses were recorded and analyzed for latency time and accuracy. The results revealed a significant word type × color interaction effect for both latency times, F (2,56) = 5.09, p = 0.009, [Formula: see text] = 0.15, and accuracy, F (1.614,45.193) = 8.57, p = 0.001, [Formula: see text] = 0.23. On average participants showed significantly shorter latency times and made less errors when categorizing dominance words shown in red, compared to blue and gray. The measured effects show strong evidence for an implicit red-dominance association and a partial red-rest disassociation. It is discussed that this association can possibly affect emotionality, with the presentation of red eliciting a dominant emotional and behavioral response.

  19. Unified gas-kinetic scheme with multigrid convergence for rarefied flow study

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2017-09-01

    The unified gas kinetic scheme (UGKS) is based on direct modeling of gas dynamics on the mesh size and time step scales. With the modeling of particle transport and collision in a time-dependent flux function in a finite volume framework, the UGKS can connect the flow physics smoothly from the kinetic particle transport to the hydrodynamic wave propagation. In comparison with the direct simulation Monte Carlo (DSMC) method, the current equation-based UGKS can implement implicit techniques in the updates of macroscopic conservative variables and microscopic distribution functions. The implicit UGKS significantly increases the convergence speed for steady flow computations, especially in the highly rarefied and near continuum regimes. In order to further improve the computational efficiency, for the first time, a geometric multigrid technique is introduced into the implicit UGKS, where the prediction step for the equilibrium state and the evolution step for the distribution function are both treated with multigrid acceleration. More specifically, a full approximate nonlinear system is employed in the prediction step for fast evaluation of the equilibrium state, and a correction linear equation is solved in the evolution step for the update of the gas distribution function. As a result, convergent speed has been greatly improved in all flow regimes from rarefied to the continuum ones. The multigrid implicit UGKS (MIUGKS) is used in the non-equilibrium flow study, which includes microflow, such as lid-driven cavity flow and the flow passing through a finite-length flat plate, and high speed one, such as supersonic flow over a square cylinder. The MIUGKS shows 5-9 times efficiency increase over the previous implicit scheme. For the low speed microflow, the efficiency of MIUGKS is several orders of magnitude higher than the DSMC. Even for the hypersonic flow at Mach number 5 and Knudsen number 0.1, the MIUGKS is still more than 100 times faster than the DSMC method for obtaining a convergent steady state solution.

  20. Comparing implicit and explicit semantic access of direct and indirect word pairs in schizophrenia to evaluate models of semantic memory.

    PubMed

    Neill, Erica; Rossell, Susan Lee

    2013-02-28

    Semantic memory deficits in schizophrenia (SZ) are profound, yet there is no research comparing implicit and explicit semantic processing in the same participant sample. In the current study, both implicit and explicit priming are investigated using direct (LION-TIGER) and indirect (LION-STRIPES; where tiger is not displayed) stimuli comparing SZ to healthy controls. Based on a substantive review (Rossell and Stefanovic, 2007) and meta-analysis (Pomarol-Clotet et al., 2008), it was predicted that SZ would be associated with increased indirect priming implicitly. Further, it was predicted that SZ would be associated with abnormal indirect priming explicitly, replicating earlier work (Assaf et al., 2006). No specific hypotheses were made for implicit direct priming due to the heterogeneity of the literature. It was hypothesised that explicit direct priming would be intact based on the structured nature of this task. The pattern of results suggests (1) intact reaction time (RT) and error performance implicitly in the face of abnormal direct priming and (2) impaired RT and error performance explicitly. This pattern confirms general findings regarding implicit/explicit memory impairments in SZ whilst highlighting the unique pattern of performance specific to semantic priming. Finally, priming performance is discussed in relation to thought disorder and length of illness. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Black hole evolution by spectral methods

    NASA Astrophysics Data System (ADS)

    Kidder, Lawrence E.; Scheel, Mark A.; Teukolsky, Saul A.; Carlson, Eric D.; Cook, Gregory B.

    2000-10-01

    Current methods of evolving a spacetime containing one or more black holes are plagued by instabilities that prohibit long-term evolution. Some of these instabilities may be due to the numerical method used, traditionally finite differencing. In this paper, we explore the use of a pseudospectral collocation (PSC) method for the evolution of a spherically symmetric black hole spacetime in one dimension using a hyperbolic formulation of Einstein's equations. We demonstrate that our PSC method is able to evolve a spherically symmetric black hole spacetime forever without enforcing constraints, even if we add dynamics via a Klein-Gordon scalar field. We find that, in contrast with finite-differencing methods, black hole excision is a trivial operation using PSC applied to a hyperbolic formulation of Einstein's equations. We discuss the extension of this method to three spatial dimensions.

  2. Best-Practice Criteria for Practical Security of Self-Differencing Avalanche Photodiode Detectors in Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Koehler-Sidki, A.; Dynes, J. F.; Lucamarini, M.; Roberts, G. L.; Sharpe, A. W.; Yuan, Z. L.; Shields, A. J.

    2018-04-01

    Fast-gated avalanche photodiodes (APDs) are the most commonly used single photon detectors for high-bit-rate quantum key distribution (QKD). Their robustness against external attacks is crucial to the overall security of a QKD system, or even an entire QKD network. We investigate the behavior of a gigahertz-gated, self-differencing (In,Ga)As APD under strong illumination, a tactic Eve often uses to bring detectors under her control. Our experiment and modeling reveal that the negative feedback by the photocurrent safeguards the detector from being blinded through reducing its avalanche probability and/or strengthening the capacitive response. Based on this finding, we propose a set of best-practice criteria for designing and operating fast-gated APD detectors to ensure their practical security in QKD.

  3. Object based implicit contextual learning: a study of eye movements.

    PubMed

    van Asselen, Marieke; Sampaio, Joana; Pina, Ana; Castelo-Branco, Miguel

    2011-02-01

    Implicit contextual cueing refers to a top-down mechanism in which visual search is facilitated by learned contextual features. In the current study we aimed to investigate the mechanism underlying implicit contextual learning using object information as a contextual cue. Therefore, we measured eye movements during an object-based contextual cueing task. We demonstrated that visual search is facilitated by repeated object information and that this reduction in response times is associated with shorter fixation durations. This indicates that by memorizing associations between objects in our environment we can recognize objects faster, thereby facilitating visual search.

  4. High-Order/Low-Order methods for ocean modeling

    DOE PAGES

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; ...

    2015-06-01

    In this study, we examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We show how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  5. Implicit learning deficit in children with Duchenne muscular dystrophy: Evidence for a cerebellar cognitive impairment?

    PubMed

    Vicari, Stefano; Piccini, Giorgia; Mercuri, Eugenio; Battini, Roberta; Chieffo, Daniela; Bulgheroni, Sara; Pecini, Chiara; Lucibello, Simona; Lenzi, Sara; Moriconi, Federica; Pane, Marika; D'Amico, Adele; Astrea, Guja; Baranello, Giovanni; Riva, Daria; Cioni, Giovanni; Alfieri, Paolo

    2018-01-01

    This study aimed at comparing implicit sequence learning in individuals affected by Duchenne Muscular Dystrophy without intellectual disability and age-matched typically developing children. A modified version of the Serial Reaction Time task was administered to 32 Duchenne children and 37 controls of comparable chronological age. The Duchenne group showed a reduced rate of implicit learning even if in the absence of global intellectual disability. This finding provides further evidence of the involvement of specific aspects of cognitive function in Duchenne muscular dystrophy and on its possible neurobiological substrate.

  6. Automated Topographic Change Detection via Dem Differencing at Large Scales Using The Arcticdem Database

    NASA Astrophysics Data System (ADS)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2016-12-01

    In the last decade, high resolution satellite imagery has become an increasingly accessible tool for geoscientists to quantify changes in the Arctic land surface due to geophysical, ecological and anthropomorphic processes. However, the trade off between spatial coverage and spatial-temporal resolution has limited detailed, process-level change detection over large (i.e. continental) scales. The ArcticDEM project utilized over 300,000 Worldview image pairs to produce a nearly 100% coverage elevation model (above 60°N) offering the first polar, high spatial - high resolution (2-8m by region) dataset, often with multiple repeats in areas of particular interest to geo-scientists. A dataset of this size (nearly 250 TB) offers endless new avenues of scientific inquiry, but quickly becomes unmanageable computationally and logistically for the computing resources available to the average scientist. Here we present TopoDiff, a framework for a generalized. automated workflow that requires minimal input from the end user about a study site, and utilizes cloud computing resources to provide a temporally sorted and differenced dataset, ready for geostatistical analysis. This hands-off approach allows the end user to focus on the science, without having to manage thousands of files, or petabytes of data. At the same time, TopoDiff provides a consistent and accurate workflow for image sorting, selection, and co-registration enabling cross-comparisons between research projects.

  7. Study of structural change in volcanic and geothermal areas using seismic tomography

    NASA Astrophysics Data System (ADS)

    Mhana, Najwa; Foulger, Gillian; Julian, Bruce; peirce, Christine

    2014-05-01

    Long Valley caldera is a large silicic volcano. It has been in a state of volcanic and seismic unrest since 1978. Farther escalation of this unrest could pose a threat to the 5,000 residents and the tens of thousands of tourists who visit the area. We have studied the crustal structure beneath 28 km X 16 km area using seismic tomography. We performed tomographic inversions for the years 2009 and 2010 with a view to differencing it with the 1997 result to look for structural changes with time and whether repeat tomography is a capable of determining the changes in structure in volcanic and geothermal reservoirs. Thus, it might provide a useful tool to monitoring physical changes in volcanoes and exploited geothermal reservoirs. Up to 600 earthquakes, selected from the best-quality events, were used for the inversion. The inversions were performed using program simulps12 [Thurber, 1983]. Our initial results show that changes in both V p and V s were consistent with the migration of CO2 into the upper 2 km or so. Our ongoing work will also invert pairs of years simultaneously using a new program, tomo4d [Julian and Foulger, 2010]. This program inverts for the differences in structure between two epochs so it can provide a more reliable measure of structural change than simply differencing the results of individual years.

  8. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  9. Implicit Sequence Learning in Dyslexia: A Within-Sequence Comparison of First- and Higher-Order Information

    ERIC Educational Resources Information Center

    Du, Wenchong; Kelly, Steve W.

    2013-01-01

    The present study examines implicit sequence learning in adult dyslexics with a focus on comparing sequence transitions with different statistical complexities. Learning of a 12-item deterministic sequence was assessed in 12 dyslexic and 12 non-dyslexic university students. Both groups showed equivalent standard reaction time increments when the…

  10. The Effects of Mood, Cognitive Style, and Cognitive Ability on Implicit Learning

    ERIC Educational Resources Information Center

    Pretz, Jean E.; Totz, Kathryn Sentman; Kaufman, Scott Barry

    2010-01-01

    In an experiment with 109 undergraduates, we examined the effect of mood, cognitive style, and cognitive ability on implicit learning in the Artificial Grammar (AG) and Serial Reaction Time (SRT) tasks. Negative mood facilitated AG learning, but had no significant effect on SRT learning. Rational cognitive style predicted greater learning on both…

  11. The Contribution of Primary Motor Cortex Is Essential for Probabilistic Implicit Sequence Learning: Evidence from Theta Burst Magnetic Stimulation

    ERIC Educational Resources Information Center

    Wilkinson, Leonora; Teo, James T.; Obeso, Ignacio; Rothwell, John C.; Jahanshahi, Marjan

    2010-01-01

    Theta burst transcranial magnetic stimulation (TBS) is considered to produce plastic changes in human motor cortex. Here, we examined the inhibitory and excitatory effects of TBS on implicit sequence learning using a probabilistic serial reaction time paradigm. We investigated the involvement of several cortical regions associated with implicit…

  12. Implicit Learning of Predictive Relationships in Three-Element Visual Sequences by Young and Old Adults

    ERIC Educational Resources Information Center

    Howard, James H., Jr.; Howard, Darlene V.; Dennis, Nancy A.; Kelly, Andrew J.

    2008-01-01

    Knowledge of sequential relationships enables future events to be anticipated and processed efficiently. Research with the serial reaction time task (SRTT) has shown that sequence learning often occurs implicitly without effort or awareness. Here, the authors report 4 experiments that use a triplet-learning task (TLT) to investigate sequence…

  13. Lateralized Implicit Sequence Learning in Uni- and Bi-Manual Conditions

    ERIC Educational Resources Information Center

    Schmitz, Remy; Pasquali, Antoine; Cleeremans, Axel; Peigneux, Philippe

    2013-01-01

    It has been proposed that the right hemisphere (RH) is better suited to acquire novel material whereas the left hemisphere (LH) is more able to process well-routinized information. Here, we ask whether this potential dissociation also manifests itself in an implicit learning task. Using a lateralized version of the serial reaction time task (SRT),…

  14. Efficiency Study of Implicit and Explicit Time Integration Operators for Finite Element Applications

    DTIC Science & Technology

    1977-07-01

    cffiAciency, wherein Beta =0 provides anl exp~licit algorithm, wvhile Beta &0 provides anl implicit algorithm. Both algorithmns arc used in the same...Hlueneme CA: CO, Code C44A Port j IHuenemne, CA NAVSEC Cod,. 6034 (Library), Washington DC NAVSI*CGRUAC’I’ PWO, ’rorri Sta, OkinawaI NAVSIIIPRBFTAC Library

  15. Verbal implicit sequence learning in persons who stutter and persons with Parkinson's disease.

    PubMed

    Smits-Bandstra, Sarah; Gracco, Vincent

    2013-01-01

    The authors investigated the integrity of implicit learning systems in 14 persons with Parkinson's disease (PPD), 14 persons who stutter (PWS), and 14 control participants. In a 120-min session participants completed a verbal serial reaction time task, naming aloud 4 syllables in response to 4 visual stimuli. Unbeknownst to participants, the syllables formed a repeating 8-item sequence. PWS and PPD demonstrated slower reaction times for early but not late learning trials relative to controls reflecting delays but not deficiencies in general learning. PPD also demonstrated less accuracy in general learning relative to controls. All groups demonstrated similar limited explicit sequence knowledge. Both PWS and PPD demonstrated significantly less implicit sequence learning relative to controls, suggesting that stuttering may be associated with compromised functional integrity of the cortico-striato-thalamo-cortical loop.

