Science.gov

Sample records for implosive therapy

  1. Implosive Therapy Treatment of Heroin Addicts during Methadone Detoxification.

    ERIC Educational Resources Information Center

    Hirt, Michael; Greenfield, Heywood

    1979-01-01

    Examined effectiveness of implosive therapy with heroin addicts during detoxification from methadone. Treatment groups received 12 sessions of implosive therapy or eclectic counseling and were followed for a six-week period. The implosive therapy group were the only ones to significantly reduce their methadone level during treatment and follow-up.…

  2. Implosive Therapy as a Treatment for Insomnia.

    ERIC Educational Resources Information Center

    Carrera, Richard N.; Elenewski, Jeffrey J.

    1980-01-01

    The death implosion produced a decrease in insomnia beyond the strong expectancy effects that resulted from all experimental treatments. The failure to observe changes in reported fear of death was attributed to subjects' anxiety-based reluctance to acknowledge openly such fear. (Author)

  3. Double shell liner implosions

    SciTech Connect

    Sorokin, S. A.; Chaikovsky, S. A.

    1997-05-05

    Experiments on the double shell liner (DSL) implosions with and without an initial axial magnetic were performed on the SNOP-3 pulse generator (1.1 MA, 100 ns). In implosions of a DSL without an initial axial magnetic field, high radial compressions of the inner shell were observed, as in previous experiments with an initial axial magnetic field. Possible mechanisms for the formation of the initial azimuthal magnetic field are discussed.

  4. Wellbottom fluid implosion treatment system

    DOEpatents

    Brieger, Emmet F.

    2001-01-01

    A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

  5. Isochoric implosions for fast ignition

    SciTech Connect

    Clark, D S; Tabak, M

    2006-06-05

    Fast Ignition (FI) exploits the ignition of a dense, uniform fuel assembly by an external energy source to achieve high gain. In conventional ICF implosions, however, the fuel assembles as a dense shell surrounding a low density, high-pressure hotspot. Such configurations are far from optimal for FI. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942).] may be employed to implode a dense, quasi-uniform fuel assembly with minimal energy wastage in forming a hotspot. A scheme for realizing these specialized implosions in a practical ICF target is also described.

  6. Isochoric Implosions for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Tabak, Max

    2006-10-01

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hotspot ignition counterpart. These gain models, however, all assume nearly uniform-density fuel assemblies. By contrast, typical ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hotspot. To realize fully the advantages of FI, then, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hotspots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters, i.e., accessible peak pressures, shell aspect ratios, etc. An implosion scheme is presented which meets all of these requirements, suggesting the possibility of genuinely isochoric implosions for FI.

  7. Isochoric Implosions for Fast Ignition

    SciTech Connect

    Clark, D S; Tabak, M

    2007-04-04

    Various gain models have shown the potentially great advantages of Fast Ignition (FI) Inertial Confinement Fusion (ICF) over its conventional hot spot ignition counterpart [e.g., S. Atzeni, Phys. Plasmas 6, 3316 (1999); M. Tabak et al., Fusion Sci. & Technology 49, 254 (2006)]. These gain models, however, all assume nearly uniform-density fuel assemblies. In contrast, conventional ICF implosions yield hollowed fuel assemblies with a high-density shell of fuel surrounding a low-density, high-pressure hot spot. Hence, to realize fully the advantages of FI, an alternative implosion design must be found which yields nearly isochoric fuel assemblies without substantial hot spots. Here, it is shown that a self-similar spherical implosion of the type originally studied by Guderley [Luftfahrtforschung 19, 302 (1942)] may be employed to yield precisely such quasi-isochoric imploded states. The difficulty remains, however, of accessing these self-similarly imploding configurations from initial conditions representing an actual ICF target, namely a uniform, solid-density shell at rest. Furthermore, these specialized implosions must be realized for practicable drive parameters and at the scales and energies of interest in ICF. A direct-drive implosion scheme is presented which meets all of these requirements and reaches a nearly isochoric assembled density of 300 g=cm{sup 3} and areal density of 2.4 g=cm{sup 2} using 485 kJ of laser energy.

  8. Modeling Mix in ICF Implosions

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Clark, D. S.; Chang, B.; Eder, D. C.; Haan, S. W.; Jones, O. S.; Marinak, M. M.; Peterson, J. L.; Robey, H. F.

    2014-10-01

    The observation of ablator material mixing into the hot spot of ICF implosions correlates with reduced yield in National Ignition Campaign (NIC) experiments. Higher Z ablator material radiatively cools the central hot spot, inhibiting thermonuclear burn. This talk focuses on modeling a ``high-mix'' implosion from the NIC, where greater than 1000 ng of ablator material was inferred to have mixed into the hot spot. Standard post-shot modeling of this implosion does not predict the large amounts of ablator mix necessary to explain the data. Other issues are explored in this talk and sensitivity to the method of radiation transport is found. Compared with radiation diffusion, Sn transport can increase ablation front growth and alter the blow-off dynamics of capsule dust. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Underwater implosion of glass spheres.

    PubMed

    Turner, Stephen E

    2007-02-01

    Underwater implosion experiments were conducted with thin-wall glass spheres to determine the influence that structural failure has on the pressure pulse. Four experiments were conducted with glass spheres having an outside diameter of 7.62 cm, thickness of 0.762 mm, and an estimated buckling pressure of 7.57 MPa. The experiments were performed in a pressure vessel at a hydrostatic pressure of 6.996 MPa. The average peak pressure of the implosion pressure pulse was 26.1 MPa, measured at a radial distance of 10.16 cm from the sphere center. A computational fluid structure interaction model was developed to assess how the failure rate of the glass structure influences the pressure time history. The model employed a specified glass failure sequence that is uniform in time and space. It was found that for the conditions of the test, a glass failure rate of 275 m/s provided a reasonable representation of the test data. The test data and the model results show that the failure time history of the structure has a significant influence on an implosion pressure pulse. Computational prediction of an implosion pressure pulse needs to include the failure time history of the structure; otherwise it will overpredict the pressure time history.

  10. Simple spherical ablative-implosion model

    SciTech Connect

    Mayer, F.J.; Steele, J.T.; Larsen, J.T.

    1980-06-23

    A simple model of the ablative implosion of a high-aspect-ratio (shell radius to shell thickness ratio) spherical shell is described. The model is similar in spirit to Rosenbluth's snowplow model. The scaling of the implosion time was determined in terms of the ablation pressure and the shell parameters such as diameter, wall thickness, and shell density, and compared these to complete hydrodynamic code calculations. The energy transfer efficiency from ablation pressure to shell implosion kinetic energy was examined and found to be very efficient. It may be possible to attach a simple heat-transport calculation to our implosion model to describe the laser-driven ablation-implosion process. The model may be useful for determining other energy driven (e.g., ion beam) implosion scaling.

  11. Buoyancy instability of homologous implosions

    SciTech Connect

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy and vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest

  12. Buoyancy instability of homologous implosions

    DOE PAGES

    Johnson, B. M.

    2015-06-15

    With this study, I consider the hydrodynamic stability of imploding ideal gases as an idealized model for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational collapse of astrophysical gases. For oblate modes (short-wavelength incompressive modes elongated in the direction of the mean flow), a second-order ordinary differential equation is derived that can be used to assess the stability of any time-dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting the analysis to homologous flows, it is shown that a monatomic gas is governed by the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions, both entropy andmore » vorticity fluctuations experience power-law growth in time, with a growth rate that depends upon mean flow gradients and, in the absence of dissipative effects, is independent of mode number. If the flow accelerates throughout the implosion, oblate modes amplify by a factor (2C)|N0|ti, where C is the convergence ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time scale. If, instead, the implosion consists of a coasting phase followed by stagnation, oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. Even under stable conditions, vorticity fluctuations grow due to the conservation of angular momentum as the gas is compressed. For non-monatomic gases, this additional growth due to compression results in weak oscillatory growth under conditions that would otherwise be buoyantly stable; this over-stability is consistent with the conservation of wave action in the fluid frame. The above analytical results are verified by evolving the complete set of linear equations as an initial value problem, and it is demonstrated that oblate modes are the fastest-growing modes and that high mode numbers are required to reach this limit (Legendre mode ℓ ≳ 100

  13. Plasma viscosity in spherical ICF implosion simulations

    NASA Astrophysics Data System (ADS)

    Vold, E.; Joglekar, A.; Ortega, M.; Moll, R.; Fenn, D.; Molvig, K.

    2016-05-01

    Inertial confinement fusion (ICF) hydrodynamic codes often ignore the effects of viscosity though recent research indicates plasma viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. A Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport, and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation, is used to study differences between ICF implosions with and without plasma viscosity and to examine the role of artificial viscosity in a Lagrangian implosion simulation. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, fuel compression, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and this study suggests that artificial viscosity may provide an unphysical stability in implosion simulations.

  14. Progress in Cryogenic Target Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    McCrory, R. L.; Meyerhofer, D. D.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Glebov, V. Yu; Goncharov, V. N.; Harding, D. R.; Hu, S. X.; Knauer, J. P.; Marshall, F. J.; McKenty, P. W.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Seka, W.; Short, R. W.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H.; Casey, D. T.

    2016-10-01

    Cryogenic deuterium-tritium targets are imploded on the OMEGA Laser System in a direct-drive configuration. Areal densities of approximately 200 mg/cm2 have been measured with implosion velocities of 3 × 107 cm/s. These implosions are used to study the dynamics of cryogenic target compression and to develop areal-density diagnostics that will be used as part of the ignition campaign on the National Ignition Facility.

  15. IMPLOSION IN A CORONAL ERUPTION

    SciTech Connect

    Liu Rui; Wang Haimin; Alexander, David

    2009-05-01

    We present the observations of the contraction of the extreme-ultraviolet coronal loops overlying the flaring region during the preheating as well as the early impulsive phase of a GOES class C8.9 flare. During the relatively long, 6 minutes, preheating phase, hard X-ray (HXR) count rates at lower energies (below 25 keV) as well as soft X-ray fluxes increase gradually and the flare emission is dominated by a thermal looptop source with the temperature of 20-30 MK. After the onset of impulsive HXR bursts, the flare spectrum is composed of a thermal component of 17-20 MK, corresponding to the looptop emission, and a nonthermal component with the spectral index {gamma} = 3.5-4.5, corresponding to a pair of conjugate footpoints. The contraction of the overlying coronal loops is associated with the converging motion of the conjugate footpoints and the downward motion of the looptop source. The expansion of the coronal loops following the contraction is associated with the enhancement in H{alpha} emission in the flaring region, and the heating of an eruptive filament whose northern end is located close to the flaring region. The expansion eventually leads to the eruption of the whole magnetic structure and a fast coronal mass ejection. It is the first time that such a large scale contraction of the coronal loops overlying the flaring region has been documented, which is sustained for about 10 minutes at an average speed of {approx}5 km s{sup -1}. Assuming that explosive chromospheric evaporation plays a significant role in compensating for the reduction of the magnetic pressure in the flaring region, we suggest that a prolonged preheating phase dominated by coronal thermal emission is a necessary condition for the observation of coronal implosion. The dense plasma accumulated in the corona during the preheating phase may effectively suppress explosive chromospheric evaporation, which explains the continuation of the observed implosion up to {approx}7 minutes into the

  16. Buoyancy instability of homologous implosions

    NASA Astrophysics Data System (ADS)

    Johnson, Bryan

    2015-11-01

    Hot spot turbulence is a potential contributor to yield degradation in inertial confinement fusion (ICF) capsules, although its origin, if present, remains unclear. In this work, a perturbation analysis is performed of an analytical homologous solution that mimics the hot spot and surrounding cold fuel during the late stages of an ICF implosion. It is shown that the flow is governed by the Schwarzschild criterion for buoyant stability, and that during stagnation, short wavelength entropy and vorticity fluctuations amplify by a factor exp (π |N0 | ts) , where N0 is the buoyancy frequency at stagnation and ts is the stagnation time scale. This amplification factor is exponentially sensitive to mean flow gradients and varies from 103-107 for realistic gradients. Comparisons are made with a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ~ 30 zones per wavelength is required to capture the evolution of vorticity accurately. This translates to an angular resolution of ~(12 / l) ∘ , or ~ 0 .1° to resolve the fastest growing modes (Legendre mode l > 100).

  17. Plasma Effects in Spherical Implosions

    NASA Astrophysics Data System (ADS)

    Bellei, Claudio; Amendt, Peter; Wilks, Scott

    2011-10-01

    A remarkable self-similar solution to the problem of a spherically converging shock was published by Guderley in 1942. Being applicable to an ideal gas, this solution neglects viscosity, thermal conduction and radiation losses and presents singularities when the shock reaches the origin. Radiation hydrodynamic codes include the effects of non-ideality (with artificial viscosity in place of real viscosity), ensuring that the solution is well-behaved at all times. However during an ICF implosion, separation of the electron and ion species occurs at the shock front. For the high Mach number (M > 10) incoming (coalesced) shock that is typical of ICF scenarios, the width of the plasma shock front is comparable to the ion-ion mean-free-path λii ~ 1 μ m and much larger than the shock front width in an unionized gas at the same density (~10-2 μ m). Ahead of the plasma shock front, electrons pre-heat the inner gas over distances λei ~(mi /me) 1 / 2λii ~ 70 μ m. This decreases the strength of the incoming shock and lowers the temperature behind the rebound shock, a phenomenon analogous to the non-ideal gas effects found in hydro-codes. Prepared by LLNL under Contract DE-AC52-07NA27344.

  18. Double-Shell Capsule Implosions at NOVA and OMEGA

    NASA Astrophysics Data System (ADS)

    Watt, R. G.; Barnes, Cris W.; Chrien, Robert E.; Delamater, Norman D.; Duke, Joseph R.; Elliott, Norman E.; Gobby, Peter L.; Gomez, Veronica M.; Moore, Joyce E.; Pollak, Gregory D.; Varnum, William S.; Colvin, Jeffrey D.; Lerche, Richard A.; Phillips, Thomas W.

    1998-11-01

    Recent calculations indicate that double shell targets may provide an alternative, non-cryogenic path to ignition on NIF. Experiments have been conducted at the NOVA and OMEGA lasers to study indirectly driven double shell implosions. Double shell implosions in cylindrical hohlraums on NOVA show yields in the range of 1-2% of clean 1D calculations. NOVA implosions may be dominated by the inherent m = 5 beam pattern on either end of the cylindrical hohraum, and have significant time dependent drive asymmetry. Implosions at the OMEGA facility were done in the tethrahedral holhraum geometry which provides improved time dependent symmetry. Primary diagnostics in these implosions are the neutron diagnostics available at both facilities. NOVA shots used DD, while the OMEGA shots used both DD and DT to maximize the available information from the implosions. Individual implosion data and comparison to simulations will be shown for NOVA and OMEGA double shell implosions.

  19. Robust target implosion in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Iizuka, Yoshifumi; Kodera, Tomohiro; Ogoyski, Alexandar

    2008-11-01

    In heavy ion inertial fusion (HIF) a robust mode of target implosion is proposed to mitigate the beam illumination non-uniformity and the Rayleigh-Taylor (R-T) instability growth. In the HIF target implosion, key issues include uniformity of heavy ion beam (HIB) illumination, target implosion symmetry, compressed fuel ignition, reduction of the R-T instability growth, etc [1]. In the robust target in HIF, an oscillating implosion acceleration is employed to reduce the R-T instability growth, and a low-density foam layer is also inserted to enhance the radiation conversion efficiency from. The oscillating acceleration can be introduced by HIB axis oscillation, which can be easily realized in an actual accelerator final element. The oscillating acceleration introduces a new method of the R-T instability growth control. In the robust foam target, the radiation converted is confined and reduces the HIB illumination non-uniformity, though the HIBs illumination scheme is spherically symmetric and the target is also spherically symmetric. Therefore, the foam target irradiated by the oscillating HIBs can serve a robust direct-indirect hybrid mode of the symmetric target implosion in HIF. [1] Phys. of Plasmas, 12 (2005) 122702; NIMA, 577 (2007) 21.

  20. The first capsule implosion experiments on Orion

    NASA Astrophysics Data System (ADS)

    Garbett, W. J.; Horsfield, C. J.; Gales, S. G.; Leatherland, A. E.; Rubery, M. S.; Coltman, J. E.; Meadowcroft, A. E.; Rice, S. J.; Simons, A. J.; Woolhead, V. E.

    2016-05-01

    Direct drive capsule implosions are being developed on the Orion laser at AWE as a platform for ICF and HED physics experiments. The Orion facility combines both long pulse and short-pulse beams, making it well suited for studying the physics of alternative ignition approaches. Orion implosions also provide the opportunity to study aspects of polar direct drive. Limitations on drive symmetry from the relatively small number of laser beams makes predictive modelling of the implosions challenging, resulting in some uncertainty in the expected capsule performance. Initial experiments have been fielded to evaluate baseline capsule performance and inform future design optimization. Highly promising DD fusion neutron yields in excess of 109 have been recorded. Results from the experiments are presented alongside radiation-hydrocode modelling.

  1. Numerical simulation and prediction of implosion phenomena

    NASA Astrophysics Data System (ADS)

    Chen, J.; Dietrich, R. A.

    1992-10-01

    Using gas-liquid two phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi Implicit Method for Pressure Linked Equations) is introduced to investigate implosion phenomena in high pressure chambers. For a characteristic physical model, the numerical results are obtained and analyzed, without referring to experimental data. Extensive calculations to predict the highest pressure on the chamber wall are performed under varying conditions such as the implosion pressure, the dimensions of the test models, and the height of the upper air layer. The efficiency of different highest pressure reduction methods is analyzed. The results of these simulations and predictions are shown in a series of plots.

  2. Nuclear diagnostics for inertial confinement fusion implosions

    SciTech Connect

    Murphy, T.J.

    1997-11-01

    This abstract contains viewgraphs on nuclear diagnostic techniques for inertial confinement fusion implosions. The viewgraphs contain information on: reactions of interest in ICF; advantages and disadvantages of these methods; the properties nuclear techniques can measure; and some specifics on the detectors used.

  3. Limiting Temperatures of Spherical Shock Wave Implosion.

    PubMed

    Liverts, Michael; Apazidis, Nicholas

    2016-01-01

    Spherical shock wave implosion in argon is studied both theoretically and experimentally. It is shown that as the strength of the converging shock increases the nonideal gas effects become dominant and govern the evolution of thermal and transport gas properties limiting the shock acceleration, lowering the gas adiabatic index and the achievable energy density at the focus. Accounting for multiple-level ionization, excitation, Coulomb interaction and radiation effects, the limiting equilibrium temperatures to be achieved during the shock implosion are estimated. Focal temperatures of the order of 30 000 K are measured in experiments where converging spherical shock waves are created using a conventional gas-dynamic shock tube facility. PMID:26799021

  4. Implosion spectroscopy in Rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Philippe, Franck; Tassin, Veronique; Bitaud, Laurent; Seytor, Patricia; Reverdin, Charles

    2014-10-01

    The rugby hohlraum concept has been validated in previous experiments on the OMEGA laser facility. This new hohlraum type can now be used as a well-characterized experimental platform to study indirect drive implosion, at higher radiation temperatures than would be feasible at this scale with classical cylindrical hohlraums. Recent experiments have focused on the late stages of implosion and hotspot behavior. The capsules included both a thin buried Titanium tracer layer, 0-3 microns from the inner surface, Argon dopant in the deuterium gas fuel and Germanium doped CH shells, providing a variety of spectral signatures of the plasma conditions in different parts of the target. X-ray spectroscopy and imaging were used to study compression, Rayleigh-Taylor instabilities growth at the inner surface and mix between the shell and gas.

  5. Modeling of an Implosion Driven Hypervelocity Launcher

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Higgins, Andrew; Szirti, Daniel; Batchelor, Patrick; Zhang, Fan; Tanguay, Vincent

    2007-06-01

    Modelling work carried out on the implosion driven launcher under concurrent development is presented. The launcher consists of a thin walled metal tube surrounded by explosive which when detonated pinches the tube shut and drives a strong shock into the projectile. The commercial hydrocode LS-DYNA was used to quantitatively and qualitatively evaluate the design parameters of the launcher and their effect on implosion dynamics and performance. These parameters include fill pressure, tube diameter, explosive layer thickness, and explosives tampering. The launcher is primarily modeled using a quasi 2D Arbitrary Langrage Euler formulation. A full 3-D axisymmetric model is also employed. The model is evaluated against experimental data previously collected. Additional developmental work on a second stage launcher taking advantage of a phase velocity between the imploding tube and explosives via the use of angled flyer plates and cones is also carried out.

  6. Direct drive implosion experiments on SGIII prototype laser facility: Assessing energy coupling efficiency and implosion symmetry

    SciTech Connect

    Pu Yudong; Huang Tianxuan; Li Huang; Zhan Xiayu; Peng Xiaoshi; Tang Qi; Song Zifeng; Chen Jiabin; Song Tianming; Chen Ming; Yu Ruizhen; He Xiaoan; Li Chaoguang; Zhang Lu; Zheng Jiahua; Jing Longfei; Chen Bolun; Su Ming; Jiang Wei; Yu Bo; and others

    2012-07-15

    Direct drive implosion experiments were conducted on SGIII prototype laser facility. From the time resolved x-ray images, the bright ring and the central bright spot are observed. The radial velocity of the convergent bright ring indicates the shell velocity, and the times when the central bright spot is first seen and becomes most intensive indicate the times of shock convergence and later stagnation, respectively. Radiation hydrodynamic simulations were carried out by changing laser energy deposition factors. When the simulated results are brought close to the measured ones, it is found that the energy coupling efficiency is around 70%. The implosion symmetry is indicated by the core x-ray emission pattern which is pancake when viewing from the equator, and splits into several bright spots when viewing close to the pole. A simple model is developed to understand this asymmetry. It is speculated that the observed implosion asymmetry can be attributed to the laser arrangement which is originally designed for indirect drive experiments. Further improvements of energy coupling efficiency and implosion symmetry in future experiments can be achieved by optimizing target design and laser arrangement.

  7. High convergence implosion symmetry in cylindrical hohlraums

    SciTech Connect

    Amendt, P A; Bradley, D K; Hammel, B A; Landen, O L; Suter, L J; Turner, R E; Wallace, R J

    1999-09-01

    High convergence, hohlraum-driven implosions will require control of time-integrated drive asymmetries to 1% levels for ignition to succeed on the NIF. We review how core imaging provides such asymmetry measurement accuracy for the lowest order asymmetry modes, and describe recent improvements in imaging techniques that should allow detection of higher order asymmetry modes. We also present a simple analytic model explaining how the sensitivity of symmetry control to beam pointing scales as we progress from single ring per side Nova cylindrical hohlraum illumination geometries to NIF-like multiple rings per side Omega hohlraum illumination geometries and ultimately to NIF-scale hohlraums.

  8. Cylindrical Implosion Experiments using Laser Direct Drive

    NASA Astrophysics Data System (ADS)

    Tubbs, David

    1998-11-01

    Development of high-gain targets for the National Ignition Facility relies considerably on computational modeling, and it is important that our codes are validated against relevant experimental data in convergent geometry.(W. J. Krauser et al., Phys. Plasmas 3, 2084 (1996); D. C. Wilson et al., Phys. Plasmas 5, 1953 (1998)) In collaboration with the University of Rochester, we have begun a campaign of hydrodynamic instability experiments in cylindrical geometry using direct drive,(D. L. Tubbs et al., submitted to Laser and Particle Beams (1998); C. W. Barnes et al., submitted to Rev. Sci. Instrm. (1998)) building on our success in indirect drive.( W. W. Hsing et al., Phys. Plasmas 5, 1832 (1997); W. W. Hsing and N. M. Hoffman, Phys. Rev. Lett., 3876 (1997)) Cylindrical targets facilitate direct diagnostic access to the convergent, hydrodynamic flow. The energy advantage of direct drive and its excellent target-illumination symmetry (achieved at OMEGA through use of Distributed Phase Plates and SSD) permit more energetic implosions, larger target scale (hence greater diagnostic resolution), longer acceleration timescales, and higher convergence than were possible using indirect drive. We estimate that specific laser energy delivered to the target for direct drive at OMEGA is roughly 4 times that achieved for indirect drive at Nova. Our first experiments (January 1998) yield excellent data for the first highly symmetrical direct-drive implosions, with which we benchmark zeroth-order hydrodynamic simulations. Two-dimensional (2-D) LASNEX calculations, using as-shot laser power histories and no further physics adjustments, match measured target-implosion data within theoretical and experimental errors. In addition, 2-D LASNEX simulations of single-mode (m=28, azimuthally symmetric) perturbation growth agree well with data obtained during our first week of experiments. For 1.5-micron initial perturbation amplitude, we observe Rayleigh-Taylor growth factors of order 10

  9. Ion-induced quark-gluon implosion.

    PubMed

    Frankfurt, L; Strikman, M

    2003-07-11

    We investigate nuclear fragmentation in the central proton-nucleus and nucleus-nucleus collisions at the energies of CERN LHC. Within the semiclassical approximation we argue that because of the fast increase with energy of the cross sections of soft and hard interactions each nucleon is stripped in the average process off "soft" partons and fragments into a collection of leading quarks and gluons with large p(t). Valence quarks and gluons are streaming in the opposite directions when viewed in the c.m. of the produced system. The resulting pattern of the fragmentation of the colliding nuclei leads to an implosion of the quark and gluon constituents of the nuclei. The nonequilibrium state produced at the initial stage in the nucleus fragmentation region is estimated to have densities >/=50 GeV/fm(3) at the LHC energies and probably >/=10 GeV/fm(3) at BNL RHIC. PMID:12906475

  10. Crossed-beam energy transfer in direct-drive implosions

    SciTech Connect

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S; Stoeckl, C

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  11. Effects of nonlocal heat transport on laser implosion

    SciTech Connect

    Mima, K.; Honda, M.; Miyamoto, S.; Kato, S.

    1996-05-01

    A numerical simulation code describing the spherically symmetric implosion hydrodynamics has been developed to investigate the nonlocal heat transport effects on stable high velocity implosion and fast ignition. In the implosion simulation code HIMICO, the Fokker Planck equation for electron transport is solved to describe the nonlocal effects. For high ablation pressure implosion with a pressure higher than 200 Mbar, the isentrope is found higher by a factor 2 in the nonlocal transport model than in the Spitzer Harm model. As for the fast ignition simulation, the neutron yield for the high density compression with 10 KJ laser increases to be 20 times by injecting an additional heating pulse of 10 KJ with 1 psec. {copyright} {ital 1996 American Institute of Physics.}

  12. Uniformity of fuel target implosion in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Noguchi, K.; Suzuki, T.; Karino, T.; Barada, D.; Ogoyski, A. I.; Ma, Y. Y.

    2015-12-01

    In inertial confinement fusion the target implosion non-uniformity is introduced by a driver beams' illumination non-uniformity, a fuel target alignment error in a fusion reactor, the target fabrication defect, et al. For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the requirement for the implosion uniformity is first discussed. The implosion uniformity should be less than a few percent. A study on the fuel hotspot dynamics is also presented and shows that the stagnating plasma fluid provides a significant enhancement of vorticity at the final stage of the fuel stagnation. Then non-uniformity mitigation mechanisms of the heavy ion beam (HIB) illumination are also briefly discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF a wobbling heavy ion beam illumination was also introduced to realize a uniform implosion. In the wobbling HIBs illumination, the illumination non-uniformity oscillates in time and space on a HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs' illumination non-uniformity by its smoothing effect on the HIB illumination non-uniformity and also by a growth mitigation effect on the Rayleigh-Taylor instability.

  13. Improving cryogenic deuterium-tritium implosion performance on OMEGAa)

    NASA Astrophysics Data System (ADS)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.; Radha, P. B.; Boehly, T. R.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu-Johnson, M.; Glebov, Y. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kingsley, C.; Kosc, T. Z.; Knauer, J. P.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Petrasso, R. D.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R. W.; Shvydky, A.; Skupsky, S.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Versteeg, V.; Yaakobi, B.; Zuegel, J. D.

    2013-05-01

    A flexible direct-drive target platform is used to implode cryogenic deuterium-tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat-IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.

  14. Improving cryogenic deuterium–tritium implosion performance on OMEGA

    SciTech Connect

    Sangster, T. C.; Goncharov, V. N.; Betti, R.; Radha, P. B.; Boehly, T. R.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, Y. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; and others

    2013-05-15

    A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented. The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.

  15. Implosion Source Development and Diego Garcia Reflections

    SciTech Connect

    Harben, P E; Boro, C

    2001-06-01

    Calibration of hydroacoustic stations for nuclear explosion monitoring is important for increasing monitoring capability and confidence from newly installed stations and from existing stations. Past work at Ascension Island has shown that ship-towed airguns can be effectively used for local calibrations such as sensor location, amplitude and phase response, and T-phase coupling in the case of T-phase stations. At regional and ocean-basin distances from a station, the calibration focus is on acoustic travel time, transmission loss, bathymetric shadowing, diffraction, and reflection as recorded at a particular station. Such station calibrations will lead to an overall network calibration that seeks to maximize detection, location, and discrimination capability of events with acoustic signatures. Active-source calibration of hydroacoustic stations at regional and ocean-basin scales has not been attempted to date, but we have made significant headway addressing how such calibrations could be accomplished. We have developed an imploding sphere source that can be used instead of explosives on research and commercial vessels without restriction. The imploding sphere has been modeled using the Lawrence Livermore National Laboratory hydrodynamic code CALE and shown to agree with field data. The need for boosted energy in the monitoring band (2-100 Hz) has led us to develop a 5-sphere implosion device that was tested in the Pacific Ocean earlier this year. Boosting the energy in the monitoring band can be accomplished by a combination of increasing the implosion volume (i.e. the 5-sphere device) and imploding at shallower depths. Although active source calibrations will be necessary at particular locations and for particular objectives, the newly installed Diego Garcia station in the Indian Ocean has shown that earthquakes can be used to help understand regional blockages and the locations responsible for observed hydroacoustic reflections. We have analyzed several events

  16. Implosion Dynamics in Direct-Drive Experiments

    SciTech Connect

    Michel, D. T.; Craxton, R. S.; Davis, A. K.; Epstein, R.; Glebov, V. Yu; Goncharov, V. N.; Hu, S. X.; Igumenshchev, I. V.; Meyerhofer, D. D.; Radah, P. B.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Froula, D. H.

    2014-11-28

    Increasing the ablation pressure is a path to achieving cryogenic implosion performance on the OMEGA laser that will hydrodynamically scale to ignition on the National Ignition Facility. An increased ablation pressure will allow a more-massive shell (i.e. thicker and more hydrodynamically stable) and a higher adiabat to achieve ignition-relevant velocities (>3.5 × 10⁷ cm s⁻¹), areal densities (>300 mg cm⁻²) and hot-spot pressures (>100 Gbar). Two approaches have demonstrated increased ablation pressure: (1) a target design is shown that uses a Be ablator to increase the hydrodynamic efficiency, resulting in a ~10% increase in the ablation pressure, in comparison to a CH ablator; (2) reducing the beam size is shown to recover all of the ablation pressure lost to cross-beam energy transfer (CBET), i.e. the ablation pressure calculated without CBET, but the degraded illumination uniformity reduces the integrated target performance. The hydrodynamic efficiency is measured for the current cryogenic design, multiple ablator material design and CH capsule designs with various beam focal-spot sizes. In each case, an excellent agreement is observed with 1D hydrodynamic simulations that include CBET and nonlocal heat-transport models.

  17. Indirectly driven, high-convergence implosions (HEP1)

    SciTech Connect

    Hatchett, S.P.; Cable, M.D.; Caird, J.A.

    1996-06-01

    High-gain inertial confinement fusion will most readily be achieved with hot-spot ignition, in which a relatively small mass of gaseous fuel at the center of the target is heated to 5-10 keV, igniting a larger surrounding mass of approximately isobaric fuel at higher density but lower temperature. Existing lasers are too low in energy to achieve thermonuclear gain, but hydrodynamically equivalent implosions using these lasers can demonstrate that the important, scalable parameters of ignition capsules are scientifically and technologically achievable. The experiments described in this article used gas-filled glass shells driven by x rays produced in a surrounding cavity, or hohlraum. These implosions achieved convergence ratios (initial capsule radius/ final fuel radius) high enough to fall in the range required for ignition-scale capsules, and they produced an imploded configuration (high-density glass with hot gas fill) that is equivalent to the hot-spot configuration of an ignition-scale capsule. Other recent laser-driven implosions have achieved high shell density but at lower convergences and without a well defined hot spot. Still other experiments have used very-low-density gas fill to reach high convergence with unshaped drive, but that approach results in a relatively low shell density. Moreover, even at the highest convergence ratios the implosions described here had neutron yields averaging 8% of that calculated for an idealized, clean, spherically symmetric implosion - much higher than previous high-convergence experiments.

  18. Cryogenic thermonuclear fuel implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Glenzer, Siegfried

    2011-10-01

    The first inertial confinement fusion implosion experiments with cryogenic fuel layers have been fielded in preparation for ignition experiments on the National Ignition Facility. These experiments use mega joule laser energies that compress fusion capsules in indirect dive hohlraums to test initial hot spot formation and thermonuclear fuel assembly. Hydrogen-rich fuel (THD) provides a relatively low yield and diagnostics rich environment that allows us to measure the implosion core, neutron yield, temperatures and fuel areal density from a suite of x-ray and neutron diagnostics. These experiments have successfully demonstrated the control of the implosion shape using ignition grade cryogenic fuel layers, laser pulse shaping, and nonlinear plasma optics. The implosions show scaling of the DT fusion yield with ion temperature over more than one order of magnitude to a yield in excess of 1014 neutrons. Recent implosion performance improvements due to shock timing tuning have led to high Lawson confinement parameters. Additional tuning experiments are being performed with the goal to increase hot spot temperatures and to observe alpha particle heating with pure DT fuel. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Direct indirect mixed implosion mode in heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Miyazawa, K.; Kikuchi, T.; Someya, T.

    2007-07-01

    In order to realize an effective implosion, beam illumination non-uniformity on a fuel target must be suppressed less than a few percent. In this study, a direct-indirect mixture implosion mode is proposed and discussed in heavy ion beam (HIB) inertial confinement fusion (HIF) in order to release sufficient fusion energy in a robust manner. On the other hand, the HIB illumination non-uniformity depends strongly on a target displacement dz from the center of a fusion reactor chamber. In a direct-driven implosion mode, dz of ˜20 μm was tolerable, and in an indirect-implosion mode, dz of ˜100 μm was allowable. In the direct-indirect mixture mode target, a low-density foam layer is inserted, and the radiation energy is confined in the foam layer. In the foam layer, the radiation transport is expected to smooth the HIB illumination non-uniformity in the lateral direction. Two-dimensional implosion simulations are performed, and show that the HIB illumination non-uniformity is well smoothed in the direct-indirect mixture target. Our simulation results present that a large pellet displacement of approximately a few hundred microns is allowed in order to obtain a sufficient fusion energy output in HIF.

  20. Towards a Phonetic Explanation for Universal Preferences in Implosives and Ejections.

    ERIC Educational Resources Information Center

    Javkin, Hector

    Two possible explanations based on elementary facts of physics are suggested for the universal preference for place of articulation of implosives and ejectives. Languages show a preference for ejectives in the order: velar, alveolar, and labial while implosives occur most often in the opposite order. A language will only have velar implosives if…

  1. Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions

    SciTech Connect

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.; Militzer, B.

    2010-06-11

    Accurate knowledge about the equation of state (EOS) of deuterium is critical to inertial confinement fusion (ICF). Low-adiabat ICF implosions routinely access strongly coupled and degenerate plasma conditions. Using the path integral Monte Carlo method, we have derived a first-principles EOS (FPEOS) table of deuterium. It is the first ab initio EOS table which completely covers typical ICF implosion trajectory in the density and temperature ranges of {rho}=0.002-1596 g/cm{sup 3} and T=1.35 eV-5.5 keV. Discrepancies in internal energy and pressure have been found in strongly coupled and degenerate regimes with respect to SESAME EOS. Hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table have indicated significant differences in peak density, areal density ({rho}R), and neutron yield relative to SESAME simulations.

  2. Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions

    SciTech Connect

    Hu, S.X.; Militzer, B.; Goncharov, V.N.; Skupsky, S.

    2010-06-10

    Accurate knowledge about the equation of state (EOS) of deuterium is critical to inertial confinement fusion (ICF). Low-adiabat ICF implosions routinely access strongly coupled and degenerate plasma conditions. Using the path integral Monte Carlo method, we have derived a first-principles EOS (FPEOS) table of deuterium. It is the first ab initio EOS table which completely covers typical ICF implosion trajectory in the density and temperature ranges of rho = 0.002–1596 g/cm^3 and T = 1.35 eV–5.5 keV. Discrepancies in internal energy and pressure have been found in strongly coupled and degenerate regimes with respect to SESAME EOS. Hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table have indicated significant differences in peak density, areal density, and neutron yield relative to SESAME simulations.

  3. Self-similar Isochoric Implosions for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel

    2005-10-01

    Fast Ignition (FI) exploits the ignition of a dense, uniform fuel assembly by an external energy source to achieve high gain. However, in conventional ICF implosions, the fuel assembles as a dense shell surrounding a low density, high-pressure hotspot. Such configurations are far from optimal for FI. Here, it is shown that a self-similar spherical implosion of the type studied by Guderley [Luftfahrtforschung 19, 302 (1942).] and later Meyer-ter-Vehn & Schalk [Z. Naturforsch. 37a, 955 (1982).] may be employed to implode dense, uniform fuel assemblies with minimal energy wastage in forming a hotspot. The connection to "realistic" (i.e., non-self-similar) implosion schemes using laser or X-ray drive is also investigated.

  4. Uniform fuel target implosion in heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Karino, T.; Kondo, S.; Iinuma, T.; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.

    2016-05-01

    For a steady operation of a fusion power plant the target implosion should be robust against the implosion non-uniformities. In this paper the non-uniformity mitigation mechanisms in the heavy ion beam (HIB) illumination are discussed in heavy ion inertial fusion (HIF). A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to the radiation energy smoothing for the HIB illumination non-uniformity. The large density-gradient scale, which is typically ∼500μm in HIF targets, also contributes to a reduction of the Rayleigh- Taylor instability growth rate. In HIF a wobbling HIBs illumination would also reduce the Rayleigh-Taylor instability growth and to realize a uniform implosion.

  5. Implosion stability and symmetry analysis of OMEGA direct-drive implosions using spectrally-resolved imaging

    NASA Astrophysics Data System (ADS)

    Johns, Heather M.

    Abstract Line absorption spectroscopy of Ti-doped tracer layers embedded in the shell of inertial confinement fusion targets is a powerful diagnostic to characterize the state of the un-ablated and compressed shell that confines the hot and dense core fuel. In this dissertation we investigate two applications of this diagnostic to warm shell implosion experiments performed at the OMEGA national laser user facility that provide new insights about implosion symmetry, stability and mixing. This was accomplished through two groups of experiments and different types of data processing and analysis. In a first group of experiments, streaked high-spectral resolution but spatially integrated measurements were recorded with a crystal spectrometer to determine the time-history of electron temperature and density, ionization state and areal density for tracer layers initially located at several depths from the shell's inner surface. This analysis included, for the first time, the effect of self-emission of Ti K-shell line transitions. We found that the self-emission is important for tracer layers located close to the core, and has to be taken into account in order to obtain accurate values of temperature and density; but this effect is less important for tracer layers initially placed farther from the core, for which the self-emission may be neglected and analysis of transmission is sufficient to model and interpret the absorption spectrum. This finding is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions will remain at lower temperatures because they are less affected by thermal transport. In a second group of experiments, arrays of spectrally-resolved images were recorded with a novel multi-monochromatic x-ray imager: the MMI instrument. The MMI affords simultaneous time-gated (snapshots), spatial- (based on pinholes) and spectral- (multi-layer Bragg

  6. First beryllium capsule implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.; Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  7. High-performance inertial confinement fusion target implosions on OMEGA

    SciTech Connect

    Meyerhofer, D. D.; McCrory, R L; Betti, R; Boehly, T R; Casey, D T; Collins, T.J.B.; Craxton, R S; Delettrez, J A; Edgell, D H; Epstein, R; Fletcher, K A; Frenje, J A; Glebov, Y Yu; Goncharov, V N; Harding, D R; Hu, S X; Igumenshchev, I V; Knauer, J P; Li, C K; Marozas, J A; Marshall, F J; McKenty, P W; Nilson, P M; Padalino, S P; Petrasso, R D; Radha, P B; Regan, S P; Sangster, T C; Seguin, F H; Seka, W; Short, R W; Shvarts, D; Skupsky, S; Soures, J M; Stoeckl, C; Theobald, W; Yaakobi, B

    2011-04-18

    The Omega Laser Facility is used to study inertial confinement fusion (ICF) concepts. This paper describes progress in direct-drive central hot-spot (CHS) ICF, shock ignition (SI) and fast ignition (FI) since the 2008 IAEA FEC conference. CHS cryogenic deuterium-tritium (DT) target implosions on OMEGA have produced the highest DT areal densities yet measured in ICF implosions (~300 mg cm{sup -2}). Integrated FI experiments have shown a significant increase in neutron yield caused by an appropriately timed high-intensity, high-energy laser pulse.

  8. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    PubMed

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  9. Diagnosing radiative shocks from deuterium and tritium implosions on NIF

    SciTech Connect

    Pak, A.; Divol, L.; Weber, S.; Doeppner, T.; Izumi, N.; Glenn, S.; Ma, T.; Town, R. P.; Bradley, D. K.; Glenzer, S. H.; Kyrala, G. A.; Kilne, J.

    2012-10-15

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above {approx}8 keV. On multiple implosions, {approx}200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  10. High speed laser shadowgraphy for electromagnetically driven cylindrical implosions

    SciTech Connect

    Rodriguez, G.; Roberts, J. P.; Echave, J. A.; Taylor, A. J.

    2001-08-01

    A laser shadowgraphy system for high-speed imaging of a convergent cylindrical shockwave generated by an electromagnetically driven solid density liner implosion in Lucite is described. The laser shadowgraphy system utilizes an advanced high-energy, long-pulse, frequency-doubled Nd:YAG laser for target illumination and a fast framing camera for multiple frame imaging of the shockwave as it radially converges and transits the Lucite. The time window resolution is 10 ns as determined by the fastest exposure time capable with the camera. Two on-axis symmetric implosions and two off-axis asymmetric implosion experiments were fielded at the Air Force Research Laboratory's Shiva Star 4.2 MJ capacitor bank z-pinch facility. For each experimental shot, the shadowgraphy system captured several frames of shadowgraph images as the shockwave moved through the Lucite. Analysis of the shockwave shadowgraph image shapes is done by fitting each shadowgraph image to a generic elliptical fit function and plotting the resultant two-dimensional image fits for comparison. For the on-axis symmetric implosion shots, a radial trajectory plot is extracted and a radial shock velocity is calculated. The Lucite shock speed is seen to increase monotonically from an initial velocity of 7.9 mm/{mu}s to a near final velocity of 13.4 mm/{mu}s as convergence effects dominate the shock speed calculated at small radii.

  11. Fuel gain exceeding unity in an inertially confined fusion implosion.

    PubMed

    Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R

    2014-02-20

    Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

  12. Diagnosing implosion velocity and ablator dynamics at NIF (u)

    SciTech Connect

    Hayes, Anna; Grim, Gary; Jungnam, Jerry; Bradley, Paul; Rundberg, Bob; Wilhelmy, Jerry; Wilson, Doug

    2009-07-09

    An enhanced understanding of the unique physics probed in a burning NIP capsule is important for both nuclear weapons physics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. The current set of diagnostics for the NIF experiments includes reaction history (a time resolved measure of the d + t burn), neutron time-of-flight and spectrometry and spatial imaging of the neutron production and scattering. Although valuable, this abbreviated set of diagnostics cannot determine key dynamical properties of the implosion, such as implosion velocity (v{sub impl}) and ablator thickness. To surpass the present limits of {approx} 10{sup 15} d+t reactions, it will be necessary to increase significantly the implosion energy delivered to the DT fuel by finely tuning the balance between the remaining (imploding) ablator mass and velocity. If too much mass remains, the implosion velocity will be too slow, and the subsecpwnt PdV work will not be sufficient to overcome cooling via conduction and radiation. If too little mass remains, hydrodynamic instabilities will occur, resulting in unpredictable and degraded performance. Detailed calculations suggest the ablator must reach an implosion velocity of 3-4 x 10{sup 7} cm/sec and an areal density of {rho}{Delta}R {approx}200 mg/cm{sup 2} in order to achieve ignition. The authors present a new scheme to measure these important quantities using neutron reactions on the ablator material. During the burn, the ablator is moving relative to the 14.1 MeV d+t neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The 'point-design' capsule at the NIF will be based on a {sup 9}Be ablator, and the {sup 9}Be(n,p){sup 9}Li reaction has an energy threshold of 14.2 MeV, making it the ideal

  13. Cryogneic-Target Performance and Implosion Physics Studies on OMEGA

    SciTech Connect

    Smalyuk, V.A.; Betti, R.; Boehly, T.R.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Glebov, V.Yu.; Goncharov, V.N.; Harding, D.R.; Hu, S.X.; Knauer, J.P.; Marshall, F.J.; McCrory, R.L.; McKenty, P.W.; Meyerhofer, D.D.; Radha, R.B.; Regan, S.P.; Sangster, T.C.; Seka, W.; Short, R.W.; Shvarts, D.; Skupsky, S.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.; Frenje, J.A.; Li, C.K.; Petrasso, R.D.; Seguin, F.H.

    2009-03-06

    Recent progress in direct-drive cryogenic implosions on the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is reviewed. Ignition-relevant areal densities of ~200 mg/cm^2 in cryogenic D2 implosions with peak laser-drive intensities of ~5 x 10^14 W/cm^2 were previously reported [T. C. Sangster et al., Phys. Rev. Lett. 100, 185006 (2008)]. The laser intensity is increased to ~10^15 W/cm^2 to demonstrate ignition-relevant implosion velocities of 3–4 x 10^7 cm/ s, providing an understanding of the relevant target physics. Planar-target acceleration experiments show the importance of the nonlocal electron-thermal-transport effects for modeling the laser drive. Nonlocal and hot-electron preheat is observed to stabilize the Rayleigh–Taylor growth at a peak drive intensity of ~10^15 W/cm^2. The shell preheat caused by hot electrons generated by two-plasmon-decay instability was reduced by using Si-doped ablators. The measured compressibility of planar plastic targets driven with high-compression shaped pulses agrees well with one-dimensional simulations at these intensities. Shock mistiming has contributed to compression degradation of recent cryogenic implosions driven with continuous pulses. Multiple-picket (shock-wave) target designs make it possible for a more robust tuning of the shock-wave arrival times. Cryogenic implosions driven with double-picket pulses demonstrate somewhat improved compression performance at a peak drive intensity of ~10^15 W/cm^2.

  14. Capsule implosions driven by dynamic hohlraum x-rays

    NASA Astrophysics Data System (ADS)

    Bailey, James

    2005-10-01

    Dynamic hohlraum experiments at the Z facility already implode capsules with up to 80 kJ absorbed x-ray energy. However, many challenging issues remain for ICF. The present experiments use diagnostic capsules to address two of these issues: symmetry measurement and control and building understanding of the capsule/hohlraum implosion system. A suite of x-ray spectrometers record time and space resolved spectra emitted by Ar tracer atoms in the implosion core, simultaneously from up to three different quasi-orthogonal directions. Comparing the results with simulation predictions provide severe tests of understanding. These data also can used to produce a tomographic reconstruction of the time resolved core temperature and density profiles. X-ray and neutron diagnostics are used to examine how the implosion conditions change as the capsule design changes. The capsule design changes include variations in CH wall thickness and diameter, Ge-doped CH shells, and SiO2 shells. In addition, a new campaign investigating Be capsule implosions is beginning. Be capsules may offer superior performance for dynamic hohlraum research and it may be possible to investigate NIF-relevant Be implosion issues such as the fill tube effects, sensitivity to columnar growth associated with sputtered Be capsule fabrication, and the effect of Cu dopants on implosion conditions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Dept. of Energy under contract No. DE-AC04-94AL85000. * In collaboration with G.A. Rochau, G.A. Chandler, S.A. Slutz, P.W. Lake, G. Cooper, G.S. Dunham, R.J. Leeper, R. Lemke, T.A. Mehlhorn, T.J. Nash, D.S. Nielsen, K. Peterson, C.L. Ruiz, D.B. Sinars, J. Torres, W. Varnum, Sandia; R.C. Mancini, T.J. Buris-Mog, UNR; I. Golovkin, J.J. MacFarlane, PRISM; A. Nikro, D. Steinman, J.D. Kilkenny, H. Xu, General Atomics; M. Bump, T.C. Moore, K-tech; D.G. Schroen, Schafer

  15. An experimental and numerical study of top/bottom drive asymmetry on NIF implosions

    NASA Astrophysics Data System (ADS)

    Spears, Brian; Lindl, J.; Edwards, J.; Town, R.; Ma, T.; Pak, A.; Eder, D.; Kritcher, A.; Patel, P.; McNaney, J.; Knauer, J.; Munro, D.; Hatchett, S.

    2013-10-01

    NIF x-ray and nuclear diagnostics intermittently suggest unintentionally broken top/bottom (mode 1) symmetry. We present the results of a NIF implosion experiment with intentional top/bottom laser power asymmetry. The controlled asymmetric experiment showed agreement with the diagnostic signatures of mode 1 asymmetry as predicted by numerical simulations. Furthermore, the controlled experimental results provide a context for interpreting the historical archive of data on implosions with unintentional asymmetry. This analysis supports our hypothesis that uncontrolled asymmetries have indeed been present on prior NIF implosions. Numerical simulations confirm that these asymmetries impact implosions at levels varying from minor to substantial. We explore the numerical simulations to show the impact of the asymmetry on implosion hydrodynamics and the associated impact on implosion performance metrics including the Ignition Threshold Factor (eXperimental), ITFX, and the Generalized Lawson Criterion. LLNL-ABS-640682. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Spears, Brian K.; Edwards, M. J.; Hatchett, S.; Kilkenny, J.; Knauer, J.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J.

    2014-04-01

    Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P1 has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

  17. The evolution of instabilities during magnetically driven liner implosions.

    SciTech Connect

    Jennings, Christopher A.; Slutz, Stephen A.; Cuneo, Michael Edward; McBride, Ryan D.; Herrmann, Mark C.; Sinars, Daniel Brian

    2010-11-01

    Numerical simulations [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)] indicate that fuel magnetization and preheat could enable cylindrical liner implosions to become an efficient means to generate fusion conditions. A series of simulations has been performed to study the stability of magnetically driven liner implosions. These simulations exhibit the initial growth and saturation of an electro-thermal instability. The Rayleigh-Taylor instability further amplifies the resultant density perturbations developing a spectrum of modes initially peaked at short wavelengths. With time the spectrum of modes evolves towards longer wavelengths developing an inverse cascade. The effects of mode coupling, the radial dependence of the magnetic pressure, and the initial surface roughness will be discussed.

  18. Proton radiography of a laser-driven implosion.

    PubMed

    Mackinnon, A J; Patel, P K; Borghesi, M; Clarke, R C; Freeman, R R; Habara, H; Hatchett, S P; Hey, D; Hicks, D G; Kar, S; Key, M H; King, J A; Lancaster, K; Neely, D; Nikkro, A; Norreys, P A; Notley, M M; Phillips, T W; Romagnani, L; Snavely, R A; Stephens, R B; Town, R P J

    2006-07-28

    Protons accelerated by a picosecond laser pulse have been used to radiograph a 500 microm diameter capsule, imploded with 300 J of laser light in 6 symmetrically incident beams of wavelength 1.054 microm and pulse length 1 ns. Point projection proton backlighting was used to characterize the density gradients at discrete times through the implosion. Asymmetries were diagnosed both during the early and stagnation stages of the implosion. Comparison with analytic scattering theory and simple Monte Carlo simulations were consistent with a 3+/-1 g/cm3 core with diameter 85+/-10 microm. Scaling simulations show that protons>50 MeV are required to diagnose asymmetry in ignition scale conditions.

  19. Tungsten Z-Pinch Long Implosions on the Saturn Generator

    SciTech Connect

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; SPIELMAN,RICK B.; COVERDALE,CHRISTINE A.; RODERICK,N.F.; HAINES,M.G.

    1999-11-05

    Recent success on the Saturn and Z accelerators at Sandia National Laboratories have demonstrated the ability to scale z-pinch parameters to increasingly larger current pulsed power facilities. Next generation machines will require even larger currents (>20 MA), placing further demands on pulsed power technology. To this end, experiments have been carried out on Saturn operating in a long pulse mode, investigating the potential of lower voltages and longer implosion times while still maintaining pinch fidelity. High wire number, 25 mm diameter tungsten arrays were imploded with implosion times ranging from 130 to 240 ns. The results were comparable to those observed in the Saturn short pulse mode, with risetimes on the order of 4.5 to 6.5 ns. Experimental data will be presented, along with two dimensional radiation magnetohydrodynamic simulations used to explain and reproduce the experiment.

  20. Constraining fundamental plasma physics processes using doped capsule implosions

    NASA Astrophysics Data System (ADS)

    Garbett, W. J.; James, S.; Kyrala, G. A.; Wilson, D. C.; Benage, J.; Wysocki, F. J.; Gunderson, M.; Frenje, J.; Petrasso, R.; Glebov, V. Y.; Yaakobi, B.

    2008-05-01

    A standard technique in inertial confinement fusion research is the use of low levels of spectroscopic dopants as a passive diagnostic of fuel conditions. Using higher dopant levels it becomes possible to modify the plasma conditions. Doped capsule experiments may thus provide a way to control and study fundamental plasma physics processes in the inertial fusion regime. As a precursor to eventual experiments on the National Ignition Facility (NIF) we have performed a series of capsule implosions using the Omega laser. These are intended to guide the modelling of high-Z dopants and explore the feasibility of using such capsule implosions for quantitative physics experiments. We have fielded thin glass shells filled with D-He3 fuel and varying levels of Ar, Kr and Xe dopants. X-ray emission spectroscopy is combined with simultaneous measurements of primary neutron and proton yields and energy spectra in an attempt to fully constrain capsule behaviour.

  1. Hohlraum drive and implosion experiments on Nova. Revision 1

    SciTech Connect

    Kilkenny, J.D.; Suter, L.J.; Cable, M.D.

    1994-09-08

    Experiments on Nova have demonstrated hohlraum radiation temperatures up to 300 eV and in lower temperature experiments reproducible time integrated symmetry to 1--2%. Detailed 2-D LASNEX simulations satisfactorily reproduce Nova`s drive and symmetry scaling data bases. Hohlraums has been used for implosion experiments achieving convergence ratios (initial capsule radius/final fuel radius) up to 24 with high density glass surrounding a hot gas fill.

  2. Hot spot temperature measurements in DT layered implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Ma, T.; Macphee, A.; Callahan, D.; Chen, H.; Cerjan, C.; Clark, D.; Edgell, D.; Hurricane, O.; Izumi, N.; Khan, S.; Jarrott, L.; Kritcher, A.; Springer, P.

    2015-11-01

    The temperature of the burning DT hot spot in an ICF implosion is a crucial parameter in understanding the thermodynamic conditions of the fuel at stagnation and and the performance of the implosion in terms of alpha-particle self-heating and energy balance. The continuum radiation spectrum emitted from the hot spot provides an accurate measure of the emissivity-weighted electron temperature. Absolute measurements of the emitted radiation are made with several independent instruments including spatially-resolved broadband imagers, and space- and time-integrated monochromatic detectors. We present estimates of the electron temperature in DT layered implosions derived from the radiation spectrum most consistent with the available measurements. The emissivity-weighted electron temperatures are compared to the neutron-averaged apparent ion temperatures inferred from neutron time-of-flight detectors. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Influence and measurement of mass ablation in ICF implosions

    SciTech Connect

    Spears, B K; Hicks, D; Velsko, C; Stoyer, M; Robey, H; Munro, D; Haan, S; Landen, O; Nikroo, A; Huang, H

    2007-09-05

    Point design ignition capsules designed for the National Ignition Facility (NIF) currently use an x-ray-driven Be(Cu) ablator to compress the DT fuel. Ignition specifications require that the mass of unablated Be(Cu), called residual mass, be known to within 1% of the initial ablator mass when the fuel reaches peak velocity. The specifications also require that the implosion bang time, a surrogate measurement for implosion velocity, be known to +/- 50 ps RMS. These specifications guard against several capsule failure modes associated with low implosion velocity or low residual mass. Experiments designed to measure and to tune experimentally the amount of residual mass are being developed as part of the National Ignition Campaign (NIC). Tuning adjustments of the residual mass and peak velocity can be achieved using capsule and laser parameters. We currently plan to measure the residual mass using streaked radiographic imaging of surrogate tuning capsules. Alternative techniques to measure residual mass using activated Cu debris collection and proton spectrometry have also been developed. These developing techniques, together with bang time measurements, will allow us to tune ignition capsules to meet NIC specs.

  4. Kinetic Effects at Material Interfaces in ICF Implosions

    NASA Astrophysics Data System (ADS)

    Wilks, S. C.; Cabot, W.; Whitley, H.; Greenough, J.; Cohen, B. I.; Belof, J.; Zimmerman, G.; Amendt, P. A.; Lepape, S.; Divol, L.; Dimits, A.; Graziani, F.; Molvig, K.; Dodd, E.; Li, C. K.; Petrasso, R.; Laffite, S.; Larroche, O.; Casanova, M.; Masse, L.

    2014-10-01

    The mixing of materials at an interface during an ICF implosion, for example the DT- Carbon interface in an ICF capsule, is a complex process. In general, rad-hydro codes do an excellent job of modeling the important processes during an ICF implosion. However, there are certain times during the implosion when kinetic effects of the ions may play a role in how two materials mix across the interface between them, even in the absence of shocks moving through them. The Knudsen layer effect is one such example. We will describe results of multi-ion species hybrid LSP simulations where the ions are treated kinetically and the electrons are treated as a fluid. We observe that the DT and carbon ions diffuse across the interface in a self-similar manner, at a rate proportional to the square root of time, in agreement with diffusion theory. The resulting ion distributions for each species (on both sides of the interface) will be presented, and the result of this mixing on the yield will be discussed for ICF capsules. Preliminary results of a related mixing that occurs at the gas-hohlraum wall interface will also be presented. Performed under auspices of U.S. DOE by LLNL, Contract DE-AC52-07NA27344. LLNS, LLC.

  5. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  6. Diagnostics for Z-pinch implosion experiments on PTS

    SciTech Connect

    Ren, X. D. Huang, X. B. Zhou, S. T. Zhang, S. Q. Dan, J. K. Li, J. Cai, H. C. Wang, K. L. Ouyang, K. Xu, Q. Duan, S. C. Chen, G. H. Wang, M. Feng, S. P. Yang, L. B. Xie, W. P. Deng, J. J.

    2014-12-15

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  7. Spiral wobbling beam illumination uniformity in HIF fuel target implosion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kurosaki, T.; Koseki, S.; Hisatomi, Y.; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.

    2013-11-01

    A few % wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) throughout the heavy ion beam (HIB) driver pulse by a newly introduced spiraling beam axis motion in the first two rotations. The wobbling HIB illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may produce a time-dependent implosion acceleration, which reduces the Rayleigh-Taylor (R-T) growth [Laser Part. Beams 11, 757 (1993), Nuclear Inst. Methods in Phys. Res. A 606, 152 (2009), Phys. Plasmas 19, 024503 (2012)] and the implosion nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100 MHz ˜ 1 GHz [Phys. Rev. Lett. 104, 254801 (2010)]. Three-dimensional HIBs illumination computations present that the few % wobbling HIBs illumination nonuniformity oscillates with the same wobbling HIBs frequency.

  8. Energy balance during underwater implosion of ductile metallic cylinders.

    PubMed

    Chamberlin, Ryan E; Guzas, Emily L; Ambrico, Joseph M

    2014-11-01

    Energy-based metrics are developed and applied to a numerical test case of implosion of an underwater pressure vessel. The energy metrics provide estimates of the initial energy in the system (potential energy), the energy released into the fluid as a pressure pulse, the energy absorbed by the imploding structure, and the energy absorbed by air trapped within the imploding structure. The primary test case considered is the implosion of an aluminum cylinder [diameter: 2.54 cm (1 in.), length: 27.46 cm (10.81 in.)] that collapses flat in a mode-2 shape with minimal fracture. The test case indicates that the structure absorbs the majority (92%) of the initial energy in the system. Consequently, the energy emitted as a pressure pulse into the fluid is a small fraction, approximately 5%, of the initial energy. The energy absorbed by the structure and the energy emitted into the fluid are calculated for additional simulations of underwater pressure vessel implosions. For all cases investigated, there is minimal fracture in the collapse, the structure absorbs more than 80% of the initial energy of the system, and the released pressure pulse carries away less than 6% of the initial energy.

  9. A New Theory of Mix in Omega Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Knoll, Dana; Chacon, Luis; Rauenzahn, Rick; Simakov, Andrei; Taitano, William; Welser-Sherrill, Leslie

    2014-10-01

    We put forth a new mix model that relies on the development of a charge-separation electrostatic double-layer at the fuel-pusher interface early in the implosion of an Omega plastic ablator capsule. The model predicts a sizable pusher mix (several atom %) into the fuel. The expected magnitude of the double-layer field is consistent with recent radial electric field measurements in Omega plastic ablator implosions. Our theory relies on two distinct physics mechanisms. First, and prior to shock breakout, the formation of a double layer at the fuel-pusher interface due to fast preheat-driven ionization. The double-layer electric field structure accelerates pusher ions fairly deep into the fuel. Second, after the double-layer mix has occurred, the inward-directed fuel velocity and temperature gradients behind the converging shock transports these pusher ions inward. We first discuss the foundations of this new mix theory. Next, we discuss our interpretation of the radial electric field measurements on Omega implosions. Then we discuss the second mechanism that is responsible for transporting the pusher material, already mixed via the double-layer deep into the fuel, on the shock convergence time scale. Finally we make a connection to recent mix motivated experimental data on. This work conducted under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory, managed by LANS, LLC under Contract DE-AC52-06NA25396.

  10. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; et al

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which aremore » interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  11. In-flight observations of low-mode ρR asymmetries in NIF implosions

    SciTech Connect

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; Meezan, N. B.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dewald, E. L.; Dixit, S.; Doppner, T.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moses, E.; Nagel, S. R.; Nikroo, A.; Parham, T.; Pak, A.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Robey, H. F.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Yeamans, C.; Zacharias, R.

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which are interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.

  12. In-flight observations of low-mode ρR asymmetries in NIF implosions

    SciTech Connect

    Zylstra, A. B. Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W.; Rygg, J. R.; Kritcher, A.; Hicks, D. G.; Friedrich, S.; Bionta, R.; Meezan, N. B.; Atherton, J.; Barrios, M.; Bell, P.; and others

    2015-05-15

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D{sup 3}He gas-filled implosions at the National Ignition Facility produce energetic protons via D+{sup 3}He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3–5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%, which are interpreted as ℓ=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.

  13. Understanding the stagnation and burn of implosions on NIF

    NASA Astrophysics Data System (ADS)

    Kilkenny, J. D.; Caggiano, J. A.; Hatarik, R.; Knauer, J. P.; Sayre, D. B.; Spears, B. K.; Weber, S. V.; Yeamans, C. B.; Cerjan, C. J.; Divol, L.; Eckart, M. J.; Glebov, V. Yu; Herrmann, H. W.; Le Pape, S.; Munro, D. H.; Grim, G. P.; Jones, O. S.; Berzak-Hopkins, L.; Gatu-Johnson, M.; Mackinnon, A. J.; Meezan, N. B.; Casey, D. T.; Frenje, J. A.; Mcnaney, J. M.; Petrasso, R.; Rinderknecht, H.; Stoeffl, W.; Zylstra, A. B.

    2016-03-01

    An improved the set of nuclear diagnostics on NIF measures the properties of the stagnation plasma of implosions, including the drift velocity, areal density (ρr) anisotropy and carbon ρr of the compressed core. Two types of deuterium-tritium (DT) gas filled targets are imploded by shaped x-ray pulses, producing stagnated and burning DT cores of radial convergence (Cr) ∼ 5 or ∼20. Comparison with two-dimensional modeling with inner and outer surface mix shows good agreement with nuclear measurements.

  14. Very high ratio compression by liquid conical implosion

    NASA Astrophysics Data System (ADS)

    Chen, Jianguo; Lei, Yian

    2015-11-01

    A conical implosion device is designed to achieve very high ratio compression, up to 109 or even higher. The compressing liquid has very low vapor pressure. A novel method is used to prepare the initial pure and thin gas. Some preliminary results proved the concept. The device can produce high energy density (HED) states in a near thermal equilibrium state, heat a gas continuously from very low (a few K) to very high temperature (~100,000 K), or do magnetized target fusion (MTF) with a proper external pulse current or magnetic field.

  15. Development of an accelerating piston implosion-driven launcher

    NASA Astrophysics Data System (ADS)

    Huneault, J.; Loiseau, J.; Higgins, A. J.

    2014-05-01

    The ability to soft-launch projectiles to velocities exceeding 10 km/s is of interest for a number of scientific fields, including orbital debris impact testing and equation of state research. Current soft-launch technologies have reached a performance plateau below this operating range. In the implosion-driven launcher (ILD) concept, explosives are used to dynamically compress a light driver gas to significantly higher pressures and temperatures than the propellant of conventional light-gas guns. The propellant of the IDL is compressed through the linear implosion of a pressurized tube. The imploding tube behaves like a piston which travels into the light gas at the explosive detonation velocity, thus forming an increasingly long column of shock-compressed gas which can be used to propel a projectile. The McGill designed IDL has demonstrated the ability to launch a 0.1-g projectile to 9.1 km/s. This work will focus on the implementation of a novel launch cycle in which the explosively driven piston is accelerated in order to gradually increase driver gas compression, thus maintaining a relatively constant projectile driving pressure. The theoretical potential of the concept as well as the experimental development of an accelerating piston driver will be examined.

  16. Development of an accelerating-piston implosion-driven launcher

    NASA Astrophysics Data System (ADS)

    Huneault, Justin; Loiseau, Jason; Higgins, Andrew

    2013-06-01

    The ability to soft-launch projectiles at velocities exceeding 10 km/s is of interest to several scientific fields, including orbital debris impact testing and equation of state research. Current soft-launch technologies have reached a performance plateau below this operating range. The energy and power density of high explosives provides a possible avenue to reach this velocity if used to dynamically compress a light driver gas to significantly higher pressures and temperatures compared to light-gas guns. In the implosion-driven launcher (IDL), linear implosion of a pressurized tube drives a strong shock into the gas ahead of the tube pinch, thereby forming an increasingly long column of compressed gas which can be used to propel a projectile. The McGill IDL has demonstrated the ability to launch a 0.1-g projectile to 9.1 km/s. This study focuses on the implementation of a novel launch cycle wherein the explosively driven pinch is accelerated down the length of the tube in order to maintain a relatively constant projectile base pressure early in the launch cycle. The experimental development of an accelerating driver which utilizes an explosive lens to phase the detonation wave is presented. The design and experimental performance of an accelerating-piston IDL is also discussed.

  17. Diagnosing Implosion Velocity and Ablator Dynamics at NIF

    NASA Astrophysics Data System (ADS)

    Grim, Gary; Hayes, Anna; Jungman, Jerry; Wilson, Doug; Wilhelmy, Jerry; Bradley, Paul; Rundberg, Bob; Cerjan, Charlie

    2009-10-01

    An enhanced understanding of the environment in a burning NIF capsule is of interest to both astrophysics and thermonuclear ignition. In this talk we introduce a new diagnostic idea, designed to measure dynamic aspects of the capsule implosion that are not currently accessible. During the burn,the NIF capsule ablator is moving relative to the 14.1 MeV dt neutrons that are traversing the capsule. The resulting neutron-ablator Doppler shift causes a few unique nuclear reactions to become sensitive detectors of the ablator velocity at peak burn time. The ``point-design'' capsule at the NIF will be based on a ^9Be ablator, and the ^9Be(n,p)^9Li reaction has an energy threshold of 14.2 MeV, making it the ideal probe. As discussed in detail below, differences in the ablator velocity lead to significant differences in the rate of ^9Li production. We present techniques for measuring this ^9Li implosion velocity diagnostic at the NIF. The same experimental techniques, measuring neutron reactions on the ablator material, will allow us to determine other important dynamical quantities, such as the areal density and approximate thickness of the ablator at peak burn.

  18. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, J.W.K.

    1987-10-14

    Hybrid-drive implosion systems for ICF targets are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator surroundingly disposed around fusion fuel. The ablator is first compressed to higher density by a laser system, or by an ion beam system, that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system that is optimized for this second phase of operation of the target. The fusion fuel is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion. 3 figs.

  19. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-08-02

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  20. Hybrid-drive implosion system for ICF targets

    DOEpatents

    Mark, James W.

    1988-01-01

    Hybrid-drive implosion systems (20,40) for ICF targets (10,22,42) are described which permit a significant increase in target gain at fixed total driver energy. The ICF target is compressed in two phases, an initial compression phase and a final peak power phase, with each phase driven by a separate, optimized driver. The targets comprise a hollow spherical ablator (12) surroundingly disposed around fusion fuel (14). The ablator is first compressed to higher density by a laser system (24), or by an ion beam system (44), that in each case is optimized for this initial phase of compression of the target. Then, following compression of the ablator, energy is directly delivered into the compressed ablator by an ion beam driver system (30,48) that is optimized for this second phase of operation of the target. The fusion fuel (14) is driven, at high gain, to conditions wherein fusion reactions occur. This phase separation allows hydrodynamic efficiency and energy deposition uniformity to be individually optimized, thereby securing significant advantages in energy gain. In additional embodiments, the same or separate drivers supply energy for ICF target implosion.

  1. Analysis of NIF experiments with the minimal energy implosion model

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Merrill, F. E.; Cerjan, C. J.; Batha, S. H.

    2015-08-01

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-induced instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments.

  2. Analysis of NIF experiments with the minimal energy implosion model

    SciTech Connect

    Cheng, B. Kwan, T. J. T.; Wang, Y. M.; Merrill, F. E.; Batha, S. H.; Cerjan, C. J.

    2015-08-15

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-induced instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments.

  3. Implosion Robustness, Time-Dependent Flux Asymmetries and Big Data

    NASA Astrophysics Data System (ADS)

    Peterson, J. L.; Field, J. E.; Spears, B. K.; Brandon, S. T.; Gaffney, J. A.; Hammer, J.; Kritcher, A.; Nora, R. C.; Springer, P. T.

    2015-11-01

    Both direct and indirect drive inertial confinement fusion rely on the formation of spherical implosions, which can be a challenge under temporal and spatial drive variations (either from discrete laser beams, a complex hohlraum radiation environment, or both). To that end, we examine the use of large simulation databases of 2D capsule implosions to determine the sensitivity of indirectly driven NIF designs to time-varying low-mode radiation drive asymmetries at varying convergence ratios. In particular, we define and calculate a large number of extensive quantities for the simulations within the database and compare with the equivalent quantities extracted from fully 3D simulations and those used in 1D hydrodynamic models. Additionally, we discuss some of the practical challenges of searching for physical insight in multi-petabyte datasets. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. LLNL-ABS-674884.

  4. Modeling and diagnosing interface mix in layered ICF implosions

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Berzak Hopkins, L. F.; Clark, D. S.; Haan, S. W.; Ho, D. D.; Meezan, N. B.; Milovich, J. L.; Robey, H. F.; Smalyuk, V. A.; Thomas, C. A.

    2015-11-01

    Mixing at the fuel-ablator interface of an inertial confinement fusion (ICF) implosion can arise from an unfavorable in-flight Atwood number between the cryogenic DT fuel and the ablator. High-Z dopant is typically added to the ablator to control the Atwood number, but recent high-density carbon (HDC) capsules have been shot at the National Ignition Facility (NIF) without this added dopant. Highly resolved post-shot modeling of these implosions shows that there was significant mixing of ablator material into the dense DT fuel. This mix lowers the fuel density and results in less overall compression, helping to explain the measured ratio of down scattered-to-primary neutrons. Future experimental designs will seek to improve this issue through adding dopant and changing the x-ray spectra with a different hohlraum wall material. To test these changes, we are designing an experimental platform to look at the growth of this mixing layer. This technique uses side-on radiography to measure the spatial extent of an embedded high-Z tracer layer near the interface. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  5. IMPLOSION OF INDIRECTLY DRIVEN REENTRANT CONE SHELL TARGET

    SciTech Connect

    STEPHENS,RB

    2003-08-01

    OAK-B135 The authors have examined the implosion of an indirectly driven reentrant-cone shell target to clarify the issues attendant on compressing fuel for a fast ignition target. The target design is roughly hydrodynamic equivalent to a NIF cryo-ignition target, but scaled down to be driven by Omega. A sequence of backlit x-radiographs recorded each implosion. The collapse was also modeled with LASNEX, generating simulated radiographs. They compare experimental and simulated diameter, density and symmetry as functions of time near stagnation. The simulations were generally in good agreement with the experiments with respect to the shell, but did not show the opacity due to ablation of gold off the cone; non-thermal gold M-line radiation from the hohlraum wall penetrates the shell and drives this ablation causing some Au to mix into the low density center of the core and into the region between the core and cone. This might be a problem in a cryo-ignition target.

  6. Stopping Power and Secondary Nuclear Production in OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Kurebayshi, S.; Rygg, J. R.; Schwartz, B. E.; Deciantis, J.; Burke, S.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. N.; Soures, J. M.; Meyerhofer, D. D.; Roberts, S.; Sangster, T. C.; Stoeckl, C.; Hoffman, N.; Wilson, D.

    2002-11-01

    Direct-drive spherical implosions of thin-shell glass capsules filled with D^3He and D2 have been conducted on OMEGA to explore issues of charged-particle stopping relevant to fusion ignition experiments and provide theoretical and experimental tests of secondary nuclear production. For D^3He-filled capsules and for a variety of implosion conditions, up to five different primary lines are used. The absolute energy calibrations, the detailed line shapes of the fusion reaction products, the downshifts of the fusion products, and the determination of whether any acceleration occurred due to charging of the capsule are all relevant to the stopping power analysis. For the asymptotic tests of the foundations of secondary nuclear production, the absolute yields of both secondary protons and neutrons need to be carefully quantified, as must be the plasma conditions. This work was performed in part at the LLE National Laser Users' Facility (NLUF), and was supported in part by the U.S. DOE Office of Inertial Confinement Fusion (Grant number DE-FG03-99DP00300 and Cooperative Agreement number DE-FC03-92SF19460), LLE (subcontract P0410025G), LLNL (subcontract B313975). (Petrasso: Visiting Senior Scientist at LLE.)

  7. Kr gas puff implosion experiments on the Z generator

    NASA Astrophysics Data System (ADS)

    Ampleford, David; Jennings, Christopher; Hansen, Stephanie; Harvey-Thompson, Adam; Rochau, Gregory; Lamppa, Derek; Jones, Brent; Dasgupta, Arati; Giuliani, John; Thornhill, J. Ward

    2015-11-01

    We discuss experiments imploding large diameter Kr gas puffs on the Z generator. Thermalization of kinetic energy leads to high pinch temperatures; the plasma conditions achieved are conducive to 13-keV K-shell emission from Kr. By tailoring the density profile and designing experiments using hydrodynamic gas flow modeling coupled to MHD modeling we are able to implode these gas puffs at high velocities (> 100cm / μs) from 12-cm initial diameters to a tight (~ 1 mm diameter) uniform stagnated pinch. Data indicates that changes to the initial density profile affect the implosion stability and significantly affect the radiated output, with the most stable implosion radiating ~ 8 kJ at >10 keV, the majority of which is radiated in the Kr He α line. In this poster we will compare an extensive suite of yield, spectral, imaging and pulse shape diagnostics to MHD modeling, and discuss the plasma conditions inferred from comparing data to atomic modeling. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  8. Capsule Ablator Inflight Performance Measurements Via Streaked Radiography Of ICF Implosions On The NIF*

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Tommasini, R.; Mackinnon, A.; MacPhee, A.; Meezan, N.; Olson, R.; Hicks, D.; LePape, S.; Izumi, N.; Fournier, K.; Barrios, M. A.; Ross, S.; Pak, A.; Döppner, T.; Kalantar, D.; Opachich, K.; Rygg, R.; Bradley, D.; Bell, P.; Hamza, A.; Dzenitis, B.; Landen, O. L.; MacGowan, B.; LaFortune, K.; Widmayer, C.; Van Wonterghem, B.; Kilkenny, J.; Edwards, M. J.; Atherton, J.; Moses, E. I.

    2016-03-01

    Streaked 1-dimensional (slit imaging) radiography of 1.1 mm radius capsules in ignition hohlraums was recently introduced on the National Ignition Facility (NIF) and gives an inflight continuous record of capsule ablator implosion velocities, shell thickness and remaining mass in the last 3-5 ns before peak implosion time. The high quality data delivers good accuracy in implosion metrics that meets our requirements for ignition and agrees with recently introduced 2-dimensional pinhole radiography. Calculations match measured trajectory across various capsule designs and laser drives when the peak laser power is reduced by 20%. Furthermore, calculations matching measured trajectories give also good agreement in ablator shell thickness and remaining mass.

  9. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O. A.; Berzak-Hopkins, L. F.; Callahan, D. A.; Casey, D. T.; Clark, D.; Dewald, E. L.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Kozioziemski, B. J.; Kritcher, A. L.; Ma, T.; Nikroo, A.; Pak, A. E.; Parham, T. G.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Salmonson, J. D.; Springer, P. T.; Weber, C. R.; Zimmerman, G. B.; Kline, J. L.

    2016-05-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO2) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented.

  10. A study of CR-39 track response to charged particles from NOVA implosions

    NASA Astrophysics Data System (ADS)

    Phillips, T. W.; Cable, M. D.; Hicks, D. G.; Li, C. K.; Petrasso, R. D.; Seguin, F. H.

    1997-01-01

    We have exposed CR-39 track recording material to a number of NOVA implosions. Radiation from the implosion passed through an array of ranging filters, which aided identification of the incident particles and their energies. The etching procedure was calibrated by including a piece of track exposed to DD protons from a small accelerator. For the same shots, we quantitatively compare the DD neutron yield with the DD proton yield determined from the track. In DT implosions, tracks produced by neutron interactions prevent observation of charged-particle tracks that are produced by the processes of knock on, secondary, or tertiary fusion.

  11. Compact wire array sources: power scaling and implosion physics.

    SciTech Connect

    Serrano, Jason Dimitri; Chuvatin, Alexander S.; Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V.; Esaulov, Andrey A.; Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Rudakov, L. I.; Jones, Brent Manley; Safronova, Alla S.; Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  12. Three-dimensional simulations of Nova capsule implosion experiments

    SciTech Connect

    Marinak, M.M.; Tipton, R.E.; Landen, O.L.

    1995-11-01

    Capsule implosion experiments carried out on the Nova laser are simulated with the three-dimensional HYDRA radiation hydrodynamics code. Simulations of ordered near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, however, causing even more damage. Simulations of a capsule with multimode perturbations shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry brings the simulated yields into closer agreement with the experimental values.

  13. Magnetic Implosion for Novel Strength Measurements at High Strain Rates

    SciTech Connect

    Lee, H.; Preston, D.L.; Bartsch, R.R.; Bowers, R.L.; Holtkamp, D.; Wright, B.L.

    1998-10-19

    Recently Lee and Preston have proposed to use magnetic implosions as a new method for measuring material strength in a regime of large strains and high strain rates inaccessible to previously established techniques. By its shockless nature, this method avoids the intrinsic difficulties associated with an earlier approach using high explosives. The authors illustrate how the stress-strain relation for an imploding liner can be obtained by measuring the velocity and temperature history of its inner surface. They discuss the physical requirements that lead us to a composite liner design applicable to different test materials, and also compare the code-simulated prediction with the measured data for the high strain-rate experiments conducted recently at LANL. Finally, they present a novel diagnostic scheme that will enable us to remove the background in the pyrometric measurement through data reduction.

  14. Towards an integrated model of the NIC layered implosions

    NASA Astrophysics Data System (ADS)

    Jones, O.; Callahan, D.; Cerjan, C.; Clark, D.; Edwards, M. J.; Glenzer, S.; Marinak, M.; Meezan, N.; Milovich, J.; Olson, R.; Patel, M.; Robey, H.; Sepke, S.; Spears, B.; Springer, P.; Weber, S.; Wilson, D.

    2013-11-01

    A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.

  15. 2013 East Bay Seismic Experiment (EBSE): implosion data, Hayward, Calif

    USGS Publications Warehouse

    Catchings, Rufus D.; Strayer, Luther M.; Goldman, Mark R.; Criley, Coyn J.; Garcia, Susan; Sickler, Robert R.; Catchings, Marisol K.; Chan, Joanne; Gordon, Leslie C.; Haefner, Scott; Blair, James Luke; Gandhok, Gini; Johnson, Michaela R.

    2015-01-01

    In August 2013, the California State University, East Bay (CSUEB) in Hayward, California imploded a 13-story building (Warren Hall) that was deemed unsafe because of its immediate proximity to the active trace of the Hayward Fault. The U.S. Geological Survey (USGS) and the CSUEB collaborated on a program to record the seismic waves generated by the collapse of the building. We refer to this collaboration as the East Bay Seismic Experiment (EBSE). The principal objective of recording the seismic energy was to observe ground shaking as it radiated from the source, but the data also may be useful for other purposes. For example, the seismic data may be useful in evaluating the implosion process as it relates to structural engineering purposes. This report provides the metadata needed to utilize the seismic data.

  16. Mean free path effects in the shock-implosion problem

    NASA Astrophysics Data System (ADS)

    Goldsworthy, M. J.; Pullin, D. I.

    2009-02-01

    The effects of finite Knudsen number in the problem of a cylindrically imploding shock wave in a monatomic gas are investigated. Numerical solutions of the flow field are obtained with initial conditions in the ranges 1.25≤M0≤5 and 0.005≤Kn0≤0.1 using the direct simulation Monte Carlo method. Results show that as Kn0 decreases and M0 increases, the maximum implosion temperature scales increasingly well with the similarity exponent predicted in the Guderley solution for an imploding strong shock in the Euler limit. When the radius of curvature is large, the cylindrical shock thickness is found to be almost identical to the thickness of a planar shock for a given shock Mach number. For small radii of curvature, the cylindrical shock was found to be thicker than the corresponding planar shock.

  17. Direct-driven target implosion in heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-03-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination.

  18. Implosion dynamics measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness

  19. Cryogenic thermonuclear fuel implosions on the National Ignition Facility

    SciTech Connect

    Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.; Alger, E. T.; Berger, R. L.; Bernstein, L. A.; Bleuel, D. L.; Bradley, D. K.; Burkhart, S. C.; Burr, R.; Caggiano, J. A.; Castro, C.; Choate, C.; Clark, D. S.; Celliers, P.; Cerjan, C. J.; Collins, G. W.; Dewald, E. L.; DiNicola, P.; DiNicola, J. M.; and others

    2012-05-15

    The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 {mu}m diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 {+-} 3) {mu}m, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 {+-} 0.09) g cm{sup -2} result in fuel densities approaching 600 g cm{sup -3}. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 {+-} 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 10{sup 15} that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5{+-}0.1) Multiplication-Sign 10{sup 14} which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 {+-} 30) ps. These indirect-drive implosions result in the highest areal densities

  20. Cryogenic thermonuclear fuel implosions on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.; Kline, J. L.; Grim, G.; Alger, E. T.; Berger, R. L.; Bernstein, L. A.; Betti, R.; Bleuel, D. L.; Boehly, T. R.; Bradley, D. K.; Burkhart, S. C.; Burr, R.; Caggiano, J. A.; Castro, C.; Casey, D. T.; Choate, C.; Clark, D. S.; Celliers, P.; Cerjan, C. J.; Collins, G. W.; Dewald, E. L.; DiNicola, P.; DiNicola, J. M.; Divol, L.; Dixit, S.; Döppner, T.; Dylla-Spears, R.; Dzenitis, E.; Eckart, M.; Erbert, G.; Farley, D.; Fair, J.; Fittinghoff, D.; Frank, M.; Frenje, L. J. A.; Friedrich, S.; Casey, D. T.; Gatu Johnson, M.; Gibson, C.; Giraldez, E.; Glebov, V.; Glenn, S.; Guler, N.; Haan, S. W.; Haid, B. J.; Hammel, B. A.; Hamza, A. V.; Haynam, C. A.; Heestand, G. M.; Hermann, M.; Hermann, H. W.; Hicks, D. G.; Hinkel, D. E.; Holder, J. P.; Holunda, D. M.; Horner, J. B.; Hsing, W. W.; Huang, H.; Izumi, N.; Jackson, M.; Jones, O. S.; Kalantar, D. H.; Kauffman, R.; Kilkenny, J. D.; Kirkwood, R. K.; Klingmann, J.; Kohut, T.; Knauer, J. P.; Koch, J. A.; Kozioziemki, B.; Kyrala, G. A.; Kritcher, A. L.; Kroll, J.; La Fortune, K.; Lagin, L.; Landen, O. L.; Larson, D. W.; LaTray, D.; Leeper, R. J.; Le Pape, S.; Lindl, J. D.; Lowe-Webb, R.; Ma, T.; McNaney, J.; MacPhee, A. G.; Malsbury, T. N.; Mapoles, E.; Marshall, C. D.; Meezan, N. B.; Merrill, F.; Michel, P.; Moody, J. D.; Moore, A. S.; Moran, M.; Moreno, K. A.; Munro, D. H.; Nathan, B. R.; Nikroo, A.; Olson, R. E.; Orth, C. D.; Pak, A. E.; Patel, P. K.; Parham, T.; Petrasso, R.; Ralph, J. E.; Rinderknecht, H.; Regan, S. P.; Robey, H. F.; Ross, J. S.; Rosen, M. D.; Sacks, R.; Salmonson, J. D.; Saunders, R.; Sater, J.; Sangster, C.; Schneider, M. B.; Séguin, F. H.; Shaw, M. J.; Spears, B. K.; Springer, P. T.; Stoeffl, W.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P. J.; Walters, C.; Weaver, S.; Weber, S. V.; Wegner, P. J.; Whitman, P. K.; Widmann, K.; Widmayer, C. C.; Wilde, C. H.; Wilson, D. C.; Van Wonterghem, B.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.; Moses, E. I.

    2012-05-01

    The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 μm diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 ± 3) μm, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 ± 0.09) g cm-2 result in fuel densities approaching 600 g cm-3. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 ± 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 1015 that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5±0.1)×1014 which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 ± 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date

  1. Laser-driven Implosion Simulations with the Kull Code

    NASA Astrophysics Data System (ADS)

    Kaiser, Thomas B.; Owen, J. Michael; Madsen, Niel K.

    1999-11-01

    We present results of two- and three-dimensional simulations of implosion of a gamma-law gas driven by absorption of energy from an external laser source. Laser light propagation and power deposition were modeled with a recently-developed package(T. B. Kaiser, J. L. Milovich, A. I. Shestakov, M. K. Prasad, Bulletin of the A.P.S. 43), paper R8Q 26 (1998). that uses geometrical optics and inverse-bremsstrahlung to model the relevant physical processes, while the hydrodynamics calculations used a finite-volume, staggered-grid ALE scheme, and electron heat transport was treated diffusively. The simulations were performed with Kull, an ASCI code currently being developed at LLNL to model ICF experiments and astrophysical phenomena.

  2. Evidence of Systematic Jetting in Nominal Omega Implosions

    NASA Astrophysics Data System (ADS)

    Shah, Rahul; Haines, B. M.; Wysocki, F. J.; Hakel, P.; Kagan, G.; Murphy, T. J.; Benage, J. F.; Mancini, R. C.; Glebov, V.; Marshall, F. J.; Michel, D. T.; Stoeckl, C.; Yaakobi, B.

    2015-11-01

    By means of detailed comparison between narrow-spectrum tracer-emission-images and 2-D radiation-hydrodynamic calculation, we present evidence of a systematic hydrodynamic defect of nominal OMEGA implosions. The defect, which arises from a drive asymmetry caused by capsule mounting, distorts the low-mode symmetry and pressure profile of the fuel cavity and also enhances deceleration-phase fuel-shell mixing. It is a critical consideration for interpretations of performance degradation (and for analyses dependent on shape assumptions). The tracer technique is predicted to differentiate the change in fuel cavity structure between the existing and a proposed improvement of the capsule mounting. The influence of the defect on the fuel-shell mixing is also shown to be an essential consideration for analysis of separated reactants experiments.

  3. Plasma flow switch and foil implosion experiments on Pegasus 2

    NASA Astrophysics Data System (ADS)

    Cochrane, J. C.; Bartsch, R. R.; Benage, J. R.; Forman, P. R.; Gribble, R. F.; Ladish, J. S.; Oona, H.; Parker, J. V.; Scudder, D. W.; Shlachter, J. S.

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground Experiments) program. A goal of the program is to produce an intense (greater than 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy.

  4. Direct-drive DT implosions with Knudsen number variations

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Hoffman, N. M.; Schmitt, M. J.; Bradley, P. A.; Gales, S.; Horsfield, C. J.; Rubery, M.; Leatherland, A.; Gatu Johnson, M.; Frenje, J. A.; Glebov, V. Yu

    2016-05-01

    Direct-drive implosions of DT-filled plastic-shells have been conducted at the Omega laser facility, measuring nuclear yields while varying Knudsen numbers (i.e., the ratio of mean free path of fusing ions to the length of fuel region) by adjusting both shell thickness (e.g., 7.5, 15, 20, 30 μm) and fill pressure (e.g., 2, 5, 15 atm). The fusion reactivity reduction model showed a stronger effect on yield as the Knudsen number increases (or the shell thickness decreases). The Reduced-Ion-Kinetic (RIK) simulation which includes both fusion reactivity reduction and mix model was necessary to provide a better match between the observed neutron yields and those simulated.

  5. Implosion dynamics measurements at the National Ignition Facility

    SciTech Connect

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; and others

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell

  6. Towards an Integrated Model of the NIC Layered Implosions

    SciTech Connect

    Jones, O S; Callahan, D A; Cerjan, C J; Clark, D S; Edwards, M J; Glenzer, S H; Marinak, M M; Meezan, N B; Milovich, J L; Olson, R E; Patel, M V; Robey, H F; Sepke, S M; Spears, B K; Springer, P T; Weber, S V; Wilson, D C

    2011-10-31

    A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-45% of the calculated yields.

  7. Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Radha, P. B.; Goncharov, V. N.; Hohenberger, M.; Sangster, T. C.; Betti, R.; Craxton, R. S.; Edgell, D. H.; Epstein, R.; Froula, D. H.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Hu, S. X.; Seka, W.; Shvydky, A.; Skupsky, S.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Ma, T.; Pape, S. Le; MacKinnon, A. J.

    2016-10-01

    Direct-drive-implosion experiments from both OMEGA and the National Ignition Facility (NIF) are critical to gain confidence in ignition predictions on the NIF. Adequate performance of hydrodynamically scaled 1.8-MJ ignition designs must be obtained on OMEGA at 26 kJ. Implosions on the NIF must be used to identify and mitigate the effect of laser-plasma interactions (LPI's) on hydrodynamic parameters at the NIF scale. Results from spherically driven OMEGA cryogenic implosion experiments are described. Mitigation of nonuniformity sources and cross-beam energy transfer (CBET) is important for improving target performance on OMEGA. Initial polar-driven implosion experiments on the NIF have provided valuable measurements of trajectory and symmetry. Simulations that include the effect of CBET more closely reproduce the observed velocity.

  8. Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Regan, S. P.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Myatt, J. F.; Radha, P. B.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Yaakobi, B.; Gatu-Johnson, M.

    2016-05-01

    Achieving ignition in a direct-drive cryogenic implosion at the National Ignition Facility (NIF) requires reaching central stagnation pressures in excess of 100 Gbar, which is a factor of 3 to 4 less than what is required for indirect-drive designs. The OMEGA Laser System is used to study the physics of cryogenic implosions that are hydrodynamically equivalent to the spherical ignition designs of the NIF. Current cryogenic implosions on OMEGA have reached 56 Gbar, and implosions with shell convergence CR< 17 and fuel adiabat α > 3.5 proceed close to 1-D predictions. Demonstrating hydrodynamic equivalence on OMEGA will require reducing coupling losses caused by cross-beam energy transfer (CBET), minimizing long- wavelength nonuniformity seeded by power imbalance and target offset, and removing target debris occumulated during cryogenic target production.

  9. Performance of indirectly driven capsule implosions on NIF using adiabat-shaping

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatarik, R.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kerbel, G. D.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; Marinak, M. M.; MacGowan, B. J.; MacPhee, A. G.; Pak, A.; Patel, M.; Patel, P. K.; Perkins, L. J.; Sayre, D. B.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.; Giraldez, E.; Hoover, D.; Nikroo, A.; Hohenberger, M.; Gatu Johnson, M.

    2016-05-01

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth & fuel adiabat, separately and controllably. Two principal conclusions are drawn from this study: 1) It is shown that an increase in laser picket energy reduces ablation-front instability growth in low-foot implosions resulting in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. 2.) It is shown that a decrease in laser trough power reduces the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with no reduction in neutron yield. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.

  10. Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Radha, P. B.; Goncharov, V. N.; Hohenberger, M.; Sangster, T. C.; Betti, R.; Craxton, R. S.; Edgell, D. H.; Epstein, R.; Froula, D. H.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Hu, S. X.; Seka, W.; Shvydky, A.; Skupsky, S.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Ma, T.; Le Pape, S.; Mackinnon, A. J.

    2016-03-01

    Direct-drive-implosion experiments from both OMEGA and the National Ignition Facility (NIF) are critical to gain confidence in ignition predictions on the NIF. Adequate performance of hydrodynamically scaled 1.8-MJ ignition designs must be obtained on OMEGA at 26 kJ. Implosions on the NIF must be used to identify and mitigate the effect of laser-plasma interactions (LPI's) on hydrodynamic parameters at the NIF scale. Results from spherically driven OMEGA cryogenic implosion experiments are described. Mitigation of nonuniformity sources and cross-beam energy transfer (CBET) is important for improving target performance on OMEGA. Initial polar-driven implosion experiments on the NIF have provided valuable measurements of trajectory and symmetry. Simulations that include the effect of CBET more closely reproduce the observed velocity.

  11. Sensitivity of Inferred Electron Temperature from X-ray Emission of NIF Cryogenic DT Implosions

    SciTech Connect

    Klem, Michael

    2015-05-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred. Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.

  12. Measurements of the depth-dependent characteristics of light bulb implosion

    NASA Astrophysics Data System (ADS)

    Cho, Sungho; Kang, Donhyug

    2015-11-01

    Impulsive signals generated by the implosion of an incandescent light bulb were measured in shallow water with implosion depths in the range of 10 - 80 m. The received waveform was characterized by successive negative and positive pressure pulses originating from the bubble oscillation process. The time intervals between successive bubble pulses decreased with increasing implosion depth and the peaks of subsequent bubble oscillations dissipated relatively quickly. In this paper, semi-empirical formulas are derived to model the depth-dependent characteristics of the bulb implosion signal, including the time interval between bubble pulses and peak source level. The model predictions are compared with the measured signals and with the results in the literature. Possible causes of the differences in the comparison with previous results are discussed.

  13. Control of Be capsule low mode implosions symmetry at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kyrala, G. A.; Kline, J. L.; Yi, S.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Batha, S.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; MacPhee, A. G.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Khan, S. F.; Ma, T.; Izumi, N.; Nagel, S.; Rygg, J. R.

    2016-05-01

    We present results of the beryllium experimental campaign on the implosion symmetry properties of beryllium capsules at the National Ignition Facility (NIF) [1]. These indirect drive experiments measure both the inflight and core self-emission implosion symmetry. The inflight symmetry of the ablator before stagnation is measured using a backlight imaging technique. A copper backlighter was used to measure the transmissions (or backlit absorption) of the copper doped beryllium shells. Images of the x-ray emission from the core around bang time provide a measure of the symmetry near peak compression. Both pieces of information about the 2D symmetry are used to infer the drive and velocity uniformity enabling us to predictably adjust the properties of the incident laser, mainly the time dependent ratio of the inner beam cone power to the outer laser beam powers, to achieve proper symmetry of the implosion. Results from these experiments show inner beam propagation is not degraded compared to similar implosions with CH ablators. Variations in the shape compared with implosions using CH ablators also provides information about the cross beam energy transfer used to adjust the equatorial shape and thus infer information about the differences in plasma conditions near the laser entrance holes. Experimental results of the implosion shape for beryllium capsules will be presented along with comparisons relative to CH ablators.

  14. The high-foot implosion campaign on the National Ignition Facility

    SciTech Connect

    Hurricane, O. A. Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F.; and others

    2014-05-15

    The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×10{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the “bootstrapping” associated with alpha-particle self-heating.

  15. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium tritium implosions on OMEGA

    SciTech Connect

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Yu. Glebov, V.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nora, R.; Radha, P. B.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R.W.; Shvydky, A.; Skupsky, S.; Stoeckl, C.; Yaakobi, B.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Casey, D. T.

    2014-05-01

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≅ 4, an implosion velocity of 3.8 × 10⁷ cm/s, and a laser intensity of ~10¹⁵ W/cm². These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  16. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium-tritium implosions on OMEGAa)

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Yu. Glebov, V.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nora, R.; Radha, P. B.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R. W.; Shvydky, A.; Skupsky, S.; Stoeckl, C.; Yaakobi, B.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Casey, D. T.

    2014-05-01

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ˜1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  17. Performance of Indirectly-Driven Capsule Implosions on NIF Using Adiabat-Shaping

    NASA Astrophysics Data System (ADS)

    Robey, Harry

    2015-11-01

    Indirectly-driven capsule implosions are being conducted on the National Ignition Facility (NIF). Early experiments conducted during the National Ignition Campaign (NIC) were driven by a laser pulse with a relatively low-power initial foot (``low-foot''), which was designed to keep the deuterium-tritium (DT) fuel on a low adiabat to achieve a high fuel areal density (ρR). These implosions were successful in achieving high ρR, but fell significantly short of the predicted neutron yield. A leading candidate to explain this degraded performance was ablation front instability growth, which can lead to the mixing of ablator material with the DT fuel layer and in extreme cases into the central DT hot spot. A subsequent campaign employing a modified laser pulse with increased power in the foot (``high-foot'') was designed to reduce the adverse effects of ablation front instability growth. These implosions have been very successful, increasing neutron yields by more than an order of magnitude, but at the expense of reduced fuel compression. To bridge these two regimes, a series of implosions have been designed to simultaneously achieve both high stability and high ρR. These implosions employ adiabat-shaping, where the driving laser pulse is high in the initial picket similar to the high-foot to retain the favorable stability properties at the ablation front. The remainder of the foot is similar to that of the low-foot, driving a lower velocity shock into the DT fuel to keep the adiabat low and compression high. This talk will present results and analysis of these implosions and will discuss implications for improved implosion performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    SciTech Connect

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Friedrich, S.; Bionta, R.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Hopkins, L. Berzak; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dixit, S.; Döppner, T.; Edgell, D.; Edwards, M. J.; Johnson, M. Gatu; Glenn, S.; Glenzer, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kritcher, A.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Macphee, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moody, J.; Moses, E.; Nagel, S. R.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Rosen, M.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Springer, P.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Zacharias, R.

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.

  19. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    SciTech Connect

    Zylstra, A. B. Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M.; and others

    2014-11-15

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (∼800 ps) than in the short-coast (∼400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.

  20. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Friedrich, S.; Bionta, R.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dixit, S.; Döppner, T.; Edgell, D.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Glenzer, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kritcher, A.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Macphee, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moody, J.; Moses, E.; Nagel, S. R.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Rosen, M.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Springer, P.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Zacharias, R.

    2014-11-01

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (ρR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed ρR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ("short-coast"), while longer-coasting implosions have lower ρR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (˜800 ps) than in the short-coast (˜400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700-800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ρR.

  1. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; et al

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infermore » the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  2. T-T Neutron Spectrum from Inertial Confinement Implosions

    NASA Astrophysics Data System (ADS)

    Caggiano, Joseph; Gatu Johnson, Maria; Bacher, Andrew; McNabb, Denns

    2013-04-01

    Measurements of the T(2n,)^4He reaction (TT) have been conducted using high-purity tritium, gas-filled capsules in inertial confinement fusion (ICF) implosions. At the OMEGA laser facility, TT neutron spectra were measured using two instruments: the neutron-time-of-flight (nTOF) facility and the Magnetic Recoil Spectrometer (MRS) facility. The resolutions of these systems were improved for nTOF by using a crystal with much faster decay time and for MRS by using a thinner, more uniform CD2 recoil foil. Measurements at c.m. energies of 10-30 keV can be used to study the TT three-body reaction mechanism near astrophysical energies. With both nTOF and MRS, we observe a small, narrow peak starting at the 9.44 MeV endpoint, corresponding to the n + ^5He (g.s.) reaction channel. Most of the TT reaction proceeds through other reaction channels which produce broad, continuous neutron spectra in the range 0 - 9.5 MeV. Implications for ICF experiments at the National Ignition Facility will be discussed. Work in collaboration with J. A. Frenje, D. T. Casey, M. J.-E. Manuel, N. Sinenian, A. B. Zylstra, F. H. Seguin, C. K. Li, R. D. Petrasso, V. Yu Glebov, P. B. Radha, D. D. Meyerhofer, T. C. Sangster, P. A. Amendt, R. Hatarik, D. B. Sayre, J. R. Rygg, H. W. Herrmann and Y. H. Kim.

  3. Comparing neutron and X-ray images from NIF implosions

    NASA Astrophysics Data System (ADS)

    Wilson, D. C.; Aragonez, R. J.; Archuleta, T. N.; Atkinson, D. P.; Barrios, M. A.; Batha, S. H.; Bower, D. E.; Bradley, D. K.; Buckles, R. A.; Clark, D. D.; Clark, D. S.; Clark, D. J.; Cradick, J. R.; Danly, C. R.; Day, R. D.; Dzenitis, J. M.; Drury, O. B.; Fatherley, V. E.; Felker, B.; Finch, J. P.; Fittinghoff, D. N.; Frank, M.; Gallegos, R. A.; Garcia, F. P.; Glenn, S. M.; Grim, G. P.; Guler, N.; Hsu, A. H.; Izumi, N.; Jaramillo, S. A.; Jones, O. S.; Kaufman, M. I.; Kilkenny, J. D.; Kyrala, G. A.; Le Pape, S.; Liddick, S. N.; Loomis, E. N.; Lutz, S. S.; Ma, T.; Mackinnon, A. J.; Malone, R. M.; Mares, D.; Marinak, M. M.; Martinson, D. D.; McKenty, P.; Meezan, N. S.; Merrill, F. E.; Moran, M. J.; Morgan, G. L.; Munson, C.; Munro, D. H.; Murphy, T. J.; Oertel, J. A.; Patel, M. V.; Polk, P. J.; Regan, S.; Roberson, G. P.; Schmidt, D. W.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R.; Traille, A.; Tregillis, I. L.; Valdez, A. C.; Volegov, P. L.; Wang, T.-S. F.; Weiss, P.; Wilde, C. H.; Wilke, M. D.

    2013-11-01

    Directly laser driven and X-radiation driven DT filled capsules differ in the relationship between neutron and X-ray images. Shot N110217, a directly driven DT-filled glass micro-balloon provided the first neutron images at the National Ignition Facility. As seen in implosions on the Omega laser, the neutron image can be enclosed inside time integrated X-ray images. HYDRA simulations show the X-ray image is dominated by emission from the hot glass shell while the neutron image arises from the DT fuel it encloses. In the absence of mix or jetting, X-ray images of a cryogenically layered THD fuel capsule should be dominated by emission from the hydrogen rather than the cooler plastic shell that is separated from the hot core by cold DT fuel. This cool, dense DT, invisible in X-ray emission, shows itself by scattering hot core neutrons. Germanium X-ray emission spectra and Ross pair filtered X-ray energy resolved images suggest that germanium doped plastic emits in the torus shaped hot spot, probably reducing the neutron yield.

  4. Implosive Interatomic Coulombic decay in the simplest molecular anion

    NASA Astrophysics Data System (ADS)

    Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila

    2016-05-01

    Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.

  5. Compressed-shell integrity measurements in spherical implosion experiments

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Yaakobi, B.; Delettrez, J. A.; Marshall, F. J.; Meyerhofer, D. D.

    2001-06-01

    The shell integrity near peak compression of spherical implosions using the 60-beam, 30-kJ UV OMEGA laser system [Opt. Commun. 133, 495 (1997)] has been measured. Hot core emission backlights a shell with a thin titanium-doped layer that is imaged at x-ray photon energies above and below the titanium K edge. The x-ray intensity ratio between the two images is related to perturbations in the cold, or absorbing, part of the shell. The measured cold-shell areal-density modulations, integrated over the time of peak compression, are of the order of 25% to 50% with nonuniformity spectra peaked at spatial wavelengths of 30 to 50 μm and with the smallest detectable nonuniformity features extending down to spatial wavelengths of 12 to 15 μm. Hot-shell areal-density modulations of the emitting part of the shell (inner edge) are of the order of 13% to 20%. The measured shell modulations are in agreement with the results of two-dimensional simulations that include initial shell perturbations, imprinted shell modulations due to nonuniformities in a single laser beam, and a beam-to-beam energy imbalance in the laser drive.