  16. Racial Attitudes, Physician-Patient Talk Time Ratio, and Adherence in Racially Discordant Medical Interactions

    PubMed Central

    Hagiwara, Nao; Penner, Louis A.; Gonzalez, Richard; Eggly, Susan; Dovidio, John F.; Gaertner, Samuel L.; West, Tessa; Albrecht, Terrance L.

    2013-01-01

    Physician racial bias and patient perceived discrimination have each been found to influence perceptions of and feelings about racially discordant medical interactions. However, to our knowledge, no studies have examined how they may simultaneously influence the dynamics of these interactions. This study examined how (a) non-Black primary care physicians’ explicit and implicit racial bias and (b) Black patients’ perceived past discrimination affected physician-patient talk time ratio (i.e., the ratio of physician to patient talk time) during medical interactions and the relationship between this ratio and patients’ subsequent adherence. We conducted a secondary analysis of self-report and video-recorded data from a prior study of clinical interactions between 112 low-income, Black patients and their 14 non-Black physicians at a primary care clinic in the Midwestern United States between June, 2006 and February, 2008. Overall, physicians talked more than patients; however, both physician bias and patient perceived past discrimination affected physician-patient talk time ratio. Non-Black physicians with higher levels of implicit, but not explicit, racial bias had larger physician-patient talk time ratios than did physicians with lower levels of implicit bias, indicating that physicians with more negative implicit racial attitudes talked more than physicians with less negative racial attitudes. Additionally, Black patients with higher levels of perceived discrimination had smaller physician-patient talk time ratios, indicating that patients with more negative racial attitudes talked more than patients with less negative racial attitudes. Finally, smaller physician-patient talk time ratios were associated with less patient subsequent adherence, indicating that patients who talked more during the racially discordant medical interactions were less likely to adhere subsequently. Theoretical and practical implications of these findings are discussed in the context of factors that affect the dynamics of racially discordant medical interactions. PMID:23631787

  17. Prediction and control of chaotic processes using nonlinear adaptive networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, R.D.; Barnes, C.W.; Flake, G.W.

    1990-01-01

    We present the theory of nonlinear adaptive networks and discuss a few applications. In particular, we review the theory of feedforward backpropagation networks. We then present the theory of the Connectionist Normalized Linear Spline network in both its feedforward and iterated modes. Also, we briefly discuss the theory of stochastic cellular automata. We then discuss applications to chaotic time series, tidal prediction in Venice lagoon, finite differencing, sonar transient detection, control of nonlinear processes, control of a negative ion source, balancing a double inverted pendulum and design advice for free electron lasers and laser fusion targets.

  18. A general algorithm using finite element method for aerodynamic configurations at low speeds

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.

    1975-01-01

    A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.

  19. Computational design of the basic dynamical processes of the UCLA general circulation model

    NASA Technical Reports Server (NTRS)

    Arakawa, A.; Lamb, V. R.

    1977-01-01

    The 12-layer UCLA general circulation model encompassing troposphere and stratosphere (and superjacent 'sponge layer') is described. Prognostic variables are: surface pressure, horizontal velocity, temperature, water vapor and ozone in each layer, planetary boundary layer (PBL) depth, temperature, moisture and momentum discontinuities at PBL top, ground temperature and water storage, and mass of snow on ground. Selection of space finite-difference schemes for homogeneous incompressible flow, with/without a free surface, nonlinear two-dimensional nondivergent flow, enstrophy conserving schemes, momentum advection schemes, vertical and horizontal difference schemes, and time differencing schemes are discussed.

  20. Finding a Fit or Developing It: Implicit Theories About Achieving Passion for Work.

    PubMed

    Chen, Patricia; Ellsworth, Phoebe C; Schwarz, Norbert

    2015-10-01

    "Passion for work" has become a widespread phrase in popular discourse. Two contradictory lay perspectives have emerged on how passion for work is attained, which we distill into the fit and develop implicit theories. Fit theorists believe that passion for work is achieved through finding the right fit with a line of work; develop theorists believe that passion is cultivated over time. Four studies examined the expectations, priorities, and outcomes that characterize these implicit theories. Our results show that these beliefs elicit different motivational patterns, but both can facilitate vocational well-being and success. This research extends implicit theory scholarship to the work domain and provides a framework that can fruitfully inform career advising, life coaching, mentorship, and employment policies. © 2015 by the Society for Personality and Social Psychology, Inc.

  1. Assessing implicit odor localization in humans using a cross-modal spatial cueing paradigm.

    PubMed

    Moessnang, Carolin; Finkelmeyer, Andreas; Vossen, Alexandra; Schneider, Frank; Habel, Ute

    2011-01-01

    Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal. A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment. No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research. The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans. © 2011 Moessnang et al.

  2. Social Cues Alter Implicit Motor Learning in a Serial Reaction Time Task.

    PubMed

    Geiger, Alexander; Cleeremans, Axel; Bente, Gary; Vogeley, Kai

    2018-01-01

    Learning is a central ability for human development. Many skills we learn, such as language, are learned through observation or imitation in social contexts. Likewise, many skills are learned implicitly, that is, without an explicit intent to learn and without full awareness of the acquired knowledge. Here, we asked whether performance in a motor learning task is modulated by social vs. object cues of varying validity. To address this question, we asked participants to carry out a serial reaction time (SRT) task in which, on each trial, people have to respond as fast and as accurately as possible to the appearance of a stimulus at one of four possible locations. Unbeknownst to participants, the sequence of successive locations was sequentially structured, so that knowledge of the sequence facilitates anticipation of the next stimulus and hence faster motor responses. Crucially, each trial also contained a cue pointing to the next stimulus location. Participants could thus learn based on the cue, or on learning about the sequence of successive locations, or on a combination of both. Results show an interaction between cue type and cue validity for the motor responses: social cues (vs. object cues) led to faster responses in the low validity (LV) condition only. Concerning the extent to which learning was implicit, results show that in the cued blocks only, the highly valid social cue led to implicit learning. In the uncued blocks, participants showed no implicit learning in the highly valid social cue condition, but did in all other combinations of stimulus type and cueing validity. In conclusion, our results suggest that implicit learning is context-dependent and can be influenced by the cue type, e.g., social and object cues.

  3. Evaluation of subgrid-scale turbulence models using a fully simulated turbulent flow

    NASA Technical Reports Server (NTRS)

    Clark, R. A.; Ferziger, J. H.; Reynolds, W. C.

    1977-01-01

    An exact turbulent flow field was calculated on a three-dimensional grid with 64 points on a side. The flow simulates grid-generated turbulence from wind tunnel experiments. In this simulation, the grid spacing is small enough to include essentially all of the viscous energy dissipation, and the box is large enough to contain the largest eddy in the flow. The method is limited to low-turbulence Reynolds numbers, in our case R sub lambda = 36.6. To complete the calculation using a reasonable amount of computer time with reasonable accuracy, a third-order time-integration scheme was developed which runs at about the same speed as a simple first-order scheme. It obtains this accuracy by saving the velocity field and its first-time derivative at each time step. Fourth-order accurate space-differencing is used.

  4. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  5. Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin

    1996-01-01

    An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.

  6. Not the Same Old Thing: Establishing the Unique Contribution of Drinking Identity as a Predictor of Alcohol Consumption and Problems Over Time

    PubMed Central

    Lindgren, Kristen P.; Ramirez, Jason J.; Olin, Cecilia C.; Neighbors, Clayton

    2016-01-01

    Drinking identity – how much individuals view themselves as drinkers– is a promising cognitive factor that predicts problem drinking. Implicit and explicit measures of drinking identity have been developed (the former assesses more reflexive/automatic cognitive processes; the latter more reflective/controlled cognitive processes): each predicts unique variance in alcohol consumption and problems. However, implicit and explicit identity’s utility and uniqueness as a predictor relative to cognitive factors important for problem drinking screening and intervention has not been evaluated. Thus, the current study evaluated implicit and explicit drinking identity as predictors of consumption and problems over time. Baseline measures of drinking identity, social norms, alcohol expectancies, and drinking motives were evaluated as predictors of consumption and problems (evaluated every three months over two academic years) in a sample of 506 students (57% female) in their first or second year of college. Results found that baseline identity measures predicted unique variance in consumption and problems over time. Further, when compared to each set of cognitive factors, the identity measures predicted unique variance in consumption and problems over time. Findings were more robust for explicit, versus, implicit identity and in models that did not control for baseline drinking. Drinking identity appears to be a unique predictor of problem drinking relative to social norms, alcohol expectancies, and drinking motives. Intervention and theory could benefit from including and considering drinking identity. PMID:27428756

  7. Not the same old thing: Establishing the unique contribution of drinking identity as a predictor of alcohol consumption and problems over time.

    PubMed

    Lindgren, Kristen P; Ramirez, Jason J; Olin, Cecilia C; Neighbors, Clayton

    2016-09-01

    Drinking identity-how much individuals view themselves as drinkers-is a promising cognitive factor that predicts problem drinking. Implicit and explicit measures of drinking identity have been developed (the former assesses more reflexive/automatic cognitive processes; the latter more reflective/controlled cognitive processes): each predicts unique variance in alcohol consumption and problems. However, implicit and explicit identity's utility and uniqueness as predictors relative to cognitive factors important for problem drinking screening and intervention has not been evaluated. Thus, the current study evaluated implicit and explicit drinking identity as predictors of consumption and problems over time. Baseline measures of drinking identity, social norms, alcohol expectancies, and drinking motives were evaluated as predictors of consumption and problems (evaluated every 3 months over 2 academic years) in a sample of 506 students (57% female) in their first or second year of college. Results found that baseline identity measures predicted unique variance in consumption and problems over time. Further, when compared to each set of cognitive factors, the identity measures predicted unique variance in consumption and problems over time. Findings were more robust for explicit versus implicit identity and in models that did not control for baseline drinking. Drinking identity appears to be a unique predictor of problem drinking relative to social norms, alcohol expectancies, and drinking motives. Intervention and theory could benefit from including and considering drinking identity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Reward and punishment learning in daily life: A replication study

    PubMed Central

    van Roekel, Eeske; Wichers, Marieke; Oldehinkel, Albertine J.

    2017-01-01

    Day-to-day experiences are accompanied by feelings of Positive Affect (PA) and Negative Affect (NA). Implicitly, without conscious processing, individuals learn about the reward and punishment value of each context and activity. These associative learning processes, in turn, affect the probability that individuals will re-engage in such activities or seek out that context. So far, implicit learning processes are almost exclusively investigated in controlled laboratory settings and not in daily life. Here we aimed to replicate the first study that investigated implicit learning processes in real life, by means of the Experience Sampling Method (ESM). That is, using an experience-sampling study with 90 time points (three measurements over 30 days), we prospectively measured time spent in social company and amount of physical activity as well as PA and NA in the daily lives of 18-24-year-old young adults (n = 69 with anhedonia, n = 69 without anhedonia). Multilevel analyses showed a punishment learning effect with regard to time spent in company of friends, but not a reward learning effect. Neither reward nor punishment learning effects were found with regard to physical activity. Our study shows promising results for future research on implicit learning processes in daily life, with the proviso of careful consideration of the timescale used. Short-term retrospective ESM design with beeps approximately six hours apart may suffer from mismatch noise that hampers accurate detection of associative learning effects over time. PMID:28976985

  9. A transient FETI methodology for large-scale parallel implicit computations in structural mechanics

    NASA Technical Reports Server (NTRS)

    Farhat, Charbel; Crivelli, Luis; Roux, Francois-Xavier

    1992-01-01

    Explicit codes are often used to simulate the nonlinear dynamics of large-scale structural systems, even for low frequency response, because the storage and CPU requirements entailed by the repeated factorizations traditionally found in implicit codes rapidly overwhelm the available computing resources. With the advent of parallel processing, this trend is accelerating because explicit schemes are also easier to parallelize than implicit ones. However, the time step restriction imposed by the Courant stability condition on all explicit schemes cannot yet -- and perhaps will never -- be offset by the speed of parallel hardware. Therefore, it is essential to develop efficient and robust alternatives to direct methods that are also amenable to massively parallel processing because implicit codes using unconditionally stable time-integration algorithms are computationally more efficient when simulating low-frequency dynamics. Here we present a domain decomposition method for implicit schemes that requires significantly less storage than factorization algorithms, that is several times faster than other popular direct and iterative methods, that can be easily implemented on both shared and local memory parallel processors, and that is both computationally and communication-wise efficient. The proposed transient domain decomposition method is an extension of the method of Finite Element Tearing and Interconnecting (FETI) developed by Farhat and Roux for the solution of static problems. Serial and parallel performance results on the CRAY Y-MP/8 and the iPSC-860/128 systems are reported and analyzed for realistic structural dynamics problems. These results establish the superiority of the FETI method over both the serial/parallel conjugate gradient algorithm with diagonal scaling and the serial/parallel direct method, and contrast the computational power of the iPSC-860/128 parallel processor with that of the CRAY Y-MP/8 system.