  6. On the onset of kinetic effects in ICF implosions

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Bellei, Claudio; Wilks, Scott; Li, Chikang; Rinderknecht, Hans; Rosenberg, Michael; Sio, Hong; Petrasso, Richard

    2013-10-01

    Central hot spot ignition requires the careful sequencing of several shocks that coalesce in the gaseous deuterium-tritium fuel to form a high Mach number shock. Near the instant of shock convergence at the origin (or ``shock flash''), the ion mean free path may be a significant fraction of the hot spot radius, leading to a potential violation of the fluid approximation that generally underlies mainline radiation-hydrodynamic simulation tools. Understanding this physical regime may have consequences on subsequent hot spot formation and ignition performance margins. Recent data obtained on the Omega laser facility point to a transition in direct-drive exploding pusher implosion behavior below a threshold pressure where the ion mean free path is on the order of the fuel radius at shock flash. Adaptation of a Guderley-type shock solution in a converging geometry to include finite mean-free-path effects is undertaken to understand this kinetic regime. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and supported by LDRD-11-ERD-075 (LLNL) and NLUF/DOE DE-NA0002035 (MIT).

  7. Atomic mix in directly driven inertial confinement implosions

    SciTech Connect

    Wilson, D. C.; Ebey, P. S.; Sangster, T. C.; Shmayda, W. T.; Yu. Glebov, V.; Lerche, R. A.

    2011-11-15

    Directly driven implosions on the Omega laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have measured the presence of atomic mix using D+T neutron yield rates from plastic capsules with and without deuterated layers, and a nearly pure tritium fuel containing 0.7% deuterium. In 15, 19, and 24 {mu}m thick plastic shells, D+T neutron yields increased by factors of 86, 112, and 24 when the 1.2 {mu}m thick inner layer was deuterated. Based on adjusting a fully atomic mix modvfel to fit yield degradation in the un-deuterated capsule and applying it to the capsule with the deuterated layer, atomic mixing accounts for 40-75% of the yield degradation due to mix. For the first time, the time dependence of mixed mass was measured by the ratio of the yield rates from both types of capsules. As expected, the amount of mix grows throughout the D+T burn.

  8. Radiative Properties of Argon Gas-Puff Implosions on COBRA

    NASA Astrophysics Data System (ADS)

    Ouart, Nicholas; Qi, Niansheng; de Grouchy, Phil; Shelkovenko, Tatiana; Pikuz, Sergei; Giuliani, John; Dasgupta, Arati; Apruzese, John; Clark, Robert; Hammer, David; Kusse, Bruce

    2015-11-01

    Gas-puff Z-pinch experiments were performed on the 1 MA COBRA pulsed power generator at Cornell University. The gas puffs were injected into the load region from a triple nozzle. The load region had an anode-cathode gap of 2.5 cm. The standard diagnostics on COBRA include time-integrated pinhole cameras, a time-integrated axially resolved x-ray spectrometer, filtered photo-conducting detectors, and time-gated XUV cameras. We will focus mainly on results from pinhole images and x-ray spectra from argon gas puffs including some with a SO2 dopant. The x-ray time-integrated pinhole images feature a tight axially uniform plasma column with a diameter of approximately 1 mm for argon gas implosion. The x-ray spectrometer used mica crystals (2d =19.84 Å) and captured the argon K-shell radiation from different crystal reflections. A 1-D multi-zone argon and sulfur non-LTE kinetics code with radiation transport is used to model the K-shell emission for the purpose of inferring the plasma conditions and the interaction of gas from the inner annulus with the central jet. This work is supported by DOE/NNSA.

  9. PHELIX: design of transformer-driven linear implosion system

    SciTech Connect

    Turchi, Peter J; Atchison, Walter L; Rousculp, Chris L; Reinovsky, Robert E

    2008-01-01

    Experiments involving electromagnetically-imploded, solid-density liners can be achieved at reduced cost and energy if we start with a scale-size based on diagnostic resolution, rather than on the largest capacitor bank or generator we could bring to bear. For minimum resolution of 100 microns or less, many useful experiments could be performed with initial liner diameters that are factors of two to three smaller than used on high-energy systems, such as Atlas, thereby reducing energy requirements to sub-megajoule levels. Reduction in scale-size, however, also decreases the inductance change associated with liner motion relative to other inductances in the circuit. To improve coupling efficiency to liner kinetic energy, we invoke a current step-up transformer. Scaling relations have been developed for reducing the size and energy of such systems and compared with detailed numerical simulations. We discuss these calculations and describe the engineering embodiment of the resulting design for a system called PHELIX (Precision High Energy-density Liner Implosion eXperiment).

  10. The numerical simulations of explosion and implosion in air: use of a modified Harten's TVD scheme

    NASA Astrophysics Data System (ADS)

    Liu, T. G.; Khoo, B. C.; Yeo, K. S.

    1999-10-01

    Numerical simulations of explosion and implosion in air are carried out with a modified Harten's TVD scheme. The new scheme has a high resolution for contact discontinuities in addition to maintaining the good features of Harten's TVD scheme. In the numerical experiment of spherical explosion in air, the second shock wave (which does not exist in the one-dimensional shock tube problem) and its subsequent implosion on the origin have been successfully captured. The positions of the main shock wave, the contact discontinuity and the second shock wave have shown satisfactory agreement with those predicted from previous analysis. The numerical results are also compared with those obtained experimentally. Finally, simulations of a cylindrical explosion and implosion in air are carried out. Results of the cylindrical implosion in air are compared with those of previous work, including the interaction of the reflected main shock wave with the contact discontinuity and the formation of a second shock wave. All these attest to the successful use of the modified Harten's TVD scheme for the simulations of shock waves arising from explosion and implosion. Copyright

  11. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    SciTech Connect

    Rosenberg, M. J. Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C.; and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  12. Computational modeling of long implosion time z pinches on the Saturn generator

    NASA Astrophysics Data System (ADS)

    Douglas, Melissa; Coverdale, Christine; Deeney, Christopher; Roderick, Norman

    2000-10-01

    Long implosion time wire array experiments have been carried out on the 7-MA Saturn accelerator at Sandia National Laboratories. Such experiments are motivated by the incentive that longer implosion times translate to reduced cost and power flow risk to existing and future, high current generators. However, this mode of driver is desirable only if similar implosion velocities and subsequent powers can be achieved that are comparable to a short pulse mode, i.e., 50 ns implosion time. To investigate pinch performance in the long pulse mode, wire number scans were performed with Al at 32 mm and 40 mm array diameters. Wire numbers ranged from 32 to 440 wires and the mass at each diameter was kept essentially constant. This experimental series also included a number of nested array shots with a 20 mm diam. inner array and a 40 mm diam. outer array, where wire number was varied in both arrays while maintaining a constant implosion time. Experimental results will be briefly summarized and a suite of radiation magnetohydrodynamic simulations that provide insight into the experimental trends will be presented. *Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under Contract DE-AC04-94AL85000.

  13. Performance of indirectly driven capsule implosions on the National Ignition Facility using adiabat-shaping

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Smalyuk, V. A.; Milovich, J. L.; Döppner, T.; Casey, D. T.; Baker, K. L.; Peterson, J. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Gharibyan, N.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatarik, R.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Kerbel, G. D.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; Marinak, M. M.; MacGowan, B. J.; MacPhee, A. G.; Pak, A.; Patel, M.; Patel, P. K.; Perkins, L. J.; Sayre, D. B.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.; Giraldez, E.; Hoover, D.; Nikroo, A.; Hohenberger, M.; Gatu Johnson, M.

    2016-05-01

    A series of indirectly driven capsule implosions has been performed on the National Ignition Facility to assess the relative contributions of ablation-front instability growth vs. fuel compression on implosion performance. Laser pulse shapes for both low and high-foot pulses were modified to vary ablation-front growth and fuel adiabat, separately and controllably. Three principal conclusions are drawn from this study: (1) It is shown that reducing ablation-front instability growth in low-foot implosions results in a substantial (3-10X) increase in neutron yield with no loss of fuel compression. (2) It is shown that reducing the fuel adiabat in high-foot implosions results in a significant (36%) increase in fuel compression together with a small (10%) increase in neutron yield. (3) Increased electron preheat at higher laser power in high-foot implosions, however, appears to offset the gain in compression achieved by adiabat-shaping at lower power. These results taken collectively bridge the space between the higher compression low-foot results and the higher yield high-foot results.

  14. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions

    SciTech Connect

    Xu, Barry; Hu, S. X.

    2011-07-15

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown {approx}6% more laser absorption, {approx}6%-15% higher coronal temperatures, and {approx}10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by {approx}10% among the different electron-ion temperature-relaxation models.

  15. Effects of local defect growth in direct-drive cryogenic implosions on OMEGA

    SciTech Connect

    Igumenshchev, I. V.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Goncharov, V. N.; Meyerhofer, D. D.

    2013-08-15

    Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.

  16. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE PAGES

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; et al

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less

  17. Higher velocity, high-foot implosions on the National Ignition Facility laser

    SciTech Connect

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H.-S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L.; and others

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1 × 10{sup 15} neutrons, the total yield ∼ v{sup 9.4}. This increase is considerably faster than the expected dependence for implosions without alpha heating (∼v{sup 5.9}) and is additional evidence that these experiments have significant alpha heating.

  18. Robust Direct-Indirect Hybrid Target Implosion in Heavy Ion Fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Hisatomi, Y.; Ogoyski, A. I.; Koseki, S.; Kurosaki, T.; Barada, D.

    2010-11-01

    In inertial fusion target implosion, beam illumination non-uniformity must be reduced to less than a few percent. In this study a direct-indirect hybrid implosion mode is discussed in heavy ion beam (HIB) inertial confinement fusion (HIF) in order to release sufficient fusion energy in a robust manner. On the other hand, the HIB illumination non-uniformity depends strongly on a target displacement dz from the center of a fusion reactor chamber. In a direct-driven implosion mode, dz of about 20 micron m was tolerable, and in an indirect-implosion mode, dz of about 100 micron m was allowable. In the direct-indirect hybrid mode target, a low-density foam layer is inserted, and the radiation energy is confined in the foam layer. In the foam layer the radiation transport is expected to smooth the HIB illumination non-uniformity. Two-dimensional implosion simulations are performed, and show that the HIB illumination non-uniformity is well smoothed in the direct-indirect mixture target. The results also present that dz of a few hundred micron m is allowed in HIF.

  19. Higher velocity, high-foot implosions on the National Ignition Facility laser

    SciTech Connect

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Döppner, T.; Ma, T.; Park, H. -S.; Barrios Garcia, M. A.; Berzak Hopkins, L. F.; Casey, D. T.; Cerjan, C. J.; Dewald, E. L.; Dittrich, T. R.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Kline, J. L.; Knauer, J. P.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacPhee, A. G.; Milovich, J. L.; Nikroo, A.; Pak, A. E.; Patel, P. K.; Rygg, J. R.; Ralph, J. E.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R. M.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Field, J. E.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G. P.; Hatarik, R.; Merrill, F. E.; Nagel, S. R.; Izumi, N.; Khan, S. F.; Town, R. P. J.; Sayre, D. B.; Volegov, P.; Wilde, C. H.

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), and the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.

  20. Diagnosing indirect-drive inertial-confinement-fusion implosions with charged particles

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Séguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Petrasso, R. D.; Amendt, P. A.; Koch, J. A.; Landen, O. L.; Park, H. S.; Robey, H. F.; Town, R. P. J.; Casner, A.; Philippe, F.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-12-01

    High-energy charged particles are being used to diagnose x-ray-driven implosions in inertial-confinement fusion. Recent measurements with vacuum hohlraums have resulted in quantitative characterization of important aspects of x-ray drive and capsule implosions. Comprehensive data obtained from spectrally resolved, fusion-product self-emission and time-gated proton radiographs with unprecedented clarity reveal new and important phenomena. Several types of spontaneous electric fields differing by two orders of magnitude in strength are observed, the largest being on the order of one-tenth of the Bohr field ( {=}ea_0^{-2} \\sim 5\\times 10^{11}\\,V\\,m^{-1} , where a0 is the Bohr radius). The hohlraum experiments demonstrate the absence of stochastic filamentary patterns and striations around the imploded capsule, a feature common to direct-drive implosions. The views of spatial structure and temporal evolution of spontaneous electromagnetic fields, plasma flows, implosion symmetry and dynamics provide insight into the physics of x-ray driven implosions. Potential applications for the National Ignition Facility are outlined.

  1. Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility

    SciTech Connect

    Mackinnon, A J; Johnson, M G; Frenje, J A; Casey, D T; Li, C K; Seguin, F H; Petrasso, R; Ashabranner, R; Cerjan, C; Clancy, T J; Bionta, R; Bleuel, D; Bond, E J; Caggiano, J A; Capenter, A; Eckart, M J; Edwards, M J; Friedrich, S; Glenzer, S H; Haan, S W; Hartouni, E P; Hatarik, R; Hachett, S P; McKernan, M; Jones, O; Lepape, S; Lerche, R A; Landen, O L; Moran, M; Moses, E; Munro, D; McNaney, J; Rygg, J R; Sepke, S; Spears, B; Springer, P; Yeamans, C; Farrell, M; Kilkenny, J D; Nikroo, A; Paguio, R; Knauer, J; Glebov, V; Sangster, T; Betti, R; Stoeckl, C; Magoon, J; Shoup, M J; Grim, G P; Moran, G L; Murphy, T J; Leeper, R J; Ruiz, C

    2012-05-02

    DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{sub 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.

  2. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D.; McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C.; LePape, S.; Mackinnon, A. J.; Pino, J.; McNaney, J. M.; Rygg, J. R.; Amendt, P. A.; Bellei, C.; Benedetti, L. R.; Berzak Hopkins, L.; Bionta, R. M.; Casey, D. T.; Divol, L.; Edwards, M. J.; Glenn, S.; Glenzer, S. H.; Hicks, D. G.; Kimbrough, J. R.; Landen, O. L.; Lindl, J. D.; Ma, T.; MacPhee, A.; Meezan, N. B.; Moody, J. D.; Moran, M. J.; Park, H.-S.; Remington, B. A.; Robey, H.; Rosen, M. D.; Wilks, S. C.; Zacharias, R. A.; Herrmann, H. W.; Hoffman, N. M.; Kyrala, G. A.; Leeper, R. J.; Olson, R. E.; Kilkenny, J. D.; Nikroo, A.

    2014-12-01

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D2 and D3He gas-filled "exploding-pusher" inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D draco hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  3. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments.

    PubMed

    Gupta, Sachin; Matos, Helio; Shukla, Arun; LeBlanc, James M

    2016-08-01

    The fluid structure interaction phenomenon occurring in confined implosions is investigated using high-speed three-dimensional digital image correlation (DIC) experiments. Aluminum tubular specimens are placed inside a confining cylindrical structure that is partially open to a pressurized environment. These specimens are hydrostatically loaded until they naturally implode. The implosion event is viewed, and recorded, through an acrylic window on the confining structure. The velocities captured through DIC are synchronized with the pressure histories to understand the effects of confining environment on the implosion process. Experiments show that collapse of the implodable volume inside the confining tube leads to strong oscillating water hammer waves. The study also reveals that the increasing collapse pressure leads to faster implosions. Both peak and average structural velocities increase linearly with increasing collapse pressure. The effects of the confining environment are better seen in relatively lower collapse pressure implosion experiments in which a long deceleration phase is observed following the peak velocity until wall contact initiates. Additionally, the behavior of the confining environment can be viewed and understood through classical water hammer theory. A one-degree-of-freedom theoretical model was created to predict the impulse pressure history for the particular problem studied. PMID:27586733

  4. Symmetry Tuning with Cone Powers for Defect Induced Mix Experiment Implosions

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, N.; Schmitt, M.; Murphy, T.; Cobble, J.; Tregillis, I.; Kyrala, G.; Bradley, P.; Hakel, P.; Hsu, S.; Kanzleiter, R.; Obrey, K.; Baumgaertel, J.; Batha, S.; DIME Team

    2013-10-01

    Recent DIME campaigns have demonstrated the effectiveness of cone power tuning to control the implosion symmetry in PDD configuration. DIME aims to assess the effects of mix on thermonuclear burn during a thin-shell capsule implosion. Plastic shell capsules doped with mid-Z material and filled with 5 atm of DD, are ablatively driven in a PDD laser configuration to a CR of ~7. Time-gated, spectrally and spatially resolved, dopant emission images characterize mix and temperature morphology during the implosion, while neutron diagnostics concurrently give the information about burn. Symmetry should be maintained throughout the implosions to achieve high neutron yield and optimum spectroscopic signal. 2D and 3D computer simulations using code HYDRA were performed to validate and optimize implosion symmetry using cone power tuning. In particular, Omega campaign confirmed P2 tunability with cone powers while experiments on NIF demonstrated that by reducing the energy in polar cones P2 was reduced to <1%. However, during NIF campaigns, self-emission images revealed a complex internal structure around the equator, which was not seen in HYDRA simulations and could be attributed to LPI effects. Subsequent DIME campaigns on NIF were able to eliminate this equatorial feature by reducing the laser drive substantiating the LPI hypothesis. Work performed by LANL under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the USDoE.

  5. Demonstration of the improved rocket efficiency in direct-drive implosions using different ablator materials.

    PubMed

    Michel, D T; Goncharov, V N; Igumenshchev, I V; Epstein, R; Froula, D H

    2013-12-13

    The success of direct-drive implosions depends critically on the ability to create high ablation pressures (∼100  Mbar) and accelerating the imploding shell to ignition-relevant velocities (>3.7×10(7 ) cm/s) using direct laser illumination. This Letter reports on an experimental study of the conversion of absorbed laser energy into kinetic energy of the shell (rocket efficiency) where different ablators were used to vary the ratio of the atomic number to the atomic mass. The implosion velocity of Be shells is increased by 20% compared to C and CH shells in direct-drive implosions when a constant initial target mass is maintained. These measurements are consistent with the predicted increase in the rocket efficiency of 28% for Be and 5% for C compared to a CH ablator.

  6. Numerical Study of Large-Scale, Laser-Induced Nonuniformities in Cryogenic OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.; Silverstein, K.; Knauer, J. P.; Froula, D. H.; Regan, S. P.

    2015-11-01

    Performance of direct-drive implosion targets on OMEGA can suffer from large-scale laser-induced nonuniformities with L-modes less than about 10. These nonuniformities develop because of a discrete illumination of targets with the 60 OMEGA laser beams and because of imperfect pointing, profile shaping, energy balance, and timing of these beams. In addition, a significant nonuniformity with l = 1 can result from an unintentional offset (typically ~10 μm) of targets with respect to the laser beam pointing center. Effects of all these nonuniformities on the evolution of cryogenic implosion targets are studied numerically using 3-D hydrodynamic simulations. Nonuniformities that affect mostly the implosion performance are identified and limits on their magnitude are suggested basing on the results of simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Ion Fokker-Planck simulation of D-3He gas target implosions

    NASA Astrophysics Data System (ADS)

    Larroche, O.

    2012-12-01

    Recently performed inertial confinement fusion implosion experiments involving D-3He gas-filled microballoons have shown discrepancies between expected and measured nuclear fusion yields as the relative abundances of D and 3He are varied. The latter have been tentatively attributed to a sedimentation, or stratification phenomenon occurring in the target core. This work investigates the possibility of ion species sedimentation in a detailed way through multi-species ion-kinetic Vlasov-Fokker-Planck simulations of the implosion process. A noticeable amount of sedimentation is found to build up during the main shock propagation to the target center, but then disappears as the implosion proceeds. As a result, only the yield of the first burst of neutrons, associated with shock convergence, is appreciably modified, leaving the main neutron production phase during fuel compression and stagnation unaffected. The sedimentation of fuel ion species found, thus, cannot explain the experimental discrepancies.

  8. High-Performance Layered DT Capsule Implosions in Depleted Uranium Hohlraums on the NIF

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Hurricane, O. A.; Callahan, D. A.; Casey, D.; Ma, T.; Park, H.-S.; Benedetti, L.; Dewald, E. L.; Dittrich, T. R.; Fittinghoff, D.; Haan, S.; Hinkel, D.; Berzak Hopkins, L.; Izumi, N.; Kritcher, A.; Le Pape, S.; Pak, A.; Patel, P.; Robey, H.; Remington, B.; Salmonson, J.; Springer, P.; Widmann, K.; Merrill, F.; Wilde, C.

    2014-10-01

    We report on the first layered DT capsule implosions in depleted uranium (DU) hohlraums driven with a high-foot pulse shape. High-foot implosions have demonstrated improved resistance to hydrodynamic instabilities. [Hurricane et al., Nature 506, 343 (2014)]. DU hohlraums provide a higher albedo and thus an increased drive equivalent to 25 TW extra laser power at the peak of the drive compared to Au hohlraums. Additionally, we observe an improved implosion shape closer to round which indicates enhanced drive from the waist. As a result, these first high-foot DU experiments achieved total neutron yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Diagnosing and Controlling Mix in NIF Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.

    2010-11-01

    Controlling the hydrodynamic growth of capsule perturbations is essential in the optimization of NIF ignition target designs. In simulations, mode numbers up to ˜300 can have significant growth on the outer surface of CH capsules.ootnotetextB.A. Hammel, et al., High Energy Density Physics, 6 (2010) p.171--178 As a result, ``isolated defects'' on the capsule (e.g. bumps in the CH coating, the fill tube) have the potential to grow enough to penetrate the imploding shell, and produce a jet of ablator material (mass ˜ 10's ng) that enters the hot-spot. Although this amount of mix is tolerable, degradation in ignition capsule performance becomes significant at several times this amount. Our predictions of hydrodynamic growth and resulting mix have a level of uncertainty that results from uncertainties in experimental conditions, physical data (e.g. EOS), and the simulation method itself. We are developing an experimental strategy where the final requirements for ignition targets (e.g. surface finish) can be adjusted through direct measurements of mix and experimental tuning. Since the growth can be reduced by controlled reduction of the peak x-ray drive, we can use the relative simulated Growth Factors to help set ignition requirements. One method for inferring mix into the hot-spot is through observations of x-ray emission from the ablator material. Internal regions of the CH ablator are doped with Ge in nominal ignition designs, resulting in K-shell emission when it mixes into the hot-spot. We have observed evidence of jets entering the hot-spot in early NIF implosion experiments through the measured x-ray spectra and images, consistent with simulation predictions. Doping other regions of the ablator could provide a corresponding unique indication of mix. In addition, radiographic measurements of high-Z doped layers provide a means of measuring ρR variation in the imploding and compressed capsule.

  10. Hohlraum Designs for High Velocity Implosions on NIF

    SciTech Connect

    Meezan, N B; Hicks, D G; Callahan, D A; Olson, R E; Schneider, M S; Thomas, C A; Robey, H F; Celliers, P M; Kline, J K; Dixit, S N; Michel, P A; Jones, O S; Clark, D S; Ralph, J E; Doeppner, T; MacKinnon, A J; Haan, S W; Landen, O L; Glenzer, S H; Suter, L J; Edwards, M J; Macgowan, B J; Lindl, J D; Atherton, L J

    2011-10-19

    In this paper, we compare experimental shock and capsule trajectories to design calculations using the radiation-hydrodynamics code HYDRA. The measured trajectories from surrogate ignition targets are consistent with reducing the x-ray flux on the capsule by about 85%. A new method of extracting the radiation temperature as seen by the capsule from x-ray intensity and image data shows that about half of the apparent 15% flux deficit in the data with respect to the simulations can be explained by HYDRA overestimating the x-ray flux on the capsule. The National Ignition Campaign (NIC) point-design target is designed to reach a peak fuel-layer velocity of 370 km/s by ablating 90% of its plastic (CH) ablator. The 192-beam National Ignition Facility laser drives a gold hohlraum to a radiation temperature (T{sub RAD}) of 300 eV with a 20 ns-long, 420 TW, 1.3 MJ laser pulse. The hohlraum x-rays couple to the CH ablator in order to apply the required pressure to the outside of the capsule. In this paper, we compare experimental measurements of the hohlraum T{sub RAD} and the implosion trajectory with design calculations using the code hydra. The measured radial positions of the leading shock wave and the unablated shell are consistent with simulations in which the x-ray flux on the capsule is artificially reduced by 85%. We describe a new method of inferring the T{sub RAD} seen by the capsule from time-dependent x-ray intensity data and static x-ray images. This analysis shows that hydra overestimates the x-ray flux incident on the capsule by {approx}8%.

  11. In-flight Density Profiles and Areal Density Non-uniformities of ICF Implosions

    NASA Astrophysics Data System (ADS)

    Tommasini, Riccardo

    2014-10-01

    Implosion efficiency depends on keeping the in-flight ablator and fuel as close as possible to spherical at all times while maintaining the required implosion velocity and in-flight aspect ratio. Asymmetries and areal density non-uniformities seeded by time-dependent drive variations and target imperfections grow in time as the capsule implodes, with growth rates that are amplified by instabilities. One way to diagnose them is by imaging the self-emission from the implosion core. However this technique, besides only providing direct information of the shape of the hot emission region at final assembly, presents complications due to competition between emission gradients and reabsorption. Time resolved radiographic imaging, being insensitive to this effect, is therefore an important tool for diagnosing the ablator and the shell in inertial confinement fusion (ICF) implosions. Experiments aimed at measuring the density, areal density and areal density asymmetries of the shell in ICF implosions have been performed using two different radiography techniques on the National Ignition Facility. We will report the results from both 1D and 2D geometries using slit and pinhole imaging coupled to area backlighting and as close as 150 ps to peak compression. We will focus in particular on comparisons of the in-flight shell thicknesses and ablation front scale lengths between low- and high-adiabat implosions, and the perturbations on areal density seeded both by time dependent drive asymmetries and by the membranes used to hold the capsule within the hohlraum in indirect drive ICF targets. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. A scheme for reducing deceleration-phase Rayleigh-Taylor growth in inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Wang, L. F.; Ye, W. H.; Wu, J. F.; Liu, Jie; Zhang, W. Y.; He, X. T.

    2016-05-01

    It is demonstrated that the growth of acceleration-phase instabilities in inertial confinement fusion implosions can be controlled, especially in the high-foot implosions [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility. However, the excessive growth of the deceleration-phase instabilities can still destroy the hot spot ignition. A scheme is proposed to retard the deceleration-phase Rayleigh-Taylor instability growth by shock collision near the waist of the inner shell surface. Two-dimensional radiation hydrodynamic simulations confirm the improved deceleration-phase hot spot stability properties without sacrificing the fuel compression.

  13. Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code

    SciTech Connect

    Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I

    1998-12-28

    An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.

  14. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  15. Using high-intensity laser-generated energetic protons to radiograph directly driven implosions

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Séguin, F. H.; Petrasso, R. D.; Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.; Le Pape, S.; Mackinnon, A.; Patel, P.

    2012-01-01

    The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005), 10.1364/OPN.16.7.000030], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006), 10.1103/PhysRevLett.97.045001]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous D3He fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006), 10.1063/1.2228252]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed.

  16. The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions

    SciTech Connect

    Peterson, J. L.; Clark, D. S.; Suter, L. J.; Masse, L. P.

    2014-09-15

    Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

  17. Effects of plasma physics on capsule implosions in gas-filled hohlraums

    SciTech Connect

    Lindman, E.L.; Delamater, N.D.; Magelssen, G.R.; Hauer, A.

    1994-10-01

    Initial experiments on capsule implosions in gas-filled hohlraums have been carried out on the NOVA Laser at Lawrence Livermore National Laboratory. Observed capsule shapes from preliminary experiments are more oblate than predicted. Improvements in modeling required to calculate these experiments and additional experiments are being pursued.

  18. Laser/x-ray coupling in the first NIF beryllium implosions

    NASA Astrophysics Data System (ADS)

    Wilson, D. C.; Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Kyrala, G. A.; Perry, T. S.; Batha, S.; Callahan, D. A.; Dewald, E. L.; Jones, O.; Hinkel, D. E.; Hurricane, O. A.; Izumi, N.; Macphee, A. G.; Milovich, J. L.; Ralph, J. E.; Rygg, J. R.; Schneider, M. B.; Strozzi, D. J.; Thomas, C. A.; Tommasini, R.

    2015-11-01

    The x-ray flux driving a capsule is currently overestimated in standard Hydra high-flux model (Rosen et al., HEDP 7,180 (2011)) calculations of gas-filled hohlraums. Jones et al. (Phys. Plasmas,19,056315 (2012)) introduced time dependent multipliers to reduce the laser drive and achieve an appropriate radiation drive on NIF capsules. Using shock velocities from VISAR capsule experiments, symmetry capsule implosion times with truncated laser pulses, and time dependent DANTE X-ray flux measurements from 1D and 2D convergent ablator implosions, we derived a set of time dependent flux multipliers for the first NIF cryogenically layered beryllium capsule implosion. The similarity between these multipliers for both plastic and beryllium capsules suggests that they are primarily correcting for improper modeling of the hohlraum physics, with possibly some residual contribution from capsule modeling deficiencies. Using Lasnex we have adjusted hohlraum physics and resolution in an attempt to model these implosions without drive multipliers. This work was funded by the US Department of Energy.

  19. Shell and CORE Symmetry of beryllium capsule implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kyrala, George; Kline, J.; Yi, S.; Simakov, A.; Olson, R.; Wilson, D.; Perry, T.; Batha, S.; Dewald, E.; Tommasini, R.; Ralph, J.; Strozzi, D.; Schneider, M.; Macphee, A.; Callahan, D.; Hurricane, O.; Milovich, J.; Hinnkel, D.; Khan, S.; Rygg, J.; Ma, T.; Izumi, N.; Zylstra, A.; Rinderknecht, H.; Sio, H.

    2015-11-01

    We will present results of the Be experimental campaign on the implosion symmetry properties of Be capsules at the National Ignition Facility. The experiments measured the inflight and core implosion symmetry. Images of the x-ray emission from the core around bang time provide a measure the symmetry near peak compression. Inflight symmetry of the ablator before stagnation is measured using a backlight imaging techniques. A Cu backlighter was used to measure the transmissions of the Cu doped Be shells. 2D symmetry is used to infer the drive and velocity uniformity and help adjust the time dependent ratio of the inner to the outer laser beam powers, to achieve proper implosion symmetry. Results show inner beam propagation is not degraded compared to CH ablators, corroborated by laser backscatter measurements. Variations in shape compared to CH ablators also provides information about the cross beam energy transfer used to adjust the equatorial shape and thus infer information about the differences in plasma conditions near the laser entrance holes. Experimental results and modeling implosion shape for Be capsules will be presented with comparisons to CH ablators.

  20. Assessment of transient effects on the x-ray spectroscopy of implosion cores at OMEGA

    NASA Astrophysics Data System (ADS)

    Florido, R.; Mancini, R. C.

    2015-11-01

    An assessment of transient effects on the atomic kinetics of argon tracers in inertial confinement fusion implosion cores is carried out. The focus is on typical electron temperature and density conditions achieved in high- and low-adiabat, and shock-ignition implosion experiments performed at the OMEGA laser facility (Laboratory for Laser Energetics, USA). The results show that no significant time-dependent effects are present through the deceleration and burning phases of the implosion, and thus justify the use of steady-state atomic kinetics models in the spectroscopic analysis of sets of time-resolved x-ray spectra recorded with streaked or gated spectrometers. Modeling calculations suggest an onset for time-dependent effects to become important at electron densities ≲1022 cm-3. A physical interpretation of these results is given based on the atomic kinetics timescales extracted from the eigenvalue spectrum of the collisional-radiative rate matrix. This study is also relevant for past implosion experiments performed at the GEKKO XII laser (Institute of Laser Engineering, Japan), as well as those currently being performed at the National Ignition Facility (Lawrence Livermore National Laboratory, USA).

  1. Heavy ion beam illumination and implosion simulation in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Kawata, Shigeo; Ogoyski, A. I.

    2005-10-01

    In direct-driven pellet implosion, heavy ion beams (HIBs) illuminate a spherical target and deposit their energy on a target after a HIB final transport. In our study, we develop a three-dimensional HIB illumination code [1] and a target hydrodynamic implosion code for heavy ion fusion (HIF). The main objects of our study are to clarify a dependence of multi-HIB illumination non-uniformity on parameter values of HIB illumination in HIF and to calculate the target hydrodynamics during the HIB pulse by using the our HIB illumination and implosion code. In our illumination code, we calculate the HIB energy deposition. The target nuclei, target bound electrons, free electrons and target ions contribute to the HIB energy deposition. The HIB ions impinge the target surface, penetrate relatively deep into the deposition layer and deposit their energy in a rather wide region in the deposition layer: this HIB deposition feature influences the beam illumination non-uniformity. Therefore we calculate target implosion using the coupled hydrodynamic code in order to investigate the beam illumination non-uniformity influence on a fuel ignition. [1] T.Someya, et.al, Phy.Rev.STAB, 7, 044701 (2004).

  2. Direct-indirect hybrid mode implosion in heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Miyazawa, K.; Ogoyskii, A. I.; Kikuchi, T.; Akasaka, Y.; Iizuka, Y.

    2008-05-01

    A direct-indirect hybrid implosion mode is proposed and discussed in heavy ion beam (HIB) inertial confinement fusion (HIF) in order to release sufficient fusion energy in a robust manner. On the other hand, the HIB illumination non-uniformity depends strongly on a target displacement dz from the centre of a fusion reactor chamber. In a direct-driven implosion mode, dz of ~ 20 μm was tolerable, and in an indirect-implosion mode, dz of ~ 100 μm was allowable. In the direct-indirect mixture mode target, a low-density foam layer is inserted, and the radiation energy is confined in the foam layer. In the foam layer the radiation transport is expected to smooth the HIB illumination non-uniformity in the lateral direction. Two-dimensional implosion simulations are performed, and show that the HIB illumination non-uniformity is well smoothed in the direct-indirect hybrid-mode target. Our simulation results present that a large pellet displacement of ~ a few hundred μm is allowed in order to obtain a sufficient fusion energy output in HIF.

  3. Study on target structure for direct-indirect hybrid implosion mode in heavy ion inertial fusion

    NASA Astrophysics Data System (ADS)

    Iizuka, Yoshifumi; Kawata, Shigeo; Kodera, Tomohiro; Ogoyski, Alexander I.; Kikuchi, Takashi

    2009-07-01

    The key issues in heavy ion beam (HIB) inertial confinement fusion (ICF) include particle accelerator, physics of intense beam, beam final transport, target-plasma hydrodynamics, etc. In this paper, we focus on fuel implosion. In order to realize an effective implosion, beam illumination non-uniformity on a fuel target must be suppressed less than a few percent. In this study a direct-indirect hybrid implosion mode is discussed in heavy ion beam inertial confinement fusion (HIF) in order to release sufficient fusion energy in a robust manner. In the direct-indirect hybrid mode target, a low-density foam layer is inserted, and the radiation energy is confined in the foam layer. In the foam layer, the radiation transport is expected to smoothen the HIB illumination non-uniformity in the lateral direction. In this paper, we study the influences of the foam thickness and the inner radiation-shield Al density on implosion uniformity. Two-dimensional fluid simulations demonstrate that the hybrid target contributes to the HIB non-uniformity smoothing and releases a sufficient fusion energy output in HIF.

  4. The effect of laser pulse shape variations on the adiabat of NIF capsule implosions

    SciTech Connect

    Robey, H. F.; MacGowan, B. J.; Landen, O. L.; LaFortune, K. N.; Widmayer, C.; Celliers, P. M.; Moody, J. D.; Ross, J. S.; Ralph, J.; LePape, S.; Berzak Hopkins, L. F.; Spears, B. K.; Haan, S. W.; Clark, D.; Lindl, J. D.; Edwards, M. J.

    2013-05-15

    Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shape (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ρR from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (∼0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ρR by 50%.

  5. The Physics of Long-Pulse Wire Array Z-Pinch Implosions

    SciTech Connect

    DOUGLAS,MELISSA R.; DEENEY,CHRISTOPHER; SPIELMAN,RICK B.; COVERDALE,CHRISTINE A.; RODERICK,N.F.; PETERSON,D.L.

    1999-12-14

    Recent improvements in z-pinch wire array load design at Sandia National Laboratories have led to a substantial increase in pinch performance as measured by radiated powers of up to 280 TW in 4 ns and 1.8 MJ of total radiated energy. Next generation, higher current machines will allow for larger mass arrays and comparable or higher velocity implosions to be reached, possibly extending these result.dis the current is pushed above 20 MA, conventional machine design based on a 100 ns implosion time results in higher voltages, hence higher cost and power flow risk. Another approach, which shifts the risk to the load configuration, is to increase the implosion time to minimize the voltage. This approach is being investigated in a series of experimental campaigns on the Saturn and Z machines. In this paper, both experimental and two dimensional computational modeling of the fist long implosion Z experiments will be presented. The experimental data shows broader pulses, lower powers, and larger pinch diameters compared to the corresponding short pulse data. By employing a nested array configuration, the pinch diameter was reduced by 50% with a corresponding increase in power of > 30%. Numerical simulations suggest load velocity is the dominating mechanism behind these results.

  6. Experimental measurement of Au M-band flux in indirectly-driven double-shell implosions

    SciTech Connect

    Robey, H F; Perry, T S; Park, H S; Amendt, P; Sorce, C M; Compton, S M; Campbell, K M; Knauer, J P

    2004-09-17

    Indirectly-driven double-shell implosions are being investigated as a possible noncryogenic path to ignition on the National Ignition Facility (NIF). In recent double-shell implosions, the inner shell trajectory was shown to exhibit a strong sensitivity to the temporal history of the M-band (2-5 keV) radiation emitted from the Au hohlraum wall. A large time-dependent discrepancy was observed between measurement and simulation of the x-ray flux in this range. In order to better characterize the radiation environment seen in these implosions, an experimental campaign was conducted on the Omega Laser. A number of diagnostics were used to measure both the temporal and spectral nature of the M-band flux. Results were obtained from an absolutely calibrated 12 channel filtered x-ray diode array (Dante) as well as two streaked crystal spectrometers and an absolutely calibrated time-integrated spectrometer (Henway). X-ray backlighting was also used to directly measure the effect of M-band radiation on the trajectory of the inner shell. The data from all diagnostics are shown to be in excellent agreement and provide a consistent picture of the M-band flux. These results are being used to improve the simulation of hohlraum-generated M-band radiation that will be necessary for the design of future double-shell implosions employing higher Z inner shells.

  7. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA

    SciTech Connect

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; and others

    2014-05-15

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 10{sup 7} cm/s, and a laser intensity of ∼10{sup 15} W/cm{sup 2}. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  8. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J.

    2016-05-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  9. First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions

    SciTech Connect

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Amendt, P.; Delettrez, J.; Bellei, C.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Betti, R.; Glebov, V. Yu.; Meyerhofer, D. D.; Sangster, T. C.; Stoeckl, C.; Landen, O.; Smalyuk, V. A.; Wilks, S.; Greenwood, A.; Nikroo, A.

    2014-04-01

    A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with 3He gas. These implosions were found to produce D3He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50:50 D3He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.

  10. First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions

    DOE PAGES

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Amendt, P.; Delettrez, J.; Bellei, C.; Frenje, J. A.; Gatu Johnson, M.; et al

    2014-04-01

    A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with 3He gas. These implosions were found to produce D3He-proton shock yields comparable to implosions of identical shells filled with a hydroequivalent 50:50 D3He gas mixture. Standard hydrodynamic mixing cannot explain this observation, as hydrodynamic modeling including mix predicts a yield an order of magnitude lower than was observed. Instead, these results can be attributed to ion diffusive mix at the fuel-shell interface.

  11. Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry

    NASA Astrophysics Data System (ADS)

    Frenje, J. A.; Bionta, R.; Bond, E. J.; Caggiano, J. A.; Casey, D. T.; Cerjan, C.; Edwards, J.; Eckart, M.; Fittinghoff, D. N.; Friedrich, S.; Glebov, V. Yu.; Glenzer, S.; Grim, G.; Haan, S.; Hatarik, R.; Hatchett, S.; Gatu Johnson, M.; Jones, O. S.; Kilkenny, J. D.; Knauer, J. P.; Landen, O.; Leeper, R.; Le Pape, S.; Lerche, R.; Li, C. K.; Mackinnon, A.; McNaney, J.; Merrill, F. E.; Moran, M.; Munro, D. H.; Murphy, T. J.; Petrasso, R. D.; Rygg, R.; Sangster, T. C.; Séguin, F. H.; Sepke, S.; Spears, B.; Springer, P.; Stoeckl, C.; Wilson, D. C.

    2013-04-01

    The neutron spectrum from a cryogenically layered deuterium-tritium (dt) implosion at the National Ignition Facility (NIF) provides essential information about the implosion performance. From the measured primary-neutron spectrum (13-15 MeV), yield (Yn) and hot-spot ion temperature (Ti) are determined. From the scattered neutron yield (10-12 MeV) relative to Yn, the down-scatter ratio, and the fuel areal density (ρR) are determined. These implosion parameters have been diagnosed to an unprecedented accuracy with a suite of neutron-time-of-flight spectrometers and a magnetic recoil spectrometer implemented in various locations around the NIF target chamber. This provides good implosion coverage and excellent measurement complementarity required for reliable measurements of Yn, Ti and ρR, in addition to ρR asymmetries. The data indicate that the implosion performance, characterized by the experimental ignition threshold factor, has improved almost two orders of magnitude since the first shot taken in September 2010. ρR values greater than 1 g cm-2 are readily achieved. Three-dimensional semi-analytical modelling and numerical simulations of the neutron-spectrometry data, as well as other data for the hot spot and main fuel, indicate that a maximum hot-spot pressure of ˜150 Gbar has been obtained, which is almost a factor of two from the conditions required for ignition according to simulations. Observed Yn are also 3-10 times lower than predicted. The conjecture is that the observed pressure and Yn deficits are partly explained by substantial low-mode ρR asymmetries, which may cause inefficient conversion of shell kinetic energy to hot-spot thermal energy at stagnation.

  12. The implosion of cylindrical shell structures in a high-pressure water environment.

    PubMed

    Ikeda, C M; Wilkerling, J; Duncan, J H

    2013-12-01

    The implosion of cylindrical shell structures in a high-pressure water environment is studied experimentally. The shell structures are made from thin-walled aluminium and brass tubes with circular cross sections and internal clearance-fit aluminium end caps. The structures are filled with air at atmospheric pressure. The implosions are created in a high-pressure tank with a nominal internal diameter of 1.77 m by raising the ambient water pressure slowly to a value, P c, just above the elastic stability limit of each shell structure. The implosion events are photographed with a high-speed digital movie camera, and the pressure waves are measured simultaneously with an array of underwater blast sensors. For the models with larger values of length-to-diameter ratio, L/D 0, the tubes flatten during implosion with a two-lobe (mode 2) cross-sectional shape. In these cases, it is found that the pressure wave records scale primarily with P c and the time scale [Formula: see text] (where R i is the internal radius of the tube and ρ is the density of water), whereas the details of the structural design produce only secondary effects. In cases with smaller values of L/D 0, the models implode with higher-mode cross-sectional shapes. Pressure signals are compared for various mode-number implosions of models with the same available energy, P c V , where V is the internal air-filled volume of the model. It is found that the pressure records scale well temporally with the time scale [Formula: see text], but that the shape and amplitudes of the pressure records are strongly affected by the mode number. PMID:24353473

  13. Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.; Knauer, J. P.; Campbell, E. M.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; McCrory, R. L.; Regan, S. P.; Sangster, T. C.; Skupsky, S.; Stoeckl, C.

    2016-05-01

    The effects of large-scale (with Legendre modes ≲ 10 ) laser-imposed nonuniformities in direct-drive cryogenic implosions on the OMEGA Laser System are investigated using three-dimensional hydrodynamic simulations performed using the newly developed code ASTER. Sources of these nonuniformities include an illumination pattern produced by 60 OMEGA laser beams, capsule offsets (˜10-20 μm), and imperfect pointing, power balance, and timing of the beams (with typical σ rms ˜ 10 μm, 10%, and 5 ps, respectively). Two implosion designs using 26-kJ triple-picket laser pulses were studied: a nominal design, in which an 874-μm-diameter capsule is illuminated by about the same-diameter beams, and a more hydrodynamically efficient "R75" design using a 900-μm-diameter capsule and beams of 75% of this diameter. Simulations show that nonuniformities caused by capsule offsets and beam imbalance have the largest effect on implosion performance. These nonuniformities lead to significant distortions of implosion cores, resulting in an increased residual kinetic energy and incomplete stagnation. The shape of distorted cores can be well characterized using neutron images but is less represented by 4-8 keV x-ray images. Simulated neutron spectra from perturbed implosions show large directional variations because of bulk motion effects and up to an ˜2 keV variation of the hot-spot temperature inferred from these spectra. The R75 design suffers more from illumination nonuniformities. Simulations show an advantage of this design over the nominal design when the target offset and beam power imbalance σ rms are reduced to less than 5 μm and 5%, respectively.

  14. Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA

    DOE PAGES

    Igumenshchev, Igor V.; Goncharov, V. N.; Marshall, F. J.; Knauer, J. P.; Campbell, E. M.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu; McCrory, R. L.; Regan, S. P.; et al

    2016-05-04

    In this study, the effects of large-scale (with Legendre modes ≲10) laser-imposed nonuniformities in direct-drive cryogenic implosions on the OMEGA Laser System are investigated using three-dimensional hydrodynamic simulations performed using the newly developed code ASTER. Sources of these nonuniformities include an illumination pattern produced by 60 OMEGA laser beams; capsule offsets (~10 to 20 μm); and imperfect pointing, power balance, and timing of the beams (with typical σrms ~10 microns, 10%, and 5 ps, respectively). Two implosion designs using 26-kJ triple-picket laser pulses were studied: a nominal design, in which an 874-μm-diameter capsule is illuminated by about the same-diameter beams,more » and a more hydrodynamically efficient ''R75" design using a 900-μm-diameter capsule and beams of 75% of this diameter. Simulations show that nonuniformities caused by capsule offsets and beam imbalance have the largest effect on implosion performance. These nonuniformities lead to significant distortions of implosion cores, resulting in an increased residual kinetic energy and incomplete stagnation. The shape of distorted cores can be well characterized using neutron images, but is less represented by 4-8 keV x-ray images. Simulated neutron spectra from perturbed implosions show large directional variations because of bulk motion effects and up to an ~2 keV variation of the hot-spot temperature inferred from these spectra. The R75 design suffers more from illumination nonuniformities. Simulations show an advantage of this design over the nominal design when the target offset and beam power imbalance σrms are reduced to less than 5 μm and 5%, respectively.« less

  15. Implosion dynamics and x-ray generation in small-diameter wire-array Z pinches.

    PubMed

    Ivanov, V V; Sotnikov, V I; Kindel, J M; Hakel, P; Mancini, R C; Astanovitskiy, A L; Haboub, A; Altemara, S D; Shevelko, A P; Kazakov, E D; Sasorov, P V

    2009-05-01

    It is known from experiments that the radiated x-ray energy appears to exceed the calculated implosion kinetic energy and Spitzer resistive heating [C. Deeney, Phys. Rev. A 44, 6762 (1991)] but possible mechanisms of the enhanced x-ray production are still being discussed. Enhanced plasma heating in small-diameter wire arrays with decreased calculated kinetic energy was investigated, and a review of experiments with cylindrical arrays of 1-16 mm in diameter on the 1 MA Zebra generator is presented in this paper. The implosion and x-ray generation in cylindrical wire arrays with different diameters were compared to find a transition from a regime where thermalization of the kinetic energy is the prevailing heating mechanism to regimes with other dominant mechanisms of plasma heating. Loads of 3-8 mm in diameter generate the highest x-ray power at the Zebra generator. The x-ray power falls in 1-2 mm loads which can be linked to the lower efficiency of plasma heating with the lack of kinetic energy. The electron temperature and density of the pinches also depend on the array diameter. In small-diameter arrays, 1-3 mm in diameter, ablating plasma accumulates in the inner volume much faster than in loads of 12-16 mm in diameter. Correlated bubblelike implosions were observed with multiframe shadowgraphy. Investigation of energy balance provides evidence for mechanisms of nonkinetic plasma heating in Z pinches. Formation and evolution of bright spots in Z pinches were studied with a time-gated pinhole camera. A comparison of x-ray images with shadowgrams shows that implosion bubbles can initiate bright spots in the pinch. Features of the implosions in small-diameter wire arrays are discussed to identify mechanisms of energy dissipation.

  16. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility

    SciTech Connect

    Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P. J.

    2013-05-15

    More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations represent as accurately as possible the conditions of a given experiment, including the as-shot capsule metrology, capsule surface roughness, and ice layer defects as seeds for the growth of hydrodynamic instabilities. The radiation drive used in these capsule-only simulations can be tuned to reproduce quite well the measured implosion timing, kinematics, and low-mode asymmetry. In order to simulate the experiments as accurately as possible, a limited number of fully three-dimensional implosion simulations are also being performed. Despite detailed efforts to incorporate all of the effects known and believed to be important in determining implosion performance, substantial yield discrepancies remain between experiment and simulation. Some possible alternate scenarios and effects that could resolve this discrepancy are discussed.

  17. Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA

    DOE PAGES

    Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.; Knauer, J. P.; Campbell, E. M.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; McCrory, R. L.; Regan, S. P.; et al

    2016-05-04

    The effects of large-scale (with Legendre modes ≲10) laser-imposed nonuniformities in direct-drive cryogenic implosions on the OMEGA laser system are investigated using three-dimension hydrodynamic simulations performed using a newly developed code ASTER. Sources of these nonuniformities include an illumination pattern produced by 60 OMEGA laser beams, capsule offsets (~10 to 20 μm), and imperfect pointing, energy balance, and timing of the beams (with typical σrms ~10 μm, 10%, and 5 ps, respectively). Two implosion designs using 26-kJ triple-picket laser pulses were studied: a nominal design, in which a 880-μm-diameter capsule is illuminated by the same-diameter beams, and a “R75” designmore » using a capsule of 900 μm in diameter and beams of 75% of this diameter. Simulations found that nonuniformities because of capsule offsets and beam imbalance have the largest effect on implosion performance. These nonuniformities lead to significant distortions of implosion cores resulting in an incomplete stagnation. The shape of distorted cores is well represented by neutron images, but loosely in x-rays. Simulated neutron spectra from perturbed implosions show large directional variations and up to ~ 2 keV variation of the hot spot temperature inferred from these spectra. The R75 design is more hydrodynamically efficient because of mitigation of crossed-beam energy transfer, but also suffers more from the nonuniformities. Furthermore, simulations predict a performance advantage of this design over the nominal design when the target offset and beam imbalance σrms are reduced to less than 5 μm and 5%, respectively.« less

  18. Gas dynamics/furnace implosion problems validation and application of the EPRI program DUCSYS

    SciTech Connect

    Forrest, T.J.; Green, C.H.; Rea, J.

    1995-06-01

    Considerable Utility concern about power plant boiler implosion risks has recently resurfaced. This results largely from the current trend towards retrofitting environmental equipment to fossil fuel fired boilers, an action which is often accompanied by an increase in the risk faced, under fault conditions, from large negative pressure excursions in the furnace and its associated ductwork. Accompanying this trend has been a tightening of industry regulations with the publishing of new stricter guidelines on the prevention of furnace implosions and explosions by the National Fire Protection Association. The combined effect has been the need to assess boiler implosion risks as an integral part of fossil fuel fired boiler retro-fit design studies. The DUCSYS gas systems dynamics modelling system, which is currently being developed under contract by PowerGen, is EPRI`s response to this Utility demand. This paper describes briefly the physical processes involved in the implosion phenomenon, and discusses the main characteristics of the DUCSYS modeling system. Following this, the application of DUCSYS to study three power plant problems is discussed. The main study discusses the conversion of an existing Oil fired boiler to burn Orimulsion, a technology in which PowerGen leads the World. This application involves the retro-fitting of an electrostatic precipitator to the plant. DUCSYS is not however, purely a system for investigation of furnace implosion risks, but is currently being developed by PowerGen, on behalf of EPRI, as a general power plant has systems dynamics modeling system. The final two application studies consider the application of DUCSYS to two more general gas dynamics problems.

  19. The implosion of cylindrical shell structures in a high-pressure water environment

    PubMed Central

    Ikeda, C. M.; Wilkerling, J.; Duncan, J. H.

    2013-01-01

    The implosion of cylindrical shell structures in a high-pressure water environment is studied experimentally. The shell structures are made from thin-walled aluminium and brass tubes with circular cross sections and internal clearance-fit aluminium end caps. The structures are filled with air at atmospheric pressure. The implosions are created in a high-pressure tank with a nominal internal diameter of 1.77 m by raising the ambient water pressure slowly to a value, Pc, just above the elastic stability limit of each shell structure. The implosion events are photographed with a high-speed digital movie camera, and the pressure waves are measured simultaneously with an array of underwater blast sensors. For the models with larger values of length-to-diameter ratio, L/D0, the tubes flatten during implosion with a two-lobe (mode 2) cross-sectional shape. In these cases, it is found that the pressure wave records scale primarily with Pc and the time scale (where Ri is the internal radius of the tube and ρ is the density of water), whereas the details of the structural design produce only secondary effects. In cases with smaller values of L/D0, the models implode with higher-mode cross-sectional shapes. Pressure signals are compared for various mode-number implosions of models with the same available energy, PcV , where V is the internal air-filled volume of the model. It is found that the pressure records scale well temporally with the time scale , but that the shape and amplitudes of the pressure records are strongly affected by the mode number. PMID:24353473

  20. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF.

    PubMed

    Ma, T; Izumi, N; Tommasini, R; Bradley, D K; Bell, P; Cerjan, C J; Dixit, S; Döppner, T; Jones, O; Kline, J L; Kyrala, G; Landen, O L; LePape, S; Mackinnon, A J; Park, H-S; Patel, P K; Prasad, R R; Ralph, J; Regan, S P; Smalyuk, V A; Springer, P T; Suter, L; Town, R P J; Weber, S V; Glenzer, S H

    2012-10-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  1. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    SciTech Connect

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J.P.; Chittenden, J.P.; Lebedev, S.V.; Jennings, C.A.; Bland, S.N.

    2006-01-05

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1{mu}s rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-{theta} simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  2. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  3. Effect of the implosion and demolition of a hospital building on the concentration of fungi in the air.

    PubMed

    Barreiros, Gloria; Akiti, Tiyomi; Magalhães, Ana Cristina Gouveia; Nouér, Simone A; Nucci, Marcio

    2015-12-01

    Building renovations increase the concentration of Aspergillus conidia in the air. In 2010, one wing of the hospital building was imploded due to structural problems. To evaluate the impact of building implosion on the concentration of fungi in the air, the demolition was performed in two phases: mechanical demolition of 30 m of the building, followed by implosion of the wing. Patients at high risk for aspergillosis were placed in protected wards. Air sampling was performed during mechanical demolition, on the day of implosion and after implosion. Total and specific fungal concentrations were compared in the different areas and periods of sampling, using the anova test. The incidence of IA in the year before and after implosion was calculated. The mean concentration of Aspergillus increased during mechanical demolition and on the day of implosion. However, in the most protected areas, there was no significant difference in the concentration of fungi. The incidence of invasive aspergillosis (cases per 1000 admissions) was 0.9 in the 12 months before, 0.4 during, and 0.5 in the 12 months after mechanical demolition (P > 0.05). Continuous monitoring of the quality of air and effective infection control measures are important to minimize the impact of building demolition. PMID:26449634

  4. The use of the EPRI program DUCSYS to assess boiler implosion hazards associated with FGD retro-fit applications

    SciTech Connect

    Forrest, T.J.; Adams, R.G.; Thame, P.N.

    1995-06-01

    Considerable Utility concern about power plant boiler implosion risks has recently resurfaced. This results largely from the current trend towards retrofitting environmental equipment such as FGD to fossil fuel fired boilers, an action which is often accompanied by an increase in the risk faced, under hult conditions, from large negative pressure excursions in the furnace and its associated ductwork. Accompanying this trend has been a tightening of industry regulations with the publishing of new stricter guidelines on the prevention of furnace implosions and explosions by the National Fire Protection Association. The combined effect has been the need to assess boiler implosion risks as an integral part of fossil fuel fired boiler retro-fit design studies. The DUCSYS gas systems dynamics modelling system, which is currently being developed under contract by PowerGen, is EPRI`s response to this Utility demand. This paper describes briefly the physical processes involved in the implosion phenomenon, and discusses the main characteristics of the DUCSYS modelling system. Following this, an application of DUCSYS to study the implosion risks associated with retrofitting an existing coal fired boiler with a wet limestone FGD process is described. DUCSYS is not however, purely a system for investigating furnace implosion risks, but is currently being developed by PowerGen, on behalf of EPRI as a general power plant gas systems dynamics modelling system.

  5. Effects of real viscosity on plasma liner formation and implosion from supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Schillo, Kevin; Cassibry, Jason; Hsu, Scott; PLX-Alpha Team

    2015-11-01

    The PLX- α project endeavors to study plasma liner formation and implosion by merging of a spherical array of plasma jets as a candidate standoff driver for magneto-inertial fusion (MIF). Smoothed particle hydrodynamics (SPH) is being used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. The SPH code was used to simulate test cases in which the number of plasma guns and initial conditions for the plasma were varied. Linear stabilizations were observed, but the possibility exists that this stabilization was due to the implementation of artificial viscosity in the code. A real viscosity model was added to our SPHC model using the Braginskii ion viscosity. Preliminary results for test cases that incorporate real viscosity are presented.

  6. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  7. Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions

    SciTech Connect

    Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.

    2009-01-21

    A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.

  8. Drive asymmetry and the origin of turbulence in an ICF implosion.

    PubMed

    Thomas, V A; Kares, R J

    2012-08-17

    2D and 3D numerical simulations with the adaptive mesh refinement Eulerian radiation-hydrocode RAGE at unprecedented spatial resolution are used to investigate the connection between drive asymmetry and the generation of turbulence in the DT fuel in a simplified inertial-confinement fusion (ICF) implosion. Long-wavelength deviations from spherical symmetry in the pressure drive lead to the generation of coherent vortical structures in the DT gas and it is the three-dimensional instability of these structures that in turn leads to turbulence and mix. The simulations suggest that this mechanism may be an additional important source of mix in ICF implosions. Applications to target ignition at the National Ignition Facility are briefly discussed.

  9. A strategy for reducing stagnation phase hydrodynamic instability growth in inertial confinement fusion implosions

    SciTech Connect

    Clark, D. S.; Robey, H. F.; Smalyuk, V. A.

    2015-05-15

    Encouraging progress is being made in demonstrating control of ablation front hydrodynamic instability growth in inertial confinement fusion implosion experiments on the National Ignition Facility [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, Phys. Plasmas 16, 041006 (2009)]. Even once ablation front stabilities are controlled, however, instability during the stagnation phase of the implosion can still quench ignition. A scheme is proposed to reduce the growth of stagnation phase instabilities through the reverse of the “adiabat shaping” mechanism proposed to control ablation front growth. Two-dimensional radiation hydrodynamics simulations confirm that improved stagnation phase stability should be possible without compromising fuel compression.

  10. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    PubMed

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  11. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE PAGES

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; et al

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  12. Polar-drive implosions on OMEGA and the National Ignition Facility

    SciTech Connect

    Radha, P. B.; Marshall, F. J.; Marozas, J. A.; Shvydky, A.; Gabalski, I.; Boehly, T. R.; Collins, T. J.; Craxton, R. S.; Edgell, D. H.; Epstein, R.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Hohenberger, M.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Petrasso, R. D.; Sangster, T. C.; Skupsky, S.

    2013-04-29

    Polar-drive (PD) experiments on the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. Continuous pulse shapes, where a low-power foot is followed by a rise to the main pulse, and triple-picket pulse shapes, where three pickets precede the main pulse, are used to irradiate warm plastic shell capsules. Both of these pulse shapes set the target on a low, ignition-relevant adiabat of ~3.5. The areal density is modeled very well in these implosions indicating that shock timing is well modeled in PD geometry. It is shown that the symmetry can be predictably varied by changing the beam pointings. Symmetry is also well reproduced across the two pulse shapes. Limitations of OMEGA experiments are discussed. Preliminary designs for PD implosion experiments on the NIF, with the goal of addressing ignition-relevant issues for PD, including symmetry are presented.

  13. Polar-drive implosions on OMEGA and the National Ignition Facility

    SciTech Connect

    Radha, P. B.; Marshall, F. J.; Marozas, J. A.; Shvydky, A.; Gabalski, I.; Boehly, T. R.; Collins, T. J. B.; Craxton, R. S.; Edgell, D. H.; Epstein, R.; Froula, D. H.; Goncharov, V. N.; Hohenberger, M.; McKenty, P. W.; Sangster, T. C.; Skupsky, S.; Frenje, J. A.; Petrasso, R. D.; McCrory, R. L.; Meyerhofer, D. D.

    2013-05-15

    Polar-drive (PD) experiments on the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. Continuous pulse shapes, where a low-power foot is followed by a rise to the main pulse, and triple-picket pulse shapes, where three pickets precede the main pulse, are used to irradiate warm plastic shell capsules. Both of these pulse shapes set the target on a low, ignition-relevant adiabat of ∼3.5. The areal density is modeled very well in these implosions indicating that shock timing is well modeled in PD geometry. It is shown that the symmetry can be predictably varied by changing the beam pointings. Symmetry is also well reproduced across the two pulse shapes. Limitations of OMEGA experiments are discussed. Preliminary designs for PD implosion experiments on the NIF, with the goal of addressing ignition-relevant issues for PD, including symmetry are presented.

  14. Polar-drive implosions on OMEGA and the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Radha, P. B.; Marshall, F. J.; Marozas, J. A.; Shvydky, A.; Gabalski, I.; Boehly, T. R.; Collins, T. J. B.; Craxton, R. S.; Edgell, D. H.; Epstein, R.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Hohenberger, M.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Petrasso, R. D.; Sangster, T. C.; Skupsky, S.

    2013-05-01

    Polar-drive (PD) experiments on the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. Continuous pulse shapes, where a low-power foot is followed by a rise to the main pulse, and triple-picket pulse shapes, where three pickets precede the main pulse, are used to irradiate warm plastic shell capsules. Both of these pulse shapes set the target on a low, ignition-relevant adiabat of ˜3.5. The areal density is modeled very well in these implosions indicating that shock timing is well modeled in PD geometry. It is shown that the symmetry can be predictably varied by changing the beam pointings. Symmetry is also well reproduced across the two pulse shapes. Limitations of OMEGA experiments are discussed. Preliminary designs for PD implosion experiments on the NIF, with the goal of addressing ignition-relevant issues for PD, including symmetry are presented.

  15. Study of the stability of Z-pinch implosions with different initial density profiles

    SciTech Connect

    Rousskikh, A. G.; Zhigalin, A. S.; Labetskaya, N. A.; Chaikovsky, S. A.; Yushkov, G. Yu.; Oreshkin, V. I.; Batrakov, A. V.; Baksht, R. B.

    2014-05-15

    Stability of metal-puff Z pinches was studied experimentally. Experiments were carried out on a facility producing a load current up to 450 kA with a rise time of 450 ns. In a metal-puff Z pinch, the plasma shell is produced due to evaporation of the electrode material during the operation of a vacuum arc. In the experiment to be reported, a single-shell and a shell-on-jet pinch load with magnesium electrodes were used. Two-dimensional, 3 ns gated, visible-light images were taken at different times during the implosion. When the shell was formed from a collimated plasma flow with small radial divergence, Rayleigh–Taylor (RT) instability typical of gas-puff implosions was recorded. The RT instability was completely suppressed in a mode where the initial density distribution of the shell approached a tailored density profile [A. L. Velikovich et al., Phys. Rev. Lett. 77, 853 (1996)].

  16. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    SciTech Connect

    Zylstra, A. B. Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-15

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ∼±10% accuracy, and mean neutron energy to ∼±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15−20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ∼±25−40 km/s.

  17. Drive Asymmetry and the Origin of Turbulence in an ICF Implosion

    NASA Astrophysics Data System (ADS)

    Thomas, V. A.; Kares, R. J.

    2012-08-01

    2D and 3D numerical simulations with the adaptive mesh refinement Eulerian radiation-hydrocode RAGE at unprecedented spatial resolution are used to investigate the connection between drive asymmetry and the generation of turbulence in the DT fuel in a simplified inertial-confinement fusion (ICF) implosion. Long-wavelength deviations from spherical symmetry in the pressure drive lead to the generation of coherent vortical structures in the DT gas and it is the three-dimensional instability of these structures that in turn leads to turbulence and mix. The simulations suggest that this mechanism may be an additional important source of mix in ICF implosions. Applications to target ignition at the National Ignition Facility are briefly discussed.

  18. Drive asymmetry and the origin of turbulence in an ICF implosion.

    PubMed

    Thomas, V A; Kares, R J

    2012-08-17

    2D and 3D numerical simulations with the adaptive mesh refinement Eulerian radiation-hydrocode RAGE at unprecedented spatial resolution are used to investigate the connection between drive asymmetry and the generation of turbulence in the DT fuel in a simplified inertial-confinement fusion (ICF) implosion. Long-wavelength deviations from spherical symmetry in the pressure drive lead to the generation of coherent vortical structures in the DT gas and it is the three-dimensional instability of these structures that in turn leads to turbulence and mix. The simulations suggest that this mechanism may be an additional important source of mix in ICF implosions. Applications to target ignition at the National Ignition Facility are briefly discussed. PMID:23006379

  19. Modelling the effect of 3He in direct drive capsule implosions

    NASA Astrophysics Data System (ADS)

    Garbett, W. J.; Horsfield, C. J.; Herrmann, H. W.; Langenbrunner, J. R.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Rubery, M. S.; Drew, D.; Mack, J. M.; Young, C. S.; Kyrala, G. A.; Frenje, J.; Glebov, V. Yu

    2010-08-01

    D3He fuels are often used in ICF implosion experiments, either as a surrogate for DT to restrict the output neutron yield, or to produce protons for use in diagnosis of core conditions. Recent experiments have suggested that capsules filled with D3He do not behave as expected, but that both proton and neutron yields are anomalously degraded relative to the pure D2 case. We have performed direct drive implosion experiments using the Omega laser to examine the effect of 3He on DT-filled glass capsules. The use of DT fuel allows reaction history measurements to be obtained using the Gas Cherenkov diagnostic (GCD). It was hoped that the detailed information provided by GCD measurements would complement existing measurements to constrain modelling. We present recent modelling and analysis of the experiments using radiation-hydrocode simulations, and explore some of the hypotheses proposed to explain the results.

  20. Flooding and Implosive Therapy with Situation Specific and Non-Situation Specific Anxiety.

    ERIC Educational Resources Information Center

    Boudewyns, Patrick A.

    Two inpatients, one with a circumscribed phobia for dentists and dental offices and another who had been diagnosed as suffering from an anxiety neurosis, were treated with a flooding procedure. A simple flooding technique which dealt with only the symptom contingent cues was sufficient to change behavior in the former case, but for the relatively…

  1. Direct-drive cryogenic-target implosion experiments on SGIII prototype laser facility

    SciTech Connect

    Pu, Yudong; Huang, Tianxuan; Lei, Haile; Li, Ping; Zhang, Xin; Zheng, Jiahua; Yang, Zhiwen; Tang, Qi; Song, Zifeng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen Ding, Yongkun

    2015-04-15

    Directly driven cryogenic target implosion experiments are performed on the SGIII prototype laser facility. X-ray pinhole images reveal frozen condensation on the sealing film. The influence of the condensation on the delivery of laser energy to the capsule surface is then quantified experimentally. It is found that, with a carefully chosen pre-pulse duration, the influence can be reduced, and the neutron yield is increased by an order of magnitude. Subsequently, the cryogenic layered capsule and cryogenic gas-filled capsule are imploded using 6.5-kJ laser energy. The implosion performance is characterized by the neutron yield, the 2D self-emission images of the in-flight shell, and the primary proton spectrum. The neutron yield is 2 × 10{sup 7} for the gas-filled capsule and 2.8 × 10{sup 7} for the layered capsule. The 2D self-emission images of the in-flight shell exhibit significant implosion asymmetry. The energy downshift of the proton spectrum is used to infer the areal density. For the gas-filled capsule, the spectrum is downshifted by 0.1 MeV, yielding an areal density of 1–3 mg/cm{sup 2}. For the layered capsule, the spectrum is downshifted by 0.5 MeV, yielding an areal density of 4–6 mg/cm{sup 2}. Improving the implosion symmetry would help to further increase the areal density.

  2. High-density implosion via suppression of Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Shiroto, Takashi; Ohnishi, Naofumi; Sunahara, Atsushi; Fujioka, Shinsuke; Sasaki, Akira

    2016-05-01

    Radiation hydrodynamic simulations of ICF capsules assuming a kJ-class laser facility were conducted to evaluate the hydrodynamic stability of a brominated plastic shell. An opacity table based on a detailed atomic model was employed so that more quantitative forecast of the implosion dynamics could be performed. A lightly doped shell could form a high-density core at the maximum compression by suppressing the hydrodynamic instability.

  3. BRIEF COMMUNICATION: A self-similar solution for the implosion problem in a dusty gas

    NASA Astrophysics Data System (ADS)

    Hirschler, T.; Steiner, H.

    2003-03-01

    The present work considers the implosion problem in the self-similar limit. The obtained self-similar solution extends Guderley's classical solution [Luftfahrtforschung 19 (1942) 302] to a dust-loaded gas. It encompasses the whole temporal evolution of the flow beginning from the incoming shock ending up in the flow behind the reflected outgoing shock. The influence of the dust is illustrated by a comparison of the results obtained for different dust-loads with the dust-free case.

  4. High-density implosion via suppression of Rayleigh–Taylor instability

    NASA Astrophysics Data System (ADS)

    Shiroto, Takashi; Ohnishi, Naofumi; Sunahara, Atsushi; Fujioka, Shinsuke; Sasaki, Akira

    2016-05-01

    Radiation hydrodynamic simulations of ICF capsules assuming a kJ-class laser facility were conducted to evaluate the hydrodynamic stability of a brominated plastic shell. An opacity table based on a detailed atomic model was employed so that more quantitative forecast of the implosion dynamics could be performed. A lightly doped shell could form a high-density core at the maximum compression by suppressing the hydrodynamic instability.

  5. Representative surface profile power spectra from capsules used in NOVA and Omega implosion experiments

    SciTech Connect

    Cook, R C; McEachern, R L; Stephens, R

    1998-10-20

    Typical surface profile power spectra of capsules used in Nova and Omega implosion experiments are presented. All Nova capsules are essentially identical in size and composition; their differences reflect small shell-to-shell variations. Differences among the Omega capsule power spectra can be attributed to changes in material properties with doping and (very importantly) differences in processing experience. These capsule power spectra accurately reflect past and current production, but are only a starting point for future capabilities.

  6. Numerical studies of shock focusing induced by reflection of detonation waves within a hemispherical implosion chamber

    NASA Astrophysics Data System (ADS)

    Hatanaka, K.; Saito, T.; Takayama, K.

    2012-11-01

    The initiation and the propagation of detonation waves in a hemispherical chamber and the imploding shock waves that are the reflected detonation waves at the chamber wall are numerically investigated. The effects of the boundary layer and the non-uniformity of the flow field induced by the detonation wave on the imploding shock stability are examined. It is found that the effect of the boundary layer separation on the chamber wall has the strongest effect on the implosion focus.

  7. Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Radha, P. B.

    2004-11-01

    Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.

  8. Diagnosis of pusher-fuel mix in indirectly driven Nova implosions (HEP3)

    SciTech Connect

    Dittrich, T.R.; Hammel, B.A.; Keane, C.J.

    1996-06-01

    A key issue for inertial confinement fusion (ICF) is the hydrodynamic stability of the imploding capsule. Imperfections on the capsule surface can grow into large perturbations that degrade capsule performance. Understanding this process is crucial if the authors are to successfully predict requirements for future high-gain ICF capsules. Experiments on the Nova laser at Lawrence Livermore National Laboratory have directly measured perturbation growth on planar foils, and three experimental groups have investigated backlit perturbation growth using imploding spheres. In addition to these efforts, which concentrate on indirectly driven implosions, is work investigating the hydrodynamic stability of directly driven ICF capsules. In these direct-drive experiments the laser light shines directly on the capsules, causing the implosion and providing the seed for perturbation growth. This article reports measurement, via emission from spectroscopic tracers, of the full process of perturbation growth leading to pusher-fuel mix in spherical implosions, and shows perturbation growth dependence on initial perturbation amplitude and wavelength. In contrast to the cited direct-drive work, the authors have in this experiment separated the drive from the perturbation seed.

  9. Spectroscopic determination of temperature and density spatial profiles and mix in indirect-drive implosion cores

    SciTech Connect

    Welser-Sherrill, L.; Mancini, R. C.; Koch, J. A.; Izumi, N.; Tommasini, R.; Haan, S. W.; Haynes, D. A.; Kyrala, G.; Golovkin, I. E.; MacFarlane, J. J.; Delettrez, J. A.; Marshall, F. J.; Regan, S. P.; Smalyuk, V. A.

    2007-11-15

    In the field of inertial confinement fusion (ICF), work has been consistently progressing in the past decade toward a more fundamental understanding of the plasma conditions in ICF implosion cores. The research presented here represents a substantial evolution in the ability to diagnose plasma temperatures and densities, along with characteristics of mixing between fuel and shell materials. Mixing is a vital property to study and quantify, since it can significantly affect implosion quality. We employ a number of new spectroscopic techniques that allow us to probe these important quantities. The first technique developed is an emissivity analysis, which uses the emissivity ratio of the optically thin Ly{beta} and He{beta} lines to spectroscopically extract temperature profiles, followed by the solution of emissivity equations to infer density profiles. The second technique, an intensity analysis, models the radiation transport through the implosion core. The nature of the intensity analysis allows us to use an optically thick line, the Ly{alpha}, to extract information on mixing near the core edge. With this work, it is now possible to extract directly from experimental data not only detailed temperature and density maps of the core, but also spatial mixing profiles.

  10. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D.

    2016-05-01

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium-tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ˜16 m to a streak camera in a well-shielded location. An ˜200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ˜40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  11. Effects on Implosion Characteristics of High-Z Dopant Profiles in ICF Ignition Capsule Ablators

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Wang, Min; Gu, Jianfa; Zou, Shiyang; Kang, Dongguo; Ye, Wenhua; Zhang, Weiyan

    2012-10-01

    For ignition target design (ITD) of indirect drive ICF [J. Lindl, PoP 2, 3933(1995)], high-Z dopants in capsule ablators were used to prevent preheat of DTadjacentablators by Au M-band flux in laser-driven gold Hohlraums, therefore to restrain the growth of high-mode hydro-instabilities and to improve the targetrobustness.Based on NIC's Rev. 5 ITD[S. W. Haan et al., PoP 18, 051001(2011)], we investigated the effect of thickness and dopant concentration of doped layers on implosion characteristics, including the Atwood number (AWN) of fuel-ablator interface, the density gradient scale length (DGSL) of ablation front and the implosion velocity (VIM); all three variables decrease with increment of dopant dosage, and increase with dopant concentration while keeping dosage constant. Since a smaller AWN, a larger DGSL, and a faster VIM always characterize a more robust ITD, one should make tradeoff among them by adjusting the dopant profiles in ablators.A Gaussian spectrum (GS) was used to imitate the Au M-band flux [Y. S. Li et al., PoP 18, 022701(2011)], and the impact of GScenter on implosion characteristics of Rev. 5 ITD was studied while moving the GScenter towards higher energy, the ablatorpreheat got severe, AWN got larger, DGSL got larger, and VIM got faster.

  12. Time history prediction of direct-drive implosions on the Omega facility

    DOE PAGES

    Laffite, S.; Bourgade, J. L.; Caillaud, T.; Delettrez, J A; Frenje, J. A.; Girard, F.; Glebov, V. Yu.; Joshi, Tirtha Raj; Landoas, O.; Legay, G.; et al

    2016-01-14

    We present in this article direct-drive experiments that were carried out on the Omega facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Two different pulse shapes were tested in order to vary the implosion stability of the same target whose parameters, dimensions and composition, remained the same. The direct-drive configuration on the Omega facility allows the accurate time-resolvedmeasurement of the scattered light. We show that, provided the laser coupling is well controlled, the implosion time history, assessed by the “bang-time” and the shell trajectory measurements, can be predicted. This conclusion is independent on the pulse shape. Inmore » contrast, we show that the pulse shape affects the implosion stability, assessed by comparing the target performances between prediction and measurement. For the 1-ns square pulse, the measuredneutron number is about 80% of the prediction. Lastly, for the 2-step 2-ns pulse, we test here that this ratio falls to about 20%.« less

  13. Numerical investigation on target implosions driven by radiation ablation and shock compression in dynamic hohlraums

    SciTech Connect

    Xiao, Delong; Sun, Shunkai; Zhao, Yingkui; Ding, Ning; Wu, Jiming; Dai, Zihuan; Yin, Li; Zhang, Yang; Xue, Chuang

    2015-05-15

    In a dynamic hohlraum driven inertial confinement fusion (ICF) configuration, the target may experience two different kinds of implosions. One is driven by hohlraum radiation ablation, which is approximately symmetric at the equator and poles. The second is caused by the radiating shock produced in Z-pinch dynamic hohlraums, only taking place at the equator. To gain a symmetrical target implosion driven by radiation ablation and avoid asymmetric shock compression is a crucial issue in driving ICF using dynamic hohlraums. It is known that when the target is heated by hohlraum radiation, the ablated plasma will expand outward. The pressure in the shocked converter plasma qualitatively varies linearly with the material temperature. However, the ablation pressure in the ablated plasma varies with 3.5 power of the hohlraum radiation temperature. Therefore, as the hohlraum temperature increases, the ablation pressure will eventually exceed the shock pressure, and the expansion of the ablated plasma will obviously weaken the shock propagation and decrease its velocity after propagating into the ablator plasma. Consequently, longer time duration is provided for the symmetrical target implosion driven by radiation ablation. In this paper these processes are numerically investigated by changing drive currents or varying load parameters. The simulation results show that a critical hohlraum radiation temperature is needed to provide a high enough ablation pressure to decelerate the shock, thus providing long enough time duration for the symmetric fuel compression driven by radiation ablation.

  14. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2015-10-01

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. With first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ =0.1 to 100 g /cm3 and T =1000 to 4 000 000 K ). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ˜30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ˜5% reduction in implosion velocity that is caused by the ˜10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered light from ICF implosions.

  15. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; Robey, H. F.; Kritcher, A. L.; Milovich, J. L.; Salmonson, J. D.

    2016-07-01

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or "shimmed," so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.

  16. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    SciTech Connect

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2015-10-14

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. Thus, with first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ = 0.1 to 100 g/cm3 and T = 1,000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosions on OMEGA using the FPEOS table of CH have predicted ~5% reduction in implosion velocity and ~30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ~10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered lights from ICF implosions.

  17. Magnetic Rayleigh-Taylor instability mitigation in large-diameter gas puff Z-pinch implosions

    SciTech Connect

    Qi, N.; Sze, H.; Failor, B. H.; Banister, J.; Levine, J. S.; Riordan, J. C.; Steen, P.; Sincerny, P.; Lojewski, D.

    2008-02-15

    Recently, a new approach for efficiently generating K-shell x-rays in large-diameter, long-implosion time, structured argon gas Z-pinches has been demonstrated based on a 'pusher-stabilizer-radiator' model. In this paper, direct observations of the Rayleigh-Taylor instability mitigation of a 12-cm diameter, 200-ns implosion time argon Z-pinch using a laser shearing interferometer (LSI) and a laser wavefront analyzer (LWA) are presented. Using a zero-dimensional snowplow model, the imploding plasma trajectories are calculated with the driver current waveforms and the initial mass distributions measured using the planar laser induced fluorescence method. From the LSI and LWA images, the plasma density and trajectory during the implosion are measured. The measured trajectory agrees with the snowplow calculations. The suppression of hydromagnetic instabilities in the ''pusher-stabilizer-radiator'' structured loads, leading to a high-compression ratio, high-yield Z-pinch, is discussed. For comparison, the LSI and LWA images of an alternative load (without stabilizer) show the evolution of a highly unstable Z-pinch.

  18. Measuring Mix in Direct-Drive Cryogenic DT Implosions Using Soft X-Ray Narrowband Backlighting

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Epstein, R.; Fiksel, G.; Goncharov, V. N.; Hu, S. X.; Jacobs-Perkins, D. W.; Jungquist, R. K.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Theobald, W.

    2014-10-01

    Rayleigh-Taylor mix is widely seen as the major source of perturbations, which limit the performance of low-adiabat cryogenic implosions in both direct- and indirect-drive inertial confinement fusion experiments. Backlit images of cryogenic direct-drive implosions recorded with a narrowband x-ray imager using an aspherically bent quartz crystal for the Si Heα line at ~ 1.86 keV show a clear signature of carbon from the CD outer shell of the cryogenic target mixing into the DT layer at the end of the acceleration phase. These implosions are driven on a low adiabat with a high in-flight aspect ratio (IFAR). Comparison with post-processed 1-D hydrodynamic simulations show that the absorption seen in the backlit images is ~ 5 × larger than expected, consistent with mixing ~ 0.2% of carbon into the DT shell. Experiments with a slightly higher adiabat and lower IFAR match the predictions of clean 1-D simulations showing no signature of carbon mix. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Hydrodynamic Scaling of the Deceleration-Phase Rayleigh-Taylor Instability for Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Bose, A.; Betti, R.; Woo, K.; Nora, R.

    2014-10-01

    Hydrodynamic equivalence and ignition theory allow for the extrapolation of OMEGA experiments to ignition-scale implosions. The yield-over-clean (YOC = measured yield/1-D yield) depicts the effect of hydro-instabilities on inertial confinement fusion implosions. A 2-D study of the deceleration-phase Rayleigh-Taylor instability (RTI) is carried out to assess the YOC scaling with target size at varying nonuniformity levels. The deceleration-phase ablative RTI is mitigated by the hot-spot thermal and radiation transport, which do not scale hydro-equivalently. Scaling of the thermal conduction shows that hot-spot ablation velocity is higher on OMEGA than on the National Ignition Facility (NIF), resulting in higher RTI growth factors on the NIF. Radiation emitted in the hot-spot makes the implosion nearly hydro-equivalent by increasing the density gradient scale length on the NIF. Thermal conduction and radiation both are nonscalable physics in the deceleration phase, with complementary impacts the scaling of deceleration-phase RTI. Analytic and numerical study of the deceleration-phase RTI on OMEGA and NIF-scale targets show that YOCNIF ~ YOCΩ considering identical laser imprinting and normalized ice roughness levels. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  20. High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Park, H.-S.; Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; Ma, T.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Kline, J. L.

    2014-02-01

    This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ˜300 eV. The resulting experimental neutron yield was (2.4±0.05)×1015 DT, the fuel ρR was (0.86±0.063) g/cm2, and the measured Tion was (4.2±0.16) keV, corresponding to 8 kJ of fusion yield, with ˜1/3 of the yield caused by self-heating of the fuel by α particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ˜70% of the value predicted by simulations that include α-particle self-heating.

  1. The simulation basis for cryogenic layered implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Spears, Brian

    2011-10-01

    The National Ignition Campaign (NIC) uses non-igniting ``THD'' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off-nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC; see Zhou and Betti, Physics of Plasmas, 15, 10, 2008), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-479071.

  2. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE PAGES

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, III, M. J.; et al

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  3. The Effects of Target Mounts in Direct-Drive Implosions on OMEGA

    SciTech Connect

    Igumenshchev, I.V.; Marshall, F.J.; Marozas, J.A.; Smalyuk, V.A.; Epstein, R.; Goncharov, V.N.; Collins, T.J.B.; Sangster, T.C.; Skupsky, S.

    2009-08-19

    The effects of two types of target mounts, stalks and spider silks, on the implosion of both room-temperature D2-gas-filled shells and cryogenic D2-ice-filled shells have been studied both experimentally and by means of two-dimensional simulations. The simulations indicate that the hydrodynamic effect of the expanding plasma created by the ablation of material from the target mounts and refraction of laser light by this plasma induce perturbations in the imploding shell that are damaging to the implosion. The spider silks are the more-damaging type of mount since the silks (typically four) are arrayed over the target surface, whereas the stalk (typically one) meets the target at a single point. Stalks are therefore preferred over silks as a target mount. The scale and magnitude of the perturbations induced by the spider silks have been verified by planar-target experiments performed on the OMEGA laser [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1995)]. The perturbations predicted by simulations to arise from stalks qualitatively agree with the results of implosion experiments using Ti-doped plastic shells.

  4. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    SciTech Connect

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; Izumi, N.; Kyrala, G. A.; Moody, J. D.; Patel, P. K.; Ralph, J. E.; Rygg, J. R.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R. P. J.; Biener, J.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Eckart, M. J.; Gatu Johnson, M.; Grim, G. P.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hoover, D. E.; Kilkenny, J. D.; Kozioziemski, B. J.; Kroll, J. J.; McNaney, J. M.; Nikroo, A.; Sayre, D. B.; Stadermann, M.; Wild, C.; Yoxall, B. E.; Landen, O. L.; Hsing, W. W.; Edwards, M. J.

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.

  5. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE PAGES

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; et al

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less

  6. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.

    PubMed

    Buogo, Silvano; Cannelli, Giovanni B

    2002-06-01

    The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse.

  7. ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression

    NASA Astrophysics Data System (ADS)

    Knoll, Dana; Chacon, Luis; Simakov, Andrei

    2013-10-01

    The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.

  8. Evaluation of continuum x-ray emission for measuring electron temperatures in ICF implosions

    NASA Astrophysics Data System (ADS)

    Benage, John; Cobble, James; Kyrala, George; Wilson, Douglas

    2008-11-01

    Though most ICF capsules produce plasma conditions where the electron and ion temperatures are not equal and the electrons serve as a sink for the hotter ions, the electron temperature is rarely measured in ICF experiments. When it is measured, one usually relies on spectral emission from much higher z dopants that are assumed do not perturb the conditions in the implosion. We present here an evaluation of the continuum emission produced in thin glass capsule implosions and compare temperatures determined from the continuum emission to that obtained from K-shell line emission in doped implosions. The dopant used is Kr and the x-ray range evaluated is between 12-17 keV. In this evaluation we consider how these two methods compare at many different dopant and gas fill concentrations and estimate the usefulness of the method when no dopant is present. Correlations are also considered with the uniformity of the x-ray source by considering x-ray framing camera images in the same spectral range.

  9. Explorations of Stopping Power and Secondary Nuclear Production in OMEGA Implosions

    NASA Astrophysics Data System (ADS)

    Rygg, J. R.; Kurebayshi, S.; Schwartz, B. E.; Deciantis, J.; Burke, S.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Soures, J. M.; Meyerhofer, D. D.; Roberts, S.; Sangster, T. C.; Stoeckl, C.; Hoffmann, N.; Wilson, D.

    2002-11-01

    Direct-drive spherical implosions of thin-shell glass capsules filled with D^3He and D2 have been conducted on OMEGA to explore charged-particle stopping relevant to fusion ignition experiments as well as theoretical and experimental tests of secondary nuclear production. For D^3He-filled capsules, and for a variety of different implosion conditions, up to five different lines are used to make inferences about the stopping power. The collection of these lines in different implosions enable refined tests of stopping power to be made. In addition, to test the theoretical foundations of secondary nuclear production, D2 glass capsules were imploded to sufficiently high temperature so that the secondary neutron and proton production should result in similar predictions for the fuel ρR. The line shapes and yields of the primary and secondary nuclear products were used to characterize plasma condition. This work was performed in part at the LLE National Laser Users' Facility (NLUF), and was supported in part by the U.S. DOE Office of Inertial Confinement Fusion (Grant number DE-FG03-99DP00300 and Cooperative Agreement number DE-FC03-92SF19460), LLE (subcontract P0410025G), LLNL (subcontract B313975). (Petrasso: Visiting Senior Scientist at LLE.)

  10. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited)

    SciTech Connect

    Stoeckl, C. Bedzyk, M.; Brent, G.; Epstein, R.; Fiksel, G.; Guy, D.; Goncharov, V. N.; Hu, S. X.; Ingraham, S.; Jacobs-Perkins, D. W.; Jungquist, R. K.; Marshall, F. J.; Mileham, C.; Nilson, P. M.; Sangster, T. C.; Shoup, M. J.; Theobald, W.

    2014-11-15

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si He{sub α} line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 μm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

  11. Optimizing the hohlraum gas density for better symmetry control of indirect drive implosion experiments

    NASA Astrophysics Data System (ADS)

    Izumi, Nobuhiko; Hall, G. N.; Nagel, S. R.; Khan, S.; Rygg, R. R.; MacKinnon, A. J.; Ho, D. D.; Berzak Hopkins, L.; Jones, O. S.; Town, R. P. J.; Bradley, D. K.

    2014-10-01

    To achieve a spherically symmetric implosion, control of drive uniformity is essential. Both the ablation pressure and the mass ablation rate on the capsule surface should be made as uniform as possible for the duration of the drive. For an indirect drive implosion, the drive uniformity changes during the pulse because of: (1) the dynamic movement of the laser spots due to blow-off of the hohlraum wall, and (2) cross-beam energy transfer caused by laser-plasma interaction in the hohlraum. To tamp the wall blow-off, we use gas filled hohlraums. The cross-beam energy transfer can be controlled by applying a wave length separation between the cones of the laser beams. However, both of those dynamic effects are sensitive to the initial density of the hohlraum gas fill. To assess this, we performed implosion experiments with different hohlraum gas densities and tested the effect on drive asymmetry. The uniformity of the acceleration was measured by in-flight x-ray backlit imaging of the capsule. The uniformity of the core assembly was observed by imaging the self emission x-ray from the core. We will report on the experimental results and compare them to hydrodynamic simulations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-626372.

  12. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observables

    SciTech Connect

    Spears, Brian K. Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe

    2015-05-15

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.

  13. Neutron Production in Deuterium Gas-Puff Z-Pinch Implosions on Refurbished Z

    NASA Astrophysics Data System (ADS)

    Clark, R. W.; Velikovich, A. L.; Davis, J.; Giuliani, J. L.; Coverdale, C. A.; Flicker, D.

    2009-11-01

    Earlier experiments with deuterium gas puff implosions on Z [Coverdale et al., Phys. Plasmas 14, 022706 and 056309 (2007)] demonstrated reproducible production of high neutron yields, up to ˜3x10^13, a large part of which might be of thermonuclear origin. We report a scoping study for such experiments on refurbished Z which can implode deuterium gas-puff loads at high-current, longer pulse (˜250 ns) regime. Significantly higher thermal DD neutron yields are predicted for ZR. We discuss the relative roles of kinetic-to-thermal energy conversion and adiabatic compression in heating the central deuterium column to the fusion temperature. We quantify the effect on the thermal neutron yield produced by loading the outer shells of the multi-shell gas-puff with a heavier gas to improve matching of the implosion to the current pulse, by additional heating of the central jet area with a Z-Beamlet laser and by applying an axial magnetic field in order to stabilize the implosion from a large initial radius.

  14. Experimental measurement of Au M-band flux in indirectly-driven double-shell implosions

    SciTech Connect

    Robey, H F; Perry, T S; Park, H S; Amendt, P; Sorce, C M; Compton, S M; Campbell, K M; Knauer, J P

    2005-03-24

    Indirectly-driven double-shell implosions are being investigated as a possible noncryogenic path to ignition on the National Ignition Facility (NIF). In recent double-shell experiments, the inner shell trajectory was shown to exhibit a strong sensitivity to the temporal history of the M-band (2-5 keV) radiation emitted from the Au hohlraum wall. A large time-dependent discrepancy was observed between measurement and simulation of the x-ray flux in this range. In order to better characterize the radiation environment seen in these implosions, an experimental campaign was conducted on the Omega Laser. A number of diagnostics were used to measure both the temporal and spectral nature of the M-band flux. Results were obtained from an absolutely calibrated 12 channel filtered x-ray diode array (Dante) as well as two streaked crystal spectrometers and an absolutely calibrated time-integrated spectrometer (Henway). X-ray backlighting was also used to directly measure the effect of M-band radiation on the trajectory of the inner shell. The data from all diagnostics are shown to be in excellent agreement and provide a consistent picture of the M-band flux. These results are being used to constrain and improve the simulation of hohlraum-generated M-band radiation that will be necessary for the design of future double-shell implosions employing higher-Z inner shells.

  15. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2014-02-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  16. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    SciTech Connect

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Landen, O. L.; Edwards, M. J.; Hohenberger, M.; Boehly, T. R.; Nikroo, A.

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  17. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model.

    PubMed

    Buogo, Silvano; Cannelli, Giovanni B

    2002-06-01

    The growth, collapse, and rebound of a vapor bubble generated by an underwater spark is studied by means of high-speed cinematography, simultaneously acquiring the emitted acoustic signature. Video recordings show that the growth and collapse phases are nearly symmetrical during the first two or three cycles, the bubble shape being approximately spherical. After 2-3 cycles the bubble behavior changes from a collapsing/rebounding regime with sound-emitting implosions to a pulsating regime with no implosions. The motion of the bubble wall during the first collapses was found to be consistent with the Rayleigh model of a cavity in an incompressible liquid, with the inclusion of a vapor pressure term at constant temperature within each bubble cycle. An estimate of the pressure inside the bubble is obtained measuring the collapse time and maximum radius, and the amount of energy converted into acoustical energy upon each implosion is deduced. The resulting value of acoustic efficiency was found to be in agreement with measurements based on the emitted acoustic pulse. PMID:12083190

  18. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    NASA Astrophysics Data System (ADS)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin; Wu, Yuchi; Zhu, Bin; Peng, Xiaoshi; Xu, Tao; Wang, Feng; Zhang, Feng; Bi, Bi; Zhang, Bo; Zhang, Zhimeng; Shui, Min; He, Yingling; Yang, Zhiwen; Chen, Tao; Chen, Li; Chen, Ming; Yang, Yimeng; Yuan, Yongteng; Wang, Peng; Gu, Yuqiu; Zhang, Baohan

    2016-06-01

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  19. X-ray continuum as a measure of pressure and fuel-shell mix in compressed isobaric hydrogen implosion cores

    NASA Astrophysics Data System (ADS)

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.; Betti, R.; Nora, R.; Christopherson, A. R.; Golovkin, I. E.; MacFarlane, J. J.

    2015-02-01

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot "fuel-shell" mix mass can be inferred.

  20. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores

    SciTech Connect

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.; Betti, R.; Nora, R.; Christopherson, A. R.; Golovkin, I. E.; MacFarlane, J. J.

    2015-02-15

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.

  1. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    DOE PAGES

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; et al

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method describedmore » here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple

  2. Approximate models for the ion-kinetic regime in inertial-confinement-fusion capsule implosions

    SciTech Connect

    Hoffman, Nelson M.; Zimmerman, George B.; Molvig, Kim; Rinderknecht, Hans G.; Rosenberg, Michael J.; Albright, B. J.; Simakov, Andrei N.; Sio, Hong; Zylstra, Alex B.; Johnson, Maria Gatu; Séguin, Fredrick H.; Frenje, Johan A.; Li, C. K.; Petrasso, Richard D.; Higdon, David M.; Srinivasan, Gowri; Glebov, Vladimir Yu.; Stoeckl, Christian; Seka, Wolf; Sangster, T. Craig

    2015-05-19

    “Reduced” (i.e., simplified or approximate) ion-kinetic (RIK) models in radiation-hydrodynamic simulations permit a useful description of inertial-confinement-fusion (ICF) implosions where kinetic deviations from hydrodynamic behavior are important. For implosions in or near the kinetic regime (i.e., when ion mean free paths are comparable to the capsule size), simulations using a RIK model give a detailed picture of the time- and space-dependent structure of imploding capsules, allow an assessment of the relative importance of various kinetic processes during the implosion, enable explanations of past and current observations, and permit predictions of the results of future experiments. The RIK simulation method described here uses moment-based reduced kinetic models for transport of mass, momentum, and energy by long-mean-free-path ions, a model for the decrease of fusion reactivity owing to the associated modification of the ion distribution function, and a model of hydrodynamic turbulent mixing. The transport models are based on local gradient-diffusion approximations for the transport of moments of the ion distribution functions, with coefficients to impose flux limiting or account for transport modification. After calibration against a reference set of ICF implosions spanning the hydrodynamic-to-kinetic transition, the method has useful, quantifiable predictive ability over a broad range of capsule parameter space. Calibrated RIK simulations show that an important contributor to ion species separation in ICF capsule implosions is the preferential flux of longer-mean-free-path species out of the fuel and into the shell, leaving the fuel relatively enriched in species with shorter mean free paths. Also, the transport of ion thermal energy is enhanced in the kinetic regime, causing the fuel region to have a more uniform, lower ion temperature, extending over a larger volume, than implied by clean simulations. We expect that the success of our simple approach

  3. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

    SciTech Connect

    Aleksandrov, V. V.; Gasilov, V. A.; Grabovski, E. V.; Gritsuk, A. N. Laukhin, Ya. N.; Mitrofanov, K. N.; Oleinik, G. M.; Ol’khovskaya, O. G.; Sasorov, P. V.; Smirnov, V. P.; Frolov, I. N.; Shevel’ko, A. P.

    2014-12-15

    Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffraction grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup −3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the

  4. Realization of quasi-spherical implosion using pre-shaped prolate wire arrays with a compression foam target inside

    SciTech Connect

    Zhang, Yang; Ding, Ning; Xiao, Delong; Sun, Shunkai; Xue, Chuang; Shu, Xiaojian; Wang, Jianguo; Li, Zhenghong Xu, Rongkun; Chen, Dingyang; Ye, Fan; Chen, Faxin; Chen, Jinchuan; Li, Linbo; Zhou, Xiuwen

    2015-02-15

    Quasi-spherical (QS) implosion of wire arrays and its impact on the foam target have been studied on the 100 ns 1.5 MA Qiangguang-I facility, which suggests that a high quality impact between the QS implosion and foam target can be achieved by adjusting load's initial shape carefully to match the external magnetic pressure. Implosions of loads with H/d ∼ 1.2 were studied with a self-emission x-ray pinhole image system and a dark field schlieren system. The radially developed spike-like instabilities indicate the spherical convergence of plasma. The observed radiation on the foam target surface suggests satisfying implosion symmetry and wire-foam impact simultaneity. An average implosion speed of 10.5 × 10{sup 6 }cm/s was obtained with an optical streak image system. The derived peak kinetic energy density ∼2.1 kJ/cm is remarkably higher than cylindrical cases, which agree with the expectations.

  5. Hydrodynamic stability and Ti-tracer distribution in low-adiabat OMEGA direct-drive implosions

    NASA Astrophysics Data System (ADS)

    Joshi, Tirtha R.

    We discuss the hydrodynamic stability of low-adiabat OMEGA direct-drive implosions based on results obtained from simultaneous emission and absorption spectroscopy of a titanium tracer added to the target. The targets were deuterium filled, warm plastic shells of varying thicknesses and filling gas pressures with a submicron Ti-doped tracer layer initially located on the inner surface of the shell. The spectral features from the titanium tracer are observed during the deceleration and stagnation phases of the implosion, and recorded with a time integrated spectrometer (XRS1), streaked crystal spectrometer (SSCA) and three gated, multi-monochromatic X-ray imager (MMI) instruments fielded along quasi-orthogonal lines-of-sight. The time-integrated, streaked and gated data show simultaneous emission and absorption spectral features associated with titanium K-shell line transitions but only the MMI data provides spatially resolved information. The arrays of gated spectrally resolved images recorded with MMI were processed to obtain spatially resolved spectra characteristic of annular contour regions on the image. A multi-zone spectroscopic analysis of the annular spatially resolved spectra permits the extraction of plasma conditions in the core as well as the spatial distribution of tracer atoms. In turn, the titanium atom distribution provides direct evidence of tracer penetration into the core and thus of the hydrodynamic stability of the shell. The observations, timing and analysis indicate that during fuel burning the titanium atoms have migrated deep into the core and thus shell material mixing is likely to impact the rate of nuclear fusion reactions, i.e. burning rate, and the neutron yield of the implosion. We have found that the Ti atom number density decreases towards the center in early deceleration phase, but later in time the trend is just opposite, i.e., it increases towards the center of the implosion core. This is in part a consequence of the convergent

  6. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents.

    PubMed

    Yager-Elorriaga, D A; Steiner, A M; Patel, S G; Jordan, N M; Lau, Y Y; Gilgenbach, R M

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ∼600 kA with ∼200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines. PMID:26628134

  7. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    SciTech Connect

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As a result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  8. Diagnosing Inertial Confinement Fusion Implosions Using the D^3He Spectrum Line Width at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, A.; Rosenberg, M.; Sinenian, N.; Li, C.; Seguin, F.; Frenje, J.; Petrasso, R.; Rygg, R.; Hicks, D.; Friedrich, S.; Landen, O.; MacKinnon, A.; Bionta, R.; Kilkenny, J.; Nikroo, A.; Glebov, V.; Stoeckl, C.; Sangster, C.; McKenty, P.; Betti, R.; Olson, R.; Wilson, D.

    2010-11-01

    Wedge Range Filter (WRF) spectrometers are used to measure the proton spectrum due to the D+^3He -> p (14.7 MeV) + ^4He (3.6 MeV) reactions produced in implosions containing D and ^3He gas. The line width of the measured spectrum is due to the thermal Doppler broadening, instrumental broadening, and several capsule effects such as a finite source size and implosion asymmetries. Models for these broadening sources are presented. Using these models we calculate an ion temperature in OMEGA and NIF exploding pusher shots. This Doppler-derived temperature is compared to independent measurements. Alternatively we use this model to constrain the amplitude of high-mode ρR asymmetries in NIF indirect-drive CH shell implosions. This work was supported in part by the U.S. DoE, LLNL, LLE, FSC, and NLUF. A.Zylstra is supported by the DoE NNSA Stewardship Science Graduate Fellowship.

  9. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE PAGES

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  10. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    SciTech Connect

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-27

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75{+-}15 to 125{+-}20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7{+-}0.1 to 3.2{+-}0.2 keV and obtained a K-shell emission mass participation of up to 12%.

  11. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  12. Measuring spatial distributions of nuclear burn in ICF implosions at OMEGA and the NIF using proton emission imaging

    NASA Astrophysics Data System (ADS)

    Seguin, Fredrick; Rinderknecht, H. G.; Zylstra, A.; Sio, H.; Frenje, J.; Li, C. K.; Petrasso, R.; Rosenberg, M.; Marshall, F. J.; Sangster, T. C.; McKenty, P.; Craxton, S.; Rygg, J. R.; Le Pape, S.; Smalyuk, V.; Amendt, P. A.; Wilks, S. C.; MacKinnon, A.; Hoffman, N. M.

    2015-11-01

    Fusion reactions in ICF implosions of D3He-filled capsules produce 14.7-MeV D3He protons and 3-MeV DD protons. Spatial distributions of the D3He and DD reactions are studied with a penumbral imaging camera that utilizes a CR-39-based imaging detector to detect the protons. Up to three orthogonal cameras have been used simultaneously at OMEGA to study the 3-D structure of asymmetric implosions, and two orthogonal cameras have now been used to study an exploding-pusher implosion at the NIF. Recent data from OMEGA and from the NIF will be shown. This work was supported in part by NLUF, US DOE, and LLE.

  13. Effect of the Initial Load Parameters on the K-shell Output of Al Planar Wire Arrays Operating in the Microsecond Implosion Regime

    SciTech Connect

    Shishlov, A.; Chaikovsky, S.; Fedunin, A.; Fursov, F.; Kokshenev, V.; Kurmaev, N.; Labetsky, A.; Oreshkin, V.; Rousskikh, A.; Labetskaya, N.

    2009-01-21

    A set of microsecond implosion experiments was carried on the GIT-12 generator to study the radiative performance of Al planar wire arrays. The load parameters such as a wire diameter, a gap between the wires, the number of wires, and the total planar wire mass and width were varied during the experiments, however the implosion time and the peak implosion current were almost the same for all load configurations. This ensured equal energy deposition to the plasma due to kinetic mechanisms for all load configurations. Two implosion regimes with the implosion times of 1050 ns and 850 ns were investigated. The experimental data on the K-shell radiation yield and power at varying load parameters are presented.

  14. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  15. Shock-tuned cryogenic-deuterium-tritium implosion performance on Omegaa)

    NASA Astrophysics Data System (ADS)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.; Boehly, T. R.; Casey, D. T.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fletcher, K. A.; Frenje, J. A.; Glebov, Y. Yu.; Harding, D. R.; Hu, S. X.; Igumenschev, I. V.; Knauer, J. P.; Loucks, S. J.; Li, C. K.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Nilson, P. M.; Padalino, S. P.; Petrasso, R. D.; Radha, P. B.; Regan, S. P.; Seguin, F. H.; Seka, W.; Short, R. W.; Shvarts, D.; Skupsky, S.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Theobald, W.; Yaakobi, B.

    2010-05-01

    Cryogenic-deuterium-tritium (DT) target compression experiments with low-adiabat (α), multiple-shock drive pulses have been performed on the Omega Laser Facility [T. R. Boehly, D. L. Brown, R. S. Craxton et al., Opt. Commun. 133, 495 (1997)] to demonstrate hydrodynamic-equivalent ignition performance. The multiple-shock drive pulse facilitates experimental shock tuning using an established cone-in-shell target platform [T. R. Boehly, R. Betti, T. R. Boehly et al., Phys. Plasmas 16, 056301 (2009)]. These shock-tuned drive pulses have been used to implode cryogenic-DT targets with peak implosion velocities of 3×107 cm/s at peak drive intensities of 8×1014 W/cm2. During a recent series of α ˜2 implosions, one of the two necessary conditions for initiating a thermonuclear burn wave in a DT plasma was achieved: an areal density of approximately 300 mg/cm2 was inferred using the magnetic recoil spectrometer [J. A. Frenje, C. K. Li, F. H. Séguin et al., Phys. Plasmas 16, 042704 (2009)]. The other condition—a burn-averaged ion temperature ⟨Ti⟩n of 8-10 keV—cannot be achieved on Omega because of the limited laser energy; the kinetic energy of the imploding shell is insufficient to heat the plasma to these temperatures. A ⟨Ti⟩n of approximately 3.4 keV would be required to demonstrate ignition hydrodynamic equivalence [Betti et al., Phys. Plasmas17, 058102 (2010)]. The ⟨Ti⟩n reached during the recent series of α ˜2 implosions was approximately 2 keV, limited primarily by laser-drive and target nonuniformities. Work is underway to improve drive and target symmetry for future experiments.