  10. Learning non-local dependencies.

    PubMed

    Kuhn, Gustav; Dienes, Zoltán

    2008-01-01

    This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., and Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory and Cognition, 31(6) 1417-1432] showed that people could implicitly learn a musical rule that was solely based on non-local dependencies. These results seriously challenge models of implicit learning that assume knowledge merely takes the form of linking adjacent elements (chunking). We compare two models that use a buffer to allow learning of long distance dependencies, the Simple Recurrent Network (SRN) and the memory buffer model. We argue that these models - as models of the mind - should not be evaluated simply by fitting them to human data but by determining the characteristic behaviour of each model. Simulations showed for the first time that the SRN could rapidly learn non-local dependencies. However, the characteristic performance of the memory buffer model rather than SRN more closely matched how people came to like different musical structures. We conclude that the SRN is more powerful than previous demonstrations have shown, but it's flexible learned buffer does not explain people's implicit learning (at least, the affective learning of musical structures) as well as fixed memory buffer models do.

  11. Implicit Particle Filter for Power System State Estimation with Large Scale Renewable Power Integration.

    NASA Astrophysics Data System (ADS)

    Uzunoglu, B.; Hussaini, Y.

    2017-12-01

    Implicit Particle Filter is a sequential Monte Carlo method for data assimilation that guides the particles to the high-probability by an implicit step . It optimizes a nonlinear cost function which can be inherited from legacy assimilation routines . Dynamic state estimation for almost real-time applications in power systems are becomingly increasingly more important with integration of variable wind and solar power generation. New advanced state estimation tools that will replace the old generation state estimation in addition to having a general framework of complexities should be able to address the legacy software and able to integrate the old software in a mathematical framework while allowing the power industry need for a cautious and evolutionary change in comparison to a complete revolutionary approach while addressing nonlinearity and non-normal behaviour. This work implements implicit particle filter as a state estimation tool for the estimation of the states of a power system and presents the first implicit particle filter application study on a power system state estimation. The implicit particle filter is introduced into power systems and the simulations are presented for a three-node benchmark power system . The performance of the filter on the presented problem is analyzed and the results are presented.

  12. Convergence Acceleration of Runge-Kutta Schemes for Solving the Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Swanson, Roy C., Jr.; Turkel, Eli; Rossow, C.-C.

    2007-01-01

    The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 can be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. This RK/implicit scheme is used as a smoother for multigrid. Fourier analysis is applied to determine damping properties. Numerical dissipation operators based on the Roe scheme, a matrix dissipation, and the CUSP scheme are considered in evaluating the RK/implicit scheme. In addition, the effect of the number of RK stages is examined. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. Turbulent flows over an airfoil and wing at subsonic and transonic conditions are computed. The effects of the cell aspect ratio on convergence are investigated for Reynolds numbers between 5:7 x 10(exp 6) and 100 x 10(exp 6). It is demonstrated that the implicit preconditioner can reduce the computational time of a well-tuned standard RK scheme by a factor between four and ten.

  13. The mere exposure effect is sensitive to color information: evidence for color effects in a perceptual implicit memory test.

    PubMed

    Hupbach, Almut; Melzer, André; Hardt, Oliver

    2006-01-01

    Priming effects in perceptual tests of implicit memory are assumed to be perceptually specific. Surprisingly, changing object colors from study to test did not diminish priming in most previous studies. However, these studies used implicit tests that are based on object identification, which mainly depends on the analysis of the object shape and therefore operates color-independently. The present study shows that color effects can be found in perceptual implicit tests when the test task requires the processing of color information. In Experiment 1, reliable color priming was found in a mere exposure design (preference test). In Experiment 2, the preference test was contrasted with a conceptually driven color-choice test. Altering the shape of object from study to test resulted in significant priming in the color-choice test but eliminated priming in the preference test. Preference judgments thus largely depend on perceptual processes. In Experiment 3, the preference and the color-choice test were studied under explicit test instructions. Differences in reaction times between the implicit and the explicit test suggest that the implicit test results were not an artifact of explicit retrieval attempts. In contrast with previous assumptions, it is therefore concluded that color is part of the representation that mediates perceptual priming.

  14. Explicit and implicit assessment of gender roles.

    PubMed

    Fernández, Juan; Quiroga, M Ángeles; Escorial, Sergio; Privado, Jesús

    2014-05-01

    Gender roles have been assessed by explicit measures and, recently, by implicit measures. In the former case, the theoretical assumptions have been questioned by empirical results. To solve this contradiction, we carried out two concatenated studies based on a relatively well-founded theoretical and empirical approach. The first study was designed to obtain a sample of genderized activities of the domestic sphere by means of an explicit assessment. Forty-two raters (22 women and 20 men, balanced on age, sex, and level of education) took part as raters. In the second study, an implicit assessment of gender roles was carried out, focusing on the response time given to the sample activities obtained from the first study. A total of 164 adults (90 women and 74 men, mean age = 43), with experience in living with a partner and balanced on age, sex, and level of education, participated. Taken together, results show that explicit and implicit assessment converge. The current social reality shows that there is still no equity in some gender roles in the domestic sphere. These consistent results show considerable theoretical and empirical robustness, due to the double implicit and explicit assessment.

  15. EdgeMaps: visualizing explicit and implicit relations

    NASA Astrophysics Data System (ADS)

    Dörk, Marian; Carpendale, Sheelagh; Williamson, Carey

    2011-01-01

    In this work, we introduce EdgeMaps as a new method for integrating the visualization of explicit and implicit data relations. Explicit relations are specific connections between entities already present in a given dataset, while implicit relations are derived from multidimensional data based on shared properties and similarity measures. Many datasets include both types of relations, which are often difficult to represent together in information visualizations. Node-link diagrams typically focus on explicit data connections, while not incorporating implicit similarities between entities. Multi-dimensional scaling considers similarities between items, however, explicit links between nodes are not displayed. In contrast, EdgeMaps visualize both implicit and explicit relations by combining and complementing spatialization and graph drawing techniques. As a case study for this approach we chose a dataset of philosophers, their interests, influences, and birthdates. By introducing the limitation of activating only one node at a time, interesting visual patterns emerge that resemble the aesthetics of fireworks and waves. We argue that the interactive exploration of these patterns may allow the viewer to grasp the structure of a graph better than complex node-link visualizations.

  16. The Power of Implicit Social Relation in Rating Prediction of Social Recommender Systems

    PubMed Central

    Reafee, Waleed; Salim, Naomie; Khan, Atif

    2016-01-01

    The explosive growth of social networks in recent times has presented a powerful source of information to be utilized as an extra source for assisting in the social recommendation problems. The social recommendation methods that are based on probabilistic matrix factorization improved the recommendation accuracy and partly solved the cold-start and data sparsity problems. However, these methods only exploited the explicit social relations and almost completely ignored the implicit social relations. In this article, we firstly propose an algorithm to extract the implicit relation in the undirected graphs of social networks by exploiting the link prediction techniques. Furthermore, we propose a new probabilistic matrix factorization method to alleviate the data sparsity problem through incorporating explicit friendship and implicit friendship. We evaluate our proposed approach on two real datasets, Last.Fm and Douban. The experimental results show that our method performs much better than the state-of-the-art approaches, which indicates the importance of incorporating implicit social relations in the recommendation process to address the poor prediction accuracy. PMID:27152663

  17. Implicit transfer of reversed temporal structure in visuomotor sequence learning.

    PubMed

    Tanaka, Kanji; Watanabe, Katsumi

    2014-04-01

    Some spatio-temporal structures are easier to transfer implicitly in sequential learning. In this study, we investigated whether the consistent reversal of triads of learned components would support the implicit transfer of their temporal structure in visuomotor sequence learning. A triad comprised three sequential button presses ([1][2][3]) and seven consecutive triads comprised a sequence. Participants learned sequences by trial and error, until they could complete it 20 times without error. Then, they learned another sequence, in which each triad was reversed ([3][2][1]), partially reversed ([2][1][3]), or switched so as not to overlap with the other conditions ([2][3][1] or [3][1][2]). Even when the participants did not notice the alternation rule, the consistent reversal of the temporal structure of each triad led to better implicit transfer; this was confirmed in a subsequent experiment. These results suggest that the implicit transfer of the temporal structure of a learned sequence can be influenced by both the structure and consistency of the change. Copyright © 2013 Cognitive Science Society, Inc.

  18. Implicit alcohol attitudes predict drinking behaviour over and above intentions and willingness in young adults but willingness is more important in adolescents: Implications for the Prototype Willingness Model.

    PubMed

    Davies, Emma L; Paltoglou, Aspasia E; Foxcroft, David R

    2017-05-01

    Dual process models, such as the Prototype Willingness Model (PWM), propose to account for both intentional and reactive drinking behaviour. Current methods of measuring constructs in the PWM rely on self-report, thus require a level of conscious deliberation. Implicit measures of attitudes may overcome this limitation and contribute to our understanding of how prototypes and willingness influence alcohol consumption in young people. This study aimed to explore whether implicit alcohol attitudes were related to PWM constructs and whether they would add to the prediction of risky drinking. The study involved a cross-sectional design. The sample included 501 participants from the United Kingdom (M age 18.92; range 11-51; 63% female); 230 school pupils and 271 university students. Participants completed explicit measures of alcohol prototype perceptions, willingness, drunkenness, harms, and intentions. They also completed an implicit measure of alcohol attitudes, using the Implicit Association Test. Implicit alcohol attitudes were only weakly related to the explicit measures. When looking at the whole sample, implicit alcohol attitudes did not add to the prediction of willingness over and above prototype perceptions. However, for university students implicit attitudes added to the prediction of behaviour, over and above intentions and willingness. For school pupils, willingness was a stronger predictor of behaviour than intentions or implicit attitudes. Adding implicit measures to the PWM may contribute to our understanding of the development of alcohol behaviours in young people. Further research could explore how implicit attitudes develop alongside the shift from reactive to planned behaviour. Statement of contribution What is already known on this subject? Young people's drinking tends to occur in social situations and is driven in part by social reactions within these contexts. The Prototype Willingness Model (PWM) attempts to explain such reactive behaviour as the result of social comparison to risk prototypes, which influence willingness to drink, and subsequent behaviour. Evidence also suggests that risky drinking in young people may be influenced by implicit attitudes towards alcohol, which develop with repeated exposure to alcohol over time. One criticism of the PWM is that prototypes and willingness are usually measured using explicit measures which may not adequately capture young people's spontaneous evaluations of prototypes, or their propensity to act without forethought in a social context. What does this study add? This study is novel in exploring the addition of implicit alcohol attitudes to the social reaction pathway in the model in order to understand more about these reactive constructs. Implicit alcohol attitudes added to the prediction of behaviour, over and above intentions and willingness for university students. For school pupils, willingness was a stronger predictor of behaviour than intentions or implicit attitudes. Findings suggest that adding implicit alcohol attitudes into the PWM might be able to explain the shift from reactive to intentional drinking behaviours with age and experience. © 2016 The British Psychological Society.

  19. A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger-Poisson equations with discontinuous potentials

    NASA Astrophysics Data System (ADS)

    Lu, Tiao; Cai, Wei

    2008-10-01

    In this paper, we propose a high order Fourier spectral-discontinuous Galerkin method for time-dependent Schrödinger-Poisson equations in 3-D spaces. The Fourier spectral Galerkin method is used for the two periodic transverse directions and a high order discontinuous Galerkin method for the longitudinal propagation direction. Such a combination results in a diagonal form for the differential operators along the transverse directions and a flexible method to handle the discontinuous potentials present in quantum heterojunction and supperlattice structures. As the derivative matrices are required for various time integration schemes such as the exponential time differencing and Crank Nicholson methods, explicit derivative matrices of the discontinuous Galerkin method of various orders are derived. Numerical results, using the proposed method with various time integration schemes, are provided to validate the method.

  20. Distributed Training Enhances Implicit Sequence Acquisition in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Desmottes, Lise; Meulemans, Thierry; Patinec, Marie-Aude; Maillart, Christelle

    2017-01-01

    Purpose: This study explored the effects of 2 different training structures on the implicit acquisition of a sequence in a serial reaction time (SRT) task in children with and without specific language impairment (SLI). Method: All of the children underwent 3 training sessions, followed by a retention session 2 weeks after the last session. In the…

  1. Validating an Elicited Imitation Task as a Measure of Implicit Knowledge: Comparisons with Other Validation Studies

    ERIC Educational Resources Information Center

    Spada, Nina; Shiu, Julie Li-Ju; Tomita, Yasuyo

    2015-01-01

    This study builds on research investigating the construct validity of elicited imitation (EI) as a measure of implicit second language (L2) grammatical knowledge. It differs from previous studies in that the EI task focuses on a single grammatical feature and time on task is strictly controlled. Seventy-three EFL learners and 20 native English…

  2. Project DyAdd: Implicit Learning in Adult Dyslexia and ADHD

    ERIC Educational Resources Information Center

    Laasonen, Marja; Väre, Jenni; Oksanen-Hennah, Henna; Leppämäki, Sami; Tani, Pekka; Harno, Hanna; Hokkanen, Laura; Pothos, Emmanuel; Cleeremans, Axel

    2014-01-01

    In this study of the project DyAdd, implicit learning was investigated through two paradigms in adults (18-55 years) with dyslexia (n?=?36) or with attention deficit/hyperactivity disorder (ADHD, n?=?22) and in controls (n?=?35). In the serial reaction time (SRT) task, there were no group differences in learning. However, those with ADHD exhibited…

  3. Machine Understanding of Human Implicit Intention

    DTIC Science & Technology

    2013-05-18

    Cognitive Neurodynamics , Hokkaido, Japan, June 2011, Hokkaido, Japan (Plenary Talk) - Soo-Young Lee, Implicit Intention Recognition and Hierarchical...subject’s response with the accuracy of about 80% by SVM. 15. SUBJECT TERMS Brain Science and Engineering; Cognitive Neuroscience; Human-Computer...oscillations have been related to a variety of functions such as perception, cognition , sleep, etc. For a long time, researchers have found the sensory and

  4. When Does Less Yield More? The Impact of Severity upon Implicit Recognition in Pure Alexia

    ERIC Educational Resources Information Center

    Roberts, Daniel J.; Lambon Ralph, Matthew A.; Woollams, Anna M.