  16. First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver

    NASA Astrophysics Data System (ADS)

    Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.

    2009-01-01

    Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series. The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA. With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length. At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.

  17. The art of implosions has impacted the success of three decontamination and decommissioning projects at Fernald

    SciTech Connect

    Borgman, T.D.

    1997-12-01

    The Department of Energy (DOE) at the Fernald Environmental Management Project (FEMP), near Cincinnati, Ohio, has successfully impacted the safety, cost and schedule goals of the Decontamination and Dismantling (D&D) Program by using the art of implosions. An implosion is the act of bringing a structure down in a well planned and directed manner using explosive materials. Three major structures in three separate projects were imploded using this well known commercial technology. Safety is, and will always be, the major consideration with each of the projects. As each project succeeded another, the work process used new and improved methods to lower the risk to the environment, provide a safer workplace by reducing the exposure of high risk work and reducing the spread of lead, asbestos and radioactive materials. The time frame for dismantlement of the steel structures was greatly improved, thus reducing the total project cost. The lessons learned were incorporated from one project to another, to continually improve the work process. A number of alternatives were considered for the removal of the structures, seven, four and three stories in height. The subcontractor and its demolition sub-tier contractor worked in a fixed price lump sum contract environment. While skeptical at first, the subcontractor realized the benefits of the technology, a win-win situation for all participants. The overall planning of each of the events was tied to the needs of the client (DOE), the stakeholders and the community surrounding the site, and the continuing progress at the Fernald site. The recording and application of several key lessons learned in the sequence of implosions, will be the key issues of interest in this paper. Each project offered interesting opportunities for contingency planning, coordination, safety culture adjustments, and high regard for the protection of surrounding structures.

  18. IMPLOSION OF CORONAL LOOPS DURING THE IMPULSIVE PHASE OF A SOLAR FLARE

    SciTech Connect

    Simões, P. J. A.; Fletcher, L.; Hudson, H. S.; Russell, A. J. B. E-mail: lyndsay.fletcher@glasgow.ac.uk E-mail: hhudson@ssl.berkeley.edu

    2013-11-10

    We study the relationship between implosive motions in a solar flare, and the energy redistribution in the form of oscillatory structures and particle acceleration. The flare SOL2012-03-09T03:53 (M6.4) shows clear evidence for an irreversible (stepwise) coronal implosion. Extreme-ultraviolet (EUV) images show at least four groups of coronal loops at different heights overlying the flaring core undergoing fast contraction during the impulsive phase of the flare. These contractions start around a minute after the flare onset, and the rate of contraction is closely associated with the intensity of the hard X-ray and microwave emissions. They also seem to have a close relationship with the dimming associated with the formation of the coronal mass ejection and a global EUV wave. Several studies now have detected contracting motions in the corona during solar flares that can be interpreted as the implosion necessary to release energy. Our results confirm this, and tighten the association with the flare impulsive phase. We add to the phenomenology by noting the presence of oscillatory variations revealed by Geostationary Operational Environmental Satellite soft X-rays (SXR) and spatially integrated EUV emission at 94 and 335 Å. We identify pulsations of ≈60 s in SXR and EUV data, which we interpret as persistent, semi-regular compressions of the flaring core region which modulate the plasma temperature and emission measure. The loop oscillations, observed over a large region, also allow us to provide rough estimates of the energy temporarily stored in the eigenmodes of the active-region structure as it approaches its new equilibrium.

  19. Modeling, measuring, and mitigating instability growth in liner implosions on Z

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle

    2015-11-01

    Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under

  20. First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver

    SciTech Connect

    Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.

    2009-01-21

    Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series.The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA.With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length.At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.

  1. Experimental measurement of Au M-band flux in indirectly driven double-shell implosions

    SciTech Connect

    Robey, H.F.; Perry, T.S.; Park, H.-S.; Amendt, P.; Sorce, C.M.; Compton, S.M.; Campbell, K.M.; Knauer, J.P.

    2005-07-15

    Indirectly driven double-shell implosions are being investigated as a possible noncryogenic path to ignition on the National Ignition Facility [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. In recent double-shell experiments, the inner shell trajectory was shown to exhibit a strong sensitivity to the temporal history of the M-band (2-5 keV) radiation emitted from the Au hohlraum wall. A large time-dependent discrepancy was observed between measurement and simulation of the x-ray flux in this range. In order to better characterize the radiation environment seen in these implosions, an experimental campaign was conducted on the Omega laser. A number of diagnostics were used to measure both the temporal and spectral nature of the M-band flux. Results were obtained from an absolutely calibrated 12-channel filtered x-ray diode array (Dante) as well as two streaked crystal spectrometers and an absolutely calibrated time-integrated spectrometer (Henway). X-ray backlighting was also used to directly measure the effect of M-band radiation on the trajectory of the inner shell. The data from all diagnostics are shown to be in excellent agreement and provide a consistent picture of the M-band flux. These results are being used to constrain and improve the simulation of hohlraum-generated M-band radiation that will be necessary for the design of future double-shell implosions employing higher-Z inner shells.

  2. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores

    SciTech Connect

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.; Betti, R.; Nora, R.; Christopherson, A. R.; Golovkin, I. E.; MacFarlane, J. J.

    2015-02-01

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus’kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion’s central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.

  3. Characteristics of implosion and radiation for aluminum planar wire array z-pinch at 1.5 MA

    SciTech Connect

    Wang Liangping; Wu Jian; Li Mo; Han Juanjuan; Guo Ning; Wu Gang; Qiu Aici

    2012-12-15

    Planar wire arrays Z pinches were carried out on Qiangguang generator (1.5 MA, 100 ns). Loads with varied row widths (6-24 mm) and wire numbers (10-34) were employed in the experiments. The implosion dynamics of planar wire arrays has been studied. Meanwhile, the changes of the implosion time, radiation yield and power with array mass, inter-wire gap, and array width were investigated. The images of a soft X-ray camera exhibit that the trailing mass, precursor column, and R-T instability exist during the implosion phase, and when m = 0 maybe accompanied with m = 1, instability will rapidly develop after stagnation. The implosion trajectories show that loads will implode by the snowplow mode and about 50% of total initial array mass will participate in the final implosion. The maximum total X-ray energy is 22 kJ with a power of 630 GW, while the maximum K-shell yield is 3.9 kJ with a power of 158 GW. Experiments with different planar wire arrays show that the value of m{sub P}D{sub 0}{sup 2} (the product of line mass and squared width) is the critical factor which affects the implosion time and the X-ray products of the wire arrays. The optimum value of m{sub P}D{sub 0}{sup 2} should be in the range of 200-400 {mu}gcm and the inter-wire gap should be less than 1 mm.

  4. Spectroscopic study of temperature and density spatial profiles and mix in implosion cores

    SciTech Connect

    Welser-Sherrill, L.; Mancini, R. C.; Koch, J. A.; Izumi, N.; Tommasini, R.; Haan, S. W.; Haynes, D. A.; Golovkin, I. E.; MacFarlane, J. J.; Delettrez, J. A.; Marshall, F. J.; Regan, S. P.; Smalyuk, V. A.

    2008-10-22

    New techniques of x-ray spectroscopy have been developed to extract the temperature and density spatial structure of implosion cores. Results from an emissivity analysis, which neglects optical depth effects, compare well with the independent results of an intensity analysis used in the low optical depth limit. The intensity analysis has also been applied in its full form, in which case density spatial profiles demonstrate significant opacity effects. The emissivity and intensity analyses were combined to infer the spatial profile of mixing between shell and fuel material. This experimentally-derived information on mix is compared with predictions from two standard theoretical mix models.

  5. Observation of a reflected shock in an indirectly driven spherical implosion at the national ignition facility.

    PubMed

    Le Pape, S; Divol, L; Berzak Hopkins, L; Mackinnon, A; Meezan, N B; Casey, D; Frenje, J; Herrmann, H; McNaney, J; Ma, T; Widmann, K; Pak, A; Grimm, G; Knauer, J; Petrasso, R; Zylstra, A; Rinderknecht, H; Rosenberg, M; Gatu-Johnson, M; Kilkenny, J D

    2014-06-01

    A 200  μm radius hot spot at more than 2 keV temperature, 1  g/cm^{3} density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux. PMID:24949774

  6. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions.

    PubMed

    Zylstra, A B; Frenje, J A; Séguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M Gatu; Casey, D T; Sinenian, N; Manuel, M J-E; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G W; Dewald, E; Döppner, T; Edwards, M J; Glenzer, S; Hicks, D G; Landen, O L; London, R; Mackinnon, A; Meezan, N; Prasad, R R; Ralph, J; Richardson, M; Rygg, J R; Sepke, S; Weber, S; Zacharias, R; Moses, E; Kilkenny, J; Nikroo, A; Sangster, T C; Glebov, V; Stoeckl, C; Olson, R; Leeper, R J; Kline, J; Kyrala, G; Wilson, D

    2012-10-01

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  7. Extremely high-pressure generation and compression with laser implosion plasmas

    SciTech Connect

    Shigemori, K.; Hironaka, Y.; Nagatomo, H.; Fujioka, S.; Azechi, H.; Sunahara, A.; Kadono, T.; Shimizu, K.

    2013-05-06

    We have tested a scheme for using laser implosion plasmas to generate pressures in the gigabar (100 TPa) regime. Cone-in-shell targets employed in fast ignition of inertial confinement fusion were irradiated to create a high-pressure source for compression of materials. The imploded plasmas pushed a foil embedded on the tip of a cone. The pressure was estimated from the shock velocity into the material; the shock velocity was obtained from an optical measurement. The measured shock velocity of the foil was above 100 km/s, corresponding to a pressure greater than 1 Gbar.

  8. A 3-D Model of Hot-Spot Formation in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Gong, X.; Goncharov, V. N.; Igumenshchev, I. V.

    2015-11-01

    A 3-D model describing the formation of a hot-spot in inertial confinement fusion (ICF) implosions is presented. The model includes thermal conduction and mass ablation effects in a 3-D distorted hot spot using an approach developed by Sanz. Evolution of the nonuniformity growth is calculated based on a sharp boundary model. The results of the model will be compared against 2-D DRACO and 3-D hydrodynamic code calculations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Gas-puff liner implosion in the configuration with helical current return rods

    SciTech Connect

    Sorokin, S. A.

    2013-02-15

    Results of experiments with double-shell gas-puff liners carried out on a high-current MIG generator (2 MA, 80 ns) are presented. To stabilize the process of liner implosion and increase the efficiency of energy transfer from the generator to the liner plasma, a current return in the form of a multifilar helix was used. The effect of the configuration of the current return on the parameters of the generated pulses of argon and neon K-shell radiation (with photon energies of 3-5 and 0.9-1.5 keV, respectively) and the neutron yield from a deuterium liner were studied.

  10. Hybrid simulations of Z-Pinches in support of wire array implosion experiments at NTF.

    SciTech Connect

    Sotnikov, Vladimir Isaakovich; Oliver, Bryan Velten; Ivanov, Vladimir V.; LePell, Paul David; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Travnicek, P.; Deeney, Christopher; Hellinger, P.; Jones, B.; Leboeuf, J. N.; Cowan, Thomas E.; Safronova, Alla S.

    2005-07-01

    Three-dimensional hybrid simulation of a plasma current-carrying column reveal two different regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to the appearance of large-scale axial perturbations and eventually to bending of the plasma column. In the second regime, with a four-times-larger Hall parameter, small-scale perturbations dominate and no bending of the plasma column is observed. Simulation results are compared with laser probing experimental data obtained during wire array implosions on the Zebra pulse power generator at the Nevada Terawatt Facility.

  11. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions

    SciTech Connect

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Hoffman, N.; Zylstra, A. B.; Rosenberg, M. J.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; Betti, R.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Seka, W.; Stoeckl, C.; Kagan, G.; Molvig, K.; Bellei, C.; Amendt, P.; Landen, O.; Rygg, J. R.; Smalyuk, V. A.; Wilks, S.; Greenwood, A.; Nikroo, A.

    2014-05-19

    Shock-driven implosions of thin-shell capsules, or ''exploding pushers,'' generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D3He gas fills ranging from pure deuterium to pure 3He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important in the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations

  12. Modifying Wire Array Z-pinch Ablation Structure and Implosion Dynamics Using Coiled Arrays

    SciTech Connect

    Hall, Gareth N.; Bland, Simon N.; Lebedev, Sergey V.; Chittenden, Jeremy P.; Palmer, James B. A.; Suzuki-Vidal, Francisco A.; Swadling, George F.; Niasse, Nicolas; Knapp, P. F.; Blesener, I. C.; McBride, R. D.; Chalenski, D. A.; Bell, K. S.; Greenly, J. B.; Blanchard, T.; Wilhelm, H.; Hammer, D. A.; Kusse, B. R.; Bott, Simon C.

    2009-01-21

    Coiled arrays, a cylindrical array in which each wire is formed into a helix, suppress the modulation of ablation at the fundamental wavelength. Outside the vicinity of the wire cores, ablation flow from coiled arrays is modulated at the coil wavelength and has a 2-stream structure in the r,{theta} plane. Within the vicinity of the helical wires, ablation is concentrated at positions with the greatest azimuthal displacement and plasma is axially transported from these positions such that the streams become aligned with sections of the coil furthest from the array axis. The GORGON MHD code accurately reproduces this observed ablation structure, which can be understood in terms of JxB forces that result from the interaction of the global magnetic field with a helical current path as well as additional current paths suggested by the simulations. With this ability to control where ablation streamers occur, large wavelength coils were constructed such that the breaks that form in the wires had sufficient axial separation to prevent perturbations in the implosion sheath from merging. This produces a new mode of implosion in which the global instability can be controlled and perturbations correlated between all wires in an array. For large wavelength 8-wire coiled arrays, this produced a dramatic increase in x-ray power, equalling that of a 32-wire straight array. These experiments were carried out on the MAGPIE generator (1 MA, 240 ns) at Imperial College, and the COBRA generator (1 MA, 100 ns) at Cornell University.

  13. Nuclear measurements of fuel-shell mix in inertial confinement fusion implosions at OMEGAa)

    NASA Astrophysics Data System (ADS)

    Rygg, J. R.; Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Delettrez, J. A.; Glebov, V. Yu.; Goncharov, V. N.; Meyerhofer, D. D.; Radha, P. B.; Regan, S. P.; Sangster, T. C.

    2007-05-01

    Direct drive spherical implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have shown that increased capsule convergence results in increased susceptibility to fuel-shell mix. Mix results from saturation of the Rayleigh-Taylor instability, leading to small-scale, turbulent eddies and atomic-level mixing of the high-density compressed shell with hot, low-density fuel from the core. To sensitively probe the extent of mix, nuclear yields were measured from implosions of capsules filled with pure He3. The plastic capsule shell contains a deuterated plastic (CD) layer either on the inner surface or offset from the inner surface by 1μm. Mixing of D from the shell with hot He3 in the core is necessary to produce 14.7MeV DHe3 protons in such capsules. DHe3-proton spectral measurements have been used to constrain the amount of mix at shock time, to demonstrate that some of the fuel mixes with the offset CD layer, and that capsules with a higher initial fill density or thicker shell are less susceptible to the effects of mix.

  14. Nuclear Diagnostics of Implosion and Fusion Burn at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.

    2005-04-01

    The National Ignition Facility will be the most revolutionary scientific facility of the early 21st century. The ability to drive inertial confinement fusion implosions with over 1 MegaJoule of laser energy will lead to tremendous advances in the study of fusion burn, hydrodynamic mix, and other research areas. Diagnostics of the fusion burn will be central to these studies. Los Alamos is leading efforts to develop three main fusion product diagnostic systems for the NIF: a Neutron Imaging System using pinhole-apertures; a burn or reaction history diagnostic that measures the DT fusion gammas using a Gas Cerenkov Detector; and a set of Neutron Scintillators to measure relative fusion yield and ion temperature, possibly with time dependence. All these systems are presently under development using implosions at the OMEGA Laser at the University of Rochester. An overview of the requirements and systems proposed for NIF will be presented. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W- 7405-ENG-36.

  15. Real viscosity effects in inertial confinement fusion target deuterium–tritium micro-implosions

    SciTech Connect

    Mason, R. J. Kirkpatrick, R. C.; Faehl, R. J.

    2014-02-15

    We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ∼40 μm diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 10{sup 2} or 10{sup 3} g/cm{sup 3} densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20 keV) central temperature but severely reduced central density (<200 g/cm{sup 3}), while the elliptical shells evidence p = 2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.

  16. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    SciTech Connect

    Vold, E. L.; Molvig, K.; Joglekar, A. S.; Ortega, M. I.; Moll, R.; Fenn, D.

    2015-11-15

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  17. Measurements of the Fuel Distribution in Cryogenic D-T Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Forrest, Chad J.

    In direct-drive inertial confinement fusion (ICF) experiments, a capsule filled with a mixture of deuterium and tritium ice at cryogenic temperature is irradiated by a symmetric arrangements of laser beams to compress and heat the fuel to conditions required for thermonuclear reactions. The areal density (rhoR) of the compressed fuel assembly in a cryogenic implosion is one of the fundamental parameters required to assess the target performance. The rhoR measurements presented here are achieved by measuring the complex neutron energy spectrum resulting from primary and secondary nuclear reactions within the compressed fuel assembly. Advances in neutron time-of-flight diagnostics have made it possible to infer the neutron fraction that elastically scatters off the tritons in the compressed fuel in the energy range from 3.5 -5.5 MeV which is directly proportional to the areal density. In these OMEGA cryogenic campaigns from January 2013 to August 2014, measured low-mode modulations show good agreement with Monte Carlo simulations. Deviations up to 40% in the cold-fuel distribution from spherical symmetry have been inferred from the scattered neutron spectrum. Understanding the mechanism for anisotropic areal density measurements is crucial to improve hydrodynamically equivalent ignition-relevant direct-drive cryogenic implosions on OMEGA.

  18. X-ray driven implosions at ignition relevant velocities on the National Ignition Facility

    SciTech Connect

    Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.; Dewald, E. L.; Tommasini, R.; Le Pape, S.; Döppner, T.; Ma, T.; Farley, D. R.; Kalantar, D. H.; Di Nicola, P.; Callahan, D. A.; Robey, H. F.; Thomas, C. A.; Prisbrey, S. T.; Jones, O. S.; Milovich, J. L.; Clark, D. S.; Eder, D. C.; Schneider, M. B.; and others

    2013-05-15

    Backlit convergent ablator experiments on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, backlit radiography provides data used by the National Ignition Campaign to measure time-dependent properties of the capsule ablator including its center of mass radius, velocity, and unablated mass. Previously, Callahan [D. A. Callahan et al., Phys. Plasmas 19, 056305 (2012)] and Hicks [D. H. Hicks et al., Phys. Plasmas 19, 122702 (2012)] reported backlit convergent ablator experiments demonstrating velocities approaching those required for ignition. This paper focuses on implosion performance data in the “rocket curve” plane, velocity vs. ablator mass. These rocket curve data, along with supporting numerical simulations, show that the nominal 195 μm-thick ignition capsule would reach the ignition velocity goal V = 370 km/s with low ablator mass remaining–below the goal of M = 0.25 mg. This finding led to experiments with thicker capsule ablators. A recent symmetry capsule experiment with a 20 μm thicker capsule driven by 520 TW, 1.86 MJ laser pulse (along with a companion backlit convergent ablator experiment) appears to have demonstrated V≥350 km/s with ablator mass remaining above the ignition goal.

  19. Solid liner implosions on Z for producing multi-megabar, shockless compressions

    SciTech Connect

    Martin, M. R.; Lemke, R. W.; McBride, R. D.; Davis, J. P.; Dolan, D. H.; Knudson, M. D.; Sinars, D. B.; Smith, I. C.; Savage, M.; Stygar, W. A.; Flicker, D. G.; Herrmann, M. C.; Cochrane, K. R.; Killebrew, K.

    2012-05-15

    Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50kms{sup -1}. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries.

  20. Diagnosing Cross-Beam Energy Transfer Using Beamlets of Unabsorbed Light from Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Edgell, D. H.; Follett, R. K.; Goncharov, V. N.; Igumenshchev, I. V.; Katz, J.; Myatt, J. F.; Seka, W.; Froula, D. H.

    2015-11-01

    A new diagnostic is now being fielded to record the unabsorbed laser light from implosions on OMEGA. Unabsorbed light from each OMEGA beam is imaged as a distinct ``spot'' in time-integrated images. Each spot is, in essence, the end point of a beamlet of light that originates from a specific region of a beam profile and follows a path determined by refraction. The intensity of light in the beamlet varies along that path because of absorption and cross-beam energy transfer (CBET) with other beamlets. This diagnostic allows for the detailed investigation of the effects of CBET on specific locations of the beam profile. A pinhole can be used to isolate specific spots, allowing the time-resolved spectrum of the beamlet to be measured. A fully 3-D CBET hydrodynamics code postprocessor is used to model the intensity and wavelength of each beamlet as it traverses the coronal plasma to the diagnostic. The model predicts that if a single beam in a symmetric implosion is turned off, the recorded intensity of nearby spots will decrease by ~ 15% as a result of loss of CBET from the dropped beam. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions

    DOE PAGES

    Rinderknecht, H. G.; Sio, H.; Li, C. K.; Hoffman, N.; Zylstra, A. B.; Rosenberg, M. J.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Petrasso, R. D.; et al

    2014-05-19

    Shock-driven implosions of thin-shell capsules, or ''exploding pushers,'' generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D3He gas fills ranging from pure deuterium to pure 3He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important inmore » the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations« less

  2. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    NASA Astrophysics Data System (ADS)

    Vold, E. L.; Joglekar, A. S.; Ortega, M. I.; Moll, R.; Fenn, D.; Molvig, K.

    2015-11-01

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion (ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. We have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasma viscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasma viscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasma viscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Plasma viscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  3. The effects of implosives and prenasalized stops on pitch in Shona

    NASA Astrophysics Data System (ADS)

    Chavez-Peon, Mario E.

    2005-04-01

    It is well known that F0 at vowel onset can be influenced by a preceding consonant. That influence varies significantly across languages and consonant types, and may function as a perceptual signal to consonant manner. It has further been suggested that tone languages may behave differently from non-tone languages in this respect, with a shorter duration of consonantal perturbation [Hombert, Studies in African Linguistics, 1977]. Previous studies include a limited range of consonant types, and too few tone languages to test Hombert's proposal. This study presents the results of an acoustical investigation of the effects of implosives and prenasalized stops on the F0 of a following vowel in Shona, a tone language. It is found that implosives have a similar raising effect on F0 at vowel onset than that of voiceless (aspirated) stops, contrary to expectations based on previous studies [Wright and Shryock, Journal of the Phonetic Association, 1993]. It is also found that prenasalized consonants behave as nasals, having no effect on the F0 of the following vowel, again contrary to expectation [cf. Trithart, Studies in Bantu Tonology, 1976; and Hombert, Studies in Bantu Tonology, 1976]. Finally, duration results do not support Hombert's position regarding tone languages.

  4. Studies of multi-ion-fluid yield anomaly in shock-driven implosions

    NASA Astrophysics Data System (ADS)

    Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Zylstra, A. B.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Petrasso, R. D.; Amendt, P. A.; Bellei, C.; Wilks, S. C.; Zimmerman, G.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Marshall, F. J.; Seka, W.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Goncharov, V. N.; Meyerhofer, D. D.

    2014-10-01

    A. NIKROO, GA - Anomalously reduced yields relative to hydrodynamically calculated values have been observed for mixtures of D:3He compared to pure D2 gas-filled implosions in a series of shock-driven implosions at OMEGA. An extensive suite of measurements including temporal and spatial measurements of both the DD- and D3He-fusion reactions were obtained to identify the origin and physics behind this anomalous yield reduction. Measured spectral linewidths of fusion products suggest that the D ions are not thermalized to 3He during the burn, contributing to the reduced yield. The hypothesis that ion-species separation due to diffusive processes contributes to the observed yield reduction is explored using hydrodynamic simulations incorporating ion diffusion. Recent observations by Rosenberg et al. of a yield reduction with increased ion-ion mean free path do not explain the observed anomalous yield trend. Future work that will directly probe species separation with high-precision relative fusion reaction rate measurements between DD-neutrons and D3He-protons using the DualPTD instrument is discussed. This work was supported in part by the U.S. DOE, NLUF, LLE, and LLNL.

  5. X-ray drive of beryllium capsule implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wilson, D. C.; Yi, S. A.; Simakov, A. N.; Kline, J. L.; Kyrala, G. A.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Olson, R. E.; Strozzi, D. J.; Celliers, P. M.; Schneider, M. B.; MacPhee, A. G.; Zylstra, A. B.; Callahan, D. A.; Hurricane, O. A.; Milovich, J. L.; Hinkel, D. E.; Rygg, J. R.; Rinderknecht, H. G.; Sio, H.; Perry, T. S.; Batha, S.

    2016-05-01

    National Ignition Facility experiments with beryllium capsules have followed a path begun with “high-foot” plastic capsule implosions. Three shock timing keyhole targets, one symmetry capsule, a streaked backlit capsule, and a 2D backlit capsule were fielded before the DT layered shot. After backscatter subtraction, laser drive degradation is needed to match observed X-ray drives. VISAR measurements determined drive degradation for the picket, trough, and second pulse. Time dependence of the total Dante flux reflects degradation of the of the third laser pulse. The same drive degradation that matches Dante data for three beryllium shots matches Dante and bangtimes for plastic shots N130501 and N130812. In the picket of both Be and CH hohlraums, calculations over-estimate the x-ray flux > 1.8 keV by ∼100X, while calculating the total flux correctly. In beryllium calculations these X-rays cause an early expansion of the beryllium/fuel interface at ∼3 km/s. VISAR measurements gave only ∼0.3 km/s. The X-ray drive on the Be DT capsule was further degraded by an unplanned decrease of 9% in the total picket flux. This small change caused the fuel adiabat to rise from 1.8 to 2.3. The first NIF beryllium DT implosion achieved 29% of calculated yield, compared to CH capsules with 68% and 21%.

  6. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions

    DOE PAGES

    Hu, S. X.; Collins, L. A.; Goncharov, V. N.; Kress, J. D.; McCrory, R. L.; Skupsky, S.

    2015-10-14

    Obtaining an accurate equation of state (EOS) of polystyrene (CH) is crucial to reliably design inertial confinement fusion (ICF) capsules using CH/CH-based ablators. Thus, with first-principles calculations, we have investigated the extended EOS of CH over a wide range of plasma conditions (ρ = 0.1 to 100 g/cm3 and T = 1,000 to 4,000,000 K). When compared with the widely used SESAME-EOS table, the first-principles equation of state (FPEOS) of CH has shown significant differences in the low-temperature regime, in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic target implosionsmore » on OMEGA using the FPEOS table of CH have predicted ~5% reduction in implosion velocity and ~30% decrease in neutron yield in comparison with the usual SESAME simulations. This is attributed to the ~10% lower mass ablation rate of CH predicted by FPEOS. Simulations using CH-FPEOS show better agreement with measurements of Hugoniot temperature and scattered lights from ICF implosions.« less

  7. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., "Status on the SPHINX machine based on the 1microsecond LTD technology"] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140mm and maximum current from 3.5to5MA. 700to800ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3TW radial total power, 100-300kJ total yield, and 20-30kJ energy above 1keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ˜10kA and 50μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  8. Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility

    SciTech Connect

    Kritcher, A. L.; Town, R.; Bradley, D.; Clark, D.; Spears, B.; Jones, O.; Haan, S.; Springer, P. T.; Lindl, J.; Callahan, D.; Edwards, M. J.; Landen, O. L.; Scott, R. H. H.

    2014-04-15

    We investigate yield degradation due to applied low mode P2 and P4 asymmetries in layered inertial confinement fusion implosions. This study has been performed with a large database of >600 2D simulations. We show that low mode radiation induced drive asymmetries can result in significant deviation between the core hot spot shape and the fuel ρR shape at peak compression. In addition, we show that significant residual kinetic energy at peak compression can be induced by these low mode asymmetries. We have developed a metric, which is a function of the hot spot shape, fuel ρR shape, and residual kinetic energy at peak compression, that is well correlated to yield degradation due to low mode shape perturbations. It is shown that the ρR shape and residual kinetic energy cannot, in general, be recovered by inducing counter asymmetries to make the hot core emission symmetric. In addition, we show that the yield degradation due to low mode asymmetries is well correlated to measurements of time dependent shape throughout the entire implosion, including early time shock symmetry and inflight fuel symmetry.

  9. New tuning method of the low-mode asymmetry for ignition capsule implosions

    SciTech Connect

    Gu, Jianfa Dai, Zhensheng; Zou, Shiyang; Song, Peng; Ye, Wenhua; Zheng, Wudi; Gu, Peijun

    2015-12-15

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry; while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries.

  10. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    DOE PAGES

    Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Dewald, E.; Doppner, T.; et al

    2013-05-20

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less

  11. Cryogenic Implosion Performance Using High-Purity Deuterium-Tritium Fuel

    NASA Astrophysics Data System (ADS)

    Sangster, T. C.; Goncharov, V. N.; Radha, P. B.; Earley, R.; Epstein, R.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McKenty, P. W.; Shmayda, W. T.; Shoup, M. J., III; Michel, D. T.; Stoeckl, C.; Seka, W.; Frenje, J. A.; Gatu Johnson, M.

    2014-10-01

    Demonstrating hydrodynamic equivalence between symmetric implosions on OMEGA and National Ignition Facility ignition designs will require a number of facility enhancements that include dynamic bandwidth reduction, a set of higher-order super-Gaussian phase plates, high-spatial-resolution gated-core imaging, high-bandwidth neutron burnwidth measurements, improved power balance, and contaminant-free deuterium-tritium (DT) fuel. The historic DT fuel supply was contaminated with ~6 atm% of 1H, leading to significant fractionation of the fuel during the layering process (the triple points of H:D and H:T are significantly colder than DD, DT, and TT). The fractionation leads to a drop in the potential yield because the D and T number densities are lower in the void than they would be with a pure-DT mixture). An isotope separation system has been developed to remove the 1H from the DT fuel supply. This talk will discuss the first results with the purified fuel, conclusions from recent implosions to test cross-beam energy transfer mitigation, and the status of the remaining facility enhancements. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Implosion of indirect-drive fast ignition targets with CH coated reentrant cone

    NASA Astrophysics Data System (ADS)

    Zhou, Weimin; Shan, Lianqiang; Gu, Yuqiu; Zhang, Baohan; Fast Ignition Team

    2014-10-01

    Compared with central ignition of laser fusion, fast ignition separates compression and ignition thus it can relax the requirements on the implosion symmetry and the driven energy. The implosion of indirect-drive fast ignition targets with CH coated reentrant cone was experimentally researched on SHENGUANG (SG) II laser facility. The small scale cone-in-shell target fast ignition was pre-compressed by the SG II eight 260 J/1 ns/3 ω laser beams indirectly since beam smoothing was not available currently. The maximum density of the compressed cone-in-shell target 1.37 ns after the lasers' irradiation on the inside wall of hohlraum is about 8.7 g/cm3, and the areal density is close to 8.9 mg/cm2, which are well consistent with the simulation results with two-dimensional radiation hydrodynamic code. To minimize the mixing of the compressed fuel and high-Z vapor produced by the M-line emission from the gold holhraum, a 3 μm CH foil was coated on the full outer surface of the cone and guiding wire. Experimental results and simulation results also demonstrated the coated CH foil could minimize the mixing effectively. By the appropriate design, target can remain robust before the maximum compression, that is, the time while the hot electrons produced by ignition laser pulse deposit energy in the compressed fuel.

  13. Progress towards the development and testing of source reconstruction methods for neutron imaging of ICF implosions

    SciTech Connect

    Loomis, Eric; Grim, Gary; Wilde, Carl; Wilke, Mark; Wilson, Doug; Morgan, George; Tregillis, Ian; Clark, David; Finch, Joshua; Fittinghoff, D; Bower, D

    2010-01-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility (NIF) is an important and difficult task for the detailed understanding or high neutron yield inertial confinement fusion (ICF) implosions. These methods, once developed, must provide accurate images of the hot and cold fuel so that information about the implosion, such as symmetry and areal density, can be extracted. We are currently considering multiple analysis pathways for obtaining this source distribution of neutrons given a measured pinhole image with a scintillator and camera system. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations [E. Loomis et al. IFSA 2009]. We are currently striving to apply the technique to real data by applying a series of realistic effects that will be present for experimental images. These include various sources of noise, misalignment uncertainties at both the source and image planes, as well as scintillator and camera blurring. Some tests on the quality of image reconstructions have also been performed based on point resolution and Legendre mode improvement of recorded images. So far, the method has proven sufficient to overcome most of these experimental effects with continued devlopment.

  14. Diagnosis of pusher-fuel mix in spherical implosions using x-ray spectroscopy (invited)

    NASA Astrophysics Data System (ADS)

    Keane, C. J.; Cook, R. C.; Dittrich, T. R.; Hammel, B. A.; Levedahl, W. K.; Landen, O. L.; Langer, S.; Munro, D. H.; Scott, H. A.

    1995-01-01

    Of primary concern in next generation inertial confinement fusion (ICF) implosion experiments is Rayleigh-Taylor (RT) instability of the pusher-fuel interface occurring upon acceleration and deceleration of the pusher. This results in mixing of hot fuel with cold pusher material. One method of diagnosing mix in this case is to place spectroscopic dopants both in the capsule fuel region and the innermost region of the capsule wall adjacent to the fuel. As the degree of pusher/fuel mix is increased (typically through placement of controlled perturbations on the outer surface of the capsule) the pusher dopant x-ray emission increases relative to that of the fuel dopant. Experiments of this type using indirectly driven implosions have been carried out on Nova. In this paper we describe some of the important physics issues underlying spectral line formation in these targets and discuss how they are manifested in the modeling and interpretation of experimental data. The importance of radiative transfer as well as high density plasma phenomena such as continuum lowering and Stark broadening is demonstrated. We provide an overview of recent Nova hydrodynamic instability experiments and discuss how the level of instability growth implicit in a given capsule design impacts the diagnosis of mix through x-ray spectroscopy.

  15. Radiation-Hydromagnetic Models of a Z-Pinch Implosion with an Axial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Clark, R. W.; Giuliani, J. L.; Terry, R.; Davis, J.; Velikovich, A. L.

    1997-11-01

    Experimental results on a 1MA pulser suggest that axial magnetic fields can stabilize z-pinch implosions and enhance the compression ratio(S. Sorokin and S. Chaikovsky, Dense Z-Pinches, AIP Conf. Proc. 299, p.83 (1993).). The present theoretical work calculates the effects of an axial magnetic field on the plasma and field profiles in an imploding z-pinch. The initial mass configuration is an annular shell of krypton. The 1-D simulation model includes: resistive diffusion (skin effect) for both the azimuthal and axial fields, ionization dynamics, and non-LTE radiation transport. Unlike the constant pulser current of self-similar models for the screw-pinch, a transmission line is used to model the circuit of a realistic ~10MA pulser. The implosion dynamics resulting from an axial field generated by a twisted return current cage will be compared with results due to an initial field from external Helmholtz coils. The dependence of the radiative performance on compression ratio, which in turn is a function of inital field strength or cage twist, will be discussed.

  16. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    SciTech Connect

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-15

    The Sphinx machine [F. Lassalle et al., 'Status on the SPHINX machine based on the 1microsecond LTD technology'] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140 mm and maximum current from 3.5 to 5 MA. 700 to 800 ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3 TW radial total power, 100-300 kJ total yield, and 20-30 kJ energy above 1 keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima {approx}10 kA and 50 {mu}s. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse.

  17. A Kirkpatrick-Baez Microscope for Core Implosion Imaging at NIF

    NASA Astrophysics Data System (ADS)

    Pickworth, Louisa; Bradley, David; Pardini, Tommaso; Smalyuk, Vladimir; Izumi, Nobuhiko; Pivovaroff, Michael; Vogel, Julia; Walton, Christopher; Mirkarimi, Paul; Bell, Perry; Decker, Todd; McCarville, Thomas; Ayers, Marion; Kilkenny, Joseph

    2013-10-01

    ICF experiments have typical core diameters raging from 50 μ m, in layered implosions, to 100 μ m in SymCaps. The emission spectrum is peaked between 8 and 10 keV. Current X-ray imaging at NIF uses time resolved pinhole cameras with 10-20 μ m pinholes that limit resolution and throughput to the detector. Selection of observed photon energy requires filtering that further reduces transmission. Low resolution, in combination with poor signal to noise ratio, limits the observable features during the later stages of capsule implosion. Using grazing incidence mirrors in a Kirkpatrick-Baez (KB) configuration, a focusing x-ray microscope is in design for NIF. The system will have x12 magnification, detector limited resolution and x10 higher throughput in comparison to pinhole systems. A KB microscope for imaging ICF experiments will be described, utilizing multilayer mirrors to enhance reflectivity for the core emission. Optimization of the multilayer coating allows observation of extended sources and high reflectivity in a selected energy band > 0 . 2 keV. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-640864.

  18. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    DOE PAGES

    Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; Moll, Ryan; Fenn, Daniel; Molvig, Kim

    2015-11-20

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity andmore » to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.« less

  19. Plasma viscosity with mass transport in spherical inertial confinement fusion implosion simulations

    SciTech Connect

    Vold, Erik Lehman; Joglekar, Archis S.; Ortega, Mario I.; Moll, Ryan; Fenn, Daniel; Molvig, Kim

    2015-11-20

    The effects of viscosity and small-scale atomic-level mixing on plasmas in inertial confinement fusion(ICF) currently represent challenges in ICF research. Many current ICF hydrodynamic codes ignore the effects of viscosity though recent research indicates viscosity and mixing by classical transport processes may have a substantial impact on implosion dynamics. In this paper, we have implemented a Lagrangian hydrodynamic code in one-dimensional spherical geometry with plasmaviscosity and mass transport and including a three temperature model for ions, electrons, and radiation treated in a gray radiation diffusion approximation. The code is used to study ICF implosion differences with and without plasmaviscosity and to determine the impacts of viscosity on temperature histories and neutron yield. It was found that plasmaviscosity has substantial impacts on ICF shock dynamics characterized by shock burn timing, maximum burn temperatures, convergence ratio, and time history of neutron production rates. Finally, plasmaviscosity reduces the need for artificial viscosity to maintain numerical stability in the Lagrangian formulation and also modifies the flux-limiting needed for electron thermal conduction.

  20. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility

    SciTech Connect

    Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Dewald, E.; Doppner, T.; Edwards, M. J.; Glenn, S.; Hicks, D.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Lindl, J.; Landen, O. L.; LePape, S.; Ma, T.; MacPhee, A.; MacGowan, B. J.; Mackinnon, A. J.; Masse, L.; Moody, J. D.; Moses, E. I.; Olson, R. E.; Ralph, J. E.; Park, H. -S.; Remmington, B. A.; Ross, J. S.; Tommasini, R.; Town, R. P. J.; Smalyuk, V.; Glenzer, S. H.; Hsing, W. W.; Robey, H. F.; Grim, G. P.; Frenje, J. A.; Casey, D. T.; Johnson, M. G.

    2013-05-20

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.

  1. Implosion characteristics and applications of combined tungsten-aluminum Z-pinch planar arrays

    NASA Astrophysics Data System (ADS)

    Osborne, G. C.; Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Weller, M. E.; Shrestha, I.; Williamson, K. M.; Shlyaptseva, V. V.

    2013-12-01

    An exploration of the implosion properties and X-ray radiation pulses from tungsten-based planar wire array Z-pinch experiments is presented, with an emphasis on loads mixed with aluminum. These experiments were carried out on Zebra, the 1.0 MA pulse power generator at the Nevada Terawatt Facility. A suite of diagnostics was used to study these plasmas, including X-ray and EUV Si diodes, optical imaging, laser shadowgraphy, and time-gated and time-integrated X-ray pinhole imagers and spectrometers. Specifically, loads with relatively large inter-wire gaps where tungsten is placed in the center of a planar configuration composed primarily of aluminum showed unusual characteristics. These loads are shown to generate a "bubbling" effect in which plasma from the ablation of outer aluminum wires is temporarily hindered from converging at the center of the array where the tungsten wire is located. Reproduction of these experiments with variations to load geometry, materials, and mass distribution are also presented and discussed in an attempt to better understand the phenomenon. In addition, a theoretical model has also been applied to better understand the dynamics of the implosions of these loads. Applications of this effect to radiation pulse shaping, particularly with multi-planar arrays, are also discussed.

  2. Inner-shell radiation from Wire Array Implosions on the Zebra Generator

    NASA Astrophysics Data System (ADS)

    Ouart, Nicholas; Giuliani, John; Dasgupta, Arati; Safronova, Alla; Kantsyrev, Victor; Esaulov, Andrey; Shrestha, Ishor; Weller, Michael; Shlyaptseva, Veronica; Osborne, Glenn; Stafford, Austin; Keim, Steve; Apruzese, John; Clark, Robert

    2013-10-01

    Implosions of wire arrays on Zebra have produced inner-shell K α and K β transitions. These K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiation was captured using two time-gated and two axially resolved time-integrated spectrometers from implosions of brass and molybdenum wire arrays. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function. The electron beam was measured using a Faraday cup. The diagnostic suite also included time-integrated and time-gated pinhole imaging, various x-ray diodes, a bolometer, and laser shadowgraphy. A multi-zone non-LTE pinch model with radiation transport is used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. L-shell diagnostic analysis will be presented using contours of line ratios and powers. Work supported by DOE/NNSA.

  3. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    SciTech Connect

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.

    2011-05-15

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  4. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.

    2011-05-01

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  5. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF

    SciTech Connect

    Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Lahmann, B.; Séguin, F. H.; Frenje, J. A.; Li, C. K.; Gatu Johnson, M.; Petrasso, R. D.; Berzak Hopkins, L. F.; Caggiano, J. A.; Divol, L.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Le Pape, S.; Mackinnon, A. J.; McNaney, J. M.; Meezan, N. B.; Moran, M. J.; Bradley, P. A.; Kline, J. L.; Krasheninnikova, N. S.; Kyrala, G. A.; Murphy, T. J.; Schmitt, M. J.; Tregillis, I. L.; Batha, S. H.; Knauer, J. P.; Kilkenny, J. D.

    2015-08-25

    In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D(3He,p)4He and D(T,n)4He occur, as the primary fusion products 3He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (~ 5–100 mg/cm2), the secondary D-3He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and applied to three classes of implosions on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions,and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 x and 0.33 x the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.

  6. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF

    SciTech Connect

    Rinderknecht, H. G. Rosenberg, M. J.; Zylstra, A. B.; Lahmann, B.; Séguin, F. H.; Frenje, J. A.; Li, C. K.; Gatu Johnson, M.; Petrasso, R. D.; Berzak Hopkins, L. F.; Caggiano, J. A.; Divol, L.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Le Pape, S.; Mackinnon, A. J.; McNaney, J. M.; Meezan, N. B.; Moran, M. J.; and others

    2015-08-15

    In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D({sup 3}He,p){sup 4}He and D(T,n){sup 4}He occur, as the primary fusion products {sup 3}He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (∼5–100 mg/cm{sup 2}), the secondary D-{sup 3}He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and applied to three classes of implosions on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions, and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 times and 0.33 times the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.

  7. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF

    NASA Astrophysics Data System (ADS)

    Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Lahmann, B.; Séguin, F. H.; Frenje, J. A.; Li, C. K.; Gatu Johnson, M.; Petrasso, R. D.; Berzak Hopkins, L. F.; Caggiano, J. A.; Divol, L.; Hartouni, E. P.; Hatarik, R.; Hatchett, S. P.; Le Pape, S.; Mackinnon, A. J.; McNaney, J. M.; Meezan, N. B.; Moran, M. J.; Bradley, P. A.; Kline, J. L.; Krasheninnikova, N. S.; Kyrala, G. A.; Murphy, T. J.; Schmitt, M. J.; Tregillis, I. L.; Batha, S. H.; Knauer, J. P.; Kilkenny, J. D.

    2015-08-01

    In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D(3He,p)4He and D(T,n)4He occur, as the primary fusion products 3He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (˜5-100 mg/cm2), the secondary D-3He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and applied to three classes of implosions on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions, and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 times and 0.33 times the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.

  8. Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries.

    PubMed

    Scott, R H H; Clark, D S; Bradley, D K; Callahan, D A; Edwards, M J; Haan, S W; Jones, O S; Spears, B K; Marinak, M M; Town, R P J; Norreys, P A; Suter, L J

    2013-02-15

    The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.

  9. Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera)

    NASA Astrophysics Data System (ADS)

    Frenje, J. A.; Casey, D. T.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Radha, P. B.; Sangster, T. C.; Meyerhofer, D. D.; Hatchett, S. P.; Haan, S. W.; Cerjan, C. J.; Landen, O. L.; Fletcher, K. A.; Leeper, R. J.

    2010-05-01

    For the first time high areal-density (ρR) cryogenic deuterium-tritium (DT) implosions have been probed using downscattered neutron spectra measured with the magnetic recoil spectrometer (MRS) [J. A. Frenje et al., Rev. Sci. Instrum. 79, 10E502 (2008)], recently installed and commissioned on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The ρR data obtained with the MRS have been essential for understanding how the fuel is assembled and for guiding the cryogenic program at the Laboratory for Laser Energetics (LLE) to ρR values up to ˜300 mg/cm2. The ρR data obtained from well-established charged particle spectrometry techniques [C. K. Li et al., Phys. Plasmas 8, 4902 (2001)] were used to authenticate the MRS data for low-ρR plastic capsule implosions, and the ρR values inferred from these techniques are in excellent agreement, indicating that the MRS technique provides high-fidelity data. Recent OMEGA-MRS data and Monte Carlo simulations have shown that the MRS on the NIF [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] will meet most of the absolute and relative requirements for determining ρR, ion temperature (Ti) and neutron yield (Yn) in both low-yield, tritium-rich, deuterium-lean, hydrogen-doped implosions and high-yield DT implosions.

  10. Experimental Investigation of the Effect of M-Band Preheating in Indirectly-Driven Double-Shell Implosions

    SciTech Connect

    Robey, H F; Amendt, P A; Park, H-S; Landen, O L; Watt, R G; Varnum, W S

    2003-08-22

    Experimental results are presented from several series of experiments studying the effect of 2-4 keV M-shell radiation on the implosion of double-shell capsules on the Omega Laser at the Laboratory for Laser Energetics. In the First series of experiments, precision machined double-shell capsules implosions are performed. A discrepancy is observed between the experimentally measured M-band fraction and the simulated value. The application of a time-dependent multiplier to the simulated M-band level results in a decrease in predicted yield of 35% and a corresponding increase in the YoC to 20-35%. In order to further investigate this discrepancy, a series of ''M-Band driven'' targets has been designed. An oversized outer shell is used to preferentially allow the M-band radiation to drive the implosion of a CH-tamped glass inner shell. The inner shell radius-time history is measured and is shown to be consistent with the simulations using the time-dependent M-band multipliers. The spatial distribution of this M-band source is also varied using hohlraums of different length and adjusting the laser pointing accordingly. The resulting asymmetry of the inner shell implosion is diagnosed both by x-ray backlighting prior to shell collision and by core emission.

  11. The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility

    SciTech Connect

    Weilacher, F.; Radha, P. B.; Collins, T. J. B.; Marozas, J. A.

    2015-03-01

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of 10. As a result, the neutron yield increases by approximately a factor of 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes.

  12. Imaging of High-Energy X-Ray Emission from Cryogenic Thermonuclear Fuel Implosions on the NIF

    SciTech Connect

    Ma, T

    2012-05-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide spectrally resolved time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered targets. Using bremsstrahlung assumptions, the measured absolute x-ray brightness allows for the inference of electron temperature, electron density, hot spot mass, mix mass, and pressure. Current inertial confinement fusion (ICF) experiments conducted on the National Ignition Facility (NIF) seek to indirectly drive a spherical implosion, compressing and igniting a deuterium-tritium fuel. This DT fuel capsule is cryogenically prepared as a solid ice layer surrounded by a low-Z ablator material. Ignition will occur when the hot spot approaches sufficient temperature ({approx}3-4 keV) and {rho}R ({approx}0.3 g/cm{sup 2}) such that alpha deposition can further heat the hot spot and generate a self-sustaining burn wave. During the implosion, the fuel mass becomes hot enough to emit large amounts of x-ray radiation, the spectra and spatial variation of which contains key information that can be used to evaluate the implosion performance. The Ross filter diagnostic employs differential filtering to provide spectrally resolved, time-integrated, absolute x-ray self-emission images of the imploded core of cryogenic layered targets.

  13. The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility

    SciTech Connect

    Weilacher, F.; Radha, P. B. Collins, T. J. B.; Marozas, J. A.

    2015-03-15

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ∼10. As a result, the neutron yield increases by approximately a factor of 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes.

  14. Studying shock dynamics and in-flight ρR asymmetries in NIF implosions using proton spectroscopy

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex

    2014-10-01

    Ignition-scale, indirect-drive implosions of CH capsules filled with D3He gas have been studied with proton spectroscopy at the NIF. Spectral measurements of D3He protons produced at the shock-bang time provide information about the shock dynamics and in-flight characteristics of these implosions. The observed energy downshift of the D3He-proton spectra are interpreted with a self-consistent 1-D model to infer ρR, shell Rcm, and yield at this time. The observed ρR at shock-bang time is substantially higher for implosions where the laser drive is on until near the compression-bang time (``short-coast'') while longer-coasting implosions generate lower ρR at shock-bang time. This is most likely due to a larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast implosions (~400 ps). These differences are determined from the D3He proton spectra and in-flight x-ray radiography data, and it is found to contradict radiation-hydrodynamic simulations, which predict a 700-800 ps temporal difference independent of coasting time. A large variation in the shock proton yield is also observed in the dataset, which is interpreted with a Guderley shock model and found to correspond to ~2× variation in incipient hot-spot adiabat caused by shock heating. This variation may affect the compressibility of NIF implosions. Finally, data from multiple proton spectrometers placed at the pole and equator reveal large ρR asymmetries, which are interpreted as mode-2 polar or azimuthal asymmetries. At the shock-bang time (CR ~ 3-5), asymmetry amplitudes >=10% are routinely observed. Compared to compression-bang time x-ray self-emission symmetry, no apparent asymmetry-amplitude growth is observed, which is in contradiction to several growth models. This is attributed to a lack of correspondence between shell and hot-spot symmetry at peak compression, as discussed in recent computational studies. This work was

  15. Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA

    SciTech Connect

    Florido, R. Mancini, R. C.; Nagayama, T.; Tommasini, R.; Delettrez, J. A.; Regan, S. P.

    2014-10-15

    Time-resolved temperature and density conditions in the core of shock-ignition implosions have been determined for the first time. The diagnostic method relies on the observation, with a streaked crystal spectrometer, of the signature of an Ar tracer added to the deuterium gas fill. The data analysis confirms the importance of the shell attenuation effect previously noted on time-integrated spectroscopic measurements of thick-wall targets [R. Florido et al., Phys. Rev. E 83, 066408 (2011)]. This effect must be taken into account in order to obtain reliable results. The extracted temperature and density time-histories are representative of the state of the core during the implosion deceleration and burning phases. As a consequence of the ignitor shock launched by the sharp intensity spike at the end of the laser pulse, observed average core electron temperature and mass density reach T ∼ 1100 eV and ρ ∼ 2 g/cm{sup 3}; then temperature drops to T ∼ 920 eV while density rises to ρ ∼ 3.4 g/cm{sup 3} about the time of peak compression. Compared to 1D hydrodynamic simulations, the experiment shows similar maximum temperatures and smaller densities. Simulations do not reproduce all observations. Differences are noted in the heating dynamics driven by the ignitor shock and the optical depth time-history of the compressed shell. Time-histories of core conditions extracted from spectroscopy show that the implosion can be interpreted as a two-stage polytropic process. Furthermore, an energy balance analysis of implosion core suggests an increase in total energy greater than what 1D hydrodynamic simulations predict. This new methodology can be implemented in other ICF experiments to look into implosion dynamics and help to understand the underlying physics.

  16. Neutron yield study of direct-drive, low-adiabat cryogenic D{sub 2} implosions on OMEGA laser system

    SciTech Connect

    Hu, S. X.; Radha, P. B.; Marozas, J. A.; Betti, R.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Skupsky, S.; Smalyuk, V. A.; Elbaz, Y.; Shvarts, D.

    2009-11-15

    Neutron yields of direct-drive, low-adiabat ({alpha}{approx_equal}2 to 3) cryogenic D{sub 2} target implosions on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have been systematically investigated using the two-dimensional (2D) radiation hydrodynamics code DRACO[P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)]. Low-mode (l{<=}12) perturbations, including initial target offset, ice-layer roughness, and laser-beam power imbalance, were found to be the primary source of yield reduction for thin-shell (5 {mu}m), low-{alpha}, cryogenic targets. The 2D simulations of thin-shell implosions track experimental measurements for different target conditions and peak laser intensities ranging from 2.5x10{sup 14}-6x10{sup 14} W/cm{sup 2}. Simulations indicate that the fusion yield is sensitive to the relative phases between the target offset and the ice-layer perturbations. The results provide a reasonable good guide to understanding the yield degradation in direct-drive, low-adiabat, cryogenic, thin-shell-target implosions. Thick-shell (10 {mu}m) implosions generally give lower yield over clean than low-l-mode DRACO simulation predictions. Simulations including the effect of laser-beam nonuniformities indicate that high-l-mode perturbations caused by laser imprinting further degrade the neutron yield of thick-shell implosions. To study ICF compression physics, these results suggest a target specification with a {<=}30 {mu}m offset and ice-roughness of {sigma}{sub rms}<3 {mu}m are required.

  17. Time-resolved characterization and energy balance analysis of implosion core in shock-ignition experiments at OMEGA

    NASA Astrophysics Data System (ADS)

    Florido, R.; Mancini, R. C.; Nagayama, T.; Tommasini, R.; Delettrez, J. A.; Regan, S. P.

    2014-10-01

    Time-resolved temperature and density conditions in the core of shock-ignition implosions have been determined for the first time. The diagnostic method relies on the observation, with a streaked crystal spectrometer, of the signature of an Ar tracer added to the deuterium gas fill. The data analysis confirms the importance of the shell attenuation effect previously noted on time-integrated spectroscopic measurements of thick-wall targets [R. Florido et al., Phys. Rev. E 83, 066408 (2011)]. This effect must be taken into account in order to obtain reliable results. The extracted temperature and density time-histories are representative of the state of the core during the implosion deceleration and burning phases. As a consequence of the ignitor shock launched by the sharp intensity spike at the end of the laser pulse, observed average core electron temperature and mass density reach T ˜ 1100 eV and ρ ˜ 2 g/cm3; then temperature drops to T ˜ 920 eV while density rises to ρ ˜ 3.4 g/cm3 about the time of peak compression. Compared to 1D hydrodynamic simulations, the experiment shows similar maximum temperatures and smaller densities. Simulations do not reproduce all observations. Differences are noted in the heating dynamics driven by the ignitor shock and the optical depth time-history of the compressed shell. Time-histories of core conditions extracted from spectroscopy show that the implosion can be interpreted as a two-stage polytropic process. Furthermore, an energy balance analysis of implosion core suggests an increase in total energy greater than what 1D hydrodynamic simulations predict. This new methodology can be implemented in other ICF experiments to look into implosion dynamics and help to understand the underlying physics.

  18. Experimental configuration of direct drive cylindrical implosions on the Omega Laser

    SciTech Connect

    Barnes, C.W.; Tubbs, D.L.; Beck, J.B.

    1998-12-31

    Details about the cylindrical implosions using direct-drive irradiation on the OMEGA Laser facility are provided. The experimental configuration, including orientation, construction, and mounting of the targets is described. An attempt to characterize the modulation transfer function of the primary x-ray framing camera diagnostic results in insufficient exposure contrast but relative agreement with other determinations. The x-ray intensity of the titanium backlighter driven by the 2.5-nsec linear ramp of the laser beams is described, and the relative intensity on film is compared to similar Nova experiments. The parallax effects of different length marker layers of high-opacity dichloropolystyrene is measured, resulting in the conclusion that the marker layer length should be matched to the laser drive illumination profile.

  19. Comparison of simulations and experimental results from ICF implosions using capsules of varying surface roughness.

    NASA Astrophysics Data System (ADS)

    Turner, R. E.; Glebov, V.

    2005-10-01

    We have conducted a series of indirect-drive ICF implosion experiments at Omega, using capsules with deliberately roughened surfaces. The 10 atm DD fill capsules had a convergence ratio of 18, higher than previous Nova experiments [M. Marinak et al, Phys. Plasmas 3, 2070 (1996)]; the pre-heat shielded, Ge-doped CH ablators had moderately high (˜200) Raleigh-Taylor growth factors. Each capsule's surface quality was measured using atomic force microscopy. Gated x-ray imaging of the imploded core was used to assure that basic symmetry was maintained, while `best-surface' capsules were used as controls with every experimental run. Neutron yields were observed to decrease as surface roughness increased. Integrated simulations, including mix modeling, have been performed, and are compared to the experimental results. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  20. In-Flight Measurements of Capsule Shell Adiabats in Laser-Driven Implosions

    SciTech Connect

    Kritcher, A. L.; Doeppner, T.; Ma, T.; Landen, O. L.; Wallace, R.; Glenzer, S. H.; Fortmann, C.

    2011-07-01

    We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T{sub e} and the Fermi temperature T{sub F}{approx}n{sub e}{sup 2/3}. In-flight compressions of Be and CH targets reach 6-13 times solid density, with T{sub e}/T{sub F}{approx}0.4-0.7 and {Gamma}{sub ii}{approx}5, resulting in minimum adiabats of {approx}1.6-2. These measurements are consistent with low-entropy implosions and predictions by radiation-hydrodynamic modeling.

  1. Multispectral X-ray Imagaing for Core Temperature and Density Maps Retrieval in Direct Drive Implosions

    SciTech Connect

    Tommasini, R; Koch, J A; Izumi, N; Welser, L A; Mancini, R C; Delettrez, J; Regan, S; Smalyuk, V

    2006-04-26

    We report on the experiments aimed at obtaining core temperature and density maps in direct drive implosions at the OMEGA Laser Facility using multi-monochromatic X-ray imagers. These instruments use an array of pinholes and a flat multilayer mirror to provide unique multi-spectral images distributed over a wide spectral range. Using Argon as a dopant in the DD-filled plastic shells produces emission images in the Ar He-b and Ly-b spectral regions. These images allow the retrieval of temperature and density maps of the plasma. We deployed three identical multi-monochromatic X-ray imagers in a quasi-orthogonal line-of-sight configuration to allow tomographic reconstruction of the structure of the imploding core.

  2. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    PubMed

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating. PMID:25910132

  3. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions.

    PubMed

    Casey, D T; Woods, D T; Smalyuk, V A; Hurricane, O A; Glebov, V Y; Stoeckl, C; Theobald, W; Wallace, R; Nikroo, A; Schoff, M; Shuldberg, C; Wu, K J; Frenje, J A; Landen, O L; Remington, B A; Glendinning, G

    2015-05-22

    The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ∼2×10^{9} at a convergence ratio of R_{0}/R∼10 and little impact due to the growth of hydrodynamic instabilities and mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated. PMID:26047234

  4. Symmetric inertial confinement fusion implosions at ultra-high laser energies

    SciTech Connect

    Glenzer, S H; MacGowan, B J; Michel, P; Meezan, N B; Suter, L J; Dixit, S N; Kline, J L; Kyrala, G A; Callahan, D A; Dewald, E L; Divol, L; Dzenitis, E; Edwards, J; Hamza, A V; Haynam, C A; Hinkel, D E; Kalantar, D H; Kilkenny, J D; Landen, O L; Lindle, J D; LePape, S; Moody, J D; Nikroo, A; Parham, T; Schneider, M B; Town, R J; Wegner, P; Widmann, K; Whitman, P; Young, B F; Van Wonterghem, B; Atherton, J E; Moses, E I

    2009-12-03

    The first indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 MJ. 192 simultaneously fired laser beams heat ignition hohlraums to radiation temperatures of 3.3 million Kelvin compressing 1.8-millimeter capsules by the soft x rays produced by the hohlraum. Self-generated plasma-optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum producing symmetric x-ray drive as inferred from capsule self-emission measurements. These experiments indicate conditions suitable for compressing deuterium-tritium filled capsules with the goal to achieve burning fusion plasmas and energy gain in the laboratory.

  5. Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions

    SciTech Connect

    Casey, D.  T.; Woods, D. T.; Smalyuk, V. A.; Hurricane, O.  A.; Glebov, V.  Y.; Stoeckl, C.; Theobald, W.; Wallace, R.; Nikroo, A.; Schoff, M.; Shuldberg, C.; Wu, K. J.; Frenje, J.  A.; Landen, O.  L.; Remington, B.  A.; Glendinning, G.

    2015-05-19

    The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ~2 × 10⁹ at a convergence ratio of R₀/R ~ 10 and little impact due to the growth of hydrodynamic instabilities and mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated.

  6. Ion temperature measurements in shock-driven implosions on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Sio, H.; Zylstra, A.; Rosenberg, M.; Waugh, C.; Rinderknecht, H.; Sinenian, N.; Manuel, M.; Casey, D.; Gatu Johnson, M.; Li, C. K.; Seguin, F.; Frenje, J.; Petrasso, R.; Glebov, V. Yu.; Radha, P. B.; Delettrez, J.; McKenty, P.; Stoeckl, C.; Sangster, T. C.; Pape, S.; Bionta, R.; MacKinnon, A.; Landen, O.; Kilkenny, J.; Nikroo, A.

    2011-10-01

    Y. KIM, H. HERMANN, LANL Shock-driven ``exploding pusher'' implosions are commonly used at the OMEGA and the NIF facilities as test platforms for calibrating and validating diagnostics. We present extensive data on temperatures in exploding pushers obtained through methods: measurement of Doppler broadening of fusion products (from both DD and D3He reactions), and measurement of temperature sensitive yield ratios of DD and D3He yields. Since burn-averaged nuclear observables depend on density and temperature gradients and the time evolution after the spherical shock collapse, it is not evident a priori that these methods measure the same Ti. We compare experimental results to both radiation hydrodynamics simulations and an analytic Guderley shock model. This work was supported in part by LLE, the NLUF, the FSC, the US DOE, LLNL, and GA.

  7. Interactive tools designed to study mix in inertial confinement fusion implosions

    SciTech Connect

    Welser-sherrill, Leslie; Cooley, James H; Wilson, Doug C

    2008-01-01

    Graphical user interface tools have been built in IDL to study mix in inertial confinement fusion (ICF) implosion cores. FLAME (Fall-Line Analysis Mix Evaluator), a code which investigates yield degradation due to mix , was designed to post-process 1D hydrodynamic simulation output by implementing a variety of mix models. Three of these mix models are based on the physics of the fall-line. In addition, mixing data from other sources can be incorporated into the yield degradation analysis. Two independent tools called HAME (Haan Analysis Mix Evaluator) and YAME (Youngs Analysis Mix Evaluator) were developed to calculate the spatial extent of the mix region according to the Haan saturation model and Youngs' phenomenological model, respectively. FLAME facilitates a direct comparison to experimental data. The FLAME, HAME, and YAME interfaces are user-friendly, flexible, and platform-independent.

  8. Inference of ICF implosion core mix using experimental data and theoretical mix modeling

    SciTech Connect

    Sherrill, Leslie Welser; Haynes, Donald A; Cooley, James H; Sherrill, Manolo E; Mancini, Roberto C; Tommasini, Riccardo; Golovkin, Igor E; Haan, Steven W

    2009-01-01

    The mixing between fuel and shell materials in Inertial Confinement Fusion (lCF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model predicted trends in the width of the mix layer as a function of initial shell thickness. These results contribute to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increasing confidence in the methods used to extract mixing information from experimental data.

  9. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    DOE PAGES

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; Hoffman, N. M.; Kagan, G.; Zylstra, A. B.; Sio, H.; Johnson, M. Gatu; Seguin, F. H.; Petrasso, R. D.; et al

    2015-01-14

    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in DHe3-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and He3 populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, asmore » predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.« less

  10. In-Flight Measurements of Capsule Adiabats in Laser Driven Spherical Implosions

    SciTech Connect

    Kritcher, A L; Doppner, T; Fortman, C; Ma, T; Landen, O L; Wallace, R; Glenzer, S H

    2011-03-07

    We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T{sub e} and the Fermi temperature T{sub F} {approx} n{sub e}{sup 2/3}. In flight compressions of Be and CH targets reach 6-13 times solid density, with T{sub e}/T{sub F} {approx} 0.4-0.7, resulting in minimum adiabats of {approx}1.6-2. These measurements are consistent with low-entropy implosions and predictions by simulations using radiation-hydrodynamic modeling.

  11. An Investigation of Two-Plasmon-Decay Localization in Spherical Implosion Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Myatt, J. F.; Shaw, J.; Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Dubois, D. F.; Russell, D. A.; Vu, H. X.

    2014-10-01

    The localization of the two-plasmon-decay (TPD) instability to specific angular regions of the quarter-critical surface in spherical implosion experiments on OMEGA has been demonstrated through the imaging of both half- and three-halves harmonic emission. Localization is possible because TPD is a multibeam instability and different angular locations on the quarter-critical surface are driven by beams whose incident angles and intensities vary. The degree of localization has been quantified through a series of numerical calculations that were performed with a 3-D nonlinear Zakharov model of TPD. Based on these results, estimates for localized electron plasma temperature excursions have been obtained and compared with those inferred from experiment. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. Characterizing Hot-Spot Dynamics of Direct-Drive Cryogenic Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.; McKenty, P. W.; Shvydky, A.; Knauer, J. P.; Collins, T. J. B.; Delettrez, J. A.; Keller, D.; Marinak, M. M.

    2015-11-01

    In direct-drive inertial confinement fusion, nonuniformities in laser drive, capsule manufacture, and target positioning lead to non-radial hydrodynamic flow in the hot spot at stagnation. Characterizing such flow in the hot spot requires simulating the entire capsule in three dimensions to remove symmetry boundary conditions, which artificially constrain hot-spot flow. This paper will present results from 3-D simulations of cryogenic implosions on OMEGA using HYDRA. Low-mode asymmetries and their contributions to residual hot-spot kinetic energy will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and performed under the auspices of LLNL under Contract No. DE-AC52-07NA27344.

  13. Hot spot formation and stagnation properties in simulations of direct-drive NIF implosions

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Obenschain, Stephen P.

    2016-05-01

    We investigate different proposed methods of increasing the hot spot energy and radius in inertial confinement fusion implosions. In particular, shock mistiming (preferentially heating the inner edge of the target's fuel) and increasing the initial vapor gas density are investigated as possible control mechanisms. We find that only the latter is effective in substantially increasing the hot spot energy and dimensions while achieving ignition. In all cases an increase in the hot spot energy is accompanied by a decrease in the hot spot energy density (pressure) and both the yield and the gain of the target drop substantially. 2D simulations of increased vapor density targets predict an increase in the robustness of the target with respect to surface perturbations but are accompanied by significant yield degradation.

  14. Ion Thermal Decoupling and Species Separation in Shock-Driven Implosions

    SciTech Connect

    Rinderknecht, Hans G.; Rosenberg, M. J.; Li, C. K.; Hoffman, N. M.; Kagan, G.; Zylstra, A. B.; Sio, H.; Johnson, M. Gatu; Seguin, F. H.; Petrasso, R. D.; Amendt, P.; Bellei, C.; Wilks, S.; Delettrez, J.; Glebov, V. Yu.; Stoeckl, C.; Sangster, T. C.; Meyerhofer, D. D.; Nikroo, A.

    2015-01-14

    Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in DHe3-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and He3 populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.

  15. A hybrid model for coupling kinetic corrections of fusion reactivity to hydrodynamic implosion simulations

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-03-01

    Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.

  16. Wobblers and Rayleigh-Taylor instability mitigation in HIF target implosion

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kurosaki, T.; Noguchi, K.; Suzuki, T.; Koseki, S.; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.; Barnard, J. J.; Logan, B. G.

    2014-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. The wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In wobbling the HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs' illumination nonuniformity and also the mitigation of the Rayleigh-Taylor instability. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be from several 100 MHz to 1 GHz. Three-dimensional HIBs illumination computations presented here show that the few percent wobbling HIBs illumination nonuniformity oscillates successfully with the same wobbling HIBs frequency.

  17. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    SciTech Connect

    Ma, T.; Hurricane, O. A.; Callahan, D. A.; Barrios, M. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Doppner, T.; Haan, S. W.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; MacPhee, A. G.; Pak, A.; Park, H. S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P.; Cerjan, C. J.; Church, J. A.; Dixit, S.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Grim, G.; Guler, N.; Hatarik, R.; Herrmann, H. W.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Knauer, J.; Kohut, T.; Kozioziemski, B.; Kritcher, A.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Nikroo, A.; Parham, T.; Ralph, J. E.; Rosen, M. D.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Spears, B. K.; Town, R.P. J.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-04-06

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Earlier results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  18. Implosion and explosion of electrostatic cylindrical and spherical shocks in asymmetric pair-ion plasmas

    SciTech Connect

    Masood, W.; Rizvi, H.

    2011-04-15

    Nonlinear electrostatic shock waves are studied in unmagnetized, dissipative pair-ion plasmas. The dissipation in the system is taken into account by considering the effect of kinematic viscosity of both positive and negative ions in plasmas. The system of fluid equations for asymmetric pair-ion plasma is reduced to Korteweg-deVries-Burgers equation in the limit of small amplitude perturbation. It is observed that the system under consideration admits rarefactive shocks. Keeping in view the practical applications, the nonlinear propagation of both the exploding and imploding shocks is investigated and the differences are expounded in detail. The present study may have relevance in the study of the formation of electrostatic shocks in laser-induced implosion devices, star formation, supernovae explosion, etc.

  19. Implosion and explosion of electrostatic cylindrical and spherical shocks in asymmetric pair-ion plasmas

    NASA Astrophysics Data System (ADS)

    Masood, W.; Rizvi, H.

    2011-04-01

    Nonlinear electrostatic shock waves are studied in unmagnetized, dissipative pair-ion plasmas. The dissipation in the system is taken into account by considering the effect of kinematic viscosity of both positive and negative ions in plasmas. The system of fluid equations for asymmetric pair-ion plasma is reduced to Korteweg-deVries-Burgers equation in the limit of small amplitude perturbation. It is observed that the system under consideration admits rarefactive shocks. Keeping in view the practical applications, the nonlinear propagation of both the exploding and imploding shocks is investigated and the differences are expounded in detail. The present study may have relevance in the study of the formation of electrostatic shocks in laser-induced implosion devices, star formation, supernovae explosion, etc.

  20. Thin Shell, High Velocity Inertial Confinement Fusion Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Ma, T.; Hurricane, O. A.; Callahan, D. A.; Barrios, M. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S. W.; Hinkel, D. E.; Berzak Hopkins, L. F.; Le Pape, S.; MacPhee, A. G.; Pak, A.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Robey, H. F.; Salmonson, J. D.; Springer, P. T.; Tommasini, R.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P.; Cerjan, C. J.; Church, J. A.; Dixit, S.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Grim, G.; Guler, N.; Hatarik, R.; Herrmann, H. W.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Khan, S. F.; Kilkenny, J. D.; Knauer, J.; Kohut, T.; Kozioziemski, B.; Kritcher, A.; Kyrala, G.; Landen, O. L.; MacGowan, B. J.; Mackinnon, A. J.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Nikroo, A.; Parham, T.; Ralph, J. E.; Rosen, M. D.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Spears, B. K.; Town, R. P. J.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-04-01

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 μ m in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1 /2 the neutron yield coming from α -particle self-heating.

  1. Anomalous DD and TT yields relative to the DT yield in inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Casey, Daniel T.

    2011-10-01

    Measurements of the D(d,p)T (DD), T(t,2n)4He (TT) and D(t,n)4He (DT) reactions have been conducted using deuterium-tritium gas-filled inertial confinement fusion (ICF) implosions. In these experiments, which were carried out at the OMEGA laser facility, absolute spectral measurements of the DD protons and TT neutrons were conducted and compared to neutron-time-of-flight measured DT-neutron yields. From these measurements, it is concluded that the DD yield is anomalously low and the TT yield is anomalously high relative to the DT yield, an effect that is enhanced with increasing ion temperature. These results can be explained by an enrichment of tritium in the core of an ICF implosion, which may be present in ignition experiments planned on the National Ignition Facility. In addition, the spectral measurements of the TT-neutron spectrum were conducted for the first time at reactant central-mass energies in the range of 15-30 keV. The results from these measurements indicate that the TT reaction proceeds primarily through the direct three-body reaction channel, producing a continuous TT-neutron spectrum in the range 0 - 9.5 MeV. This work was conducted in collaboration with J. A. Frenje, M. Gatu Johnson, M. J.-E. Manuel, H. G. Rinderknecht, N. Sinenian, F. H. Seguin, C. K. Li, R. D. Petrasso, P. B. Radha, J. A. Delettrez, V. Yu Glebov, D. D. Meyerhofer, T. C. Sangster, D. P. McNabb, P. A. Amendt, R. N. Boyd, J. R. Rygg, H. W. Herrmann, Y. H. Kim, G. P. Grim and A. D. Bacher. This work was supported in part by the U.S. Department of Energy (Grant No. DE-FG03-03SF22691), LLE (subcontract Grant No. 412160-001G), LLNL (subcontract Grant No. B504974).

  2. Understanding the effects of laser imprint on plastic-target implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Michel, D. T.; Davis, A. K.; Betti, R.; Radha, P. B.; Campbell, E. M.; Froula, D. H.; Stoeckl, C.

    2016-10-01

    Understanding the effects of laser imprint on target performance is critical to the success of direct-drive inertial confinement fusion. Directly measuring the disruption caused by laser imprints to the imploding shell and hot-spot formation, in comparison with multidimensional radiation-hydrodynamic simulations, can provide a clear picture of how laser nonuniformities cause target performance to degrade. With the recently developed x-ray self-emission imaging technique and the state-of-the-art physics models recently implemented in the two-dimensional hydrocode DRACO, a systematic study of laser-imprint effects on warm target implosions on OMEGA has been performed using both experimental results and simulations. By varying the laser-picket intensity, the imploding shells were set at different adiabats (from α = 2 to α = 6). As the shell adiabats decreased, it was observed that (1) the measured shell thickness at the time the hot spot lit up became larger than the uniform one-dimensional (1-D) predictions; (2) the hot-spot core emitted earlier than the corresponding 1-D predictions; (3) the measured neutron yield first increased then decreased as the shell adiabat α was reduced; and (4) the hot-spot size reduced as α decreased for cases where SSD (smoothing by spectral dispersion) was on but became larger for low-α shots in cases where SSD was off. Most of these experimental observations are well reproduced by DRACO simulations with laser imprints including modes up to λmax = 200. These studies identify the importance of laser imprint as the major source of degrading target performance for OMEGA implosions of adiabat α ≤ 3. Mitigating laser imprints is required to improve low-α target performance.

  3. Understanding the effects of laser imprint on plastic-target implosions on OMEGA

    DOE PAGES

    Hu, S. X.; Michel, D. T.; Davis, A. K.; Betti, R.; Radha, P. B.; Campbell, E. M.; Froula, D. H.; Stoeckl, C.

    2016-10-03

    Understanding the effects of laser imprint on target performance is critical to the success of direct-drive inertial confinement fusion. Directly measuring the disruption caused by laser imprints to the imploding shell and hot-spot formation, in comparison with multidimensional radiation–hydrodynamic simulations, can provide a clear picture of how laser nonuniformities cause target performance to degrade. With the recently developed x-ray self-emission imaging technique and the state-of-the-art physics models recently implemented in the two-dimensional hydrocode DRACO, a systematic study of laser-imprint effects on warm target implosions on OMEGA has been performed using both experimental results and simulations. By varying the laser-picket intensity,more » the imploding shells were set at different adiabats (from α = 2 to α = 6). As the shell adiabats decreased, it was observed that (1) the measured shell thickness at the time the hot spot lit up became larger than the uniform one-dimensional (1-D) predictions; (2) the hot-spot core emitted earlier than the corresponding 1-D predictions; (3) the measured neutron yield first increased then decreased as the shell adiabat α was reduced; and (4) the hot-spot size reduced as α decreased for cases where SSD (smoothing by spectral dispersion) was on but became larger for low-α shots in cases where SSD was off. Most of these experimental observations are well reproduced by DRACO simulations with laser imprints including modes up to λmax = 200. In addition, these studies identify the importance of laser imprint as the major source of degrading target performance for OMEGA implosions of adiabat α ≤ 3. Mitigating laser imprints is required to improve low-α target performance.« less

  4. Designing symmetric polar direct drive implosions on the Omega laser facility

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H.

    2014-04-01

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153-157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P2) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P2 around bang time and 33% more yield.

  5. Designing symmetric polar direct drive implosions on the Omega laser facility

    SciTech Connect

    Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.; Tregillis, Ian L.; Bradley, Paul A.; Hakel, Peter; Hsu, Scott C.; Kyrala, George A.; Obrey, Kimberly A.; Schmitt, Mark J.; Baumgaertel, Jessica A.; Batha, Steven H.

    2014-04-15

    Achieving symmetric capsule implosions with Polar Direct Drive [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004); R. S. Craxton et al., Phys. Plasmas 12, 056304 (2005); F. J. Marshall et al., J. Phys. IV France 133, 153–157 (2006)] has been explored during recent Defect Induced Mix Experiment campaign on the Omega facility at the Laboratory for Laser Energetics. To minimize the implosion asymmetry due to laser drive, optimized laser cone powers, as well as improved beam pointings, were designed using 3D radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 3, 2070 (1996)]. Experimental back-lit radiographic and self-emission images revealed improved polar symmetry and increased neutron yield which were in good agreement with 2D HYDRA simulations. In particular, by reducing the energy in Omega's 21.4° polar rings by 16.75%, while increasing the energy in the 58.9° equatorial rings by 8.25% in such a way as to keep the overall energy to the target at 16 kJ, the second Legendre mode (P{sub 2}) was reduced by a factor of 2, to less than 4% at bang time. At the same time the neutron yield increased by 62%. The polar symmetry was also improved relative to nominal DIME settings by a more radical repointing of OMEGA's 42.0° and 58.9° degree beams, to compensate for oblique incidence and reduced absorption at the equator, resulting in virtually no P{sub 2} around bang time and 33% more yield.

  6. First results of radiation-driven, layered deuterium-tritium implosions with a 3-shock adiabat-shaped drive at the National Ignition Facility

    SciTech Connect

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Jones, O. S.; Milovich, J. L.; Bachmann, B.; Baker, K. L.; Berzak Hopkins, L. F.; Bond, E.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C.; Clark, D. S.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Hamza, A. V.; Hurricane, O. A.; Jancaitis, K. S.; and others

    2015-08-15

    Radiation-driven, layered deuterium-tritium plastic capsule implosions were carried out using a new, 3-shock “adiabat-shaped” drive on the National Ignition Facility. The purpose of adiabat shaping is to use a stronger first shock, reducing hydrodynamic instability growth in the ablator. The shock can decay before reaching the deuterium-tritium fuel leaving it on a low adiabat and allowing higher fuel compression. The fuel areal density was improved by ∼25% with this new drive compared to similar “high-foot” implosions, while neutron yield was improved by more than 4 times, compared to “low-foot” implosions driven at the same compression and implosion velocity.

  7. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Chung, H.-K.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Lahmann, B.; Nora, R.; Rosenberg, M. J.; Pak, A.; Regan, S. P.; Scott, H. A.; Sio, H.; Spears, B. K.; Weber, C. R.

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  8. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF

    DOE PAGES

    Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; Lahmann, B.; Séguin, F. H.; Frenje, J. A.; Li, C. K.; Gatu Johnson, M.; Petrasso, R. D.; Berzak Hopkins, L. F.; et al

    2015-08-25

    In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D(3He,p)4He and D(T,n)4He occur, as the primary fusion products 3He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (~ 5–100 mg/cm2), the secondary D-3He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and applied to three classes of implosionsmore » on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions,and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 x and 0.33 x the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.« less

  9. Development of two mix model postprocessors for the investigation of shell mix in indirect drive implosion cores

    SciTech Connect

    Welser-Sherrill, L.; Mancini, R. C.; Haynes, D. A.; Haan, S. W.; Koch, J. A.; Izumi, N.; Tommasini, R.; Golovkin, I. E.; MacFarlane, J. J.; Radha, P. B.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2007-07-15

    The presence of shell mix in inertial confinement fusion implosion cores is an important characteristic. Mixing in this experimental regime is primarily due to hydrodynamic instabilities, such as Rayleigh-Taylor and Richtmyer-Meshkov, which can affect implosion dynamics. Two independent theoretical mix models, Youngs' model and the Haan saturation model, were used to estimate the level of Rayleigh-Taylor mixing in a series of indirect drive experiments. The models were used to predict the radial width of the region containing mixed fuel and shell materials. The results for Rayleigh-Taylor mixing provided by Youngs' model are considered to be a lower bound for the mix width, while those generated by Haan's model incorporate more experimental characteristics and consequently have larger mix widths. These results are compared with an independent experimental analysis, which infers a larger mix width based on all instabilities and effects captured in the experimental data.

  10. Physics of Multi-Planar and Compact Cylindrical Wire Arrays Implosions on University-Scale Z-pinch Generators

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Shrestha, I.; Ouart, N. D.; Yilmaz, M. F.; Wilcox, P. G.; Osborne, G. C.; Weller, M. E.; Shlyaptseva, V. V.; Chuvatin, A. S.; Rudakov, L. I.; Greenly, J. B.; McBride, R. D.; Knapp, P. F.; Blessener, I. C.; Bell, K. S.; Chalenski, D. A.; Hammer, D. A.

    2009-01-21

    The presented research focuses on investigation of Z-pinch plasma formation, implosion, and radiation characteristics as a function of the load configuration. The single planar and multi-planar wire arrays as well as compact cylindrical wire arrays were studied on the 1.3 MA UNR Zebra and 1 MA Cornell COBRA generators. The largest yields and powers were found for W and Mo double planar and compact wire arrays. A possibility of radiation pulse shaping was demonstrated. Two types of bright spots were observed in plasmas. A comparison of Mo double planar and compact wire array data indicates the possibility that the same heating mechanism operates during the final implosion and stagnation stages.

  11. First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Döppner, T.; Casey, D. T.; Bunn, T. L.; Carlson, L. C.; Dylla-Spears, R. J.; Kozioziemski, B. J.; MacPhee, A. G.; Nikroo, A.; Robey, H. F.; Sater, J. D.; Smalyuk, V. A.

    2016-08-01

    Direct measurements of hydrodynamic instability growth at the fuel-ablator interface in inertial confinement fusion (ICF) implosions are reported for the first time. These experiments investigate one of the degradation mechanisms behind the lower-than-expected performance of early ICF implosions on the National Ignition Facility. Face-on x-ray radiography is used to measure instability growth occurring between the deuterium-tritium fuel and the plastic ablator from well-characterized perturbations. This growth starts in two ways through separate experiments—either from a preimposed interface modulation or from ablation front feedthrough. These experiments are consistent with analytic modeling and radiation-hydrodynamic simulations, which say that a moderately unstable Atwood number and convergence effects are causing in-flight perturbation growth at the interface. The analysis suggests that feedthrough from outersurface perturbations dominates the interface perturbation growth at mode 60.

  12. Neutron Yield and Ion Temperature from DD and DT Fusion in National Ignition Facility High-Foot Implosions

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Caggiano, J. A.; Callahan, D. A.; Casey, D. T.; Cerjan, C. J.; Doeppner, T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hinkel, D. E.; Hurricane, O. A.; Kritcher, A.; Le Pape, S.; Ma, T.; Munro, D. H.; Patel, P. K.; Ralph, J. E.; Sayre, D. B.; Spears, B. K.; Yeamans, C. B.; Kilkenny, J. D.

    2015-11-01

    Simultaneous measures of neutrons emitted from DT fusion implosions are postulated to provide insight into the fuel conditions during neutron emission. Neutron spectral diagnostics of National Ignition Facility ``high-foot'' implosions measure both the DT and DD fusion neutron spectra. Equivalent ion temperature is measured from the width of the DT and DD neutron emission and the respective yields from the peak areas. This work has focused on reasons for differing inferred temperatures from the DT and DD spectra and the yield ratio. Spatial and temporal averages of the DT and DD reactivities as corrections to the homogeneous and static temperature distributions are shown. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility.

    PubMed

    Weber, C R; Döppner, T; Casey, D T; Bunn, T L; Carlson, L C; Dylla-Spears, R J; Kozioziemski, B J; MacPhee, A G; Nikroo, A; Robey, H F; Sater, J D; Smalyuk, V A

    2016-08-12

    Direct measurements of hydrodynamic instability growth at the fuel-ablator interface in inertial confinement fusion (ICF) implosions are reported for the first time. These experiments investigate one of the degradation mechanisms behind the lower-than-expected performance of early ICF implosions on the National Ignition Facility. Face-on x-ray radiography is used to measure instability growth occurring between the deuterium-tritium fuel and the plastic ablator from well-characterized perturbations. This growth starts in two ways through separate experiments-either from a preimposed interface modulation or from ablation front feedthrough. These experiments are consistent with analytic modeling and radiation-hydrodynamic simulations, which say that a moderately unstable Atwood number and convergence effects are causing in-flight perturbation growth at the interface. The analysis suggests that feedthrough from outersurface perturbations dominates the interface perturbation growth at mode 60. PMID:27563971

  14. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    PubMed

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-01

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  15. X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Michel, D. T.; Craxton, R. S.; Epstein, R.; Hohenberger, M.; Mo, T.; Froula, D. H.

    2016-11-01

    As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.

  16. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    SciTech Connect

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; Bionta, R.; Bleuel, D.; Bond, E.; Bradley, D. K.; Caggiano, J.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C. J.; Clark, D.; Dewald, E. L.; Dixit, S. N.; Doeppner, T.; Edgell, D. H.; Edwards, M. J.; Frenje, J.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Glenzer, S. H.; Grim, G.; Haan, S. W.; Hammel, B. A.; Hartouni, E.; Hatarik, R.; Hatchett, S.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Key, M. H.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Knauer, J.; Kyrala, G. A.; Landen, O. L.; Pape, S. L.; Lindl, J. D.; Ma, T.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; McNaney, J.; Meezan, N. B.; Moody, J. D.; Moore, A.; Moran, M.; Moses, E. I.; Pak, A.; Parham, T; Park, H. -S.; Patel, P. K.; Petrasso, R.; Ralph, J. E.; Regan, S. P.; Remington, B. A.; Robey, H. F.; Ross, J. S.; Spears, B. K.; Springer, P. T.; Suter, L J; Tommasini, R.; Town, R. P.; Weber, S. V.; Widmann, K.

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  17. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; Bionta, R.; Bleuel, D.; Bond, E.; Bradley, D. K.; Caggiano, J.; Callahan, D. A.; Casey, D. T.; et al

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  18. High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility

    SciTech Connect

    Koch, J. A.; Stewart, R. E.; Beiersdorfer, P.; Shepherd, R.; Schneider, M. B.; Miles, A. R.; Scott, H. A.; Smalyuk, V. A.; Hsing, W. W.

    2012-10-15

    Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-{alpha} at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

  19. High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility.

    PubMed

    Koch, J A; Stewart, R E; Beiersdorfer, P; Shepherd, R; Schneider, M B; Miles, A R; Scott, H A; Smalyuk, V A; Hsing, W W

    2012-10-01

    Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-α at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma. PMID:23126948

  20. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  1. Direct Drive Cylindrical Implosions on the Omega Laser at the Laboratory for Laser Energetics of the University of Rochester

    SciTech Connect

    Barnes, C.W.

    1999-05-10

    The primary goals of this report are to (1) understand experimental radiography better (radiograph known static targets); and (2) to better understand the sources and effects of short wavelength perturbations on the long wavelength RT growth. Some secondary goals are to initiate Richtmyer-Meshkov mix targets; test beryllium cylinder implosions (if available); and observe emission spectroscopy from chlorinated foam to study implosions. To achieve these goals the authors: (1) shot mix targets with late backlighter and confirmed set up of radiography, begin static targets; (2) did a sequence of unperturbed and perturbed targets of different smoothness and thickness, fill in static, beryllium, and chlorinated foam targets; and (3) repeated step number 2 at a different backlighter time.

  2. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    NASA Astrophysics Data System (ADS)

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Tomlinson, K.; Robertson, G. R.; Knudson, M. D.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Blue, B. E.; Robinson, A. C.; Mattsson, T. R.

    2016-01-01

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ˜1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.

  3. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE PAGES

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Tomlinson, K.; Robertson, G. R.; Knudson, M. D.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; et al

    2016-01-07

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  4. Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique.

    PubMed

    Pickworth, L A; Hammel, B A; Smalyuk, V A; MacPhee, A G; Scott, H A; Robey, H F; Landen, O L; Barrios, M A; Regan, S P; Schneider, M B; Hoppe, M; Kohut, T; Holunga, D; Walters, C; Haid, B; Dayton, M

    2016-07-15

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ=140  μm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ∼7000×. Measurements were made at convergences of ∼5 to ∼10× at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both lines of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ∼2× between the waist and the pole, showing asymmetry in the measured growth factors. These new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views. PMID:27472117

  5. Measurement of Hydrodynamic Growth near Peak Velocity in an Inertial Confinement Fusion Capsule Implosion using a Self-Radiography Technique

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; Hoppe, M.; Kohut, T.; Holunga, D.; Walters, C.; Haid, B.; Dayton, M.

    2016-07-01

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ =140 μ m , sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ˜7000 × . Measurements were made at convergences of ˜5 to ˜10 × at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both lines of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ˜2 × between the waist and the pole, showing asymmetry in the measured growth factors. These new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.

  6. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-01

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a "double bun" structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  7. Development of Lower Energy Neutron Spectroscopy for Areal Density Measurement in Implosion Experiment at NIF and Omega

    SciTech Connect

    Isumi, N; Lerche, R A; Phillips, T W; Schmid, G J; Moran, M J; Sangster, T C

    2001-08-02

    Areal density ({rho}R) is a fundamental parameter that characterizes the performance of an ICF implosion. For high areal densities ({rho}R> 0.1 g/cm{sup 2}), which will be realized in implosion experiments at NIF and LMJ, the target areal density exceeds the stopping range of charged particles and measurements with charged particle spectroscopy will be difficult. In this region, an areal density measurement method using down shifted neutron counting is a promising alternative. The probability of neutron scattering in the imploded plasma is proportional to the areal density of the plasma. The spectrum of neutrons scattered by the specific target nucleus has a characteristic low energy cut off. This enables separate, simultaneous measurements of fuel and pusher {rho}Rs. To apply this concept in implosion experiments, the detector should have extremely large dynamic range. Sufficient signal output for low energy neutrons is also required. A lithium-glass scintillation-fiber plate (LG-SCIFI) is a promising candidate for this application. In this paper we propose a novel technique based on downshifted neutron measurements with a lithium-glass scintillation-fiber plate. The details of instrumentation and background estimation with Monte Carlo calculation are reported.

  8. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    SciTech Connect

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-15

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a “double bun” structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  9. Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries

    DOE PAGES

    Scott, R. H. H.; Clark, D. S.; Bradley, D. K.; Callahan, D. A.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Spears, B. K.; Marinak, M. M.; Town, R. P. J.; et al

    2013-02-01

    In this study, the sensitivity of inertial confinement fusion implosions of the type performed on the National Ignition Facility (NIF) [1] to low-mode flux asymmetries has been investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P4), resulting from associated low order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the DT “ice” layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of kinetic to internal energy of the central hot spot, thus reducing neutron yield. Furthermore, synthetic gated x-ray images indicate that the P4 component of hotmore » spot self-emission shape is insensitive to P4 hot spot shapes, and a positive P4 asymmetry aliases itself as a negative or oblate P2 in these images. Correction of this apparent P2 distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed post-shot 2D simulations.« less

  10. Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries

    SciTech Connect

    Scott, R. H. H.; Clark, D. S.; Bradley, D. K.; Callahan, D. A.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Spears, B. K.; Marinak, M. M.; Town, R. P. J.; Norreys, P. A.; Suter, L. J.

    2013-02-01

    In this study, the sensitivity of inertial confinement fusion implosions of the type performed on the National Ignition Facility (NIF) [1] to low-mode flux asymmetries has been investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P4), resulting from associated low order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the DT “ice” layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of kinetic to internal energy of the central hot spot, thus reducing neutron yield. Furthermore, synthetic gated x-ray images indicate that the P4 component of hot spot self-emission shape is insensitive to P4 hot spot shapes, and a positive P4 asymmetry aliases itself as a negative or oblate P2 in these images. Correction of this apparent P2 distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed post-shot 2D simulations.

  11. Measuring radial profiles of nuclear burn in ICF implosions at OMEGA and the NIF using proton emission imaging

    NASA Astrophysics Data System (ADS)

    Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M.; Zylstra, A.; Frenje, J.; Li, C. K.; Petrasso, R.; Marshall, F. J.; Sangster, T. C.; Hoffman, N. M.; Amendt, P. A.; Bellei, C.; Le Pape, S.; Wilks, S. C.

    2014-10-01

    Fusion reactions in ICF implosions of D3He-filled capsules produce 14.7-MeV D3He protons and 3-MeV DD protons. Measurements of the spatial distributions of the D3He and DD reactions are studied with a penumbral imaging system that utilizes a CR-39-based imaging detector to simultaneously record separate penumbral images of the two types of protons. Measured burn profiles are useful for studying implosion physics and provide a critical test for benchmarking simulations. Recent implosions at OMEGA of CD capsules containing 3He gas fill and SiO2 capsules containing low-pressure D3He gas were expected to have hollow D3He burn profiles (in the 3He-filled capsule, due to fuel-shell mix), but penumbral imaging showed that the reactions were centrally peaked due to enhanced ion diffusion. The imaging technique is to be implemented soon on the NIF. This work was supported in part by NLUF, DOE, and LLE.

  12. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited).

    PubMed

    Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J

    2010-10-01

    Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.

  13. Comparison of measured soft x-ray drive with shock and capsule implosion velocity for ignition tuning experiments on NIF

    NASA Astrophysics Data System (ADS)

    Kline, J.; Callahan, D.; Meezan, N.; Glenzer, S.; MacKinnon, A.; Dixit, S.; Kyrala, G.; Widmann, K.; Robey, H.; Clark, D.; Jones, O.; Hicks, D.; Celliers, P.; Farley, D.; Town, R.; Kalantar, D.; Dewald, E.; Moore, A.; Olson, R.; Doeppner, T.; Moody, J.; Ralph, J.; Thomas, C.; Landen, O.; Edwards, M.

    2011-10-01

    Indirect drive inertial confinement fusion experiments use high-Z hohlraums to convert laser energy to soft x-ray energy. The soft x-rays then drive the capsule via material ablation to compress the fuel payload and heat the central hot spot to initiate ignition. To achieve the highest fuel compression, a shaped radiation drive is used launching multiple shocks timed minimizes fuel entropy. The strength and velocity of these shocks depend directly on the radiation drive. The main laser pulse is then used to drive the implosion such that the PdV work can heat the central core to fusion conditions. To diagnose the soft x-ray drive in the hohlraum, Dante, an 18 channel soft x-ray spectrometer, measures the flux escaping the laser entrance hole. Measurements of this flux are used to assess the conditions for the capsule implosion. In this presentation, we will examine correlations between the soft x-ray measurements and shock velocity, as well as implosion velocity for recent ignition tuning experiments on NIF.

  14. Sensitivity of capsule implosion symmetry due to laser beam imbalance in a scale 0.2 hot hohlraum at Omega

    NASA Astrophysics Data System (ADS)

    Delamater, N. D.; Wilson, D. C.; Kyrala, G. A.; Seifter, A.; Hoffman, N. M.

    2010-08-01

    Results are shown from recent experiments at the Omega laser facility, using 40 Omega beams driving the hohlraum with 3 cones from each side and up to 19.5 kJ of laser energy. Beam phasing is achieved by decreasing the energy separately in each of the three cones, by 3 kJ, for a total drive energy of 16.5 kJ. This results in a more asymmetric drive, which will vary the shape of the imploded symmetry capsule core from round to oblate or prolate in a systematic and controlled manner. These results show the sensitivity of capsule implosion symmetry for implosions in "high temperature" (275 eV) hohlraums at Omega. Dante measurements confirmed the predicted peak drive temperatures of 275 eV. Implosion core time dependent x-ray images were obtained from framing camera data which show the expected change in symmetry due to beam imbalance and which also agree well with post processed hydro code calculations.

  15. Development of lower-energy neutron spectroscopy for areal density measurement in implosion experiment at NIF and OMEGA

    NASA Astrophysics Data System (ADS)

    Izumi, Nobuhiko; Lerche, Richard A.; Phillips, Thomas W.; Schmid, Gregory J.; Moran, Michael J.; Sangster, Thomas C.

    2001-12-01

    Areal density ((sigma) R) is a fundamental parameter that characterizes the performance of an ICF implosion. For high areal densities ((sigma) R>0.1 g/cm2), which will be realized in implosion experiments at NIF and LMJ, the target areal density exceeds the stopping range of charged particles and measurements with charged particle spectroscopy will be difficult. In this region, an areal density measurement method using down shifted neutron counting is a promising alternative. The probability of neutron scattering in the imploded plasma is proportional to the areal density of the plasma. The spectrum of neutrons scattered by the specific target nucleus has a characteristic low energy cut off. This enables separate, simultaneous measurements of fuel and pusher (sigma) Rs. To apply this concept in implosion experiments, the detector should have extremely large dynamic range. Sufficient signal output for low energy neutrons is also required. A lithium-glass scintillation-fiber plate (LG-SCIFI) is a promising candidate for this application. In this paper we propose a novel technique based on down shifted neutron measurements with a lithium-glass sctintillation-fiber plate. The details of instrumentation and background estimation with Monte Carlo calculation are reported.

  16. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    SciTech Connect

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H. -S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. P.; Dewald, E. L.; Dittrich, T. R.; Haan, S.; Kritcher, A. L.; MacPhee, A.; Le Pape, S.; Pak, A.; Patel, P. K.; Springer, P. T.; Salmonson, J. D.; Tommasini, R.; Benedetti, L. R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Church, J.; Dixit, S.; Edgell, D.; Edwards, M. J.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hatarik, R.; Havre, M.; Herrmann, H.; Izumi, N.; Khan, S. F.; Kline, J. L.; Knauer, J.; Kyrala, G. A.; Landen, O. L.; Merrill, F. E.; Moody, J.; Moore, A. S.; Nikroo, A.; Ralph, J. E.; Remington, B. A.; Robey, H.; Sayre, D.; Schneider, M.; Streckert, H.; Town, R.; Turnbull, D.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  17. Performance metrics for inertial confinement fusion implosions: Aspects of the technical framework for measuring progress in the National Ignition Campaigna)

    NASA Astrophysics Data System (ADS)

    Spears, Brian K.; Glenzer, S.; Edwards, M. J.; Brandon, S.; Clark, D.; Town, R.; Cerjan, C.; Dylla-Spears, R.; Mapoles, E.; Munro, D.; Salmonson, J.; Sepke, S.; Weber, S.; Hatchett, S.; Haan, S.; Springer, P.; Moses, E.; Kline, J.; Kyrala, G.; Wilson, D.

    2012-05-01

    The National Ignition Campaign (NIC) uses non-igniting "tritium hydrogen deuterium (THD)" capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off-nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  18. Performance metrics for inertial confinement fusion implosions: Aspects of the technical framework for measuring progress in the National Ignition Campaign

    SciTech Connect

    Spears, Brian K.; Glenzer, S.; Edwards, M. J.; Brandon, S.; Clark, D.; Town, R.; Cerjan, C.; Dylla-Spears, R.; Mapoles, E.; Munro, D.; Salmonson, J.; Sepke, S.; Weber, S.; Hatchett, S.; Haan, S.; Springer, P.; Moses, E.; Kline, J.; Kyrala, G.; Wilson, D.

    2012-05-15

    The National Ignition Campaign (NIC) uses non-igniting 'tritium hydrogen deuterium (THD)' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off-nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  19. Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facility

    SciTech Connect

    Schmitt, Mark J.; Bradley, Paul A.; Cobble, James A.; Fincke, James R.; Hakel, Peter; Hsu, Scott C.; Krasheninnikova, Natalia S.; Kyrala, George A.; Magelssen, Glenn R.; Montgomery, David S.; Murphy, Thomas J.; Obrey, Kimberly A.; Shah, Rahul C.; Tregillis, Ian L.; Baumgaertel, Jessica A.; Wysocki, Frederick J.; Batha, Steven H.; Stephen Craxton, R.; McKenty, Patrick W.; Fitzsimmons, Paul; and others

    2013-05-15

    Experiments were performed to develop a platform for the simultaneous measurement of mix and its effects on fusion burn. Two polar direct drive implosions of all-plastic capsules were conducted for the first time on the National Ignition Facility (NIF). To measure implosion trajectory and symmetry, area image backlighting of these capsules was also employed for the first time on NIF, an advance over previous 1-D slit imaging experiments, providing detailed symmetry data of the capsules as they imploded. The implosion trajectory and low-mode asymmetry seen in the resultant radiographs agreed with pre-shot predictions even though the 700 kJ drive energy produced laser beam intensities exceeding laser-plasma instability thresholds. Post-shot simulations indicate that the capsule yield was reduced by a factor of two compared to pre-shot predictions owing to as-shot laser drive asymmetries. The pre-shot predictions of bang time agreed within 200 ps with the experimental results. The second shot incorporated a narrow groove encircling the equator of the capsule. A predicted yield reduction factor of three was not observed.

  20. Measurement of hydrodynamic growth near peak velocity in an inertial confinement fusion capsule implosion using a self-radiography technique

    DOE PAGES

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; MacPhee, A. G.; Scott, H. A.; Robey, H. F.; Landen, O. L.; Barrios, M. A.; Regan, S. P.; Schneider, M. B.; et al

    2016-07-11

    First measurements of hydrodynamic growth near peak implosion velocity in an inertial confinement fusion (ICF) implosion at the National Ignition Facility were obtained using a self-radiographing technique and a preimposed Legendre mode 40, λ = 140 μm, sinusoidal perturbation. These are the first measurements of the total growth at the most unstable mode from acceleration Rayleigh-Taylor achieved in any ICF experiment to date, showing growth of the areal density perturbation of ~7000×. Measurements were made at convergences of ~5 to ~10× at both the waist and pole of the capsule, demonstrating simultaneous measurements of the growth factors from both linesmore » of sight. The areal density growth factors are an order of magnitude larger than prior experimental measurements and differed by ~2× between the waist and the pole, showing asymmetry in the measured growth factors. As a result, these new measurements significantly advance our ability to diagnose perturbations detrimental to ICF implosions, uniquely intersecting the change from an accelerating to decelerating shell, with multiple simultaneous angular views.« less

  1. Long implosion time (240 ns) Z-pinch experiments with a large diameter (12 cm) double-shell nozzle

    NASA Astrophysics Data System (ADS)

    Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Song, Y.; Sze, H. M.; Fisher, A.

    2004-05-01

    Recently, an 8 cm diameter double-shell nozzle has produced argon Z pinches with high K-shell yields with implosion time of 210 ns. To produce even longer implosion time Z pinches for facilities such as Decade Quad [D. Price, et al., "Electrical and Mechanical Design of the Decade Quad in PRS Mode," in Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] (9 MA short circuit current at 300 ns), a larger nozzle (12 cm outer diameter) was designed and fabricated. During initial testing on Double-EAGLE [P. Sincerny et al., Proceedings of the 5th IEEE Pulsed Power Conference, Arlington, VA, edited by M. F. Rose and P. J. Turchi (IEEE, New York, 1985), p. 151], 9 kJ of argon K-shell radiation in a 6 ns full width at half maximum pulse was produced with a 240 ns implosion. The initial gas distributions produced by various nozzle configurations have been measured and their impact on the final radiative characteristics of the pinch are presented. The addition of a central jet to increase the initial gas density near the axis is observed to enhance the pinch quality, increasing K-shell yield by 17% and power by 40% in the best configuration tested.

  2. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    SciTech Connect

    Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

    2011-12-16

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

  3. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    PubMed

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  4. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H.-S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P.; Dewald, E. L.; Dittrich, T. R.; Haan, S. W.; Kritcher, A. L.; MacPhee, A.; Le Pape, S.; Pak, A.; Patel, P. K.; Springer, P. T.; Salmonson, J. D.; Tommasini, R.; Benedetti, L. R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Church, J.; Dixit, S.; Edgell, D.; Edwards, M. J.; Fittinghoff, D. N.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hatarik, R.; Havre, M.; Herrmann, H.; Izumi, N.; Khan, S. F.; Kline, J. L.; Knauer, J.; Kyrala, G. A.; Landen, O. L.; Merrill, F. E.; Moody, J.; Moore, A. S.; Nikroo, A.; Ralph, J. E.; Remington, B. A.; Robey, H. F.; Sayre, D.; Schneider, M.; Streckert, H.; Town, R.; Turnbull, D.; Volegov, P. L.; Wan, A.; Widmann, K.; Wilde, C. H.; Yeamans, C.

    2015-07-01

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

  5. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility.