    2010-01-01

    Pure alexia (PA) is characterised by strong effects of word length on reading times and is sometimes accompanied by an overt letter-by-letter (LBL) reading strategy. Past studies have reported "implicit recognition" in some individual PA patients. This is a striking finding because such patients are able to perform semantic classification and…

  5. Generalized lessons about sequence learning from the study of the serial reaction time task

    PubMed Central

    Schwarb, Hillary; Schumacher, Eric H.

    2012-01-01

    Over the last 20 years researchers have used the serial reaction time (SRT) task to investigate the nature of spatial sequence learning. They have used the task to identify the locus of spatial sequence learning, identify situations that enhance and those that impair learning, and identify the important cognitive processes that facilitate this type of learning. Although controversies remain, the SRT task has been integral in enhancing our understanding of implicit sequence learning. It is important, however, to ask what, if anything, the discoveries made using the SRT task tell us about implicit learning more generally. This review analyzes the state of the current spatial SRT sequence learning literature highlighting the stimulus-response rule hypothesis of sequence learning which we believe provides a unifying account of discrepant SRT data. It also challenges researchers to use the vast body of knowledge acquired with the SRT task to understand other implicit learning literatures too often ignored in the context of this particular task. This broad perspective will make it possible to identify congruences among data acquired using various different tasks that will allow us to generalize about the nature of implicit learning. PMID:22723815

  6. Numerical experiments with a symmetric high-resolution shock-capturing scheme

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1986-01-01

    Characteristic-based explicit and implicit total variation diminishing (TVD) schemes for the two-dimensional compressible Euler equations have recently been developed. This is a generalization of recent work of Roe and Davis to a wider class of symmetric (non-upwind) TVD schemes other than Lax-Wendroff. The Roe and Davis schemes can be viewed as a subset of the class of explicit methods. The main properties of the present class of schemes are that they can be implicit, and, when steady-state calculations are sought, the numerical solution is independent of the time step. In a recent paper, a comparison of a linearized form of the present implicit symmetric TVD scheme with an implicit upwind TVD scheme originally developed by Harten and modified by Yee was given. Results favored the symmetric method. It was found that the latter is just as accurate as the upwind method while requiring less computational effort. Currently, more numerical experiments are being conducted on time-accurate calculations and on the effect of grid topology, numerical boundary condition procedures, and different flow conditions on the behavior of the method for steady-state applications. The purpose here is to report experiences with this type of scheme and give guidelines for its use.

  7. Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme

    NASA Astrophysics Data System (ADS)

    Rõõm, Rein; Männik, Aarne; Luhamaa, Andres

    2007-10-01

    Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.

  8. Convergence Acceleration for Multistage Time-Stepping Schemes

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli L.; Rossow, C-C; Vasta, V. N.

    2006-01-01

    The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 could be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. Numerical dissipation operators (based on the Roe scheme, a matrix formulation, and the CUSP scheme) as well as the number of RK stages are considered in evaluating the RK/implicit scheme. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. In two dimensions, turbulent flows over an airfoil at subsonic and transonic conditions are computed. The effects of mesh cell aspect ratio on convergence are investigated for Reynolds numbers between 5.7 x 10(exp 6) and 100.0 x 10(exp 6). Results are also obtained for a transonic wing flow. For both 2-D and 3-D problems, the computational time of a well-tuned standard RK scheme is reduced at least a factor of four.

  9. Fourier-Legendre spectral methods for incompressible channel flow

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Hussaini, M. Y.

    1984-01-01

    An iterative collocation technique is described for modeling implicit viscosity in three-dimensional incompressible wall bounded shear flow. The viscosity can vary temporally and in the vertical direction. Channel flow is modeled with a Fourier-Legendre approximation and the mean streamwise advection is treated implicitly. Explicit terms are handled with an Adams-Bashforth method to increase the allowable time-step for calculation of the implicit terms. The algorithm is applied to low amplitude unstable waves in a plane Poiseuille flow at an Re of 7500. Comparisons are made between results using the Legendre method and with Chebyshev polynomials. Comparable accuracy is obtained for the perturbation kinetic energy predicted using both discretizations.

  10. Implicit filtered P{sub N} for high-energy density thermal radiation transport using discontinuous Galerkin finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov

    2016-09-15

    In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.

  11. A method of real-time detection for distant moving obstacles by monocular vision

    NASA Astrophysics Data System (ADS)

    Jia, Bao-zhi; Zhu, Ming

    2013-12-01

    In this paper, we propose an approach for detection of distant moving obstacles like cars and bicycles by a monocular camera to cooperate with ultrasonic sensors in low-cost condition. We are aiming at detecting distant obstacles that move toward our autonomous navigation car in order to give alarm and keep away from them. Method of frame differencing is applied to find obstacles after compensation of camera's ego-motion. Meanwhile, each obstacle is separated from others in an independent area and given a confidence level to indicate whether it is coming closer. The results on an open dataset and our own autonomous navigation car have proved that the method is effective for detection of distant moving obstacles in real-time.

  12. Time-marching transonic flutter solutions including angle-of-attack effects

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.; Bennett, R. M.; Whitlow, W., Jr.; Seidel, D. A.

    1982-01-01

    Transonic aeroelastic solutions based upon the transonic small perturbation potential equation were studied. Time-marching transient solutions of plunging and pitching airfoils were analyzed using a complex exponential modal identification technique, and seven alternative integration techniques for the structural equations were evaluated. The HYTRAN2 code was used to determine transonic flutter boundaries versus Mach number and angle-of-attack for NACA 64A010 and MBB A-3 airfoils. In the code, a monotone differencing method, which eliminates leading edge expansion shocks, is used to solve the potential equation. When the effect of static pitching moment upon the angle-of-attack is included, the MBB A-3 airfoil can have multiple flutter speeds at a given Mach number.

  13. Generalized three-dimensional experimental lightning code (G3DXL) user's manual

    NASA Technical Reports Server (NTRS)

    Kunz, Karl S.

    1986-01-01

    Information concerning the programming, maintenance and operation of the G3DXL computer program is presented and the theoretical basis for the code is described. The program computes time domain scattering fields and surface currents and charges induced by a driving function on and within a complex scattering object which may be perfectly conducting or a lossy dielectric. This is accomplished by modeling the object with cells within a three-dimensional, rectangular problem space, enforcing the appropriate boundary conditions and differencing Maxwell's equations in time. In the present version of the program, the driving function can be either the field radiated by a lightning strike or a direct lightning strike. The F-106 B aircraft is used as an example scattering object.

  14. Error reduction program: A progress report

    NASA Technical Reports Server (NTRS)

    Syed, S. A.

    1984-01-01

    Five finite differences schemes were evaluated for minimum numerical diffusion in an effort to identify and incorporate the best error reduction scheme into a 3D combustor performance code. Based on this evaluated, two finite volume method schemes were selected for further study. Both the quadratic upstream differencing scheme (QUDS) and the bounded skew upstream differencing scheme two (BSUDS2) were coded into a two dimensional computer code and their accuracy and stability determined by running several test cases. It was found that BSUDS2 was more stable than QUDS. It was also found that the accuracy of both schemes is dependent on the angle that the streamline make with the mesh with QUDS being more accurate at smaller angles and BSUDS2 more accurate at larger angles. The BSUDS2 scheme was selected for extension into three dimensions.

  15. Bi-temporal analysis of landscape changes in the easternmost mediterranean deltas using binary and classified change information.

    PubMed

    Alphan, Hakan

    2013-03-01

    The aim of this study is (1) to quantify landscape changes in the easternmost Mediterranean deltas using bi-temporal binary change detection approach and (2) to analyze relationships between conservation/management designations and various categories of change that indicate type, degree and severity of human impact. For this purpose, image differencing and ratioing were applied to Landsat TM images of 1984 and 2006. A total of 136 candidate change images including normalized difference vegetation index (NDVI) and principal component analysis (PCA) difference images were tested to understand performance of bi-temporal pre-classification analysis procedures in the Mediterranean delta ecosystems. Results showed that visible image algebra provided high accuracies than did NDVI and PCA differencing. On the other hand, Band 5 differencing had one of the lowest change detection performances. Seven superclasses of change were identified using from/to change categories between the earlier and later dates. These classes were used to understand spatial character of anthropogenic impacts in the study area and derive qualitative and quantitative change information within and outside of the conservation/management areas. Change analysis indicated that natural site and wildlife reserve designations fell short of protecting sand dunes from agricultural expansion in the west. East of the study area, however, was exposed to least human impact owing to the fact that nature conservation status kept human interference at a minimum. Implications of these changes were discussed and solutions were proposed to deal with management problems leading to environmental change.

  16. Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry. Part 2: Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Border, J. S.; Nandi, S.; Zukor, K. S.

    1993-01-01

    A new radio metric positioning technique has demonstrated improved orbit determination accuracy for the Magellan and Pioneer Venus Orbiter orbiters. The new technique, known as Same-Beam Interferometry (SBI), is applicable to the positioning of multiple planetary rovers, landers, and orbiters which may simultaneously be observed in the same beamwidth of Earth-based radio antennas. Measurements of carrier phase are differenced between spacecraft and between receiving stations to determine the plane-of-sky components of the separation vector(s) between the spacecraft. The SBI measurements complement the information contained in line-of-sight Doppler measurements, leading to improved orbit determination accuracy. Orbit determination solutions have been obtained for a number of 48-hour data arcs using combinations of Doppler, differenced-Doppler, and SBI data acquired in the spring of 1991. Orbit determination accuracy is assessed by comparing orbit solutions from adjacent data arcs. The orbit solution differences are shown to agree with expected orbit determination uncertainties. The results from this demonstration show that the orbit determination accuracy for Magellan obtained by using Doppler plus SBI data is better than the accuracy achieved using Doppler plus differenced-Doppler by a factor of four and better than the accuracy achieved using only Doppler by a factor of eighteen. The orbit determination accuracy for Pioneer Venus Orbiter using Doppler plus SBI data is better than the accuracy using only Doppler data by 30 percent.

  17. A review of hybrid implicit explicit finite difference time domain method

    NASA Astrophysics Data System (ADS)

    Chen, Juan

    2018-06-01

    The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.

  18. Investigation of High School Students' Online Science Information Searching Performance: The Role of Implicit and Explicit Strategies

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Jung; Hsu, Chung-Yuan; Tsai, Chin-Chung

    2012-04-01

    Due to a growing trend of exploring scientific knowledge on the Web, a number of studies have been conducted to highlight examination of students' online searching strategies. The investigation of online searching generally employs methods including a survey, interview, screen-capturing, or transactional logs. The present study firstly intended to utilize a survey, the Online Information Searching Strategies Inventory (OISSI), to examine users' searching strategies in terms of control, orientation, trial and error, problem solving, purposeful thinking, selecting main ideas, and evaluation, which is defined as implicit strategies. Second, this study conducted screen-capturing to investigate the students' searching behaviors regarding the number of keywords, the quantity and depth of Web page exploration, and time attributes, which is defined as explicit strategies. Ultimately, this study explored the role that these two types of strategies played in predicting the students' online science information searching outcomes. A total of 103 Grade 10 students were recruited from a high school in northern Taiwan. Through Pearson correlation and multiple regression analyses, the results showed that the students' explicit strategies, particularly the time attributes proposed in the present study, were more successful than their implicit strategies in predicting their outcomes of searching science information. The participants who spent more time on detailed reading (explicit strategies) and had better skills of evaluating Web information (implicit strategies) tended to have superior searching performance.

  19. Evaluating the care of general medicine inpatients: how good is implicit review?

    PubMed

    Hayward, R A; McMahon, L F; Bernard, A M

    1993-04-01

    Peer review often consists of implicit evaluations by physician reviewers of the quality and appropriateness of care. This study evaluated the ability of implicit review to measure reliably various aspects of care on a general medicine inpatient service. Retrospective review of patients' charts, using structured implicit review, of a stratified random sample of consecutive admissions to a general medicine ward. A university teaching hospital. Twelve internists were trained in structured implicit review and reviewed 675 patient admissions (with 20% duplicate reviews for a total of 846 reviews). Although inter-rater reliabilities for assessments of overall quality of care and preventable deaths (kappa = 0.5) were adequate for aggregate comparisons (for example, comparing mean ratings on two hospital wards), they were inadequate for reliable evaluations of single patients using one or two reviewers. Reviewers' agreement about most focused quality problems (for example, timeliness of diagnostic evaluation and clinical readiness at time of discharge) and about the appropriateness of hospital ancillary resource use was poor (kappa < or = 0.2). For most focused implicit measures, bias due to specific reviewers who were systematically more harsh or lenient (particularly for evaluation of resource-use appropriateness) accounted for much of the variation in reviewers' assessments, but this was not a substantial problem for the measure of overall quality. Reviewers rarely reported being unable to evaluate the quality of care because of deficiencies in documentation in the patient's chart. For assessment of overall quality and preventable deaths of general medicine inpatients, implicit review by peers had moderate degrees of reliability, but for most other specific aspects of care, physician reviewers could not agree. Implicit review was particularly unreliable at evaluating the appropriateness of hospital resource use and the patient's readiness for discharge, two areas where this type of review is often used.

  20. Implicit Memory in Korsakoff’s Syndrome: A Review of Procedural Learning and Priming Studies

    PubMed Central

    Hayes, Scott M.; Fortier, Catherine B.; Levine, Andrea; Milberg, William P.; McGlinchey, Regina

    2013-01-01

    Korsakoff’s syndrome (KS) is characterized by dense anterograde amnesia resulting from damage to the diencephalon region, typically resulting from chronic alcohol abuse and thiamine deficiency. This review assesses the integrity of the implicit memory system in KS, focusing on studies of procedural learning and priming. KS patients are impaired on several measures of procedural memory, most likely due to impairment in cognitive functions associated with alcohol-related neural damage outside of the diencephalon. The pattern of performance on tasks of implicit priming suggests reliance on a residual, non-flexible memory operating more or less in an automatic fashion. Our review concludes that whether measures of implicit memory reveal intact or impaired performance in individuals with KS depends heavily on specific task parameters and demands, including timing between stimuli, the specific nature of the stimuli used in a task, and the integrity of supportive cognitive functions necessary for performance. PMID:22592661

  1. Parallelization of implicit finite difference schemes in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel

    1990-01-01

    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.