    PubMed

    Döppner, T; Callahan, D A; Hurricane, O A; Hinkel, D E; Ma, T; Park, H-S; Berzak Hopkins, L F; Casey, D T; Celliers, P; Dewald, E L; Dittrich, T R; Haan, S W; Kritcher, A L; MacPhee, A; Le Pape, S; Pak, A; Patel, P K; Springer, P T; Salmonson, J D; Tommasini, R; Benedetti, L R; Bond, E; Bradley, D K; Caggiano, J; Church, J; Dixit, S; Edgell, D; Edwards, M J; Fittinghoff, D N; Frenje, J; Gatu Johnson, M; Grim, G; Hatarik, R; Havre, M; Herrmann, H; Izumi, N; Khan, S F; Kline, J L; Knauer, J; Kyrala, G A; Landen, O L; Merrill, F E; Moody, J; Moore, A S; Nikroo, A; Ralph, J E; Remington, B A; Robey, H F; Sayre, D; Schneider, M; Streckert, H; Town, R; Turnbull, D; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-07-31

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel. PMID:26274424

  6. Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility

    DOE PAGES

    Döppner, T.; Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; Ma, T.; Park, H. -S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. P.; Dewald, E. L.; et al

    2015-07-28

    We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a “highfoot” laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shapemore » closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 1016 neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.« less

  7. Inner-shell radiation from wire array implosions on the Zebra generator

    SciTech Connect

    Ouart, N. D.; Giuliani, J. L.; Dasgupta, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Weller, M. E.; Shlyaptseva, V.; Osborne, G. C.; Stafford, A.; Keim, S.; Apruzese, J. P.; Clark, R. W.

    2014-03-15

    Implosions of brass wire arrays on Zebra have produced L-shell radiation as well as inner-shell Kα and Kβ transitions. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell photons are a result of high-energy electrons ionizing or exciting an inner-shell (1s) electron from ionization stages around Ne-like. The K- and L-shell radiations were captured using two time-gated and two axially resolved time-integrated spectrometers. The electron beam was measured using a Faraday cup. A multi-zone non-local thermodynamic equilibrium pinch model with radiation transport is used to model the x-ray emission from experiments for the purpose of obtaining plasma conditions. These plasma conditions are used to discuss some properties of the electron beam generated by runaway electrons. A simple model for runaway electrons is examined to produce the Kα radiation, but it is found to be insufficient.

  8. Effect of the mounting membrane on shape in inertial confinement fusion implosions

    SciTech Connect

    Nagel, S. R. Haan, S. W.; Rygg, J. R.; Barrios, M.; Benedetti, L. R.; Bradley, D. K.; Field, J. E.; Hammel, B. A.; Izumi, N.; Jones, O. S.; Khan, S. F.; Ma, T.; Pak, A. E.; Tommasini, R.; Town, R. P. J.

    2015-02-15

    The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-off position of the membranes used to hold the capsule within the hohlraum. Here, we describe a systematic study of this membrane or “tent” thickness and its impact on the measured low modes for in-flight and self-emission images. The low mode amplitudes of the shell in-flight shape (P{sub 2} and P{sub 4}) are weakly affected by the tent feature in time-resolved, backlit data. By contrast, time integrated self-emission images along the same axis exhibit a reversal in perceived P{sub 4} mode due to growth of a feature seeded by the tent, which can explain prior inconsistencies between the in-flight P{sub 4} and core P{sub 4}, leading to a reevaluation of optimum hohlraum length. Simulations with a tent-like feature normalized to match the feature seen in the backlit images predict a very large impact on the capsule performance from the tent feature.

  9. Experiments and Simulations on Magnetically Driven Implosions in High Repetition Rate Dense Plasma Focus

    NASA Astrophysics Data System (ADS)

    Caballero Bendixsen, Luis; Bott-Suzuki, Simon; Cordaro, Samuel; Krishnan, Mahadevan; Chapman, Stephen; Coleman, Phil; Chittenden, Jeremy

    2015-11-01

    Results will be shown on coordinated experiments and MHD simulations on magnetically driven implosions, with an emphasis on current diffusion and heat transport. Experiments are run at a Mather-type dense plasma focus (DPF-3, Vc: 20 kV, Ip: 480 kA, E: 5.8 kJ). Typical experiments are run at 300 kA and 0.33 Hz repetition rate with different gas loads (Ar, Ne, and He) at pressures of ~ 1-3 Torr, usually gathering 1000 shots per day. Simulations are run at a 96-core HP blade server cluster using 3GHz processors with 4GB RAM per node.Preliminary results show axial and radial phase plasma sheath velocity of ~ 1x105 m/s. These are in agreement with the snow-plough model of DPFs. Peak magnetic field of ~ 1 Tesla in the radial compression phase are measured. Electron densities on the order of 1018 cm-3 anticipated. Comparison between 2D and 3D models with empirical results show a good agreement in the axial and radial phase.

  10. Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Radha, P. B.; Marozas, J. A.; Skupsky, S.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; McCrory, R. L.

    2010-10-01

    Maximizing the neutron yield to obtain energy gain is the ultimate goal for inertial confinement fusion. Nonuniformities seeded by target and laser perturbations can disrupt neutron production via the Rayleigh-Taylor instability growth. To understand the effects of perturbations on the neutron yield of cryogenic DT implosions on the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)], two-dimensional DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] simulations have been performed to systematically investigate each perturbation source and their combined effects on the neutron-yield performance. Two sources of nonuniformity accounted for the neutron-yield reduction in DRACO simulations: target offset from the target chamber center and laser imprinting. The integrated simulations for individual shots reproduce the experimental yield-over-clean (YOC) ratio within a factor of 2 or better. The simulated neutron-averaged ion temperatures ⟨Ti⟩ is only about 10%-15% higher than measurements. By defining the temperature-over-clean, its relationship to YOC provides an indication of how much the hot-spot volume and density are perturbed with respect to the uniform situation. Typically, the YOC in OMEGA experiments is of the order of ˜5%. The simulation results suggest that YOC can be increased to the ignition hydroequivalent level of 15%-20% (with ⟨ρR⟩=200-300 mg/cm2) by maintaining a target offset of less than 10 μm and employing beam smoothing by spectral dispersion.

  11. First high-convergence cryogenic implosion in a near-vacuum hohlraum

    DOE PAGES

    Berzak Hopkins, L.  F.; Meezan, N.  B.; Le Pape, S.; Divol, L.; Mackinnon, A.  J.; Ho, D.  D.; Hohenberger, M.; Jones, O.  S.; Kyrala, G.; Milovich, J.  L.; et al

    2015-04-29

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated inmore » a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.« less

  12. First high-convergence cryogenic implosion in a near-vacuum hohlraum.

    PubMed

    Berzak Hopkins, L F; Meezan, N B; Le Pape, S; Divol, L; Mackinnon, A J; Ho, D D; Hohenberger, M; Jones, O S; Kyrala, G; Milovich, J L; Pak, A; Ralph, J E; Ross, J S; Benedetti, L R; Biener, J; Bionta, R; Bond, E; Bradley, D; Caggiano, J; Callahan, D; Cerjan, C; Church, J; Clark, D; Döppner, T; Dylla-Spears, R; Eckart, M; Edgell, D; Field, J; Fittinghoff, D N; Gatu Johnson, M; Grim, G; Guler, N; Haan, S; Hamza, A; Hartouni, E P; Hatarik, R; Herrmann, H W; Hinkel, D; Hoover, D; Huang, H; Izumi, N; Khan, S; Kozioziemski, B; Kroll, J; Ma, T; MacPhee, A; McNaney, J; Merrill, F; Moody, J; Nikroo, A; Patel, P; Robey, H F; Rygg, J R; Sater, J; Sayre, D; Schneider, M; Sepke, S; Stadermann, M; Stoeffl, W; Thomas, C; Town, R P J; Volegov, P L; Wild, C; Wilde, C; Woerner, E; Yeamans, C; Yoxall, B; Kilkenny, J; Landen, O L; Hsing, W; Edwards, M J

    2015-05-01

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α∼3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10(15) neutrons, with 20% calculated alpha heating at convergence ∼27×. PMID:25978240

  13. Application of 2-D simulations to hollow z-pinch implosions

    SciTech Connect

    Peterson, D.L.; Bowers, R.L.; Brownell, J.H.

    1997-12-01

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus 1 and Pegasus 2 capacitor banks, the authors have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy. This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters are required. Currently the authors are applying this capability to the analysis of recent Saturn and PBFA-Z experiments. The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has also been applied to the analysis of Saturn dynamic hohlraum experiments and is being used in the design of this and other Z-Pinch applications on PBFA-Z.

  14. Mitigation of Two-Plasmon Decay in Direct-Drive Implosions Using Multilayer Targets

    NASA Astrophysics Data System (ADS)

    Froula, D. H.; Goncharov, V. N.; Follett, R. K.; Henchen, R. J.; Yaakobi, B.; Edgell, D. H.; Solodov, A. A.; Myatt, J. F.; Shaw, J. G.; Stoeckl, C.; Bonino, M. J.; Sangster, T. C.

    2015-11-01

    Mitigation of cross-beam energy transfer in direct-drive implosions may increase the hot-electron preheat above acceptable levels for ignition. To study preheat mitigation concepts on OMEGA, a thin layer (0.6 μm) of Si in the target ablator is being considered to increase the electron temperature at the quarter-critical surface. A beryllium inner layer (6 μm thick) is used to increase the hydrodynamic efficiency and an outer layer of CH-doped Si (4 μm thick) reduces the laser imprint. Spatially resolved Thomson-scattering measurements show a 15% increase in the electron temperature at the quarter-critical surface and the time-resolved hot electrons are reduced by a factor of 8 compared with a standard CH target. The shell trajectory in the multilayer targets is significantly faster than the CH target, resulting in a factor-of-3 increase in the neutron yield. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Self-generated magnetic fields in direct-drive implosion experiments

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Zylstra, A. B.; Li, C. K.; Nilson, P. M.; Goncharov, V. N.; Petrasso, R. D.

    2014-06-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA Laser Facility were investigated employing radiography with ˜10- to 60-MeV protons. The experiment used plastic-shell targets with imposed surface defects (glue spots, wires, and mount stalks), which enhance self-generated fields. The fields were measured during the 1-ns laser drive with an on-target intensity ˜1015 W/cm2. Proton radiographs show multiple ring-like structures produced by electric fields ˜107 V/cm and fine structures from surface defects, indicating self-generated fields up to ˜3 MG. These electric and magnetic fields show good agreement with two-dimensional magnetohydrodynamic simulations when the latter include the ∇Te × ∇ne source, Nernst convection, and anisotropic resistivity. The simulations predict that self-generated fields affect heat fluxes in the conduction zone and, through this, affect the growth of local perturbations.

  16. Investigation of Inter-Ion Species Diffusion in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans W.; Kim, Yongho; Hoffman, Nelson M.; Schmitt, Mark J.; Kagan, Grigory; Batha, Steven H.; Garbett, Warren J.; Horsfield, Colin J.; Rubery, Michael S.; Gales, Steven

    2014-10-01

    Anomalous fusion yield degradation has been observed for gas fill mixtures in inertial confinement fusion (ICF) implosions. These mixtures have included D/3He [Rygg et al., Phys Plasmas 13, 052702 (2006)], D/T/3He [Herrmann et al., Phys Plasmas 16, 056312 (2009)], D/Ar [Lindl et al., Phys Plasmas 11, 339 (2004)] and even D/T [Casey et al., PRL 108, 075005 (2012)]. Fuel ion segregation has been suggested as a possible cause [Amendt et al., PRL 18, 056308 (2011); Kagan et al., Phys Lett. A 10.1016 (2014)]. Segregation may be caused by inter-ion species diffusion driven by gradients in plasma pressure, temperature and electric field, either across a relatively narrow shock boundary or across the entire interior of the compressed capsule. It is expected that lower Z &/or A ions will diffuse outward while higher Z &/or A diffuse inward. In the case of D/T/3He, the 3He diffuses inward to the hotter core, reducing the DT reactivity. A D/T/H mixture should result in H diffusing outward, leaving the hotter core D & T rich and hence enhance reactivity over the simulated expectation. Past results will be reviewed and plans for a hydro-equivalent comparison D/T/3He and D/T/H will be presented. Research conducted under the auspices of the U.S. Department of Energy under Contract DE-AC52-06NA25396.

  17. Anomalous yield reduction in direct-drive DT implosions due to 3He addition

    SciTech Connect

    Herrmann, Hans W; Langenbrunner, James R; Mack, Joseph M; Cooley, James H; Wilson, Douglas C; Evans, Scott C; Sedillo, Tom J; Kyrala, George A; Caldwell, Stephen E; Young, Carlton A; Nobile, Arthur; Wermer, Joseph R; Paglieri, Stephen N; Mcevoy, Aaron M; Kim, Yong Ho; Batha, Steven H; Horsfield, Colin J; Drew, Dave; Garbett, Warren; Rubery, Michael; Glebov, Vladimir Yu; Roberts, Samuel; Frenje, Johan A

    2008-01-01

    Glass capsules were imploded in direct drive on the OMEGA laser [T. R. Boehly et aI., Opt. Commun. 133, 495, 1997] to look for anomalous degradation in deuterium/tritium (DT) yield (i.e., beyond what is predicted) and changes in reaction history with {sup 3}He addition. Such anomalies have previously been reported for D/{sup 3}He plasmas, but had not yet been investigated for DT/{sup 3}He. Anomalies such as these provide fertile ground for furthering our physics understanding of ICF implosions and capsule performance. A relatively short laser pulse (600 ps) was used to provide some degree of temporal separation between shock and compression yield components for analysis. Anomalous degradation in the compression component of yield was observed, consistent with the 'factor of two' degradation previously reported by MIT at a 50% {sup 3}He atom fraction in D{sub 2} using plastic capsules [Rygg et aI., Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT, but consistent with LANL results in D{sub 2}/{sup 3}He [Wilson, et aI., lml Phys: Conf Series 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression ofcapsules containing {sup 3}He. Leading candidate explanations are poorly understood Equation-of-State (EOS) for gas mixtures, and unanticipated particle pressure variation with increasing {sup 3}He addition.

  18. Hydrodynamic Instability Growth in Polar-Direct-Drive Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.; Shvydky, A.; Radha, P. B.; Rosenberg, M. J.; Goncharov, V. N.; Marshall, F. J.; Knauer, J. P.; Regan, S. P.; Sangster, T. C.; Nikroo, A.; Wallace, R. J.

    2015-11-01

    Polar direct drive (PDD) is an alternative, direct-drive inertial confinement fusion platform being developed at the National Ignition Facility (NIF). Shell stability of the target is of key importance for an optimized performance. We have begun an experimental campaign to characterize Rayleigh-Taylor (RT) growth and laser imprint in spherical PDD implosions on the NIF. Plastic, cone-in-shell targets with an outer diameter of ~ 2 . 2 mm were imploded, and the RT-amplified shell mass modulations were tracked via measurements of the 2-D optical depth variations using soft x-ray radiography. The RT growth of discrete modes was investigated by machining single-mode, sinusoidal corrugations onto the target surface, which acted as well-characterized seeds. We will present platform characterization and backlighter optimization data as well as experimental results of instability growth in spherical PDD experiments on the NIF. The experimental data will be compared to 2-D DRACO simulations and strategies for measuring high l-mode perturbations > 300 and for mitigating imprint in future PDD experiments will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Framed X-Ray Imaging of Cryogenic Target Implosion Cores on Omega

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Goncharov, V. N.; Glebov, V. Yu.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2015-11-01

    Cryogenic DT target implosions being performed on the OMEGA Laser System are now being diagnosed by two high-speed x-ray framing cameras (~ 30-ps frame times) able to time- and space-resolve the evolving high-pressure stagnating plasma core. One high-speed framing camera is coupled to a pinhole array and is able to image the core emission every 15 ps with ~ 16- μm spatial resolution. It can accurately measure the time of x-ray emission peak and duration. The other framing camera is coupled to a novel 16-image Kirkpatrick-Baez (KB)-type x-ray optic providing ~ 7- μm spatial resolution and can also sample the emission with images spaced in time by as little as ~ 15 ps. The core emission size determined from the framed KB images at the peak of stagnation allows for inferences of core pressure when combined with measurements of the ion temperature, burnwidth, and neutron yield. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Three-Dimensional Simulations of the Deceleration Phase of Inertial Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Woo, K. M.; Betti, R.; Bose, A.; Epstein, R.; Delettrez, J. A.; Anderson, K. S.; Yan, R.; Chang, P.-Y.; Jonathan, D.; Charissis, M.

    2015-11-01

    The three-dimensional radiation-hydrodynamics code DEC3D has been developed to model the deceleration phase of direct-drive inertial confinement fusion implosions. The code uses the approximate Riemann solver on a moving mesh to achieve high resolution near discontinuities. The domain decomposition parallelization strategy is implemented to maintain high computation efficiency for the 3-D calculation through message passing interface. The implicit thermal diffusion is solved by the parallel successive-over-relaxation iteration. Results from 3-D simulations of low-mode Rayleigh-Taylor instability are presented and compared with 2-D results. A systematic comparison of yields, pressures, temperatures, and areal densities between 2-D and 3-D is carried out to determine the additional degradation in target performance caused by the three-dimensionality of the nonuniformities. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  1. First high-convergence cryogenic implosion in a near-vacuum hohlraum

    SciTech Connect

    Berzak Hopkins, L.  F.; Meezan, N.  B.; Le Pape, S.; Divol, L.; Mackinnon, A.  J.; Ho, D.  D.; Hohenberger, M.; Jones, O.  S.; Kyrala, G.; Milovich, J.  L.; Pak, A.; Ralph, J.  E.; Ross, J.  S.; Benedetti, L.  R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D.  N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E.  P.; Hatarik, R.; Herrmann, H.  W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H.  F.; Rygg, J.  R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R.  P. J.; Volegov, P.  L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O.  L.; Hsing, W.; Edwards, M.  J.

    2015-04-29

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.

  2. Instability growth seeded by ablator material inhomogeneity in implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Haan, S. W.; Baxamusa, S. H.; Celliers, P. M.; Collins, G. W.; Clark, D. S.; Nikroo, A.; Stadermann, M.; Ho, D. D.; Meezan, N. B.; Smalyuk, V.; Weber, C. R.; Huang, H.; Hoover, D. E.; Nguyen, A. Q. L.; Requieron, W.; Youngblood, K. P.; Kline, J. L.; Simakov, A. N.; Wilson, D. C.; Yi, S. A.

    2015-11-01

    Previous work [Physics of Plasmas 22, 032708 (2015)] on instability growth seeded by oxygen in CH NIF capsules has been extended. Oxygenation of CH can be caused by exposure to X-rays, UV, or visible light, such that irregularities in oxygen are very likely to dominate surface roughness as seed for instabilities in CH NIF implosions. 3D Rayleigh-Taylor experiments show structure that can most plausibly be explained as resulting from this oxygen. Experiments are planned on Omega and NIF to validate this phenomenon, which is still primarily simulation-motivated. Design work and available results for these experiments will be described. The oxygenation of CH might be mitigated by a coating of aluminum oxide on the outside of the shells. Growth is also seeded in Be shells, by density and composition non-uniformity from both oxygen and Ar, and in High Density Carbon shells by density nonuniformity. We present updated requirements for these nonuniformites, and compare to characterization of current shells. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  3. Modeling ICF Spherical Implosion Instabilities in 3D with Exact Energy Conservation

    NASA Astrophysics Data System (ADS)

    Fatenejad, Milad; Moses, Gregory

    2009-11-01

    We will present the results of 3D instability simulations performed on spherically convergent geometries with a new 3D Lagrangian hydrodynamics code, cooper. The code uses a compatible discretization of the conservation equations to ensure that energy is conserved to within machine round off error [Caramana JCP 146, 227 (1998)]. Modifications are made to the discrete equations to ensure that spherically symmetric implosions can be performed on non-orthogonal Cartesian grids [Caramana JCP 157, 89 (2000)]. Subzonal restoring forces counteract anomalous grid distortions [Carmana JCP 142, 521 (1998)] and an edge-centered viscosity is used to capture shocks [Caramana JCP 215, 385 (2006)]. Cooper is parallelized using domain decomposition. This is necessary due to the large processor and memory requirements associated with simulations in three dimensions. Advanced computational libraries are used to reduce the complexity of the code without sacrificing features. One example is the MOAB library [Tautges Engr. Comput. 20, 286 (2004)] which manages the mesh and is responsible for communicating information between processes.

  4. Effect of higher z dopants on implosion dynamics: X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kyrala, George A.; Wilson, Douglas C.; Benage, John F.; Gunderson, Mark; Klare, Ken; Frenje, Johan; Petrasso, Richard; Garbett, Warren; James, Steven; Glebov, Vladimir; Yaakobi, Barukh

    2007-05-01

    Low- z dopants such as argon are used to characterize the plasma properties in imploding inertial confinement fusion (ICF) capsules. Higher z dopants will be used as the temperature of the capsules is increased especially as we approach ignition on the National Ignition Facility (NIF). The presence of the higher z dopants also affects the dynamics of the implosion as it increases the electron density, which increases the radiation losses from the plasma allowing the plasma to compress to a smaller volume. In the present study, we examine the effects at higher dopant densities. While a normal glass capsule loses energy to radiation during compression, the high- z shells will confine the radiation even as equilibrium burn is approached. We have fielded thin 1-mm diameter glass shells filled with varying amounts of xenon and krypton gas to study the progression from non-equilibrium to equilibrium burn as the dopant gas concentration is increased. The shells used for these experiments also contained 3He to measure the proton spectrum from the D 3He reaction providing information about the target temperature and the density-radius product, ρR. Here we present results using the X-ray measurements, as well as discuss some of the issues and the progress we made.

  5. X-ray emission measurements from implosion experiments with Fe doped glass capsules

    NASA Astrophysics Data System (ADS)

    Wysocki, Fred; Benage, John; Kyrala, George; Dodd, Evan; Wilson, Doug

    2009-11-01

    Recent results obtained for glass capsule implosions at the Omega laser indicate that when the gas contains a high z dopant gas, simulations do not match the compression and yield of the capsule, even when using a mix model. A critical time for when the experiments deviate from predictions occurs when the reflected shock hits the imploding shell. We have identified two possible issues that the codes may have incorrect, the density of the shell at this critical time and the density and temperature profile in the gas. To address these questions, we are attempting two new measurements in these experiments. These are x-ray radiography of the shell and temporally and spatially resolved temperature and density measurements in the gas. In this poster, we present our plan for the time and space resolved gas measurements utilizing a new multiframe monochromatic imager (MMI) diagnostic. This diagnostic will utilize emission from Fe ions that have been mixed into the gas from the shell. We will present data from some recent measurements that determine the K-shell Fe emission from the gas as a function of Fe dopant levels in the glass. We will also give results for the impact such mixing has on the performance of the capsules. The implications to obtaining the desired temperature and density profiles will be discussed.

  6. First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Hohenberger, M.; Jones, O. S.; Kyrala, G.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D. N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Herrmann, H. W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Volegov, P. L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O. L.; Hsing, W.; Edwards, M. J.

    2015-05-01

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ˜3.5 ) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 ×1015 neutrons, with 20% calculated alpha heating at convergence ˜27 × .

  7. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N. B.; Mackinnon, A. J.; Ho, D. D.; Jones, O. S.; Khan, S.; Milovich, J. L.; Ross, J. S.; Amendt, P.; Casey, D.; Celliers, P. M.; Pak, A.; Peterson, J. L.; Ralph, J.; Rygg, J. R.

    2015-05-01

    Recent experiments at the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] have explored driving high-density carbon ablators with near-vacuum hohlraums, which use a minimal amount of helium gas fill. These hohlraums show improved efficiency relative to conventional gas-filled hohlraums in terms of minimal backscatter, minimal generation of suprathermal electrons, and increased hohlraum-capsule coupling. Given these advantages, near-vacuum hohlraums are a promising choice for pursuing high neutron yield implosions. Long pulse symmetry control, though, remains a challenge, as the hohlraum volume fills with material. Two mitigation methodologies have been explored, dynamic beam phasing and increased case-to-capsule ratio (larger hohlraum size relative to capsule). Unexpectedly, experiments have demonstrated that the inner laser beam propagation is better than predicted by nominal simulations, and an enhanced beam propagation model is required to match measured hot spot symmetry. Ongoing work is focused on developing a physical model which captures this enhanced propagation and on utilizing the enhanced propagation to drive longer laser pulses than originally predicted in order to reach alpha-heating dominated neutron yields.

  8. Modeling of the merging, liner formation, implosion of hypervelocity plasma jets for the PLX- α project

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris

    2015-11-01

    A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.

  9. Hydrodynamic Instability Growth Measurements at the Ablator-Fuel Interface in Layered ICF Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Weber, Chris; Casey, Dan; Bunn, Tom; Carlson, Lane; Dylla-Spears, Rebecca; Kozioziemski, Bernie; Macphee, Andy; Sater, Jim; Robey, Harry; Smalyuk, Vladimir

    2015-11-01

    Based on the well-established Hydro-growth Radiography (HGR) concept we have successfully developed and fielded a new target platform to measure instability growth at the ablator-fuel interface in layered capsule implosions on the NIF. We present the results of a proof-of-principle experiment for which mode 60 perturbations with an amplitude of 4.4 μm peak-to-valley were laser-machined at the inside of a 0.8-scale plastic ablator capsule. A 55 μm thick, polycrystalline DT ice layer was grown on top of these perturbations. High quality radiography data were recorded at 4 times, showing the growth of these perturbations in both the linear and non-linear stage. We find good agreement with preliminary HYDRA simulations that include small-scale perturbations introduced by the laser machining. Future directions will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE- AC52-07NA27344.

  10. Three-dimensional simulations of Nova high growth factor capsule implosion experiments

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Tipton, R. E.; Landen, O. L.; Murphy, T. J.; Amendt, P.; Haan, S. W.; Hatchett, S. P.; Keane, C. J.; McEachern, R.; Wallace, R.

    1996-05-01

    Capsule implosion experiments carried out on the Nova laser [E. M. Campbell et al., Rev. Sci. Instrum. 57, 2101 (1986)] are simulated with the three-dimensional HYDRA radiation hydrodynamics code [NTIS Document No. DE-96004569 (M. M. Marinak et al. in UCRL-LR-105821-95-3)]. Simulations of ordered, near single mode perturbations indicate that structures which evolve into round spikes can penetrate farthest into the hot spot. Bubble-shaped perturbations can burn through the capsule shell fastest, in which case they cause even more damage. A simulation of a capsule with a multimode perturbation of moderate amplitude shows spike amplitudes evolving in good agreement with a saturation model during the deceleration phase. The presence of sizable low mode asymmetry, caused either by drive asymmetry or perturbations in the capsule shell, can dramatically affect the manner in which spikes approach the center of the hot spot. Three-dimensional coupling between the low mode shell perturbations intrinsic to Nova capsules and the drive asymmetry is found to be important, bringing the simulated neutron yields into closer agreement with the experimental values.

  11. Code Validation Utilizing Spectral Data Analysis of ICF Implosion Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Gunderson, Mark; Haynes, Donald, Jr.; Delamater, Norman; Regan, Sean

    2003-10-01

    Time-resolved spectral data from recent ICF implosion experiments of plastic microballoons containing deuterium fuel doped with argon is proving quite useful in checking the corresponding 1D and 2D simulation results from the multi-dimensional hydrocode RAGE [1]. Comparisons with experimental density and temperature determined by fitting theoretical argon line shapes generated by MERL [2] to experimental data show that the simulated density and temperature in the fuel are too large unless some seed for mixing is incorporated. We use a nonuniform drive as a seed for mix. The need for mix is further supported through simulations using the 1D Lagrangian code HYADES (no mix) that give neutron yields an order of magnitude larger than that seen in experiment. This work was performed under NLUF grant DE-FG03-01SF22224 and DOE contract No. W-7405-ENG-36. [1] Gittings, M.L., SAIC's adaptive grid Eulerian hydrocode, DNA Numerical Methods Symposium, Apr 1992. [2] Mancini, R.C., Kilcrease, D.P., Woltz, L.A., and Hooper Jr., C.F., Comput. Phy. Commun. 63, 314-322 (1991).

  12. Ion separation effects in mixed-species ablators for inertial-confinement-fusion implosions.

    PubMed

    Amendt, Peter; Bellei, Claudio; Ross, J Steven; Salmonson, Jay

    2015-02-01

    Recent efforts to demonstrate significant self-heating of the fuel and eventual ignition at the National Ignition Facility make use of plastic (CH) ablators [O. A. Hurricane et al., Phys. Plasmas 21, 056314 (2014)]. Mainline simulation techniques for modeling CH capsule implosions treat the ablator as an average-atom fluid and neglect potential species separation phenomena. The mass-ablation process for a mixture is shown to lead to the potential for species separation, parasitic energy loss according to thermodynamic arguments, and reduced rocket efficiency. A generalized plasma barometric formula for a multispecies concentration gradient that includes collisionality and steady flows in spherical geometry is presented. A model based on plasma expansion into a vacuum is used to interpret reported experimental evidence for ablator species separation in an inertial-confinement-fusion target [J. S. Ross et al., Rev. Sci. Instrum. 83, 10E323 (2012)]. The possibility of "runaway" hydrogen ions in the thermoelectric field of the ablation front is conjectured. PMID:25768614

  13. Measurements of collective fuel velocities in deuterium-tritium exploding pusher and cryogenically layered deuterium-tritium implosions on the NIF

    SciTech Connect

    Gatu Johnson, M.; Casey, D. T.; Frenje, J. A.; Li, C.-K.; Seguin, F. H.; Petrasso, R. D.; Ashabranner, R.; Bionta, R.; LePape, S.; McKernan, M.; Mackinnon, A.; Kilkenny, J. D.; Knauer, J.; Sangster, T. C.

    2013-04-15

    For the first time, quantitative measurements of collective fuel velocities in Inertial Confinement Fusion implosions at the National Ignition Facility are reported. Velocities along the line-of-sight (LOS) of the Magnetic Recoil neutron Spectrometer (MRS), positioned close to the equator (73 Degree-Sign -324 Degree-Sign ), were inferred from the measured mean energy of the deuterium-tritium (DT)-primary neutron peak. Substantial mean energy shifts up to 113 {+-} 16 keV were observed in DT gas-filled exploding-pusher implosions, driven in a polar-direct drive configuration, which corresponds to bulk fuel velocities up to 210 {+-} 30 km/s. In contrast, only marginal bulk fuel velocities along the MRS LOS were observed in cryogenically layered DT implosions. Integrated analysis of data from a large number of cryogenically layered implosions has recently identified a deficit in achieved hot-spot energy of {approx}3 kJ for these implosions [C. Cerjan et al., Phys. Plasmas (2013)]. One hypothesis that could explain this missing energy is a collective, directional fuel velocity of {approx}190 km/s. As only marginal bulk fuel velocities are observed in the MRS data, this might indicate that turbulent or radial flows would be a likely explanation for the missing energy. However, a directional velocity close to perpendicular to the MRS LOS cannot be ruled out.

  14. Overview of 12-cm-Diameter, Argon Gas-Puff Experiments and Analyses with >200-ns Implosion Times at 3- to 6-MA Peak Currents

    SciTech Connect

    Commisso, R. J.; Apruzese, J. P.; Davis, J.; Murphy, D. P.; Thornhill, J. W.; Velikovich, A. L.; Weber, B. V.; Jackson, S. L.; Mosher, D.; Young, F. C.; Coverdale, C. A.; Jones, B.

    2009-01-21

    This paper reviews the motivation for, results from, and analyses of 12-cm-diameter argon gas-puff experiments carried out over the last four years on three generators at 3.2- to 6.5-MA peak currents, all with implosion times {>=}200 ns. Using the argon K-shell yield as a metric of implosion quality, high-quality implosions are obtained for an appropriate initial radial mass distribution, i.e., a distribution that is peaked on axis. Higher compressed densities and smaller final radii are observed compared to shell-like initial mass distributions. Theory and data suggest that these distributions mitigate the magnetic Rayleigh-Taylor instability. An energy analysis shows that (1) significant electrical energy is directly coupled to the pinch during the K-shell radiation pulse and (2) conversion of radially-directed kinetic energy into thermal energy is not the dominant mechanism responsible for the pinch K-shell radiation.

  15. Exploration of kinetic and multiple-ion-fluids effects in D3He and T3He gas-filled ICF implosions using multiple nuclear reaction histories

    NASA Astrophysics Data System (ADS)

    Sio, Hong; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Séguin, Fredrick; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Hoffman, Nelson; Kagan, Krigory; Molvig, Kim; Amendt, Peter; Bellei, Claudio; Wilks, Scott; Stoeckl, Christian; Glebov, Vladimir; Betti, Riccardo; Sangster, Thomas; Katz, Joseph

    2014-10-01

    To explore kinetic and multi-ion-fluid effects in D3He and T3He gas-filled shock-driven implosions, multiple nuclear reaction histories were measured using the upgraded Particle Temporal Diagnostic (PTD) on OMEGA. For D3He gas-filled implosions, the relative timing of the DD and D3He reaction histories were measured with 20 ps precision. For T3He gas-filled implosions (with 1-2% deuterium), the relative timing of the DT and D3He reaction histories were measured with 10 ps precision. The observed differences between the reaction histories on these two OMEGA experiments are contrasted to 1-D single-ion hydro simulations for different gas-fill pressure and gas mixture. This work is supported in part by the U.S. DOE, LLNL, LLE, and NNSA SSGF.

  16. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    PubMed

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-01

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  17. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    PubMed

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  18. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; Collins, T. J. B.; Craxton, R. S.; Davis, A. K.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu Johnson, M.; Glebov, V. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Jacobs-Perkins, D.; Janezic, R.; Karasik, M.; Keck, R. L.; Kelly, J. H.; Kessler, T. J.; Knauer, J. P.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Obenschain, S. P.; Petrasso, R. D.; Radha, P. B.; Rice, B.; Rosenberg, M. J.; Schmitt, A. J.; Schmitt, M. J.; Seka, W.; Shmayda, W. T.; Shoup, M. J.; Shvydky, A.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Ulreich, J.; Wittman, M. D.; Woo, K. M.; Yaakobi, B.; Zuegel, J. D.

    2016-07-01

    A record fuel hot-spot pressure Phs=56 ±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ˜60 % of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  19. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA

    DOE PAGES

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; et al

    2016-07-07

    A record fuel hot-spot pressure Phs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is ~40%more » lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less

  20. Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Casey, D. T.; Dewald, E.; Döppner, T.; Edwards, M. J.; Frenje, J. A.; Glenn, S.; Grim, G. P.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Johnson, M. G.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Lindl, J.; Landen, O. L.; Le Pape, S.; Ma, T.; MacPhee, A.; MacGowan, B. J.; MacKinnon, A. J.; Masse, L.; Meezan, N. B.; Moody, J. D.; Olson, R. E.; Ralph, J. E.; Robey, H. F.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Tommasini, R.; Town, R. P. J.; Smalyuk, V.; Glenzer, S. H.; Moses, E. I.

    2013-05-01

    Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ˜20 μm and ˜ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ˜40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ˜100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ˜10 μm, as the shock propagates into the lower density (˜1 g/cc), hot (˜250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ˜300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of

  1. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    SciTech Connect

    Haines, Brian M.

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion due to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.

  2. Implosion and heating diagnostics of fast ignition laser fusion target with ultra-high-speed x-ray imaging

    NASA Astrophysics Data System (ADS)

    Shiraga, H.; Zhong, J.; Koga, M.; Mochiyama, T.; Azechi, H.

    2008-11-01

    Implosion and heating experiments of Fast Ignition (FI) targets for FIREX-1 laser fusion project have been performed with Gekko-XII and PW/LFEX lasers at the Institute of Laser Engineering, Osaka University. Typical FI target has a hollow cone for guiding the short-pulse heating laser beam at the time of the maximum compression. The cone is mounted so as to in one-side penetrate the shell target. Detailed implosion hydrodynamics, FI heating and core plasma formation of plastic (CD) shell target with gold cone have been clarified by observing those with ultra high-speed imaging x-ray spectroscopy as well as neutron diagnostics. Multi-channel Multi-Imaging X-Ray Streak Camera (McMIXS) was improved for observation of time-resolved x-ray images and time-resolved two dimensional temperature distributions with spatial and temporal resolutions of 20 microns and 24 ps (42 Gfps), respectively. With this instrument, one can observe heating properties of the imploded core such as spatial distribution of the heated region and its temporal evolution. Also 2D-SIXS (Two-Dimensional Sampling Image X-ray Streak camera) coupled with an x-ray imager was improved for time resolved x-ray imaging of the imploded core. Synchronization of the heating beam injection to the implosion dynamics has been monitored with an x-ray framing camera. It was found that the shape of the core is neither spherical nor uniform mainly because of the existence of the cone and moving toward the tip of the cone and interacting with it. Experimental results are compared with two-dimensional hydrodynamic simulations. Target design taking into account of these phenomena is quite important because such core movement and jet formation can affect the condition of the cone.

  3. Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.

    1999-11-01

    The effects of beam smoothing, pulse shaping, and target dimensions on the compressed core and shell performance of directly driven plastic capsules are studied on the 30-kJ, 60-beam OMEGA laser system. Experiments are performed on surrogate-cryogenic capsules where the main fuel layer is a polymer shell (either CH or CD + CH) and the hot spot is provided by the fill gas (D_2, DHe^3, DT, or H_2). The spatial evolution of the fuel and shell regions is recorded using both broadband and monochromatic time-resolved x-ray imaging techniques. Similar targets with inner Ti-doped layers provide additional spectral diagnostics of the shell and a source of monochromatic emission. Core conditions are diagnosed with measurements of the emergent x-ray, neutron, and particle spectra. For 1-ns-square drive pulses the calculated convergence ratios are in excess of 30, and the primary neutron yields are >= 20% of clean 1-D with shell areal densities >100 mg/cm^2. Shaped pulse implosions have higher convergence ratios. Compressed-target conditions measured include those of fuel and shell areal density, fuel ion temperature, shell electron temperature, and primary (DD) and secondary (DT) neutron yield. The effect of pulse shaping and the beneficial effects of beam smoothing on the final core conditions are seen in these measurements. Mixing, resulting from laser-irradiation nonuniformities and target imperfections that seed the Rayleigh--Taylor instability, are observed in the x-ray and neutron spectra and are seen to depend on both the level of beam smoothing and the pulse shape. Comparison of these results with 1- and 2-D hydrocode simulations (including models of fuel-shell mixing) is ongoing. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

  4. Using HT and DT gamma rays to diagnose mix in Omega capsule implosions

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Herrmann, H. W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A.; Hammel, B. A.; Sepke, S. M.; Leatherland, A.; Gales, S.

    2016-05-01

    Experimental evidence [1] indicates that shell material can be driven into the core of Omega capsule implosions on the same time scale as the initial convergent shock. It has been hypothesized that shock-generated temperatures at the fuel/shell interface in thin exploding pusher capsules diffusively drives shell material into the gas core between the time of shock passage and bang time. We propose a method to temporally resolve and observe the evolution of shell material into the capsule core as a function of fuel/shell interface temperature (which can be varied by varying the capsule shell thickness). Our proposed method uses a CD plastic capsule filled with 50/50 HT gas and diagnosed using gas Cherenkov detection (GCD) to temporally resolve both the HT “clean” and DT “mix” gamma ray burn histories. Simulations using Hydra [2] for an Omega CD-lined capsule with a sub-micron layer of the inside surface of the shell pre-mixed into a fraction of the gas region produce gamma reaction history profiles that are sensitive to the depth to which this material is mixed. An experiment to observe these differences as a function of capsule shell thickness is proposed to determine if interface mixing is consistent with thermal diffusion λii∼T2/Z2ρ at the gas/shell interface. Since hydrodynamic mixing from shell perturbations, such as the mounting stalk and glue, could complicate these types of capsule-averaged temporal measurements, simulations including their effects also have been performed showing minimal perturbation of the hot spot geometry.

  5. Cross-code comparisons of mixing during the implosion of dense cylindrical and spherical shells

    NASA Astrophysics Data System (ADS)

    Joggerst, C. C.; Nelson, Anthony; Woodward, Paul; Lovekin, Catherine; Masser, Thomas; Fryer, Chris L.; Ramaprabhu, P.; Francois, Marianne; Rockefeller, Gabriel

    2014-10-01

    We present simulations of the implosion of a dense shell in two-dimensional (2D) spherical and cylindrical geometry performed with four different compressible, Eulerian codes: RAGE, FLASH, CASTRO, and PPM. We follow the growth of instabilities on the inner face of the dense shell. Three codes employed Cartesian grid geometry, and one (FLASH) employed polar grid geometry. While the codes are similar, they employ different advection algorithms, limiters, adaptive mesh refinement (AMR) schemes, and interface-preservation techniques. We find that the growth rate of the instability is largely insensitive to the choice of grid geometry or other implementation details specific to an individual code, provided the grid resolution is sufficiently fine. Overall, all simulations from different codes compare very well on the fine grids for which we tested them, though they show slight differences in small-scale mixing. Simulations produced by codes that explicitly limit numerical diffusion show a smaller amount of small-scale mixing than codes that do not. This difference is most prominent for low-mode perturbations where little instability finger interaction takes place, and less prominent for high- or multi-mode simulations where a great deal of interaction takes place, though it is still present. We present RAGE and FLASH simulations to quantify the initial perturbation amplitude to wavelength ratio at which metrics of mixing agree across codes, and find that bubble/spike amplitudes are converged for low-mode and high-mode simulations in which the perturbation amplitude is more than 1% and 5% of the wavelength of the perturbation, respectively. Other metrics of small-scale mixing depend on details of multi-fluid advection and do not converge between codes for the resolutions that were accessible.

  6. Spectroscopic studies of shell mix in directly driven implosion on SGIII prototype laser facility

    SciTech Connect

    Pu, Yudong; Huang, Tianxuan; Wei, Minxi; Tang, Qi; Song, Zifeng; Yang, Jiamin; Liu, Shenye; Jiang, Shaoen Ding, Yongkun

    2014-12-15

    We study shell mix during implosion using a capsule with a Cl-doped gas-shell interface that is also filled with Ar-doped deuterium gas. The Ar and Cl K-shell emissions are recorded with a flat crystal spectrometer. The He-β complex is analyzed to infer the electron temperature and density in the hotspot. Two regions of different hydrodynamic states are observed: a region of T{sub e} ∼ 1.2 ± 0.2 keV and n{sub e} ∼ (4 ± 0.5) × 10{sup 23 }cm{sup −3} and another of T{sub e} ∼ 0.6 ± 0.2 keV and n{sub e} ∼ (4 ± 0.5) × 10{sup 22 }cm{sup −3} probed by Ar and Cl ions, respectively. The neutron yield was also recorded and found to have reduced by a factor of ten for the Cl-doped capsule. By attributing the degradation of the neutron yield to the enhanced radiation loss due to the presence of mixed Cl ions and using the conservation of hotspot internal energy, the amount of mixed Cl ions is estimated to be ∼1.4 × 10{sup 14}, corresponding to a 0.1 μm thickness of the initial shell material and a mixing width of about 16 μm.

  7. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    NASA Astrophysics Data System (ADS)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine[1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  8. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    SciTech Connect

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-21

    The Sphinx machine{sup [1]} is a 6 MA, 1 {mu}S driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse{sup [2]}. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the {eta} parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  9. High aspect ratio hard x-ray (> 100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the National Ignition Facility

    SciTech Connect

    Doppner, T; Dewald, E; Divol, L; Burns, S; Izumi, N; Kline, J; LaCaille, G; McNaney, J; Prasad, R; Thomas, C A; Glenzer, S H; Landen, O; Author, A; Author, S G; Author, T

    2012-05-01

    We have fielded a multi-pinhole, hard x-ray (> 100 keV) imager to measure the spatially-resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions, and are a source of preheat to the deuterium-tritium fuel that could limit the compressibility required for ignition and burn. Our hard x-ray imaging measurements allow to set an upper limit to the DT fuel preheat, which we find is acceptable in current capsule implosions on the NIF.

  10. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    SciTech Connect

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; Clark, D. S.; Robey, H. F.; Pak, A.; MacPhee, A. G.; Baker, K. L.; Weber, C. R.; Ma, T.; Park, H. -S.; Döppner, T.; Callahan, D. A.; Haan, S. W.; Patel, P. K.; Peterson, J. L.; Hoover, D.; Nikroo, A.; Yeamans, C. B.; Merrill, F. E.; Volegov, P. L.; Fittinghoff, D. N.; Grim, G. P.; Edwards, M. J.; Landen, O. L.; Lafortune, K. N.; MacGowan, B. J.; Widmayer, C. C.; Sayre, D. B.; Hatarik, R.; Bond, E. J.; Nagel, S. R.; Benedetti, L. R.; Izumi, N.; Khan, S.; Bachmann, B.; Spears, B. K.; Cerjan, C. J.; Gatu Johnson, M.; Frenje, J. A.

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  11. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE PAGES

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; Clark, D. S.; Robey, H. F.; Pak, A.; MacPhee, A. G.; Baker, K. L.; Weber, C. R.; Ma, T.; et al

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  12. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility

    DOE PAGES

    Gatu Johnson, M.; Knauer, J. P.; Cerjan, C. J.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Kilkenny, J. D.; Munro, D. H.; Sayre, D. B.; et al

    2016-08-15

    Here, an accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures Tion are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD Tion are observed and the difference is seen to increase with increasing apparent DT Tion. The line-of-sight rms variations of both DD and DT Tion are small, ~150eV, indicating an isotropicmore » source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed Tion. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT Tion greater than the DD Tion, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.« less

  13. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility.

    PubMed

    Gatu Johnson, M; Knauer, J P; Cerjan, C J; Eckart, M J; Grim, G P; Hartouni, E P; Hatarik, R; Kilkenny, J D; Munro, D H; Sayre, D B; Spears, B K; Bionta, R M; Bond, E J; Caggiano, J A; Callahan, D; Casey, D T; Döppner, T; Frenje, J A; Glebov, V Yu; Hurricane, O; Kritcher, A; LePape, S; Ma, T; Mackinnon, A; Meezan, N; Patel, P; Petrasso, R D; Ralph, J E; Springer, P T; Yeamans, C B

    2016-08-01

    An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T_{ion} are observed and the difference is seen to increase with increasing apparent DT T_{ion}. The line-of-sight rms variations of both DD and DT T_{ion} are small, ∼150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T_{ion}. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T_{ion} greater than the DD T_{ion}, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results. PMID:27627237

  14. Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Chen, K. C.; Edgell, D. H.; Edwards, M. J.; Fittinghoff, D.; Frenje, J. A.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Guler, N.; Haan, S. W.; Hamza, A.; Hatarik, R.; Herrmann, H. W.; Hoover, D.; Hsing, W. W.; Izumi, N.; Kervin, P.; Khan, S.; Kilkenny, J. D.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O. L.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Mintz, M.; Moore, A.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R.; Rinderknecht, H. G.; Sayre, D. B.; Schneider, M.; Stoeffl, W.; Tommasini, R.; Town, R. P.; Widmann, K.; Wilson, D. C.; Yeamans, C. B.

    2014-09-01

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T2-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  15. Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions

    SciTech Connect

    Rosenberg, M. J.; Rinderknecht, H. G.; Hoffman, N. M.; Amendt, P. A.; Atzeni, S.; Zylstra, A. B.; Li, C. K.; Seguin, F. H.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Goncharov, V. N.; Meyerhofer, D. D.; Skupsky, S.; Bellei, C.; Pino, J.; Wilks, S. C.; Kagan, G.; Molvig, K.; Nikroo, A.

    2014-05-05

    Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly over-predict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of merit of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.

  16. A Numerical Model for Two-Plasmon-Decay Hot-Electron Production and Mitigation in Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Myatt, J. F.; Shaw, J. G.; Solodov, A. A.; Maximov, A. V.; Short, R. W.; Seka, W.; Follett, R. K.; Edgell, D. H.; Froula, D. H.; Goncharov, V. N.

    2015-11-01

    Hot-electron preheat, caused by laser-plasma instabilities, can impair the performance of inertial confinement fusion implosions. It is therefore imperative to understand processes that can generate hot electrons and to design mitigation strategies should preheat be found to be excessive at the ignition scale (laser-plasma interactions do not follow hydrodynamic scaling). For this purpose, a new 3-D model [laser-plasma simulation environment (LPSE)] has been constructed that computes hot-electron generation in direct-drive plasmas based on the assumption that two-plasmon decay is the dominant, hot-electron-producing instability. It uses an established model of TPD-driven turbulence together with a new GPU based hybrid particle method of hot-electron production. The time-dependent hot-electron power, total energy, and energy spectrum are computed and compared with data from recent OMEGA implosion experiments that have sought to mitigate TPD by the use of multilayered (mid- Z) ablators. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Exploration of the Transition from the Hydrodynamic-like to the Strongly Kinetic Regime in Shock-Driven Implosions

    DOE PAGES

    Rosenberg, M. J.; Rinderknecht, H. G.; Hoffman, N. M.; Amendt, P. A.; Atzeni, S.; Zylstra, A. B.; Li, C. K.; Seguin, F. H.; Sio, H.; Johnson, M. Gatu; et al

    2014-05-05

    Clear evidence of the transition from hydrodynamiclike to strongly kinetic shock-driven implosions is, for the first time, revealed and quantitatively assessed. Implosions with a range of initial equimolar D3He gas densities show that as the density is decreased, hydrodynamic simulations strongly diverge from and increasingly over-predict the observed nuclear yields, from a factor of ~2 at 3.1 mg/cm3 to a factor of 100 at 0.14 mg/cm3. (The corresponding Knudsen number, the ratio of ion mean-free path to minimum shell radius, varied from 0.3 to 9; similarly, the ratio of fusion burn duration to ion diffusion time, another figure of meritmore » of kinetic effects, varied from 0.3 to 14.) This result is shown to be unrelated to the effects of hydrodynamic mix. As a first step to garner insight into this transition, a reduced ion kinetic (RIK) model that includes gradient-diffusion and loss-term approximations to several transport processes was implemented within the framework of a one-dimensional radiation-transport code. After empirical calibration, the RIK simulations reproduce the observed yield trends, largely as a result of ion diffusion and the depletion of the reacting tail ions.« less

  18. Kinetic simulation of direct-drive capsule implosions and its comparison with experiments and radiation hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Le, Ari; Schmitt, Mark; Herrmann, Hans; Batha, Steve

    2015-11-01

    We have carried out simulations of direct-drive capsule implosion experiments conducted on Omega laser facility at the Laboratory of Laser energetics of the University of Rochester. The capsules had a glass shell (SiO2) with D, T, He-3 fills at various proportions. One-dimensional radiation hydrodynamic calculations and kinetic particle/hybrid simulations with LSP were carried out for the post-shot analysis to compare neutron yield, yield ratio, and shell convergence in assessing the effects of plasma kinetic effects. The LSP simulations were initiated with the output from the rad-hydro simulations at the end of the laser-drive. The electrons are treated as a fluid while all the ion species by the kinetic PIC technique. Our LSP simulations clearly showed species separation between the deuterons, tritons and He-3 during the implosion but significantly less after the compression. The neutron yield, gamma bang-time and -width from the LSP simulations compared favorably with experiments. Detail comparison among the kinetic simulations, rad-hydro simulations, and experimental results will be presented. Work performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  19. Slipping Magnetic Reconnection, Chromospheric Evaporation, Implosion, and Precursors in the 2014 September 10 X1.6-Class Solar Flare

    NASA Astrophysics Data System (ADS)

    Dudík, Jaroslav; Polito, Vanessa; Janvier, Miho; Mulay, Sargam M.; Karlický, Marian; Aulanier, Guillaume; Del Zanna, Giulio; Dzifčáková, Elena; Mason, Helen E.; Schmieder, Brigitte

    2016-05-01

    We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s‑1 are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset of apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.

  20. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments

    SciTech Connect

    Moody, J. D. Robey, H. F.; Celliers, P. M.; Munro, D. H.; Barker, D. A.; Baker, K. L.; Döppner, T.; Hash, N. L.; Berzak Hopkins, L.; LaFortune, K.; Landen, O. L.; LePape, S.; MacGowan, B. J.; Ralph, J. E.; Ross, J. S.; Widmayer, C.; Nikroo, A.; Giraldez, E.; Boehly, T.

    2014-09-15

    An innovative technique has been developed and used to measure the shock propagation speed along two orthogonal axes in an inertial confinement fusion indirect drive implosion target. This development builds on an existing target and diagnostic platform for measuring the shock propagation along a single axis. A 0.4 mm square aluminum mirror is installed in the ablator capsule which adds a second orthogonal view of the x-ray-driven shock speeds. The new technique adds capability for symmetry control along two directions of the shocks launched in the ablator by the laser-generated hohlraum x-ray flux. Laser power adjustments in four different azimuthal cones based on the results of this measurement can reduce time-dependent symmetry swings during the implosion. Analysis of a large data set provides experimental sensitivities of the shock parameters to the overall laser delivery and in some cases shows the effects of laser asymmetries on the pole and equator shock measurements.

  1. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    DOE PAGES

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; et al

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore » CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less

  2. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    SciTech Connect

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Grim, G. P.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Chen, K. C.; Edgell, D. H.; Edwards, M. J.; Fittinghoff, D.; Frenje, J. A.; Gatu-Johnson, M.; Glebov, V. Y.; Glenn, S.; Guler, N.; Haan, S. W.; Hamza, A.; Hatarik, R.; Herrmann, H. W.; Hoover, D.; Hsing, W. W.; Izumi, N.; Kervin, P.; Khan, S.; Kilkenny, J. D.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O. L.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Mintz, M.; Moore, A.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R.; Rinderknecht, H. G.; Sayre, D. B.; Schneider, M.; Stoeffl, W.; Tommasini, R.; Town, R. P.; Widmann, K.; Wilson, D. C.; Yeamans, C. B.

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  3. Implosion experiments using D2^3He filled glass capsules doped with noble gases: A Study.