  2. On Feeling Torn About One’s Sexuality

    PubMed Central

    Windsor-Shellard, Ben

    2014-01-01

    Three studies offer novel evidence addressing the consequences of explicit–implicit sexual orientation (SO) ambivalence. In Study 1, self-identified straight females completed explicit and implicit measures of SO. The results revealed that participants with greater SO ambivalence took longer responding to explicit questions about their sexual preferences, an effect moderated by the direction of ambivalence. Study 2 replicated this effect using a different paradigm. Study 3 included self-identified straight and gay female and male participants; participants completed explicit and implicit measures of SO, plus measures of self-esteem and affect regarding their SO. Among straight participants, the response time results replicated the findings of Studies 1 and 2. Among gay participants, trends suggested that SO ambivalence influenced time spent deliberating on explicit questions relevant to sexuality, but in a different way. Furthermore, the amount and direction of SO ambivalence was related to self-esteem. PMID:24972940

  3. Corrected Implicit Monte Carlo

    DOE PAGES

    Cleveland, Mathew Allen; Wollaber, Allan Benton

    2018-01-02

    Here in this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle formore » frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. Finally, we present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.« less

  4. Motor learning and consolidation: the case of visuomotor rotation.

    PubMed

    Krakauer, John W

    2009-01-01

    Adaptation to visuomotor rotation is a particular form of motor learning distinct from force-field adaptation, sequence learning, and skill learning. Nevertheless, study of adaptation to visuomotor rotation has yielded a number of findings and principles that are likely of general importance to procedural learning and memory. First, rotation learning is implicit and appears to proceed through reduction in a visual prediction error generated by a forward model, such implicit adaptation occurs even when it is in conflict with an explicit task goal. Second, rotation learning is subject to different forms of interference: retrograde, anterograde through aftereffects, and contextual blocking of retrieval. Third, opposite rotations can be recalled within a short time interval without interference if implicit contextual cues (effector change) rather than explicit cues (color change) are used. Fourth, rotation learning consolidates both over time and with increased initial training (saturation learning).

  5. Academic and emotional functioning in middle school: the role of implicit theories.

    PubMed

    Romero, Carissa; Master, Allison; Paunesku, Dave; Dweck, Carol S; Gross, James J

    2014-04-01

    Adolescents face many academic and emotional challenges in middle school, but notable differences are evident in how well they adapt. What predicts adolescents' academic and emotional outcomes during this period? One important factor might be adolescents' implicit theories about whether intelligence and emotions can change. The current study examines how these theories affect academic and emotional outcomes. One hundred fifteen students completed surveys throughout middle school, and their grades and course selections were obtained from school records. Students who believed that intelligence could be developed earned higher grades and were more likely to move to advanced math courses over time. Students who believed that emotions could be controlled reported fewer depressive symptoms and, if they began middle school with lower well-being, were more likely to feel better over time. These findings illustrate the power of adolescents' implicit theories, suggesting exciting new pathways for intervention.

  6. Multirate Particle-in-Cell Time Integration Techniques of Vlasov-Maxwell Equations for Collisionless Kinetic Plasma Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guangye; Chacon, Luis; Knoll, Dana Alan

    2015-07-31

    A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω peΔt >>1, and Δx >> λ D), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylovmore » (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.« less

  7. Computational Aerothermodynamics in Aeroassist Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2001-01-01

    Aeroassisted planetary entry uses atmospheric drag to decelerate spacecraft from super-orbital to orbital or suborbital velocities. Numerical simulation of flow fields surrounding these spacecraft during hypersonic atmospheric entry is required to define aerothermal loads. The severe compression in the shock layer in front of the vehicle and subsequent, rapid expansion into the wake are characterized by high temperature, thermo-chemical nonequilibrium processes. Implicit algorithms required for efficient, stable computation of the governing equations involving disparate time scales of convection, diffusion, chemical reactions, and thermal relaxation are discussed. Robust point-implicit strategies are utilized in the initialization phase; less robust but more efficient line-implicit strategies are applied in the endgame. Applications to ballutes (balloon-like decelerators) in the atmospheres of Venus, Mars, Titan, Saturn, and Neptune and a Mars Sample Return Orbiter (MSRO) are featured. Examples are discussed where time-accurate simulation is required to achieve a steady-state solution.

  8. Corrected implicit Monte Carlo

    NASA Astrophysics Data System (ADS)

    Cleveland, M. A.; Wollaber, A. B.

    2018-04-01

    In this work we develop a set of nonlinear correction equations to enforce a consistent time-implicit emission temperature for the original semi-implicit IMC equations. We present two possible forms of correction equations: one results in a set of non-linear, zero-dimensional, non-negative, explicit correction equations, and the other results in a non-linear, non-negative, Boltzman transport correction equation. The zero-dimensional correction equations adheres to the maximum principle for the material temperature, regardless of frequency-dependence, but does not prevent maximum principle violation in the photon intensity, eventually leading to material overheating. The Boltzman transport correction guarantees adherence to the maximum principle for frequency-independent simulations, at the cost of evaluating a reduced source non-linear Boltzman equation. We present numerical evidence suggesting that the Boltzman transport correction, in its current form, significantly improves time step limitations but does not guarantee adherence to the maximum principle for frequency-dependent simulations.

  9. Forecast of Frost Days Based on Monthly Temperatures

    NASA Astrophysics Data System (ADS)

    Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.

    2009-04-01

    Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.

  10. Tidewater dynamics at Store Glacier, West Greenland from daily repeat UAV surveys

    NASA Astrophysics Data System (ADS)

    Ryan, Jonathan; Hubbard, Alun; Toberg, Nick; Box, Jason; Todd, Joe; Christoffersen, Poul; Neal, Snooke

    2017-04-01

    A significant component of the Greenland ice sheet's mass wasteage to sea level rise is attributed to the acceleration and dynamic thinning at its tidewater margins. To improve understanding of the rapid mass loss processes occurring at large tidewater glaciers, we conducted a suite of daily repeat aerial surveys across the terminus of Store Glacier, a large outlet draining the western Greenland Ice Sheet, from May to July 2014 (https://www.youtube.com/watch?v=-y8kauAVAfE). The unmanned aerial vehicles (UAVs) were equipped with digital cameras, which, in combination with onboard GPS, enabled production of high spatial resolution orthophotos and digital elevation models (DEMs) using standard structure-from-motion techniques. These data provide insight into the short-term dynamics of Store Glacier surrounding the break-up of the sea-ice mélange that occurred between 4 and 7 June. Feature tracking of the orthophotos reveals that mean speed of the terminus is 16 - 18 m per day, which was independently verified against a high temporal resolution time-series derived from an expendable/telemetric GPS deployed at the terminus. Differencing the surface area of successive orthophotos enable quantification of daily calving rates, which significantly increase just after melange break-up. Likewise, by differencing bulk freeboard volume of icebergs through time we could also constrain the magnitude and variation of submarine melt. We calculate a mean submarine melt rate of 0.18 m per day throughout the spring period with relatively little supraglacial runoff and no active meltwater plumes to stimulate fjord circulation and upwelling of deeper, warmer water masses. Finally, we relate calving rates to the zonation and depth of water-filled crevasses, which were prominent across parts of the terminus from June onwards.

  11. Assessing bias against overweight individuals among nursing and psychology students: an implicit association test.

    PubMed

    Waller, Tabitha; Lampman, Claudia; Lupfer-Johnson, Gwen

    2012-12-01

    To determine the implicit or unconscious attitudes of Nursing and Psychology majors towards overweight individuals in medical and non-medical contexts. Obesity is a leading health concern today, which impacts both physical and psychological health. Overweight individuals confront social biases in many aspects of their lives including health care. Examining the views of Nursing and Psychology students may reveal implicit attitudes towards overweight individuals that may lead to prejudiced behaviours. A mixed design experiment with one between-subjects variable (student major: Nursing or Psychology) and one within-subjects variable (condition: congruent or incongruent) was used to assess implicit attitudes in two convenience samples of Nursing and Psychology students. A computerised implicit association test was used to determine implicit attitudes towards overweight individuals in medical and non-medical contexts. A total of 90 students from Nursing (n= 45) and Psychology (n = 45) were recruited to complete an implicit association test. Reaction times in milliseconds between the congruent trials (stereotype consistent) and incongruent trials (stereotype inconsistent) were compared with determine adherence to social stereotypes or weight bias. A statistically significant implicit bias towards overweight individuals was detected in both subject groups and in both target settings (medical vs. non-medical). Stronger weight bias was found when the stimulus targets were female than male. Findings from this study expand understanding of the implicit attitudes and social biases of Nursing and Psychology students. The views held by these future healthcare professionals may negatively impact patient care. Providing education and support to overweight individuals is central to Nursing practice in a society struggling to manage obesity. Negative stereotypes or beliefs about these individuals may result in poor patient care. Therefore, nurses and other healthcare professionals must be aware of personal biases and work to develop methods to address weight-related issues in a therapeutic manner. © 2012 Blackwell Publishing Ltd.

  12. Everyday conversation requires cognitive inference: neural bases of comprehending implicated meanings in conversations.

    PubMed

    Jang, Gijeong; Yoon, Shin-ae; Lee, Sung-Eun; Park, Haeil; Kim, Joohan; Ko, Jeong Hoon; Park, Hae-Jeong

    2013-11-01

    In ordinary conversations, literal meanings of an utterance are often quite different from implicated meanings and the inference about implicated meanings is essentially required for successful comprehension of the speaker's utterances. Inference of finding implicated meanings is based on the listener's assumption that the conversational partner says only relevant matters according to the maxim of relevance in Grice's theory of conversational implicature. To investigate the neural correlates of comprehending implicated meanings under the maxim of relevance, a total of 23 participants underwent an fMRI task with a series of conversational pairs, each consisting of a question and an answer. The experimental paradigm was composed of three conditions: explicit answers, moderately implicit answers, and highly implicit answers. Participants were asked to decide whether the answer to the Yes/No question meant 'Yes' or 'No'. Longer reaction time was required for the highly implicit answers than for the moderately implicit answers without affecting the accuracy. The fMRI results show that the left anterior temporal lobe, left angular gyrus, and left posterior middle temporal gyrus had stronger activation in both moderately and highly implicit conditions than in the explicit condition. Comprehension of highly implicit answers had increased activations in additional regions including the left inferior frontal gyrus, left medial prefrontal cortex, left posterior cingulate cortex and right anterior temporal lobe. The activation results indicate involvement of these regions in the inference process to build coherence between literally irrelevant but pragmatically associated utterances under the maxim of relevance. Especially, the left anterior temporal lobe showed high sensitivity to the level of implicitness and showed increased activation for highly versus moderately implicit conditions, which imply its central role in inference such as semantic integration. The right hemisphere activation, uniquely found in the anterior temporal lobe for highly implicit utterances, suggests its competence for integrating distant concepts in implied utterances under the relevance principle. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Exponential integration algorithms applied to viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    Four, linear, exponential, integration algorithms (two implicit, one explicit, and one predictor/corrector) are applied to a viscoplastic model to assess their capabilities. Viscoplasticity comprises a system of coupled, nonlinear, stiff, first order, ordinary differential equations which are a challenge to integrate by any means. Two of the algorithms (the predictor/corrector and one of the implicits) give outstanding results, even for very large time steps.

  14. An implicit higher-order spatially accurate scheme for solving time dependent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Tomaro, Robert F.

    1998-07-01

    The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.

  15. The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.

    PubMed

    Du, Yue; Clark, Jane E

    2018-05-03

    This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.

  16. Children can implicitly, but not voluntarily, direct attention in time.

    PubMed

    Johnson, Katherine A; Burrowes, Emma; Coull, Jennifer T

    2015-01-01

    Children are able to use spatial cues to orient their attention to discrete locations in space from around 4 years of age. In contrast, no research has yet investigated the ability of children to use informative cues to voluntarily predict when an event will occur in time. The spatial and temporal attention task was used to determine whether children were able to voluntarily orient their attention in time, as well as in space: symbolic spatial and temporal cues predicted where or when an imperative target would appear. Thirty typically developing children (average age 11 yrs) and 32 adults (average age 27 yrs) took part. Confirming previous findings, adults made use of both spatial and temporal cues to optimise behaviour, and were significantly slower to respond to invalidly cued targets in either space or time. Children were also significantly slowed by invalid spatial cues, demonstrating their use of spatial cues to guide expectations. In contrast, children's responses were not slowed by invalid temporal cues, suggesting that they were not using the temporal cue to voluntarily orient attention through time. Children, as well as adults, did however demonstrate signs of more implicit forms of temporal expectation: RTs were faster for long versus short cue-target intervals (the variable foreperiod effect) and slower when the preceding trial's cue-target interval was longer than that on the current trial (sequential effects). Overall, our results suggest that although children implicitly made use of the temporally predictive information carried by the length of the current and previous trial's cue-target interval, they could not deliberately use symbolic temporal cues to speed responses. The developmental trajectory of the ability to voluntarily use symbolic temporal cues is therefore delayed, relative both to the use of symbolic (arrow) spatial cues, and to the use of implicit temporal information.

  17. Spectral analysis based on fast Fourier transformation (FFT) of surveillance data: the case of scarlet fever in China.

    PubMed

    Zhang, T; Yang, M; Xiao, X; Feng, Z; Li, C; Zhou, Z; Ren, Q; Li, X

    2014-03-01

    Many infectious diseases exhibit repetitive or regular behaviour over time. Time-domain approaches, such as the seasonal autoregressive integrated moving average model, are often utilized to examine the cyclical behaviour of such diseases. The limitations for time-domain approaches include over-differencing and over-fitting; furthermore, the use of these approaches is inappropriate when the assumption of linearity may not hold. In this study, we implemented a simple and efficient procedure based on the fast Fourier transformation (FFT) approach to evaluate the epidemic dynamic of scarlet fever incidence (2004-2010) in China. This method demonstrated good internal and external validities and overcame some shortcomings of time-domain approaches. The procedure also elucidated the cycling behaviour in terms of environmental factors. We concluded that, under appropriate circumstances of data structure, spectral analysis based on the FFT approach may be applicable for the study of oscillating diseases.

  18. Exposing Racial Discrimination: Implicit & Explicit Measures–The My Body, My Story Study of 1005 US-Born Black & White Community Health Center Members

    PubMed Central

    Krieger, Nancy; Waterman, Pamela D.; Kosheleva, Anna; Chen, Jarvis T.; Carney, Dana R.; Smith, Kevin W.; Bennett, Gary G.; Williams, David R.; Freeman, Elmer; Russell, Beverley; Thornhill, Gisele; Mikolowsky, Kristin; Rifkin, Rachel; Samuel, Latrice

    2011-01-01

    Background To date, research on racial discrimination and health typically has employed explicit self-report measures, despite their potentially being affected by what people are able and willing to say. We accordingly employed an Implicit Association Test (IAT) for racial discrimination, first developed and used in two recent published studies, and measured associations of the explicit and implicit discrimination measures with each other, socioeconomic and psychosocial variables, and smoking. Methodology/Principal Findings Among the 504 black and 501 white US-born participants, age 35–64, randomly recruited in 2008–2010 from 4 community health centers in Boston, MA, black participants were over 1.5 times more likely (p<0.05) to be worse off economically (e.g., for poverty and low education) and have higher social desirability scores (43.8 vs. 28.2); their explicit discrimination exposure was also 2.5 to 3.7 times higher (p<0.05) depending on the measure used, with over 60% reporting exposure in 3 or more domains and within the last year. Higher IAT scores for target vs. perpetrator of discrimination occurred for the black versus white participants: for “black person vs. white person”: 0.26 vs. 0.13; and for “me vs. them”: 0.24 vs. 0.19. In both groups, only low non-significant correlations existed between the implicit and explicit discrimination measures; social desirability was significantly associated with the explicit but not implicit measures. Although neither the explicit nor implicit discrimination measures were associated with odds of being a current smoker, the excess risk for black participants (controlling for age and gender) rose in models that also controlled for the racial discrimination and psychosocial variables; additional control for socioeconomic position sharply reduced and rendered the association null. Conclusions Implicit and explicit measures of racial discrimination are not equivalent and both warrant use in research on racial discrimination and health, along with data on socioeconomic position and social desirability. PMID:22125618

  19. Evaluating channel morphologic changes and bed-material transport using airborne lidar, upper Colorado River, Rocky Mountain National Park, Colorado

    NASA Astrophysics Data System (ADS)

    Mangano, Joseph F.

    A debris flow associated with the 2003 breach of Grand Ditch in Rocky Mountain National Park, Colorado provided an opportunity to determine controls on channel geomorphic responses following a large sedimentation event. Due to the remote site location and high spatial and temporal variability of processes controlling channel response, repeat airborne lidar surveys in 2004 and 2012 were used to capture conditions along the upper Colorado River and tributary Lulu Creek i) one year following the initial debris flow, and ii) following two bankfull flows (2009 and 2010) and a record-breaking long duration, high intensity snowmelt runoff season (2011). Locations and volumes of aggradation and degradation were determined using lidar differencing. Channel and valley metrics measured from the lidar surveys included water surface slope, valley slope, changes in bankfull width, sinuosity, braiding index, channel migration, valley confinement, height above the water surface along the floodplain, and longitudinal profiles. Reaches of aggradation and degradation along the upper Colorado River are influenced by valley confinement and local controls. Aggradational reaches occurred predominantly in locations where the valley was unconfined and valley slope remained constant through the length of the reach. Channel avulsions, migration, and changes in sinuosity were common in all unconfined reaches, whether aggradational or degradational. Bankfull width in both aggradational and degradational reaches showed greater changes closer to the sediment source, with the magnitude of change decreasing downstream. Local variations in channel morphology, site specific channel conditions, and the distance from the sediment source influence the balance of transport supply and capacity and, therefore, locations of aggradation, degradation, and associated morphologic changes. Additionally, a complex response initially seen in repeat cross-sections is broadly supported by lidar differencing, although the differencing captures only the net change over eight years and not annual changes. Lidar differencing shows great promise because it reveals vertical and horizontal trends in morphologic changes at a high resolution over a large area. Repeat lidar surveys were also used to create a sediment budget along the upper Colorado River by means of the morphologic inverse method. In addition to the geomorphic changes detected by lidar, several levels of attrition of the weak clasts within debris flow sediment were applied to the sediment budget to reduce gaps in expected inputs and outputs. Bed-material estimates using the morphologic inverse method were greater than field-measured transport estimates, but the two were within an order of magnitude. Field measurements and observations are critical for robust interpretation of the lidar-based analyses because applying lidar differencing without field control may not identify local controls on valley and channel geometry and sediment characteristics. The final sediment budget helps define variability in bed-material transport and constrain transport rates through the site, which will be beneficial for restoration planning. The morphologic inverse method approach using repeat lidar surveys appears promising, especially if lidar resolution is similar between sequential surveys.

  20. Narcissistic Traits and Explicit Self-Esteem: The Moderating Role of Implicit Self-View

    PubMed Central

    Di Pierro, Rossella; Mattavelli, Simone; Gallucci, Marcello

    2016-01-01

    Objective: Whilst the relationship between narcissism and self-esteem has been studied for a long time, findings are still controversial. The majority of studies investigated narcissistic grandiosity (NG), neglecting the existence of vulnerable manifestations of narcissism. Moreover, recent studies have shown that grandiosity traits are not always associated with inflated explicit self-esteem. The aim of the present study is to investigate the relationship between narcissistic traits and explicit self-esteem, distinguishing between grandiosity and vulnerability. Moreover, we consider the role of implicit self-esteem in qualifying these associations. Method: Narcissistic traits, explicit and implicit self-esteem measures were assessed among 120 university students (55.8% women, Mage = 22.55, SD = 3.03). Results: Results showed different patterns of association between narcissistic traits and explicit self-esteem, depending on phenotypic manifestations of narcissism. Narcissistic vulnerability (NV) was linked to low explicit self-evaluations regardless of one’s levels of implicit self-esteem. On the other hand, the link between NG and explicit self-esteem was qualified by levels of implicit self-views, such that grandiosity was significantly associated with inflated explicit self-evaluations only at either high or medium levels of implicit self-views. Discussion: These findings showed that the relationship between narcissistic traits and explicit self-esteem is not univocal, highlighting the importance of distinguishing between NG and NV. Finally, the study suggested that both researchers and clinicians should consider the relevant role of implicit self-views in conditioning self-esteem levels reported explicitly by individuals with grandiose narcissistic traits. PMID:27920739

  1. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.

    PubMed

    Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J

    2013-05-01

    Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.

  2. Narcissistic Traits and Explicit Self-Esteem: The Moderating Role of Implicit Self-View.

    PubMed

    Di Pierro, Rossella; Mattavelli, Simone; Gallucci, Marcello

    2016-01-01

    Objective: Whilst the relationship between narcissism and self-esteem has been studied for a long time, findings are still controversial. The majority of studies investigated narcissistic grandiosity (NG), neglecting the existence of vulnerable manifestations of narcissism. Moreover, recent studies have shown that grandiosity traits are not always associated with inflated explicit self-esteem. The aim of the present study is to investigate the relationship between narcissistic traits and explicit self-esteem, distinguishing between grandiosity and vulnerability. Moreover, we consider the role of implicit self-esteem in qualifying these associations. Method: Narcissistic traits, explicit and implicit self-esteem measures were assessed among 120 university students (55.8% women, M age = 22.55, SD = 3.03). Results: Results showed different patterns of association between narcissistic traits and explicit self-esteem, depending on phenotypic manifestations of narcissism. Narcissistic vulnerability (NV) was linked to low explicit self-evaluations regardless of one's levels of implicit self-esteem. On the other hand, the link between NG and explicit self-esteem was qualified by levels of implicit self-views, such that grandiosity was significantly associated with inflated explicit self-evaluations only at either high or medium levels of implicit self-views. Discussion: These findings showed that the relationship between narcissistic traits and explicit self-esteem is not univocal, highlighting the importance of distinguishing between NG and NV. Finally, the study suggested that both researchers and clinicians should consider the relevant role of implicit self-views in conditioning self-esteem levels reported explicitly by individuals with grandiose narcissistic traits.

  3. Does language help regularity learning? The influence of verbalizations on implicit sequential regularity learning and the emergence of explicit knowledge in children, younger and older adults.

    PubMed

    Ferdinand, Nicola K; Kray, Jutta

    2017-03-01

    This study aimed at investigating the ability to learn regularities across the life span and examine whether this learning process can be supported or hampered by verbalizations. For this purpose, children (aged 8-10 years) and younger (aged 19-30 years) and older (aged 70-80 years) adults took part in a sequence learning experiment. We found that verbalizing sequence-congruent information during learning is a powerful tool to generate explicit knowledge and it is especially helpful for younger adults. Although recent research suggests that implicit learning can be influenced by directing the participants' attention to relevant aspects of the task, verbalizations had a much weaker influence on implicit than explicit learning. Our results show that verbalizing during learning slows down reaction times (RTs) but does not influence the amount of implicit learning. Especially older adults were not able to overcome the cost of the dual-task situation. Younger adults, in contrast, show an initial dual-tasking cost that, in the case of a helpful verbalization, is overcome with practice and turns into a RT and learning benefit. However, when the verbalization is omitted this benefit is lost, that is, better implicit learning seems to be confined to situations in which the supporting verbalization is maintained. Additionally, we did not find reliable age differences in implicit learning in the no verbalization groups, which speaks in favor of age-invariant models of implicit learning across the life span. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Workplace ageism: discovering hidden bias.

    PubMed

    Malinen, Sanna; Johnston, Lucy

    2013-01-01

    BACKGROUND/STUDY CONTEXT: Research largely shows no performance differences between older and younger employees, or that older workers even outperform younger employees, yet negative attitudes towards older workers can underpin discrimination. Unfortunately, traditional "explicit" techniques for assessing attitudes (i.e., self-report measures) have serious drawbacks. Therefore, using an approach that is novel to organizational contexts, the authors supplemented explicit with implicit (indirect) measures of attitudes towards older workers, and examined the malleability of both. This research consists of two studies. The authors measured self-report (explicit) attitudes towards older and younger workers with a survey, and implicit attitudes with a reaction-time-based measure of implicit associations. In addition, to test whether attitudes were malleable, the authors measured attitudes before and after a mental imagery intervention, where the authors asked participants in the experimental group to imagine respected and valued older workers from their surroundings. Negative, stable implicit attitudes towards older workers emerged in two studies. Conversely, explicit attitudes showed no age bias and were more susceptible to change intervention, such that attitudes became more positive towards older workers following the experimental manipulation. This research demonstrates the unconscious nature of bias against older workers, and highlights the utility of implicit attitude measures in the context of the workplace. In the current era of aging workforce and skill shortages, implicit measures may be necessary to illuminate hidden workplace ageism.

  5. [Effect of divided attention on explicit and implicit aspects of recall].

    PubMed

    Wippich, W; Schmitt, R; Mecklenbräuker, S

    1989-01-01

    If subjects have to form word images before spelling a word from the image, results of a repetition of the spelling test reveal a reliable priming effect: Old words can be spelled faster than comparable control words, reflecting a form of implicit memory. We investigated whether this kind of repetition priming remains stable under conditions of divided attention in the study phase. The subjects had to spell meaningful words, meaningless non-words, and non-words that were meaningful with a backward spelling direction (troper, for example). In the testing stage, recognition judgments as a form of explicit memory were required, too. Divided attention in the study phase had a negative effect on explicit memory, as revealed by performance on the recognition task, but had little effect on implicit memory, as revealed by performance on the repetition of the spelling test. A further dissociation between implicit and explicit memory showed up as meaningful words were recognized much better than non-words, whereas implicit memory was uninfluenced by the meaningfulness variable. The disadvantage of backward spellings was not reduced with non-words (like troper) spelled backwards. Finally, we analyzed the relations between spelling times and recognition judgments and found a pattern of dependency for non-words only. Generally, the results are discussed within processing-oriented approaches to implicit memory with a special emphasis on controversial findings concerning the role of attention in different expressions of memory.

  6. Combined AIE/EBE/GMRES approach to incompressible flows. [Adaptive Implicit-Explicit/Grouped Element-by-Element/Generalized Minimum Residuals

    NASA Technical Reports Server (NTRS)

    Liou, J.; Tezduyar, T. E.

    1990-01-01

    Adaptive implicit-explicit (AIE), grouped element-by-element (GEBE), and generalized minimum residuals (GMRES) solution techniques for incompressible flows are combined. In this approach, the GEBE and GMRES iteration methods are employed to solve the equation systems resulting from the implicitly treated elements, and therefore no direct solution effort is involved. The benchmarking results demonstrate that this approach can substantially reduce the CPU time and memory requirements in large-scale flow problems. Although the description of the concepts and the numerical demonstration are based on the incompressible flows, the approach presented here is applicable to larger class of problems in computational mechanics.

  7. An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring

    NASA Technical Reports Server (NTRS)

    Buratynski, E. K.; Caughey, D. A.