    NASA Astrophysics Data System (ADS)

    Benage, John; Kyrala, George; Wilson, Doug; Gunderson, Mark; Makaruk, Hanna; Frenje, Johann; Li, C. K.; Petrasso, Richard; Yaakobi, Baruch; Garbett, Warren

    2007-11-01

    When simulations are unable to match the yield in ICF implosion experiments, ``mix'' is commonly used to fix the simulation. If this fix is in any way assumed to model reality, then we are assuming that the simulations calculate the effect of the mix on the implosion and yield correctly. To study whether this assumption is valid, we have done a series of experiments that purposely add a fixed amount of mix of varying atomic number and density. The experiments are very well characterized, measuring the proton and neutron yields, the ion and electron temperatures, the ρR and radius of the capsule, the radiation emission, and the x-ray spectra from the capsule. We find that,in general, the calculations have great difficulty matching this data. A summary of the measurements for various dopants and dopant levels and how well the calculations compare will be presented. Some possible reasons for the modeling difficulties will be discussed along with some preliminary efforts to address these problems.

  4. Probing off-Hugoniot states in Ta, Cu, and Al to 10 Mbar compression with magnetically driven liner implosions

    NASA Astrophysics Data System (ADS)

    Mattsson, T. R.; Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Robertson, G. R.; Knudson, M. D.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Robinson, A. C.; Tomlinson, K.; Blue, B. E.

    We report on a technique for obtaining off-Hugoniot equation of state data on solid metals by a magnetically driven cylindrical liner implosion on Sandia's Z-machine (Z). The sample material is in an inner tube with an outer tube composed of Al that serves as the current carrying cathode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. Photonic Doppler velocimetry measures the implosion velocity of the free inner surface of the sample material, and the explosion velocity of the return current anode free outer surface. The velocimetry measurements are used in conjunction with magnetohydrodynamic simulations and optimization to infer pressure and density in the sample. Results are presented for experiments on the Z-machine in which Ta, Cu, and Al samples were compressed to peak pressure 10 Mbar. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Knauer, J. P.; Cerjan, C. J.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Kilkenny, J. D.; Munro, D. H.; Sayre, D. B.; Spears, B. K.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Callahan, D.; Casey, D. T.; Döppner, T.; Frenje, J. A.; Glebov, V. Yu.; Hurricane, O.; Kritcher, A.; LePape, S.; Ma, T.; Mackinnon, A.; Meezan, N.; Patel, P.; Petrasso, R. D.; Ralph, J. E.; Springer, P. T.; Yeamans, C. B.

    2016-08-01

    An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures Tion are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD Tion are observed and the difference is seen to increase with increasing apparent DT Tion. The line-of-sight rms variations of both DD and DT Tion are small, ˜150 eV , indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed Tion. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT Tion greater than the DD Tion, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.

  6. Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    SciTech Connect

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Edwards, M. J.; Fittinghoff, D.; Glenn, S.; Haan, S. W.; Hamza, A.; and others

    2014-09-15

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T{sub 2}-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

  7. The Physics of Ignition Scale Hohlraums and ICF Implosions: When does size matter?

    NASA Astrophysics Data System (ADS)

    Rosen, Mordecai

    2011-10-01

    Model'') which uses our most modern tools, that has helped explore some of these issues, and describe how it continues to be refined. We also explain why, due to the stringent precision required for ignition, we depend on our models as general guideposts to the path to ignition, and not as infallible oracles. We demonstrate how an experimental campaign, guided by those models, can, in principle, achieve the precision in implosion velocity, symmetry, shock timing and hydrodynamic instability needed for ignition. Work performed for the U.S. DoE by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-490359.

  8. Design of indirectly driven, high-compression Inertial Confinement Fusion implosions with improved hydrodynamic stability using a 4-shock adiabat-shaped drive

    NASA Astrophysics Data System (ADS)

    Milovich, J. L.; Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R.

    2015-12-01

    Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm2, but with significantly lower total neutron yields (between 1.5 × 1014 and 5.5 × 1014) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the "high-foot" experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3-10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm2. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.

  9. Design of indirectly driven, high-compression Inertial Confinement Fusion implosions with improved hydrodynamic stability using a 4-shock adiabat-shaped drive

    SciTech Connect

    Milovich, J. L. Robey, H. F.; Clark, D. S.; Baker, K. L.; Casey, D. T.; Cerjan, C.; Field, J.; MacPhee, A. G.; Pak, A.; Patel, P. K.; Peterson, J. L.; Smalyuk, V. A.; Weber, C. R.

    2015-12-15

    Experimental results from indirectly driven ignition implosions during the National Ignition Campaign (NIC) [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] achieved a record compression of the central deuterium-tritium fuel layer with measured areal densities up to 1.2 g/cm{sup 2}, but with significantly lower total neutron yields (between 1.5 × 10{sup 14} and 5.5 × 10{sup 14}) than predicted, approximately 10% of the 2D simulated yield. An order of magnitude improvement in the neutron yield was subsequently obtained in the “high-foot” experiments [O. A. Hurricane et al., Nature 506, 343 (2014)]. However, this yield was obtained at the expense of fuel compression due to deliberately higher fuel adiabat. In this paper, the design of an adiabat-shaped implosion is presented, in which the laser pulse is tailored to achieve similar resistance to ablation-front instability growth, but with a low fuel adiabat to achieve high compression. Comparison with measured performance shows a factor of 3–10× improvement in the neutron yield (>40% of predicted simulated yield) over similar NIC implosions, while maintaining a reasonable fuel compression of >1 g/cm{sup 2}. Extension of these designs to higher laser power and energy is discussed to further explore the trade-off between increased implosion velocity and the deleterious effects of hydrodynamic instabilities.

  10. Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Robey, H. F.; Döppner, T.; Casey, D. T.; Clark, D. S.; Jones, O. S.; Milovich, J. L.; Peterson, J. L.; Bachmann, B.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Bionta, R.; Bond, E.; Bradley, D. K.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Chen, K.-C.; Goyon, C.; Grim, G.; Dixit, S. N.; Eckart, M. J.; Edwards, M. J.; Farrell, M.; Fittinghoff, D. N.; Frenje, J. A.; Gatu-Johnson, M.; Gharibyan, N.; Haan, S. W.; Hamza, A. V.; Hartouni, E.; Hatarik, R.; Havre, M.; Hohenberger, M.; Hoover, D.; Hurricane, O. A.; Izumi, N.; Jancaitis, K. S.; Khan, S. F.; Knauer, J. P.; Kroll, J. J.; Kyrala, G.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; MacPhee, A. G.; Mauldin, M.; Merrill, F. E.; Moore, A. S.; Nagel, S.; Nikroo, A.; Pak, A.; Patel, P. K.; Ralph, J. E.; Sayre, D. B.; Shaughnessy, D.; Spears, B. K.; Tommasini, R.; Turnbull, D. P.; Velikovich, A. L.; Volegov, P. L.; Weber, C. R.; Widmayer, C. C.; Yeamans, C.

    2016-10-01

    Radiation-driven, layered deuterium-tritium (DT) implosions were carried out using 3-shock and 4-shock "adiabat-shaped" drives and plastic ablators on the National Ignition Facility (NIF) [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. The purpose of these shots was to gain further understanding on the relative performance of the low-foot implosions of the National Ignition Campaign [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] versus the subsequent high-foot implosions [T. Döppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. The neutron yield performance in the experiment with the 4-shock adiabat-shaped drive was improved by factors ˜3 to ˜10, compared to five companion low-foot shots despite large low-mode asymmetries of DT fuel, while measured compression was similar to its low-foot companions. This indicated that the dominant degradation source for low-foot implosions was ablation-front instability growth, since adiabat shaping significantly stabilized this growth. For the experiment with the low-power 3-shock adiabat-shaped drive, the DT fuel compression was significantly increased, by ˜25% to ˜36%, compared to its companion high-foot implosions. The neutron yield increased by ˜20%, lower than the increase of ˜50% estimated from one-dimensional scaling, suggesting the importance of residual instabilities and asymmetries. For the experiment with the high-power, 3-shock adiabat-shaped drive, the DT fuel compression was slightly increased by ˜14% compared to its companion high-foot experiments. However, the compression was reduced compared to the lower-power 3-shock adiabat-shaped drive, correlated with the increase of hot electrons that hypothetically can be responsible for reduced compression in high-power adiabat-shaped experiments as well as in high-foot experiments. The total neutron yield in the high-power 3-shock adiabat-shaped shot N150416 was 8.5 × 1015 ± 0.2 × 1015, with the fuel areal density of 0.90 ± 0.07 g/cm2

  11. The experimental plan for cryogenic layered target implosions on the National Ignition Facility - The inertial confinement approach to fusion

    SciTech Connect

    Edwards, M. J.; Lindl, J. D.; Spears, B. K.; Weber, S. V.; Atherton, L. J.; Bleuel, D. L.; Bradley, D. K.; Callahan, D. A.; Cerjan, C. J.; Clark, D; Collins, G. W.; Fair, J. E.; Fortner, R. J.; Glenzer, S. H.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Hatchett, S. P.; Izumi, N.; Jacoby, B.

    2011-05-15

    Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with {rho}R>{approx}1 g/cm{sup 2} surrounding a 10 keV hot spot with {rho}R {approx} 0.3 g/cm{sup 2}. A working definition of ignition has been a yield of {approx}1 MJ. At this yield the {alpha}-particle energy deposited in the fuel would have been {approx}200 kJ, which is already {approx}10 x more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of {approx}10{sup 14-15} 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about the assembled fuel either by imaging the photons emitted by the hot central plasma, or by active probing of the dense shell by a separate high energy short pulse flash. The planned use of these targets and diagnostics to assess and optimize the assembly of the fuel and how this relates to the predicted performance of DT targets is described. It is found that a good predictor of DT target performance is the THD measurable parameter, Experimental Ignition Threshold Factor, ITFX {approx} Y x dsf {sup 2.3}, where Y is the measured neutron yield between 13 and 15 MeV, and dsf is the down scattered neutron fraction defined as the ratio of neutrons between 10 and 12 MeV and those between 13 and 15 MeV.

  12. Implosion, earthquake, and explosion recordings from the 2000 Seattle Kingdome Seismic Hazards Investigation of Puget Sound (SHIPS), Washington

    USGS Publications Warehouse

    Brocher, Thomas M.; Pratt, Thomas L.; Weaver, Craig S.; Snelson, Catherine M.; Frankel, Arthur D.

    2002-01-01

    This report describes seismic data obtained in Seattle, Washington, March 24-28, 2000, during a Seismic Hazards Investigation of Puget Sound (SHIPS). The seismic recordings obtained by this SHIPS experiment, nicknamed Kingdome SHIPS, were designed to (1) measure site responses throughout Seattle and to (2) help define the location of the Seattle fault. During Kingdome SHIPS, we recorded the Kingdome implosion, four 150-lb (68-kg) shots, and a Mw = 7.6 teleseism using a dense network of seismographs deployed throughout Seattle. The seismographs were deployed at a nominal spacing of 1 km in a hexagonal grid extending from Green Lake in the north to Boeing Field in the south. The Seattle Kingdome was a domed sports stadium located in downtown Seattle near the Seattle fault. The Seattle Kingdome was imploded (demolished) at 8:32 AM local time (16:32 UTC) on March 26 (JD 086), 2000. The seismic energy produced by implosion of the Kingdome was equivalent to a local earthquake magnitude of 2.3. Strong impacts produced by the implosion of the Kingdome generated seismic arrivals to frequencies as low as 0.1 Hz. Two shots located north of the Seattle fault, where the charges were detonated within the ground water column (Discovery and Magnuson Parks), were much more strongly coupled than were the two shots to the south of the Seattle fault, where the shots were detonated above the water table (Lincoln and Seward Parks). Thirty-eight RefTek stations, scattered throughout Seattle, recorded the Mw = 7.6 Japan Volcano Islands earthquake (22.4°N, 143.6°E, 104 km depth) of 28 March 2000 (JD 088). This teleseism produced useful signals for periods between 4 and 7 seconds. Only a few recordings of small magnitude local earthquakes were made, and these recordings are not presented. In this report, we describe the acquisition of these data, discuss the processing and merging of the data into common shot gathers, and illustrate the acquired data. We also describe the format and

  13. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility.

    PubMed

    Hagmann, C; Shaughnessy, D A; Moody, K J; Grant, P M; Gharibyan, N; Gostic, J M; Wooddy, P T; Torretto, P C; Bandong, B B; Bionta, R; Cerjan, C J; Bernstein, L A; Caggiano, J A; Herrmann, H W; Knauer, J P; Sayre, D B; Schneider, D H; Henry, E A; Fortner, R J

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the (198)Au/(196)Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix. PMID:26233419

  14. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    NASA Astrophysics Data System (ADS)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  15. Charged-particle measurements of ρR symmetry at shock-bang time in NIF implosions

    NASA Astrophysics Data System (ADS)

    Zylstra, A.; Séguin, F.; Li, C.; Frenje, J.; Sinenian, N.; Rosenberg, M.; Rinderknecht, H.; Manuel, M.; Gatu-Johnson, M.; Petrasso, R.; Friedrich, S.; Amendt, P.; Bionta, R.; Bradley, D.; Callahan, D.; Glenn, S.; Heeter, R.; Hicks, D.; Izumi, N.; Landen, O.; London, R.; MacKinnon, A.; Meezan, N.; Weber, W.; Delettrez, J.

    2012-10-01

    V. GLEBOV, P. RADHA, T. SANGSTER, LLE, R. OLSON, R. LEEPER, SNL, J. KLINE, G. KYRALA, D. WILSON, LANL, J. KILKENNY, A. NIKROO, GA. -- The Wedge Range Filter (WRF) proton spectrometers were developed for OMEGA and transferred to the NIF as National Ignition Campaign (NIC) diagnostics. In tuning campaign implosions containing D and ^3He gas, the WRFs are used to measure the spectrum of protons from D-^3He reactions. From the measured energy downshift of the D^3He protons, the total ρR is inferred through the plasma stopping power. Data from WRFs fielded simultaneously on the pole and equator indicate low-mode polar ρR asymmetries at shock flash. Significant swings in ρR P2/P0 are also observed over the ignition campaign data set, attributed to low-mode x-ray drive inhomogeneity. This work was supported in part by the U.S. DOE, LLNL and LLE.

  16. Measurements of the conduction-zone length and mass ablation rate in cryogenic direct-drive implosions on OMEGA

    SciTech Connect

    Michel, D. T.; Davis, A. K.; Goncharov, V. N.; Sangster, T. C.; Hu, S. X.; Igumenshchev, I. V.; Meyerhofer, D. D.; Seka, W.; Froula, D. H.

    2015-04-14

    Measurements of the conduction-zone length (110 ± 20 μm at t = 2.8 ns), the averaged mass ablation rate of the deuterated plastic (7.95 ± 0.3 μg/ns), shell trajectory, and laser absorption are made in direct-drive cryogenic implosions and are used to quantify the electron thermal transport through the conduction zone. Hydrodynamic simulations that use nonlocal thermal transport and cross-beam energy transfer models reproduce these experimental observables. Hydrodynamic simulations that use a time-dependent flux-limited model reproduce the measured shell trajectory and the laser absorption but underestimate the mass ablation rate by ~10% and the length of the conduction zone by nearly a factor of 2.

  17. Uniformity of spherical shock wave dynamically stabilized by two successive laser profiles in direct-drive inertial confinement fusion implosions

    SciTech Connect

    Temporal, M.; Canaud, B.; Garbett, W. J.; Ramis, R.

    2015-10-15

    The implosion uniformity of a directly driven spherical inertial confinement fusion capsule is considered within the context of the Laser Mégajoule configuration. Two-dimensional (2D) hydrodynamic simulations have been performed assuming irradiation with two laser beam cones located at 49° and 131° with respect to the axis of symmetry. The laser energy deposition causes an inward shock wave whose surface is tracked in time, providing the time evolution of its non-uniformity. The illumination model has been used to optimize the laser intensity profiles used as input in the 2D hydro-calculations. It is found that a single stationary laser profile does not maintain a uniform shock front over time. To overcome this drawback, it is proposed to use two laser profiles acting successively in time, in order to dynamically stabilize the non-uniformity of the shock front.

  18. First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the National Ignition Facility.

    PubMed

    Smalyuk, V A; Casey, D T; Clark, D S; Edwards, M J; Haan, S W; Hamza, A; Hoover, D E; Hsing, W W; Hurricane, O; Kilkenny, J D; Kroll, J; Landen, O L; Moore, A; Nikroo, A; Peterson, L; Raman, K; Remington, B A; Robey, H F; Weber, S V; Widmann, K

    2014-05-01

    Ignition experiments have shown an anomalous susceptibility to hydrodynamic instability growth. To help understand these results, the first hydrodynamic instability growth measurements in indirectly driven implosions on the National Ignition Facility were performed at ignition conditions with peak radiation temperatures up to ∼300  eV. Plastic capsules with two-dimensional preimposed, sinusoidal outer surface modulations of initial wavelengths of 240 (corresponding to a Legendre mode number of 30), 120 (mode 60), and 80  μm (mode 90) were imploded by using actual low-adiabat ignition laser pulses. The measured growth was in excellent agreement, validating 2D hydra simulations for the most dangerous modes in the acceleration phase. These results reinforce confidence in the predictive capability of calculations that are paramount to illuminating the path toward ignition. PMID:24856703

  19. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hagmann, C.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Herrmann, H. W.; Knauer, J. P.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.

    2015-07-01

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the 198Au/196Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  20. Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility

    SciTech Connect

    Hagmann, C. Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Gharibyan, N.; Gostic, J. M.; Wooddy, P. T.; Torretto, P. C.; Bandong, B. B.; Bionta, R.; Cerjan, C. J.; Bernstein, L. A.; Caggiano, J. A.; Sayre, D. B.; Schneider, D. H.; Henry, E. A.; Fortner, R. J.; Herrmann, H. W.; Knauer, J. P.

    2015-07-15

    A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the {sup 198}Au/{sup 196}Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

  1. Measurements of the Conduction-Zone Length and Mass Ablation Rate in Cryogenic Direct-Drive Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Michel, D. T.; Davis, A. K.; Goncharov, V. N.; Sangster, T. C.; Hu, S. X.; Igumenshchev, I. V.; Meyerhofer, D. D.; Seka, W.; Froula, D. H.

    2015-04-01

    Measurements of the conduction-zone length (110 ±20 μ m at t =2.8 ns ), the averaged mass ablation rate of the deuterated plastic (7.95 ±0.3 μ g /ns ), shell trajectory, and laser absorption are made in direct-drive cryogenic implosions and are used to quantify the electron thermal transport through the conduction zone. Hydrodynamic simulations that use nonlocal thermal transport and cross-beam energy transfer models reproduce these experimental observables. Hydrodynamic simulations that use a time-dependent flux-limited model reproduce the measured shell trajectory and the laser absorption but underestimate the mass ablation rate by ˜10 % and the length of the conduction zone by nearly a factor of 2.

  2. Numerical Simulations of Hydrodynamic Instability Growth in Polar-Direct-Drive Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Shvydky, A.; Hohenberger, M.; Radha, P. B.; Rosenberg, M. J.; Craxton, R. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.

    2015-11-01

    Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical to the success of polar-direct-drive ignition at the National Ignition Facility (NIF). To develop a platform for laser-imprint studies, hydrodynamic instability growth experiments in laser-driven implosions were performed on the NIF. The experiments used cone-in-shell targets with sinusoidal modulations of various wavelengths and amplitudes machined on the surface. Throughshell x-ray radiography was used to measure optical depth variations, from which the amplitudes of the shell areal-density modulations were extracted. Results of DRACO simulations of the growth of preimposed modulations and imprint-seeded perturbations will be presented and compared with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. The dynamics of hot-electron heating in direct-drive-implosion experiments caused by two-plasmon-decay instability

    NASA Astrophysics Data System (ADS)

    Myatt, J. F.; Zhang, J.; Delettrez, J. A.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; DuBois, D. F.; Russell, D. A.; Vu, H. X.

    2012-02-01

    Two-plasmon-decay (TPD) instability is identified as a potential source of target preheat in direct-drive-implosion experiments on OMEGA. A physical model of electron heating is developed that relies on extended Zakharov simulations to predict the nonlinearly saturated Langmuir wave spectrum. Hot electron generation is estimated via a test-particle approach. It is noted that because of the relatively low areal density of the targets during the time of TPD instability, hot-electron recirculation and reheating are potentially important effects. This is modeled by a particular form of boundary conditions on the test particles. Such boundary conditions might prove useful in other kinetic simulations of particle heating where recirculation is a possibility.

  4. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    DOE PAGES

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; et al

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurementsmore » of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.« less

  5. Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging

    SciTech Connect

    Rosenberg, M. J. Séguin, F. H.; Rinderknecht, H. G.; Zylstra, A. B.; Li, C. K.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Petrasso, R. D.; Amendt, P. A.; Wilks, S. C.; Pino, J.; Atzeni, S.; Hoffman, N. M.; Kagan, G.; Molvig, K.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; and others

    2015-06-15

    The significance and nature of ion kinetic effects in D{sup 3}He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, N{sub K}) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (N{sub K} ∼ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  6. Assessment of ion kinetic effects in shock-driven inertial confinement fusion (ICF) implosions using fusion burn imaging

    SciTech Connect

    Rosenberg, M. J.; Séguin, F. H.; Amendt, P. A.; Atzeni, S.; Rinderknecht, H. G.; Hoffman, N. M.; Zylstra, A. B.; Li, C. K.; Sio, H.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Glebov, V. Yu.; Stoeckl, C.; Seka, W.; Marshall, F. J.; Delettrez, J. A.; Sangster, T. C.; Betti, R.; Wilks, S. C.; Pino, J.; Kagan, G.; Molvig, K.; Nikroo, A.

    2015-06-02

    The significance and nature of ion kinetic effects in D³He-filled, shock-driven inertial confinement fusion implosions are assessed through measurements of fusion burn profiles. Over this series of experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number, NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially resolved measurements of the fusion burn are used to examine kinetic ion transport effects in greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison of measured and simulated burn profiles shows that models including ion transport effects are able to better match the experimental results. In implosions characterized by large Knudsen numbers (NK ~ 3), the fusion burn profiles predicted by hydrodynamics simulations that exclude ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that includes a model of ion diffusion is able to qualitatively match the measured profile shapes. Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the observed trends, though further refinement of the models is needed for a more complete and quantitative understanding of ion kinetic effects.

  7. Implosion dynamics and radiation characteristics of wire-array Z pinches on the Cornell Beam Research Accelerator

    SciTech Connect

    McBride, R. D.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Greenly, J. B.; Kusse, B. R.; Douglass, J. D.; Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.

    2009-01-15

    Experimental results are presented that characterize the implosion dynamics and radiation output of wire-array Z pinches on the 1-MA, 100-ns rise-time Cornell Beam Research Accelerator (COBRA) [J. B. Greenly et al., Rev. Sci. Instrum. 79, 073501 (2008)]. The load geometries investigated include 20-mm-tall cylindrical arrays ranging from 4 to 16 mm in diameter, and consisting of 8, 16, or 32 wires of either tungsten, aluminum, or Invar (64% iron, 36% nickel). Diagnostics fielded include an optical streak camera, a time-gated extreme-ultraviolet framing camera, a laser shadowgraph system, time-integrated pinhole cameras, an x-ray wide-band focusing spectrograph with spatial resolution, an x-ray streak camera, a load voltage monitor, a Faraday cup, a bolometer, silicon diodes, and diamond photoconducting detectors. The data produced by the entire suite of diagnostics are analyzed and presented to provide a detailed picture of the overall implosion process and resulting radiation output on COBRA. The highest x-ray peak powers (300-500 GW) and total energy yields (6-10 kJ) were obtained using 4-mm-diameter arrays that stagnated before peak current. Additional findings include a decrease in soft x-ray radiation prior to stagnation as the initial wire spacing was changed from 1.6 mm to 785 {mu}m, and a timing correlation between the onset of energetic electrons, hard x-ray generation, and the arrival of trailing current on axis - a correlation that is likely due to the formation of micropinches. The details of these and other findings are presented and discussed.

  8. Design of an electronic charged particle spectrometer to measure (rho R), yield, and implosion symmetry on the OMEGA Upgrade

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Li, C. K.; Petrasso, R. D.; Wenzel, K. W.; Knauer, J. P.

    1994-11-01

    The preliminary design for a state-of-the-art diagnostic that will measure a broad energy spectrum of charged particles generated in the OMEGA Upgrade facility is investigated. Using a set of photodiodes approximately 10 and a 0.8 Tesla permanent magnet, the diagnostic will uniquely determine particle energies and identities from 0.2 MeV up to the maximum charged particle energies (10.6 MeV tritons, 12.5 MeV deuterons and 17.4 MeV protons). With its high density picture elements, each photodiode has 10(exp 6) single-hit detectors, giving the spectrometer a dynamic range of 1 - 10(exp 5) particles/shot. For example, in the case of a DT yield of 10(exp 9) neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Furthermore, the measurement of knock-on D and T spectra will allow rho R's up to 0.15 g/sq cm to be measured (for a 1 keV plasma), or 0.3 g/sq cm if hydrogen doping is used. In addition, the yield and slowing down of secondary protons may be used to determine rho R up to 0.3 g/sq cm. Significantly, this diagnostic will also directly measure the DD fusion yield and energy degradation of nascent 3 MeV protons. By using two such compact spectrometers to measure the yield and spectra on widely separated ports around the OMEGA Upgrade target chamber, the implosion and bum symmetry can be determined. Furthermore, the ion temperature, and, in principle, even the electron temperature can be measured. The diagnostic and its development will be fully tested at several critical steps, utilizing 0.2-16 MeV protons (and several other charged particles and neutrons) from our absolutely calibrated Cockcroft-Walton facility.

  9. Implosion dynamics and radiation characteristics of wire-array Z pinches on the Cornell Beam Research Accelerator

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Shelkovenko, T. A.; Pikuz, S. A.; Hammer, D. A.; Greenly, J. B.; Kusse, B. R.; Douglass, J. D.; Knapp, P. F.; Bell, K. S.; Blesener, I. C.; Chalenski, D. A.

    2009-01-01

    Experimental results are presented that characterize the implosion dynamics and radiation output of wire-array Z pinches on the 1-MA, 100-ns rise-time Cornell Beam Research Accelerator (COBRA) [J. B. Greenly et al., Rev. Sci. Instrum. 79, 073501 (2008)]. The load geometries investigated include 20-mm-tall cylindrical arrays ranging from 4to16mm in diameter, and consisting of 8, 16, or 32 wires of either tungsten, aluminum, or Invar (64% iron, 36% nickel). Diagnostics fielded include an optical streak camera, a time-gated extreme-ultraviolet framing camera, a laser shadowgraph system, time-integrated pinhole cameras, an x-ray wide-band focusing spectrograph with spatial resolution, an x-ray streak camera, a load voltage monitor, a Faraday cup, a bolometer, silicon diodes, and diamond photoconducting detectors. The data produced by the entire suite of diagnostics are analyzed and presented to provide a detailed picture of the overall implosion process and resulting radiation output on COBRA. The highest x-ray peak powers (300-500GW) and total energy yields (6-10kJ) were obtained using 4-mm-diameter arrays that stagnated before peak current. Additional findings include a decrease in soft x-ray radiation prior to stagnation as the initial wire spacing was changed from 1.6mmto785μm, and a timing correlation between the onset of energetic electrons, hard x-ray generation, and the arrival of trailing current on axis—a correlation that is likely due to the formation of micropinches. The details of these and other findings are presented and discussed.

  10. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    SciTech Connect

    Gatu Johnson, M. Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D.; Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B.; Knauer, J. P.; Sangster, T. C.; Herrmann, H. W.; Kilkenny, J. D.

    2014-11-15

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4–20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80–140 mg/cm{sup 2} and CH-ablator ρR's of 400–680 mg/cm{sup 2} are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

  11. Hydra modeling of the effect of nearly complete inflight ice and ablator mix in a NIF implosion on several key diagnostics

    NASA Astrophysics Data System (ADS)

    Kritcher, Andrea; Sepke, Scott; Scott, Howard; Regan, Sean; Masse, Laurent; Raman, Kumar; Grim, Gary; Cerjan, Charlie; Marinak, Marty; Spears, Brian; Meezan, Nathan; Suter, Larry

    2012-10-01

    A programmed mix model is used with the radiation hydrodynamics code HYDRA to explore the effects of nearly complete inflight mixing of the ice and ablator on NIC implosion performance and diagnostic signatures. In NIC DT implosions, nearly complete mix of the DT ice and ablator can be envisioned via cold jets of material penetrating the ice possibly combined with turbulence at the fuel-ablator interface. The quantitative impact of this scenario on several key NIF diagnostics, including yield, ion temperature, downscattered neutron spectrum, neutron imaging, Ge and Cu atomic emission analysis, gated x-ray imaging, and streaked x-ray radiography will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-564191.

  12. Measurements of fuel and ablator ρR in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility.

    PubMed

    Gatu Johnson, M; Frenje, J A; Li, C K; Séguin, F H; Petrasso, R D; Bionta, R M; Casey, D T; Caggiano, J A; Hatarik, R; Khater, H Y; Sayre, D B; Knauer, J P; Sangster, T C; Herrmann, H W; Kilkenny, J D

    2014-11-01

    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm(2) and CH-ablator ρR's of 400-680 mg/cm(2) are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions. PMID:25430283

  13. A technique for extending by ˜103 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGAa)

    NASA Astrophysics Data System (ADS)

    Sio, H.; Séguin, F. H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Rinderknecht, H. G.; Rosenberg, M. J.; Li, C. K.; Petrasso, R. D.

    2014-11-01

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D3He-, D2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 102 for obtaining the spectral shape, and by 103 for mean energy (ρR) measurement, corresponding to proton fluences of 108 and 109 cm-2, respectively. Using this new technique, ρR asymmetries can be measured during both shock and compression burn (proton yield ˜108 and ˜1012, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±˜10 mg/cm2.

  14. Volume and surface area of a spherical harmonic surface approximation to a NIF implosion core defined by HGXI/GXD images from the equator and pole

    SciTech Connect

    Koch, J A

    2011-10-26

    A solid object, such as a simplified approximation to an implosion core defined by the 17% intensity contour, can be described by a sum of spherical harmonics, following the notation of Butkov (Mathematical Physics, ISBN 0-201-00727-4, 1968; there are other notations so care is required), with Pl(x) being the usual (apparently standard) Legendre polynomial. For the present purposes, finding the volume and surface area of an implosion core defined by P0, P2, P4, M0, and M4, I will restrict the problem to consider only A{sub 00}, A{sub 20}, A{sub 40}, and A{sub 44}, with the phase angle set to eliminate the sin(m{phi}) term. Once the volume and surface area are determined, I will explore how these coefficients relate to measured quantities A0, A2/A0, A4/A0, M0, and M4/M0.

  15. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    PubMed

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  16. SAFETY FACTORS FOR XYLEM FAILURE BY IMPLOSION AND AIR-SEEDING WITHIN ROOTS, TRUNKS AND BRANCHES OF YOUNG AND OLD CONIFER TREES

    SciTech Connect

    Domec, Jean-Christophe; Warren, Jeffrey M.; Meinzer, Rick; Lachenbruch, Barbara

    2009-01-01

    The cohesion-tension theory of water transport states that hydrogen bonds hold water molecules together and that they are pulled through the xylem under tension. This tension could cause transport failure in at least two ways: collapse of the conduit walls (implosion), or rupture of the water column through air-seeding. The objective of this research was to elucidate the functional significance of variations in tracheid anatomical features, earlywood to latewood ratios and wood densities with position in young and old Douglas-fir and ponderosa pine trees in terms of their consequences for the safety factors for tracheid implosion and air-seeding. For both species, wood density increased linearly with percent latewood for root, trunk and branch samples. However, the relationships between anatomy and hydraulic function in trunks differed from those in roots and branches. In roots and branches increased hydraulic efficiency was achieved at the cost of increased vulnerability to air-seeding. Mature wood of trunks had earlywood with wide tracheids that optimized water transport and had a high percentage of latewood that optimized structural support. Juvenile wood had higher resistance to air-seeding and cell wall implosion. The two safety factors followed similar axial trends from roots to terminal branches and were similar for both species studied and between juvenile and mature wood.

  17. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA.

    PubMed

    Regan, S P; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Betti, R; Bose, A; Boehly, T R; Bonino, M J; Campbell, E M; Cao, D; Collins, T J B; Craxton, R S; Davis, A K; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Frenje, J A; Froula, D H; Gatu Johnson, M; Glebov, V Yu; Harding, D R; Hohenberger, M; Hu, S X; Jacobs-Perkins, D; Janezic, R; Karasik, M; Keck, R L; Kelly, J H; Kessler, T J; Knauer, J P; Kosc, T Z; Loucks, S J; Marozas, J A; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Myatt, J F; Obenschain, S P; Petrasso, R D; Radha, P B; Rice, B; Rosenberg, M J; Schmitt, A J; Schmitt, M J; Seka, W; Shmayda, W T; Shoup, M J; Shvydky, A; Skupsky, S; Solodov, A A; Stoeckl, C; Theobald, W; Ulreich, J; Wittman, M D; Woo, K M; Yaakobi, B; Zuegel, J D

    2016-07-01

    A record fuel hot-spot pressure P_{hs}=56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  18. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA.

    PubMed

    Regan, S P; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Betti, R; Bose, A; Boehly, T R; Bonino, M J; Campbell, E M; Cao, D; Collins, T J B; Craxton, R S; Davis, A K; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Frenje, J A; Froula, D H; Gatu Johnson, M; Glebov, V Yu; Harding, D R; Hohenberger, M; Hu, S X; Jacobs-Perkins, D; Janezic, R; Karasik, M; Keck, R L; Kelly, J H; Kessler, T J; Knauer, J P; Kosc, T Z; Loucks, S J; Marozas, J A; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Myatt, J F; Obenschain, S P; Petrasso, R D; Radha, P B; Rice, B; Rosenberg, M J; Schmitt, A J; Schmitt, M J; Seka, W; Shmayda, W T; Shoup, M J; Shvydky, A; Skupsky, S; Solodov, A A; Stoeckl, C; Theobald, W; Ulreich, J; Wittman, M D; Woo, K M; Yaakobi, B; Zuegel, J D

    2016-07-01

    A record fuel hot-spot pressure P_{hs}=56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance. PMID:27447511

  19. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    SciTech Connect

    Meezan, N. B. Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; and others

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  20. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; Izumi, N.; Kyrala, G. A.; Moody, J. D.; Patel, P. K.; Ralph, J. E.; Rygg, J. R.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R. P. J.; Biener, J.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Eckart, M. J.; Gatu Johnson, M.; Grim, G. P.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hoover, D. E.; Kilkenny, J. D.; Kozioziemski, B. J.; Kroll, J. J.; McNaney, J. M.; Nikroo, A.; Sayre, D. B.; Stadermann, M.; Wild, C.; Yoxall, B. E.; Landen, O. L.; Hsing, W. W.; Edwards, M. J.

    2015-06-01

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 1015 neutrons, 40% of the 1D simulated yield.

  1. Hybrid simulation of the Z-pinch instabilities for profiles generated during wire array implosion in the Saturn pulsed power generator

    SciTech Connect

    Sotnikov, V.I.; Leboeuf, J.N.; Deeney, C.; Coverdale, C.A.; Hellinger, P.; Travnicek, P.; Fiala, V.

    2005-09-15

    Experimental evidence suggests that the energy balance between processes in play during wire array implosions is not well understood. In fact the radiative yields can exceed by several times the implosion kinetic energy. A possible explanation is that the coupling from magnetic energy to kinetic energy as magnetohydrodynamic plasma instabilities develop provides additional energy. It is thus important to model the instabilities produced in the after implosion stage of the wire array in order to determine how the stored magnetic energy can be connected with the radiative yields. To this aim three-dimensional hybrid simulations have been performed. They are initialized with plasma radial density profiles, deduced in recent experiments [C. Deeney et al., Phys. Plasmas 6, 3576 (1999)] that exhibited large x-ray yields, together with the corresponding magnetic field profiles. Unlike previous work, these profiles do not satisfy pressure balance and differ substantially from those of a Bennett equilibrium. They result in faster growth with an associated transfer of magnetic energy to plasma motion and hence kinetic energy.

  2. Hybrid simulation of the Z-pinch instabilities for profiles generated in the process of wire array implosion in the Saturn pulsed power generator.

    SciTech Connect

    Coverdale, Christine Anne; Travnicek, P.; Hellinger, P.; Fiala, V.; Leboeuf, J. N.; Deeney, Christopher; Sotnikov, Vladimir Isaakovich

    2005-02-01

    Experimental evidence suggests that the energy balance between processes in play during wire array implosions is not well understood. In fact the radiative yields can exceed by several times the implosion kinetic energy. A possible explanation is that the coupling from magnetic energy to kinetic energy as magnetohydrodynamic plasma instabilities develop provides additional energy. It is thus important to model the instabilities produced in the after implosion stage of the wire array in order to determine how the stored magnetic energy can be connected with the radiative yields. To this aim three-dimensional hybrid simulations have been performed. They are initialized with plasma radial density profiles, deduced in recent experiments [C. Deeney et al., Phys. Plasmas 6, 3576 (1999)] that exhibited large x-ray yields, together with the corresponding magnetic field profiles. Unlike previous work, these profiles do not satisfy pressure balance and differ substantially from those of a Bennett equilibrium. They result in faster growth with an associated transfer of magnetic energy to plasma motion and hence kinetic energy.

  3. Design of an electronic charged particle spectrometer to measure ({rho}R), yield, and implosion symmetry on the OMEGA Upgrade

    SciTech Connect

    Hicks, D.G.; Li, C.K.; Petrasso, R.D.; Wenzel, K.W.; Knauer, J.P.

    1994-11-01

    The preliminary design for a state-of-the-art diagnostic that will measure a broad energy spectrum of charged particles generated in the OMEGA Upgrade facility is investigated. Using a set of photodiodes ({approximately}10) and a 0.8 Tesla permanent magnet, the diagnostic will uniquely determine particle energies and identities from 0.2 MeV up to the maximum charged particle energies (10.6 MeV tritons, 12.5 MeV deuterons and 17.4 MeV protons). With its high density picture elements, each photodiode has 10{sup 6} single-hit detectors, giving the spectrometer a dynamic range of 1 {minus} 10{sup 5} particles/shot. For example, in the case of a DT yield of 10{sup 9} neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Furthermore, the measurement of knock-on D and T spectra will allow {rho}R`s up to 0.15 g/cm{sup 2} to be measured (for a 1 keV plasma), or 0.3 g/cm{sup 2}2 if hydrogen doping is used. In addition, the yield and slowing down of secondary protons may be used to determine {rho}R up to 0.3 g/cm{sup 2}. Significantly, this diagnostic will also directly measure the DD fusion yield and energy degradation of nascent 3 MeV protons. By using two such compact spectrometers to measure the yield and spectra on widely separated ports around the OMEGA Upgrade target chamber, the implosion and bum symmetry can be determined. Furthermore, the ion temperature, and, in principle, even the electron temperature can be measured. The diagnostic and its development will be fully tested at several critical steps, utilizing 0.2-16 MeV protons (and several other charged particles and neutrons) from our absolutely calibrated Cockcroft-Walton facility.

  4. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    NASA Astrophysics Data System (ADS)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Papp, D.; Wiewior, P. P.; Chalyy, O.

    2015-11-01

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  5. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    SciTech Connect

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O.; Papp, D.

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  6. Measurement of the hot spot electron temperature in NIF ICF implosions using Krypton x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M.; Barrios, M.; Berzak Hopkins, L.; Casey, D.; Chung, H.-K.; Hammel, B.; Jarrott, C.; Nora, R.; Pak, A.; Scott, H.; Spears, B.; Weber, C.

    2015-11-01

    The inference of ion temperature from neutron spectral measurements in indirect-drive ICF implosions is known to be sensitive to non-thermal velocity distributions in the fuel. The electron temperature (Te) inferred from dopant line ratios should not be sensitive to these bulk motions and hence may be a better measure of the thermal temperature of the hot spot. Here we describe a series of experiments to be conducted on the NIF where a small concentration of a mid-Z dopant (Krypton) is added to the fuel gas. The x-ray spectra is measured and the electron temperature is inferred from Kr line ratios. We also quantify the level of radiative cooling in the hot spot due to this mid-Z dopant. These experiments represent the first direct measurement of hot spot Te using spectroscopy, and we will describe the considerations for applying x-ray spectroscopy in such dense and non-uniform hot spots. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission images

    SciTech Connect

    Davis, A. K. Michel, D. T.; Hu, S. X.; Craxton, R. S.; Epstein, R.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Froula, D. H.

    2014-11-15

    A technique to measure the mass ablation rate in direct-drive inertial confinement fusion implosions using a pinhole x-ray framing camera is presented. In target designs consisting of two layers of different materials, two x-ray self-emission peaks from the coronal plasma were measured once the laser burned through the higher-Z outer layer. The location of the inner peak is related to the position of the ablation front and the location of the outer peak corresponds to the position of the interface of the two layers in the plasma. The emergence of the second peak was used to measure the burnthrough time of the outer layer, giving the average mass ablation rate of the material and instantaneous mass remaining. By varying the thickness of the outer layer, the mass ablation rate can be obtained as a function of time. Simulations were used to validate the methods and verify that the measurement techniques are not sensitive to perturbation growth at the ablation surface.

  8. Anomalous yield reduction in direct-drive deuterium/tritium implosions due to {sup 3}He addition

    SciTech Connect

    Herrmann, H. W.; Langenbrunner, J. R.; Mack, J. M.; Cooley, J. H.; Wilson, D. C.; Evans, S. C.; Sedillo, T. J.; Kyrala, G. A.; Caldwell, S. E.; Young, C. S.; Nobile, A.; Wermer, J.; Paglieri, S.; McEvoy, A. M.; Kim, Y.; Batha, S. H.; Horsfield, C. J.; Drew, D.; Garbett, W.; Rubery, M.

    2009-05-15

    Glass capsules were imploded in direct drive on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)] to look for anomalous degradation in deuterium/tritium (DT) yield and changes in reaction history with {sup 3}He addition. Such anomalies have previously been reported for D/{sup 3}He plasmas but had not yet been investigated for DT/{sup 3}He. Anomalies such as these provide fertile ground for furthering our physics understanding of inertial confinement fusion implosions and capsule performance. Anomalous degradation in the compression component of yield was observed, consistent with the ''factor of 2'' degradation previously reported by Massachusetts Institute of Technology (MIT) at a 50%{sup 3}He atom fraction in D{sub 2} using plastic capsules [Rygg, Phys. Plasmas 13, 052702 (2006)]. However, clean calculations (i.e., no fuel-shell mixing) predict the shock component of yield quite well, contrary to the result reported by MIT but consistent with Los Alamos National Laboratory results in D{sub 2}/{sup 3}He[Wilson et al., J. Phys.: Conf. Ser. 112, 022015 (2008)]. X-ray imaging suggests less-than-predicted compression of capsules containing {sup 3}He. Leading candidate explanations are poorly understood equation of state for gas mixtures and unanticipated particle pressure variation with increasing {sup 3}He addition.

  9. Shear-tensile/implosion source model vs. moment tensor: benefit in single-azimuth monitoring. Cotton Valley set-up.

    NASA Astrophysics Data System (ADS)

    Sileny, J.

    2012-12-01

    Moment tensor (MT) has become a standard for description of seismic sources, both in earthquake seismology and for various types of induced seismicity. It is a general dipole source, but for practice it may be too general, its generality causing troubles during its reconstruction from noisy data in the inverse process, which may be additionally ill-conditioned due to inexact hypocenter location or availability of a rough velocity/attenuation model only. Then, the retrieved source may be biased. It seems reasonable to assume a simpler and intuitivelly more physical source model directly describing the physical phenomena anticipated in the particular focus. A simple combination of a shear slip with tensile crack or 1D implosion (STI) may be a good model both for natural earthquakes and induced events. The model simplification introduced is crucial in cases of depleted sensor configuration when the moment tensor fails, in single-azimuth monitoring in particular. This is just the case of application in oil and gas industry, where the monitoring of seismicity induced by hydrofracturing is typically performed from single monitoring borehole. Then, MT is able to provide constrained solutions only (e.g. deviatoric), but STI detects also non-shear component correctly, providing important information on increase of permeability of the reservoir.

  10. Effect of Beam Smoothing and Pulse Shape on the Implosion of DD-Filled CH Shell Targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Glebov, V. Yu.; Marshall, F. J.; Stoeckl, C.; Yaakobi, B.; Meyerhofer, D. D.

    1999-11-01

    Over the past two years several implosion experiments were carried out on the 60-beam OMEGA laser in which DD-filled CH shells (some with a CHTi layer imbedded) were irradiated with various laser pulse shapes and smoothing conditions. Target CH shell thicknesses varied from 20 μm to 27 μm with DD-fill variations from 3 to 20 atm, sometimes mixed with ^3He. Two pulse shapes---a 1-ns square pulse and a 2.5-ns pulse with a 10%, 1-ns foot, with and without SSD---provide several levels of laser imprint. Diagnostics include measured neutron yields, fuel ion temperatures, fuel ρR, and shell ρR. Simulations for these experimental conditions were carried out with the 2-D hydrocode ORCHID. The results are compared with the experimental results. The degradation of target performance due to laser nonuniformity is analyzed by comparing the 2-D results with those of 1-D simulations. The effects of pulse shape, target thickness, convergence ratio, and smoothing are presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

  11. The impact of laser plasma interactions on three-dimensional drive symmetry in inertial confinement fusion implosions

    SciTech Connect

    Peterson, J. L. Michel, P.; Thomas, C. A.; Town, R. P. J.

    2014-07-15

    Achieving symmetric hohlraum radiation drive is an important aspect of indirectly driven inertial confinement fusion experiments. However, when experimentally delivered laser powers deviate from ideal conditions, the resultant radiation field can become asymmetric. Two situations in which this may arise are random uncorrelated fluctuations, in as-delivered laser power and laser beams that do not participate in the implosion (either intentionally or unintentionally). Furthermore, laser plasma interactions in the hohlraum obfuscate the connection between laser powers and radiation drive. To study the effect of these situations on drive symmetry, we develop a simplified model for crossed-beam energy transfer, laser backscatter, and plasma absorption that can be used in conjunction with view factor calculations to expediently translate laser powers into three-dimensional capsule flux symmetries. We find that crossed-beam energy transfer can alter both the statistical properties of uncorrelated laser fluctuations and the impact of missing laser beams on radiation symmetry. A method is proposed to mitigate the effects of missing laser beams.

  12. Simultaneous time-gated measurements of K- and L-shell radiation from brass wire array implosions on Zebra

    NASA Astrophysics Data System (ADS)

    Ouart, N. D.; Giuliani, J. L.; Dasgupta, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Shrestha, I.; Weller, M. E.; Shlyaptseva, V.; Osborne, G. C.; Stafford, A.; Keim, S.; Clark, R. W.

    2012-10-01

    New experiments have simultaneously measured both the copper and zinc K- and L-shell radiation with two time-gated spectrometers on the 1 MA Zebra generator at the University of Nevada, Reno. This work extends the previous brass wire implosions which only used one time-gated spectrometer [Ouart et al., IEEE Trans. Plasma Sci. 38, 631 (2010) and Ouart et al., HEDP 8, 247 (2012)]. The diagnostic suite also includes time-integrated spatially resolved spectrometers, time-integrated and time-gated pinhole imaging, various x-ray diodes, Ni bolometers, a Faraday cup, and laser shadowgraphy. The L-shell radiation comes from ionization stages around the Ne-like charge state that is largely populated by a thermal electron energy distribution function, while the K-shell radiation is subsequently produced by electron beams removing an inner-shell electron. A multi-zone non-LTE copper and zinc pinch model will be used to model the radiation from experiments. Diagnostic analysis will be presented using contours of line ratios and powers.

  13. Alternative Therapies

    MedlinePlus

    ... Late Effects of Poliomyelitis for Physicians and Survivors © Alternative Therapies Alternative therapies, also called complementary, can support ... of motion, pain, and fatigue are often reported. Energy work includes acupuncture and acupressure, traditional Chinese medicine ...

  14. Radiation Therapy

    MedlinePlus

    ... people who have radiation therapy may feel more tired than usual, not feel hungry, or lose their ... of radiation therapy include: Fatigue. Fatigue, or feeling tired, is the most common side effect of radiation ...

  15. Radiation therapy

    MedlinePlus

    ... Because radiation is most harmful to quickly growing cells, radiation therapy damages cancer cells more than normal cells. ... cells from growing and dividing, and leads to cell death. Radiation therapy is used to fight many types of ...

  16. A novel particle Time Of Flight (pTOF) diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF

    SciTech Connect

    Mackinnon, A; Rinderknecht, H G; Johnson, M G; Zylstra, A B; Sinenian, N; Rosenbergh, M J; Frenje, J A; Waugh, C J; Li, C K; Seguin, F H; Petrasso, R; Rygg, J R; Kline, J; Doeppner, T; Park, H S; Landen, O; Lepape, S; Meezan, N; Kilkenny, J; Glebov, V Y; Sangster, T; Stoeckl, C; Olson, R

    2012-05-02

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a Wedge Range-Filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted {rho}R measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT-Exploding Pusher and D{sup 3}He implosions using DD or DT neutrons with an accuracy better than {+-}70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions using D{sup 3}He protons and DD-neutrons, respectively.

  17. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb ... in your home. A different kind of oxygen therapy is called hyperbaric oxygen therapy. It uses oxygen ...

  18. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    DOE PAGES

    Davis, A. K.; Cao, D.; Michel, D. T.; Hohenberger, M.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Igumenshchev, I. V.; Marozas, J. A.; et al

    2016-04-20

    The angularly-resolved mass ablation rates and ablation front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify crossbeam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration was used, where the equatorial laser beams were dropped from a symmetric direct-drive configuration to suppress CBET at the pole, while allowing it to persist at the equator. The combination of low- and high-CBET conditions in the same implosion allowed the effects of CBET on the ablation rate and ablation pressure to be decoupled from the other physics effects that influence laser-coupling. Hydrodynamic simulationsmore » performed without CBET reproduced the measured ablation rate and ablation front trajectory at the pole of the target, verifying that the other laser-coupling physics effects are well-modeled when CBET effects are negligible. The simulated mass ablation rates and ablation front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall’s equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with an optimized multiplier on the CBET gain factor. These measurements were performed on both OMEGA and the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. Furthermore, the presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations due to diffraction, shortcomings of extending the 1-D Randall model to 3-D, or polarization effects, should be explored to explain the differences in observed and predicted drive.« less

  19. Alloy synthesis using the mach stem region in an axial symmetric implosive shock: Understanding the pressure strain-temperature contributions

    SciTech Connect

    Staudhammer, Karl P.

    2004-01-01

    The Mach stem region in an axial symmetric shock implosion has generally been avoided in the dynamic consolidation of powders for a number of reasons. The prime reason being that the convergence of the shock waves in the cylindrical axis produce enormous pressures and concomitant temperatures that have melted tungsten. This shock wave convergence consequently results in a discontinuity in the hydro-code calculations. Dynamic deformation experiments on gold plated 304L stainless steel powders were undertaken. These experiments utilized pressures of 0.08 to 1.0 Mbar and contained a symmetric radial melt region along the central axis of the sample holder. To understand the role of deformation in a porous material, the pressure, and temperature as well as the deformation heat and associated defects must be accounted for. When the added heat of consolidation deformation exceeds the melt temperature of the 304 powders, a melt zone results that can consume large regions of the compact while still under the high-pressure pulse. As the shock wave traverses the sample and is removed in a momentum trap, its pressure/temperature are quenched. It is within this region that very high diffusion/alloying occurs and has been observed in the gold plated powders. Anomalous increases of gold diffusion into 304 stainless steel have been observed via optical microscopy, scanning electron microscopy and EDAX measurements. Values exceeding 1200 m/sec have been measured and correlated to the powder sizes, size distribution and packing density, concomitant with sample container strains ranging from 2.0% to 26%.

  20. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Cao, D.; Michel, D. T.; Hohenberger, M.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Igumenshchev, I. V.; Marozas, J. A.; Maximov, A. V.; Myatt, J. F.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Froula, D. H.

    2016-05-01

    The angularly resolved mass ablation rates and ablation-front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify cross-beam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration, where the equatorial laser beams were dropped and the polar beams were repointed from a symmetric direct-drive configuration, was used to limit CBET at the pole while allowing it to persist at the equator. The combination of low- and high-CBET conditions observed in the same implosion allowed for the effects of CBET on the ablation rate and ablation pressure to be determined. Hydrodynamic simulations performed without CBET agreed with the measured ablation rate and ablation-front trajectory at the pole of the target, confirming that the CBET effects on the pole are small. The simulated mass ablation rates and ablation-front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall's equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with a multiplier on the CBET gain factor. These measurements were performed on OMEGA and at the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. The presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations caused by diffraction, polarization effects, or shortcomings of extending the 1-D Randall model to 3-D, should be explored to explain the differences in observed and predicted drive.