    1984-01-01

    An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.

  8. Avoiding stimulus confounds in Implicit Association Tests by using the concepts as stimuli.

    PubMed

    Steffens, Melanie C; Kirschbaum, Michael; Glados, Petra

    2008-06-01

    Implicit Association Tests (IATs) are supposed to measure associations between concepts. In order to achieve that aim, participants are required to assign individual stimuli to those concepts under time pressure in two different tasks. Previous research has shown that not only the associations of the concepts with each other, but also the stimuli's cross-category associations influence the observed reaction time difference between these tasks (i.e. the IAT effect). Little is known about adequate stimulus selection. In this article, we introduce a variant of the IAT, the Concept Association Task (CAT) in which the concepts themselves or synonyms of them are used as stimuli. Three experiments on Germans' attitudes towards foreigners yielded evidence for the convergent validity of the CAT: (1) it correlated well with other IAT versions; (2) it correlated higher with spontaneous attitude-related judgements than other IAT versions; and (3) it correlated with response-window priming, another implicit measure based on reaction times. Furthermore, we showed that the CAT yielded reasonable findings when other IAT versions appear to yield distorted ones.

  9. An exponential time-integrator scheme for steady and unsteady inviscid flows

    NASA Astrophysics Data System (ADS)

    Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili

    2018-07-01

    An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.

  10. Disentangling perceptual from motor implicit sequence learning with a serial color-matching task.

    PubMed

    Gheysen, Freja; Gevers, Wim; De Schutter, Erik; Van Waelvelde, Hilde; Fias, Wim

    2009-08-01

    This paper contributes to the domain of implicit sequence learning by presenting a new version of the serial reaction time (SRT) task that allows unambiguously separating perceptual from motor learning. Participants matched the colors of three small squares with the color of a subsequently presented large target square. An identical sequential structure was tied to the colors of the target square (perceptual version, Experiment 1) or to the manual responses (motor version, Experiment 2). Short blocks of sequenced and randomized trials alternated and hence provided a continuous monitoring of the learning process. Reaction time measurements demonstrated clear evidence of independently learning perceptual and motor serial information, though revealed different time courses between both learning processes. No explicit awareness of the serial structure was needed for either of the two types of learning to occur. The paradigm introduced in this paper evidenced that perceptual learning can occur with SRT measurements and opens important perspectives for future imaging studies to answer the ongoing question, which brain areas are involved in the implicit learning of modality specific (motor vs. perceptual) or general serial order.

  11. Multifocal ERG findings in carriers of X-linked retinoschisis

    PubMed Central

    Kim, Linda S.; Seiple, William; Szlyk, Janet P.

    2006-01-01

    Purpose To determine whether retinal dysfunction in obligate carriers of X-linked retinoschisis (XLRS) could be observed in local electroretinographic responses obtained with the multifocal electroretinogram (mfERG). Methods Nine obligate carriers of XLRS (mean age, 46.2 years) were examined for the study. Examination of each carrier included an ocular examination and mfERG testing. For the mfERG, we used a 103-scaled hexagonal stimulus array that subtended a retinal area of approximately 40° in diameter. The amplitudes and implicit times in each location for the mfERG were compared with the corresponding values determined for a group of 34 normally-sighted, age-similar control subjects. Results Mapping of 103 local electroretinographic response amplitudes and implicit times within a central 40° area with the mfERG showed regions of reduced mfERG amplitudes and delayed implicit times in two of nine carriers. Conclusions The mfERG demonstrated areas of retinal dysfunction in two carriers of XLRS. When present, retinal dysfunction was evident in the presence of a normal-appearing fundus. Multifocal ERG testing can be useful for identifying some carriers of XLRS. PMID:17180613

  12. Earth orientation from lunar laser range-differencing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leick, A.

    1978-01-01

    For the optimal use of high precision lunar laser ranging (LLR), an investigation regarding a clear definition of the underlying coordinate systems, identification of estimable quantities, favorable station geometry and optimal observation schedule is given.

  13. Combination of GPS and GLONASS IN PPP algorithms and its effect on site coordinates determination

    NASA Astrophysics Data System (ADS)

    Hefty, J.; Gerhatova, L.; Burgan, J.

    2011-10-01

    Precise Point Positioning (PPP) approach using the un-differenced code and phase GPS observations, precise orbits and satellite clocks is an important alternative to the analyses based on double differences. We examine the extension of the PPP method by introducing the GLONASS satellites into the processing algorithms. The procedures are demonstrated on the software package ABSOLUTE developed at the Slovak University of Technology. Partial results, like ambiguities and receiver clocks obtained from separate solutions of the two GNSS are mutually compared. Finally, the coordinate time series from combination of GPS and GLONASS observations are compared with GPS-only solutions.

  14. Combining Thermal And Structural Analyses

    NASA Technical Reports Server (NTRS)

    Winegar, Steven R.

    1990-01-01

    Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.

  15. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-06-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less

  16. Intrinsic imperfection of self-differencing single-photon detectors harms the security of high-speed quantum cryptography systems

    NASA Astrophysics Data System (ADS)

    Jiang, Mu-Sheng; Sun, Shi-Hai; Tang, Guang-Zhao; Ma, Xiang-Chun; Li, Chun-Yan; Liang, Lin-Mei

    2013-12-01

    Thanks to the high-speed self-differencing single-photon detector (SD-SPD), the secret key rate of quantum key distribution (QKD), which can, in principle, offer unconditionally secure private communications between two users (Alice and Bob), can exceed 1 Mbit/s. However, the SD-SPD may contain loopholes, which can be exploited by an eavesdropper (Eve) to hack into the unconditional security of the high-speed QKD systems. In this paper, we analyze the fact that the SD-SPD can be remotely controlled by Eve in order to spy on full information without being discovered, then proof-of-principle experiments are demonstrated. Here, we point out that this loophole is introduced directly by the operating principle of the SD-SPD, thus, it cannot be removed, except for the fact that some active countermeasures are applied by the legitimate parties.

  17. Improved Spatial Differencing Scheme for 2-D DOA Estimation of Coherent Signals with Uniform Rectangular Arrays.

    PubMed

    Shi, Junpeng; Hu, Guoping; Sun, Fenggang; Zong, Binfeng; Wang, Xin

    2017-08-24

    This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs). We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data information of each subarray, we only perform difference-operation on the auto-correlations, while the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use more data information of the sample covariance matrix and also suppress the effect of additive noise more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation performance largely as compared to the others, in white or colored noise conditions.

  18. Improved Spatial Differencing Scheme for 2-D DOA Estimation of Coherent Signals with Uniform Rectangular Arrays

    PubMed Central

    Hu, Guoping; Zong, Binfeng; Wang, Xin

    2017-01-01

    This paper proposes an improved spatial differencing (ISD) scheme for two-dimensional direction of arrival (2-D DOA) estimation of coherent signals with uniform rectangular arrays (URAs). We first divide the URA into a number of row rectangular subarrays. Then, by extracting all the data information of each subarray, we only perform difference-operation on the auto-correlations, while the cross-correlations are kept unchanged. Using the reconstructed submatrices, both the forward only ISD (FO-ISD) and forward backward ISD (FB-ISD) methods are developed under the proposed scheme. Compared with the existing spatial smoothing techniques, the proposed scheme can use more data information of the sample covariance matrix and also suppress the effect of additive noise more effectively. Simulation results show that both FO-ISD and FB-ISD can improve the estimation performance largely as compared to the others, in white or colored noise conditions. PMID:28837115

  19. Gravitational Microlensing Observations of Two New Exoplanets Using the Deep Impact High Resolution Instrument

    NASA Astrophysics Data System (ADS)

    Barry, Richard K.; Bennett, D. P.; Klaasen, K.; Becker, A. C.; Christiansen, J.; Albrow, M.

    2014-01-01

    We have worked to characterize two exoplanets newly detected from the ground: OGLE-2012-BLG-0406 and OGLE-2012-BLG-0838, using microlensing observations of the Galactic Bulge recently obtained by NASA’s Deep Impact (DI) spacecraft, in combination with ground data. These observations of the crowded Bulge fields from Earth and from an observatory at a distance of ~1 AU have permitted the extraction of a microlensing parallax signature - critical for breaking exoplanet model degeneracies. For this effort, we used DI’s High Resolution Instrument, launched with a permanent defocus aberration due to an error in cryogenic testing. We show how the effects of a very large, chromatic PSF can be reduced in differencing photometry. We also compare two approaches to differencing photometry - one of which employs the Bramich algorithm and another using the Fruchter & Hook drizzle algorithm.

  20. Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Van Meter, James R.

    2005-01-01

    A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.

  1. Development and Validation of the Alcohol Identity Implicit Associations Test (AI-IAT)

    PubMed Central

    Gray, Heather M.; LaPlante, Debi A.; Bannon, Brittany L.; Ambady, Nalini; Shaffer, Howard J.

    2011-01-01

    Alcohol identity is the extent to which an individual perceives drinking alcohol to be a defining characteristic of his or her self-identity. Although alcohol identity might play an important role in risky college drinking practices, there is currently no easily administered, implicit measure of this concept. Therefore we developed a computerized implicit measure of alcohol identity (the Alcohol Identity Implicit Associations Test; AI-IAT) and assessed its reliability and predictive validity in relation to risky college drinking practices. One hundred forty-one college students completed the AI-IAT. Again 3- and 6-months later, we administered the AI-IAT and indices of engagement in risky college drinking practices. A subset of participants also completed the previously-validated implicit measure of alcohol identity. Scores on the AI-IAT were stable over time, internally consistent, and positively correlated with the previously-validated measure of alcohol identity. Baseline AI-IAT scores predicted future engagement in risky college drinking practices, even after controlling for standard alcohol consumption measures. We conclude that the AI-IAT reliably measures alcohol identity, a concept that appears to play an important role in risky college drinking practices. PMID:21621924

  2. The role of the temporoparietal junction in implicit and explicit sense of agency.

    PubMed

    Hughes, Gethin

    2018-05-01

    The experience of being in control of one's actions and thier outcomes is called the sense of agency. This is a fundamental feature of our human experience, and may underpin important social functions such as morality and responsibility. Sense of agency can be measured explicitly, by asking people to report their experience, or implicitly by recording the perceived time interval between actions and outcomes (intentional binding). The current studies used transcranial direct current stimulation to assess the role of left and right temporoparietal junction in both implicit and explicit sense of agency. Participants were informed that they could control the volume output of the computer with one of two buttons. Participants experienced reduced sense of agency when the outcome was inconsistent with their action. However, binding did not differ between congruent and incongruent action-outcomes. The modulation of explicit agency ratings by action-outcome congruency was significantly reduced by right TPJ stimulation (experiment 1) but not left TPJ stimulation (experiment 2). Implicit agency was not affected in either stimulation condition. These findings are discussed in terms of the possible neural mechanisms of implicit and explicit sense of agency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Impact of an implicit social skills training group in children with autism spectrum disorder without intellectual disability: A before-and-after study.

    PubMed

    Guivarch, Jokthan; Murdymootoo, Veena; Elissalde, Sara-Nora; Salle-Collemiche, Xavier; Tardieu, Sophie; Jouve, Elisabeth; Poinso, François

    2017-01-01

    Children with Autism Spectrum Disorders (ASDs) have problems with social skills. Social skills training groups are among the proposed therapeutic strategies, but their efficacy still needs to be evaluated. To evaluate the efficacy of an implicit social skills training group in children with ASDs without intellectual disability. A before-and-after study of children with ASD without intellectual disability was conducted in a child psychiatry day hospital, where they participated in an implicit group with cooperative games. Their social skills were assessed using the Social-Emotional Profile (SEP), the Childhood Autism Rating Scale (CARS), and the empathy quotient (EQ) before and after 22 weeks. Six patients aged 9 to 10 years old were evaluated. A significant increase in overall adaptation and social skills (median 8 and 7.7 points) in the SEP was demonstrated in addition to a significant reduction in the CARS score (median: 4 points), including in the field of social relationships. The EQ increased two-fold. This implicit group improved the children's social skills. It would be interesting to evaluate the maintenance of these skills over time, examine more widespread results, and compare implicit and explicit groups.

  4. A Secure and Robust Compressed Domain Video Steganography for Intra- and Inter-Frames Using Embedding-Based Byte Differencing (EBBD) Scheme

    PubMed Central

    Idbeaa, Tarik; Abdul Samad, Salina; Husain, Hafizah

    2016-01-01

    This paper presents a novel secure and robust steganographic technique in the compressed video domain namely embedding-based byte differencing (EBBD). Unlike most of the current video steganographic techniques which take into account only the intra frames for data embedding, the proposed EBBD technique aims to hide information in both intra and inter frames. The information is embedded into a compressed video by simultaneously manipulating the quantized AC coefficients (AC-QTCs) of luminance components of the frames during MPEG-2 encoding process. Later, during the decoding process, the embedded information can be detected and extracted completely. Furthermore, the EBBD basically deals with two security concepts: data encryption and data concealing. Hence, during the embedding process, secret data is encrypted using the simplified data encryption standard (S-DES) algorithm to provide better security to the implemented system. The security of the method lies in selecting candidate AC-QTCs within each non-overlapping 8 × 8 sub-block using a pseudo random key. Basic performance of this steganographic technique verified through experiments on various existing MPEG-2 encoded videos over a wide range of embedded payload rates. Overall, the experimental results verify the excellent performance of the proposed EBBD with a better trade-off in terms of imperceptibility and payload, as compared with previous techniques while at the same time ensuring minimal bitrate increase and negligible degradation of PSNR values. PMID:26963093

  5. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Beam Maps and Window Functions

    NASA Astrophysics Data System (ADS)

    Hill, R. S.; Weiland, J. L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C. L.; Halpern, M.; Page, L.; Dunkley, J.; Gold, B.; Jarosik, N.; Kogut, A.; Limon, M.; Nolta, M. R.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2009-02-01

    Cosmology and other scientific results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of ~2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of ~1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of ~2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly, errors in the measured disk temperature are ~0.5%. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  6. A Secure and Robust Compressed Domain Video Steganography for Intra- and Inter-Frames Using Embedding-Based Byte Differencing (EBBD) Scheme.

    PubMed

    Idbeaa, Tarik; Abdul Samad, Salina; Husain, Hafizah

    2016-01-01

    This paper presents a novel secure and robust steganographic technique in the compressed video domain namely embedding-based byte differencing (EBBD). Unlike most of the current video steganographic techniques which take into account only the intra frames for data embedding, the proposed EBBD technique aims to hide information in both intra and inter frames. The information is embedded into a compressed video by simultaneously manipulating the quantized AC coefficients (AC-QTCs) of luminance components of the frames during MPEG-2 encoding process. Later, during the decoding process, the embedded information can be detected and extracted completely. Furthermore, the EBBD basically deals with two security concepts: data encryption and data concealing. Hence, during the embedding process, secret data is encrypted using the simplified data encryption standard (S-DES) algorithm to provide better security to the implemented system. The security of the method lies in selecting candidate AC-QTCs within each non-overlapping 8 × 8 sub-block using a pseudo random key. Basic performance of this steganographic technique verified through experiments on various existing MPEG-2 encoded videos over a wide range of embedded payload rates. Overall, the experimental results verify the excellent performance of the proposed EBBD with a better trade-off in terms of imperceptibility and payload, as compared with previous techniques while at the same time ensuring minimal bitrate increase and negligible degradation of PSNR values.

  7. A GPU-accelerated semi-implicit fractional-step method for numerical solutions of incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Ha, Sanghyun; Park, Junshin; You, Donghyun

    2018-01-01

    Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution methods used in the semi-implicit fractional-step method take advantage of multiple tridiagonal matrices whose inversion is known as the major bottleneck for acceleration on a typical multi-core machine. A novel implementation of the semi-implicit fractional-step method designed for GPU acceleration of the incompressible Navier-Stokes equations is presented. Aspects of the programing model of Compute Unified Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the present method are discussed in detail. A data layout for efficient use of CUDA libraries is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the Navier-Stokes equations are computed on a GPU. Performance of the present method using CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI with the speed of solving one heptadiagonal matrix using a conjugate gradient method. An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup is reached for the same problem using a Tesla P100 GPU.

  8. The Brief Death Implicit Association Test: Scoring recommendations, reliability, validity, and comparisons with the Death Implicit Association Test.

    PubMed

    Millner, Alexander J; Coppersmith, Daniel D L; Teachman, Bethany A; Nock, Matthew K

    2018-05-21

    Assessing suicidal thoughts and behaviors is difficult because at-risk individuals often fail to provide honest or accurate accounts of their suicidal thoughts or intentions. Research has shown that the Death Implicit Association Test (D-IAT), a behavioral test that measures implicit (i.e., outside of conscious control) associations between oneself and death concepts, can differentiate among people with different suicidal histories, such as those with different severity or recency of suicidal behaviors. We report here on the development and evaluation of a shorter and simpler version of the D-IAT called the Death Brief Implicit Association Test (D-BIAT). We recruited large (ns > 1,500) samples of participants to complete the original D-IAT and shorter D-BIAT via a public web-based platform and evaluated different scoring approaches, assessed the reliability and validity of the D-BIAT and compared it with the D-IAT. We found that the D-BIAT was reliable, provided significant group differences with effect sizes on par with the D-IAT, as well as similarly sized classification metrics (i.e., receiver operator characteristics). Although the D-IAT was nonsignificantly better on most outcomes, the D-BIAT is 1-1[1/2] minutes shorter and provided larger effect sizes for distinguishing between past year and lifetime attempters. Thus, there is a trade-off between administration time and improved outcomes associated with increased data. The D-BIAT should be considered for use where time or participant burden needs to be minimized, such as in clinical settings. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Implicit finite difference methods on composite grids

    NASA Technical Reports Server (NTRS)

    Mastin, C. Wayne

    1987-01-01

    Techniques for eliminating time lags in the implicit finite-difference solution of partial differential equations are investigated analytically, with a focus on transient fluid dynamics problems on overlapping multicomponent grids. The fundamental principles of the approach are explained, and the method is shown to be applicable to both rectangular and curvilinear grids. Numerical results for sample problems are compared with exact solutions in graphs, and good agreement is demonstrated.

  10. Unsteady Flow Simulation: A Numerical Challenge

    DTIC Science & Technology

    2003-03-01

    drive to convergence the numerical unsteady term. The time marching procedure is based on the approximate implicit Newton method for systems of non...computed through analytical derivatives of S. The linear system stemming from equation (3) is solved at each integration step by the same iterative method...significant reduction of memory usage, thanks to the reduced dimensions of the linear system matrix during the implicit marching of the solution. The

  11. Implicit Space-Time Conservation Element and Solution Element Schemes

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Wang, Xiao-Yen

    1999-01-01

    Artificial numerical dissipation is in important issue in large Reynolds number computations. In such computations, the artificial dissipation inherent in traditional numerical schemes can overwhelm the physical dissipation and yield inaccurate results on meshes of practical size. In the present work, the space-time conservation element and solution element method is used to construct new and accurate implicit numerical schemes such that artificial numerical dissipation will not overwhelm physical dissipation. Specifically, these schemes have the property that numerical dissipation vanishes when the physical viscosity goes to zero. These new schemes therefore accurately model the physical dissipation even when it is extremely small. The new schemes presented are two highly accurate implicit solvers for a convection-diffusion equation. The two schemes become identical in the pure convection case, and in the pure diffusion case. The implicit schemes are applicable over the whole Reynolds number range, from purely diffusive equations to convection-dominated equations with very small viscosity. The stability and consistency of the schemes are analysed, and some numerical results are presented. It is shown that, in the inviscid case, the new schemes become explicit and their amplification factors are identical to those of the Leapfrog scheme. On the other hand, in the pure diffusion case, their principal amplification factor becomes the amplification factor of the Crank-Nicolson scheme.

  12. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  13. Implicit and explicit mechanisms of word learning in a narrative context: an event-related potential study.

    PubMed

    Batterink, Laura; Neville, Helen

    2011-11-01

    The vast majority of word meanings are learned simply by extracting them from context rather than by rote memorization or explicit instruction. Although this skill is remarkable, little is known about the brain mechanisms involved. In the present study, ERPs were recorded as participants read stories in which pseudowords were presented multiple times, embedded in consistent, meaningful contexts (referred to as meaning condition, M+) or inconsistent, meaningless contexts (M-). Word learning was then assessed implicitly using a lexical decision task and explicitly through recall and recognition tasks. Overall, during story reading, M- words elicited a larger N400 than M+ words, suggesting that participants were better able to semantically integrate M+ words than M- words throughout the story. In addition, M+ words whose meanings were subsequently correctly recognized and recalled elicited a more positive ERP in a later time window compared with M+ words whose meanings were incorrectly remembered, consistent with the idea that the late positive component is an index of encoding processes. In the lexical decision task, no behavioral or electrophysiological evidence for implicit priming was found for M+ words. In contrast, during the explicit recognition task, M+ words showed a robust N400 effect. The N400 effect was dependent upon recognition performance, such that only correctly recognized M+ words elicited an N400. This pattern of results provides evidence that the explicit representations of word meanings can develop rapidly, whereas implicit representations may require more extensive exposure or more time to emerge.

  14. A GPU-accelerated implicit meshless method for compressible flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng

    2018-05-01

    This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.

  15. Solving phase appearance/disappearance two-phase flow problems with high resolution staggered grid and fully implicit schemes by the Jacobian-free Newton–Krylov Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Ling; Zhao, Haihua; Zhang, Hongbin

    2016-04-01

    The phase appearance/disappearance issue presents serious numerical challenges in two-phase flow simulations. Many existing reactor safety analysis codes use different kinds of treatments for the phase appearance/disappearance problem. However, to our best knowledge, there are no fully satisfactory solutions. Additionally, the majority of the existing reactor system analysis codes were developed using low-order numerical schemes in both space and time. In many situations, it is desirable to use high-resolution spatial discretization and fully implicit time integration schemes to reduce numerical errors. In this work, we adapted a high-resolution spatial discretization scheme on staggered grid mesh and fully implicit time integrationmore » methods (such as BDF1 and BDF2) to solve the two-phase flow problems. The discretized nonlinear system was solved by the Jacobian-free Newton Krylov (JFNK) method, which does not require the derivation and implementation of analytical Jacobian matrix. These methods were tested with a few two-phase flow problems with phase appearance/disappearance phenomena considered, such as a linear advection problem, an oscillating manometer problem, and a sedimentation problem. The JFNK method demonstrated extremely robust and stable behaviors in solving the two-phase flow problems with phase appearance/disappearance. No special treatments such as water level tracking or void fraction limiting were used. High-resolution spatial discretization and second- order fully implicit method also demonstrated their capabilities in significantly reducing numerical errors.« less

  16. Neural Patterns of the Implicit Association Test

    PubMed Central

    Healy, Graham F.; Boran, Lorraine; Smeaton, Alan F.

    2015-01-01

    The Implicit Association Test (IAT) is a reaction time based categorization task that measures the differential associative strength between bipolar targets and evaluative attribute concepts as an approach to indexing implicit beliefs or biases. An open question exists as to what exactly the IAT measures, and here EEG (Electroencephalography) has been used to investigate the time course of ERPs (Event-related Potential) indices and implicated brain regions in the IAT. IAT-EEG research identifies a number of early (250–450 ms) negative ERPs indexing early-(pre-response) processing stages of the IAT. ERP activity in this time range is known to index processes related to cognitive control and semantic processing. A central focus of these efforts has been to use IAT-ERPs to delineate the implicit and explicit factors contributing to measured IAT effects. Increasing evidence indicates that cognitive control (and related top-down modulation of attention/perceptual processing) may be components in the effective measurement of IAT effects, as factors such as physical setting or task instruction can change an IAT measurement. In this study we further implicate the role of proactive cognitive control and top-down modulation of attention/perceptual processing in the IAT-EEG. We find statistically significant relationships between D-score (a reaction-time based measure of the IAT-effect) and early ERP-time windows, indicating where more rapid word categorizations driving the IAT effect are present, they are at least partly explainable by neural activity not significantly correlated with the IAT measurement itself. Using LORETA, we identify a number of brain regions driving these ERP-IAT relationships notably involving left-temporal, insular, cingulate, medial frontal and parietal cortex in time regions corresponding to the N2- and P3-related activity. The identified brain regions involved with reduced reaction times on congruent blocks coincide with those of previous studies. PMID:26635570

  17. Statistical analysis of low level atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Chen, W. W. L.

    1974-01-01

    The statistical properties of low-level wind-turbulence data were obtained with the model 1080 total vector anemometer and the model 1296 dual split-film anemometer, both manufactured by Thermo Systems Incorporated. The data obtained from the above fast-response probes were compared with the results obtained from a pair of Gill propeller anemometers. The digitized time series representing the three velocity components and the temperature were each divided into a number of blocks, the length of which depended on the lowest frequency of interest and also on the storage capacity of the available computer. A moving-average and differencing high-pass filter was used to remove the trend and the low frequency components in the time series. The calculated results for each of the anemometers used are represented in graphical or tabulated form.

  18. Influence of flaps and engines on aircraft wake vortices

    DOT National Transportation Integrated Search

    1974-09-01

    Although pervious investigations have shown that the nature of aircraft wake vortices depends on the aircraft type and flap configuration, the causes for these differences have not been clearly identified. In this Note we show that observed differenc...

  19. From ideal to real: a longitudinal study of the role of implicit leadership theories on leader-member exchanges and employee outcomes.

    PubMed

    Epitropaki, Olga; Martin, Robin

    2005-07-01

    The results of the present longitudinal study demonstrate the importance of implicit leadership theories (ILTs) for the quality of leader-member exchanges (LMX) and employees' organizational commitment, job satisfaction, and well-being. Results based on a sample of 439 employees who completed the study questionnaires at 2 time points showed that the closer employees perceived their actual manager's profile to be to the ILTs they endorsed, the better the quality of LMX. Results also indicated that the implicit-explicit leadership traits difference had indirect effects on employee attitudes and well-being. These findings were consistent across employee groups that differed in terms of job demand and the duration of manager-employee relation, but not in terms of motivation. Furthermore, crossed-lagged modeling analyses of the longitudinal data explored the possibility of reciprocal effects between implicit-explicit leadership traits difference and LMX and provided support for the initially hypothesized direction of causal effects. Copyright 2005 APA, all rights reserved.

  20. Who Learns More? Cultural Differences in Implicit Sequence Learning

    PubMed Central

    Fu, Qiufang; Dienes, Zoltan; Shang, Junchen; Fu, Xiaolan

    2013-01-01

    Background It is well documented that East Asians differ from Westerners in conscious perception and attention. However, few studies have explored cultural differences in unconscious processes such as implicit learning. Methodology/Principal Findings The global-local Navon letters were adopted in the serial reaction time (SRT) task, during which Chinese and British participants were instructed to respond to global or local letters, to investigate whether culture influences what people acquire in implicit sequence learning. Our results showed that from the beginning British expressed a greater local bias in perception than Chinese, confirming a cultural difference in perception. Further, over extended exposure, the Chinese learned the target regularity better than the British when the targets were global, indicating a global advantage for Chinese in implicit learning. Moreover, Chinese participants acquired greater unconscious knowledge of an irrelevant regularity than British participants, indicating that the Chinese were more sensitive to contextual regularities than the British. Conclusions/Significance The results suggest that cultural biases can profoundly influence both what people consciously perceive and unconsciously learn. PMID:23940773

Top